高中数学必修2空间立体几何大题

合集下载

高中数学高一必修2空间立体几何试卷(有详细答案)

高中数学高一必修2空间立体几何试卷(有详细答案)

高中数学立体几何测试试卷学校:___姓名:___班级:___考号:__一.单选题1.一个圆锥的侧面展开图的圆心角为90°,它的表面积为a,则它的底面积为()A.B.C.D.2.设α为平面,m,n为直线()A.若m,n与α所成角相等,则m∥nB.若m∥α,n∥α,则m∥nC.若m,n与α所成角互余,则m⊥nD.若m∥α,n⊥α,则m⊥n3.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为()A.75°B.60°C.45°D.30°4.设α是空间中的一个平面,l,m,n是三条不同的直线,①若m⊂α,n⊂α,l⊥m,l⊥n,则l⊥α;②若l∥m,m∥n,l⊥α,则n⊥α;③若l∥m,m⊥α,n⊥α,则l∥n;④若m⊂α,n⊥α,l⊥n,则l∥m;则上述命题中正确的是()A.①②B.②③C.②④D.③④5.已知一个铜质的五棱柱的底面积为16cm2,高为4cm,现将它熔化后铸成一个正方体的铜块(不计损耗),那么铸成的铜块的棱长是()A.2cm B.C.4cm D.8cm6、在正方体ABCD-A l B1C1D1中,P是正方体的底面A l B1C1D1(包括边界)内的一动点(不与A1重合),Q是底面ABCD内一动点,线段A1C与线段PQ相交且互相平分,则使得四边形A1QCP面积最大的点P有()A.1个B.2个C.3个D.无数个7.如图所示几个空间图形中,虚线、实线使用不正确的有()A.②③B.①③C.③④D.④二.填空题8、如图,在四棱锥S-ABCD中,SB⊥底面ABCD.底面ABCD为梯形,AB⊥AD,AB∥CD,AB=1,AD=3,CD=2.若点E是线段AD上的动点,则满足∠SEC=90°的点E的个数是______.9、一个正方体的六个面上分别标有字母A、B、C、D、E、F,如图是此正方体的两种不同放置,则与D面相对的面上的字母是______.10.设α、β为互不重合的平面,m、n为互不重合的直线,下列四个命题中所有正确命题的序号是______.①若m⊥α,n⊂α,则m⊥n;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β.③若m∥α,n∥α,则m∥n.④若α⊥β,α∩β=m,n⊂α,n⊥m,则n⊥β.三.简答题11、在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,S D=,在线段SA上取一点E(不含端点)使EC=AC,截面CDE与SB交于点F.(1)求证:四边形EFCD为直角梯形;(2)设SB的中点为M,当的值是多少时,能使△DMC为直角三角形?请给出证明.12、正三棱台的高为3,上、下底面边长分别为2和4,求这个棱台的侧棱长和斜高.13、已知三棱椎D-ABC,AB=AC=1,AD=2,∠BAD=∠CAD=∠BAC=90°,点E,F分别是BC,DE的中点,如图所示,(1)求证AF⊥BC(2)求线段AF的长.参考答案一.单选题1.一个圆锥的侧面展开图的圆心角为90°,它的表面积为a,则它的底面积为()A.B.C.D.答案:A解析:解:设圆锥的母线为l,所以圆锥的底面周长为:,底面半径为:=,底面面积为:.圆锥的侧面积为:,所以圆锥的表面积为:+=a,底面面积为:=.故选A.2.设α为平面,m,n为直线()A.若m,n与α所成角相等,则m∥nB.若m∥α,n∥α,则m∥nC.若m,n与α所成角互余,则m⊥nD.若m∥α,n⊥α,则m⊥n答案:D解析:解:对于选项A,若m,n与α所成角相等,m,n也可能相交、平行、异面;故A错误;对于选项B,若m∥α,n∥α,直线m,n也可能平行,也可能相交,还有可能异面;故B 错误;对于选项C,若m,n与α所成角互余,如与α所成角分别为30°和60°,直线m,n所成的角有可能为30°;故C错误;对于选项D,根据线面垂直的性质,容易得到m⊥n;故D正确;故选D.3.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为()A.75°B.60°C.45°D.30°答案:C解析:解析:如图,四棱锥P-ABCD中,过P作PO⊥平面ABCD于O,连接AO则AO是AP在底面ABCD上的射影.∴∠PAO即为所求线面角,∵AO=,PA=1,∴cos∠PAO==.∴∠PAO=45°,即所求线面角为45°.故选C.4.设α是空间中的一个平面,l,m,n是三条不同的直线,①若m⊂α,n⊂α,l⊥m,l⊥n,则l⊥α;②若l∥m,m∥n,l⊥α,则n⊥α;③若l∥m,m⊥α,n⊥α,则l∥n;④若m⊂α,n⊥α,l⊥n,则l∥m;则上述命题中正确的是()A.①②B.②③C.②④D.③④答案:B解析:解:①根据线面垂直的判定,当m,n相交时,结论成立,故①不正确;②根据平行线的传递性,可得l∥n,故l⊥α时,一定有n⊥α,故②正确;③由垂直于同一平面的两直线平行得m∥n,再根据平行线的传递性,即可得l∥n,故③正确.④m⊂α,n⊥α,则n⊥m,∵l⊥n,∴可以选用正方体模型,可得l,m平行、相交、异面都有可能,如图所示,故④不正确故正确的命题是②③故选B.5.已知一个铜质的五棱柱的底面积为16cm2,高为4cm,现将它熔化后铸成一个正方体的铜块(不计损耗),那么铸成的铜块的棱长是()A.2cm B.C.4cm D.8cm答案:C解析:解:∵铜质的五棱柱的底面积为16cm2,高为4cm,∴铜质的五棱柱的体积V=16×4=64cm3,设熔化后铸成一个正方体的铜块的棱长为acm,则a3=64解得a=4cm故选C6、在正方体ABCD-A l B1C1D1中,P是正方体的底面A l B1C1D1(包括边界)内的一动点(不与A1重合),Q是底面ABCD内一动点,线段A1C与线段PQ相交且互相平分,则使得四边形A1QCP面积最大的点P有()A.1个B.2个C.3个D.无数个答案:C解:∵线段A1C与线段PQ相交且互相平分,∴四边形A1QCP是平行四边形,因A l C的长为定值,为了使得四边形A1QCP面积最大,只须P到A l C的距离为最大即可,由正方体的特征可知,当点P位于B1、C1、D1时,平行四边形A1QCP面积相等,且最大.则使得四边形A1QCP面积最大的点P有3个.故选C.7.如图所示几个空间图形中,虚线、实线使用不正确的有()A.②③B.①③C.③④D.④答案:D解析:解:根据棱柱的放置和“看见的棱用实线、看不见的棱用虚线”,则①②③正确,④错误,故选D.二.填空题8、如图,在四棱锥S-ABCD中,SB⊥底面ABCD.底面ABCD为梯形,AB⊥AD,AB∥CD,AB=1,AD=3,CD=2.若点E是线段AD上的动点,则满足∠SEC=90°的点E的个数是______.答案:2解:连接BE,则∵SB⊥底面ABCD,∠SEC=90°,∴BE⊥CE.故问题转化为在梯形ABCD中,点E是线段AD上的动点,求满足BE⊥CE的点E的个数.设AE=x,则DE=3-x,∵AB⊥AD,AB∥CD,AB=1,AD=3,CD=2,∴10=1+x2+4+(3-x)2,∴x2-3x+2=0,∴x=1或2,∴满足BE⊥CE的点E的个数为2,∴满足∠SEC=90°的点E的个数是2.故答案为:2.9、一个正方体的六个面上分别标有字母A、B、C、D、E、F,如图是此正方体的两种不同放置,则与D面相对的面上的字母是______.答案:B解析:解:由此正方体的两种不同放置可知:与C相对的是F,因此D与B相对.故答案为:B.10.设α、β为互不重合的平面,m、n为互不重合的直线,下列四个命题中所有正确命题的序号是______.①若m⊥α,n⊂α,则m⊥n;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β.③若m∥α,n∥α,则m∥n.④若α⊥β,α∩β=m,n⊂α,n⊥m,则n⊥β.答案:①④解析:解:①若m⊥α,n⊂α,利用线面垂直的性质,可得m⊥n,正确;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;两条相交直线才行,不正确.③m∥α,n∥α,则m与n可能平行、相交、异面,不正确.④若α⊥β,α∩β=m,n⊂α,n⊥m,则由面面垂直的性质定理我们易得到n⊥β,正确.故答案为:①④.三.简答题11、在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,S D=,在线段SA上取一点E(不含端点)使EC=AC,截面CDE与SB交于点F.(1)求证:四边形EFCD为直角梯形;(2)设SB的中点为M,当的值是多少时,能使△DMC为直角三角形?请给出证明.答案:解:(1)∵CD∥AB,AB⊂平面SAB,∴CD∥平面SAB面EFCD∩面SAB=EF,∴CD∥EF.∵∠D=90°,∴CD⊥AD,又SD⊥面ABCD,∴SD⊥CD,∴CD⊥平面SAD,∴CD⊥ED又EF<AB<CD,∴EFCD为直角梯形.(2)当=2时,能使DM⊥MC.∵AB=a,∴,∴,∴SD⊥平面ABCD,∴SD⊥BC,∴BC⊥平面SBD.在△SBD中,SD=DB,M为SB中点,∴MD⊥SB.∴MD⊥平面SBC,MC⊂平面SBC,∴MD⊥MC,∴△DMC为直角三角形.12、正三棱台的高为3,上、下底面边长分别为2和4,求这个棱台的侧棱长和斜高.答案:解:如图所示,正三棱台ABC-A1B1C1中,高OO1=3,底面边长为A1B1=2,AB=4,∴OA=×AB=,O1A1=×A1B1=,∴棱台的侧棱长为AA1==;又OE=×AB=,O1E1=×A1B1=,∴该棱台的斜高为EE1==.13、已知三棱椎D-ABC,AB=AC=1,AD=2,∠BAD=∠CAD=∠BAC=90°,点E,F分别是BC,DE的中点,如图所示,(1)求证AF⊥BC(2)求线段AF的长.答案:解:(1)分别以AB、AC和AD为x、y、z轴,建立空间直角坐标系O-xyz,如图所示:记A(0,0,0),B(1,0,0),C(0,1,0),D(0,0,2),∴E(,,0),F(,,1);∴(,,1),=(-1,1,0),∴•=×(-1)+×1+1×0=0,∴⊥,即AF⊥BC;(2)∵=(,,1),∴||===,即线段AB=.。

人教版高中数学必修第二册第三单元《立体几何初步》测试卷(包含答案解析)

人教版高中数学必修第二册第三单元《立体几何初步》测试卷(包含答案解析)

一、选择题1.已知空间中不同直线m 、n 和不同平面α、β,下面四个结论:①若m 、n 互为异面直线,//m α,//n α,//m β,βn//,则//αβ;②若m n ⊥,m α⊥,βn//,则αβ⊥;③若n α⊥,//m α,则n m ⊥;④若αβ⊥,m α⊥,//n m ,则βn//.其中正确的是( )A .①②B .②③C .③④D .①③ 2.古代数学名著《数学九章》中有云:“有木长三丈,围之八尺,葛生其下,缠木两周,上与木齐,问葛长几何?”意思为:圆木长3丈,圆周为8尺,葛藤从圆木的底部开始向上生长,绕圆木两周,刚好顶部与圆木平齐,问葛藤最少长多少尺(注:1丈即10尺)( ) A .30尺 B .32尺 C .34尺 D .36尺 3.如图,在长方体1111ABCD A B C D -中,13,2,4AA AB AD ===,点M 是棱AD 的中点,点N 在棱1AA 上,且满足12AN NA =,P 是侧面四边形11ADD A 内的一动点(含边界),若1//C P 平面CMN ,则线段1C P 长度的取值范围是( )A .[3,17]B .[2,3]C .[6,22]D .[17,5] 4.某几何体的三视图如图所示(单位:cm ),则该几何体的侧面积(单位:2cm )是( )A .10B .105+C .1625+D .135+5.设l 是直线,α,β是两个不同的平面,则正确的结论是( )A .若l ∥α,l ∥β,则α∥βB .若l ∥α,l ⊥β,则α⊥βC .若α⊥β,l ⊥α,则l ⊥βD .若α⊥β,l ∥α,则l ⊥β6.在棱长为a 的正方体1111ABCD A B C D -中,M 为AB 的中点, 则点C 到平面1A DM的距离为( )A .6aB .6aC .2aD .12a 7.如图所示,在棱长为a 的正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且1//B F 面1A BE ,则F 在侧面11CDD C 上的轨迹的长度是( )A .aB .2aC 2aD .22a 8.3P -ABC 的顶点都在球O 的球面上,PA ⊥平面ABC ,PA =2,∠ABC =120°,则球O 的体积的最小值为( )A .73 B 287 C 1919 D .193π 9.已知三棱锥A BCD -的所有棱长都为2,且球O 为三棱锥A BCD -的外接球,点M 是线段BD 上靠近D 的四等分点,过点M 作平面α截球O 得到的截面面积为Ω,则Ω的取值范围为( )A .π3π,42⎡⎤⎢⎥⎣⎦B .3π3π,42⎡⎤⎢⎥⎣⎦C .π3π,22⎡⎤⎢⎥⎣⎦D .,42ππ⎡⎤⎢⎥⎣⎦ 10.设,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题正确的是( ) A .若m n ⊥,//n α,则m α⊥ B .若//m β,βα⊥,则m α⊥ C .若m β⊥,n β⊥,n α⊥,则m α⊥ D .若m n ⊥,n β⊥,βα⊥,则m α⊥ 11.在三棱锥P ABC -中,AB BC ⊥,P 在底面ABC 上的投影为AC 的中点D ,1DP DC ==.有下列结论:①三棱锥P ABC -的三条侧棱长均相等;②PAB ∠的取值范围是,42ππ⎛⎫ ⎪⎝⎭; ③若三棱锥的四个顶点都在球O 的表面上,则球O 的体积为23π;④若AB BC =,E 是线段PC 上一动点,则DE BE +的最小值为622+. 其中正确结论的个数是( )A .1B .2C .3D .412.如图,正方体1111ABCD A B C D -的棱长为2,点O 为底面ABCD 的中心,点P 在侧面11BB C C 的边界及其内部运动.若1D O OP ⊥,则11D C P △面积的最大值为( )A 25B .455C 5D .2513.设α、β为两个不同的平面,l 、m 为两条不同的直线,且l α⊂,m β⊂,则下列命题中真命题是( )A .若l β⊥,则αβ⊥B .若l m ⊥,则αβ⊥C .若αβ⊥,则l m ⊥D .若//αβ,则//l m 14.αβ、是两个不同的平面,mn 、是平面α及β之外的两条不同直线,给出四个论断:①m n ⊥;②αβ⊥;③n β⊥;④.m α⊥以其中三个论断作为条件,余下一个作为结论,其中正确命题的个数是( )A .1个B .2个C .3个D .4个 二、解答题15.如图,在正四棱柱1111ABCD A B C D -中(底面是正方形的直四棱柱),底面正方形ABCD 的边长为1,侧棱1AA 的长为2,E 、M 、N 分别为11A B 、11B C 、1BB 的中点.AD平面EMN;(1)求证:1//AD与BE所成角的余弦值.(2)求异面直线116.如图所示的四棱锥E-ABCD中,底面ABCD为矩形,AE=EB=BC=2,AD⊥平面ABE,且CE上的点F满足BF⊥平面ACE.(1)求证:AE∥平面BFD;(2)求三棱锥C-AEB的体积.17.如图甲,平面四边形ABCD中,已知45∠=,90︒A︒∠=∠=,ADC︒C,105 ==,现将四边形ABCD沿BD折起,使得平面ABD⊥平面BDC (如图乙),设2AB BD点E,F分别是棱AC,AD的中点.(1)求证:DC⊥平面ABC;(2)求三棱锥A BEF -的体积.18.在四棱锥P ABCD -中,//AD BC ,BC CD ⊥,120ABC ∠=︒,4=AD ,3BC =,=2AB ,3=CD CE ,⊥AP ED .(1)求证:DE ⊥面PEA ;(2)已知点F 为AB 中点,点P 在底面ABCD 上的射影为点Q ,直线AP 与平面ABCD 所成角的余弦值为3,当三棱锥-P QDE 的体积最大时,求异面直线PB 与QF 所成角的余弦值.19.如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,点P 为棱1DD 的中点.(1)证明:1//BD 平面PAC ;(2)求异面直线1BD 与AP 所成角的大小.20.如图,在四棱锥P ABCD -中,PA ⊥平面ABC ,//,90AD BC ABC ︒∠=,2AD =,23AB =6BC =.(1)求证:平面PBD ⊥平面PAC ;(2)PA 长为何值时,直线PC 与平面PBD 所成角最大?并求此时该角的正弦值. 21.已知三棱柱ABC -A 1B 1C 1中BC =1,CC 1=BB 1=2,AB =2,∠BCC 1=60°,AB ⊥侧面BB 1C 1C(1)求证:C 1B ⊥平面ABC ;(2)求三棱柱ABC -A 1B 1C 1的体积,(3)试在棱CC 1(不包含端点C ,C 1)上确定一点E ,使得EA ⊥EB 1;22.如图,在平行四边形ABCD 中,4AB =,60DAB ∠=︒.点G ,H 分别在边CD ,CB 上,点G 与点C ,D 不重合,GH AC ⊥,GH 与AC 相交于点O ,沿GH 将CGH 翻折到EGH 的位置,使二面角E GH B --为90°,F 是AE 的中点.(1)请在下面两个条件:①AB AD =,②AB BD ⊥中选择一个填在横线处,使命题P :若________,则BD ⊥平面EOA 成立,并证明.(2)在(1)的前提下,当EB 取最小值时,求直线BF 与平面EBD 所成角的正弦值. 23.如图,已知PA ⊥平面ABCD ,ABCD 为矩形,M 、N 分别为AB 、PC 的中点,,2,2PA AD AB AD ===.(1)求证:平面MPC ⊥平面PCD ;(2)求三棱锥B MNC -的高.24.如图,在棱长为1的正方体1111ABCD A B C D -中,点O 是BD 中点.(1)求证:平面11BDD B ⊥平面1C OC ;(2)求二面角1C BD C --的正切值.25.如图,已知三棱柱111ABC A B C -中,AB AC =,D 为BC 上一点,1A B 平面1AC D .(1)求证:D 为BC 的中点;(2)若平面ABC ⊥平面11BCC B ,求证:1AC D ∆为直角三角形.26.如图,在四棱锥P ABCD -中,//AB CD ,2CD AB =,CD ⊥AD ,平面PAD ⊥平面ABCD ,,E F 分别是CD 和PC 的中点.求证:(1)BF //平面PAD(2)平面BEF ⊥平面PCD参考答案【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由线面和面面平行和垂直的判定定理和性质定理即可得解.【详解】解:对于①,由面面平行的判定定理可得,若m 、n 互为异面直线,//m α,//n β,则//αβ或相交,又因为//m β,//n α,则//αβ,故①正确;对于②,若m n ⊥,m α⊥,//n β,则//αβ或α,β相交,故②错误, 对于③,若n α⊥,//m α,则n m ⊥;故③正确,对于④,若αβ⊥,m α⊥,//n m ,则//n β或n β⊂,故④错误,综上可得:正确的是①③,故选:D .【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.2.C解析:C【分析】由题意,圆柱的侧面展开图是矩形,葛藤长是两个矩形相连所成矩形的对角线的长,画出图形,即可求出葛藤长.【详解】由题意,圆柱的侧面展开图是矩形,葛藤长是两个矩形相连所成矩形的对角线的长. 如图所示矩形ABCD 中,30AD =尺,2816AB =⨯=尺, 所以葛藤长2222301634AC AD AB =+=+=尺.故选:C .【点睛】本题考查圆柱的侧面展开图,考查学生的空间想象能力,属于基础题. 3.C解析:C【分析】首先找出过点1C 且与平面CMN 平行的平面,然后可知点P 的轨迹即为该平面与侧面四边形11ADD A 的交线段,进而可以利用解三角形的知识求出线段1C P 长度的取值范围.【详解】如图所示:,取11A D 的中点G ,取MD 的中点E ,1A G 的中点F ,1D D 的三等分点H 靠近D ,并连接起来.由题意可知1//C G CM ,//GH MN ,所以平面1//C GH 平面CMN .即当点P 在线段GH 上时,1//C P 平面CMN . 在1H C G 中,2212222C G =+=2212222C H =+=22GH =,所以1H C G 为等边三角形,取GH 的中点O ,122sin606C O ==,故线段1C P 长度的取值范围是[6,22].故选:C .【点睛】 本题主要考查线面平行,面面平行的判定定理和性质定理的应用,以及解三角形,意在考查学生的逻辑推理能力和数学运算能力,属于中档题.4.B解析:B【分析】由三视图可知,该几何体的直观图为直四棱柱1111ABCD A B C D -,由矩形的面积公式得出该几何体的侧面积.【详解】由三视图可知,该几何体的直观图为直四棱柱1111ABCD A B C D -,如下图所示2211125AD A D ==+=∴该几何体的侧面积为122222521025⨯+⨯+⨯=+故选:B【点睛】本题主要考查了由三视图计算几何体的侧面积,属于中档题.5.B解析:B【分析】根据直线、平面间平行、垂直的位置关系判断.【详解】若l ∥α,l ∥β,则α∥β或,αβ相交,A 错;若l ∥α,由线面平行的性质得,知α内存在直线b 使得//l b (过l 作平面与α相交,交线即是平行线),又l ⊥β,∴b β⊥,∴α⊥β,B 正确;若α⊥β,l ⊥α,则不可能有l ⊥β,否则由l ⊥α,l ⊥β,得//αβ,矛盾,C 错; 若α⊥β,l ∥α,则l 与β可能平行,可能在平面内,可能相交也可能垂直,D 错. 故选:B .【点睛】本题考查空间直线、平面间平行与垂直关系的判断,掌握直线、平面间位置关系是解题关键.6.A解析:A 【分析】根据等体积法有11A CDM C A DM V V --=得解. 【详解】画出图形如下图所示,设C 到平面1A DM 的距离为h , 在△1A DM 中115,2,2A M DM a A D a === 1A ∴到DM 的距离为3a则根据等体积法有11A CDM C A DM V V --=,即11113232322a a a a a h ⋅⋅⋅⋅=⋅⋅⋅⋅,解得6h a =, 故选:A.【点睛】本题考查利用等体积法求距离,属于基础题.7.D解析:D 【分析】解:设G ,H ,I 分别为CD 、1CC 、11C D 边上的中点,证明平面1//A BGE 平面1B HI ,得到1//B F 面1A BE ,则F 落在线段HI 上,求出11222HI CD a == 【详解】解:设G ,H ,I 分别为CD 、1CC 、11C D 边上的中点,1//A B EG ,则1A BEG 四点共面,11//,//EG HI B H A E , 平面1//A BGE 平面1B HI ,又1//B F 面1A BE ,F ∴落在线段HI 上, 正方体1111ABCD A B C D -中的棱长为a , 1122HI CD a ∴==,即F 在侧面11CDD C 上的轨迹的长度是2a . 故选:D .【点睛】本题考查利用线面平行求线段长度,找到动点的运动轨迹是解题的关键,属于基础题.8.B解析:B 【分析】根据三棱锥的体积求出S △ABC 33,在三角形ABC 中,根据余弦定理和正弦定理求出△ABC 外接圆的半径r 的最小值,从而可求出外接球半径的最小值和外接球体积的最小值. 【详解】设AB =c ,BC =a ,AC =b 313×S △ABC ×2,解得S △ABC 33. 因为∠ABC =120°,S △ABC 3312ac sin 120°,所以ac =6, 由余弦定理可得b 2=a 2+c 2-2ac cos 120°=a 2+c 2+ac ≥2ac +ac =3ac =18,当且仅当a =c 时取等号,此时b min =2.设△ABC 外接圆的半径为r ,则sin120b=2r (b 最小,则外接圆半径最小),故3232=2r min ,所以r min =6.如图,设O 1为△ABC 外接圆的圆心,D 为PA 的中点,R 为球的半径,连接O 1A ,O 1O ,OA ,OD ,PO ,易得OO 1=1,R 2=r 2+OO =r 2+1,当r min =6时,2min R =6+1=7,R min =7,故球O 体积的最小值为43π3min R =437)3287. 故选:B 【点睛】本题考查了三棱锥的体积公式,考查了球的体积公式,考查了正弦定理,考查了余弦定理,属于中档题.9.B解析:B 【分析】求出三棱锥A BCD -的外接球半径R ,可知截面面积的最大值为2πR ,当球心O 到截面的距离最大时,截面面积最小,此时球心O 到截面的距离为OM ,截面圆的半径的最小值22R OM -,进而可求出截面面积的最小值. 【详解】三棱锥A BCD -是正四面体,棱长为2,将三棱锥A BCD -放置于正方体中, 可得正方体的外接球就是三棱锥A BCD -的外接球. 因为三棱锥A BCD -的棱长为22, 可得外接球直径22226R =++=6R =, 故截面面积的最大值为2263πππ2R ==⎝⎭. 因为M 是BD 上的点,当球心O 到截面的距离最大时,截面面积最小, 此时球心O 到截面的距离为OM ,△OBD 为等腰三角形, 过点O 作BD 的垂线,垂足为H ,222662,122OD OH OD HD ⎛⎫==-=-= ⎪ ⎪⎝⎭, 得222113244OM OH HM =+=+=, 则所得截面半径的最小值为22633444R OM -=-=, 所以截面面积的最小值为233ππ()44=. 故Ω的取值范围为3π3π,42⎡⎤⎢⎥⎣⎦.故选:B. 【点睛】外接球问题与截面问题是近年来的热点问题,平常学习中要多积累,本题考查学生的空间想象能力、推理能力及计算求解能力,属于中档题.10.C解析:C 【分析】根据空间中直线与平面、平面与平面位置关系相关定理依次判断各个选项可得结果. 【详解】对于A ,当m 为α内与n 垂直的直线时,不满足m α⊥,A 错误; 对于B ,设l αβ=,则当m 为α内与l 平行的直线时,//m β,但m α⊂,B 错误; 对于C ,由m β⊥,n β⊥知://m n ,又n α⊥,m α∴⊥,C 正确;对于D ,设l αβ=,则当m 为β内与l 平行的直线时,//m α,D 错误.故选:C . 【点睛】本题考查立体几何中线面关系、面面关系有关命题的辨析,考查学生对于平行与垂直相关定理的掌握情况,属于基础题.11.C解析:C 【分析】作出三棱锥P ABC -的图象,逐一判断各命题,即可求解. 【详解】作出三棱锥P ABC -的图象,如图所示:.对于①,根据题意可知,PD ⊥平面ABC ,且1DP DC ==,所以2PA PB PC ===①正确;对于②,在PAB △中,2PA PB ==02AB <<,所以2cos 222AB PAB PA ⎛∠== ⎝⎭, 即PAB ∠的取值范围是,42ππ⎛⎫⎪⎝⎭,②正确; 对于③,因为DP DA DB DC ===, 所以三棱锥P ABC -外接球的球心为D , 半径为1,其体积为43π,③不正确; 对于④,当AB BC =时,BD AC ⊥,所以2BC =将平面PBC 沿翻折到平面PAC 上, 则DE BE +的最小值为线段BD 的长,在展开后的DCB 中,6045105DCB ∠=+=, 根据余弦定理可得6221221cos1052BD =+-⨯⨯⨯=, ④正确. 故选:C . 【点睛】本题主要考查棱锥的结构特征,三棱锥外接球的体积求法,以及通过展开图求线段和的最小值,意在考查学生的直观想象能力和数学运算能力,属于中档题.12.C解析:C 【分析】取1BB 的中点F ,由题意结合正方体的几何特征及平面几何的知识可得1OD OC ⊥,1OD OF ⊥,由线面垂直的判定与性质可得1OD CF ⊥,进而可得点P 的轨迹为线段CF ,找到1C P 的最大值即可得解.取1BB 的中点F ,连接OF 、1D F 、CF 、1C F ,连接DO 、BO 、OC 、11D B 、1D C ,如图:因为正方体1111ABCD A B C D -的棱长为2, 所以11B F BF ==,2DO BO OC ===11122D B DC ==1BB ⊥平面ABCD ,1BB ⊥平面1111D C B A ,11C D ⊥平面11BB C C ,所以22116OD OD DD =+=223OF OB BF =+=2211113D F D B B F =+=,所以22211OD OF D F +=,22211OD OC D C +=,所以1OD OC ⊥,1OD OF ⊥, 由OCOF O =可得1OD ⊥平面OCF ,所以1OD CF ⊥,所以点P 的轨迹为线段CF , 又221111152C F B C B F C C =+=>=,所以11D C P △面积的最大值1111125522S C F D C =⋅=⨯=. 故选:C. 【点睛】本题考查了正方体几何特征的应用,考查了线面垂直的判定与性质,关键是找到点P 的轨迹,属于中档题.13.A解析:A 【分析】利用平面与平面垂直的判定定理,平面与平面垂直、平行的性质定理判断选项的正误即可.由α,β为两个不同的平面,l 、m 为两条不同的直线,且l α⊂,m β⊂,知: 在A 中,l β⊥,则αβ⊥,满足平面与平面垂直的判定定理,所以A 正确; 在B 中,若l m ⊥,不能得到l β⊥,也不能得到m α⊥,所以得不到αβ⊥,故B 错误;在C 中,若αβ⊥,则l 与m 可能相交、平行或异面,故C 不正确;在D 中,若//αβ,则由面面平行的性质定理得l β//,不一定有//l m ,也可能异面,故D 错误.故选:A . 【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.14.B解析:B 【分析】分别以①②③④作为结论,另外三个作条件,根据线面垂直和面面垂直的判定定理依次判断真假. 【详解】若m n ⊥,αβ⊥,n β⊥,则m 与α可能平行可能相交,即①②③不能推出④; 同理①②④不能推出③;若m n ⊥,n β⊥,m α⊥,两个平面的垂线互相垂直则这两个平面垂直,则αβ⊥,即①③④能够推出②;若αβ⊥,n β⊥,m α⊥,两个平面互相垂直,则这两个平面的垂线互相垂直,即m n ⊥,所以②③④能够推出①. 所以一共两个命题正确. 故选:B 【点睛】此题考查空间直线与平面位置关系的辨析,根据选择的条件推出结论,关键在于熟练掌握空间垂直关系的判定和证明.二、解答题15.(1)证明见解析(2)85【分析】(1)通过证明1//AD MN 可证1//AD 平面EMN ;(2)由(1)知11//AD BC ,所以1EBC ∠(或其补角)为异面直线1AD 与BE 所成的角,根据余弦定理计算可得结果. 【详解】(1)连1BC ,1EC ,如图:因为//AB CD ,AB CD =,且11//CD C D ,11CD C D =, 所以11//AB C D ,11AB C D =,所以四边形11ABC D 为平行四边形,所以11//AD BC ,因为M 、N 分别为11B C 、1BB 的中点,所以1//MN BC ,所以1//AD MN , 因为1AD ⊄平面EMN ,MN ⊄平面EMN , 所以1//AD 平面EMN .(2)由(1)知11//AD BC ,所以1EBC ∠(或其补角)为异面直线1AD 与BE 所成的角,依题意知12BB =,112EB =,111B C =, 所以22211117444BE BB EB =+=+=,2221111415BC BB B C =+=+=,222111115144EC EB B C =+=+=, 所以2221111cos 2BE BC EC EBC BE BC +-∠==⋅17554417252+-⨯⨯88585=. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.16.(1)证明见解析;(2)43. 【分析】(1)由ABCD 为矩形,易得G 是AC 的中点,又BF ⊥平面ACE ,BC =BE ,则F 是EC 的中点,从而FG ∥AE ,再利用线面平行的判定定理证明.(2)根据AD ⊥平面ABE ,易得AE ⊥BC ,再由BF ⊥平面ACE ,得到AE ⊥BF ,进而得到AE ⊥平面BCE ,然后由C AEB A BCE V V --=求解. 【详解】 (1)如图所示:因为底面ABCD 为矩形,所以AC ,BD 的交点G 是AC 的中点,连接FG , ∵BF ⊥平面ACE ,则CE ⊥BF ,而BC =BE , ∴F 是EC 的中点, ∴FG ∥AE .又AE ⊄平面BFD ,FG ⊂平面BFD , ∴AE ∥平面BFD .(2)∵AD ⊥平面ABE ,AD ∥BC , ∴BC ⊥平面ABE ,则AE ⊥BC . 又BF ⊥平面ACE ,则AE ⊥BF , ∴AE ⊥平面BCE .∴三棱锥C -AEB 的体积11142223323C AEB A BCE BCE V V S AE --⎛⎫==⋅=⨯⨯⨯⨯= ⎪⎝⎭△.【点睛】方法点睛:1、判断或证明线面平行的常用方法:(1)利用线面平行的定义,一般用反证法;(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;(3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β);(4)利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β). 17.(1)证明见解析;(2)312. 【分析】(1)在图甲中先证AB BD ⊥,在图乙中由面面垂直的性质定理先证AB CD ⊥,由条件可得DC BC ⊥,进而可判定DC ⊥平面AB C ; (2)利用等体积法进行转化计算即可. 【详解】(1)图甲中,∵AB BD =且45A ︒∠=,45ADB ︒∴∠=,()()180180454590ABD ADB A ︒︒︒︒︒∴∠=-∠+∠=-+=,即AB BD ⊥,图乙中,∵平面ABD ⊥平面BDC ,且平面ABD 平面BDC BD =, ∴AB ⊥平面BDC ,又CD ⊂平面BDC ,∴AB CD ⊥, 又90DCB ︒∠=,∴DC BC ⊥,且AB BC B ⋂=, 又AB ,BC ⊂平面AB C ,∴DC ⊥平面AB C ; (2)因为点E ,F 分别是棱AC ,AD 的中点, 所以//EF DC ,且12EF DC =,所以EF ⊥平面ABC , 由(1)知,AB ⊥平面BDC ,又BC ⊂平面BDC ,所以AB BC ⊥,105ADC ︒∠=,45ADB ︒∠=,1054560CDB ADC ADB ︒︒︒∴∠=∠-∠=-=,90906030CBD CDB ︒︒︒︒∴∠=-∠=-=,cos3022BC BD ︒∴=⋅=⨯=1sin 30212DC BD ︒=⋅=⨯=,所以12ABC S AB BC =⨯⨯△12ABE ABC S S ==△△1122EF DC ==,所以111332A BEF F ABE ABE V V EF S --==⋅⋅=⋅=△ 【点睛】方法点睛:计算三棱锥体积时,常用等体积法进行转化,具体的方法为:①换顶点,换底面;②换顶点,不换底面;③不换顶点,换底面.18.(1)证明见解析;(2. 【分析】(1)在直角梯形ABCD 中先求出,,CD CE BE ,然后可求得,DE AE ,从而可证明DE AE ⊥,由线面垂直判定定理证明线面垂直;(2)由(1)得面面垂直,知Q 在AE 上,PAQ ∠为直线AP 与平面ABCD 所成的角,cos 3AQ PAQ AP ∠==,设AQ x =(0x <≤-P QDE 的体积,由二次函数知识求得最大值,及此时x 的值,得Q 为AE 中点,从而有//FQ BE ,PBE ∠为异面直线PB 与QF 所成角(或补角),由余弦定理可得.【详解】(1)证明://AD BC ,BC CD ⊥,120ABC ∠=︒,4=AD ,3BC =,=2AB ,∴CD ===CD ,∴1CE =,CD =2BE =,由余弦定理得222cos120AE BE AB BE B =+-⋅︒22122222232⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭, 又2222(3)12DE CD CE =+=+=,∴222DE AE AD ,∴AD DE ⊥,∵AP DE ⊥,又AP AE A =,AP AE ⊂、平面APE ,∴DE ⊥平面APE .(2)由(1)DE ⊥平面APE .DE ⊂平面ABCD ,∴平面ABCD ⊥平面PAE ,∴Q 点在AE 上,PAQ ∠为直线AP 与平面ABCD 所成的角, 3cos AQ PAQ AP ∠==, 设AQ x =(023x <≤),则2PQ x =,23QE x =-, 12(23)232QDE S x x =⨯⨯-=-△, 212(23)33P QDE QDE V PQ S x x -=⋅=--△22(3)223x =--+≤,当且仅当3x =时等号成立,则当P QDE V -最大时,3AQ =,∴Q 为AE 中点,∵F 为AB 中点,∴//FQ BC ,∴PBE ∠为异面直线PB 与QF 所成角(或补角),1,3QB QE ==,则由PQ ⊥平面ABCD 得3,7PE PB ==,又2BE =,则2227cos 214PB BE PE PBE PB BE +-∠==⋅, ∴异面直线PB 与QF 所成角的余弦值为714.【点睛】本题考查线面垂直的判定定理,考查直线与平面所成的角,异面直线所成的角,三棱锥的体积等,旨在考查学生的空间想象能力,运算求解能力,逻辑推理能力.属于中档题.19.(1)证明见解析;(2)30.【分析】(1)AC 和BD 交于点O ,则O 为BD 的中点.推导出1//PO BD .由此能证明直线1//BD 平面PAC ;(2)由1//PO BD ,得APO ∠即为异面直线1BD 与AP 所成的角或其补角.由此能求出异面直线1BD 与AP 所成角的大小.【详解】(1)证明:设AC 和BD 交于点O ,则O 为BD 的中点.连结PO ,又因为P 是1DD 的中点,所以1//PO BD .又因为PO ⊂平面PAC ,1BD ⊄平面PAC所以直线1//BD 平面PAC.(2)解:由(1)知,1//PO BD ,所以APO ∠即为异面直线1BD 与AP 所成的角或其补角.因为2PA PC ==212AO AC ==且PO AO ⊥, 所以212sin 22AO APO AP ∠===. 又(0,90APO ︒︒⎤∠∈⎦,所以30APO ∠=︒故异面直线1BD 与AP 所成角的大小为30.【点睛】方法点睛:异面直线所成的角的求法方法一:(几何法)找→作(平移法、补形法)→证(定义)→指→求(解三角形) 方法二:(向量法)cos m nm n α=,其中α是异面直线,m n 所成的角,,m n 分别是直线,m n 的方向向量.20.(1)证明见解析;(2)PA =PC 与平面PBD 所成角最大,此时该角的正弦值为35. 【分析】 (1)根据已知条件,得到BD PA ⊥,再利用正切函数的性质,求得0030,BAC 60ABD ∠=∠=,得到BD AC ⊥,进而可证得平面PBD ⊥平面PAC ;(2)建立空间坐标系,得到()BD =-,()0,2,DP t =-,()2PC t =-,进而得到平面PBD的一个法向量为1,3,n ⎛= ⎝⎭,进而可利用向量的公式求解 【详解】(1)∵PA ⊥平面,ABCD BD ⊂平面ABCD ,∴BD PA ⊥,又tan tan AD BC ABD BAC AB AB∠==∠== ∴0030,BAC 60ABD ∠=∠=,∴090AEB ∠=,即BD AC ⊥(E 为AC 与BD 交点).又PA AC ,∴BD ⊥平面PAC ,又因为BD ⊂平面PBD ,所以,平面PAC ⊥平面PBD(2)如图,以AB 为x 轴,以AD 为y轴,以AP 为z 轴,建立空间坐标系,如图, 设AP t =,则()()()(),,0,2,0,0,0,B C D P t ,则()BD =-,()0,2,t DP =-,()23,6,PC t =-,设平面PBD 法向量为(),,n x y z =, 则00n BD n DP ⎧⋅=⎨⋅=⎩,即2020y y tz ⎧-+=⎪⎨-+=⎪⎩,取1x =,得平面PBD 的一个法向量为1,3,n t ⎛= ⎪ ⎪⎝⎭,所以cos ,48PC n PC n PC n⋅==因为22144515175t t +++=≥,当且仅当t = 所以5c 3353os ,PC n ≤=,记直线PC 与平面PBD 所成角为θ,则sin cos ,PC n θ=,故3sin 5θ≤,即23t =时,直线PC 与平面PBD 所成角最大,此时该角的正弦值为35. 【点睛】关键点睛:解题关键在于利用定义和正切函数的性质,得到BD ⊥平面PAC ,进而证明平面PAC ⊥平面PBD ;以及建立空间直角坐标系,求出法向量,进行求解直线PC 与平面PBD 所成角的最大值,难度属于中档题21.(1)证明见解析;(2)62;(3)E 为CC 1的中点时,EA ⊥EB 1. 【分析】(1)证明11,AB BC BC BC ⊥⊥然后证明1C B ⊥平面ABC ;(2)求出ABC S ,求出13C B =,然后求解三棱柱111ABC A B C -的体积;(3)在棱CC 1(不包含端点C ,C 1)上取一点E ,连接BE ,证明1EB ⊥平面ABE ,得到EA ⊥EB 1.【详解】(1)∵BC =1,CC 1=BB 1=2,AB =2,∠BCC 1=60°,AB ⊥侧面BB 1C 1C∴AB ⊥BC 1在△BCC 1中,由余弦定理得BC =3,则BC 2+BC 2=CC 2,∴BC ⊥BC 1又∵BC ∩AB =B ,且AB ,BC ⊂平面ABC, ∴C 1B ⊥平面ABC .(2)由已知可得S △ABC =12AB ·BC =12×2×1=22由(1)知C 1B ⊥平面ABC ,C 1B =3,所以三棱柱ABC -A 1B 1C 1的体积V =S △ABC ·C 1B =2×3=62. (3)在棱CC 1(不包含端点C ,C 1)上取一点E ,连接BE .∵EA ⊥1EB ,AB ⊥1EB ,AB ∩AE=A ,AB ,AE ⊂平面ABE ,∴1EB ⊥平面ABE .又∵BE ⊂平面ABE ,∴BE ⊥1EB .不妨设CE =x (0<x <2),则C 1E =2x -,在△BCE 中,由余弦定理得BE =221x x +-在△B 1C 1E 中,∠B 1C 1E =120°,由余弦定理得B 1E 2=257x x -+在Rt △BEB 1中,由B 1E 2+BE 2=B 1B 2,得()()222225714x x x x -+++-=, 解得x =1或x =2(舍去).故E 为CC 1的中点时,EA ⊥EB 1.【点睛】关键点点睛:在确定动点位置时,设CE =x (0<x <2),则C 1E =2x -,根据条件,建立关于x 的方程,求解确定动点位置,属于常用方法.22.(1)答案见解析;(2)11. 【分析】(1)选择①,结合直二面角的定义,证明BD ⊥平面EOA 内的两条相交直线,EO AO ;(2)设AC 与BD 交于点M ,4AB =,60DAB ∠=︒,则AC =CO x =,可得EB 关于x 的函数,求出EB 取得最小值时x 的值,连结EM ,作QF EM ⊥于F ,连结BF ,求出sin QBF ∠的值,即可得答案;【详解】解:(1)命题P :若AB AD =,则BD ⊥平面EOA .∵AC GH ⊥,∴AO GH ⊥,EO GH ⊥,又二面角E GH B --的大小为90°,∴90AOE ∠=︒,即EO AO ⊥,∴EO ⊥平面ABCD ,∴EO BD ⊥,又AB BC =,∴AO BD ⊥, AO EO O =,∴BD ⊥平面EOA .(2)设AC 与BD 交于点M ,4AB =,60DAB ∠=︒,则AC =设CO x =,OM x =,222216OB OM MB x =+=-+,2222216EB EO OB x =+=-+,当x =min EB =连结EM ,作QF EM ⊥于F ,连结BF ,由(1)知BD ⊥平面EOA ,∴BD QF ⊥,∴QF ⊥平面EBD ,∴QBF ∠即为QB 与平面EBD 所成角,在Rt EMB 中,10EB =,2BM =,6EM =,30AE =, 由()222222(2)22QB AE AB BE QB +=+⇒=, 62QF =, ∴33sin 11QF QBF QB ∠==,即QB 与平面EBD 所成角得正弦值为3311.【点睛】求线面角首先要根据一作、二证、三求找出线面角,然后利用三角函数的知识,求出角的三角函数值即可.23.(1)证明见解析;(2)2. 【详解】(1)取PD 的中点G ,连接NG ,AG ,如图所示:因为G ,N 分别为PD ,PC 的中点,所以//GN CD ,1=2GN CD . 又因为M 为AB 的中点,所以//AM CD ,1=2AM CD . 所以//AM GN ,=AM GN ,四边形AMNG 为平行四边形,所以//AG MN .又因为22213PM PA AM =+=+=22123MC MB BC =+=+= 所以PM MC =,则MN PC ⊥.又因为AD PA =,G 为PD 中点,所以AG PD ⊥.又因为//AG MN ,所以MN PD ⊥.所以MN PD MN PCMN PC PD P ⊥⎧⎪⊥⇒⊥⎨⎪=⎩平面PCD . 又MN ⊂平面MPC ,所以平面MPC ⊥平面PCD .(2)设点B 到平面MNC 的距离为h ,因为B MNC N MBC V V --=,所以111332MNC MBC S h S PA ⋅=⋅△△.因为12MBC S BC MB =⋅⋅=△,112MN AG PD ====,NC ===所以122MNC S MN NC =⋅⋅=△所以1132322h ⨯⨯=⨯2h =. 【点睛】 关键点点睛:本题主要考查了面面垂直的证明和三棱锥的高,属于中档题,其中等体积转化B MNC N MBC V V --=为解决本题的关键.24.(1)证明见解析;(2.【分析】(1)在正方体1111ABCD A B C D -中,易证1,C O BD CO BD ⊥⊥,由线面垂直的判定定理得到BD ⊥平面1C OC ,然后再利用面面垂直的判定定理证明.(2)由(1)知BD ⊥平面1C OC ,且平面1C BD ⋂平面CBD BD =,得到1C OC ∠是二面角1C BD C --的平面角 ,然后在1Rt C OC ∆中求解.【详解】(1)∵在正方体1111ABCD A B C D -中, 点O 是BD 中点 ,又11BC DC = , BC DC = ,∴ 1,C O BD CO BD ⊥⊥11,C O CO O C O =⊂平面1,C OC CO ⊂平面1C OC ,BD ∴⊥平面1C OC ,又∵BD ⊂平面11BDD B ,∴平面11BDD B ⊥平面1C OC .…(2)由(1)知:平面1C BD ⋂平面CBD BD =,11,C O BD C O ⊥⊂半平面1;,C BD CO BD CO ⊥⊂ 半平面;CBD所以1C OC ∠是二面角1C BD C --的平面角则在正方体1111ABCD A B C D -中121,2C C OC ==∴在1Rt C OC ∆中,11tan 2C C C OC OC∠== 故二面角1C BD C --的正切值为2 .【点睛】本题主要考查线面垂直,面面垂直的判定定理以及二面角的求法,还考查了逻辑推理和运算求解的能力,属于中档题. 25.(1)见解析(2)见解析【分析】(1)连接A 1C 交AC 1于O ,连接OD ,利用线面平行的性质定理和中位线的定义,即可证明D 为BC 的中点;(2)由等腰三角形的性质和面面垂直的性质定理,证明AD ⊥C 1D 即可.【详解】证明:(1) 联结1A C 交1AC 于O ,联结OD .∵四边形11ACC A 是棱柱的侧面, ∴四边形11ACC A 是平行四边形.∵O 为平行四边形11ACC A 对角线的交点, ∴O 为1A C 的中点.∵1A B 平面1AC D ,平面1A BC ⋂平面1AC D OD =,1A B ⊂平面1A BC ,∴1A B OD∴OD 为1A BC ∆的中位线, ∴D 为BC 的中点.(2)∵AB AC =,D 为BC 的中点,∴AD BC ⊥.∵平面ABC ⊥平面11BCC B ,AD ⊂平面ABC ,平面ABC平面11BCC B BC =,∴AD ⊥平面11BCC B .∵1C D ⊂平面11BCC B ,∴AD ⊥ 1C D ,∴1AC D ∆为直角三角形.【点睛】本题考查线面平行的性质定理和面面垂直的性质定理的应用.26.(1)证明见解析;(2)证明见解析.【分析】(1)若要证BF //平面PAD ,只要BF 所在面和平面PAD 平行即可;(2)若要证平面BEF ⊥平面PCD ,只要证平面PCD 内的一条直线和平面BEF 垂直即可.【详解】(1)∵AB CD ∥,2CD AB =,E 是CD 的中点, ∴AB DE ,即ABED 是平行四边形.∴BE AD .∵BE ⊄平面,PAD AD ⊄平面PAD , ∴BE 平面PAD ,又EF PD ,EF ⊄平面PAD ,PD ⊂平面PAD , ∴EF 平面PAD ,EF ,BE ⊂平面BEF ,且EFBE E =,∴平面BEF 平面PAD . ∵BF ⊂平面BEF ,∴BF ∥平面PAD .(2)由题意,平面PAD ⊥平面ABCD ,且两平面交线为AD ,CD ⊂平面ABCD ,CD AD ⊥,∴CD ⊥平面PAD .∴CD PD ⊥.∴CD EF ⊥.又CD BE ⊥,BE ,EF ⊂平面BEF ,且EE EF E ⋂=,∴CD ⊥平面BEF .∵CD ⊂平面PCD ,∴平面BEF ⊥平面PCD .【点睛】本题考查了线面平行和面面垂直的证明,解决此类问题的关键是能利用线面关系的定理和性质进行逻辑推理,往往使用逆推法进行证明,需要较强的空间感和空间预判,属于较难题.。

