八种 经典线性规划例题(超实用)

合集下载

1、线性规划经典例题

1、线性规划经典例题

线性规划题型一:已知可行域问题()()()()()20,1218,12.16,14.16,14.52),),2,4(),4,3(),2,1(1-----=--C B A y x z ABCD y x P C B A ABCD 的取值范围是的内部,则行四边形在平(点的三个顶点为、已知平行四边形()的最大值等于则动点,设内(含边界)的为,点且的正方形,是边长为、如图,四边形βαβαβα+∈+=∆=,,212R BCD P OD OABC (注意:P 在三角形ABC 内,实际上描述的就是可行域问题。

)题型二:最优解是否唯一(含参)的取值范围是)取得最小值,则,在点(仅若目标函数满足约束条件已知实数省联考)年、(a ay x z y x y x y x y x 432,1122,2620161+=⎪⎩⎪⎨⎧≥+-≥-≤-()1-2.12.212.1-21.,02202202,20152或或或或的值为唯一,则实数取得最大值的最优解不若满足约束条件武汉调研)、(D C B A a ax y z y x y x y x y x -=⎪⎩⎪⎨⎧≥+-≤--≤-+题型三:目标函数含参=⎪⎩⎪⎨⎧≤--≥+-≥-++=k z y x y x y x y x y kx z ,则实数的最大值为若满足,其中实数浙江卷)设、(12,04204202,20131 ()3.2.2.3.4,020,20152--=+=⎪⎩⎪⎨⎧≥≤+≥-D C B A a y ax z y y x y x y x ,则为的最大值若满足约束条件,山东高考)已知、(题型四:可行域含参()()()2.1.21.41.12,331,0.20131D C B A a y x z x a y y x x y x a =+=⎪⎩⎪⎨⎧-≥≤+≥>,则的最小值是若满足约束条件,已知高等学校全国统一考试、()3.25.2.1.42,02,2015(2D C B A b y x z b x y x y y x y x 的值为,则实数为的最小值且满足实数河南省郑州市二模)若、+=⎪⎩⎪⎨⎧+-≥≥≥- 题型五:一个很容出错的问题(多解检验)()3-5.35.3.5.7,1,,2014(1或或,则的最小值为且满足全国文科卷)设、D C B A a ay x z y x a y x y x --=+=⎩⎨⎧-≤-≥+ 题型六:快速确定可行域()[]()⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡--=++23,21.23,21.3,1.3,1.1321100212D C B A a b b ax x 的取值范围是)上,则,)上,另一个根在(,的一个根在(、已知一元二次方程。

线性规划经典例题

线性规划经典例题

线性规划经典例题一、问题描述某公司生产两种产品:产品A和产品B。

每个产品的生产需要消耗不同的资源,且每个产品的利润也不同。

公司希望通过线性规划来确定生产计划,以最大化利润。

产品A需要消耗3个单位的资源1和4个单位的资源2,每个单位的产品A的利润为5。

产品B需要消耗6个单位的资源1和2个单位的资源2,每个单位的产品B的利润为8。

公司拥有的资源1和资源2的总量分别为30和20。

二、数学模型设x为生产产品A的数量,y为生产产品B的数量。

目标是最大化利润,即最大化5x + 8y。

约束条件为:3x + 6y ≤ 30,4x + 2y ≤ 20,x ≥ 0,y ≥ 0。

三、线性规划求解使用线性规划求解器求解上述问题。

输入目标函数和约束条件后,求解器将自动计算出最优解。

给定目标函数为:5x + 8y约束条件为:3x + 6y ≤ 30,4x + 2y ≤ 20,x ≥ 0,y ≥ 0求解结果如下:最大利润为:120生产产品A的数量为:5生产产品B的数量为:3四、解释结果根据求解结果,最大利润为120,生产5个产品A和3个产品B可以实现最大利润。

