4种常见的动态规划模型

合集下载

动态规划

动态规划
f1(A)=MIN r(A,B1)+ f2(B1) r(A,B2)+ f2(B2)
=MIN(3+12,4+10)=14
最短路线: A—— B2 ——C2——D2——E2——F 最优解: d1*(A)= B2,最短用时14
1
B2
C3
4 2
D3
5
E2
4
A
2
C2
3 3 3
D2
2
F
3
B1
5 4
C1
4
2
E1
最优解: d2*(B1)= C1
1
B2
C3
4 2
D3
5
E2
4
A
2
C2
3 3 3
D2
2
F
3
B1
5 4
C1
4
2
E1
4
3
D1
A
B
C
D
E
F
如果S2=B2,则下一步能取C2或C3,故
f2(B2)=MIN r(B2,C2)+ f3(C2)
r(B2,C3)+ f3(C3) =MIN(2+8,1+11)=10
最短路线: B2 ——C2——D2——E2——F
1
B2
C3
4 2
D3
5
E2
4
A
2
C2
3 3 3
D2
2
F
3
B1
5 4
C1
4
2
E1
4
3
D1
A
B
C
D
E
F
如果S4=D3,则下一步只能取E2,故

数学建模第二讲简单的优化模型

数学建模第二讲简单的优化模型

数学建模第二讲简单的优化模型数学建模是利用数学方法对实际问题进行建模、分析和求解的过程。

在实际问题中,常常需要针对一些指标进行优化,以达到最优的效果。

本讲将介绍一些简单的优化模型。

一、线性规划模型线性规划是一种重要的数学优化方法,广泛应用于工程、经济、管理等领域。

其数学模型可以表示为:\begin{aligned}&\text{max} \quad c^Tx \\&\text{s.t.} \quad Ax \leq b, \quad x \geq 0\end{aligned}\]其中,$x$为决策变量,$c$为目标函数系数,$A$为约束条件系数矩阵,$b$为约束条件右端向量。

线性规划模型指的是目标函数和约束条件都是线性的情况。

通过线性规划模型,可以求解出使得目标函数取得最大(或最小)值时的决策变量取值。

二、非线性规划模型非线性规划模型指的是目标函数或约束条件中存在非线性部分的情况。

非线性规划模型相对于线性规划模型更为复杂,但在实际问题中更为常见。

对于非线性规划问题,通常采用数值优化方法进行求解,如梯度下降法、牛顿法等。

这些方法通过迭代的方式逐步靠近最优解。

三、整数规划模型整数规划模型是指决策变量必须为整数的规划模型。

整数规划在实际问题中应用广泛,如物流配送问题、工程调度问题等。

整数规划模型通常难以求解,因为整数规划问题是一个NP难问题。

针对整数规划问题,常用的求解方法有枚举法、分支定界法、遗传算法等。

四、动态规划模型动态规划模型是指将问题划分为子问题,并通过求解子问题最优解来求解原问题最优解的方法。

动态规划通常用于求解具有重叠子问题和最优子结构性质的问题。

动态规划模型具有递推性质,通过递归或迭代的方式求解子问题的最优解,并保存中间结果,以提高求解效率。

五、模拟退火模型模拟退火是一种用来求解组合优化问题的随机优化算法。

模拟退火算法基于固体退火过程的模拟,通过温度的控制和随机跳出来避免陷入局部最优解。

各个模型的作用

各个模型的作用

时间序列模型1.时间序列模型是用于做预测的,其中包含多种预测模型:1)加法模型2)乘法模型3)混合模型2.移动平均法有简单移动平均法,加权移动平均法,趋势移动平均法(趋势移动平均法对于同时存在直线趋势与周期波动的序列,是一种既能反映趋势变)化,又可以有效地分离出来周期变动的方法。

2.指数平滑法:一次指数平滑法、二次指数平滑法和三次指数平滑法等(在第7页)一次指数平滑法虽然克服了移动平均法的缺点。

但当时间序列的变动出现直线趋势时,用一次指数平滑法进行预测,仍存在明显的滞后偏差。

因此,也必须加以修正。

修正的方法与趋势移动平均法相同,即再作二次指数平滑,利用滞后偏差的规律建立直线趋势模型。

这就是二次指数平滑法。

当时间序列的变动表现为二次曲线趋势时,则需要用三次指数平滑法3. 差分指数平滑法:一阶差分指数平滑法、二阶差分指数平滑模型(14)4.自适应滤波法:以时间序列的历史观测值进行某种加权平均来预测的,它要寻找一组“最佳”的权数,其办法是先用一组给定的权数来计算一个预测值,然后计算预测误差,再根据预测误差调整权数以减少误差5. 趋势外推预测方法,推测出事物未来状况的一种比较常用的预测方法。

利用趋势外推法进行预测,主要包括六个阶段:(a)选择应预测的参数;(b)收集必要的数据;(c)利用数据拟合曲线;(d)趋势外推;(e)预测说明;(f)研究预测结果在进行决策中应用的可能性。