高中数学必修二第八章立体几何初步考点精题训练(带答案)

高中数学必修二第八章立体几何初步考点精题训练(带答案)

高中数学必修二第八章立体几何初步考点精题训练单选题1、南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m时,相应水面的面积为140.0km2;水位为海拔157.5m时,相应水面的面积为180.0km2,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m上升到157.5m时,增加的水量约为(√7≈2.65)()A.1.0×109m3B.1.2×109m3C.1.4×109m3D.1.6×109m3答案:C分析:根据题意只要求出棱台的高,即可利用棱台的体积公式求出.依题意可知棱台的高为MN=157.5−148.5=9(m),所以增加的水量即为棱台的体积V.棱台上底面积S=140.0km2=140×106m2,下底面积S′=180.0km2=180×106m2,∴V=13ℎ(S+S′+√SS′)=13×9×(140×106+180×106+√140×180×1012)=3×(320+60√7)×106≈(96+18×2.65)×107=1.437×109≈1.4×109(m3).故选:C.2、如图已知正方体ABCD−A1B1C1D1,M,N分别是A1D,D1B的中点,则()A.直线A1D与直线D1B垂直,直线MN//平面ABCDB.直线A1D与直线D1B平行,直线MN⊥平面BDD1B1C.直线A1D与直线D1B相交,直线MN//平面ABCDD.直线A1D与直线D1B异面,直线MN⊥平面BDD1B1答案:A分析:由正方体间的垂直、平行关系,可证MN//AB,A1D⊥平面ABD1,即可得出结论.连AD1,在正方体ABCD−A1B1C1D1中,M是A1D的中点,所以M为AD1中点,又N是D1B的中点,所以MN//AB,MN⊄平面ABCD,AB⊂平面ABCD,所以MN//平面ABCD.因为AB不垂直BD,所以MN不垂直BD则MN不垂直平面BDD1B1,所以选项B,D不正确;在正方体ABCD−A1B1C1D1中,AD1⊥A1D,AB⊥平面AA1D1D,所以AB⊥A1D,AD1∩AB=A,所以A1D⊥平面ABD1,D1B⊂平面ABD1,所以A1D⊥D1B,且直线A1D,D1B是异面直线,所以选项C错误,选项A正确.故选:A.小提示:关键点点睛:熟练掌握正方体中的垂直、平行关系是解题的关键,如两条棱平行或垂直,同一个面对角线互相垂直,正方体的对角线与面的对角线是相交但不垂直或异面垂直关系.3、在正方体ABCD −A 1B 1C 1D 1中,三棱锥A −B 1CD 1的表面积为4√3,则正方体外接球的体积为( )A .4√3πB .√6πC .32√3πD .8√6π答案:B解析:根据三棱锥的表面积进一步求出正方体的棱长,最后求出正方体的外接球的半径,进一步求出结果. 解:设正方体的棱长为a ,则B 1D 1=AC =AB 1=AD 1=B 1C =D 1C =√2a ,由于三棱锥A −B 1CD 1的表面积为4√3,所以S =4S △AB 1C =4×12×√32(√2a)2=4√3所以a =√2所以正方体的外接球的半径为√(√2)2+(√2)2+(√2)22=√62, 所以正方体的外接球的体积为43π·(√62)3=√6π故选:B .小提示:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.4、已知三棱锥P −ABC ,其中PA ⊥平面ABC ,∠BAC =120°,PA =AB =AC =2,则该三棱锥外接球的表面积为( )A .12πB .16πC .20πD .24π答案:C分析:根据余弦定理、正弦定理,结合球的性质、球的表面积公式进行求解即可.根据题意设底面△ABC 的外心为G ,O 为球心,所以OG ⊥平面ABC ,因为PA ⊥平面ABC ,所以OG//PA ,设D 是PA 中点,因为OP =OA ,所以DO ⊥PA ,因为PA ⊥平面ABC ,AG ⊂平面ABC ,所以AG ⊥PA ,因此OD//AG ,因此四边形ODAG 是平行四边形,故OG =AD =12PA =1,由余弦定理,得BC =√AB 2+AC 2−2AB ⋅AC ⋅cos120°=√4+4−2×2×2×(−12)=2√3,由正弦定理,得2AG =√3√32⇒AG =2,所以该外接球的半径R 满足R 2=(OG )2+(AG )2=5⇒S =4πR 2=20π,故选:C .小提示:关键点睛:运用正弦定理、余弦定理是解题的关键.5、牟合方盖是由我国古代数学家刘徽首先发现并采用的一种用于计算球体体积的方法,该方法不直接给出球体的体积,而是先计算牟合方盖的体积.刘徽通过计算,“牟合方盖”的体积与球的体积关系为V 牟V 球=4π,并且推理出了“牟合方盖”的八分之一的体积计算公式,即V 牟8=r 3−V 方盖差,从而计算出V 球=43πr 3.如果记所有棱长都为r 的正四棱锥的体积为V ,则V 方差盖:V =( )A.√22B.1C.√2D.2√2答案:C分析:计算出V方盖差,V,即可得出结论.由题意,V方盖差=r3−18V牟=r3−18×4π×43×π×r3=13r3,所有棱长都为r的正四棱锥的体积为V正=13×r×r×r2−(√2r2)2=√26r3,∴V方盖差V正=13r3√2r36=√2,故选:C.6、如图,已知正方体的棱长为a,沿图1中对角面将它分割成两个部分,拼成如图2的四棱柱,则该四棱柱的全面积为()A.(8+2√2)a2B.(2+4√2)a2C.(4+2√2)a2D.(6−4√2)a2答案:C分析:拼成的几何体比原正方体的表面增加了两个截面,减少了原来两个正方形面,据此变化,进行求解. 由题意,拼成的几何体比原正方体的表面增加了两个截面,减少了原来两个正方形面,由于截面为矩形,长为√2a,宽为a,所以面积为√2a2,所以拼成的几何体的表面积为4a2+2√2a2=(4+2√2)a2.故选:C.7、如图所示的正方形SG1G2G3中,E , F分别是G1G2,G2G3的中点,现沿SE,SF,EF把这个正方形折成一个四面体,使G1,G2,G3重合为点G,则有()A.SG⊥平面EFG B.EG⊥平面SEFC.GF⊥平面SEF D.SG⊥平面SEF答案:A解析:根据正方形的特点,可得SG⊥FG,SG⊥EG,然后根据线面垂直的判定定理,可得结果. 由题意:SG⊥FG,SG⊥EG,FG∩EG=G,FG,EG⊂平面EFG所以SG⊥平面EFG正确,D不正确;.又若EG⊥平面SEF,则EG⊥EF,由平面图形可知显然不成立;同理GF⊥平面SEF不正确;故选:A小提示:本题主要考查线面垂直的判定定理,属基础题.8、如图,PA垂直于矩形ABCD所在的平面,则图中与平面PCD垂直的平面是()A.平面ABCD B.平面PBCC.平面PAD D.平面PCD答案:C分析:由线面垂直得到线线垂直,进而证明出线面垂直,面面垂直.因为PA⊥平面ABCD,CD⊂平面ABCD,所以PA⊥CD,由四边形ABCD为矩形得CD⊥AD,因为PA∩AD=A,所以CD⊥平面PAD.又CD⊂平面PCD,所以平面PCD⊥平面PAD.故选:C多选题9、沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时.如图,某沙漏由上(细管长度忽略不下两个圆锥组成,圆锥的底面直径和高均为8cm,细沙全部在上部时,其高度为圆锥高度的23计).假设该沙漏每秒钟漏下0.02cm3的沙,且细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆.以下结论正确的是()A.沙漏中的细沙体积为1024πcm381B.沙漏的体积是128πcm3C.细沙全部漏入下部后此锥形沙堆的高度约为2.4cmD.该沙漏的一个沙时大约是1565秒(π≈3.14)答案:AC解析:A.根据圆锥的体积公式直接计算出细沙的体积;B.根据圆锥的体积公式直接计算出沙漏的体积;C.根据等体积法计算出沙堆的高度;D.根据细沙体积以及沙时定义计算出沙时.A.根据圆锥的截面图可知:细沙在上部时,细沙的底面半径与圆锥的底面半径之比等于细沙的高与圆锥的高之比,所以细沙的底面半径r=23×4=83cm,所以体积V=13⋅πr2⋅2ℎ3=13⋅64π9⋅163=1024π81cm3B.沙漏的体积V=2×13×π×(ℎ2)2×ℎ=2×13×π×42×8=2563πcm3;C.设细沙流入下部后的高度为ℎ1,根据细沙体积不变可知:1024π81=13×(π(ℎ2)2)×ℎ1,所以1024π81=16π3ℎ1,所以ℎ1≈2.4cm;D.因为细沙的体积为1024π81cm3,沙漏每秒钟漏下0.02cm3的沙,所以一个沙时为:1024π810.02=1024×3.1481×50≈1985秒.故选:AC.小提示:该题考查圆锥体积有关的计算,涉及到新定义的问题,难度一般.解题的关键是对于圆锥这个几何体要有清晰的认识,同时要熟练掌握圆锥体积有关的计算公式.10、(多选题)在四棱锥A-BCDE中,底面四边形BCDE为梯形,BC∥DE.设CD,BE,AE,AD的中点分别为M,N,P,Q,则()A.PQ=1MN B.PQ∥MN2C.M,N,P,Q四点共面D.四边形MNPQ是梯形答案:BCD分析:根据中位线的性质,结合平行的性质逐个判定即可DE,且DE≠MN,由题意知PQ=12所以PQ≠1MN,故A不正确;又PQ∥DE,DE∥MN,2所以PQ∥MN,又PQ≠MN,所以B,C,D正确.故选:BCD11、给出以下关于斜二测直观图的结论,其中正确的是()A.水平放置的角的直观图一定是角B.相等的角在直观图中仍然相等C.相等的线段在直观图中仍然相等D.两条平行线段在直观图中仍是平行线段答案:AD分析:根据直观图和斜二测画法的规则,判断选项.水平放置的角的直观图一定是角,故A正确;角的大小在直观图中都会发生改变,有的线段在直观图中也会改变,比如正方形的直方图中,故BC错误;由斜二测画法规则可知,直观图保持线段的平行性,所以D正确.故选:AD填空题12、如图所示,P为平行四边形ABCD所在平面外一点,E为AD的中点,F为PC上一点,若PA//平面EBF,则PF=_______FC答案:12##0.5 分析:连接AC 交BE 于点M ,连接FM ,由线面平行的性质得线线平行,由平行线性得结论. 连接AC 交BE 于点M ,连接FM ,∵PA//平面EBF ,PA ⊂平面PAC ,平面PAC ∩平面EBF =EM ,∴PA//EM ,又AE//BC ,∴PF FC =AM MC =AE BC =12. 所以答案是:12. 13、已知一个圆锥的底面半径为6,其体积为30π则该圆锥的侧面积为________.答案:39π分析:利用体积公式求出圆锥的高,进一步求出母线长,最终利用侧面积公式求出答案. ∵V =13π62⋅ℎ=30π∴ℎ=52∴l =√ℎ2+r 2=√(52)2+62=132 ∴S 侧=πrl =π×6×132=39π. 所以答案是:39π.14、如图,拿一张矩形纸片对折后略微展开,竖立在桌面上,折痕与桌面的关系是______.答案:垂直分析:根据给定条件,利用线面垂直的判定推理作答.令桌面所在的平面为α,折痕所在直线为l,纸片与桌面公共部分所在直线为a,b,如图,依题意有a∩b=A,因l⊥a,l⊥b,a,b⊂α,所以l⊥α,所以折痕与桌面垂直.所以答案是:垂直解答题15、如图,四棱锥P−ABCD的底面是矩形,PD⊥底面ABCD,M为BC的中点,且PB⊥AM.(1)证明:平面PAM⊥平面PBD;(2)若PD=DC=1,求四棱锥P−ABCD的体积.答案:(1)证明见解析;(2)√23.分析:(1)由PD⊥底面ABCD可得PD⊥AM,又PB⊥AM,由线面垂直的判定定理可得AM⊥平面PBD,再根据面面垂直的判定定理即可证出平面PAM⊥平面PBD;(2)由(1)可知,AM⊥BD,由平面知识可知,△DAB~△ABM,由相似比可求出AD,再根据四棱锥P−ABCD的体积公式即可求出.(1)因为PD⊥底面ABCD,AM⊂平面ABCD,所以PD⊥AM,又PB⊥AM,PB∩PD=P,所以AM⊥平面PBD,而AM⊂平面PAM,所以平面PAM⊥平面PBD.(2)[方法一]:相似三角形法由(1)可知AM⊥BD.于是△ABD∽△BMA,故ADAB =ABBM.因为BM=12BC,AD=BC,AB=1,所以12BC2=1,即BC=√2.故四棱锥P−ABCD的体积V=13AB⋅BC⋅PD=√23.[方法二]:平面直角坐标系垂直垂直法由(2)知AM⊥DB,所以k AM⋅k BD=−1.建立如图所示的平面直角坐标系,设BC =2a(a >0).因为DC =1,所以A(0,0),B(1,0),D(0,2a),M(1,a).从而k AM ⋅k BD =a−01−0×2a−00−1=a ×(−2a)=−2a 2=−1. 所以a =√22,即DA =√2.下同方法一.[方法三]【最优解】:空间直角坐标系法建立如图所示的空间直角坐标系D −xyz ,设|DA|=t ,所以D(0,0,0),C(0,1,0),P(0,0,1),A(t,0,0),B(t,1,0).所以M (t 2,1,0),PB ⃑⃑⃑⃑⃑ =(t,1,−1),AM ⃑⃑⃑⃑⃑⃑ =(−t 2,1,0).所以PB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =t ⋅(−t 2)+1×1+0×(−1)=−t 22+1=0. 所以t =√2,即|DA|=√2.下同方法一.[方法四]:空间向量法由PB ⊥AM ,得PB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0.所以(PD⃑⃑⃑⃑⃑ +DA ⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ )⋅AM ⃑⃑⃑⃑⃑⃑ =0. 即PD ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ +DA ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0.又PD ⊥底面ABCD ,AM 在平面ABCD 内,因此PD ⊥AM ,所以PD ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0.所以DA ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ ⋅AM ⃑⃑⃑⃑⃑⃑ =0,由于四边形ABCD 是矩形,根据数量积的几何意义,得−12|DA ⃑⃑⃑⃑⃑ |2+|AB ⃑⃑⃑⃑⃑ |2=0,即−12|BC ⃑⃑⃑⃑⃑ |2+1=0. 所以|BC⃑⃑⃑⃑⃑ |=√2,即BC =√2.下同方法一. 【整体点评】(2)方法一利用相似三角形求出求出矩形的另一个边长,从而求得该四棱锥的体积;方法二构建平面直角坐标系,利用直线垂直的条件得到矩形的另一个边长,从而求得该四棱锥的体积;方法三直接利用空间直角坐标系和空间向量的垂直的坐标运算求得矩形的另一个边长,为最常用的通性通法,为最优解;方法四利用空间向量转化求得矩形的另一边长.。

