正弦函数PPT优秀课件
合集下载
正弦型函数PPT课件
y
y 2sin x
y sin x
y 1 sin x
2
0
π
2π x
练习2: 1.函数:y sin x的周期是:
1.3
2.函数:y sin 2x的周期是: 3.函数:y sin 1 x的周期是:
2
y
0
π
2π
3π
4π x
练习3:
1.4
五点法作正弦函数 y sin x的图象
y
1
0
π
3
2π x
y =sinωx
四、作业与拓展
4.1
1.用五点法作下列函数在一个周期内的简图:
(1)y 3 sin x; 2
(2) y sin x .
3
2.思考:由y sin x图象如何变化得到 y 2sin 3x的图象.
2
2
-1
x
0
sin x
0
五点:(0,0)
2
3 2
2
101Fra bibliotek0( ,1) ( ,0) (3 ,1) (2 ,0)
2
2
二、新知探究 1.函数y Asin x的图象.
2.1
例1用五点法作正弦型函数 y 2sin x在一个周期内的简图 .
y
2
1
0
2
π
-1
3 2
x
2π
-2
x
0
2
3
2
2
sin x
0
1
0
思考:由y sin x到y sin x,图象如何变化?
三、总结交流
3.1
1.五点法作正弦型函数y =Asinωx 在一个周期内的简图的
步骤:
y 2sin x
y sin x
y 1 sin x
2
0
π
2π x
练习2: 1.函数:y sin x的周期是:
1.3
2.函数:y sin 2x的周期是: 3.函数:y sin 1 x的周期是:
2
y
0
π
2π
3π
4π x
练习3:
1.4
五点法作正弦函数 y sin x的图象
y
1
0
π
3
2π x
y =sinωx
四、作业与拓展
4.1
1.用五点法作下列函数在一个周期内的简图:
(1)y 3 sin x; 2
(2) y sin x .
3
2.思考:由y sin x图象如何变化得到 y 2sin 3x的图象.
2
2
-1
x
0
sin x
0
五点:(0,0)
2
3 2
2
101Fra bibliotek0( ,1) ( ,0) (3 ,1) (2 ,0)
2
2
二、新知探究 1.函数y Asin x的图象.
2.1
例1用五点法作正弦型函数 y 2sin x在一个周期内的简图 .
y
2
1
0
2
π
-1
3 2
x
2π
-2
x
0
2
3
2
2
sin x
0
1
0
思考:由y sin x到y sin x,图象如何变化?
三、总结交流
3.1
1.五点法作正弦型函数y =Asinωx 在一个周期内的简图的
步骤:
5.4正弦函数的图象与性质PPT课件(人教版)
目
录
1
三角函数图象变换
正弦型函数图象与性质
2
1、 平移和伸缩
正弦型函数: = ሺ +
ሻ +
= + + 如何通过 = 平移
变换得到
= →
=
① = 上有一点 , , = ሺሻ上有
一点 ,
若函数 = +
则的取值范围是(
A. ,
B. ,
> 在区间 − ,
单调递增,
)
C. ,
D.
, +∞
精选例题2
(202X-202X杭州第四中学高一上学期期末)
已知函数ሺሻ = ሺ + ሻ > , > , || <
D.向右平移 个单位
A.向左平移 个单位
C.向左平移 个单位
图象
补充
将函数 = +
的图象向左平移 个单位长度,再向上
平移个单位长度,得到 的图象,若 = ,则
| − |的最小值为(
A.
B.
)
C.
D.
图象如图所示,则函数ሺሻ的解析式为()
A.ሺሻ = +
B.ሺሻ = +
C.ሺሻ = +
D.ሺሻ = +
录
1
三角函数图象变换
正弦型函数图象与性质
2
1、 平移和伸缩
正弦型函数: = ሺ +
ሻ +
= + + 如何通过 = 平移
变换得到
= →
=
① = 上有一点 , , = ሺሻ上有
一点 ,
若函数 = +
则的取值范围是(
A. ,
B. ,
> 在区间 − ,
单调递增,
)
C. ,
D.
, +∞
精选例题2
(202X-202X杭州第四中学高一上学期期末)
已知函数ሺሻ = ሺ + ሻ > , > , || <
D.向右平移 个单位
A.向左平移 个单位
C.向左平移 个单位
图象
补充
将函数 = +
的图象向左平移 个单位长度,再向上
平移个单位长度,得到 的图象,若 = ,则
| − |的最小值为(
A.