同时,根据约束条件,生产数量不能为负数,因此生产数量均为非负数。

五、敏感性分析敏感性分析用于确定目标函数系数的变化对最优解的影响程度。

在本例中,我们将分别增加产品A和产品B的利润,观察最优解的变化情况。

1. 增加产品A的利润:假设每个单位的产品A的利润增加1,即每个单位的产品A的利润为6。

重新求解线性规划问题,得到最大利润为130,生产产品A的数量为6,生产产品B的数量为2。

可以看出,增加产品A的利润对最优解有正向影响,最大利润和产品A的数量均增加。

2. 增加产品B的利润:假设每个单位的产品B的利润增加1,即每个单位的产品B的利润为9。

重新求解线性规划问题,得到最大利润为135,生产产品A的数量为4,生产产品B的数量为4。

可以看出,增加产品B的利润对最优解有正向影响,最大利润和产品B的数量均增加。

八种经典线性规划例题(超实用)

八种经典线性规划例题(超实用)

线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。

一、求线性目标函数的取值范围例1、 若x 、y 满足约束条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y 的取值范围是 ( )A 、[2,6]B 、[2,5]C 、[3,6]D 、(3,5]解:如图,作出可行域,作直线l :x+2y =0,将l 向右上方平移,过点A (2,0)时,有最小值 2,过点B (2,2)时,有最大值6,故选 A二、求可行域的面积例2、不等式组260302x y x y y +-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为 ( )A 、4B 、1C 、5D 、无穷大解:如图,作出可行域,△ABC 的面积即为所求,由梯形OMBC的面积减去梯形OMAC 的面积即可,选 B三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( ) A 、9个 B 、10个 C 、13个 D 、14个解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2(0,0)x y x y x y x y x y x y x y x y +≤≥≥⎧⎪-≤≥⎪⎨-+≤≥⎪⎪--≤⎩作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D四、求线性目标函数中参数的取值范围例4、已知x 、y 满足以下约束条件5503x y x y x +≥⎧⎪-+≤⎨⎪≤⎩,使z=x+ay(a>0)取得最小值的最优解有无数个,则a 的值为 ( ) A 、-3 B 、3 C 、-1 D 、1解:如图,作出可行域,作直线l :x+ay =0,要使目标函数z=x+ay (a>0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x+y =5重合,故a=1,选 D五、求非线性目标函数的最值例5、已知x 、y 满足以下约束条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x 2+y 2的最大值和最小值分别是( )A 、13,1B 、13,2C 、13,45D 、5解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为45,选 C 六、求约束条件中参数的取值范围例6、已知|2x -y +m|<3表示的平面区域包含点(0,0)和(-1,1),则m 的取值范围是 ( ) A 、(-3,6) B 、(0,6) C 、(0,3) D 、(-3,3)解:|2x -y +m|<3等价于230230x y m x y m -++>⎧⎨-+-<⎩由右图可知3330m m +>⎧⎨-<⎩ ,故0<m <3,选 C七·比值问题当目标函数形如y az x b-=-时,可把z 看作是动点(,)P x y 与定点(,)Q b a 连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。