(必考题)高中数学必修二第一章《立体几何初步》测试题(有答案解析)

(必考题)高中数学必修二第一章《立体几何初步》测试题(有答案解析)

一、选择题1.正三棱锥(底面为正三角形,顶点在底面的射影为底面中心的棱锥)的三视图如图所示,俯视图是正三角形,O 是其中心,则正视图(等腰三角形)的腰长等于( )A 5B .2C 3D 22.已知正方体1111ABCD A B C D -,E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则EF 和BD 所成的角的大小是( ) A .30B .45C .60D .903.设1l 、2l 、3l 是三条不同的直线,α、β、γ是三个不同的平面,则下列命题是真命题的是( )A .若1//l α,2//l α,则12l l //B .若1l α⊥,2l α⊥,则12l l ⊥C .若12//l l ,1l α⊂,2l β⊂,3l αβ⋂=,则13//l lD .若αβ⊥,1l αγ=,2l βγ⋂=,则12l l //4.已知正三棱柱111ABC A B C -,底面正三角形ABC 的边长为2,侧棱1AA 长为2,则点1B 到平面1A BC 的距离为( ) A .2217B .22121C .77D .7215.如图,在正四棱锥P ABCD -中,设直线PB 与直线DC 、平面ABCD 所成的角分别为α、β,二面角P CD B --的大小为γ,则( )A .,αβγβ>>B .,αβγβ><C .,αβγβ<>D .,αβγβ<<6.在我国古代,将四个角都是直角三角形的四面体称为“鳖臑”.在“鳖臑”ABCD 中,AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==,若该四面体的体积为43,则该四面体外接球的表面积为( )A .8πB .12πC .14πD .16π7.如图,圆锥的母线长为4,点M 为母线AB 的中点,从点M 处拉一条绳子,绕圆锥的侧面转一周达到B 点,这条绳子的长度最短值为25,则此圆锥的表面积为( )A .4πB .5πC .6πD .8π8.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .24B .30C .47D .679.《九章算术》是古代中国乃至东方的第一步自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为( )A .6π B .4π C .3π D .2π 10.某三棱锥的三视图如图所示, 则该三棱锥的体积为( )A .16B .13C .23D .211.某三棱锥的三视图如图所示,已知网格纸上小正方形的边长为1,则该三棱锥的体积为( )A .43 B .83C .3D .412.αβ是两个不重合的平面,在下列条件中,可判定平面α与β平行的是( )A .m 、n 是α内的两条直线,且//m β,βn//B .α、β都垂直于平面γC .α内不共线三点到β的距离相D .m 、n 是两条异面直线,m α⊂,n β⊂,且//m β,//n α二、填空题13.在正三棱锥O ABC -中,已知45AOB ∠=︒,记α为二面角--A OB C 的大小,cos =m n αm ,n 为整数,则以||n ,||m ,||m n +分别为长、宽、高的长方体的外接球直径为__________.14.如图在菱形ABCD 中,2AB =,60A ∠=,E 为AB 中点,将AED 沿DE 折起使二面角A ED C '--的大小为90,则空间A '、C 两点的距离为________;15.在三棱锥P ABC -中,P 在底面ABC 的射影为ABC 的重心,点M 为棱PA 的中点,记二面角P BC M --的平面角为α,则tan α的最大值为___________.16.如图,已知四棱锥S ABCD -的底面为等腰梯形,//AB CD ,1AD DC BC ===,2AB SA ==,且SA ⊥平面ABCD ,则四棱锥S ABCD -外接球的体积为______.17.在三棱锥D ABC -中,AD ⊥平面ABC ,3AC =,17BC =1cos 3BAC ∠=,若三棱锥D ABC -27,则此三棱锥的外接球的表面积为______18.已知ABC 是等腰直角三角形,斜边2AB =,P 是平面ABC 外的一点,且满足PA PB PC ==,120APB ∠=︒,则三棱锥P ABC -外接球的表面积为________.19.已知点O 为圆锥PO 底面的圆心,圆锥PO 的轴截面为边长为2的等边三角形PAB ,圆锥PO 的外接球的表面积为______.20.在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,且ABCD 为矩形,π2DPA ∠=,23AD =2AB =,PA PD =,则四棱锥P ABCD -的外接球的体积为________.三、解答题21.如图,四棱锥P ABCD -的底面为正方形,PA ⊥底面ABCD ,E ,F ,H 分别为AB ,PC ,BC 的中点.(1)求证:DE ⊥平面PAH ;(2)若2PA AD ==,求直线PD 与平面PAH 所成线面角的正弦值. 22.在棱长为2的正方体1111ABCD A B C D -中,O 是底面ABCD 的中心.(1)求证:1B O//平面11DA C ; (2)求点O 到平面11DA C 的距离.23.如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,PA ⊥底面ABCD ,PA AB =,点M 是棱PD 的中点.(1)求证://PB 平面ACM ; (2)求三棱锥P ACM -的体积.24.在四棱锥P ABCD -中,四边形ABCD 为正方形,平面PAB ⊥平面,ABCD PAB 为等腰直角三角形,,2PA PB AB ⊥=.(1)求证:平面PBC ⊥平面PAC ;(2)设E 为CD 的中点,求点E 到平面PBC 的距离.25.如图,四棱锥E ABCD -中,底面ABCD 是边长为2的正方形,平面AEB ⊥平面ABCD ,4EBA π∠=,2EB =,F 为CE 上的点,BF CE ⊥.(1)求证:BF ⊥平面ACE ; (2)求点D 到平面ACE 的距离.26.我市论语广场准备设置一些多面体形或球形的石凳供市民休息,如图(1)的多面体石凳是由图(2)的正方体石块截去八个相同的四面体得到,且该石凳的体积是3160dm 3.(Ⅰ)求正方体石块的棱长;(Ⅱ)若将图(2)的正方体石块打磨成一个球形的石凳,求此球形石凳的最大体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B【分析】可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,设底面边长为2x ,表示出2522x AO OE -===,1333xOE CE ==,即可求出x ,进而求出腰长. 【详解】根据三视图可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,则底面中心O 在CE 上,连接AO ,可得AO ⊥平面ABC ,由三视图可知5AB AC AD ===,45AEC ∠=, 设底面边长为2x ,则DE x =,则25AE x =-,则在等腰直角三角形AOE 中,2522x AO OE -===, O 是底面中心,则133xOE CE ==, 则2532x x-=,解得3x =, 则1AO =,底面边长为23, 则正视图(等腰三角形)的腰长为()22312+=.故选:B.【点睛】本题考查根据三视图计算原几何体的相关量,解题的关键是根据正三棱锥中的关系求出底面边长.2.C【分析】作出图形,连接1AD 、11B D 、1AB ,推导出1//EF AB ,11//BD B D ,可得出异面直线EF 和BD 所成的角为11AB D ∠,分析11AB D 的形状,即可得出结果. 【详解】如下图所示,连接1AD 、11B D 、1AB ,设正方体1111ABCD A B C D -的棱长为1,则11112AD AB B D ===, 所以,11AB D 为等边三角形,则1160AB D ∠=,因为E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则E 、F 分别是11B D 、1AD 的中点,所以,1//EF AB ,在正方体1111ABCD A B C D -中,11//BB DD 且11BB DD =, 所以,四边形11BB D D 为平行四边形,则11//BD B D , 所以,异面直线EF 和BD 所成的角为1160AB D ∠=. 故选:C. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.3.C解析:C 【分析】利用已知条件判断1l 与2l 的位置关系,可判断AD 选项的正误;利用线面垂直的性质定理可判断B 选项的正误;利用线面平行的性质定理可判断C 选项的正误. 【详解】对于A 选项,若1//l α,2//l α,则1l 与2l 平行、相交或异面,A 选项错误; 对于B 选项,若1l α⊥,2l α⊥,由线面垂直的性质定理可得12//l l ,B 选项错误; 对于C 选项,12//l l ,1l α⊂,2l β⊂,α、β不重合,则1l β⊄,1//l β∴,1l α⊂,3l αβ⋂=,13//l l ∴,C 选项正确;对于D 选项,若αβ⊥,1l αγ=,2l βγ⋂=,则1l 与2l 相交或平行,D 选项错误.故选:C. 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.4.A解析:A 【分析】根据题意,将点1B 到平面1A BC 的距离转化为点A 到平面1A BC 的距离,然后再利用等体积法11A A BC A ABC V V --=代入求解点A 到平面1A BC 的距离. 【详解】已知正三棱柱111ABC A B C -,底面正三角形ABC 的边长为2,侧棱1AA 长为2,所以可得11==A B AC 1A BC 为等腰三角形,所以1A BC ,由对称性可知,111--=B A BC A A BC V V ,所以点1B 到平面1A BC 的距离等于点A 到平面1A BC 的距离,所以11A A BC A ABC V V --=,又因为1122=⨯=A BC S △122ABCS =⨯=111233⨯⨯=⨯⨯A BC ABC S h S △△,即7h == 故选:A.【点睛】一般关于点到面的距离的计算,一是可以考虑通过空间向量的方法,写出点的坐标,计算平面的法向量,然后代入数量积的夹角公式计算即可,二是可以通过等体积法,通过换底换高代入利用体积相等计算.5.A解析:A【分析】连接AC 、BD 交于O ,连PO ,取CD 的中点E ,连,OE PE ,根据正棱锥的性质可知,PCE α∠=,PCO β∠=,PEO γ∠=,再比较三个角的正弦值可得结果.【详解】连接AC 、BD 交于O ,连PO ,取CD 的中点E ,连,OE PE ,如图:因为//AB CD ,所以PBA α∠=,又因为四棱锥P ABCD -为正四棱锥,所以PCE α∠=,由正四棱锥的性质可知,PO ⊥平面ABCD ,所以PCO β∠=,易得OE CD ⊥,PE CD ⊥,所以PEO γ∠=, 因为sin PE PC α=,sin PO PCβ=,且PE PO >,所以sin sin αβ>,又,αβ都是锐角,所以αβ>,因为sin PO PE γ=,sin PO PCβ=,且PC PE >,所以sin sin γβ>,因为,βγ都是锐角,所以γβ>. 故选:A【点睛】关键点点睛:根据正棱锥的性质,利用异面直线所成角、直线与平面所成角、二面角的平面角的定义得到这三个角是解题关键,属于中档题.6.B解析:B【分析】由题意计算2,AB BD CD ===分析该几何体可以扩充为长方体,所以只用求长方体的外接球即可.【详解】因为AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==, 43A BCD V -=, 而114323A BCD V BD CD AB -=⨯⨯⨯=,所以2AB BD CD ===, 所以该几何体可以扩充为正方体方体,所以只用求正方体的外接球即可.设外接球的半径为R ,则23R =所以外接球的表面积为2412S R ππ==故选:B【点睛】多面体的外接球问题解题关键是找球心和半径,求半径的方法有:(1)公式法;(2) 多面体几何性质法;(3)补形法;(4)寻求轴截面圆半径法;(5)确定球心位置法.7.B解析:B【分析】根据圆锥侧面展开图是一个扇形,且线段25MB =.【详解】设底面圆半径为r ,由母线长4l ,可知侧面展开图扇形的圆心角为22r r l ππα==, 将圆锥侧面展开成一个扇形,从点M 拉一绳子围绕圆锥侧面转到点B ,最短距离为BM ; 如图,在ABM 中,25,2,4MB AM AB ===,所以222AM AB MB +=,所以2MAB π∠=, 故22rππα==,解得1r =,所以圆锥的表面积为25S rl r πππ=+=,故选:B【点睛】关键点点睛:首先圆锥的侧面展开图为扇形,其圆心角为2r lπα=,其次从点M 拉一绳子围绕圆锥侧面转到点B ,绳子的最短距离即为展开图中线段MB 的长,解三角即可求解底面圆半径r ,利用圆锥表面积公式求解.8.D解析:D【分析】先找到几何体的原图,再求出几何体的高,再求几何体的体积得解.【详解】由三视图可知几何体为图中的四棱锥1P CDD E -, 由题得22437AD =-=,所以几何体的高为7.所以几何体的体积为11(24)676732⋅+⋅⋅=. 故选:D【点睛】方法点睛:通过三视图找几何体原图常用的方法有:(1)直接法;(2)拼凑法;(3)模型法.本题利用的就是模型法.要根据已知条件灵活选择方法求解. 9.D解析:D【分析】过点F 作//FG AE 交AB 于点G ,连接CG ,则异面直线AE 与CF 所成角为CFG ∠或其补角,然后在CFG △中求解.【详解】如下图所示,在平面ABFE 中,过点F 作//FG AE 交AB 于点G ,连接CG , 则异面直线AE 与CF 所成角为CFG ∠或其补角,设1EF =,则3AB =,2BC CF AE ===,因为//EF AB ,//FG AE ,所以,四边形AEFG 为平行四边形,所以,2FG AE ==,1AG =,2BG =,由于2ABC π∠=,由勾股定理可得2222CG BC BG =+=所以,222CG CF FG =+,则2CFG π∠=.故选:D.【点睛】 思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.10.C解析:C【分析】根据题中所给的几何体的三视图还原几何体,得到相应的三棱锥,之后利用椎体体积公式求得结果.【详解】根据题中所给的几何体的三视图还原几何体如图所示:该三棱锥满足底面BCD△是等腰三角形,且底边和底边上的高线都是2;且侧棱AD⊥底面BCD,1AD=,所以112 =221=323V⨯⨯⨯⨯,故选:C.【点睛】方法点睛:该题考查的是有关根据所给几何体三视图求几何体体积的问题,解题方法如下:(1)应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称;(2)根据三视图还原几何体;(3)利用椎体体积公式求解即可.11.A解析:A【分析】首先由三视图还原几何体,然后由几何体的空间结构特征求解三棱锥的体积即可.【详解】由三视图可知,在棱长为2的正方体中,其对应的几何体为棱锥P ABC-,该棱锥的体积:11142223323V Sh ⎛⎫==⨯⨯⨯⨯= ⎪⎝⎭. 故选:A.【点睛】 方法点睛:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解. 12.D解析:D【分析】取a αβ⋂=,且//m a ,//n a ,利用线面平行的判定定理可判断A 选项;根据αγ⊥,βγ⊥判断平面α与β的位置关系,可判断B 选项;设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,判断出A 、B 、C 三点到平面β的距离相等,可判断C 选项;过直线n 作平面γ,使得a αγ⋂=,利用线面平行、面面平行的判定定理可判断D 选项.【详解】对于A 选项,若a αβ⋂=,且//m a ,//n a ,m β⊄,n β⊄,则//m β,βn//,但α与β相交;对于B 选项,若αγ⊥,βγ⊥,则α与β平行或相交;对于C 选项,设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,如下图所示:D 、E 分别为AB 、AC 的中点,则//DE BC ,DE β⊂,BC β⊄,//BC β∴,所以,点B 、C 到平面β的距离相等,由于D 为AB 的中点,则点A 、B 到平面β的距离相等,所以,点A 、B 、C 三点到平面β的距离相等,但平面α与平面β相交;对于D 选项,如下图所示:由于//n α,过直线n 作平面γ,使得a αγ⋂=,则//a n ,//n a ,a β⊄,n β⊂,//a β∴,//m β,m a A =,m α⊂,a α⊂,//αβ∴.故选:D.【点睛】方法点睛:证明或判断两个平面平行的方法有:①用定义,此类题目常用反证法来完成证明;②用判定定理或推论(即“线线平行”⇒“面面平行”),通过线面平行来完成证明; ③根据“垂直于同一条直线的两个平面平行”这一性质进行证明;④借助“传递性”来完成.二、填空题13.【分析】过作垂足为连接则为二面角的平面角即在中利用余弦定理结合为整数求出的值进而可得外接球直径【详解】如图过作垂足为连接则为二面角的平面角即不妨设因为所以所以所以在中因为为整数所以则设以为长宽高的长 解析:6【分析】过A 作AH OB ⊥,垂足为H ,连接CH ,则AHC ∠为二面角--A OB C 的平面角,即∠=AHC α,在AHC 中,利用余弦定理结合m ,n 为整数,求出m ,n 的值,进而可得外接球直径.【详解】如图,过A 作AH OB ⊥,垂足为H ,连接CH ,则AHC ∠为二面角--A OB C 的平面角,即∠=AHC α.不妨设2OC a =,因为45AOB ∠=︒,所以===CH a AH OH , 所以21)=HB a ,所以22222(422)=+=-=BC HB HC a AC .在AHC 中,222cos 2+-==⋅⋅HA HC AC HA HC α2222(422)212+--==a a a m n a因为m ,n 为整数,所以1m =-,2n =,则||1m =,||2n =,||1m n +=. 设以||m ,||n ,||m n +为长、宽、高的长方体的外接球半径为R ,则2222(2)||||||6=+++=R m n m n 6.6【点睛】关键点点睛:本题考查二面角的应用,考查几何体的外接球,考查解三角形,解决本题的关键点是利用定义法找出二面角的平面角,在AHC 中,利用余弦定理结合已知条件求出m ,n 的值,考查学生空间想象能力,考查计算能力,属于中档题.14.【分析】由二面角的大小为可得平面平面得到平面由勾股定理可得答案【详解】连接所以是等边三角形所以因为为中点所以所以即所以因为平面平面平面平面所以平面平面所以所以故答案为:【点睛】对于翻折问题解题时要认 解析:22【分析】由二面角A ED C '--的大小为90,可得平面A ED '⊥平面EDCB ,得到A E '⊥平面EDCB ,由勾股定理可得答案.【详解】连接DB CE 、,2AB AD ==,60A ∠=,所以ABD △、CBD 是等边三角形, 所以2AD BD CD ===,因为E 为AB 中点,1AE A E '==,所以DE AB ⊥,DE A E ⊥',3DE =, 30EDB ∠=,所以90EDC ∠=,即DE CD ⊥,所以222347EC ED CD =+=+=,因为平面A ED '⊥平面EDCB ,DE A E ⊥',平面A ED '平面EDCB DE =, 所以A E '⊥平面EDCB ,EC ⊂平面EDCB ,所以A E EC '⊥, 所以221722A C A E EC ''=+=+=.故答案为:22.【点睛】对于翻折问题,解题时要认真分析图形,确定有关元素间的关系及翻折前后哪些量变了,哪些量没有变,根据线线、线面、面面关系正确作出判断,考查了学生的空间想象力.. 15.【分析】取中点为过分别作底面的垂线根据题中条件得到;过分别作的垂线连接由二面角的定义结合线面垂直的判定定理及性质得到为二面角的平面角;为二面角的平面角得出令进而可求出最值【详解】取中点为过分别作底面解析:34【分析】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN ,根据题中条件,得到AN NO OE ==,2PO MN =;过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG ,由二面角的定义,结合线面垂直的判定定理及性质,得到MHN ∠为二面角M BC A --的平面角;PGO ∠为二面角A BC P --的平面角,得出tan 4tan PGO MHN ∠=∠,()23tan tan tan 14tan MHN PGO MHN MHNα∠=∠-∠=+∠,令tan 0x MHN =∠>,进而可求出最值.【详解】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN , 则O 为ABC 的重心,MN ⊥平面ABC ;PO ⊥平面ABC ; 由于点M 为棱PA 的中点,所以有AN NO OE ==,2PO MN =; 过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG , 因为BC ⊂平面ABC ,所以MN BC ⊥,同理PO BC ⊥; 又MN NH N ⋂=,MN ⊂平面MNH ,NH ⊂平面MNH , 所以BC ⊥平面MNH ;因为MH ⊂平面MNH ,所以BC MH ⊥, 所以MHN ∠为二面角M BC A --的平面角;同理BC PG ⊥,所以PGO ∠为二面角A BC P --的平面角, 所以tan PO PGO OG ∠=,tan MN MHN HN∠=, 因为NO OE =,//OG NH ,所以12OG NH =; 因此2tan 4tan 12PO MN PGO MHN OG HN ∠===∠, 所以()2tan tan 3tan tan tan 1tan tan 14tan PGO MHN MHN PGO MHN PGO MHN MHN α∠-∠∠=∠-∠==+∠⋅∠+∠, 令tan 0x MHN =∠>,则2333tan 1444x x x x α=≤=+, 当且仅当214x =,即12x =时,等号成立. 故答案为:34. 【点睛】关键点点睛:求解本题的关键在于确定二面角MBC A --、A BC P --以及P BC M --三者之间的关系,由题中条件得出二面角A BC P --是二面角M BC A --的4倍,进而可求得结果.16.【分析】取AB 中点连接根据平行四边形性质可得为等腰梯形ABCD 的外心取SB 中点O 连接则可得O 是四棱锥的外接球球心在中求得r=OA 即可求得体积【详解】取AB 中点连接则所以四边形为平行四边形所以同理所以 解析:823π【分析】取AB 中点1O ,连接11,O C O D ,根据平行四边形性质,可得1O 为等腰梯形ABCD 的外心,取SB 中点O ,连接1,,,OA OC OD OO ,则可得O 是四棱锥S ABCD -的外接球球心,在Rt SAB 中,求得r=OA ,即可求得体积. 【详解】取AB 中点1O ,连接11,O C O D ,则1//CD O A , 所以四边形1ADCO 为平行四边形, 所以1=1CO ,同理1=1O D ,所以1111=O A O B O C O D ==,即1O 为等腰梯形ABCD 的外心, 取SB 中点O ,连接1,,,OA OC OD OO ,则1//OO SA ,因为SA ⊥平面ABCD ,所以1OO ⊥平面ABCD ,又2AB SA ==, 所以=OA OB OC OD ==,又SA AB ⊥,所以OA OS =,即O 是四棱锥S ABCD -的外接球球心, 在Rt SAB 中,2AB SA ==, 所以122OA SB == 所以34822)33V ππ=⨯=, 故答案为:823π. 【点睛】解决外接球的问题时,难点在于找到球心,可求得两个相交平面的外接圆圆心,自圆心做面的垂线,垂线交点即为球心,考查空间想象,数学运算的能力,属中档题.17.【分析】设出外接球的半径球心的外心半径r 连接过作的平行线交于连接如图所示在中运用正弦定理求得的外接圆的半径r 再利用的关系求得外接球的半径运用球的表面积公式可得答案【详解】设三棱锥外接球的半径为球心为 解析:20π【分析】设出外接球的半径R 、球心O ,ABC 的外心1O 、半径 r , 连接1AO ,过O 作的平行线OE 交AD 于 E ,连接OA ,OD ,如图所示,在ABC 中,运用正弦定理求得 ABC的外接圆的半径r ,再利用1,,R r OO 的关系求得外接球的半径,运用球的表面积公式可得答案. 【详解】设三棱锥外接球的半径为R 、球心为O ,ABC 的外心为1O 、外接圆的半径为r ,连接1AO ,过O 作平行线OE 交AD 于E ,连接OA ,OD ,如图所示,则OA OD R ==,1O A r =,OE AD ⊥,所以E 为AD 的中点.在ABC中,由正弦定理得2sin BC r BAC ==∠r =. 在ABC 中,由余弦定理2222cos BC AB AC AB AC BAC =+-⋅⋅∠,可得2117963AB AB =+-⋅⋅,得4AB =.所以11sin 34223ABC S AB AC BAC =⋅⋅∠=⨯⨯⨯=△因为11333D ABC ABC V S AD AD -=⋅⋅=⨯=△,所以4AD =.连接1OO ,又1//OO AD ,所以四边形1EAO O 为平行四边形,1128EA OO AD ===,所以R ===所以该三棱锥的外接球的表面积224π4π20πS R ===.故答案为:20π.【点睛】本题考查三棱锥的外接球,及球的表面积计算公式,解决问题的关键在于利用线面关系求得外接球的球心和球半径,属于中档题.18.【分析】在平面的投影为的外心即中点设球半径为则解得答案【详解】故在平面的投影为的外心即中点故球心在直线上设球半径为则解得故故答案为:【点睛】本题考查了三棱锥的外接球问题意在考查学生的计算能力和空间想 解析:163π【分析】P 在平面ABC 的投影为ABC 的外心,即AB 中点1O ,设球半径为R ,则()22211R CO R PO =+-,解得答案.【详解】PA PB PC ==,故P 在平面ABC 的投影为ABC 的外心,即AB 中点1O ,故球心O 在直线1PO 上,1112CO AB ==,1133PO ==, 设球半径为R ,则()22211R CO R PO =+-,解得23R =21643S R ππ==. 故答案为:163π.【点睛】本题考查了三棱锥的外接球问题,意在考查学生的计算能力和空间想象能力.19.【分析】由题意知圆锥的轴截面为外接球的最大截面即过球心的截面且球心在上由等边三角形性质有即求得外接球的半径为R 进而求外接球的表面积【详解】设外接球球心为连接设外接球的半径为R 依题意可得在中有即解得故 解析:163π【分析】由题意知圆锥PO 的轴截面为外接球的最大截面,即过球心的截面且球心在PO 上,由等边三角形性质有Rt AO O '△,即222O A AO O O ''=+求得外接球的半径为R ,进而求外接球的表面积. 【详解】设外接球球心为O ',连接AO ',设外接球的半径为R ,依题意可得1AO =,3PO =,在Rt AO O '△中,有222O A AO O O ''=+,即)22213R R =+,解得3R =, 故外接球的表面积为24164433S R πππ==⋅=.故答案为:163π. 【点睛】本题考查了求圆锥体的外接球面积,由截面是等边三角形,结合等边三角形的性质求球半径,进而求外接球面积,属于基础题.20.【分析】由矩形的边长可得底面外接圆的半径再由为等腰直角三角形可得其外接圆的半径又平面平面可得底面外接圆的圆心即为外接球的球心由题意可得外接球的半径进而求出外接球的体积【详解】解:取矩形的对角线的交点 解析:323π【分析】由矩形的边长可得底面外接圆的半径,再由PAD △为等腰直角三角形可得其外接圆的半径,又平面PAD ⊥平面ABCD 可得底面外接圆的圆心即为外接球的球心,由题意可得外接球的半径,进而求出外接球的体积. 【详解】解:取矩形的对角线的交点O 和AD 的中点E ,连接OE ,OP ,OE , 则O 为矩形ABCD 的外接圆的圆心,而2DPA π∠=,23AD =,2AB =,PA PD =,则//OE AB ,112OE AB ==, 132PE AD ==, 所以E 为PAD △的外接圆的圆心,因为平面PAD ⊥平面ABCD , 所以O 为外接球的球心,OP 为外接球的半径,在POE △中,222222(3)14R OP PE OE ==+=+=,所以2R =, 所以外接球的体积343233V R ππ==, 故答案为:323π.【点睛】本题考查四棱锥的棱长与外接球的半径的关系及球的体积公式,属于中档题.三、解答题21.(1)证明见解析;(2)105. 【分析】(1)由PA ⊥底面ABCD ,得PA DE ⊥,由Rt ABH Rt DAE ≌△△,得DE AH ⊥,可得答案.(2)由可知DE ⊥平面PAH ,连接PG ,则DPG ∠即为直线PD 与平面PAH 所成线面角,在Rt PDG △中,由sin DPG ∠可得答案. 【详解】(1)因为PA ⊥底面ABCD ,DE ⊂底面ABCD ,所以PA DE ⊥,因为E ,H 分别为正方形ABCD 的边AB ,BC 的中点,,,AB DA BH AE HBAEAD ,所以Rt ABH Rt DAE ≌△△,所以BAH ADE ∠=∠,由90AED ADE ∠+∠= 所以90BAH AED ∠+∠=,所以DE AH ⊥, 因为PA ⊂平面PAH ,AH ⊂平面PAH ,PA AH A ⋂=,所以DE ⊥平面PAH .(2)由(1)可知DE ⊥平面PAH ,设AH DE G ⋂=,如图,连接PG ,则DPG ∠即为直线PD 与平面PAH 所成线面角, 因为2PA AD ==,所以22PD =,5DE =, 在Rt DAE 中,由于AG DE ⊥,所以2AD DG DE =⋅, 所以45DG =⋅,所以5DG =, 所以在Rt PDG △中,105sin 522DG DPG PD ∠===,即直线PD 与平面PAH 所成线面角的正弦值为105.【点睛】本题主要考查线面垂直的证明、线面角的求法,对于线面角的求法的步骤,作:作(或找)出斜线在平面上的射影,证:证明某平面角就是斜线与平面所成的角;算:通常在垂线段、斜线段和射影所组成的直角三角形中计算. 22.(1)证明见解析;(2)23. 【分析】(1)连接11B D ,设11111B D AC O ⋂=,连接1DO ,证明11B O DO 是平行四边形,再利用线面平行的判定定理即可证明.(2)由题意可得平面11DA C ⊥平面11B D DB ,过点O 作1OH DO ⊥于H ,在矩形11B D DB 中,连接1OO ,可得1O OD OHD ∽△△,由三角形相似,对应边成比例即可求解. 【详解】(1)证明:连接11B D ,设11111B D AC O ⋂=,连接1DO .11//O B DO 且11O B DO =, 11B O DO ∴是平行四边形.11//B O DO ∴.又1DO ⊂平面11DA C ,1B O ⊂/平面11DA C ,1//B O ∴平面11DA C .(2)1111A C B D ⊥,111AC BB ⊥,且1111BB B D B ⋂=,11A C ∴⊥平面11B D DB .∴平面11DA C ⊥平面11B D DB ,且交线为1DO .在平面11B D DB 内,过点O 作1OH DO ⊥于H ,则OH ⊥平面11DA C , 即OH 的长就是点O 到平面11DA C 的距离.在矩形11B D DB 中,连接1OO ,1O OD OHD ∽△△,则11O D ODO O OH=, 22236OH ⨯∴==即点O 到平面11DA C 的距离为233. 【点睛】关键点点睛:本题考查了线面平行的判定定理,点到面的距离,解题的关键是过点O 作1OH DO ⊥于H ,得出OH 的长就是点O 到平面11DA C 的距离,考查了计算能力.23.(1)证明见解析;(2)23. 【分析】(1)连接BD 交AC 于点O ,由中位线定理得//OM PB ,从而得证线面平行; (2)由M 是PD 中点,得12M ACD P ACD V V --=,求出三棱锥P ACD -的体积后可得. 【详解】(1)如图,连接BD 交AC 于点O ,连接OM ,则O 是BD 中点,又M 是PD 中点, ∴//OM PB ,又PB ⊄平面ACM ,OM ⊂平面ACM , 所以//PB 平面ACM ; (2)由已知12222ACDS=⨯⨯=,11422333P ACD ACD V S PA -=⋅=⨯⨯=△,又M 是PD 中点,所以1223M ACD P ACD V V --==, 所以23P ACM P ACD M ACD V V V ---=-=.【点睛】思路点睛:本题考查证明线面平行,求三棱锥的体积.求三棱锥的体积除掌握体积公式外,还需要注意割补法,不易求体积的三棱锥(或一个不规则的几何体)的体积可通过几个规则的几何体(柱、锥、台等)的体积加减求得.三棱锥的体积还可通过转化顶点,转移底面利用等体积法转化为求其他三棱锥的体积,从而得出结论. 24.(1)证明见解析;(2)22. 【分析】(1)利用面面垂直的性质先证明出BC ⊥面PAB ,得到PA BC ⊥,再由PA PB ⊥,结合线面垂直的判定定理可知PA ⊥面PBC ,又PA ⊂面PAC ,然后证得平面PBC ⊥平面PAC ;(2)先计算三棱锥P BCE -的体积,然后再计算PBC 的面积,利用等体积法P BCE E PBC V V --=求解.【详解】解:(1)证明:∵面PAB ⊥面ABCD ,且平面PAB ⋂平面ABCD AB =,BC AB ⊥,BC ⊂面ABCD BC ∴⊥面PAB , 又PA ⊂面PAB PA BC ∴⊥又因为由已知PA PB ⊥且PB BC B ⋂=,所以PA ⊥面PBC ,又PA ⊂面PAC ∴面PAC ⊥面PBC .(2)PAB △中,PA PB =,取AB 的中点O ,连PO ,则PO AB ⊥ ∵面PAB ⊥面ABCD 且它们交于,AB PO ⊂面PABPO ∴⊥面ABCD由1133BCEEPBC P BCE PBC BCE PBCSPOV V S h S PO h S--=⇒=⇒=,由已知可求得1PO =,1BCES=,2PBCS=,所以22h =. 所以点E 到平面PBC 的距离为22.【点睛】(1)证明面面垂直的核心为证明线面垂直,要证明线面垂直只需郑敏面外的一条弦和面内的两条相交线垂直即可;(2)点到面的距离求解一般采用等体积法求解,也可采用空间向量法求解. 25.(1)证明见解析;(223【分析】(1)先由面面垂直的性质,得到CB ⊥平面ABE ,推出CB AE ⊥,根据题中条件,得到AE BE ⊥,利用线面垂直的判定定理,得到AE ⊥平面BCE ;得出AE BF ⊥,再次利用线面垂直的判定定理,即可证明结论成立;。