B.
)
C.
D.
图象如图所示,则函数ሺሻ的解析式为()
A.ሺሻ = +
B.ሺሻ = +
C.ሺሻ = +
D.ሺሻ = +
《正弦函数图象》课件
2023
《正弦函数图象》 ppt课件
REPORTING
2023
目录
• 正弦函数的定义与性质 • 正弦函数的图象 • 正弦函数在实际生活中的应用 • 正弦函数的拓展知识
2023
PART 01
正弦函数的定义与性质
REPORTING
正弦函数的定义
总结词
正弦函数是三角函数的一种,它 描述了直角三角形中锐角的对边 与斜边的比值。
sin(2π+α)=sinα
诱Байду номын сангаас公式三
sin(π/2+α)=cosα
诱导公式四
sin(3π/2+α)=-cosα
诱导公式五
sin(π/2-α)=cosα
诱导公式六
sin(3π/2-α)=-cosα
和差化积公式
01
sin α+sin β=2 sin((α+β)/2) cos((αβ)/2)
02
sin α-sin β=2 cos((α+β)/2) sin((αβ)/2)
总结词
正弦函数是奇函数,因为对于任何x,都有sin(-x) = -sin(x)。
详细描述
奇函数的定义为对于所有x,都有f(-x) = -f(x)。对于正弦函数,当我们将x替换 为-x时,得到sin(-x) = -sin(x),满足奇函数的定义。
2023
PART 02
正弦函数的图象
REPORTING
与线性函数的比较
线性函数是一条直线,其图像单 调增加或单调减少,与正弦函数 的周期性和波动性有显著差异。
2023
PART 03
正弦函数在实际生活中的 应用
REPORTING
《正弦函数图象》 ppt课件
REPORTING
2023
目录
• 正弦函数的定义与性质 • 正弦函数的图象 • 正弦函数在实际生活中的应用 • 正弦函数的拓展知识
2023
PART 01
正弦函数的定义与性质
REPORTING
正弦函数的定义
总结词
正弦函数是三角函数的一种,它 描述了直角三角形中锐角的对边 与斜边的比值。
sin(2π+α)=sinα
诱Байду номын сангаас公式三
sin(π/2+α)=cosα
诱导公式四
sin(3π/2+α)=-cosα
诱导公式五
sin(π/2-α)=cosα
诱导公式六
sin(3π/2-α)=-cosα
和差化积公式
01
sin α+sin β=2 sin((α+β)/2) cos((αβ)/2)
02
sin α-sin β=2 cos((α+β)/2) sin((αβ)/2)
总结词
正弦函数是奇函数,因为对于任何x,都有sin(-x) = -sin(x)。
详细描述
奇函数的定义为对于所有x,都有f(-x) = -f(x)。对于正弦函数,当我们将x替换 为-x时,得到sin(-x) = -sin(x),满足奇函数的定义。
2023
PART 02
正弦函数的图象
REPORTING
与线性函数的比较
线性函数是一条直线,其图像单 调增加或单调减少,与正弦函数 的周期性和波动性有显著差异。
2023
PART 03
正弦函数在实际生活中的 应用
REPORTING
正弦函数的图像课件
解决实际问题
通过掌握正弦函数的性质和图像, 可以解决许多实际问题,提高解决 实际问题的能力和素养。
未来研究方向和挑战
深入研究和探索
随着科学技术的发展,正弦函数的应用领域也在 不断扩大和深化,需要进一步研究和探索其性质 和应用。
数值分析和计算物理
随着计算机技术的发展,如何利用正弦函数进行 数值分析和计算物理的研究也是未来的一个重要 方向。
数学建模和算法设计
如何利用正弦函数建立数学模型和设计算法,是 未来研究的一个重要方向。
跨学科应用
正弦函数作为数学中的基础函数,可以与其他学 科进行交叉融合,例如与物理学、工程学、经济 学等学科的结合,需要进一步探索其跨学科应用 的价值和可能性。
THANKS
感谢观看
图像形状