趋势外推法常用的典型数学模型有:指数曲线、修正指数曲线、生长曲线、包络曲线等。

(22)6. 平稳时间序列模型:自回归模型(Auto Regressive Model)简称AR 模型,移动平均模型(MovingAverage Model)简称MA 模型,自回归移动平均模型(Auto Regressive Moving AverageModel)简称ARMA 模型(23)1.插值1、可用于预测问题,观察相应散点的变化,预测被插值点的函数值2、主要方法有:一维插值法,二维网格插值和散点插值(contour)3、要求所求通过所有给定的点拟合1、线性拟合:一般都先画出散点图,用plot命令,然后再进行观察拟合,polyfit得系数,polyval在相关点的值。

运筹学模型的类型

运筹学模型的类型

运筹学模型的类型运筹学模型是指通过数学方法来描述和解决复杂问题的一种工具。

根据问题的性质和要求,运筹学模型可以分为以下几种类型:1. 线性规划模型(Linear Programming Model,简称LP):线性规划是一种优化问题,它的目标是在满足一些约束条件下,使某个线性函数取得最大或最小值。

线性规划模型广泛应用于生产调度、资源分配、物流运输等领域。

2. 整数规划模型(Integer Programming Model,简称IP):整数规划是线性规划的扩展,它要求决策变量只能取整数值。

整数规划模型常用于生产调度、排产计划、网络设计等问题。

3. 非线性规划模型(Nonlinear Programming Model,简称NLP):非线性规划是一种优化问题,它的目标函数和约束条件都可以是非线性的。

非线性规划模型广泛应用于经济学、金融学、工程学等领域。

4. 动态规划模型(Dynamic Programming Model,简称DP):动态规划是一种优化方法,它将一个复杂问题分解为若干个子问题,并逐步求解这些子问题。

动态规划模型常用于生产调度、资源分配、投资决策等问题。

5. 排队论模型(Queuing Theory Model,简称QT):排队论是一种研究等待线性的数学理论,它可以用来描述和分析顾客到达、服务时间、系统容量等因素对系统性能的影响。