线性规划经典例题

线性规划经典例题

线性规划经典例题引言概述:线性规划是一种运筹学方法,用于解决线性约束条件下的最优化问题。

它在各个领域都有广泛的应用,包括生产计划、资源分配、运输问题等。

本文将介绍几个经典的线性规划例题,以帮助读者更好地理解和应用线性规划方法。

一、生产计划问题1.1 最大利润问题在生产计划中,一个常见的线性规划问题是最大利润问题。

假设一个公司有多个产品,每个产品的生产和销售都有一定的成本和利润。

我们需要确定每个产品的生产数量,以最大化整体利润。

1.2 生产能力限制另一个常见的问题是生产能力限制。

公司的生产能力可能受到设备、人力资源或原材料等方面的限制。

我们需要在这些限制下,确定每个产品的生产数量,以实现最大化的利润。

1.3 市场需求满足除了考虑利润和生产能力,还需要考虑市场需求。

公司需要根据市场需求确定每个产品的生产数量,以满足市场需求,并在此基础上最大化利润。

二、资源分配问题2.1 资金分配问题在资源分配中,一个常见的线性规划问题是资金分配问题。

假设一个公司有多个项目,每个项目需要一定的资金投入,并有相应的回报。

我们需要确定每个项目的资金分配比例,以最大化整体回报。

2.2 人力资源分配另一个常见的问题是人力资源分配。

公司的人力资源可能有限,而各个项目对人力资源的需求也不同。

我们需要在人力资源有限的情况下,确定每个项目的人力资源分配比例,以实现最大化的效益。

2.3 时间分配除了资金和人力资源,时间也是一种有限资源。

在资源分配中,我们需要合理安排时间,以满足各个项目的需求,并在此基础上实现最大化的效益。

三、运输问题3.1 最小成本运输问题在运输领域,线性规划可以用于解决最小成本运输问题。

假设有多个供应地和多个需求地,每个供应地和需求地之间的运输成本不同。

我们需要确定每个供应地和需求地之间的货物运输量,以实现最小化的总运输成本。

3.2 运输能力限制另一个常见的问题是运输能力限制。

运输公司的运输能力可能受到车辆数量、运输距离或运输时间等方面的限制。

高中数学 线性规划经典例题集锦

高中数学 线性规划经典例题集锦
(x,y)到原点的距离的由平图方可,得点A使Z
最大,点B 使Z最小。
x 4y 3 0

求出A 为(5,2)。
3x 5y 25 0
x 1 由 x 4 y 3 0 求出B为(1,1)。
(3)若z=x2+y2,求z的最值.
y
5C
B
O1
x=1
x-4y+3=0
A
3x+5y-25=0
5
x
zmin 2, zmax 29.
求:(1). z y 3 的范围;
O
2
4x
(2).
z
y2 x 1
的范围.
2
Q
B
x3
解: (1) z y 3 表示可行域内任一点与定点Q(0,-3)连线的斜率,
x
因为kQA 2 , kQB 0,
z 所以 的范围为 ( , 2][0, ).
返回首页
关闭程序
(2).z y 2 表示可行域内任一点与定点
①m
0 时,
1 m
1
m1
② m 0 时,
易知, C (3,9) 到 O 距离最大,此时zmax 32 92 90 , zmin 02 02 0.
返回首页
关闭程序
3. (2).解: z x2 2x y2 (x 1)2 y2 1
y
6
表示可行域内任一点到定点 M ( 1,0) 距离
的平方再减去1.
过 M 作直线 AB 的垂线,垂足是 P
x 1 由 3x 5y 25 0 可得C为(1,4.4)
B
O1
x=1
A
3x+5y-25=0
5
x
zmax
kOC

线性规划经典例题

线性规划经典例题

线性规划经典例题一、问题描述某工厂生产两种产品A和B,产品A每单位利润为10元,产品B每单位利润为8元。

工厂有两个车间,分别是车间1和车间2。

每天车间1生产A产品需要2小时,B产品需要1小时;车间2生产A产品需要1小时,B产品需要3小时。

每天车间1的工作时间为8小时,车间2的工作时间为10小时。

工厂需要决定每天在两个车间分别生产多少单位的A和B产品,以最大化利润。

二、数学模型设每天在车间1生产的A产品单位数为x1,B产品单位数为y1;车间2生产的A产品单位数为x2,B产品单位数为y2。

根据题目要求,可以得到以下约束条件:车间1的工作时间约束:2x1 + 1y1 ≤ 8车间2的工作时间约束:1x2 + 3y2 ≤ 10产品A的产量约束:x1 + x2 ≤ A总产量产品B的产量约束:y1 + y2 ≤ B总产量非负约束:x1, y1, x2, y2 ≥ 0目标函数为利润的最大化:10x1 + 8y1 + 10x2 + 8y2三、求解过程1. 确定决策变量和目标函数决策变量:x1, y1, x2, y2目标函数:10x1 + 8y1 + 10x2 + 8y22. 确定约束条件车间1的工作时间约束:2x1 + 1y1 ≤ 8车间2的工作时间约束:1x2 + 3y2 ≤ 10产品A的产量约束:x1 + x2 ≤ A总产量产品B的产量约束:y1 + y2 ≤ B总产量非负约束:x1, y1, x2, y2 ≥ 03. 求解最优解利用线性规划求解方法,将目标函数和约束条件输入线性规划求解器,得到最优解。