正弦函数和对数函数的图像形状也不同。正弦函数的图像呈现波形,而对数函数的图像 呈现向上或向下凸出的趋势。
05
总结与展望
正弦函数的重要性和应用价值
数学基础
正弦函数是数学中的基本函数之 一,是学习三角函数、复数、微
积分等数学领域的基础。
应用广泛
正弦函数在物理学、工程学、经济 学等多个领域都有广泛的应用,例 如振动分析、交流电、信号处理等 。
振幅和相位
通过调整正弦函数中的振幅和相位参 数,可以改变图像的高度和位置。了 解这些参数对理解正弦函数图像的影 响非常重要。
03
正弦函数的应用
在物理中的应用
简谐振动
正弦函数描述了许多物理现象, 如简谐振动。在物理中,简谐振 动是一种基本的振动类型,其位 移与时间的关系通常可以用正弦
函数表示。
交流电
操作步骤
在软件中选择相应的函数图像绘制工具,输入正弦函数公式(例如y=sin(x)), 然后选择x的取值范围(例如-π到π),最后点击“绘制”按钮即可生成正弦函数 的图像。
通过掌握正弦函数的性质和图像, 可以解决许多实际问题,提高解决 实际问题的能力和素养。
未来研究方向和挑战
深入研究和探索
随着科学技术的发展,正弦函数的应用领域也在 不断扩大和深化,需要进一步研究和探索其性质 和应用。
数值分析和计算物理
随着计算机技术的发展,如何利用正弦函数进行 数值分析和计算物理的研究也是未来的一个重要 方向。
数学建模和算法设计
如何利用正弦函数建立数学模型和设计算法,是 未来研究的一个重要方向。
跨学科应用
正弦函数作为数学中的基础函数,可以与其他学 科进行交叉融合,例如与物理学、工程学、经济 学等学科的结合,需要进一步探索其跨学科应用 的价值和可能性。
THANKS
感谢观看
图像形状
正弦函数和对数函数的图像形状也不同。正弦函数的图像呈现波形,而对数函数的图像 呈现向上或向下凸出的趋势。
05
总结与展望
正弦函数的重要性和应用价值
数学基础
正弦函数是数学中的基本函数之 一,是学习三角函数、复数、微
积分等数学领域的基础。
应用广泛
正弦函数在物理学、工程学、经济 学等多个领域都有广泛的应用,例 如振动分析、交流电、信号处理等 。
振幅和相位
通过调整正弦函数中的振幅和相位参 数,可以改变图像的高度和位置。了 解这些参数对理解正弦函数图像的影 响非常重要。
03
正弦函数的应用
在物理中的应用
简谐振动
正弦函数描述了许多物理现象, 如简谐振动。在物理中,简谐振 动是一种基本的振动类型,其位 移与时间的关系通常可以用正弦
函数表示。
交流电
操作步骤
在软件中选择相应的函数图像绘制工具,输入正弦函数公式(例如y=sin(x)), 然后选择x的取值范围(例如-π到π),最后点击“绘制”按钮即可生成正弦函数 的图像。
正弦函数完整ppt课件
-2
1
-
o
-1
正弦曲线
2
3
4
精选编辑ppt
5 6x
3
五y点作图法
1-
-
o
6
3
2
2 3
5 6
7 6
4 3
3 2
5 3
11 6
2
-1 -
简图作法
(五点作图法)
(1) 列表(列出对图象形状起关键作用的五点坐标)
( ,1) 图象的最高点 2
x 与x轴的交点
(0,0) ( ,0) (2,0)
图象的最低点
7 6
4
3 3 2
y
3
y=sinx ( x[0, 2] )
1
●
●
●
●
●
6
7 4 3 5 11 6 3 2 3 6 2
2
●
0
11
6
32
2 5 ●
36
●
●
x
●
5
6
-1
●
●
●
3
精选编辑ppt
2
正弦函数的图象
y 1
o
2
2
-1
3
2
2
x
y=sinx x[0,2] y
y=sinx xR
-4 -3
一般地,对于函数 f (x),如果存在一个非零常数 T ,
使得当 x 取定义域内的每一个值时,都有
f ( x+T )= f (x)
,那么函数 f (x) 就叫做周期函数,非零常数 T 叫做这个
函数的周期.
对于一个周期函数,如果在它的所有周期中存在一个
最小的正数,那么这个最小正数就叫做它的最小正周期.