排队论模型广泛应用于交通运输、通信网络、医疗卫生等领域。

6. 决策树模型(Decision Tree Model,简称DT):决策树是一种分类和回归的方法,它可以将一个问题分解为若干个子问题,并逐步求解这些子问题。

决策树模型常用于金融风险评估、医学诊断、市场营销等领域。

总之,不同类型的运筹学模型适用于不同的问题领域和求解目标,选择合适的模型可以帮助我们更好地解决实际问题。

常见数学建模模型

常见数学建模模型

常见数学建模模型一、线性规划模型线性规划是一种常用的数学建模方法,它通过建立线性函数和约束条件,寻找最优解。

线性规划可以应用于各种实际问题,如生产调度、资源分配、运输问题等。

通过确定决策变量、目标函数和约束条件,可以建立数学模型,并利用线性规划算法求解最优解。

二、整数规划模型整数规划是线性规划的一种扩展形式,它要求决策变量为整数。

整数规划模型常用于一些离散决策问题,如旅行商问题、装箱问题等。

通过引入整数变量和相应的约束条件,可以将问题转化为整数规划模型,并利用整数规划算法求解最优解。

三、非线性规划模型非线性规划是一类目标函数或约束条件中存在非线性项的优化问题。

非线性规划模型常见于工程设计、经济优化等领域。

通过建立非线性函数和约束条件,可以将问题转化为非线性规划模型,并利用非线性规划算法求解最优解。

四、动态规划模型动态规划是一种通过将问题分解为子问题并以递归方式求解的数学建模方法。

动态规划常用于求解具有最优子结构性质的问题,如背包问题、最短路径问题等。

通过定义状态变量、状态转移方程和边界条件,可以建立动态规划模型,并利用动态规划算法求解最优解。

五、排队论模型排队论是一种研究队列系统的数学理论,可以用于描述和优化各种排队系统,如交通流、生产线、客户服务等。

排队论模型通常包括到达过程、服务过程、队列长度等要素,并通过概率和统计方法分析系统性能,如平均等待时间、系统利用率等。

六、图论模型图论是一种研究图结构和图算法的数学理论,可以用于描述和优化各种实际问题,如网络优化、路径规划、社交网络等。

图论模型通过定义节点、边和权重,以及相应的约束条件,可以建立图论模型,并利用图算法求解最优解。

七、随机模型随机模型是一种考虑不确定性因素的数学建模方法,常用于风险评估、金融建模等领域。

随机模型通过引入随机变量和概率分布,描述不确定性因素,并利用概率和统计方法分析系统行为和性能。

八、模糊模型模糊模型是一种用于处理模糊信息的数学建模方法,常用于模糊推理、模糊控制等领域。

常见数学建模模型

常见数学建模模型

常见数学建模模型一、线性规划模型线性规划是一种常见的数学优化方法,广泛应用于工程、经济、管理等领域。

线性规划模型的目标是在给定的约束条件下,求解一个线性目标函数的最优解。

其中,约束条件通常是线性等式或不等式,而目标函数是一个线性函数。

在实际应用中,线性规划模型可以用于生产计划、资源分配、运输问题等。

例如,一个工厂的生产计划中需要确定每种产品的产量,以最大化利润为目标,并且需要满足一定的生产能力和市场需求的约束条件。

二、整数规划模型整数规划是线性规划的一种扩展形式,其目标函数和约束条件仍然是线性的,但变量需要取整数值。

整数规划模型常用于离散决策问题,如项目选择、设备配置等。

例如,一个公司需要决定购买哪些设备以满足生产需求,设备的数量必须是整数,且需要考虑成本和产能的约束。

三、动态规划模型动态规划是一种求解多阶段决策问题的数学方法。

该模型通常包含一个阶段决策序列和一个状态转移方程,通过递推求解最优解。

动态规划模型被广泛应用于资源分配、路径规划、项目管理等领域。

例如,一个工程项目需要确定每个阶段的最佳决策,以最小化总成本或最大化总效益。

在每个阶段,决策的结果会影响到下一个阶段的状态和决策空间,因此需要使用动态规划模型进行求解。

四、图论模型图论是研究图和网络的数学理论。

图论模型常用于解决网络优化、路径规划、最短路径等问题。

例如,一个物流公司需要确定最佳的送货路径,以最小化运输成本或最短时间。

可以将各个地点看作图中的节点,道路或路径看作边,利用图论模型求解最优路径。

五、回归分析模型回归分析是研究变量之间关系的一种统计方法。

回归分析模型通常用于预测和建立变量之间的数学关系。

例如,一个销售公司需要预测未来销售额与广告投入、市场份额等因素的关系。

可以通过回归分析模型建立销售额与这些因素之间的数学关系,并进行预测和决策。

六、排队论模型排队论是研究排队系统的数学理论。

排队论模型常用于优化服务质量、降低排队成本等问题。

运筹学模型的分类和类型

运筹学模型的分类和类型

运筹学模型的分类和类型运筹学是一门应用于决策制定和问题解决的学科,它通过数学模型和分析方法来优化资源的利用。

运筹学模型是在特定情境中描述问题和优化目标的数学表示。

根据问题的性质和优化目标的类型,运筹学模型可以被分类为多种类型。

在本文中,我将介绍一些常见的运筹学模型分类。

一、线性规划模型:线性规划模型是最基本的运筹学模型之一。

它的特点是目标函数和约束条件均为线性的。

线性规划模型常用于求解资源分配、生产计划、物流运输等问题。

通过线性规划模型,我们可以找到使资源利用最优化的决策方案。

某公司需要确定每种产品的生产数量,以最大化总利润,且需满足各种资源约束条件,这时可以使用线性规划模型进行求解。

二、整数规划模型:整数规划模型是在线性规划模型的基础上引入整数变量的扩展。

在某些情况下,问题的决策变量只能取整数值,这时就需要使用整数规划模型进行求解。

某物流公司需要确定车辆的调度方案,每辆车的装载量可以是整数,这时可以使用整数规划模型来求解最佳调度方案。

三、动态规划模型:动态规划模型是一种考虑时间因素的决策模型。

它通常用于求解多阶段决策问题。

动态规划模型通过将问题划分为多个阶段,并建立各阶段之间的转移方程,来寻找最优决策序列。

在项目管理中,我们需要确定每个阶段的最佳决策,以最小化总工期和成本,这时可以使用动态规划模型进行求解。

四、网络流模型:网络流模型是一种描述网络中资源分配和流量传输的模型。

它通常用于求解网络优化问题,如最小费用流问题、最大流问题等。

网络流模型中,节点表示资源或流量的源点、汇点和中间节点,边表示资源或流量的传输通道。

通过建立网络流模型,我们可以确定资源的最优分配方案,以及网络中的最大流量或最小成本。

在供应链管理中,我们需要确定货物从生产商到消费者的最佳流向,以最小化总运输成本,这时可以使用网络流模型进行求解。

五、排队论模型:排队论模型是一种描述排队系统的模型。

它通常用于评估系统性能指标,如平均等待时间、平均逗留时间等。

数学建模常用算法模型

数学建模常用算法模型

数学建模常用算法模型数学建模是将实际问题抽象为数学模型,并利用数学方法求解问题的过程。

在数学建模中,算法模型是解决问题的关键。

下面介绍一些常用的数学建模算法模型。

1.线性规划模型:线性规划是一种用于求解线性约束下的最优化问题的数学方法。

线性规划模型的目标函数和约束条件均为线性函数。

线性规划广泛应用于供需平衡、生产调度、资源配置等领域。

2.非线性规划模型:非线性规划是一种用于求解非线性目标函数和约束条件的最优化问题的方法。

非线性规划模型在能源优化调度、金融风险管理、工程设计等方面有广泛应用。

3.整数规划模型:整数规划是一种在决策变量取离散值时求解最优化问题的方法。

整数规划模型在网络设计、物流调度、制造安排等领域有广泛应用。

4.动态规划模型:动态规划是一种通过将问题分解为多个阶段来求解最优化问题的方法。

动态规划模型在资源分配、投资决策、路径规划等方面有广泛应用。

5.随机规划模型:随机规划是一种在目标函数和约束条件存在不确定性时求解最优化问题的方法。

随机规划模型在风险管理、投资决策、资源调度等方面有广泛应用。

6.进化算法模型:进化算法是一种通过模拟生物进化过程来求解最优化问题的方法。

进化算法模型包括遗传算法、粒子群算法、蚁群算法等,被广泛应用于参数优化、数据挖掘、机器学习等领域。

7.神经网络模型:神经网络是一种模仿人脑神经元连接和传递信息过程的数学模型。

神经网络模型在模式识别、数据分类、信号处理等领域有广泛应用。

8.模糊数学模型:模糊数学是一种用于处理不确定性和模糊信息的数学模型。

模糊数学模型在风险评估、决策分析、控制系统等方面有广泛应用。

除了以上常用的数学建模算法模型,还有许多其他的算法模型,如图论模型、动力系统模型、马尔科夫链模型等。

不同的问题需要选择合适的算法模型进行建模和求解。

数学建模算法模型的选择和应用需要根据具体的问题和要求进行。

数学建模模型常用的四大模型及对应算法原理总结

数学建模模型常用的四大模型及对应算法原理总结

数学建模模型常用的四大模型及对应算法原理总结四大模型对应算法原理及案例使用教程:一、优化模型线性规划线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,在线性回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。