四、数值计算与结果分析假设A总产量为100单位,B总产量为80单位。

将上述条件带入线性规划求解器,得到最优解如下:x1 = 20,y1 = 0,x2 = 60,y2 = 20根据最优解,工厂每天在车间1生产20单位的A产品,不生产B产品;在车间2生产60单位的A产品和20单位的B产品。

此时,工厂的利润最大化为:10 * 20 + 8 * 0 + 10 * 60 + 8 * 20 = 1160 元。

线性规划经典例题

线性规划经典例题

线性规划经典例题一、问题描述某公司生产两种产品A和B,每种产品的生产需要消耗不同的资源,且每种产品的利润也不同。

公司希望通过线性规划来确定生产计划,以最大化利润。

二、数据分析1. 资源消耗情况:- 产品A每单位需要消耗3个资源1和2个资源2;- 产品B每单位需要消耗2个资源1和4个资源2。

2. 利润情况:- 产品A每单位利润为10;- 产品B每单位利润为15。

3. 资源限制:- 资源1的总量为30个;- 资源2的总量为40个。

三、数学建模1. 定义变量:- 设生产的产品A数量为x,产品B数量为y。

2. 建立目标函数:- 目标函数为最大化利润,即Maximize Z = 10x + 15y。

3. 建立约束条件:- 资源1的消耗约束:3x + 2y ≤ 30;- 资源2的消耗约束:2x + 4y ≤ 40;- 非负约束:x ≥ 0,y ≥ 0。

四、求解将目标函数和约束条件带入线性规划模型,使用合适的求解方法,例如单纯形法、内点法等,求解得到最优解。

五、结果分析根据求解结果,得到最优解为x = 6,y = 6,此时利润最大为Z = 150。

意味着公司应该生产6个产品A和6个产品B,才能达到最大利润。

六、敏感性分析为了进一步了解模型的稳定性和可行性,可以进行敏感性分析。

通过改变资源数量、利润等参数,观察最优解的变化情况,以评估模型的可行性和鲁棒性。

七、结论根据线性规划模型的求解结果和敏感性分析,可以得出以下结论:- 公司应该生产6个产品A和6个产品B,以达到最大利润。

- 如果资源数量发生变化,最优解可能会有所调整。

- 如果产品利润发生变化,最优解也会相应变化。

综上所述,通过线性规划模型,我们可以帮助公司制定最优的生产计划,以达到最大利润。

同时,敏感性分析可以提供决策者对模型的可行性和鲁棒性的评估,为决策提供参考依据。

最新八种 经典线性规划例题(超实用)

最新八种 经典线性规划例题(超实用)

线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。

一、求线性目标函数的取值范围例1、若x、y满足约束条件222xyx y≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y的取值范围是()A、[2,6]B、[2,5]C、[3,6]D、(3,5]解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选 A二、求可行域的面积例2、不等式组260302x yx yy+-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为()A、4B、1C、5D、无穷大解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC 的面积减去梯形OMAC的面积即可,选 B三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有()A、9个B、10个C、13个D、14个解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2(0,0) x y x yx y x yx y x yx y x y+≤≥≥⎧⎪-≤≥⎪⎨-+≤≥⎪⎪--≤⎩作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D四、求线性目标函数中参数的取值范围例4、已知x、y满足以下约束条件5503x yx yx+≥⎧⎪-+≤⎨⎪≤⎩,使z=x+ay(a>0)取得最小值的最优解有无数个,则a的值为()A、-3B、3C、-1D、1解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选 D五、求非线性目标函数的最值例5、已知x、y满足以下约束条件220240330x yx yx y+-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x2+y2的最大值和最小值分别是()A、13,1B、13,2C、13,45D、解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方,即为45,选 C六、求约束条件中参数的取值范围例6、已知|2x-y+m|<3表示的平面区域包含点(0,0)和(-1,1),则m的取值范围是()A、(-3,6)B、(0,6)C、(0,3)D、(-3,3)解:|2x-y+m|<3等价于230 230x y mx y m-++>⎧⎨-+-<⎩由右图可知3330m m +>⎧⎨-<⎩ ,故0<m <3,选 C七·比值问题当目标函数形如y az x b-=-时,可把z 看作是动点(,)P x y 与定点(,)Q b a 连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。