正弦函数、余弦函数的性质-PPT课件
3 5
2
2 3
2
O
2
1
2
3 2
2
5 3
2
x
最大值:当 x
2
时,有最大值 y 1
最小值:当x
2
时,有最小值y 1
探究:余弦函数的最大值和最小值
1
3 5
2
2 3
2
O
2
1
2
3 2
2
5 3
2
x
最大值: 当 x 0
时,有最大值 y 1
最小值:当 x
时,有最小值y 1
例2.下列函数有最大、最小值吗?如果有,请写出取最大、最
(1)y cos x 1, x R;
(2)y 3sin 2x, x R.
解(:2)令t=2x,因为使函数y 3sin t,t R取最大值的t的集合是
{t | t 2k , k Z}
由
2x
t
2
2k
得
x k
2
4
所以使函数 y 3sin 2x, x R取最大值的x的集合是 {x | x k , k Z} 4
故 2k 1 x 2k ,
2
2 32
得 5 4k x 4k , k Z.
3
3
则函数y sin(1 x ),x R的单调递增区间是[ 5 4k, 4k]。
23
33
练习:求函数y sin( 1 x),x R的单调递增区间 32
得 5 4k x 11 4k , k Z.
2
2x k
32
解得:对称轴为 x k ,k Z
12 2
(2) y sin z 的对称中心为 (k ,0) , k Z
《正弦函数》PPT课件全文
a
正弦的应用
b
已知直角三角形的边长,求锐 角的正弦值
已知锐角的正弦值,求直角三 角形的边长
完成《XXXXX》剩余部分习题
感谢
聆听
授课老师:xxx
角形的大小如何, ∠A 的对边与斜边的比也是一个
固定值. (2) 在Rt △ABC 中,∠C =90°,我们把锐角 A 的对边
与斜边的比叫做∠ A的正弦,记作sin A.
即
sin
α
角
α 的对边 斜边
.
知1-讲
例1 如图,在 Rt △ABC 中,∠C =90°,AC = 12, BC = 5, 分别求∠A,∠B 的正弦值.
= 6 ,再根据勾股定
sin A
理求解可得.
解:如图,
∵a=2, sin ∴c = a =
sin A
A=
2= 1
1
3
6
,
3
则 b= c2 - a2 = 62 - 22 = 4 2.
知2-练
1.《XXXXX》P87T5 2. 《XXXXX》P87T8
正弦
sinA= ∠A斜的边对边
=
a c
定义
对边
c 斜边
总结
1. sin α 是完整的数学符号,是一个整体, 不能理解成 sin·α.
2. sin α中的α 角的符号“ ∠”习惯上省略不写,但对于 用三个大写英文字母或数字表示的角,角的符号不能 省略, 如sin ∠CAB,sin ∠ 1.
3. 正弦符号后面可以跟单个小写希腊字母或单个英文字 母或三个大写英文字母或数字表示的角,也可以跟度 数,如sin α,sin A,sin∠ ABC, sin∠ 2,sin 70°.
正弦型函数的图象PPT优秀课件
函数 y=sinx (1)向左平移 3
y=sin(x+ ) 的图象 3
(2)横坐标缩短到原来的
1 2
倍
纵坐标不变
y=sin(2x+ ) 的图象 3
(3)横坐标不变 纵坐标伸长到原来的3倍
y=3sin(2x+ 3 )的图象
方法1:先平移后伸缩一般规律
(1)向左( >0)或向右( <0)
y=Sin( x+ ) 的图象
(3)横坐标不变,纵坐标伸长(A>1) y=ASin(x+ )的图象 或缩短(0<A<1)到原来的A倍
做一做
y=sinx经过怎样的变换可以得到
y 3sin(2x) 图象?
3
注意
我们的每一步变换对于函数上任意 一点(x,y)而言的,它的每一步 变换只能有一个变量。要么横变纵 不变,要么纵变横不变。伸缩变换 是定型的,平移变换是定位的。
函数y=Asin( x+ )的图象
例 用五点法作函数 y 3sin(2x) ,
3
x R 的图象 y
3
y=3sin(2x+ 3 )
o
6 12
3
7
5
x
12
6
-3
如何得到
yAsin(x)
演示启发
的图像呢?