如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。

案例实操非线性规划如果目标函数或者约束条件中至少有一个是非线性函数时的最优化问题叫非线性规划问题,是求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。

建立非线性规划模型首先要选定适当的目标变量和决策变量,并建立起目标变量与决策变量之间的函数关系,即目标函数。

然后将各种限制条件加以抽象,得出决策变量应满足的一些等式或不等式,即约束条件。

整数规划整数规划分为两类:一类为纯整数规划,记为PIP,它要求问题中的全部变量都取整数;另一类是混合整数规划,记之为MIP,它的某些变量只能取整数,而其他变量则为连续变量。

整数规划的特殊情况是0-1规划,其变量只取0或者1。

多目标规划求解多目标规划的方法大体上有以下几种:一种是化多为少的方法,即把多目标化为比较容易求解的单目标,如主要目标法、线性加权法、理想点法等;另一种叫分层序列法,即把目标按其重要性给出一个序列,每次都在前一目标最优解集内求下一个目标最优解,直到求出共同的最优解。

目标规划目标规划是一种用来进行含有单目标和多目标的决策分析的数学规划方法,是线性规划的特殊类型。

目标规划的一般模型如下:设xj是目标规划的决策变量,共有m个约束条件是刚性约束,可能是等式约束,也可能是不等式约束。

设有l个柔性目标约束条件,其目标规划约束的偏差为d+, d-。

设有q个优先级别,分别为P1, P2, …, Pq。

在同一个优先级Pk中,有不同的权重,分别记为[插图], [插图](j=1,2, …, l)。

应用性问题中常见的数学建模

应用性问题中常见的数学建模

应用性问题中常见的数学建模【摘要】数统计、格式要求等。

谢谢!在解决实际应用性问题时,数学建模是一个重要的工具。

本文将介绍常见的数学建模方法,包括线性规划模型、整数规划模型、图论模型、动态规划模型和概率模型。

通过这些建模方法,我们可以有效地分析和解决各种实际问题。

结合实际情况进行灵活应用是数学建模的关键,不同类型的数学建模适用于不同类型的应用性问题。

数学建模在解决实际问题中起着重要作用,并且为决策提供了有力的支持。

通过数学建模,我们可以更好地理解问题的本质、优化决策方案,并提高解决问题的效率和准确性。

掌握不同类型的数学建模方法对于解决实际问题具有重要意义。

【关键词】数学建模、应用性问题、线性规划、整数规划、图论、动态规划、概率、实际问题、重要作用、灵活应用1. 引言1.1 应用性问题中常见的数学建模应用性问题中常见的数学建模指的是将实际生活中的问题抽象化为数学形式,并通过数学方法进行求解和分析的过程。

数学建模可以帮助人们更好地理解和解决各种实际问题,包括工程、经济、环境等领域的相关问题。

在现实生活中,人们遇到的问题往往是复杂多样的,而数学建模能够帮助我们系统地分析和解决这些问题。

数学建模的过程通常包括问题的定义、建立数学模型、模型求解和结果的分析等步骤。

通过数学建模,我们可以利用数学工具和方法对问题进行深入分析,并找到最优解或者最优策略。

在实际应用中,数学建模多种多样,包括线性规划模型、整数规划模型、图论模型、动态规划模型、概率模型等。

通过数学建模,我们可以更好地理解实际问题的本质,为决策提供科学依据。

数学建模在解决实际问题中起着重要作用,不同类型的数学建模适用于不同类型的应用性问题,同时数学建模需要结合实际情况进行灵活应用。

数学建模的发展将为人类社会的进步和发展提供更多可能性和机会。

2. 正文2.1 线性规划模型线性规划模型是一种常见的数学建模方法,它在解决各种应用性问题中都具有重要作用。

在线性规划模型中,我们需要定义一个目标函数以及一组约束条件,通过最大化或最小化目标函数来找到最优解。

数学建模四大模型归纳

数学建模四大模型归纳

四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。

1.2 微分方程组模型阻滞增长模型、SARS 传播模型。

1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。

1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。

1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。

如何将尽可能多的物品装入背包。

多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。

如何选取物品装入背包,是背包中物品的总价值最大。

多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。

该问题属于NP 难问题。

● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。

工人i 完成工作j 的时间为ij d 。

如何安排使总工作时间最小。

二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。

二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。

●旅行商问题(TSP)旅行商问题:有n个城市,城市i与j之间的距离为d,找一条经过n个城ij市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。

●车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。

TSP问题是VRP问题的特例。

●车间作业调度问题(JSP)车间调度问题:存在j个工作和m台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。