高中数学 人教A版 必修2 第一章 空间几何体 高考复习习题(选择题201-300)含答案解析

高中数学 人教A版 必修2 第一章 空间几何体 高考复习习题(选择题201-300)含答案解析
13.长方体的一个顶点上三条棱长为3、4、5,且它的八个顶点都在一个球面上,这个球的表面积是()
A. B. C.50πD.200π
14.在菱形 中, ,将 沿 折起到 的位置,若二面角 的大小为 ,则三棱锥 的外接球的体积为()
A. B. C. D.
15.已知球的直径 , 是该球球面上的两点, , ,则棱锥 的体积为()
高中数学人教A版必修2第一章空间几何体高考复习习题(选择题201-300)含答案解析
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()
A. +1B. +3
11.在三棱锥 中,底面 是边长为2的正三角形,顶点 在底面 上的射影为 的中心,若 为 的中点,且直线 与底面 所成角的正切值为 ,则三棱锥 外接球的表面积为()
A. B. C. D.
12.已知三棱锥 的每个顶点都在球 的表面上, 底面 ,且二面角 的正切值为4,则球 的表面积为
A. B. C. D.
A. B. C. D.
5.中国古代名词“刍童”原来是草堆的意思,古代用它作为长方体棱台(上、下底面均为矩形额棱台)的专用术语,关于“刍童”体积计算的描述,《九章算术》注曰:“倍上表,下表从之,亦倍小表,上表从之,各以其广乘之,并,以高若深乘之,皆六面一.”其计算方法是:将上底面的长乘二,与下底面的长相加,再与上底面的宽相乘;将下底面的长乘二,与上底面的长相加,再与下底面的宽相乘;把这两个数值相加,与高相乘,再取其六分之一,以此算法,现有上下底面为相似矩形的棱台,相似比为 ,高为3,且上底面的周长为6,则该棱台的体积的最大值是()

人教B高中数学必修二课时跟踪检测:第一章 立体几何初步 含解析

人教B高中数学必修二课时跟踪检测:第一章 立体几何初步   含解析

第一章立体几何初步1.1空间几何体1.1.7柱、锥、台和球的体积课时跟踪检测[A组基础过关]1.某三棱锥的三视图如图所示,该三棱锥的体积为()A.2 B.3C.4 D.6解析:由三视图可知三棱锥的直观图如图所示.其中AB为高,底面是直角三角形,V=13AB×12BD×CD=13×2×12×3×2=2,故选A.答案:A2.某几何体的三视图如图所示,则该几何体的体积为()A.13+π B.23+πC.13+2π D.23+2π解析:由该几何体的三视图可知该几何体是由一个三棱锥和半个圆柱组合而成,由此可知该几何体的体积为13×12×2×1×1+12π×12×2=13+π,故选A.答案:A3.某几何体的三视图如图所示,其中俯视图是等腰三角形,那么该几何体的体积是()A.96 B.128C.140 D.152解析:由三视图可知,该几何体是一个三棱柱,V=S·h=12×6×4×8=96.答案:A4.正三棱柱的侧面展开图是边长为2和4的矩形,则该正三棱柱的体积是()A.839B.439C.239D.439或839解析:当2为正三棱柱的底面周长时,正三棱柱底面三角形的边长a=2 3,底面面积S=34a2=39,正三棱柱的高h=4,所以正三棱柱的体积V=Sh=439;同理,当4为正三棱柱的底面周长时,正三棱柱底面三角形的边长a′=43,底面面积S′=34a′2=439,正三棱柱的高h′=2,所以正三棱柱的体积V′=S′h′=839.所以正三棱柱的体积为439或839.答案:D5.若正方体的棱长为2,则以该正方体各个面的中心为顶点的凸多面体的体积为()A.26B.23C.33D.23解析:以正方体各个面的中心为顶点的凸多面体是由两个全等的正四棱锥构成,正四棱锥的底面边长为1,高为22,∴V=2×13×1×1×22=23.故选B.答案:B6.已知圆锥的母线长为5,侧面积为20π,则此圆锥的体积为________.解析:由S侧=πrl=20π,l=5得r=4,∴圆锥的高h=l2-r2=3.∴圆锥的体积为V=13πr2·h=16π.答案:16π7.(2018·江苏卷)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.解析:由图可知,该多面体为两个全等正四棱锥的组合体,且正四棱锥的高为1,底面正方形的边长等于2,所以该多面体的体积为2×13×1×(2)2=43.答案:438.已知某几何体的俯视图是边长分别为8和6的矩形,主视图是一个底边长为8,高为4的等腰三角形,左视图是一个底边长为6,高为4的等腰三角形.(1)求该几何体的体积; (2)求该几何体的侧面积.解:由已知可得该几何体是一个底面为矩形,高为4,顶点在底面的射影是矩形中心的四棱锥V -ABCD .如图所示,(1)V =13×(8×6)×4=64.(2)该四棱锥有两个侧面VAD ,VBC 是全等的等腰三角形,且BC 边上的高为h 1=42+⎝ ⎛⎭⎪⎫822=42,另两个侧面VAB ,VCD 也是全等的等腰三角形,AB边上的高为h 2=42+⎝ ⎛⎭⎪⎫622=5,因此S 侧=2×⎝ ⎛⎭⎪⎫12×6×42+12×8×5=40+24 2.[B 组 技能提升]1.一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.15解析:由三视图可知,正方体被平面截去三棱锥A1-AB1D1,设正方体的边长为a,V正=a3,VA1-AB1D1=13×12a2·a=16a3,∴V A1-AB1D1V剩=16a3a3-16a3=15,故选D.答案:D2.一个正方体的顶点都在球面上,它的棱长为3,则这个球的体积为() A.9π B.932πC.27π D.2732π解析:∵棱长为3的正方体的体对角线长为33,∴球半径为332,∴V=43π⎝⎛⎭⎪⎫3233=2732π.故选D.答案:D3.一个底面半径为R的圆柱形水桶中装有适量的水,若放入一个半径为r的实心铁球(水面漫过球),水面高度恰好升高r,则Rr=________.解析:由题知43πr3=πR2·r,∴R r=233.答案:23 34.已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的主视图如图所示,则该三棱锥的体积是________.解析:由主视图知,三棱锥的高为1,底面是腰长为2,底边为23的等腰三角形,∴V=13×12×23×1×1=33.答案:3 35.如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的主视图和左视图在下面画出(单位:cm).(1)在主视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积.解:(1)如图.(2)所求多面体的体积V=V长方体-V正三棱锥=4×4×6-13×⎝⎛⎭⎪⎫12×2×2×2=2843.6.圆台的母线长为6 cm,它的轴截面等腰梯形的一条对角线与一腰垂直且与下底所成的角为30°,求该圆台的体积.解:如图,等腰梯形AA1B1B为圆台的轴截面,AA1=6 cm,∠AA1B=90°,∠ABA1=30°,于是AB=2AA1=12 cm,由A1B1∥AB,得∠B1A1B=∠A1BA=30°,又∠A=90°-30°=60°,得∠A1BB1=60°-30°=30°,故△A1B1B为等腰三角形,∴A1B1=B1B=6 cm.又OO1·AB=AA1·A1B得,OO1=AA1·A1BAB=6×6312=33(cm),由圆台的体积公式:V圆台=13π·OO1·(A1O21+A1O1·AO+AO2)=13·π·33·(32+3×6+62)=633π(cm3).。

数学必修二空间几何体高考真题(含详细答案)

数学必修二空间几何体高考真题(含详细答案)

空间几何体1.【2012高考新课标文7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【答案】B2.【2012高考新课标文8】平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π 【答案】B[3.【2012高考全国文8】已知正四棱柱1111ABCD A B C D -中 ,2AB =,122CC =,E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B )3 (C )2 (D )1【答案】D4.【2012高考陕西文8】将正方形(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为 ( )8.【答案】B.5.【2012高考江西文7】若一个几何体的三视图如图所示,则此几何体的体积为}A.112.5 C D.92【答案】D6.【2012高考湖南文4】某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能...是【答案】D7.【2012高考广东文7】某几何体的三视图如图1所示,它的体积为A. 72πB. 48πC. 30πD. 24π【答案】C8.【2102高考福建文4】一个几何体的三视图形状都相同,大小均等,那么这个几何体不可以是A 球B 三棱锥C 正方体D 圆柱&;图1正视图俯视图侧视图5563—563【答案】D.9.【2012高考重庆文9】设四面体的六条棱的长分别为1,1,1,1,2和a 且长为a 的棱与长为2的棱异面,则a 的取值范围是 (A )(0,2) (B )(0,3) (C )(1,2)(D )(1,3)【答案】A10.【2012高考浙江文3】已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积是A.1cm 3B.2cm 3C.3cm 3D.6cm 3 【答案】C\11.【2012高考浙江文5】 设l 是直线,a ,β是两个不同的平面A. 若l ∥a ,l ∥β,则a ∥βB. 若l ∥a ,l ⊥β,则a ⊥βC. 若a ⊥β,l ⊥a ,则l ⊥βD. 若a ⊥β, l ∥a ,则l ⊥β【答案】B12.【2012高考四川文6】下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行,D 、若两个平面都垂直于第三个平面,则这两个平面平行 【答案】C13.【2012高考四川文10】如图,半径为R 的半球O 的底面圆O 在平面α内,过点O 作平面α的垂线交半球面于点A ,过圆O 的直径CD 作平面α成45角的平面与半球面相交,所得交线上到平面α的距离最大的点为B ,该交线上的一点P 满足60BOP∠=,则A 、P 两点间的球面距离为( )(1)2arccos4R B、4RπC、3arccos3R D、3Rπ【答案】A14.【2102高考北京文7】某三棱锥的三视图如图所示,该三棱锥的表面积是>(A)28+65B)30+65C)56+125(D)60+125【答案】B二、填空题15.【2012高考四川文14】如图,在正方体1111ABCD A B C D-中,M、N分别是CD、1CC的中点,则异面直线1A M 与DN所成的角的大小是____________。

高中数学必修2立体几何考题(附答案)(可编辑修改word版)

高中数学必修2立体几何考题(附答案)(可编辑修改word版)