二、
?
⒈ y sin x
y=Asinx
⒉ y sin x ? y sinx
⒊ y sin x
?
ysin(x)
通过变换是否可以得到
yAsinx 的图象呢?
方法1: 先平移后伸缩
y
y=sin(x+ ) 的图象 3
(2)横坐标缩短到原来的
1 2
倍
纵坐标不变
y=sin(2x+ ) 的图象 3
(3)横坐标不变 纵坐标伸长到原来的3倍
y=3sin(2x+ 3 )的图象
方法1:先平移后伸缩一般规律
(1)向左( >0)或向右( <0)
y=Sin( x+ ) 的图象
(3)横坐标不变,纵坐标伸长(A>1) y=ASin(x+ )的图象 或缩短(0<A<1)到原来的A倍
做一做
y=sinx经过怎样的变换可以得到
y 3sin(2x) 图象?
3
注意
我们的每一步变换对于函数上任意 一点(x,y)而言的,它的每一步 变换只能有一个变量。要么横变纵 不变,要么纵变横不变。伸缩变换 是定型的,平移变换是定位的。
函数y=Asin( x+ )的图象
例 用五点法作函数 y 3sin(2x) ,
3
x R 的图象 y
3
y=3sin(2x+ 3 )
o
6 12
3
7
5
x
12
6
-3
如何得到
yAsin(x)
演示启发
的图像呢?
二、
?
⒈ y sin x
y=Asinx
⒉ y sin x ? y sinx
⒊ y sin x
?
ysin(x)
通过变换是否可以得到
yAsinx 的图象呢?
方法1: 先平移后伸缩
y
正弦函数的图像ppt课件
信号处理
在信号处理领域,正弦函数常被用 于信号的滤波、调制和解调等操作。
机械工程
在机械振动和噪音控制中,正弦函 数被用于描述和分析振动模式和频 率。
在日常生活中的应用
音乐
正弦函数在音乐领域的应 用非常广泛,如音高和音 长的计算等。
通信
无线电和电视信号的传输 过程中,正弦函数用于调 制和解调信号。
医学成像
正弦函数的周期性
总结词
正弦函数具有周期性,即函数图像每 隔一定周期重复出现。
详细描述
正弦函数的周期为360度或2π弧度,这 意味着每经过360度或2π弧度,函数值 会重复之前的值,形成周期性的波形。
正弦函数的奇偶性
总结词
正弦函数是奇函数,具有奇函数的性质。
详细描述
奇函数满足性质f(-x)=-f(x),对于正弦函数,当取相反角度时,函数值也取相反 数。例如,sin(-π/2) = -1,与sin(π/2)的值相反。
03
正弦函数的应用
在物理中的应用
01
02
03
简谐振动
正弦函数是描述简谐振动 的基本函数,如弹簧振荡 器、单摆等。
交流电
正弦函数被广泛用于描述 交流电的电压、电流和频 率,是电力系统的基本模 型。
声学
声音的传播和波动可以用 正弦函数来描述,如声波 的振幅和频率。
在工程中的应用
控制系统
正弦函数在控制系统分析中有着 广泛应用,如PID控制器等。
03
奇偶性
正弦函数是奇函数,而正切函数是奇函数。这意味着它们在对称性上有
相同的表现。
与其他三角函数的比较
定义域
除了正弦函数、余弦函数和正切函数外,还有其他一些三角函数,如反正弦函数、反余弦 函数、反正切函数等。它们的定义域各不相同,但都与正弦函数、余弦函数和正切函数的 定义域有交集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2
y = s i n x , x [ 0 , 2 π ]
0 -1
2
3 2
2
x
5.余弦函数的图象
方法一:几何作图法(供有兴趣的同学课后研究)
y cos x , x R 与 y sin( x ), x R
2
y cos x cos( x ) sin ( x ) sin( x ) 2 2
4. 五点画图法.其步骤是 (1) 定等份:从左端点起依次加得各点横坐标
(2) 写出各点的坐标
(3) 描点连线(用光滑的曲线) 练习:用五点法画出函数f(x)=sinx,x0,2 的图象
解: 五点坐标依次为
得其图象大致为:
y 1
3 ( 0 , 0 ), (, 1 ), ( , 0 ), ( , 1 ), ( 2 , 0 )
四.课外作业
第58页第1题(2),(3).