动态规划模型

动态规划模型

第2讲动态规划模型动态规划是运筹学的一个分支,它是解决多阶段决策过程最优化问题的一种数学方法。

1951年美国数学家贝尔曼(R.Bellman)等人,根据一类多阶段决策问题的特点,提出了解决这类问题的“最优性原理”,研究了许多实际问题,从而创建了解决最优化问题的一种新方法——动态规划。

动态规划可以用来解决最优路径问题、资源分配问题、生产调度问题、库存问题、装载问题、排序问题、设备更新问题、生产过程最优控制问题。

下面,以最短路径问题为例,说明动态规划的基本思想方法和特点。

(一)、最短路径问题1、问题提出如图1-10所示(P56),从0A地要铺设一条管道到6A 地,中间必须经过五个中间站,第一站可以在11,B A 两地中任选一个,类似的,第二、三、四、五站可供选择的地点分别是{}{}{}{}554443332222,,,,,,,,,,,B A C B A C B A D C B A 连接两点间的距离用图上两点连线上的数字表示,两点间没有连线的表示相应两点不能铺设管道,现要选择一条从0A 到6A 的铺 管线路,使总距离最短。

2、问题分析解决最短路径问题,最容易想到的方法是穷举法,即列出所有可能发生的方案和结果,再针对题目的要求对它们一一进行比较,求出最优方案。

这种方法,在变量(或节点)的数目较小时有效;在变量数目很大时,计算量将会变得十分庞大,行不通。

因此,需要根据问题的特性,寻求一种简便的算法。

最短路径问题有一个特性:如果最短路径在第k 站通过点k x ,则这一线路在由kx出发到达终点的那一部分线路,对于从点k x 终点的所有可能选择的不同线路来说,必定也是距离最短的。

这就是最优性原理。

这就启发我们从最后一段开始,采用从后向前逐步递推的方法,求出各点到6A 的最短线路,最后求得从0A 到6A 的最短线路。

(归结为一句话:最有策略的子策略仍然是最优策略)3、问题求解为求解方便,将整个过程分为6个阶段,用)6,,2,1( =k k 表示。

动态规划讲解大全(含例题及答案)

动态规划讲解大全(含例题及答案)
动态规划算法的应用
一、动态规划的概念
近年来,涉及动态规划的各种竞赛题越来越多,每一年的 NOI 几乎都至少有一道题目需要用动态 规划的方法来解决;而竞赛对选手运用动态规划知识的要求也越来越高,已经不再停留于简单的递推 和建模上了。
要了解动态规划的概念,首先要知道什么是多阶段决策问题。 1. 多阶段决策问题 如果一类活动过程可以分为若干个互相联系的阶段,在每一个阶段都需作出决策(采取措施),一 个阶段的决策确定以后,常常影响到下一个阶段的决策,从而就完全确定了一个过程的活动路线,则 称它为多阶段决策问题。 各个阶段的决策构成一个决策序列,称为一个策略。每一个阶段都有若干个决策可供选择,因而 就有许多策略供我们选取,对应于一个策略可以确定活动的效果,这个效果可以用数量来确定。策略 不同,效果也不同,多阶段决策问题,就是要在可以选择的那些策略中间,选取一个最优策略,使在 预定的标准下达到最好的效果. 2.动态规划问题中的术语 阶段:把所给求解问题的过程恰当地分成若干个相互联系的阶段,以便于求解,过程不同,阶段 数就可能不同.描述阶段的变量称为阶段变量。在多数情况下,阶段变量是离散的,用 k 表示。此外, 也有阶段变量是连续的情形。如果过程可以在任何时刻作出决策,且在任意两个不同的时刻之间允许 有无穷多个决策时,阶段变量就是连续的。
解决方法:
我们尝试从正面的思路去分析问题,如上例,不难得出一个非常简单的递归过程 : f1:=f(i-1,j+1); f2:=f(i-1,j); if f1>f2 then f:=f1+a[i,j] else f:=f2+a[i,j]; 显而易见,这个算法就是最简单的搜索算法。时间复杂度为 2n,明显是会超时的。分析一下搜索 的过程,实际上,很多调用都是不必要的,也就是把产生过的最优状态,又产生了一次。为了避免浪 费,很显然,我们存放一个 opt 数组:Opt[i, j] - 每产生一个 f(i, j),将 f(i, j)的值放入 opt 中,以 后再次调用到 f(i, j)的时候,直接从 opt[i, j]来取就可以了。于是动态规划的状态转移方程被直观地 表示出来了,这样节省了思维的难度,减少了编程的技巧,而运行时间只是相差常数的复杂度,避免 了动态规划状态转移先后的问题,而且在相当多的情况下,递归算法能更好地避免浪费,在比赛中是 非常实用的.