14高中数学必修2 立体几何考题13. 如图所示,正方体 ABCD -A 1B 1C 1D 1 中,M 、N 分别是 A 1B 1,B 1C 1 的中点.问:(1) AM 和 CN 是否是异面直线?说明理由;(2) D 1B 和 CC 1 是否是异面直线?说明理由.解析:(1)由于 M 、N 分别是 A 1B 1 和 B 1C 1 的中点,可证明 MN ∥AC ,因此 AM 与 CN 不是异面直线.(2)由空间图形可感知 D 1B 和 CC 1 为异面直线的可能性较大,判断的方法可用反证法.探究拓展:解决这类开放型问题常用的方法有直接法(即由条件入手,经过推理、演算、变形等),如第(1)问,还有假设法,特例法,有时证明两直线异面用直线法较难说明问题, 这时可用反证法,即假设两直线共面,由这个假设出发,来推证错误,从而否定假设,则两直线是异面的.解:(1)不是异面直线.理由如下:∵M 、N 分别是 A 1B 1、B 1C 1 的中点,∴MN ∥A 1C 1.又∵A 1A ∥D 1D ,而 D 1D 綊 C 1C ,∴A 1A 綊 C 1C ,∴四边形 A 1ACC 1 为平行四边形.∴A 1A ∥AC ,得到 MN ∥AC ,∴A 、M 、N 、C 在同一个平面内,故 AM 和 CN 不是异面直线.(2)是异面直线.理由如下:假设 D 1B 与 CC 1 在同一个平面 CC 1D 1 内,则 B ∈平面 CC 1D 1,C ∈平面 CC 1D 1.∴BC ⊂平面 CC 1D 1,这与在正方体中 BC ⊥平面 CC 1D 1 相矛盾,∴假设不成立,故 D 1B 与 CC 1 是异面直线.14. 如下图所示,在棱长为 1 的正方体 ABCD -A 1B 1C 1D 1 中,M 为 AB 的中点,N 为 BB 1 的中点,O 为面 BCC 1B 1 的中心.(1) 过 O 作一直线与 AN 交于 P ,与 CM 交于 Q (只写作法,不必证明);(2) 求 PQ 的长(不必证明).解析:(1)由 ON ∥AD 知,AD 与 ON 确定一个平面 α.又 O 、C 、M 三点确定一个平面 β(如下图所示).∵三个平面 α,β 和 ABCD 两两相交,有三条交线 OP 、CM 、DA ,其中交线 DA 与交线 CM 不平行且共面.∴DA 与 CM 必相交,记交点为 Q .∴OQ 是 α 与 β 的交线.连结 OQ 与 AN 交于 P ,与 CM 交于 Q ,故 OPQ 即为所作的直线.(2)解三角形 APQ 可得 PQ = . 15. 如图,在直三棱柱 ABC -A 1B 1C 1 中,AB =BC =B 1B =a ,∠ABC =90°,D 、E分别为BB1、AC1的中点.(1)求异面直线BB1与AC1所成的角的正切值;(2)证明:DE 为异面直线BB1与AC1的公垂线;(3)求异面直线BB1与AC1的距离.解析:(1)由于直三棱柱ABC-A1B1C1中,AA1∥BB1,所以∠A1AC1就是异面直线BB1与AC1所成的角.又AB=BC=B1B=a,∠ABC=90°,所以A1C1=2a,tan∠A1AC1=2,即异面直线BB1与AC1所成的角的正切值为2.(2)证明:解法一:如图,在矩形ACC1A1中,过点E 作AA1的平行线MM1分别交AC、A1C1于点M、M1,连结BM,B1M1,则BB1綊MM1.又D、E 分别是BB1、MM1的中点,可得DE 綊BM.在直三棱柱ABC-A1B1C1中,由条件AB=BC 得BM⊥AC,所以BM⊥平面ACC1A1,故DE⊥平面ACC1A1,所以DE⊥AC1,DE⊥BB1,即DE 为异面直线BB1与AC1的公垂线.解法二:如图,延长C1D、CB 交于点F,连结AF,由条件易证D是C1F 的中点,B 是CF 的中点,又E 是AC1的中点,所以DE∥AF.在△ACF 中,由AB=BC=BF 知AF⊥AC.在直三棱柱ABC-A1B1C1中,AA1⊥平面ABC,所以AF⊥AA1,故AF⊥平面ACC1A1,故DE⊥平面ACC1A1,所以DE⊥AC1,DE⊥BB1,即DE 为异面直线BB1与AC1的公垂线.(3)由(2)知线段DE 的长就是异面直线BB1与AC1的距离,由于AB=BC=a,∠ABC=90°,2a.所以DE=2反思归纳:两条异面直线的公垂线是指与两条异面直线既垂直又相交的直线,两条异面直线的公垂线是惟一的,两条异面直线的公垂线夹在两条异面直线之间的线段的长度就是两条异面直线的距离.证明一直线是某两条异面直线的公垂线,可以分别证明这条直线与两条异面直线垂直.本题的思路是证明这条直线与一个平面垂直,而这一平面与两条异面直线的位置关系是一条直线在平面内,另一条直线与这个平面平行.16.如图所示,在正方体ABCD-A1B1C1D1中,O,M 分别是BD1,AA1的中点.(1)求证:MO 是异面直线AA1和BD1的公垂线;(2)求异面直线AA1与BD1所成的角的余弦值;(3)若正方体的棱长为a,求异面直线AA1与BD1的距离.解析:(1)证明:∵O 是BD1的中点,∴O 是正方体的中心,∴OA=OA 1,又M 为AA1的中点,即OM 是线段AA1的垂直平分线,故OM⊥AA1.连结MD1、BM,则可得MB=MD1.同理由点O 为BD1的中点知MO⊥BD1,即MO 是异面直线AA1和BD1的公垂线.33333 2(2)由于AA1∥BB1,所以∠B1BD1就是异面直线AA1和BD1所成的角.在Rt△BB1D1中,设BB1=1,则BD1=3,所以cos∠B1BD1=,故异面直线AA1与BD1所成的角的余弦值等于.(3)由(1)知,所求距离即为线段MO 的长,1 a由于OA=AC1=a,AM=,且OM⊥AM,所以OM=a.2 2 2 213.如图所示,正方体ABCD-A1B1C1D1中,侧面对角线AB1,BC1上分别有两点E、F,且B1E=C1F,求证:EF∥ABCD.证明:解法一:分别过E、F 作EM⊥AB 于M,FN⊥BC 于N,连结MN.∵BB1⊥平面ABCD,∴BB1⊥AB,BB1⊥BC,∴EM∥BB1,FN∥BB1,∴EM∥FN.又B1E=C1F,∴EM=FN,故四边形MNFE 是平行四边形,∴EF∥MN,又MN 在平面ABCD 中,所以EF∥平面ABCD.解法二:过E 作EG∥AB 交BB1于G,B1E B1G连结GF,则1=1,B A B B∵B1E=C1F,B1A=C1B,C1F B1G∴1=1,∴FG∥B1C1∥BC.C B B B又EG∩FG=G,AB∩BC=B,∴平面EFG∥平面ABCD,而EF⊂平面EFG,∴EF∥平面ABCD.14.如下图,在四棱锥P-ABCD 中,底面ABCD 是正方形,侧棱PD⊥底面ABCD,PD=DC.过BD 作与PA 平行的平面,交侧棱PC 于点E,又作DF⊥PB,交PB 于点F.(1)求证:点E 是PC 的中点;(2)求证:PB⊥平面EFD.证明:(1)连结AC,交BD 于O,则O 为AC 的中点,连结EO.∵PA∥平面BDE,平面PAC∩平面BDE=OE,∴PA∥OE.∴点E 是PC 的中点;(2)∵PD⊥底面ABCD 且DC⊂底面ABCD,∴PD⊥DC,△PDC 是等腰直角三角形,而DE 是斜边PC 的中线,∴DE⊥PC,①又由PD⊥平面ABCD,得PD⊥BC.∵底面ABCD 是正方形,CD⊥BC,∴BC⊥平面PDC.而DE⊂平面PDC.∴BC⊥DE.②由①和②推得DE⊥平面PBC.而PB⊂平面PBC,22AB6 3∴DE⊥PB,又DF⊥PB 且DE∩DF=D,所以PB⊥平面EFD.15.如图,l1、l2是互相垂直的异面直线,MN 是它们的公垂线段.点A、B 在l1上,C在l2上,AM=MB=MN.(1)求证AC⊥NB;(2)若∠ACB=60°,求NB 与平面ABC 所成角的余弦值.证明:(1)如图由已知l2⊥MN,l2⊥l1,MN∩l1=M,可得l2⊥平面ABN.由已知MN⊥l1,AM=MB=MN,可知AN=NB 且AN⊥NB.又AN 为AC 在平面ABN 内的射影,∴AC⊥NB.(2)∵Rt△CNA≌Rt△CNB,∴AC=BC,又已知∠ACB=60°,因此△ABC 为正三角形.∵Rt△ANB≌Rt△CNB,∴NC=NA=NB,因此N 在平面ABC 内的射影H 是正三角形ABC 的中心.连结BH,∠NBH 为NB 与平面ABC 所成的角.在Rt△NHB 中,3HB 3ABcos∠NBH=NB==.16.如图,在四面体ABCD 中,CB=CD,AD⊥BD,点E、F 分别是AB、BD 的中点.求证:(1)直线EF∥平面ACD;(2)平面EFC⊥平面BCD.命题意图:本小题主要考查直线与平面、平面与平面的位置关系,考查空间想象能力、推理论证能力.证明:(1)在△ABD 中,∵E、F 分别是AB、BD 的中点,所以EF∥AD.又AD⊂平面ACD,EF✪平面ACD,∴直线EF∥平面ACD. (2)在△ABD 中,∵AD⊥BD,EF∥AD,∴EF⊥BD.在△BCD 中,∵CD=CB,F 为BD 的中点,∴CF⊥BD.∵EF⊂平面EFC,CF⊂平面EFC,EF 与CF 交于点F,∴BD⊥平面EFC.又∵BD⊂平面BCD,∴平面EFC⊥平面BCD.13.如图,在四棱锥P-ABCD 中,底面ABCD 是边长为a 的正方形,PA⊥平面ABCD,且PA=2AB.(1)求证:平面PAC⊥平面PBD;(2)求二面角B-PC-D 的余弦值.5 6 解析:(1)证明:∵PA ⊥平面 ABCD ,∴PA ⊥BD .∵ABCD 为正方形,∴AC ⊥BD .∴BD ⊥平面 PAC ,又 BD 在平面 BPD 内,∴平面 PAC ⊥平面 BPD . (2)在平面 BCP 内作 BN ⊥PC ,垂足为 N ,连结 DN ,∵Rt △PBC ≌Rt △PDC ,由 BN ⊥PC 得 DN ⊥PC ;∴∠BND 为二面角 B -PC -D 的平面角,在△BND 中,BN =DN = a ,BD = 2a , 5 5 a 2+ a 2-2a 2 6 6 ∴cos ∠BND = 5 a 2 31 =- . 5 14. 如图,已知 ABCD -A 1B 1C 1D 1 是棱长为 3 的正方体,点 E 在 AA 1 上,点 F 在 CC 1 上,G 在 BB 1 上,且 AE =FC 1=B 1G =1,H 是 B 1C 1 的中点.(1) 求证:E 、B 、F 、D 1 四点共面;(2)求证:平面 A 1GH ∥平面 BED 1F .证明:(1)连结 FG .∵AE =B 1G =1,∴BG =A 1E =2,∴BG 綊 A 1E ,∴A 1G 綊 BE .∵C 1F 綊 B 1G ,∴四边形 C 1FGB 1 是平行四边形.∴FG 綊 C 1B 1 綊 D 1A 1,∴四边形 A 1GFD 1 是平行四边形.∴A 1G 綊 D 1F ,∴D 1F 綊 EB ,故 E 、B 、F 、D 1 四点共面. 3 (2) ∵H 是 B 1C 1 的中点,∴B 1H = . 2 又 B 1G =1,∴ B 1G 3 = . B 1H 2 FC 2 又 = ,且∠FCB =∠GB 1H =90°, BC 3∴△B 1HG ∽△CBF ,∴∠B 1GH =∠CFB =∠FBG ,∴HG ∥FB .又由(1)知 A 1G ∥BE ,且 HG ∩A 1G =G ,FB ∩BE =B ,∴平面 A 1GH ∥平面 BED 1F .15. 在三棱锥 P -ABC 中,PA ⊥面 ABC ,△ABC 为正三角形,D 、E 分别为 BC 、AC 的中点,设 AB =PA =2.(1) 求证:平面 PBE ⊥平面 PAC ;(2) 如何在 BC 上找一点 F ,使 AD ∥平面 PEF ,请说明理由;(3) 对于(2)中的点 F ,求三棱锥 B -PEF 的体积.解析:(1)证明:∵PA ⊥面 ABC ,BE ⊂面 ABC ,∴PA ⊥BE .∵△ABC 是正三角形,E 为 AC 的中点,∴BE ⊥AC ,又 PA 与 AC 相交,∴BE ⊥平面 PAC ,∴平面 PBE ⊥平面 PAC .(2) 解:取 DC 的中点 F ,则点 F 即为所求., 3 3 6 2 2 3 3 3∵E ,F 分别是 AC ,DC 的中点,∴EF ∥AD ,又 AD ✪平面 PEF ,EF ⊂平面 PEF ,∴AD ∥平面 PEF . 1 1 1 3 (3) 解 :V B -PEF =V P -BEF = S △BEF ·PA = × × × ×2= . 3 3 2 2 2 416.(2009·天津,19)如图所示,在五面体 ABCDEF 中,FA ⊥平面 ABCD ,AD ∥BC ∥FE , 1 AB ⊥AD ,M 为 CE 的中点,AF =AB =BC =FE = AD . 2(1) 求异面直线 BF 与 DE 所成的角的大小;(2) 求证:平面 AMD ⊥平面 CDE ;(3) 求二面角 A -CD -E 的余弦值.解答:(1)解:由题设知,BF ∥CE ,所以∠CED (或其补角)为异面直线 BF与 DE 所成的角.设 P 为 AD 的中点,连结 EP ,PC .因为 FE 綊 AP ,所以 FA綊 EP .同理,A B 綊 PC .又 FA ⊥平面 ABCD ,所以 EP ⊥平面 ABCD .而 PC ,AD都在平面ABCD 内,故EP ⊥PC ,E P ⊥AD .由AB ⊥AD ,可得PC ⊥AD .设FA =a则 EP =PC =PD =a ,CD =DE =EC = 故∠CED =60°.2a .所以异面直线 BF 与 DE 所成的角的大小为 60°.(2) 证明:因为 DC =DE 且 M 为 CE 的中点,所以 DM ⊥CE .连结 MP ,则 MP ⊥CE .又MP ∩DM =M ,故 CE ⊥平面 AMD .而 CE ⊂平面 CDE ,所以平面 AMD ⊥平面 CDE .(3) 设 Q 为 CD 的中点,连结 PQ ,EQ .因为 CE =DE ,所以 EQ ⊥CD .因为 PC =PD ,所以 PQ ⊥CD ,故∠EQP 为二面角 A -CD -E 的平面角.由(1)可得,EP ⊥PQ ,EQ = a ,PQ = a . PQ 于是在 Rt △EPQ 中,cos ∠EQP = = .EQ 3 所以二面角 A -CD -E 的余弦值为 . 13.(2009·重庆)如图所示,四棱锥 P -ABCD 中,AB ⊥AD ,AD ⊥DC ,PA ⊥底面 ABCD ,PA 1 1 =AD =DC = AB =1,M 为 PC 的中点,N 点在 AB 上且 AN = NB .2 3(1) 求证:MN ∥平面 PAD ;(2) 求直线 MN 与平面 PCB 所成的角.解析:(1)证明:过点 M 作 ME ∥CD 交 PD 于 E 点,连结 AE . 1 ∵AN = NB , 3 1 1 ∴AN = AB = DC =EM .4 2又 EM ∥DC ∥AB ,∴EM 綊 AN ,∴AEMN 为平行四边形,∴MN ∥AE ,∴MN ∥平面 PAD .(2)解:过 N 点作 NQ ∥AP 交 BP 于点 Q ,NF ⊥CB 于点 F .连结 QF ,过 N 点作 NH ⊥QF 于 H ,连结 MH ,易知 QN ⊥面 ABCD ,∴QN ⊥BC ,而 NF ⊥BC ,∴BC ⊥面 QNF ,∵BC ⊥NH ,而 NH ⊥QF ,∴NH ⊥平面 PBC ,∴∠NMH 为直线 MN 与平面 PCB 所成的角.2 2 6 2 2 10 10 5 2 10 53 3 通过计算可得 MN =AE = ,QN = ,NF = 2,4 4 QN ·NF ON ·NF ∴NH = = = ,QF QN 2+NF 2 4 NH 3 ∴sin ∠NMH = = ,∴∠NMH =60°,MN 2∴直线 MN 与平面 PCB 所成的角为 60°.14.(2009·广西柳州三模)如图所示,已知直平行六面体 ABCD -A 1B 1C 1D 1 中,AD ⊥BD , AD =BD =a ,E 是 CC 1 的中点,A 1D ⊥BE .(1) 求证:A 1D ⊥平面 BDE ;(2) 求二面角 B -DE -C 的大小.解析:(1)证明:在直平行六面体 ABCD -A 1B 1C 1D 1 中,∵AA 1⊥平面 ABCD ,∴AA 1⊥BD .又∵BD ⊥AD ,∴BD ⊥平面 ADD 1A 1,即 BD ⊥A 1D .又∵A 1D ⊥BE 且 BE ∩BD =B ,∴A 1D ⊥平面 BDE .(2)解:如图,连 B 1C ,则 B 1C ⊥BE ,易证 Rt △BCE ∽Rt △B 1BC ,CE BC ∴ = 1 ,又∵E 为 CC 1 中点, BC ∴BC 2 B B 1BB 21.BB 1= = 22BC = 2a .取 CD 中点 M ,连结 BM ,则 BM ⊥平面 CC 1D 1C ,作 MN ⊥DE 于 N ,连 NB ,由三垂线定理知:BN ⊥DE ,则∠BNM 是二面角 B -DE -C 的平面角. BD ·BC 在 Rt △BDC 中,BM = DC = a , Rt △CED 中,易求得 MN = a , BM Rt △BMN 中,tan ∠BNM = = 5, MN则二面角 B -DE -C 的大小为 arctan 5.15.如图,已知正方体 ABCD -A 1B 1C 1D 1 中,E 为 AB 的中点.(1) 求直线 B 1C 与 DE 所成的角的余弦值;(2) 求证:平面 EB 1D ⊥平面 B 1CD ;(3) 求二面角 E -B 1C -D 的余弦值.解析:(1)连结 A 1D ,则由 A 1D ∥B 1C 知,B 1C 与 DE 所成的角即为 A 1D 与 DE 所成的角. 连结 A 1E ,由正方体 ABCD -A 1B 1C 1D 1,可设其棱长为 a ,则 A 1D = ∴cos ∠A 1DEA 1D 2+DE 2-A 1E 2 2a ,A 1E =DE = a , = 2·A 1D ·DE = . 10∴直线 B 1C 与 DE 所成角的余弦值是 5. (2)证明取 B 1C 的中点 F ,B 1D 的中点 G ,连结 BF ,EG ,GF .∵CD ⊥平面 BCC 1B 1,3 3 33 = 且 BF ⊂平面 BCC 1B 1,∴DC ⊥BF .又∵BF ⊥B 1C ,CD ∩B 1C =C ,∴BF ⊥平面 B 1CD . 1 1 又 ∵GF 綊 CD ,BE 綊 CD ,2 2∴GF 綊 BE ,∴四边形 BFGE 是平行四边形,∴BF ∥GE ,∴GE ⊥平面 B 1CD .∵GE ⊂平面 EB 1D ,∴平面 EB 1D ⊥平面 B 1CD .(3)连结 EF .∵CD ⊥B 1C ,GF ∥CD ,∴GF ⊥B 1C .又∵GE ⊥平面 B 1CD ,∴EF ⊥B 1C ,∴∠EFG 是二面角 E -B 1C -D 的平面角. 设正方体的棱长为 a ,则在△EFG 中,1 GF = a ,EF = a ,2 2 FG ∴cos ∠EFG =EF = , 3∴二面角 E -B 1C -D 的余弦值为 3 . 16.(2009·全国Ⅱ,18)如图所示,直三棱柱 ABC -A 1B 1C 1 中,AB ⊥AC ,D 、E 分别为 AA 1、 B 1C 的中点,DE ⊥平面 BCC 1.(1) 求证:AB =AC ;(2) 设二面角 A -BD -C 为 60°,求 B 1C 与平面 BCD 所成的角的大小.解析:(1)证明:取 BC 中点 F ,连结 EF , 1则 EF 綊 2B 1B ,从而 EF 綊 DA . 连结 AF ,则 ADEF 为平行四边形,从而 AF ∥DE .又 DE ⊥平面 BCC 1,故 AF ⊥平面 BCC 1,从而 AF ⊥BC ,即 AF 为 BC 的垂直平分线, 所以 AB =AC .(2)解:作 AG ⊥BD ,垂足为 G ,连结 CG .由三垂线定理知 CG ⊥BD ,故∠AGC 为二面 2 角 A -BD -C 的平面角.由题设知,∠AGC =60°.设 AC =2,则 AG = .又 AB =2,BC =2 2,故 AF = 2. 由AB ·AD =AG ·BD 得 2AD 2 · 3AD 2+22, 解得 AD = 2,故 AD =AF .又 AD ⊥AF ,所以四边形 ADEF 为正方形.因为 BC ⊥AF ,BC ⊥AD ,AF ∩AD =A ,故 BC ⊥平面 DEF ,因此平面 BCD ⊥平面 DEF . 连结 AE 、DF ,设 AE ∩DF =H ,则 EH ⊥DF ,EH ⊥平面 BCD .连结 CH ,则∠ECH 为 B 1C 与平面 BCD 所成的角.4 17 17 16 17 17 6 因 ADEF 为正方形,AD = 2,故 EH =1,又 EC 1 B C =2, = 1 2所以∠ECH =30°,即 B 1C 与平面 BCD 所成的角为 30°.13. 在正四棱柱 ABCD -A 1B 1C 1D 1 中,底面边长为2的中点.(1) 求证:平面 B 1EF ⊥平面 BDD 1B 1;(2) 求点 D 1 到平面 B 1EF 的距离 d .2,侧棱长为 4,E 、F 分别为棱 AB 、BC分析:(1)可先证 EF ⊥平面 BDD 1B 1.(2)用几何法或等积法求距离时,可由 B 1D 1∥BD , 将点进行转移:D 1 点到平面 B 1EF 的距离是 B 点到它的距离的 4 倍,先求 B点到平面 B 1EF 的距离即可.解答:(1)证明:E rr o r !⇒EF ⊥平面 BDD 1B 1⇒平面 B 1EF ⊥平面 BDD 1B 1. (2)解:解法一:连结 EF 交 BD 于 G 点.∵B 1D 1=4BG ,且 B 1D 1∥BG ,∴D 1 点到平面 B 1EF 的距离是 B 点到它的距离的 4倍. 利用等积法可求.由题意可知,EF 1 AC =2,B G = 17. S △B EF = 2 1 1 EF ·B G 1 2× 17= 17,1 =2 1 S BE ·BF 1 = × 2 1 △BEF = = × 2 2∵VB -B 1EF =VB 1-BEF , 设 B 到面 B EF 的距离为 h 1 17×h 1 1×4,1 ∴h 1= . 1,则 × 3 1= × 3 ∴点 D 1 到平面 B 1EF 的距离为 h =4h 1= . 1 解法二:如图,在正方形 BDD 1B 1 的边 BD 上取一点 G ,使 BG = BD , 4连结 B 1G ,过点 D 1 作 D 1H ⊥B 1G 于 H ,则 D 1H 即为所求距离. 16 17可求得 D 1H = 17(直接法). 14. 如图直三棱柱ABC -A 1B 1C 1中,侧棱CC 1=2,∠BAC =90°,AB =AC= 2,M 是棱 BC 的中点,N 是 CC 1 中点.求:(1) 二面角 B 1-AN -M 的大小;(2) C 1 到平面 AMN 的距离.解析:(1)∵∠BAC =90°,AB =AC = ∴AM ⊥BC ,BC =2,AM =1.∴AM ⊥平面 BCC 1B 1.∴平面 AMN ⊥平面 BCC 1B 1.2,M 是棱 BC 的中点,作 B 1H ⊥MN 于 H ,HR ⊥AN 于 R ,连结 B 1R ,∴B 1H ⊥平面 AMN .又由三垂线定理知,B 1R ⊥AN .∴∠B 1是二面角 B 1-AN -M 的平面角.由已知得 AN = 3 23,MN = 2,B 1M = 5=B 1N , 则 B 1H = 2 , RH HN 又 Rt △AMN ∽Rt △HRN , = ,∴RH = .AM AN 6 2× 2=1.7 10 5 ∴B 1R =14 RH 3 ,∴cos ∠B 1RH = 1 = . B R 14 7∴二面角 B 1-AN -M 的大小为 arccos 14. (2)∵N 是 CC 1 中点,∴C 1 到平面 AMN 的距离等于 C 到平面 AMN 的距离. 设 C 到平面 AMN 的距离为 h ,由 V C -AMN =V N -AMC 1 1 1 1 得 × ·MN ·h = × AM ·MC . 3 2 3 2 2∴h = 2. 15.(2009·北京海淀一模)如图所示,四棱锥 P -ABCD 中,PA ⊥平面 ABCD ,底面 ABCD 为直角梯形,且 AB ∥CD ,∠BAD =90°,PA =AD =DC =2,AB =4. (1) 求证:BC ⊥PC ;(2) 求 PB 与平面 PAC 所成的角的正弦值;(3) 求点 A 到平面 PBC 的距离.解析:(1)证明:如图,在直角梯形 ABCD 中,∵AB ∥CD ,∠BAD =90°,AD =DC =2,∴∠ADC =90°,且 AC =2 2.取 AB 的中点 E ,连结 CE ,由题意可知,四边形 ABCD 为正方形,∴AE =CE =2. 1 1 又∵BE = AB =2.∴CE = AB ,2 2∴△ABC 为等腰直角三角形,∴AC ⊥BC .又∵PA ⊥平面 ABCD ,且 AC 为 PC 在平面 ABCD 内的射影,BC ⊂平面 ABCD ,由三垂线定理得,BC ⊥PC .(2) 由(1)可知,BC ⊥PC ,BC ⊥AC ,PC ∩AC =C ,∴BC ⊥平面 PAC .PC 是 PB 在平面 PAC 内的射影,∴∠CPB 是 PB 与平面 PAC 所成的角.又 CB =2 2,PB 2=PA 2+AB 2=20,PB =2 5, BC 10 ∴sin ∠CPB =PB = 5,即 PB 与平面 PAC 所成角的正弦值为 . (3) 由(2)可知,BC ⊥平面 PAC ,BC ⊂平面 PBC ,∴平面 PBC ⊥平面 PAC .过 A 点在平面 PAC 内作 AF ⊥PC 于 F ,∴AF ⊥平面 PBC ,∴AF 的长即为点 A 到平面 PBC 的距离.在直角三角形 PAC 中, PA =2,AC =2 2,2 63 2 6 36 PC =2 3,∴AF = . 即点 A 到平面 PBC 的距离为 . 16.(2009·吉林长春一模)如图所示,四棱锥 P -ABCD 的底面是正方形,PA ⊥底面 ABCD , PA =2,∠PDA =45°,点 E 、F 分别为棱 AB 、PD 的中点.(1) 求证:AF ∥平面 PCE ;(2) 求二面角 E -PD -C 的大小;(3) 求点 A 到平面 PCE 的距离. 解析:(1)证明:如图取 PC 的中点 G ,连结 FG 、EG ,∴FG 为△PCD 的中位线, 1 ∴FG = CD 且 FG ∥CD . 2又∵底面四边形 ABCD 是正方形,E 为棱 AB 的中点, 1 ∴AE = CD 且 AE ∥CD , 2∴AE =FG 且 AE ∥FG .∴四边形 AEGF 是平行四边形,∴AF ∥EG .又 EG ⊂平面 PCE ,AF ✪平面 PCE ,∴AF ∥平面 PCE .(2)解:∵PA ⊥底面 ABCD ,∴PA ⊥AD ,PA ⊥CD .又 AD ⊥CD ,PA ∩AD =A ,∴CD ⊥平面 PAD .又∵AF ⊂平面 PAD ,∴CD ⊥AF .又 PA =2,∠PDA =45°,∴PA =AD =2.∵F 是 PD 的中点,∴AF ⊥PD .又∵CD ∩PD =D ,∴AF ⊥平面 PCD .∵AF ∥EG ,∴EG ⊥平面 PCD .又 GF ⊥PD ,连结 EF ,则∠GFE 是二面角 E -PD -C 的平面角.在 Rt △EGF 中 ,EG =AF = 2,GF =1,GE ∴tan ∠GFE 2.= = GF∴二面角 E -PD -C 的大小为 arctan 2.(3)设 A 到平面 PCE 的距离为 h , 1 1 1 1 由 V A -PCE =V P -ACE ,即 × PC ·EG ·h = PA · AE ·CB ,得 h = , 3 2 3 2 3 6∴点 A 到平面 PCE 的距离为 3. 13.(2009·陕西,18)如图所示,在直三棱柱 ABC -A 1B 1C 1 中,AB =1,AC =AA 1= 3, ∠ABC =60°.,6 2 6 3 6 3 3 4 3 2 3 M(1) 求证:AB ⊥A 1C ;(2) 求二面角 A -A 1C -B 的大小.解析:(1)证明:∵三棱柱 ABC -A 1B 1C 1 为直三棱柱,∴AB ⊥AA 1,在△ABC 中,AB =1,AC = ∴∠BAC =90°,即 AB ⊥AC .3,∠ABC =60°,由正弦定理得∠ACB =30°,∴AB ⊥平面 ACC 1A 1,又 A 1C ⊂平面 ACC 1A 1,∴AB ⊥A 1C .(2)解:如图,作 AD ⊥A 1C 交 A 1C 于 D 点,连结 BD ,由三垂线定理知BD ⊥A 1C ,∴∠ADB 为二面角 A -A 1C -B 的平面角. AA 1·AC 3 × 3 在 Rt △AA 1C 中,AD = = = , A 1C 6 AB 6 在 Rt △BAD 中,tan ∠ADB = = ,AD 3 ∴∠ADB =arctan ,即二面角 A -A 1C -B 的大小为 arctan . 14.如图,三棱柱 ABC -A 1B 1C 1 的底面是边长为 a 的正三角形,侧面 ABB 1A 1 是菱形且垂直于底面,∠A 1AB =60°,M 是 A 1B 1 的中点.(1) 求证:BM ⊥AC ;(2) 求二面角 B -B 1C 1-A 1 的正切值;(3) 求三棱锥 M -A 1CB 的体积.解析:(1)证明:∵ABB 1A 1 是菱形,∠A 1AB =60°⇒△A 1B 1B 是正三角形 E rr o r !⇒BM ⊥平面 A 1B 1C 1. E rr o r !⇒BM ⊥AC . E rr o r !⇒BE ⊥B 1C 1,∴∠BEM 为所求二面角的平面角, △A 1B 1C 1 中,ME =MB 1·sin60°= a ,Rt △BMB 1 中,MB =MB 1·tan60°= a , MB ∴tan ∠BEM = =2, E ∴所求二面角的正切值是 2. 1 1 1 1 1 3 1 (3)VM -A 1CB = VB 1-A 1CB = VA -A 1CB = VA 1-ABC = × × a 2· a = a 3. 2 2 2 2 3 4 2 1615.(2009·广东汕头一模)如图所示,已知△BCD 中,∠BCD =90°,BC =CD =1,AB ⊥ AE AF 平面 BCD ,∠ADB =60°,E 、F 分别是 AC 、AD 上的动点,且 = =λ(0<λ<1).AC AD(1) 求证:不论 λ 为何值,总有 EF ⊥平面 ABC ; 1 (2) 若 λ= ,求三棱锥 A -BEF 的体积. 2解析:(1)证明:∵AB ⊥平面 BCD ,∴AB ⊥CD .又∵在△BCD 中,∠BCD =90°,∴BC ⊥CD .∵又 AB ∩BC =B ,6 15 = 3,S 15 ∴CD ⊥平面 ABC .AE AF 又∵在△ACD 中,E 、F 分别是 AC 、AD 上的动点,且 = =λ(0<λ<1), AC AD ∴不论 λ 为何值,都有 EF ∥CD , ∴EF ⊥平面 ABC . (2)在△BCD 中,∠BCD =90°,BC =CD =1, ∴BD = 2. 又∵AB ⊥平面 BCD , ∴AB ⊥BC ,AB ⊥BD . 又∵在 Rt △ABD 中,∠ADB =60°, ∴AB =BD ·tan60°= 6, 由(1)知 EF ⊥平面 ABC , ∴V A -BEF =V F -ABE 1 = S △ABE ·EF 3 1 1 = × S △ABC ·EF 3 2 1 1 1 = × ×1× 6× = . 6 2 2 24 6 故三棱锥 A -BEF 的体积是 24 . 16.在四棱锥 P -ABCD 中,侧面 PDC 是边长为2 的正三角形,且与底面垂直,底面 ABCD 是面积为 2 3的菱形,∠ADC 为菱形的锐角. (1) 求证:PA ⊥CD ; (2) 求二面角 P -AB -D 的大小; (3) 求棱锥 P -ABCD 的侧面积; 解析:(1)证明:如图所示,取 CD 的中点 E ,由 PE ⊥CD ,得 PE ⊥平面 ABCD ,连结 AC 、AE . ∵AD ·CD ·sin ∠ADC =2 3, AD =CD =2, 3 ∴sin ∠ADC = 2 , 即∠ADC =60°,∴△ADC 为正三角形,∴CD ⊥AE . ∴CD ⊥PA (三垂线定理). (2) 解:∵AB ∥CD ,∴AB ⊥PA ,AB ⊥AE , ∴∠PAE 为二面角 P -AB -D 的平面角. 在 Rt △PEA 中,PE =AE ,∴∠PAE =45°. 即二面角 P -AB -D 的大小为 45°. (3) 分别计算各侧面的面积: ∵PD =DA =2,PA = 6, 1 ∴cos ∠PDA = ,sin ∠PDA = . 4 1 1 S AB ·PA = 2· 3= 6, △PCD △PAB = 2 ·2· 2 1 S △PAD =S △PBC = PD ·DA ·sin ∠PDA = . 2∴S P -ABCD 侧 = 3+ 6+ 15.13. 把地球当作半径为 R 的球,地球上 A 、B 两地都在北纬 45°,A 、B 两点的球面距离 π是 3R ,A 点在东经 20°,求 B 点的位置. 解析:如图,求 B 点的位置即求 B 点的经度,设 B 点在东经 α,7 2 7 21 = , π∵A 、B 两点的球面距离是 3R . π ∴∠AOB = ,因此三角形 AOB 是等边三角形,∴AB =R , 3又∵∠AO 1B =α-20°(经度差) 2问题转化为在△AO 1B 中借助 AO 1=BO 1=AO cos45°= 2 R , 求出∠AO 1B =90°,则 α=110°,同理:B 点也可在西经 70°,即 B 点在北纬 45°东经 110° 或西经 70°.14. 在球心同侧有相距 9cm 的两个平行截面,它们的面积分别为 49πcm 2 和 400πcm 2, 求球的表面积和体积.解析:如图,两平行截面被球大圆所在平面截得的交线分别为 AO 1、BO 2,则 AO 1∥BO 2. 若 O 1、O 2 分别为两截面圆的圆心,则由等腰三角形性质易知 OO 1⊥AO 1,OO 2⊥BO 2, 设球半径为 R ,∵πO 2B 2=49π,∴O 2B =7cm ,同理 O 1A =20cm.设 OO 1=x cm ,则 OO 2=(x +9)cm.在 Rt △OO 1A 中,R 2=x 2+202,在 Rt △OO 2B 中,R 2=(x +9)2+72,∴x 2+202=72+(x +9)2,解得 x =15cm.∴R =25cm ,∴S 球=2500πcm 2, 4 62500 V 球= πR 3= πcm 3. 3 3 π15. 设 A 、B 、C 是半径为 1 的球面上的三点,B 、C 两点间的球面距离为3,点 A 与 B 、C π两点间的球面距离均为2,O 为球心,求: (1) ∠AOB 、∠BOC 的大小; (2)球心 O 到截面 ABC 的距离. π 解析:(1)如图,因为球 O 的半径为 1,B 、C 两点间的球面距离为3, π π点 A 与 B 、C 两点间的球面距离均为2,所以∠BOC =3,∠AOB =∠AOC = π , 2 3 (2) 因为 BC =1,AC =AB = 2,所以由余弦定理得 cos ∠BAC sin ∠BAC = ,设 4 4 截面圆的圆心为 O 1,连结 AO 1,则截面圆的半径 r =AO 1,由正弦定理得 r = BC = ,所以 OO 1= OA 2-r 2= .2sin ∠BAC 7 716. 如图四棱锥 A -BCDE 中,AD ⊥底面 BCDE ,AC ⊥BC ,AE ⊥BE .(1) 求证:A 、B 、C 、D 、E 五点共球;(2) 若∠CBE =90°,CE = 3,AD =1,求 B 、D 两点的球面距离.解析:(1)证明:取 AB 的中点 P ,连结 PE ,PC ,PD ,由题设条件知△AEB 、△ADB 、△ABC 都是直角三角形. 1 故 PE =PD =PC = AB =PA =PB . 2所以 A 、B 、C 、D 、E 五点在同一球面上.(2)解:由题意知四边形 BCDE 为矩形,所 以 BD =CE = 3,在 Rt △ADB 中,AB =2,AD =1, 2 ∴∠DPB =120°,D 、B 的球面距离为 π. 32 2 15 5 63 5 17.(本小题满分 10 分)如图,四棱锥 S —ABCD 的底面是正方形,SA ⊥底面 ABCD ,E 是 SC 上一点.(1) 求证:平面 EBD ⊥平面 SAC ;(2) 假设 SA =4,AB =2,求点 A 到平面 SBD 的距离;解析:(1)∵正方形 ABCD ,∴BD ⊥AC ,又∵SA ⊥平面 ABCD ,∴SA ⊥BD ,则 BD ⊥平面 SAC ,又 BD ⊂平面 BED ,∴平面 BED ⊥平面 SAC .(2)设AC ∩BD =O ,由三垂线定理得BD ⊥SO .AO 1 1 AC 2AB 1 · 2·2= 2,SA =4, = = = 2 2 2 则 SO = SA 2+AO 2= 16+2=3 2,S 1 BD ·SO 1 ·2 2·3 2=6.设 A 到面 BSD 的距 △BSD = = 2 2 1 1 4 离为 h ,则 V S -ABD =V A -BSD ,即 3S △ABD ·SA = S △BSD ·h ,解得 h = ,即点 A 到平面 SBD 的距 3 3 4 离为 . 318.(本小题满分 12 分)如图,正四棱柱 ABCD -A 1B 1C 1D 1 中,AA 1=2AB =4,点 E 在 C 1C 上且 C 1E =3EC . (1)证明 A 1C ⊥平面 BED ;(2)求二面角 A 1-DE -B 的大小.解析:依题设知 AB =2,CE =1,(1) 证明:连结 AC 交 BD 于点 F ,则 BD ⊥AC .由三垂线定理知,BD ⊥A 1C .在平面 A 1CA 内,连结 EF 交 A 1C 于点 G , AA 1 AC由于FC =CE=2 , 故 Rt △A 1AC ∽Rt △FCE ,∠AA 1C =∠CFE ,∠CFE 与∠FCA 1 互余. 于是 A 1C ⊥EF .A 1C 与平面 BED 内两条相交直线 BD 、EF 都垂直. 所以 A 1C ⊥平面 BED .(2) 作 GH ⊥DE ,垂足为 H ,连结 A 1H .由三垂线定理知 A 1H ⊥DE ,故∠A 1HG 是二面角 A 1-DE -B 的平面角.EF = CF 2+CE 2= 3, CE × CF2 CG = EF =3 . 3EG = CE 2-CG 2= 3 . EG 1 1 EF × FD = ,GH = × = .EF 3 3 DE 又 A 1C = AA 21+AC 2=2 A 1G6,A 1G =A 1C -CG = , tan ∠A 1HG = HG=5 . 所以二面角 A 1-DE -B 的大小为 arctan5 5.19.(本小题满分12 分)如图,四棱锥S -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°, AB =BC =SB =SC =2CD =2,侧面 SBC ⊥底面 ABCD .3 3 3 2 3 2= (1) 由 SA 的中点 E 作底面的垂线 EH ,试确定垂足 H 的位置;(2) 求二面角 E -BC -A 的大小.解析:(1)作 SO ⊥BC 于 O ,则 SO ⊂平面 SBC , 又面 SBC ⊥底面 ABCD , 面 SBC ∩面 ABCD =BC , ∴SO ⊥底面 ABCD ① 又 SO ⊂平面 SAO ,∴面 SAO ⊥底面 ABCD , 作 EH ⊥AO ,∴EH ⊥底面 ABCD ② 即 H 为垂足,由①②知,EH ∥SO , 又 E 为 SA 的中点,∴H 是 AO 的中点. (2)过 H 作 HF ⊥BC 于 F ,连结 EF , 由(1)知 EH ⊥平面 ABCD ,∴EH ⊥BC , 又 EH ∩HF =H ,∴BC ⊥平面 EFH ,∴BC ⊥EF , ∴∠HFE 为面 EBC 和底面 ABCD 所成二面角的平面角. 在等边三角形 SBC 中,∵SO ⊥BC , ∴O 为 BC 中点,又 BC =2. ∴SO = 22-12= 3,EH 1SO = , 1 又 HF = AB =1, 2 2 2 3EH 2 ∴在 Rt △EHF 中,tan ∠HFE = = = ,HF 1 2 ∴∠HFE =arctan . 即二面角 E -BC -A 的大小为 arctan. 20.(本小题满分 12 分)(2010·唐山市高三摸底考试)如图,在正四棱柱 ABCD -A 1B 1C 1D 1 中,AB =1,AA 1=2,N 是 A 1D 的中点,M ∈BB 1,异面直线 MN 与 A 1A 所成的角为 90°. (1) 求证:点 M 是 BB 1 的中点;(2) 求直线 MN 与平面 ADD 1A 1 所成角的大小;(3) 求二面角 A -MN -A 1 的大小.解析:(1)取 AA 1 的中点 P ,连结 PM ,PN .∵N 是 A 1D 的中点,∴AA 1⊥PN ,又∵AA 1⊥MN ,MN ∩PN =N ,∴AA 1⊥面 PMN .∵PM ⊂面 PMN ,∴AA 1⊥PM ,∴PM ∥AB ,∴点 M 是 BB 1 的中点.305 2 2 2 2(2) 由(1)知∠PNM 即为 MN 与平面 ADD 1A 1 所成的角.1 在 Rt △PMN 中,易知 PM =1,PN = ,2 PM∴tan ∠PNM =PN =2,∠PNM =arctan2. 故 MN 与平面 ADD 1A 1 所成的角为 arctan2.(3) ∵N 是 A 1D 的中点,M 是 BB 1 的中点,∴A 1N =AN ,A 1M =AM ,又 MN 为公共边,∴△A 1MN ≌△AMN .在△AMN 中,作 AG ⊥MN 交 MN 于 G ,连结 A 1G ,则∠A 1GA 即为二面角 A -MN -A 1 的平面角.在△A 1GA 中,AA 1=2,A 1G =GA = , A 1G 2+GA 2-AA 12 2 2 ∴cos ∠A 1GA = 2A 1G ·GA =- ,∴∠A 1GA =arccos(- ), 3 3 2 故二面角 A -MN -A 1 的大小为 arccos(- ). 321.(2009·安徽,18)(本小题满分 12 分)如图所示,四棱锥 F -ABCD 的底面 ABCD 是菱 形,其对角线 AC =2,BD = 2.AE 、CF 都与平面 ABCD 垂直,AE =1,CF =2. (1) 求二面角 B -AF -D 的大小;(2) 求四棱锥 E -ABCD 与四棱锥 F -ABCD 公共部分的体积.命题意图:本题考查空间位置关系,二面角平面角的作法以及空间几何体的体积计算等知识.考查利用综合法或向量法解决立体几何问题的能力.解答:(1)解:连接 AC 、BD 交于菱形的中心 O ,过 O 作 OG ⊥AF ,G 为垂足,连接 BG 、DG . 由 BD ⊥AC ,BD ⊥CF 得 BD ⊥平面 ACF ,故 BD ⊥AF .于是 AF ⊥平面 BGD ,所以 BG ⊥AF ,DG ⊥AF ,∠BGD 为二面角 B -AF -D 的平面角.π 由 FC ⊥AC ,FC =AC =2,得∠FAC = ,OG = . 4 2 π 由 OB ⊥OG ,OB =OD = ,得∠BGD =2∠BGO = . (2)解:连接 EB 、EC 、ED ,设直线 AF 与直线 CE 相交于点 H ,则四棱锥 E -ABCD 与四棱锥 F -ABCD 的公共部分为四棱锥 H -ABCD .3 2 3 2 过 H 作 HP ⊥平面 ABCD ,P 为垂足.因为 EA ⊥平面 ABCD ,FC ⊥平面 ABCD ,所以平面 ACEF ⊥平面 ABCD ,从而 P ∈AC ,HP ⊥AC . HP HP AP PC 2 由 + = + =1,得 HP = . CF AE AC AC 3 又因为 S 1 菱形ABCD = AC ·BD = 2, 2 1 2 2 故四棱锥 H -ABCD 的体积 V = S 菱形ABCD ·HP = .3 922.(2009·深圳调考一)(本小题满分 12 分)如图所示,AB 为圆 O 的直径,点 E 、F 在圆 O 上,AB ∥EF ,矩形 ABCD 所在平面和圆 O 所在的平面互相垂直.已知 AB =2,EF =1.(1) 求证:平面 DAF ⊥平面 CBF ;(2) 求直线 AB 与平面 CBF 所成角的大小;(3) 当 AD 的长为何值时,二面角 D -FE -B 的大小为 60°?解析:(1)证明:∵平面 ABCD ⊥平面 ABEF ,CB ⊥AB ,平面 ABCD ∩平面 ABEF =AB ,∴CB ⊥平面 ABEF .∵AF ⊂平面 ABEF ,∴AF ⊥CB ,又∵AB 为圆 O 的直径,∴AF ⊥BF ,∴AF ⊥平面 CBF .∵AF ⊂平面 DAF ,∴平面 DAF ⊥平面 CBF .(2)解:根据(1)的证明,有 AF ⊥平面 CBF ,∴FB 为 AB 在平面 CBF 上的射影,因此,∠ABF 为直线 AB 与平面 CBF 所成的角.∵AB ∥EF ,∴四边形 ABEF 为等腰梯形,过点 F 作 FH ⊥AB ,交 AB 于 H .AB =2,EF =1,则 AH = AB -EF 1 = . 2 2在 Rt △AFB 中,根据射影定理 AF 2=AH ·AB ,得 AF =1, AF 1 sin ∠ABF = = ,∴∠ABF =30°, AB 2∴直线 AB 与平面 CBF 所成角的大小为 30°.(3)解:过点 A 作 AM ⊥EF ,交 EF 的延长线于点 M ,连结 DM .根据(1)的证明,DA ⊥平面 ABEF ,则 DM ⊥EF ,∴∠DMA 为二面角 D -FE -B 的平面角,∠DMA =60°. 1 在 Rt △AFH 中,∵AH = ,AF =1, 2 ∴FH = .又∵四边形 AMFH 为矩形,∴MA =FH = . 3 ∵AD =MA ·tan ∠DMA = 2 · 3=3 2 .3因此,当AD 的长为时,二面角D-FE-B 的大小为60°.2。

人教A版高中数学必修第二册强化练习题-第八章-立体几何初步(含答案)

人教A版高中数学必修第二册强化练习题-第八章-立体几何初步(含答案)