谢谢各位的指导!
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰· B· 塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔· 卡内基] 87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯· 瑞斯] 88.每个意念都是一场祈祷。――[詹姆士· 雷德非] 89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰] 91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿· 休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯· 奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰· 纳森· 爱德瓦兹] 94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰· 拉斯金] 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉· 班] 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳] 97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。 爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格] 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根] 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔· 普劳斯特] 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹] 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰] 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华] 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗] 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉· 彭] 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔· 卡内基] 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰· 罗伯克] 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳· 厄尔曼] 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝· C· 科尔顿] 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔· 卡内基] 110.每天安静地坐十五分钟· 倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克· 佛洛姆] 111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯] 112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯] 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。――[罗根· 皮沙尔· 史密斯] 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。 ――[阿萨· 赫尔帕斯爵士] 115.旅行的精神在于其自由,完全能够随心所欲地去思考.去感觉.去行动的自由。――[威廉· 海兹利特] 116.昨天是张退票的支票,明天是张信用卡,只有今天才是现金;要善加利用。――[凯· 里昂] 117.所有的财富都是建立在健康之上。浪费金钱是愚蠢的事,浪费健康则是二级的谋杀罪。――[B·C·福比斯] 118.明知不可而为之的干劲可能会加速走向油尽灯枯的境地,努力挑战自己的极限固然是令人激奋的经验,但适度的休息绝不可少,否则迟早会崩溃。――[迈可· 汉默] 119.进步不是一条笔直的过程,而是螺旋形的路径,时而前进,时而折回,停滞后又前进,有失有得,有付出也有收获。――[奥古斯汀] 120.无论那个时代,能量之所以能够带来奇迹,主要源于一股活力,而活力的核心元素乃是意志。无论何处,活力皆是所谓“人格力量”的原动力,也是让一切伟大行动得以持续的力量。――[史迈尔斯] 121.有两种人是没有什么价值可言的:一种人无法做被吩咐去做的事,另一种人只能做被吩咐去做的事。――[C·H·K·寇蒂斯] 122.对于不会利用机会的人而言,机会就像波浪般奔向茫茫的大海,或是成为不会孵化的蛋。――[乔治桑] 123.未来不是固定在那里等你趋近的,而是要靠你创造。未来的路不会静待被发现,而是需要开拓,开路的过程,便同时改变了你和未来。――[约翰· 夏尔] 124.一个人的年纪就像他的鞋子的大小那样不重要。如果他对生活的兴趣不受到伤害,如果他很慈悲,如果时间使他成熟而没有了偏见。――[道格拉斯· 米尔多] 125.大凡宇宙万物,都存在着正、反两面,所以要养成由后面.里面,甚至是由相反的一面,来观看事物的态度――。[老子] 126.在寒冷中颤抖过的人倍觉太阳的温暖,经历过各种人生烦恼的人,才懂得生命的珍贵。――[怀特曼] 127.一般的伟人总是让身边的人感到渺小;但真正的伟人却能让身边的人认为自己很伟大。――[G.K.Chesteron] 128.医生知道的事如此的少,他们的收费却是如此的高。――[马克吐温] 129.问题不在于:一个人能够轻蔑、藐视或批评什么,而是在于:他能够喜爱、看重以及欣赏什么。――[约翰· 鲁斯金]
一是从特殊到一般的扩充思想:
点(x,sinx)
y=sinx,x0,2
y=sinx,xR
二是化归转化的数学思想: 把y=cosx,xR的图象转化为正弦函数的图象加以解决. 3.要理解正弦函数图象几何作法的思路,能熟练地应用五点画 图法画出正,余弦函数图象的简图. 4.从图象上可以看出函数的特征,从特征可以得到函数的性质.