数学建模的常用模型与求解方法知识点总结

数学建模的常用模型与求解方法知识点总结

数学建模的常用模型与求解方法知识点总结数学建模是运用数学方法和技巧来研究和解决现实问题的一门学科。

它将实际问题抽象化,建立数学模型,并通过数学推理和计算求解模型,从而得出对实际问题的理解和解决方案。

本文将总结数学建模中常用的模型类型和求解方法,并介绍每种方法的应用场景。

一、线性规划模型与求解方法线性规划是数学建模中最常用的模型之一,其基本形式为:$$\begin{align*}\max \quad & c^Tx \\s.t. \quad & Ax \leq b \\& x \geq 0\end{align*}$$其中,$x$为决策变量向量,$c$为目标函数系数向量,$A$为约束系数矩阵,$b$为约束条件向量。

常用的求解方法有单纯形法、对偶单纯形法和内点法等。

二、非线性规划模型与求解方法非线性规划是一类约束条件下的非线性优化问题,其目标函数或约束条件存在非线性函数。

常见的非线性规划模型包括凸规划、二次规划和整数规划等。

求解方法有梯度法、拟牛顿法和遗传算法等。

三、动态规划模型与求解方法动态规划是一种用于解决多阶段决策问题的数学方法。

它通过将问题分解为一系列子问题,并利用子问题的最优解构造原问题的最优解。

常见的动态规划模型包括最短路径问题、背包问题和任务分配等。

求解方法有递推法、记忆化搜索和剪枝算法等。

四、图论模型与求解方法图论是研究图及其应用的一门学科,广泛应用于网络优化、城市规划和交通调度等领域。

常见的图论模型包括最小生成树、最短路径和最大流等。

求解方法有贪心算法、深度优先搜索和广度优先搜索等。

五、随机模型与概率统计方法随机模型是描述不确定性问题的数学模型,常用于风险评估和决策分析。

概率统计方法用于根据样本数据对随机模型进行参数估计和假设检验。

常见的随机模型包括马尔可夫链、蒙特卡洛模拟和马尔科夫决策过程等。

求解方法有蒙特卡洛法、马尔科夫链蒙特卡洛法和最大似然估计等。

六、模拟模型与求解方法模拟模型是通过生成一系列随机抽样数据来模拟实际问题,常用于风险评估和系统优化。

动态规划模型

动态规划模型

第2讲动态规划模型动态规划是运筹学的一个分支,它是解决多阶段决策过程最优化问题的一种数学方法。

1951年美国数学家贝尔曼(R.Bellman)等人,根据一类多阶段决策问题的特点,提出了解决这类问题的“最优性原理”,研究了许多实际问题,从而创建了解决最优化问题的一种新方法——动态规划。

动态规划可以用来解决最优路径问题、资源分配问题、生产调度问题、库存问题、装载问题、排序问题、设备更新问题、生产过程最优控制问题。

下面,以最短路径问题为例,说明动态规划的基本思想方法和特点。

(一)、最短路径问题1、问题提出如图1-10所示(P56),从0A地要铺设一条管道到6A 地,中间必须经过五个中间站,第一站可以在11,B A 两地中任选一个,类似的,第二、三、四、五站可供选择的地点分别是{}{}{}{}554443332222,,,,,,,,,,,B A C B A C B A D C B A 连接两点间的距离用图上两点连线上的数字表示,两点间没有连线的表示相应两点不能铺设管道,现要选择一条从0A 到6A 的铺 管线路,使总距离最短。

2、问题分析解决最短路径问题,最容易想到的方法是穷举法,即列出所有可能发生的方案和结果,再针对题目的要求对它们一一进行比较,求出最优方案。

这种方法,在变量(或节点)的数目较小时有效;在变量数目很大时,计算量将会变得十分庞大,行不通。

因此,需要根据问题的特性,寻求一种简便的算法。

最短路径问题有一个特性:如果最短路径在第k 站通过点k x ,则这一线路在由kx出发到达终点的那一部分线路,对于从点k x 终点的所有可能选择的不同线路来说,必定也是距离最短的。

这就是最优性原理。

这就启发我们从最后一段开始,采用从后向前逐步递推的方法,求出各点到6A 的最短线路,最后求得从0A 到6A 的最短线路。

(归结为一句话:最有策略的子策略仍然是最优策略) 3、问题求解 为求解方便,将整个过程分为6个阶段,用)6,,2,1( =k k 表示。

任务筹划算法模型

任务筹划算法模型

任务筹划算法模型算法模型是指在进行任务筹划时,通过建立数学或逻辑模型,以解决问题和优化结果的一种方法。

任务筹划是一种重要的决策过程,涉及到资源的分配、时间的安排、工作的分配等。

通过应用算法模型,可以更好地规划任务和优化成果。

本文将介绍几种常用的任务筹划算法模型。

一、线性规划模型(Linear Programming Model)线性规划是一种常用的数学规划方法,可以用于解决任务筹划问题。

线性规划模型的目标是优化一些线性目标函数,同时满足多个线性约束条件。

例如,一个任务筹划问题可以通过线性规划模型来优化资源的利用率,最大化产出。

线性规划模型的优点是计算简单、可靠性高,但是对于复杂的任务筹划问题有局限性,因为它要求目标函数和约束条件都是线性的,而且无法处理不确定性。

二、整数规划模型(Integer Programing Model)整数规划是线性规划的一种扩展,它要求决策变量只能取整数值。

整数规划模型常用于任务筹划中的资源分配问题,即如何将有限的资源分配给不同的任务,以满足任务的需求和限制。

整数规划模型的优点是可以更准确地考虑任务筹划问题的实际情况,但是求解整数规划模型一般较为困难,因为它不再是线性的。

常用的求解整数规划的方法有分枝定界法(Branch and Bound Method)和割平面法(Cutting Plane Method)等。

三、动态规划模型(Dynamic Programming Model)动态规划是一种常用的优化方法,可以用于求解具有重叠子问题和最优子结构性质的问题。

在任务筹划中,动态规划模型通常用于确定最佳的任务顺序和时间分配,以使总体成本最小或总体收益最大。

四、模拟退火算法模型(Simulated Annealing Model)模拟退火算法是一种启发式优化算法,模拟了固体退火过程的特性,通过随机的过程来寻找最优解。