人教A版高中数学必修第二册第八章 立体几何初步全卷满分150分 考试用时120分钟一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法中正确的是( )2.23.已知圆锥侧面展开图的圆心角为60°,底面圆的半径为8,4.5.6.如图,在直三棱柱ABC-A1B1C1中,点D,E分别在棱AA1,CC1上,AB=AC=AD=2A1D=CE=2C1E=2,点F满足BF=λBD(0<λ<1),若B1E∥平面ACF,则λ的值为( )A.23B.12C.13D.147.8.,,EF=12 D.642π每小题6分,共18分.在每小题给出的选项中部分选对的得部分分,有选错的得9.10.如图,正方体ABCD-A 1B 1C 1D 1的棱长为1,则下列四个命题中正确的是( )A.直线BC 与平面ABC 1D 1所成的角为π4B.点C到平面ABC1D1的距离为22C.异面直线D1C和BC1所成的角为π4D.二面角C-BC1-D的余弦值为-3311.如图1,在等腰梯形ABCD中,AB∥CD,EF⊥AB,CF=EF=2DF=2,AE=3,EB=4,将四边形AEFD沿EF进行折叠,使AD到达A'D'的位置,且平面A'D'FE⊥平面BCFE,连接A'B,D'C,如图2,则( )A.BE⊥A'D'B.平面A'EB∥平面D'FCC.多面体A'EBCD'F为三棱台D.直线A'D'与平面BCFE所成的角为π4三、填空题(本题共3小题,每小题5分,共15分)12.正四棱锥P-ABCD的底面边长为2,高为3,则点A到不经过点A的侧面的距离为 .13.在△ABC中,∠ACB=90°,AC=2,BC=5,P为AB上一点,沿CP将△ACP折起形成直二面角A'-CP-B,当A'B最短时,A'P= .BP14.农历五月初五是端午节,民间有吃粽子的习惯,一般情况下粽子的形状是四面体.如图1,已知底边和腰长分别为8 cm和12 cm的等腰三角形纸片,将它沿虚线(中位线)折起来,可以得到如图2所示粽子形状的四面体,若该四面体内包一蛋黄(近似于球),则蛋黄的半径的最大值为 cm(用最简根式表示);当该四面体的棱所在的直线是异面直线时,其所成的角中最小的角的余弦值为 .四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15.(13分)现需要设计一个仓库,由上下两部分组成,如图所示,上部分是正四棱锥P-A1B1C1D1,下部分是正四棱柱ABCD-A1B1C1D1,正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1)若AB=6 m,PO1=2 m,求仓库的容积(含上下两部分);(2)若上部分正四棱锥的侧棱长为6 m,当PO1为多少时,下部分正四棱柱的侧面积最大?最大面积是多少?16.(15分)如图,在四棱锥P-ABCD中,底面ABCD为菱形,E为PD的中点,EA=12 PD,EF⊥AC,垂足为F,且AC=4AF.证明:(1)PB∥平面ACE;(2)PA⊥平面ABCD.17.(15分)如图所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1;(3)求异面直线AC1与B1C所成角的余弦值.18.(17分)如图,在四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=2AB=4,E,F分别在BC,AD上,EF∥AB,现将四边形ABEF沿EF折起,使BE⊥EC.(1)若BE=3,在折叠后的线段AD上是否存在一点P,使得CP∥平面ABEF?若存在,求出AP的PD 值;若不存在,请说明理由;(2)求三棱锥A-CDF的体积的最大值,并求出此时点F到平面ACD的距离.,平面ABB1A1⊥平面BCC1B1,△ABC 19.(17分)如图,已知三棱台ABC-A1B1C1的体积为7312是以B为直角顶点的等腰直角三角形,且AB=2AA1=2A1B1=2BB1.(1)证明:BC⊥平面ABB1A1;(2)求点B到平面ACC1A1的距离;?若存在,求出CF的长;若不(3)在线段CC1上是否存在点F,使得二面角F-AB-C的大小为π6存在,请说明理由.答案全解全析1.D 对于A,长方体是四棱柱,底面不是长方形的直四棱柱不是长方体,A 错误;对于B,棱台侧棱的延长线必须相交于一点,B 错误;对于C,各侧面都是正方形,底面不是正方形(如菱形)的四棱柱不是正方体,C 错误;对于D,棱柱的侧棱相等,侧面都是平行四边形,D 正确. 2.3.母线长为l,则r=8,πrl=8×48π=384π.4.由扇环的圆心角为180°,又C=2π×10,所以SA=20,同理SB=40,则AB=SB-SA=20,圆台的高h=AB 2-(20-10)2=103,表面积S=π(10+20)×20+100π+400π=1 100π,体积V=13π×103×(102+10×20+202)=700033π.故选C.5.A 取BD 的中点E,连接ED 1,AE,易得PD 1∥BE 且PD 1=BE,所以四边形BED 1P 为平行四边形,所以PB ∥D 1E,故∠AD 1E(或其补角)为直线PB 与AD 1所成的角.设AB=AD=AA 1=2,因为∠ABD=45°,所以∠DAB=90°,因为E 为BD 的中点,所以AE=DE=22AB=2.易得AD 1=AD 2+D D 21=22,D 1E=DE 2+D D 21=6,因为A D 21=AE 2+D 1E 2,所以AE ⊥D 1E.故cos ∠AD 1E=D 1EAD 1=622=32,又0°<∠AD 1E<180°,所以∠AD 1E=30°.故选A.6.C 在BB 1上取一点G,使得B 1G=2BG,连接CG,AG,如图所示.∵CE=2C 1E=2,∴CC 1=BB 1=3,∴在直三棱柱ABC-A 1B 1C 1中,B 1G ∥CE,且B 1G=CE=2,∴四边形B 1GCE 为平行四边形,∴B 1E ∥CG,∵B 1E ⊄平面ACG,CG ⊂平面ACG,∴B 1E ∥平面ACG,若B 1E ∥平面ACF,则F 在平面ACG 内,又F 为BD 上一点,∴F 为BD 与AG 的交点.易知△BFG ∽△DFA,∴BF DF =BG DA =12,∴BF =13BD ,即λ的值为13.故选C.7.D 取AD 的中点M,AB 的中点N,连接PD,MD 1,MN,NB 1,B 1D 1,A 1C 1,AC.易知M,N,B1,D1四点共面,D1M⊥PD,D1M⊥CD,∵PD∩CD=D,PD,CD⊂平面PCD,∴D1M⊥平面2,AB∥MN,点O是MN的中点AE2-A N2=22,同理FM=2EN2-MN-EF22=7,当点O1在线段O2O的延长线(含点O)上时,视OO1为非负数;当点O1在线段O2O(不含点O)上时,视OO1为负数,即O2O1=O2O+OO1=7+OO1,所以(22)2+O O21=1+(7+O O1)2,解得OO1=0,因此刍甍的外接球球心在点O处,半径为OA=22,所以刍甍的外接球的体积为4π3×(22)3=642π3.故选A.9.AC 对于A,因为圆锥的底面半径为3,所以圆锥的底面周长为2π×3=6π,又因为圆锥的母线长为4,所以圆锥的侧面展开图的圆心角为6π4=3π2,故A选项正确.对于B,因为圆锥的底面半径为3,母线长为4,所以圆锥的高h=42-32=7,故圆锥的体积V=13×π×32×7=37π,故B选项不正确.对于C,设圆锥的两条母线的夹角为θ,则过这两条母线所作截面的面积为12×4×4×sin θ=8sinθ,易知过圆锥母线的截面中,轴截面三角形对应的θ最大,此时cos θ=42+42-622×4×4=-18,所以θ最大是钝角,所以当θ=π2时,截面的面积最大,为8sin π2=8,故C选项正确.对于D,易知圆锥的轴截面的面积为12×6×7=37,故D选项不正确.故选AC.10.AB 如图,取BC1的中点H,连接CH,易证CH⊥平面ABC1D1,所以∠C1BC是直线BC与平面ABC1D1所成的角,为π4,故A正确.点C到平面ABC1D1的距离即为CH的长,为22,故B正确.易证BC1∥AD1,所以异面直线D1C和BC1所成的角为∠AD1C(或其补角),连接AC,易知△ACD1为等边三角形,所以∠AD1C=π3,所以异面直线D1C和BC1所成的角为π3,故C错误.连接DH,易知BD=DC1,所以DH⊥BC1,又CH⊥BC1,所以∠CHD为二面角C-BC1-D的平面角,易求得DH=62,又CD=1,CH=22,所以由余弦定理的推论可得cos∠CHD=DH2+C H2-C D22DH·CH =33,故D错误.故选AB.11.ABD 对于A,因为平面A'D'FE⊥平面BCFE,平面A'D'FE∩平面BCFE=EF,BE⊂平面BCFE,BE⊥EF,所以BE⊥平面A'D'FE,又因为A'D'⊂平面A'D'FE,所以BE⊥A'D',故A正确.对于B,因为A'E ∥D'F,A'E ⊄平面D'FC,D'F ⊂平面D'FC,所以A'E ∥平面D'FC,因为BE ∥CF,BE ⊄平面D'FC,CF ⊂平面D'FC,所以BE ∥平面D'FC,又因为A'E∩BE=E,A'E,BE ⊂平面A'EB,所以平面A'EB ∥平面D'FC,故B 正确.对于C,因为D 'F A 'E =13,FC EB =24=12,则D 'F A 'E ≠FCEB ,所以多面体A'EBCD'F 不是三棱台,故C 错误.对于D,延长A'D',EF,相交于点G,A'D'FE∩平面BCFE=EF,A'E 为直线A'D'与平面GF+2,则32+12=10,到侧面PBC 的距离相等易知S △PDC =S △PBC =12×2×10=10,正四棱锥P-ABCD 的体积V=13S 四边形ABCD ·PO=13×2×2×3=4,设点A 到侧面PBC 的距离为d,则V=V A-PDC +V A-PBC =13S △PDC ·d+13S △PBC ·d=13d×210=4,解得d=3105.故答案为3105.13.答案 25解析 过点A 作AD ⊥CP 于点D,连接BD,设∠ACP=α0<α<则∠PCB=π2-α,所以A'D=2sin α,CD=2cos α,在△BCD 中,由余弦定理可得BD 2=CD 2+BC 2α=4cos 2α+25-10sin 2α,因为A'-CP-B 为直二面角,所以A'D ⊥平面BCP,所以A'D ⊥BD,则A'B 2=A'D 2+BD 2=4sin 2α+4cos 2α+25-10sin 2α=29-10sin 2α,当A'B 2最小时,A'B 最短,2α=π2,所以α=π4,此时CP 平分∠ACB,由角平分线定理可得AP BP =AC BC =25,即A 'P BP =25.14.答案 144;59解析 对题图1中各点进行标记,同时将题图2置于长方体中如下,其中A,B,C 三点重合.设EP=x cm,ER=y cm,SE=z cm,则x 2+y 2=36,x 2+z 2=36,y 2+z 2=16,解得x =27,y =z =22,∴四面体ADEF 的体积为13V 长方体=13xyz=1673(cm 3),四面体ADEF 的表面积S=4S △DEF =4×12×4×42=322(cm 2).当蛋黄与四面体各个面相切时,蛋黄的半径最大,设此时蛋黄(近似于球)的半径为r cm,则V 长方体=13Sr,∴r=3V 长方体S =167322=144.设SQ∩DF=O,取DQ 的中点M,连接OM,则OQ=3 cm,MQ=2 cm,在Rt △OMQ 中,sin ∠QOM=MQ OQ =23,∴cos ∠DOQ=cos(2∠QOM)=1-2sin 2∠QOM=1-49=59,∴∴则∴∵∴又则AE=OE,又AE=12PD,OE=12PB,所以PB=PD,连接OP,则PO ⊥BD,(9分)因为四边形ABCD 为菱形,所以AC ⊥BD,又PO∩AC=O,PO,AC ⊂平面PAC,所以BD ⊥平面PAC,又PA ⊂平面PAC,所以BD ⊥PA.(11分)因为AE=12PD,E 为PD 的中点,所以∠PAD=90°,即PA ⊥AD,(13分)又AD∩BD=D,AD,BD ⊂平面ABCD,所以PA ⊥平面ABCD.(15分)17.解析 (1)证明:∵AC 2+BC 2=AB 2,∴AC ⊥BC.又∵C 1C ⊥AC,C 1C∩BC=C,∴AC ⊥平面BCC 1B 1.(3分)∵BC 1⊂平面BCC 1B 1,∴AC ⊥BC 1.(5分)(2)证明:设CB 1与C 1B 的交点为E,则E 是BC 1的中点,连接DE,∵D 是AB 的中点,∴DE ∥AC 1.(8分)∵DE ⊂平面CDB 1,AC 1⊄平面CDB 1,∴AC 1∥平面CDB 1.(10分)(3)∵DE ∥AC 1,∴∠CED(或其补角)为AC 1与B 1C 所成的角.在Rt △AA 1C 1中,AC 1=AA 21+A 1C 21=5,∴ED=12AC 1=52,易得CD=12AB=52,CE=12CB 1=22,(13分)∴cos ∠CED=252=225.∴异面直线AC 1与B 1C 所成角的余弦值为225.(15分)18.解析 (1)假设存在满足条件的点P.如图,过点P 作PM ∥FD,交AF 于点M,连接ME,∵CE ∥FD,∴MP ∥EC,∴M,P,C,E 四点共面.(2分)∵CP∥平面ABEF,CP⊂平面CEMP,平面ABEF∩平面CEMP=ME,∴CP∥ME,∴四边形CEMP为平行四边形,(4分)∴MP=CE=4-BE=1,易得FD=6-3=3,由MP∥FD可得APAD =MPFD=13,∴APPD=12.(7分)此时AP=1.(8∴又故∴∴在∴∴设由在三棱台ABC-A1B1C1中,AB∥A1B1,∵AB=2AA1=2A1B1=2BB1,∴四边形ABB1A1为等腰梯形且∠ABB1=∠BAA1=60°,(1分)设AB=2x,则BB1=x.由余弦定理得A B21=AB2+B B21-2AB·BB1cos 60°=3x2,∴AB2=A B21+B B21,∴AB1⊥BB1,(2分)∵平面ABB 1A 1⊥平面BCC 1B 1,平面ABB 1A 1∩平面BCC 1B 1=BB 1,AB 1⊂平面ABB 1A 1,∴AB 1⊥平面BCC 1B 1,(3分)又BC ⊂平面BCC 1B 1,∴AB 1⊥BC.∵△ABC 是以B 为直角顶点的等腰直角三角形,∴BC ⊥AB,∵AB∩AB 1=A,AB,AB 1⊂平面ABB 1A 1,∴BC ⊥平面ABB 1A 1.(4分)(2)延长AA 1,BB 1,CC 1交于一点P,∵A 1B 1=12AB,∴S △ABC =4S △A 1B 1C 1,∴V P-ABC =8V P -A 1B 1C 1,∴V P-ABC =87V ABC -A 1B 1C 1=87×7312=233,(5分)∵BC ⊥平面ABB 1A 1即BC ⊥平面PAB,∴BC 的长即为点C 到平面PAB 的距离.(6分)由(1)知AB=BC=2x,∠PAB=∠PBA=60°,∴△PAB 为等边三角形,∴PA=PB=AB=2x,∴V P-ABC =13S △PAB ·BC=13×12×(2x)2×32·2x=233x 3=233,∴x=1,∴AB=BC=PA=PB=2,∴AC=PC=22,∴S △PAC =12×2×(22)2-12=7,(8分)设点B 到平面ACC 1A 1的距离为d,即点B 到平面PAC 的距离为d,∵V B-PAC =V P-ABC ,∴13S △PAC ·d=73d=233,解得d=2217.即点B 到平面ACC 1A 1的距离为2217.(10分)(3)假设存在满足条件的点F.∵BC ⊥平面PAB,BC ⊂平面ABC,∴平面ABC ⊥平面PAB,取AB 的中点N,连接PN,NC,则PN ⊥AB,∵平面ABC∩平面PAB=AB,PN ⊂平面PAB,∴PN ⊥平面ABC,(12分)作FE ∥PN,交CN 于点E,则FE ⊥平面ABC,作ED⊥AB于D,连接FD,则ED即为FD在平面ABC上的射影,∵FE⊥平面ABC,AB⊂平面ABC,∴AB⊥FE,∵∵V由设则∴∴。

新人教版高一数学必修2试题立体几何

新人教版高一数学必修2试题立体几何

高一数学(必修2)立体几何试题参考公式一、选择题(本大题共10小题,每小题4分,共40分,将答案直接填在下表中)(1)下列命题为真命题的是()(A)平行于同一平面的两条直线平行(B)垂直于同一平面的两条直线平行(C)与某一平面成等角的两条直线平行(D)垂直于同一直线的两条直线平行(2)若一个角的两边分别和另一个角的两边平行,那么这两个角()(A)相等(B)互补(C)相等或互补(D)无法确定(3)正三棱锥的底面边长为2,侧面均为直角三角形,则此棱锥的体积为()(A(B(C(D(4)已知PD⊥矩形ABCD所在的平面,图中相互垂直的平面有()(A)2对(B)3对(C)4对(D)5对(5)如果一个水平放置的图形的斜二测直观图是一个底面为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是()(A)2(B)12+(C)22+(D)1(C)(1,3,5)(D)(-1,-3,5)二、填空题(本大题共6小题,每小题4分,共24分)(11)底面直径和高都是4cm的圆柱的侧面积为cm2.(12)若两个球的表面积之比是4∶9,则它们的体积之比是.(13)图①中的三视图表示的实物为_____________;PA B CD图②为长方体积木块堆成的几何体的三视图,此几何体共由_______块木块堆成.三、解答题(本大题共4小题,共36分.解答应写出文字说明、演算步骤或推证过程) (17)(本小题满分9分)如图,O 是正方形ABCD 的中心, PO ⊥底面ABCD ,E 是PC 的中点.求证:(Ⅰ)P A ∥平面BDE ;(Ⅱ)平面P AC ⊥平面BDE .(18)(本小题满分9分)已知圆台的上、下底面半径分别是2、6,且侧面面积等于两底面面积之和. (Ⅰ)求该圆台的母线长; (Ⅱ)求该圆台的体积.高一数学(必修2)训练题参考答案一、选择题二、填空题(11)π16 (12)8∶27 (13)圆锥;4 (14)60° (15)(0,3) (16)8 三、解答题 (17) 证明:(Ⅰ)连结EO ,在△P AC 中,∵O 是AC 的中点,E 是PC ∴OE ∥AP . 又∵OE ⊂平面BDE , P A ⊄平面BDE , ∴P A ∥平面BDE .(Ⅱ)∵PO ⊥底面ABCD ,∴PO ⊥BD .图①正视图 左视图俯视图 正视图 左视图又∵AC ⊥BD ,且AC PO =O , ∴BD ⊥平面P AC . 而BD ⊂平面BDE , ∴平面P AC ⊥平面BDE .(18)解:(Ⅰ)设圆台的母线长为l ,则圆台的上底面面积为224S ππ=⋅=上, 圆台的下底面面积为2636S ππ=⋅=下, 所以圆台的底面面积为40S S S π=+=下上 又圆台的侧面积(26)8S l l ππ=+=侧,于是840l ππ=,即5l =为所求.(Ⅱ)由(Ⅰ)可求得,圆台的高为3h ==.∴ (13V S S h =++圆台下上=(143633ππ+⋅=52π.。

高中数学必修二 第八章 立体几何初步【专项训练】下学期期中专项复习

高中数学必修二  第八章 立体几何初步【专项训练】下学期期中专项复习

2020-2021学年高一数学下学期期中专项复习(人教A版2019)第八章立体几何初步专项训练考点一基本立体图形解决空间基本立体图形结构特征问题的三个策略(1)把握几何体的结构特征,提高空间想象力.(2)构建几何模型、变换模型中的线面关系.(3)通过反例对结构特征进行辨析.一.选择题1.将一个等腰梯形绕着它的较长的底边所在直线旋转一周,所得的几何体包括A.一个圆台、两个圆锥B.一个圆柱、两个圆锥C.两个圆台、一个圆柱D.两个圆台、一个圆锥【答案】B【解析】设等腰梯形ABCD,较长的底边为CD,则绕着底边CD旋转一周可得一个圆柱和两个圆锥,(如右轴截面图)故选B.2.某人用如图所示的纸片沿折痕折后粘成一个四棱锥形的“走马灯“,正方形做灯底,且有一个三角形面上写上了“年”字,当灯旋转时,正好看到“新年快乐”的字样,则在①、②、③处可依次写上A .乐、新、快B .快、新、乐C .新、乐、快D .乐、快、新 【答案】B【解析】根据四棱锥图形,正好看到“新年快乐”的字样,可知顺序为②年①③,故选B .3.以下空间几何体是旋转体的是A .圆台B .棱台C .正方体D .三棱锥 【答案】A【解析】一条平面曲线绕着它所在的平面内的一条定直线旋转所形成的曲面叫作旋转面;该定直线叫做旋转体的轴;封闭的旋转面围成的几何体叫作旋转体.所以选项A 正确.故选A .4.一个圆锥的母线与其轴所成的角为60︒,则该圆锥的侧面展开图的圆心角为A .2πB .π CD【答案】D【解析】如图所示,设圆锥的母线为l ,底面圆半径为r , 因为60ABO ∠=︒,所以sin 60r l=︒,解得r =, 所以底面圆的周长为2r π,所以该圆锥的侧面展开图的圆心角为222r l l ππθ===.故选D.5.用一个平面去截一个几何体,截面的形状是三角形,那么这个几何体不可能是A.圆锥B.圆柱C.三棱锥D.正方体【答案】B【解析】用一个平面去截一个圆锥时,轴截面的形状是一个等腰三角形,所以A满足条件;用一个平面去截一个圆柱时,截面的形状不可能是一个三角形,所以B不满足条件;用一个平面去截一个三棱锥时,截面的形状是一个三角形,所以C满足条件;用一个平面去截一个正方体时,截面的形状可以是一个三角形,所以D满足条件.故选B.6.用一个平面去截一个几何体,得到的截面是一个圆面,这个几何体可能是A.圆锥B.圆柱C.球体D.以上都有可能【答案】D【解析】用一个平面去截一个几何体,得到的截面是一个圆面,则这个几何体可能是圆锥,也可能是圆柱,也可能是球体.故选D.7.下列说法正确的是A.通过圆台侧面一点,有无数条母线B.棱柱的底面一定是平行四边形C.圆锥的轴截面是等腰三角形D.用一个平面去截棱锥,原棱锥底面和截面之间的部分是棱台【答案】C【解析】对于A,通过圆台侧面一点,有且仅有一条母线,所以选项A错误;对于B,棱柱的底面不一定是平行四边形,所以选项B错误;对于C,圆锥的轴截面是腰长等于母线的等腰三角形,所以选项C正确;对于D,用一个平行于底面的平面去截棱锥,原棱锥底面和截面之间的部分是棱台,所以选项D错误.故选C.8.下列说法正确的是A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.一个直角三角形绕其一边旋转一周所形成的封闭图形叫圆锥C .棱锥的所有侧面都是三角形D .用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台【答案】C【解析】对于A ,棱台的上下底面互相平行,侧面都是四边形,但棱台不是棱柱,故A 错误;对于B ,当旋转轴为直角边时,所得几何体为圆锥,当旋转轴为斜边时,所得几何体为两个圆锥的组合体,故B 错误;对于C ,由于棱锥的所有侧棱都交于一点,故棱锥的侧面都是三角形,故C 正确;对于D ,当平面与棱锥的底面不平行时,截面与棱锥底面间的几何体不是棱台,故D 错误.故选C .二.填空题9.圆锥底面半径为1cm ,母线长为2cm ,则其侧面展开图扇形的圆心角θ= .【答案】π【解析】圆锥底面半径为1cm ,母线长为2cm ,则它的侧面展开图扇形的圆心角所对的弧长为212()cm ππ⨯=; 所以扇形的圆心角为22πθπ==. 故答案为:π.10.一圆台的母线长为20cm ,母线与轴的夹角为30︒,上底面半径为15cm ,则下底面半径为 ,圆台的高为 .【答案】25cm ,. 【解析】如图所示,圆台的母线长为20l cm =,母线与轴的夹角为30︒,上底面的半径为15r cm =,所以圆台的高为cos3020)h l cm =︒==, 则1sin3020102R r l -=︒=⨯=, 所以底面圆的半径为151025()R cm =+=.故答案为:25cm ,.三.解答题11【解析】如图所示,在正四棱锥S ABCD -中,连结AC ,BD 交于点O ,连结OS ,OS SA在Rt SOA ∆中,2OA ,所以AB ==作OE BC ⊥于点E ,则E 为BC 的中点,连结SE ,则SE 为该正四棱锥的斜高,在Rt SOE ∆中,因为12OE AB SO ==所以SE =12.一个正四棱台的高是17cm ,上、下底面边长分别为4cm 和16cm .求这个棱台的侧棱长和斜高.【答案】侧棱长为19cm ,斜高为【解析】如图所示,设棱台的两底面的中心分别是1O 、O ,11B C 和BC 的中点分别是1E 和E ,连接1O O 、1E E 、11O B 、OB 、11O E 、OE ,则四边形11OBB O 和11OEE O 都是直角梯形.114A B =cm ,16AB =cm ,112O E ∴=cm ,8OE =cm ,11O B =,OB =,2221111()361B B O O OB O B ∴=+-=2cm ,22221111()325E E O O OE O E cm =+-=,119B B ∴=cm ,1E E =.∴这个棱台的侧棱长为19cm ,斜高为.考点三 立体图形的直观图斜二测画法的步骤:(1)在已知图形中取互相垂直的x 轴和y 轴,两轴相交于点O.画直观图时,把它们画成x 轴和y 轴,两轴相交于点O,且使∠xO y=45° (或135°),它们确定的平面表示水平面。

高中数学必修2立体几何部分试卷及答案

高中数学必修2立体几何部分试卷及答案

高中数学必修2立体几何部分试卷试卷满分100分。

时间70分钟考号 班级 姓名第Ⅰ卷(选择题共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、垂直于同一条直线的两条直线一定 ( )A 、平行B 、相交C 、异面D 、以上都有可能 2、过直线l 外两点作与直线l 平行的平面,可以作( )A .1个B .1个或无数个C .0个或无数个D .0个、1个或无数个 3、正三棱锥底面三角形的边长为3,侧棱长为2,则其体积为 ( )A .41 B .21 C .43 D .49 4、右图是一个实物图形,则它的左视图大致为 ( )5、已知正四棱台的上、下底面边长分别为3和6,其侧面积等于两底面积之和,则该正四棱台的高是 ( )A .2B .25C .3D .27 6、已知α、β是平面,m 、n 是直线,则下列命题不正确...的是 ( ) A .若//,m n m α⊥,则n α⊥ B .若,m m αβ⊥⊥,则//αβ C .若,//,m m n n αβ⊥⊂,则αβ⊥ D .若//,m n ααβ=I,则//m n7、正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1的侧面是正方形,若底面的边长为a ,则该正六棱柱的外接球的表面积是 ( )A .4πa 2 B.5 πa 2 C. 8πa 2 D.10πa 28、如右下图,在ABC ∆中,2AB =,BC=1.5,120ABC ∠=o,如图所示。

若将ABC ∆绕BC 旋转一周,则所形成的旋转体的体积是( ) (A )92π (B )72π (C )52π (D )32π(第8题图)9、如左上图是由单位立方体构成的积木垛的三视图,据此三视图可知,构成这堆积木垛的单 位正方体共有 ( ) A .6块 B .7块 C .8块 D .9块10、给出下列命题①过平面外一点有且仅有一个平面与已知平面垂直 ②过直线外一点有且仅有一个平面与已知直线平行 ③过直线外一点有且仅有一条直线与已知直线垂直 ④过平面外一点有且仅有一条直线与已知平面垂直 其中正确命题的个数为( ) A .0个 B .1个C .2个D .3个第Ⅱ卷(非选择题 共60分)二、填空题(每小题4分,共16分)11、已知直线m 、n 及平面α,其中m ∥n ,那么在平面α内到两条直线m 、n 距离相等的点的集合可能是:①一条直线;②一个平面;③一个点;④空集。

高中数学必修2立体几何考题(附答案)

高中数学必修2立体几何考题(附答案)

si nt hre g的中心.,与CM 交于Q (只写作法,不必证明ON 确定一个平面α.又两两相交,有三条交线OP 、CM 必相交,记交点为Q .OQ 与AN 交于P ,与CM .14rofdoo-A1B1C1D1中,O,MBD1的公垂线;所成的角的余弦值;,求异面直线AA1与BD1的距离.的中点,,则O为AC的中点,连结∩平面BDE=OE,∴PAt he i rb ei n ggo od fo rs o 、B 在l 1上,与平面ABC 所成角的余弦值.⊥l 1,MN ∩l 1=M ,可得,可知AN =NB 且AN ⊥内的射影,ABC 的中心.连结本小题主要考查直线与平面、平面与平面的位置关系,考查空间想象能力、分别是AB 、BD 的中点,所以g ergo od fo rs om FE =AD .2为异面直綊⊥平,则MP ⊥CE .又⊥平面CDE .因为PC =PD ,所AN =NB .3a re go od fo 1B 1C 1D 1中,e go od fo rs 1D 与DE 所成的a ,A 1E =DE =2g good,求B1C与平面BCD所成的角的大,连结EF,为平行四边形,从而AF∥DE.⊥平面BCC1,从而AF⊥BC的垂直平分线,,故∠AGC为二面AB=2,BC=2go o=AC =,M 是2b ei n ga r所成的角的正弦值;的距离.证明:如图,在直角梯形ABCD 中,AD =DC =2,在平面ABCD 内的射影,的底面是正方形,PA 的中点.eragnieA1B1C1为直三棱柱,,∠ABC=60°,由正弦定理得∠go od fo rs om ABB 1A 1是菱形是正三角形,a ,321AFa r两点间的球面距离为,点A 与π3,BAC =,设74,由题设条件知△AEB 、△n ;到平面SBD 的距离;⊥AC ,又∵SA ⊥平面,∴平面BED ⊥平面SAC .,由三垂线定理得,SA =4,则SO =2rofdooger的中点;g si nt he i rb ei n ga r与平面ADD 1A 1所成的角.=1,PN =,12PNM =arctan2.所成的角为arctan2.是BB 1的中点,∴A 1N =AN ,A 1M MN ≌△AMN .交MN 于G ,连结A 1G ,则∠A 1GA G =GA =,305、CF 都与平面ABCD 垂直,的大小;F -ABCD 公共部分的体积.本题考查空间位置关系,二面角平面角的作法以及空间几何体的体积计算等知识.考查利用综合法或向量法解决立体几何问题的能力.交于菱形的中心O ,过Osi nt he i r;所成角的大小;D -FE -B 的大小为⊥平面ABEF ,CB ⊥AB。