的图象. 0 , 2 例:用几何作图法画f(x)=sinx, x
步骤: (1)等份:等份越多,图象越精确,作图太麻烦;等份少了, 图象不精确.为此取12等份单位圆较为合适(在 0~2 上能 大致反映图象特征).另一方面,为了使正弦线平移更方便,我 们把单位圆的圆心取在坐标系中x轴的负半轴上的任一位置. 从这个圆与x轴右边的交点A起把圆分成12等份,相应地,再把
在引进了弧度制后,f(x)=sinx与f(x)=cosx是否可以看作是 以实数为自变量的函数? 如果是函数的话,能为它取个名字吗? 它们的定义域是什么? 均可以看作是定义在R上的函数(任一x有唯一的函数值), 分别称为正弦函数与余弦函数. 函数图象的实质是把y=f(x)上的所有有序实数对(x,f(x))描 绘到平面直角坐标系中去.其作图步骤是什么? 列表 、描点(数 形)、连线 (x f(x ))
2 2
所以也可以用五点画图法画余弦曲线.
3 的简图,并说出它与 练习:用五点法画 y cos x ,x , 2 2 ysin x ,x 0 , 的图象之间的平移关系. 2
7.思考:正,余弦函数的图象有何特征?可以从哪些方面说? (知道
这种作图方法称为代数法.
但对于f(x)=sinx与f(x)=cosx来说,如果不借助于计算 器或数学用表,大多数情况下sinx与cosx均无法直接算出 具体值.有没有什么方法可以回避上述麻烦呢?
几何作图法 们先以正弦函数f(x)=sinx, x 为例来阐明这一原 0 , 2 理. 先在单位圆中把各角对应的正弦线(函数值,且任何一 个角存在唯一的正弦线 ) 作出 , 然后 , 把它们在坐标系中 平移至相应的x(横坐标)处作出纵坐标sinx.再把所有平 移后的正弦线的终点连成光滑的曲线即可. 几何作图法 可以很好地帮助我们克服这一困难.我
3 ( 0 , 0 ), (, 1 ), ( , 0 ), ( , 1 ), ( 2 , 0 )(依次相隔
2
2
2
)
描出这五个点后,函数f(x)=sinx,x0,2 的形状就基本上确定
y = s i n x , x [ 0 , 2 π ]
0 -1
2
3 2
2
x
5.余弦函数的图象
方法一:几何作图法(供有兴趣的同学课后研究)
y cos x , x R 与 y sin( x ), x R
2
y cos x cos( x ) sin ( x ) sin( x ) 2 2
4. 五点画图法.其步骤是 (1) 定等份:从左端点起依次加得各点横坐标
(2) 写出各点的坐标
(3) 描点连线(用光滑的曲线) 练习:用五点法画出函数f(x)=sinx,x0,2 的图象
解: 五点坐标依次为
得其图象大致为:
y 1
3 ( 0 , 0 ), (, 1 ), ( , 0 ), ( , 1 ), ( 2 , 0 )
四.课外作业
第58页第1题(2),(3).
谢谢各位的指导!
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰· B· 塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔· 卡内基] 87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯· 瑞斯] 88.每个意念都是一场祈祷。――[詹姆士· 雷德非] 89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰] 91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿· 休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯· 奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰· 纳森· 爱德瓦兹] 94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰· 拉斯金] 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉· 班] 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳] 97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。 爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格] 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根] 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔· 普劳斯特] 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹] 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰] 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华] 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗] 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉· 彭] 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔· 卡内基] 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰· 罗伯克] 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳· 厄尔曼] 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝· C· 科尔顿] 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔· 卡内基] 110.