在任务筹划中,模拟退火算法模型可以用来确定任务的排列顺序和时间安排,以最小化总体成本或最大化总体收益。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例谈四种常见的动态规划模型动态规划是解决多阶段决策最优化问题的一种思想方法,本文主要结合一些例题,把一些常见的动态规划模型,进行归纳总结。

(一)、背包模型可用动态规划解决的背包问题,主要有01背包和完全背包。

对于背包的类型,这边就做个简单的描述:n个物品要放到一个背包里,背包有个总容量m,每个物品都有一个体积w[i]和价值v[i],问如何装这些物品,使得背包里放的物品价值最大。

这类型的题目,状态表示为:f[j]表示背包容量不超过j时能够装的最大价值,则状态转移方程为:f[j]:=max{f[j-w[i]]+v[i]},边界:f[0]:=0;简单的程序框架为:beginreadln(m,n);for i:=1to n do readln(w[i],v[i]);f[0]:=0;for i:=1to m dofor j:=1to n dobeginif i>=w[j]then t:=f[i-w[j]]+v[j];if t>f[i]then f[i]:=t;end;writeln(f[m]);end.这类型的题目应用挺广的(noip1996提高组第4题,noip2001普及组装箱问题,noip2005普及组采药等),下面一个例子,也是背包模型的简单转化。

货币系统(money)【问题描述】母牛们不但创建了他们自己的政府而且选择了建立了自己的货币系统。

他们对货币的数值感到好奇。

传统地,一个货币系统是由1,5,10,20或25,50,100的单位面值组成的。

母牛想知道用货币系统中的货币来构造一个确定的面值,有多少种不同的方法。

使用一个货币系统{1,2,5,10,..}产生18单位面值的一些可能的方法是:18×1,9×2,8×2+2×1,3×5+2+1等等其它。

写一个程序来计算有多少种方法用给定的货币系统来构造一个确定的面值。

【输入格式】货币系统中货币的种类数目是v(1≤v≤25);要构造的面值是n(1≤n≤10,000);第1行:二个整数,v和n;第2..v+1行:可用的货币v个整数(每行一个)。

【输出格式】单独的一行包含那个可能的构造的方案数。

【输入样例】310125【输出样例】10[分析]:此题是个背包模型,只是问题的解是构造方案数,设w[j]为第j种币值,状态f[i]:构造面值为i时可能的方案数,则状态转移方程为:f[i]:=∑f[i-w[j]],i>=w[j],边界:f[0]:=1;f[n]即为问题的解。

注意:由于此题的数据规模比较大,所以要用到高精度加法,估计最大的数据可以达到73位,为节约程序时间和空间效率,还采用了万进制的高精度加法。

参考程序如下:varf:array[0..10000,1..20]of integer;long:array[0..10000]of integer;//存储位数w:array[0..25]of integer;n,m,i,j,k:integer;procedure add(r,t:integer);//万进制高精度加var i,k:integer;beginif long[t]<long[r]then long[t]:=long[r];k:=0;for i:=1to long[t]dobeginf[t,i]:=(f[t,i]+f[r,i]+k);k:=f[t,i]div10000;//每一个存4位,万进制,这样省时省空间f[t,i]:=f[t,i]mod10000;end;while k>0do//进位处理begininc(long[t]);f[t,long[t]]:=k mod10000;k:=k div10000;end;end;procedure main;var i,j:integer;beginf[0,1]:=1;long[0]:=1;for i:=1to m dofor j:=w[i]to n do add(j-w[i],j);write(f[n,long[n]]);//输出答案,由于每个存4位,所以有时需要补零for i:=long[n]-1downto1dobeginif f[n,i]<10then write('000')else if f[n,i]<100then write('00')else if f[n,i]<1000then write('0');write(f[n,i]);end;end;beginassign(input,'money.in');reset(input);assign(output,'money.out');rewrite(output);readln(m,n);for i:=1to m do readln(w[i]);main;close(input);close(output);end.(二)、资源分配模型资源分配模型的动态规划,这类型的题目一般是:给定m 个资源,分配给n 个部门,第i 个部门获得j 个资源有个盈利值,问如何分配这m 个资源能使获得的盈利最大,求最大盈利。

这类型的题目一般用资源数做状态,数组f[i,j]表示前个i 个部门分配j 个资源的最大盈利,则状态转移方程为:f[i,j]:=max{f[i-1,k]+value[i,j-k]}(0<=k<=j)程序框架如下:var i,j,k:longint;beginfor i:=1to n dofor j:=0to m dofor k:=0to j doif f[i-1,k]+value[i,j-k]>f[i,j]then f[i,j]:=f[i-1,k]+value[i,j-k];writeln(f[n,m]);end;资源分配类型典型应用是花店橱窗(flower.pas)设置,没做过的同学可以自己去练习一下,下面的一个例题,也是此类型的转换。