高中数学必修2立体几何练习题附答案

高中数学必修2立体几何练习题附答案

高中数学必修2立体几何练习题一.单选题(共__小题)1.已知正四棱台的上、下底面边长分别为3和6,其侧面积等于两底面积之和,则该正四棱台的高是()A.2B.C.3D.2.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为()A.75°B.60°C.45°D.30°3.如果棱台的两底面积分别是S,S′,中截面的面积是S0,那么()A.2B.S0=C.2S0=S+S′D.S02=2S"S4.把边长为1的正方形A B C D沿对角线A C折起,构成三棱锥A B C D,则下列命题:①以A、B、C、D四点为顶点的棱锥体积最大值为;②当体积最大时直线B D和平面A B C所成的角的大小为45°;③B、D两点间的距离的取值范围是(0,];④当二面角D-A C-B的平面角为90°时,异面直线B C与A D所成角为45°.其中正确结论个数为()A.4个B.3个C.2个D.1个5、把一个皮球放入如图所示的由8根长均为20c m的铁丝接成的四棱锥形骨架内,使皮球的表面与8根铁丝都有接触点,则皮球的半径()A.l0cm B.10cm C.10cm D.30cm6.如图,正方体A B C D-A1B1C1D1的棱长为1,点M是对角线A1B上的动点,则A M+M D1的最小值为()A.B.C.D.27.下列说法正确的是()A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B.四棱锥的四个侧面都可以是直角三角形C.有两个面互相平行,其余各面都是梯形的多面体是棱台D.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥.8.平行六面体A B C D-A1B1C1D1中A B=1,A D=2,A A1=3,∠B A D=90°,∠B A A1=∠D A A1=60°,则A C1的长为()A.B.C.D.9、如图,正方体A B C D-A1B1C1D1的棱长为2,动点P在对角线B D1上,过点P作垂直于B D1的平面α,记这样得到的截面多边形(含三角形)的周长为y,设B P=x,则当x∈[1,5]时,函数y=f(x)的值域为()A.[2,6]B.[2,18]C.[3,18]D.[3,6]10.一个棱柱为正四棱柱的充要条件是()A.底面是正方形,有两个侧面垂直与底面B.底面是正方形,有两个侧面是矩形C.底面是菱形,且过一个顶点的三条棱两两垂直D.各个面都是矩形的平行六面体二.填空题(共__小题)11.在一个棱长为6的正四面体纸盒内放一个正方体,并且能使正方体在纸盒内任意转动,则正方体的棱长的最大值为______•12.一个圆柱的底面面积是16,侧面展开图是正方形,则该圆柱的侧面积是______.13.若用长度分别为1,1,1,1,x,x的六根笔直的铁棒通过焊接其端点(不计损耗)可以得到两种不同形状的三棱锥形的铁架,则实数x的取值范围是______.14.一平面与正方形的十二条棱所成的角都等于α,则s i n12α=______.15.一个正四棱锥的中截面(过各侧棱中点的截面)的面积为Q,则它的底面边长为______.16.若一个n面体中共有m个面是直角三角形,则称这个n面体的“直度”为.由此可知,四棱锥“直度”的最大值为______.17.在三棱锥P-A B C中,给出下列四个命题:①如果P A⊥B C,P B⊥A C,那么点P在平面A B C内的射影是△A B C的垂心;②如果点P到△A B C的三边所在直线的距离都相等,那么点P在平面A B C 内的射影是△A B C的内心;③如果棱P A和B C所成的角为60?,P A=B C=2,E、F分别是棱P B、A C的中点,那么E F=1;④三棱锥P-A B C的各棱长均为1,则该三棱锥在任意一个平面内的射影的面积都不大于;⑤如果三棱锥P-A B C的四个顶点是半径为1的球的内接正四面体的顶点,则P与A两点间的球面距离为π-a r c c o s.其中正确命题的序号是______.18.若长方体的三个面的面积分别为6c m2,3c m2,2c m2,则此长方体的对角线长为______.19.已知长方体A B C D-A1B1C1D1的体积为216,则四面体A B1C D1与四面体A1B C1D 的重叠部分的体积为______.20.一个长方体共一顶点的三条棱长为1,2,3,则这个长方体对角线的长是______三.简答题(共__小题)21.已知正四棱台两底面边长分别为a和b(a<b).(1)若侧棱所在直线与上、下底面正方形中心的连线所成的角为45°,求棱台的侧面积;(2)若棱台的侧面积等于两底面面积之和,求它的高.22.试构造出一个三棱锥S-A B C,使其四个面中成直角三角形的个数最多,作出图形,指出所有的直角,并证明你的结论.23、已知三棱锥S-A B C的三条侧棱S A、S B、S C两两互相垂直且长度分别为a、b、c,设O为S在底面A B C上的射影.求证:(1)O为△A B C的垂心;(2)O在△A B C内;(3)设S O=h,则++=.参考答案一.单选题(共__小题)1.已知正四棱台的上、下底面边长分别为3和6,其侧面积等于两底面积之和,则该正四棱台的高是()A.2B.C.3D.答案:A解析:解:设正四棱台的高为h,斜高为x,由题意可得4••(3+6)x=32+62,∴x=.再由棱台的高、斜高、边心距构成直角梯形、可得h==2,故选A.2.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为()A.75°B.60°C.45°D.30°答案:C解析:解析:如图,四棱锥P-A B C D中,过P作P O⊥平面A B C D于O,连接A O则A O是A P在底面A B C D上的射影.∴∠P A O即为所求线面角,∵A O=,P A=1,∴c o s∠P A O==.∴∠P A O=45°,即所求线面角为45°.故选C.3.如果棱台的两底面积分别是S,S′,中截面的面积是S0,那么()A.2B.S0=C.2S0=S+S′D.S02=2S"S答案:A解析:解:不妨设棱台为三棱台,设棱台的高为2r,上部三棱锥的高为a,根据相似比的性质可得:消去r,然后代入一个方程,可得2故选A.4.把边长为1的正方形A B C D沿对角线A C折起,构成三棱锥A B C D,则下列命题:①以A、B、C、D四点为顶点的棱锥体积最大值为;②当体积最大时直线B D和平面A B C所成的角的大小为45°;③B、D两点间的距离的取值范围是(0,];④当二面角D-A C-B的平面角为90°时,异面直线B C与A D所成角为45°.其中正确结论个数为()A.4个B.3个C.2个D.1个答案:C解析:解:把边长为1的正方形A B C D沿对角线A C折起,构成三棱锥A B C D,如图所示,则下列命题:①以A、B、C、D四点为顶点的棱锥,当侧面A C D⊥底面A B C时,体积最大值==,正确;②由①可知:当体积最大时直线B D和平面A B C所成的角的大小为∠O B D=45°,正确;③B、D两点间的距离的取值范围是(0,),因此不正确;④当二面角D-A C-B的平面角为90°时,由①可知:异面直线B C与A D所成角为90°,因此不正确.综上可知:只有①②正确.故选:C.5、把一个皮球放入如图所示的由8根长均为20c m的铁丝接成的四棱锥形骨架内,使皮球的表面与8根铁丝都有接触点,则皮球的半径()A.l0cm B.10cm C.10cm D.30cm答案:B解析:解:因为底面是一个正方形,一共有四条棱,皮球心距这四棱最小距离是10,∵四条棱距离正方形的中心距离为10,所以皮球的表面与8根铁丝都有接触点时,半径应该是边长的一半∴球的半径是10故选B.6.如图,正方体A B C D-A1B1C1D1的棱长为1,点M是对角线A1B上的动点,则A M+M D1的最小值为()A.B.C.D.2答案:A解析:解:将平面A B A1和平面B C D D1A1放在同一个平面上,如图,则A M+M D1的最小值即为线段A D1,在直角三角形A E D1中,A E=,E D1=,∴A D1==,故选A.7.下列说法正确的是()A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B.四棱锥的四个侧面都可以是直角三角形C.有两个面互相平行,其余各面都是梯形的多面体是棱台D.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥.答案:B解析:解:如图所示:A.如图(1)符合条件但却不是棱柱;B.图中P A⊥底面A B C,A B是圆O的直径,点C是圆上的一点,则四个面都是直角三角形,符合题意;C.其侧棱不相较于一点,故不是棱台;D.以直角三角形的斜边A B为轴旋转得到的是两个对底的圆锥.综上可知:只有B正确.故选B.8.平行六面体A B C D-A1B1C1D1中A B=1,A D=2,A A1=3,∠B A D=90°,∠B A A1=∠D A A1=60°,则A C1的长为()A.B.C.D.答案:B解析:解:平行六面体,如图所示:∵∠B A A1=∠D A A1=60°∴A1在平面A B C D上的射影必落在直线A C上,∴平面A C C1A1⊥平面A B C D,∵A B=1,A D=2,A A1=3,∵=∴||2=()2=||2+||2+||2+2+2+2=1+9+4+0+2×1×3×+2×2×3×=23,∴||=,∴A C1等于.故选:B.9、如图,正方体A B C D-A1B1C1D1的棱长为2,动点P在对角线B D1上,过点P作垂直于B D1的平面α,记这样得到的截面多边形(含三角形)的周长为y,设B P=x,则当x∈[1,5]时,函数y=f(x)的值域为()A.[2,6]B.[2,18]C.[3,18]D.[3,6]答案:D解析:解:∵正方体A B C D-A1B1C1D1的棱长为2,∴正方体的对角线长为6,∵x∈[1,5],∴x=1或5时,三角形的周长最小,设截面正三角形的边长为t,则由等体积可得,∴t=,∴y m i n=;x=2或4时,三角形的周长最大,截面正三角形的边长为2,∴y m a x=6.∴当x∈[1,5]时,函数y=f(x)的值域为[3,6].故选D.10.一个棱柱为正四棱柱的充要条件是()A.底面是正方形,有两个侧面垂直与底面B.底面是正方形,有两个侧面是矩形C.底面是菱形,且过一个顶点的三条棱两两垂直D.各个面都是矩形的平行六面体答案:C解析:解:若底面是正方形,有相对的两个侧面垂直于底面,另外两个侧面不垂直于底面,则棱柱为斜棱柱,故A不满足要求;若底面是正方形,有相对的两个侧面是矩形,另外两个侧面是不为矩形的平行四边形,则棱柱为斜棱柱,故B不满足要求;底面是菱形,且过一个顶点的三条棱两两垂直,则底面为正方形,侧棱与底面垂直,此时棱柱为正四棱柱,故C满足要求;各个面都是矩形的平行六面体,其底面可能不是正方形,故D不满足要求;故选C二.填空题(共__小题)11.在一个棱长为6的正四面体纸盒内放一个正方体,并且能使正方体在纸盒内任意转动,则正方体的棱长的最大值为______•答案:解析:解:设球的半径为r,由正四面体的体积得:,所以r=,设正方体的最大棱长为a,所以,,a=故答案为:12.一个圆柱的底面面积是16,侧面展开图是正方形,则该圆柱的侧面积是______.答案:64π解析:解:圆柱的侧面展开图是正方形,如图;设圆柱的底面半径为r,高为l,∵圆柱的底面面积是16,∴πr2=16,∴r=;∴l=2πr=2π×=8,∴圆柱的侧面积是l2==64π;故答案为:64π.13.若用长度分别为1,1,1,1,x,x的六根笔直的铁棒通过焊接其端点(不计损耗)可以得到两种不同形状的三棱锥形的铁架,则实数x的取值范围是______.答案:(0,)解析:解:根据条件,四根长为1的直铁棒与两根长为x的直铁棒要组成三棱锥形的铁架,有以下两种情况:①底面是边长为1的正三角形,三条侧棱长为1,x,x,如图,此时x应满足:∵A D=,S D=,且S D<S A+A D,∴<1+,即x2<2+,∴<x<;②构成三棱锥的两条对角线长为x,其他各边长均为1,如图所示,此时应满足0<x<;综上,x的取值范围是(0,).故答案为:(0,).14.一平面与正方形的十二条棱所成的角都等于α,则s i n12α=______.答案:解析:解:∵一平面与正方形的十二条棱所成的角都等于α,∴正方体的面对角线与棱的夹角,∵设正方体的棱长为1,∴A到三角形A B1D1中心的距离为:×=,∴A1点到面A B1D1距离为:=,∴s i nα=∴s i n12α=()6=,故答案为:15.一个正四棱锥的中截面(过各侧棱中点的截面)的面积为Q,则它的底面边长为______.答案:解析:解:∵四棱锥的中截面与底面相似,且相似比为1:2,面积比为1:4,∴若正四棱锥的中截面的面积为Q,则底面面积为4Q,∵底面为正方形,面积为边长的平方,∴它的底面边长为2故答案为216.若一个n面体中共有m个面是直角三角形,则称这个n面体的“直度”为.由此可知,四棱锥“直度”的最大值为______.答案:解析:解:∵四棱锥有5个面组成,∴n=5,当四棱锥的底面是矩形,一条侧棱与底面垂直时,四棱锥的4个侧面都是直角三角形,∴m=4,∴四棱锥“直度”的最大值为,故答案为:.17.在三棱锥P-A B C中,给出下列四个命题:①如果P A⊥B C,P B⊥A C,那么点P在平面A B C内的射影是△A B C的垂心;②如果点P到△A B C的三边所在直线的距离都相等,那么点P在平面A B C 内的射影是△A B C的内心;③如果棱P A和B C所成的角为60?,P A=B C=2,E、F分别是棱P B、A C的中点,那么E F=1;④三棱锥P-A B C的各棱长均为1,则该三棱锥在任意一个平面内的射影的面积都不大于;⑤如果三棱锥P-A B C的四个顶点是半径为1的球的内接正四面体的顶点,则P与A两点间的球面距离为π-a r c c o s.其中正确命题的序号是______.答案:①④⑤解析:解:①若P A⊥B C,P B⊥A C,因为P H⊥底面A B C,所以A H⊥B C,同理B H⊥A C,可得H是△A B C的垂心,正确.②若P A=P B=P C,易得A H=B H=C H,则H是△A B C的外心,不正确.③如果棱P A和B C所成的角为60°,P A=B C=2,E、F分别是棱P B、A C的中点,那么E F=1或;不正确.④如果三棱锥P-A B C的各条棱长均为1,则该三棱锥在任意一个平面内的射影的面积都不大于,正确.⑤如果三棱锥P-A B C的四个顶点是半径为1的球的内接正四面体的顶点,则P与A两点间的球面距离为π-a r c c o s,正确.故答案为:①④⑤.18.若长方体的三个面的面积分别为6c m2,3c m2,2c m2,则此长方体的对角线长为______.答案:解:设长方体的三度分别为:a,b,c,由题意可知:a b=6,b c=2,a c=3所以,a=3,b=2,c=1,所以长方体的对角线长为:故答案为:.19.已知长方体A B C D-A1B1C1D1的体积为216,则四面体A B1C D1与四面体A1B C1D 的重叠部分的体积为______.答案:36解析:解:如图所示,四面体A B1C D1与四面体A1B C1D的重叠部分是以长方体各面中心为定点的多面体,摘出如图,设长方体的过同一顶点的三条棱长分别为a,b,c,则a b c=216,重叠部分的体积为两个同底面的四棱锥体积和,等于.故答案为:36.20.一个长方体共一顶点的三条棱长为1,2,3,则这个长方体对角线的长是______答案:解:因为在长方体中,底面对角线的平方是底面长和宽的平方和,体对角线的平方等于面对角线的平方加上高的平方;长方体对角线的长:故答案为:三.简答题(共__小题)21.已知正四棱台两底面边长分别为a和b(a<b).(1)若侧棱所在直线与上、下底面正方形中心的连线所成的角为45°,求棱台的侧面积;(2)若棱台的侧面积等于两底面面积之和,求它的高.答案:解:(1)如图所示,∵P O⊥平面A B C D,侧棱所在直线与上、下底面正方形中心的连线所成的角为45°,∴∠P A O=45°,∴P O=O A=,P O1=O1A1=a.分别取A B,A1B1的中点E,E1,连接O E,O1E1.则P E==,P E1==.∴斜高E E1=P E-P E1=.∴棱台的侧面积S侧==;(2)∵棱台的侧面积等于两底面面积之和,∴=a2+b2,∴E E1=.∴O O1===.22.试构造出一个三棱锥S-A B C,使其四个面中成直角三角形的个数最多,作出图形,指出所有的直角,并证明你的结论.答案:解:如图,S A⊥平面A B C,∠A B C=90°,则∠S A C=∠S A B=90°,又A B⊥B C,所以B C⊥S B,所以∠S B C=90°,即四个面S A B,S A C,S B C,A B C为直角三角形.23、已知三棱锥S-A B C的三条侧棱S A、S B、S C两两互相垂直且长度分别为a、b、c,设O为S在底面A B C上的射影.求证:(1)O为△A B C的垂心;(2)O在△A B C内;(3)设S O=h,则++=.答案:证明:(1)∵S A⊥S B,S A⊥S C,∴S A⊥平面S B C,B C⊂平面S B C.∴S A⊥B C.而A D是S A在平面A B C上的射影,∴A D⊥B C.同理可证A B⊥C F,A C⊥B E,故O为△A B C的垂心.(2)证明△A B C为锐角三角形即可.不妨设a≥b≥c,则底面三角形A B C中,A B=为最大,从而∠A C B为最大角.用余弦定理求得c o s∠A C B=>0,∴∠A C B为锐角,△A B C为锐角三角形.故O在△A B C内.(3)S B•S C=B C•S D,故S D=,=+,又S A•S D=A D•S O,。

高中数学必修二第八章立体几何初步典型例题(带答案)

高中数学必修二第八章立体几何初步典型例题(带答案)