每天安静地坐十五分钟· 倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克· 佛洛姆] 111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯] 112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯] 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。――[罗根· 皮沙尔· 史密斯] 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。 ――[阿萨· 赫尔帕斯爵士] 115.旅行的精神在于其自由,完全能够随心所欲地去思考.去感觉.去行动的自由。――[威廉· 海兹利特] 116.昨天是张退票的支票,明天是张信用卡,只有今天才是现金;要善加利用。――[凯· 里昂] 117.所有的财富都是建立在健康之上。浪费金钱是愚蠢的事,浪费健康则是二级的谋杀罪。――[B·C·福比斯] 118.明知不可而为之的干劲可能会加速走向油尽灯枯的境地,努力挑战自己的极限固然是令人激奋的经验,但适度的休息绝不可少,否则迟早会崩溃。――[迈可· 汉默] 119.进步不是一条笔直的过程,而是螺旋形的路径,时而前进,时而折回,停滞后又前进,有失有得,有付出也有收获。――[奥古斯汀] 120.无论那个时代,能量之所以能够带来奇迹,主要源于一股活力,而活力的核心元素乃是意志。无论何处,活力皆是所谓“人格力量”的原动力,也是让一切伟大行动得以持续的力量。――[史迈尔斯] 121.有两种人是没有什么价值可言的:一种人无法做被吩咐去做的事,另一种人只能做被吩咐去做的事。――[C·H·K·寇蒂斯] 122.对于不会利用机会的人而言,机会就像波浪般奔向茫茫的大海,或是成为不会孵化的蛋。――[乔治桑] 123.未来不是固定在那里等你趋近的,而是要靠你创造。未来的路不会静待被发现,而是需要开拓,开路的过程,便同时改变了你和未来。――[约翰· 夏尔] 124.一个人的年纪就像他的鞋子的大小那样不重要。如果他对生活的兴趣不受到伤害,如果他很慈悲,如果时间使他成熟而没有了偏见。――[道格拉斯· 米尔多] 125.大凡宇宙万物,都存在着正、反两面,所以要养成由后面.里面,甚至是由相反的一面,来观看事物的态度――。[老子] 126.在寒冷中颤抖过的人倍觉太阳的温暖,经历过各种人生烦恼的人,才懂得生命的珍贵。――[怀特曼] 127.一般的伟人总是让身边的人感到渺小;但真正的伟人却能让身边的人认为自己很伟大。――[G.K.Chesteron] 128.医生知道的事如此的少,他们的收费却是如此的高。――[马克吐温] 129.问题不在于:一个人能够轻蔑、藐视或批评什么,而是在于:他能够喜爱、看重以及欣赏什么。――[约翰· 鲁斯金]
一是从特殊到一般的扩充思想:
点(x,sinx)
y=sinx,x0,2
y=sinx,xR
二是化归转化的数学思想: 把y=cosx,xR的图象转化为正弦函数的图象加以解决. 3.要理解正弦函数图象几何作法的思路,能熟练地应用五点画 图法画出正,余弦函数图象的简图. 4.从图象上可以看出函数的特征,从特征可以得到函数的性质.
的图象. 0 , 2 例:用几何作图法画f(x)=sinx, x
步骤: (1)等份:等份越多,图象越精确,作图太麻烦;等份少了, 图象不精确.为此取12等份单位圆较为合适(在 0~2 上能 大致反映图象特征).另一方面,为了使正弦线平移更方便,我 们把单位圆的圆心取在坐标系中x轴的负半轴上的任一位置. 从这个圆与x轴右边的交点A起把圆分成12等份,相应地,再把
在引进了弧度制后,f(x)=sinx与f(x)=cosx是否可以看作是 以实数为自变量的函数? 如果是函数的话,能为它取个名字吗? 它们的定义域是什么? 均可以看作是定义在R上的函数(任一x有唯一的函数值), 分别称为正弦函数与余弦函数. 函数图象的实质是把y=f(x)上的所有有序实数对(x,f(x))描 绘到平面直角坐标系中去.其作图步骤是什么? 列表 、描点(数 形)、连线 (x f(x ))
2 2
所以也可以用五点画图法画余弦曲线.
3 的简图,并说出它与 练习:用五点法画 y cos x ,x , 2 2 ysin x ,x 0 , 的图象之间的平移关系. 2
7.思考:正,余弦函数的图象有何特征?可以从哪些方面说? (知道
这种作图方法称为代数法.
但对于f(x)=sinx与f(x)=cosx来说,如果不借助于计算 器或数学用表,大多数情况下sinx与cosx均无法直接算出 具体值.有没有什么方法可以回避上述麻烦呢?
几何作图法 们先以正弦函数f(x)=sinx, x 为例来阐明这一原 0 , 2 理. 先在单位圆中把各角对应的正弦线(函数值,且任何一 个角存在唯一的正弦线 ) 作出 , 然后 , 把它们在坐标系中 平移至相应的x(横坐标)处作出纵坐标sinx.再把所有平 移后的正弦线的终点连成光滑的曲线即可. 几何作图法 可以很好地帮助我们克服这一困难.我
3 ( 0 , 0 ), (, 1 ), ( , 0 ), ( , 1 ), ( 2 , 0 )(依次相隔
2
2
2
)
描出这五个点后,函数f(x)=sinx,x0,2 的形状就基本上确定