[问题描述]农夫ion 放完马以后,需要把马儿关回马厩。

为了做好这件事,ion 让马排成一行跟着他入马厩。

他想出了一个就近入厩的办法:让前p 1匹马进入第一个马厩,然后的p 2匹马进入第二个马厩,如此类推。

而且,他不想让任何一个马厩(共k 个)留空,还有所有的马都进入马厩。

已知ion 只有黑色和白色两种颜色的马,然而并不是所有的马都能相处融洽。

假如有i 匹黑马和j 匹白马同在一个马厩,那么它们之间的不愉快系数为i*j。

马厩总的不愉快系数等于k 个马厩的不愉快系数之和。

请帮忙把n 匹马按顺序放入k 个马厩中(即求一种p 1,p 2…的安排方案),使得总的不愉快系数最小。

[输入格式]输入第一行为一个n 和k;(n<=100,k<=n);输入第二行为n 个数0和1,0表示白马,1表示黑马[输出格式]一行,最小的不愉快系数。

样例输入32101样例输出1分析:设f[i,j]:表示将前i匹马放入前j个马厩,得到的最小不愉快系数。

w[i,j]:表示将第i至第j匹马放入同一个马厩所得到的不愉快系数。

状态转移方程为:f[i,j]=min(f[k,j-1]+w[k+1,i]){j-1<=k<i}注意边界条件:f[i,1]:=w[1,i];f[i,i]:=0;参考程序如下:const maxn=100;maxk=100;varf:array[1..maxn,1..maxk]of longint;w:array[1..maxn,1..maxn]of longint;a:array[1..maxn]of longint;i,j,k,k1,n,s1,s2:integer;beginassign(input,'horse.in');reset(input);assign(output,’horse.out’);rewrite(output);readln(n,k);for i:=1to n do read(a[i]);for i:=1to n do//求w[i,j]for j:=i to n dobegins1:=0;s2:=0;for k1:=i to j doif a[k1]=0then inc(s1)else inc(s2);w[i,j]:=s1*s2;end;for i:=1to n do//初始化for j:=1to k dof[i,j]:=maxint;for i:=1to n do//边界条件beginf[i,i]:=0;f[i,1]:=w[1,i];end;for j:=1to k do//动规过程for i:=j to n dofor k1:=j-1to i-1doif(k1>0)and(j-1>=1)and(f[k1,j-1]<>maxint)thenf[i,j]:=min(f[k1,j-1]+w[k1+1,i],f[i,j])writeln(f[n,k]);close(input);close(output);end.(三)、区间类模型区间类模型的动态规划,一般是要求整段区间的最优值,子问题一般是把区间分成两个子区间。

一般用二维数组表示状态,例如f[i,j]表示从i到j的最优值。

则状态转移方程就是跟子区间之间的关系,下面我们用个典型的例子讲解这个模型的应用。

[问题描述]给定一个具有n(n<50)个顶点(从1到n编号)的凸多边形,每个顶点的权均已知。

问如何把这个凸多边形划分成n-2个互不相交的三角形,使得这些三角形顶点的权的乘积之和最小?输入文件:第一行顶点数n第一行n个顶点(从1到n)的权值输出格式:最小的和的值,各三角形组成的方式输入示例:5122123245231输出示例:t he minimum is:12214884the formation of3triangle:345,153,123分析:这是一道很典型的区间模型动态规划问题。

设f[i,j](i<j)表示从顶点i到顶点j 的凸多边形三角剖分后所得到的最大乘积,我们可以得到下面的动态转移方程:f[i,j]=min{f[i,k]+f[k,j]+s[i]*s[j]*s[k]}(i<k<j)目标状态为:f[1,n]但我们可以发现,由于这里为乘积之和,在输入数据较大时有可能超过长整形甚至实形的范围,所以我们还需用高精度计算,但这是基本功,程序中就没有写了,请读者自行完成。

参考程序vars:array[1..50]of integer;f:array[1..50,1..50]of comp;d:array[1..50,1..50]of byte;n:integer;procedure init;var i:integer;beginreadln(n);for i:=1to n do read(s[i]);end;procedure dp;//动态规划var i,j,k:integer;beginfor i:=1to n dofor j:=i+1to n do f[i,j]:=maxlongint;//赋初始值for i:=n-2downto1dofor j:=i+2to n dofor k:=i+1to j-1doif(f[i,j]>f[i,k]+f[k,j]+s[i]*s[j]*s[k])thenbeginf[i,j]:=f[i,k]+f[k,j]+s[i]*s[j]*s[k];d[i,j]:=k;//记录父节点end;end;procedure print(i,j:integer);//输出每个三角形beginif j=i+1then exit;write(',',i,'',j,'',d[i,j]);out(i,d[i,j]);out(d[i,j],j);end;procedure out;//输出信息beginwriteln('the minimum is:',f[1,n]:0:0);writeln('the formation of',n-2,'triangle:');write(1,'',n,''d[1,n]);out(1,d[1,n]);out(d[1,n],n);end;begin//主程序init;dp;out;end.区间模型的动态规划,在历届的信息学竞赛,应用非常广泛,如noi95的石子合并问题,noip2003普及组的数字游戏,noip2006提高组第1题等。

相关文档
最新文档