高中数学必修二第八章立体几何初步典型例题单选题1、如图,△A′B′C′是水平放置的△ABC的直观图,其中B′C′=C′A′=2,A′B′,A′C′分别与x′轴,y′轴平行,则BC=()A.2B.2√2C.4D.2√6答案:D分析:先确定△A′B′C′是等腰直角三角形,求出A′B′,再确定原图△ABC的形状,进而求出BC.由题意可知△A′B′C′是等腰直角三角形,A′B′=2√2,其原图形是Rt△ABC,AB=A′B′=2√2,AC=2A′C′=4,∠BAC=90°,则BC=√8+16=2√6,故选:D.2、如图直角△O′A′B′是一个平面图形的直观图,斜边O′B′=4,则原平面图形的面积是()A.8√2B.4√2C.4D.√2答案:A解析:根据斜二测画法规则可求原平面图形三角形的两条直角边长度,利用三角形的面积公式即可求解.由题意可知△O′A′B′为等腰直角三角形,O′B′=4,则O′A′=2√2,所以原图形中,OB=4,OA=4√2,×4×4√2=8√2.故原平面图形的面积为12故选:A3、正方体中,点P,O,R,S是其所在棱的中点,则PQ与RS是异面直线的图形是()A.B.C.D.答案:C分析:对于A,B,D,利用两平行线确定一个平面可以证明直线PQ与RS共面,对于C,利用异面直线的定义推理判断作答.对于A,在正方体ABCD−A1B1C1D1中,连接AC,A1C1,则AC//A1C1,如图,因为点P,Q,R,S是其所在棱的中点,则有PQ//AC,RS//A1C1,因此PQ//RS,则直线PQ与RS共面,A错误;对于B,在正方体ABCD−A1B1C1D1中,连接AC,QS,PR,如图,因为点P,Q,R,S是其所在棱的中点,有AP//CR且AP=CR,则四边形APRC为平行四边形,即有AC//PR,又QS//AC,因此QS//PR,直线PQ与RS共面,B错误;对于C,在正方体ABCD−A1B1C1D1中,如图,因为点P,Q,R,S是其所在棱的中点,有RS//BB1,而BB1⊂平面ABB1A1,RS⊄平面ABB1A1,则RS//平面ABB1A1,PQ⊂平面ABB1A1,则直线PQ与RS无公共点,又直线PQ与直线BB1相交,于是得直线PQ与RS不平行,则直线PQ与RS是异面直线,C正确;对于D,在正方体ABCD−A1B1C1D1中,连接A1B,D1C,PS,QR,如图,因为A1D1//BC且A1D1=BC,则四边形A1D1CB为平行四边形,有A1B//D1C,因为点P,Q,R,S是其所在棱的中点,有PS//A1B,QR//D1C,则PS//QR,直线PQ与RS共面,D错误.故选:C4、下面四个选项中一定能得出平面α/⁄平面β的是()A.存在一条直线a,a//α,a//βB.存在一条直线a,a⊂α,a//βC.存在两条平行直线a,b,a⊂α,b⊂β,a//β,b//αD.存在两条异面直线a,b,a⊂α,b⊂β,a//β,b//α答案:D分析:对于A,B,C,举出符合条件的特例即可判断;对于D,过直线a作平面γ∩β=c,再证c//α即可. 如图,ABCD−A1B1C1D1是长方体,平面ABCD为平面α,平面ABB1A1为平面β,对于A,直线C1D1为直线a,显然a//α,a//β,而α与β相交,A不正确;对于B,直线CD为直线a,显然a⊂α,a//β,而α与β相交,B不正确;对于C,直线CD为直线a,直线A1B1为直线b,显然a⊂α,b⊂β,a//β,b//α,而α与β相交,C不正确;对于D,因a,b是异面直线,且a⊂α,b⊂β,过直线a作平面γ∩β=c,如图,则c//a,并且直线c与b必相交,而c⊄α,于是得c//α,又b//α,即β内有两条相交直线都平行于平面α,⁄平面β.因此,平面α/故选:D5、某正方体被截去部分后得到的空间几何体的三视图如图所示,则该空间几何体的体积为()A .132B .223C .152D .233答案:C分析:根据几何体的三视图,可知该几何体是棱长为2的正方体截去两个小三棱锥,根据三棱锥的体积公式即可求解.解:根据几何体的三视图,该空间几何体是棱长为2的正方体截去两个小三棱锥,由图示可知,该空间几何体体积为V =23−(13×12×12×1+13×12×12×2)=152,故选:C.6、已知圆锥的母线长为3,其侧面展开图是一个圆心角为2π3的扇形,则该圆锥的体积为( ) A .√23πB .2√23πC .πD .√2π 答案:B分析:根据弧长计算公式,求得底面圆半径以及圆锥的高,即可求得圆锥的体积.设圆锥的底面圆半径为r ,故可得2πr =2π3×3,解得r =1,设圆锥的高为ℎ,则ℎ=√32−12=2√2,则圆锥的体积V =13×πr 2×ℎ=13×π×2√2=2√23π. 故选:B.7、已知正四棱锥的底面边长为6,侧棱长为5,则此棱锥的侧面积为( )A .6B .12C .24D .48答案:D分析:首先由勾股定理求出斜高,即可求出侧面积;解:正四棱锥的底面边长为6,侧棱长为5,则其斜高ℎ′=√52−(62)2=4,所以正四棱锥的侧面积S =12×4×6×4=48故选:D8、已知三棱锥P −ABC ,其中PA ⊥平面ABC ,∠BAC =120°,PA =AB =AC =2,则该三棱锥外接球的表面积为( )A .12πB .16πC .20πD .24π答案:C分析:根据余弦定理、正弦定理,结合球的性质、球的表面积公式进行求解即可.根据题意设底面△ABC 的外心为G ,O 为球心,所以OG ⊥平面ABC ,因为PA ⊥平面ABC ,所以OG//PA ,设D 是PA 中点,因为OP =OA ,所以DO ⊥PA ,因为PA ⊥平面ABC ,AG ⊂平面ABC ,所以AG ⊥PA ,因此OD//AG ,因此四边形ODAG 是平行四边形,故OG =AD =12PA =1, 由余弦定理,得BC =√AB 2+AC 2−2AB ⋅AC ⋅cos120°=√4+4−2×2×2×(−12)=2√3,由正弦定理,得2AG =√3√32⇒AG =2,所以该外接球的半径R 满足R 2=(OG )2+(AG )2=5⇒S =4πR 2=20π,故选:C .小提示:关键点睛:运用正弦定理、余弦定理是解题的关键.多选题9、(多选)下列说法中正确的是()A.若直线l与平面α不平行,则l与α相交B.直线l在平面外是指直线和平面平行C.如果直线l经过平面α内一点P,又经过平面α外一点Q,那么直线l与平面α相交D.如果直线a∥b,且a与平面α相交于点P,那么直线b必与平面α相交答案:CD分析:由线面直线的位置关系逐一判断即可求解.若直线l与平面α不平行,则l与α相交或l⊂α,所以A不正确.若l⊄α,则l//α或l与α相交,所以B不正确.由线面直线的位置关系可知,C、D正确.故选:CD10、如图,长方体ABCD−A1B1C1D1中,AB=BC=1,AA1=2,M为AA1的中点,过B1M作长方体的截面α交棱CC1于N,则()A.截面α可能为六边形B .存在点N ,使得BN ⊥截面αC .若截面α为平行四边形,则1≤CN ≤2D .当N 与C 重合时,截面面积为3√64答案:CD分析:利用点N 的位置不同得到的截面α的形状判断选项A ,C ,利用线面垂直的判定定理分析选项B ,利用平面几何知识求相应的量结合梯形的面积公式求得截面的面积,从而可判断选项D .长方体ABCD −A 1B 1C 1D 1中,AB =BC =1,AA 1=2,M 为AA 1的中点,过B 1M 作长方体的截面α交棱CC 1于N , 设N 0为CC 1的中点,根据点N 的位置的变化分析可得:当1≤CN ≤2时,截面α为平行四边形,当0<CN <1时,截面α为五边形,当CN =0时,即点N 与点C 重合时,截面α为梯形,故A 不正确,C 正确;设BN ⊥截面α,因为B 1M ⊂面α,所以BN ⊥B 1M ,所以N 只能与C 重合才能使BN ⊥B 1M ,因为BN 不垂直平面B 1CQM ,故此时不成立,故B 不正确;因为当点N 与点C 重合时,截面α为梯形,如下图所示:过M 作MH 垂直于B 1C 于H ,设梯形的高为ℎ,MH =x ,则由平面几何知识得:ℎ2=(√2)2−x 2=(√52)2−(√52−x)2,解得x =2√55,ℎ=√305,所以截面α的面积为:12×(√5+√52)×ℎ=12×3√52×√305=3√64,故D 正确;故选:CD .小提示:关键点睛:本题考查长方体的截面的形状,关键在于分析动点在不同的位置时,截面的形状,运用线面平行的判定定理和平面几何知识求得截面的面积.11、在棱长为2的正方体ABCD−A1B1C1D1中,点P是正方体的棱上一点,|PB|+|PC1|=λ,则()A.λ=2时,满足条件的点P的个数为1B.λ=4时,满足条件的点P的个数为4C.λ=4√2时,满足条件的点P的个数为2D.若满足|PB|+|PC1|=λ的点P的个数为6,则λ的取值范围为(2√2,4)答案:BC分析:根据各棱上的点P到B,C1两点距离之和对选项进行逐一分析,由此确定正确选项.设E,F分别是C1D1,AB的中点,|BD1|=√22+(2√2)2=2√3,|BE|=|C1F|=√12+(2√2)2=3,|A1C1|=|A1B|=2√2.由于|BC1|=2√2,所以|PB|+|PC1|=λ≥2√2,所以A选项错误.λ=4,满足|PB|+|PC1|=4的点为B1,C,E,F共4个,所以B选项正确.λ=4√2,满足|PB|+|PC1|=4√2的点为A1,D共2个,所以C选项正确.当P在正方形ADD1A1(不包括A,D,D1,A1)上运动时,λ∈(2+2√3,4√2),此时棱A1B1与棱CD上,也存在点使λ∈(2+2√3,4√2).所以当λ∈(2+2√3,4√2)时,满足|PB|+|PC1|=λ的点P的个数为6,所以D选项错误.故选:BC填空题12、已知A、B、C、D四点不共面,且AB//平面α,CD∥α,AC∩α=E,AD∩α=F,BD∩α=H,BC∩α=G,则四边形EFHG是______四边形.答案:平行分析:由题,平面ABD∩平面α=FH,结合AB//平面α可得AB//FH,同理可得四边形EFHG另外三边与AB,CD的位置关系,即可得到答案.由题,平面ABD∩平面α=FH,因为AB//平面α,所以AB//FH,又平面ABC∩平面α=EG,所以AB//EG,则FH//EG,同理GH//CD//EF,所以四边形EFHG是平行四边形,所以答案是:平行13、如图已知A是△BCD所在平面外一点,AD=BC,E、F分别是AB、CD的中点,若异面直线AD与BC所成角的大小为π3,则AD与EF所成角的大小为___________.答案:π3或π6分析:取AC的中点G,连接EG,GF,则∠EGF=π3或∠EGF=2π3,分别分析这两种情况下∠GFE的大小即为AD与EF所成角.解:如图所示:取AC的中点G,连接EG,GF,则EG//BC,GF//AD,所以∠EGF为异面直线AD与BC所成角或其补角.因为AD=BC,所以EG=GF,当∠EGF=π3时,△EGF为等边三角形,∠GFE=π3,即AD与EF所成角的大小为π3;当∠EGF=2π3时,EG=GF,△EGF为等腰三角形,∠GFE=π6,即AD与EF所成角的大小为π6.所以答案是:π3或π6.14、已知三棱柱ABC −A 1B 1C 1中,棱长均为2,顶点A 1在底面ABC 上的射影恰为AB 的中点D ,E 为AC 的中点,则直线BE 与直线AB 1所成角的余弦值为________.答案:34分析:根据三棱柱性质与题中的中点条件,可将所求直线BE 与直线AB 1所成角的余弦值转化为求直线GB 1与直线AB 1所成角的余弦值,那么就要通过多次转化最终求得△AGB 1中三边长,然后直接在△AGB 1中运用余弦定理即可.如图,取A 1C 1中点G ,连接B 1G,AG,AE,DE,GE ,由三棱柱的性质易证得GE //BB 1,GE =BB 1,所以四边形GEBB 1为平行四边形,所以GB 1//BE ,所以下面即求直线GB 1与直线AB 1所成角的余弦值.由题意知,A 1D ⊥平面ABC ,因为AB,DE ⊂平面ABC ,所以A 1D ⊥AB,A 1D ⊥DE ,在Rt △AA 1D 中,AA 1=2,AD =12AB =1,∠A 1DA =90°,求得A 1D =√3,∠A 1AD =60°. 所以在菱形AA 1B 1B 中,AB 1=2ABcos30°=2√3.在Rt △A 1DE 中,∠A 1DE =90°,A 1D =√3,DE =12BC =1,求得A 1E =2. 所以在△A 1AE 中,根据余弦定理得cos∠A 1AE =AA 12+AE 2−A1E 22AE⋅AA 1=14,所以cos∠AA 1G =cos(π−∠A 1AE)=−14.在△A 1AG 中根据余弦定理得AG 2=AA 12+A 1G 2−2AA 1⋅A 1Gcos∠AA 1G,AG =√6.在△AGB 1中,AG =√6,AB 1=2√3,GB 1=√3,根据余弦定理得cos∠GB 1A =GB 12+AB12−AG 22GB 1⋅AB 1=34,所以直线GB 1与直线AB 1所成角的余弦值为34,即直线BE 与直线AB 1所成角的余弦值为34. 故答案为:34解答题15、在空间四边形ABCD中,AB=CD,点M、N分别为BD、AC的中点.(1)若直线AB与MN所成角为60°,求直线AB与CD所成角的大小;(2)若直线AB与CD所成角为θ,求直线AB与MN所成角的大小.答案:(1)60°(2)θ2或π−θ2分析:根据异面直线所成角的定义,借助平行关系作出平行直线,从而找到异面直线所成角(或补角)即可求解.(1)如图,取AD的中点为P,连接PM、PN.因为点M、N分别为BD、AC的中点,所以PM//AB,PN//CD,且PM=12AB,PN=12CD,所以,∠MPN为直线AB与CD所成的角(或补角),∠PMN为直线AB与MN所成的角(或补角). 又AB=CD,所以PM=PN,即△PMN为等腰三角形.直线AB与MN所成角为60°,即∠PMN=60°,则∠MPN=180°−2×60°=60°.所以,直线AB与CD所成的角为60°.(2)(2)若直线AB与CD所成的角为θ,则∠MPN=θ或∠MPN=π−θ.若∠MPN=θ,则∠PMN=π−∠MPN2=π−θ2,即直线AB与MN所成角为π−θ2;若∠MPN=π−θ,则∠PMN=π−∠MPN2=θ2,即直线AB与MN所成角为θ2.综上所述,直线AB与MN所成的角为θ2或π−θ2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修2空间立体几何大题一.解答题(共18小题)1.如图,在三棱锥V﹣ABC中,平面V AB⊥平面ABC,△V AB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,V A的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面V AB(3)求三棱锥V﹣ABC的体积.2.如图,三棱锥P﹣ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°.(1)求三棱锥P﹣ABC的体积;(2)证明:在线段PC上存在点M,使得AC⊥BM,并求的值.3.如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形(Ⅰ)在图中画出这个正方形(不必说出画法和理由)(Ⅱ)求平面α把该长方体分成的两部分体积的比值.4.如图,直三棱柱ABC﹣A1B1C1的底面是边长为2的正三角形,E,F分别是BC,CC1的中点,(Ⅰ)证明:平面AEF⊥平面B1BCC1;(Ⅱ)若直线A1C与平面A1ABB1所成的角为45°,求三棱锥F﹣AEC的体积.5.如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.6.如题图,三棱锥P﹣ABC中,平面PAC⊥平面ABC,∠ABC=,点D、E在线段AC上,且AD=DE=EC=2,PD=PC=4,点F在线段AB上,且EF∥BC.(Ⅰ)证明:AB⊥平面PFE.(Ⅱ)若四棱锥P﹣DFBC的体积为7,求线段BC的长.7.如图,AB是圆O的直径,点C是圆O上异于A,B的点,PO垂直于圆O所在的平面,且PO=OB=1,(Ⅰ)若D为线段AC的中点,求证;AC⊥平面PDO;(Ⅱ)求三棱锥P﹣ABC体积的最大值;8.如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(Ⅰ)证明:平面AEC⊥平面BED;(Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E﹣ACD的体积为,求该三棱锥的侧面积.9.如图,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=2,AA1=,BB1=2,点E和F分别为BC和A1C的中点.(Ⅰ)求证:EF∥平面A1B1BA;(Ⅱ)求证:平面AEA1⊥平面BCB1;(Ⅲ)求直线A1B1与平面BCB1所成角的大小.10.如图所示,已知AB⊥平面BCD,M、N分别是AC、AD的中点,BC⊥CD.(1)求证:MN∥平面BCD;(2)求证:平面BCD⊥平面ABC.11.如图,圆柱的轴截面ABCD是正方形,点E在底面的圆周上,BF⊥AE,F是垂足.(1)求证:BF⊥AC;(2)若CE=1,∠CBE=30°,求三棱锥F﹣BCE的体积.12.如图,已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE=,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.求证:(Ⅰ)EC⊥CD;(Ⅱ)求证:AG∥平面BDE;(Ⅲ)求:几何体EG﹣ABCD的体积.13.如图,已知三棱锥A﹣BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB的中点,且△PMB为正三角形.(1)求证:DM∥平面APC;(2)若BC=4,AB=20,求三棱锥D﹣BCM的体积.14.如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD=,O为AC 与BD的交点,E为棱PB上一点.(Ⅰ)证明:平面EAC⊥平面PBD;(Ⅱ)若PD∥平面EAC,求三棱锥P﹣EAD的体积.15.已知正四棱柱ABCD﹣A1B1C1D1,底面边长为,点P、Q、R分别在棱AA1、BB1、BC上,Q是BB1中点,且PQ∥AB,C1Q⊥QR(1)求证:C1Q⊥平面PQR;(2)若C1Q=,求四面体C1PQR的体积.16.如图,直三棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点.(1)证明BC1∥平面A1CD(2)设AA1=AC=CB=2,AB=2,求三菱锥C﹣A1DE的体积.17.如图甲,⊙O的直径AB=2,圆上两点C,D在直径AB的两侧,且∠CBA=∠DAB=.沿直径AB折起,使两个半圆所在的平面互相垂直(如图乙),F为BC的中点,E为AO的中点.根据图乙解答下列各题:(Ⅰ)求证:CB⊥DE;(Ⅱ)求三棱锥C﹣BOD的体积;(Ⅲ)在劣弧上是否存在一点G,使得FG∥平面ACD?若存在,试确定点G的位置;若不存在,请说明理由.18.如图:是直径为的半圆,O为圆心,C是上一点,且.DF⊥CD,且DF=2,,E为FD的中点,Q为BE的中点,R为FC上一点,且FR=3RC.(Ⅰ)求证:面BCE⊥面CDF;(Ⅱ)求证:QR∥平面BCD;(Ⅲ)求三棱锥F﹣BCE的体积.必修2空间立体几何大题参考答案与试题解析一.解答题(共18小题)1.(2015•北京)如图,在三棱锥V﹣ABC中,平面V AB⊥平面ABC,△V AB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,V A的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面V AB(3)求三棱锥V﹣ABC的体积.考点:棱柱、棱锥、棱台的体积;直线与平面平行的判定;平面与平面垂直的判定.专题:综合题;空间位置关系与距离.分析:(1)利用三角形的中位线得出OM∥VB,利用线面平行的判定定理证明VB∥平面MOC;(2)证明:OC⊥平面V AB,即可证明平面MOC⊥平面V AB(3)利用等体积法求三棱锥V﹣ABC的体积.解答:(1)证明:∵O,M分别为AB,V A的中点,∴OM∥VB,∵VB⊄平面MOC,OM⊂平面MOC,∴VB∥平面MOC;(2)∵AC=BC,O为AB的中点,∴OC⊥AB,∵平面V AB⊥平面ABC,OC⊂平面ABC,∴OC⊥平面VAB,∵OC⊂平面MOC,∴平面MOC⊥平面V AB(3)在等腰直角三角形ACB中,AC=BC=,∴AB=2,OC=1,∴S△V AB=,∵OC⊥平面VAB,∴V C﹣V AB=•S△V AB=,∴V V﹣ABC=V C﹣V AB=.点评:本题考查线面平行的判定,考查平面与平面垂直的判定,考查体积的计算,正确运用线面平行、平面与平面垂直的判定定理是关键.2.(2015•安徽)如图,三棱锥P﹣ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°.(1)求三棱锥P﹣ABC的体积;(2)证明:在线段PC上存在点M,使得AC⊥BM,并求的值.考点:棱柱、棱锥、棱台的体积;点、线、面间的距离计算.专题:综合题;空间位置关系与距离.分析:(1)利用V P﹣ABC=•S△ABC•PA,求三棱锥P﹣ABC的体积;(2)过B作BN⊥AC,垂足为N,过N作MN∥PA,交PA于点M,连接BM,证明AC⊥平面MBN,可得AC⊥BM,利用MN∥PA,求的值.解答:(1)解:由题设,AB=1,AC=2,∠BAC=60°,可得S△ABC==.因为PA⊥平面ABC,PA=1,所以V P﹣ABC=•S△ABC•PA=;(2)解:过B作BN⊥AC,垂足为N,过N作MN∥PA,交PC于点M,连接BM,由PA⊥平面ABC,知PA⊥AC,所以MN⊥AC,因为BN∩MN=N,所以AC⊥平面MBN.因为BM⊂平面MBN,所以AC⊥BM.在直角△BAN中,AN=AB•cos∠BAC=,从而NC=AC﹣AN=.由MN∥PA得==.点评:本题考查三棱锥P﹣ABC的体积的计算,考查线面垂直的判定与性质的运用,考查学生分析解决问题的能力,属于中档题.3.(2015•黑龙江)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形(Ⅰ)在图中画出这个正方形(不必说出画法和理由)(Ⅱ)求平面α把该长方体分成的两部分体积的比值.考点:棱柱、棱锥、棱台的体积;平面的基本性质及推论.专题:综合题;空间位置关系与距离.分析:(Ⅰ)利用平面与平面平行的性质,可在图中画出这个正方形;(Ⅱ)求出MH==6,AH=10,HB=6,即可求平面a把该长方体分成的两部分体积的比值.解答:解:(Ⅰ)交线围成的正方形EFGH如图所示;(Ⅱ)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EFGH为正方形,所以EH=EF=BC=10,于是MH==6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为.点评:本题考查平面与平面平行的性质,考查学生的计算能力,比较基础.4.(2015•湖南)如图,直三棱柱ABC﹣A1B1C1的底面是边长为2的正三角形,E,F分别是BC,CC1的中点,(Ⅰ)证明:平面AEF⊥平面B1BCC1;(Ⅱ)若直线A1C与平面A1ABB1所成的角为45°,求三棱锥F﹣AEC的体积.考点:棱柱、棱锥、棱台的体积;平面与平面垂直的判定.专题:空间位置关系与距离.分析:(Ⅰ)证明AE⊥BB1,AE⊥BC,BC∩BB1=B,推出AE⊥平面B1BCC1,利用平面余平米垂直的判定定理证明平面AEF⊥平面B1BCC1;(Ⅱ)取AB的中点G,说明直线A1C与平面A1ABB1所成的角为45°,就是∠CA1G,求出棱锥的高与底面面积即可求解几何体的体积.解答:(Ⅰ)证明:∵几何体是直棱柱,∴BB1⊥底面ABC,AE⊂底面ABC,∴AE⊥BB1,∵直三棱柱ABC﹣A1B1C1的底面是边长为2的正三角形,E分别是BC的中点,∴AE⊥BC,BC∩BB1=B,∴AE⊥平面B1BCC1,∵AE⊂平面AEF,∴平面AEF⊥平面B1BCC1;(Ⅱ)解:取AB的中点G,连结A1G,CG,由(Ⅰ)可知CG⊥平面A1ABB1,直线A1C与平面A1ABB1所成的角为45°,就是∠CA1G,则A1G=CG=,∴AA1==,CF=.三棱锥F﹣AEC的体积:×==.点评:本题考查几何体的体积的求法,平面与平面垂直的判定定理的应用,考查空间想象能力以及计算能力.5.(2015•江苏)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.考点:直线与平面平行的判定;直线与平面垂直的性质.专题:证明题;空间位置关系与距离.分析:(1)根据中位线定理得DE∥AC,即证DE∥平面AA1C1C;(2)先由直三棱柱得出CC1⊥平面ABC,即证AC⊥CC1;再证明AC⊥平面BCC1B1,即证BC1⊥AC;最后证明BC1⊥平面B1AC,即可证出BC1⊥AB1.解答:证明:(1)根据题意,得;E为B1C的中点,D为AB1的中点,所以DE∥AC;又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C;(2)因为棱柱ABC﹣A1B1C1是直三棱柱,所以CC1⊥平面ABC,因为AC⊂平面ABC,所以AC⊥CC1;又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1;又因为BC1⊂平面BCC1B1,所以BC1⊥AC;因为BC=CC1,所以矩形BCC1B1是正方形,所以BC1⊥平面B1AC;又因为AB1⊂平面B1AC,所以BC1⊥AB1.点评:本题考查了直线与直线,直线与平面以及平面与平面的位置关系,也考查了空间想象能力和推理论证能力的应用问题,是基础题目.6.(2015•重庆)如题图,三棱锥P﹣ABC中,平面PAC⊥平面ABC,∠ABC=,点D、E在线段AC上,且AD=DE=EC=2,PD=PC=4,点F在线段AB上,且EF∥BC.(Ⅰ)证明:AB⊥平面PFE.(Ⅱ)若四棱锥P﹣DFBC的体积为7,求线段BC的长.考点:直线与平面垂直的判定;棱柱、棱锥、棱台的体积.分析:(Ⅰ)由等腰三角形的性质可证PE⊥AC,可证PE⊥AB.又EF∥BC,可证AB⊥EF,从而AB与平面PEF内两条相交直线PE,EF都垂直,可证AB⊥平面PEF.(Ⅱ)设BC=x,可求AB,S△ABC,由EF∥BC可得△AFE≌△ABC,求得S△AFE=S△ABC,由AD=AE,可求S△AFD,从而求得四边形DFBC的面积,由(Ⅰ)知PE为四棱锥P﹣DFBC的高,求得PE,由体积V P﹣DFBC=S DFBC•PE=7,即可解得线段BC的长.解答:解:(Ⅰ)如图,由DE=EC,PD=PC知,E为等腰△PDC中DC边的中点,故PE⊥AC,又平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PE⊂平面PAC,PE⊥AC,所以PE⊥平面ABC,从而PE⊥AB.因为∠ABC=,EF∥BC,故AB⊥EF,从而AB与平面PEF内两条相交直线PE,EF都垂直,所以AB⊥平面PEF.(Ⅱ)设BC=x,则在直角△ABC中,AB==,从而S△ABC=AB•BC=x,由EF∥BC知,得△AFE≌△ABC,故=()2=,即S△AFE=S△ABC,由AD=AE,S△AFD==S△ABC=S△ABC=x,从而四边形DFBC的面积为:S DFBC=S△ABC﹣S AFD=x﹣x=x.由(Ⅰ)知,PE⊥平面ABC,所以PE为四棱锥P﹣DFBC的高.在直角△PEC中,PE===2,故体积V P﹣DFBC=S DFBC•PE=x=7,故得x4﹣36x2+243=0,解得x2=9或x2=27,由于x>0,可得x=3或x=3.所以:BC=3或BC=3.点评:本题主要考查了直线与平面垂直的判定,棱柱、棱锥、棱台的体积的求法,考查了空间想象能力和推理论证能力,考查了转化思想,属于中档题.7.(2015•福建)如图,AB是圆O的直径,点C是圆O上异于A,B的点,PO垂直于圆O所在的平面,且PO=OB=1,(Ⅰ)若D为线段AC的中点,求证;AC⊥平面PDO;(Ⅱ)求三棱锥P﹣ABC体积的最大值;(Ⅲ)若BC=,点E在线段PB上,求CE+OE的最小值.考点:直线与平面垂直的判定;棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:(Ⅰ)由题意可证AC⊥DO,又PO⊥AC,即可证明AC⊥平面PDO.(Ⅱ)当CO⊥AB时,C到AB的距离最大且最大值为1,又AB=2,即可求△ABC 面积的最大值,又三棱锥P﹣ABC的高PO=1,即可求得三棱锥P﹣ABC体积的最大值.(Ⅲ)可求PB===PC,即有PB=PC=BC,由OP=OB,C′P=C′B,可证E 为PB中点,从而可求OC′=OE+EC′==,从而得解.解答:解:(Ⅰ)在△AOC中,因为OA=OC,D为AC的中点,所以AC⊥DO,又PO垂直于圆O所在的平面,所以PO⊥AC,因为DO∩PO=O,所以AC⊥平面PDO.(Ⅱ)因为点C在圆O上,所以当CO⊥AB时,C到AB的距离最大,且最大值为1,又AB=2,所以△ABC面积的最大值为,又因为三棱锥P﹣ABC的高PO=1,故三棱锥P﹣ABC体积的最大值为:.(Ⅲ)在△POB中,PO=OB=1,∠POB=90°,所以PB==,同理PC=,所以PB=PC=BC,在三棱锥P﹣ABC中,将侧面BCP绕PB旋转至平面BC′P,使之与平面ABP共面,如图所示,当O,E,C′共线时,CE+OE取得最小值,又因为OP=OB,C′P=C′B,所以OC′垂直平分PB,即E为PB中点.从而OC′=OE+EC′==.亦即CE+OE的最小值为:.点评: 本题主要考查了直线与直线、直线与平面的位置关系、锥体的体积的求法等基础知识,考查了空间想象能力、推理论证能力、运算求解能力,考查了数形结合思想、化归与转化思想,属于中档题.8.(2015•河北)如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(Ⅰ)证明:平面AEC ⊥平面BED ;(Ⅱ)若∠ABC=120°,AE ⊥EC ,三棱锥E ﹣ACD 的体积为,求该三棱锥的侧面积.考点:平面与平面垂直的判定;棱柱、棱锥、棱台的侧面积和表面积. 专题:空间位置关系与距离. 分析: (Ⅰ)根据面面垂直的判定定理即可证明:平面AEC ⊥平面BED ; (Ⅱ)根据三棱锥的条件公式,进行计算即可. 解答: 证明:(Ⅰ)∵四边形ABCD 为菱形, ∴AC ⊥BD ,∵BE ⊥平面ABCD , ∴AC ⊥BE ,则AC ⊥平面BED , ∵AC ⊂平面AEC ,∴平面AEC ⊥平面BED ;解:(Ⅱ)设AB=x ,在菱形ABCD 中,由∠ABC=120°,得AG=GC=x ,GB=GD=,∵AE ⊥EC ,△EBG 为直角三角形, ∴BE=x ,∵三棱锥E ﹣ACD 的体积V===,解得x=2,即AB=2, ∵∠ABC=120°,∴AC 2=AB 2+BC 2﹣2AB•BCcosABC=4+4﹣2×=12,即AC=,在三个直角三角形EBA ,EBG ,EBC 中,斜边AE=EC=ED , ∵AE ⊥EC ,∴△EAC 为等腰三角形, 则AE 2+EC 2=AC 2=12, 即2AE 2=12, ∴AE 2=6, 则AE=,∴从而得AE=EC=ED=, ∴△EAC 的面积S==3,在等腰三角形EAD 中,过E 作EF ⊥AD 于F , 则AE=,AF==, 则EF=,∴△EAD 的面积和△ECD 的面积均为S==,故该三棱锥的侧面积为3+2.点评: 本题主要考查面面垂直的判定,以及三棱锥体积的计算,要求熟练掌握相应的判定定理以及体积公式. 9.(2015•天津)如图,已知AA 1⊥平面ABC ,BB 1∥AA 1,AB=AC=3,BC=2,AA 1=,BB 1=2,点E 和F分别为BC 和A 1C 的中点.(Ⅰ)求证:EF ∥平面A 1B 1BA ;(Ⅱ)求证:平面AEA 1⊥平面BCB 1;(Ⅲ)求直线A 1B 1与平面BCB 1所成角的大小.考点:平面与平面垂直的判定;直线与平面平行的判定;直线与平面所成的角.专题:空间位置关系与距离.分析:(Ⅰ)连接A1B,易证EF∥A1B,由线面平行的判定定理可得;(Ⅱ)易证AE⊥BC,BB1⊥AE,可证AE⊥平面BCB1,进而可得面面垂直;(Ⅲ)取BB1中点M和B1C中点N,连接A1M,A1N,NE,易证∠A1B1N即为直线A1B1与平面BCB1所成角,解三角形可得.解答:(Ⅰ)证明:连接A1B,在△A1BC中,∵E和F分别是BC和A1C的中点,∴EF∥A1B,又∵A1B⊂平面A1B1BA,EF⊄平面A1B1BA,∴EF∥平面A1B1BA;(Ⅱ)证明:∵AB=AC,E为BC中点,∴AE⊥BC,∵AA1⊥平面ABC,BB1∥AA1,∴BB1⊥平面ABC,∴BB1⊥AE,又∵BC∩BB1=B,∴AE⊥平面BCB1,又∵AE⊂平面AEA1,∴平面AEA1⊥平面BCB1;(Ⅲ)取BB1中点M和B1C中点N,连接A1M,A1N,NE,∵N和E分别为B1C和BC的中点,∴NE平行且等于B1B,∴NE平行且等于A1A,∴四边形A1AEN是平行四边形,∴A1N平行且等于AE,又∵AE⊥平面BCB1,∴A1N⊥平面BCB1,∴∠A1B1N即为直线A1B1与平面BCB1所成角,在△ABC中,可得AE=2,∴A1N=AE=2,∵BM∥AA1,BM=AA1,∴A1M∥AB且A1M=AB,又由AB⊥BB1,∴A1M⊥BB1,在RT△A1MB1中,A1B1==4,在RT△A1NB1中,sin∠A1B1N==,∴∠A1B1N=30°,即直线A1B1与平面BCB1所成角的大小为30°点评:本题考查线面垂直与平行关系的证明,涉及直线与平面所成的角,属中档题.10.(2015•醴陵市)如图所示,已知AB⊥平面BCD,M、N分别是AC、AD的中点,BC⊥CD.(1)求证:MN∥平面BCD;(2)求证:平面BCD⊥平面ABC.考点:平面与平面垂直的判定;直线与平面平行的判定.专题:空间位置关系与距离.分析:(1)由中位线定理和线面平行的判定定理,即可得证;(2)由线面垂直的性质和判定定理,可得CD⊥平面ABC,再由面面垂直的判定定理,即可得证.解答:证明:(1)因为M,N分别是AC,AD的中点,所以MN∥CD.又MN⊄平面BCD且CD⊂平面BCD,所以MN∥平面BCD;(2)因为AB⊥平面BCD,CD⊂平面BCD,所以AB⊥CD.又CD⊥BC,AB∩BC=B,所以CD⊥平面ABC.又CD⊂平面BCD,所以平面BCD⊥平面ABC.点评:本题考查线面平行的判定和面面垂直的判定,考查空间直线和平面的位置关系,考查逻辑推理能力,属于中档题.11.(2015•葫芦岛一模)如图,圆柱的轴截面ABCD是正方形,点E在底面的圆周上,BF⊥AE,F是垂足.(1)求证:BF⊥AC;(2)若CE=1,∠CBE=30°,求三棱锥F﹣BCE的体积.考点:旋转体(圆柱、圆锥、圆台).专题:计算题;空间位置关系与距离.分析:(1)欲证BF⊥AC,先证BF⊥平面AEC,根据线面垂直的判定定理可知只需证CE⊥BF,BF⊥AE且CE∩AE=E,即可证得线面垂直;(2)V F﹣BCE=V C﹣BEF=•S△BEF•CE=••EF•BF•CE,即可求出三棱锥F﹣BCE的体积.解答:(1)证明:∵AB⊥平面BEC,CE⊂平面BEC,∴AB⊥CE∵BC为圆的直径,∴BE⊥CE.∵BE⊂平面ABE,AB⊂平面ABE,BE∩AB=B∴CE⊥平面ABE,∵BF⊂平面ABE,∴CE⊥BF,又BF⊥AE且CE∩AE=E,∴BF⊥平面AEC,∵AC⊂平面AEC,∴BF⊥AC…(6分)(2)解:在Rt△BEC中,∵CE=1,∠CBE=30°∴BE=,BC=2又∵ABCD为正方形,∴AB=2,∴AE=,∴BF•AE=AB•BE,∴BF=,∴EF=∴V F﹣BCE=V C﹣BEF=•S△BEF•CE=••EF•BF•CE=••••1=…(12分)点评:本小题主要考查空间线面关系、圆柱性质、空间想象能力和逻辑推理能力,考查三棱锥F﹣BCE的体积的计算,属于中档题.12.(2015•商丘三模)如图,已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE=,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.求证:(Ⅰ)EC⊥CD;(Ⅱ)求证:AG∥平面BDE;(Ⅲ)求:几何体EG﹣ABCD的体积.考点:棱柱、棱锥、棱台的体积;直线与平面平行的判定.专题:综合题;空间位置关系与距离.分析:(Ⅰ)利用面面垂直的性质,证明EC⊥平面ABCD,利用线面垂直的性质证明EC⊥CD;(Ⅱ)在平面BCEG中,过G作GN⊥CE交BE于M,连DM,证明四边形ADMG为平行四边形,可得AG∥DM,即可证明AG∥平面BDE;(Ⅲ)利用分割法即可求出几何体EG﹣ABCD的体积.解答:(Ⅰ)证明:由平面ABCD⊥平面BCEG,平面ABCD∩平面BCEG=BC,CE⊥BC,CE⊂平面BCEG,∴EC⊥平面ABCD,…(3分)又CD⊂平面BCDA,故EC⊥CD…(4分)(Ⅱ)证明:在平面BCEG中,过G作GN⊥CE交BE于M,连DM,则由已知知;MG=MN,MN∥BC∥DA,且,∴MG∥AD,MG=AD,故四边形ADMG为平行四边形,∴AG∥DM…(6分)∵DM⊂平面BDE,AG⊄平面BDE,∴AG∥平面BDE…(8分)(Ⅲ)解:…(10分)=…(12分)点评:本题考查面面垂直、线面平行,考查几何体体积的计算,考查学生分析解决问题的能力,正确运用面面垂直、线面平行的判定定理是关键.13.(2015•南昌模拟)如图,已知三棱锥A﹣BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB的中点,且△PMB 为正三角形.(1)求证:DM∥平面APC;(2)若BC=4,AB=20,求三棱锥D﹣BCM的体积.考点:棱柱、棱锥、棱台的体积;直线与平面平行的判定.专题:空间位置关系与距离.分析:(1)可由三角形的中位线定理得到线线平行,进而得到线面平行.(2)先证明MD⊥底面BCD,进而可计算出体积.解答:(1)证明:∵M为AB的中点,D为PB的中点,∴MD为△PAB的中位线,∴MD∥AP.而AP⊂平面PAC,MD⊄平面PAC,∴MD∥平面PAC.(2)解:∵△PMB为正三角形,PD=DB,∴MD⊥PB.∵MD∥AP,AP⊥PC,∴MD⊥PC.又PC∩PB=P,∴MD⊥平面PBC.即MD为三棱锥M﹣BCD的高.由AB=20,∴MB=10,BD=5,∴MD=5.在Rt△PCB中(因为AC⊥BC,所以PC⊥BC),由勾股定理得PC==2.于是S△BCD=S△BCP×==.∴V三棱锥D﹣BCM=V三棱锥M﹣BCD==10.点评:利用三角形的中位线定理证明线线平行是证明线面平行常用的方法之一.先证明线面垂直是求体积的关键.14.(2015•沈阳模拟)如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD=,O为AC与BD的交点,E为棱PB上一点.(Ⅰ)证明:平面EAC⊥平面PBD;(Ⅱ)若PD∥平面EAC,求三棱锥P﹣EAD的体积.考点:棱柱、棱锥、棱台的体积;平面与平面垂直的判定.专题:空间位置关系与距离.分析:(Ⅰ)由已知得AC⊥PD,AC⊥BD,由此能证明平面EAC⊥平面PBD.(Ⅱ)由已知得PD∥OE,取AD中点H,连结BH,由此利用,能求出三棱锥P﹣EAD的体积.解答:(Ⅰ)证明:∵PD⊥平面ABCD,AC⊂平面ABCD,∴AC⊥PD.∵四边形ABCD是菱形,∴AC⊥BD,又∵PD∩BD=D,AC⊥平面PBD.而AC⊂平面EAC,∴平面EAC⊥平面PBD.(Ⅱ)解:∵PD∥平面EAC,平面EAC∩平面PBD=OE,∴PD∥OE,∵O是BD中点,∴E是PB中点.取AD中点H,连结BH,∵四边形ABCD是菱形,∠BAD=60°,∴BH⊥AD,又BH⊥PD,AD∩PD=D,∴BD⊥平面PAD,.∴(还可以用VP-ABD-VE-ABD)==.点评:本题考查平面与平面垂直的证明,考查三棱锥的体积的求法,解题时要认真审题,注意空间思维能力的培养.15.(2015•上海模拟)已知正四棱柱ABCD﹣A1B1C1D1,底面边长为,点P、Q、R分别在棱AA1、BB1、BC上,Q是BB1中点,且PQ∥AB,C1Q⊥QR(1)求证:C1Q⊥平面PQR;(2)若C1Q=,求四面体C1PQR的体积.考点:棱柱、棱锥、棱台的体积;直线与平面垂直的判定.专题:空间位置关系与距离;空间角.分析:(1)由已知得AB⊥平面B1BCC1,从而PQ⊥平面B1BCC1,进而C1Q⊥PQ,又C1Q⊥QR,由此能证明C1Q⊥平面PQR.(2)由已知得B1Q=1,BQ=1,△B1C1Q∽△BQR,从而BR=,QR=,由C1Q、QR、QP两两垂直,能求出四面体C1PQR 的体积.解答:(1)证明:∵四棱柱ABCD﹣A1B1C1D1是正四棱柱,∴AB⊥平面B1BCC1,又PQ∥AB,∴PQ⊥平面B1BCC1,∴C1Q⊥PQ,又已知C1Q⊥QR,且QR∩QP=Q,∴C1Q⊥平面PQR.(2)解:∵B1C1=,,∴B1Q=1,∴BQ=1,∵Q是BB1中点,C1Q⊥QR,∴∠B1C1Q=∠BQR,∠C1B1Q=∠QBR,∴△B1C1Q∽△BQR,∴BR=,∴QR=,∵C1Q、QR、QP两两垂直,∴四面体C1PQR 的体积V=.点评:本小题主要考查空间线面关系、线面垂直的证明、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.16.(2015•凯里市校级模拟)如图,直三棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点.(1)证明BC1∥平面A1CD(2)设AA1=AC=CB=2,AB=2,求三菱锥C﹣A1DE的体积.考点:棱柱、棱锥、棱台的体积;直线与平面平行的判定.专题:空间位置关系与距离.分析:(1)连结AC1交A1C于点F,连结DF,则BC1∥DF,由此能证明BC1∥平面A1CD.(2)由已知得AA1⊥CD,CD⊥AB,从而CD⊥平面ABB1A1.由此能求出三菱锥C﹣A1DE的体积.解答:(1)证明:连结AC1交A1C于点F,则F为AC1中点又D是AB中点,连结DF,则BC1∥DF.因为DF⊂平面A1CD,BC1不包含于平面A1CD,所以BC1∥平面A1CD.(2)解:因为ABC﹣A1B1C1是直三棱柱,所以AA1⊥CD.由已知AC=CB,D为AB的中点,所以CD⊥AB.又AA1∩AB=A,于是CD⊥平面ABB1A1.由AA1=AC=CB=2,得∠ACB=90°,,,,A1E=3,故A1D2+DE2=A1E2,即DE⊥A1D.所以三菱锥C﹣A1DE的体积为:==1.点评:本题考查直线与平面平行的证明,考查三菱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.17.(2015•东城区一模)如图甲,⊙O的直径AB=2,圆上两点C,D在直径AB的两侧,且∠CBA=∠DAB=.沿直径AB折起,使两个半圆所在的平面互相垂直(如图乙),F为BC的中点,E为AO的中点.根据图乙解答下列各题:(Ⅰ)求证:CB⊥DE;(Ⅱ)求三棱锥C﹣BOD的体积;(Ⅲ)在劣弧上是否存在一点G,使得FG∥平面ACD?若存在,试确定点G的位置;若不存在,请说明理由.考点:棱柱、棱锥、棱台的体积;直线与平面平行的性质.专题:综合题;空间位置关系与距离.分析:(Ⅰ)利用等边三角形的性质可得DE⊥AO,再利用面面垂直的性质定理即可得到DE⊥平面ABC,进而得出结论.(Ⅱ)由(Ⅰ)知DE⊥平面ABC,利用转换底面的方法,即可求三棱锥的体积;(Ⅲ)存在,G为劣弧的中点.连接OG,OF,FG,通过证明平面OFG∥平面ACD,即可得到结论.解答:(Ⅰ)证明:在△AOD中,∵,OA=OD,∴△AOD为正三角形,又∵E为OA的中点,∴DE⊥AO…(1分)∵两个半圆所在平面ACB与平面ADB互相垂直且其交线为AB,∴DE⊥平面ABC.…(3分)又CB⊂平面ABC,∴CB⊥DE.…5分(Ⅱ)解:由(Ⅰ)知DE⊥平面ABC,∴DE为三棱锥D﹣BOC的高.∵D为圆周上一点,且AB为直径,∴,在△ABD中,由AD⊥BD,,AB=2,得AD=1,.…(6分)∵,∴==.…(8分)(Ⅲ)解:存在满足题意的点G,G为劣弧的中点.…(9分)证明如下:连接OG,OF,FG,易知OG⊥BD,又AD⊥BD∴OG∥AD,∵OG⊄平面ACD,∴OG∥平面ACD.…(10分)在△ABC中,O,F分别为AB,BC的中点,∴OF∥AC,OF⊄平面ACD,∴OF∥平面ACD,…(11分)∵OG∩OF=O,∴平面OFG∥平面ACD.又FG⊂平面OFG,∴FG∥平面ACD.…(12分)点评:本题考查线线、线面、面面关系,考查线线垂直的判定、面面垂直的性质、线面平行的判定及几何体高与体积的计算,考查空间想象能力、推理论证能力、运算求解能力及分析探究问题和解决问题的能力.18.(2015•威海模拟)如图:是直径为的半圆,O为圆心,C是上一点,且.DF⊥CD,且DF=2,,E为FD的中点,Q为BE的中点,R为FC上一点,且FR=3RC.(Ⅰ)求证:面BCE⊥面CDF;(Ⅱ)求证:QR∥平面BCD;(Ⅲ)求三棱锥F﹣BCE的体积.考点:棱柱、棱锥、棱台的体积;直线与平面平行的判定;平面与平面垂直的判定.专题:空间位置关系与距离.分析:(Ⅰ)证明BD⊥DF,DF⊥BC,利用直线与平面垂直的判定定理证明BC⊥平面CFD,然后证明面BCE⊥面CDF.(Ⅱ)连接OQ,通过证明RQ∥OM,然后证明QR∥平面BCD.(Ⅲ)利用v F﹣BCE=v F﹣BCD﹣v E﹣BCD求解几何体的体积即可.解答:(本小题满分12分)证明:(Ⅰ)∵DF=2,,,∴BF2=BD2+DF2,∴BD⊥DF﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)又DF⊥CD,∴DF⊥平面BCD﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)∴DF⊥BC,又BC⊥CD,∴BC⊥平面CFD,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)∵BC⊂面BCE∴面BCE⊥面CDF.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(Ⅱ)连接OQ,在面CFD内过R点做RM⊥CD,∵O,Q为中点,∴OQ∥DF,且﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)∵DF⊥CD∴RM∥FD,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)又FR=3RC,∴,∴,∵E为FD的中点,∴.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)∴OQ∥RM,且OQ=RM∴OQRM为平行四边形,∵RQ∥OM﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)又RQ⊄平面BCD,OM⊂平面BCD,∴QR∥平面BCD.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)(Ⅲ)∵,∴∠DBC=30°,∴在直角三角形BCD中有,,∴﹣﹣﹣﹣﹣﹣﹣﹣(12分)(或求VB-FCE 1/3*1/2*FE*CD*BC)点评:本题考查直线与平面垂直的判定定理的应用直线与平面平行的判定定理以及几何体的体积的求法,考查空间想象能力以及逻辑推理计算能力.。

相关文档
最新文档