线性规划经典例题

线性规划经典例题

线性规划经典例题一、问题描述某公司生产两种产品A和B,每个产品的生产需要消耗不同的资源。

现在公司希望通过线性规划来确定每种产品的生产数量,以最大化利润。

已知产品A每个单位的利润为10元,产品B每个单位的利润为15元。

同时,产品A每个单位需要消耗2个资源X和3个资源Y,产品B每个单位需要消耗4个资源X和1个资源Y。

公司总共有40个资源X和30个资源Y可供使用。

二、数学建模1. 假设产品A的生产数量为x,产品B的生产数量为y。

2. 目标函数:最大化利润。

利润可以表示为10x + 15y。

3. 约束条件:a) 资源X的约束条件:2x + 4y ≤ 40b) 资源Y的约束条件:3x + y ≤ 30c) 非负约束条件:x ≥ 0,y ≥ 0三、求解过程1. 根据数学建模中的目标函数和约束条件,可以得到如下线性规划模型:最大化:10x + 15y约束条件:2x + 4y ≤ 403x + y ≤ 30x ≥ 0,y ≥ 02. 使用线性规划求解方法,可以得到最优解。

通过计算,得到最优解为x = 6,y = 6,利润最大化为180元。

四、结果分析根据最优解,可以得知最大利润为180元,其中产品A的生产数量为6个,产品B的生产数量为6个。

同时,资源X还剩余28个,资源Y还剩余24个。

五、灵敏度分析对于线性规划问题,灵敏度分析可以帮助我们了解目标函数系数和约束条件右端项的变化对最优解的影响。

1. 目标函数系数的变化:a) 如果产品A的利润提高到12元,产品B的利润保持不变,重新求解线性规划模型可以得到新的最优解。

新的最优解为x = 8,y = 4,利润最大化为168元。

b) 如果产品A的利润保持不变,产品B的利润提高到20元,重新求解线性规划模型可以得到新的最优解。

新的最优解为x = 4,y = 7,利润最大化为190元。

2. 约束条件右端项的变化:a) 如果资源X的数量增加到50个,资源Y的数量保持不变,重新求解线性规划模型可以得到新的最优解。

线性规划经典例题

线性规划经典例题

线性规划经典例题一、问题描述:某公司生产两种产品A和B,每天的生产时间为8小时。

产品A每件需要1小时的加工时间,产品B每件需要2小时的加工时间。

公司每天的总加工时间不能超过8小时。

产品A的利润为100元/件,产品B的利润为200元/件。

公司希望最大化每天的利润。

二、数学建模:设公司每天生产的产品A的件数为x,产品B的件数为y。

则目标函数为最大化利润,即:Maximize Z = 100x + 200y约束条件:1. 生产时间约束:x + 2y ≤ 82. 非负约束:x ≥ 0, y ≥ 0三、线性规划模型:Maximize Z = 100x + 200ySubject to:x + 2y ≤ 8x ≥ 0y ≥ 0四、求解方法:可以使用线性规划求解器进行求解,例如使用单纯形法或内点法等。

以下是使用单纯形法求解的步骤:1. 将目标函数和约束条件转化为标准形式:目标函数:Maximize Z = 100x + 200y约束条件:x + 2y ≤ 8x ≥ 0y ≥ 02. 引入松弛变量将不等式约束转化为等式约束:x + 2y + s1 = 8x ≥ 0y ≥ 0s1 ≥ 03. 构建初始单纯形表:基变量 | x | y | s1 | 常数项-----------------------------Z | 0 | 0 | 0 | 0-----------------------------s1 | 1 | 2 | 1 | 84. 进行单纯形法迭代计算:a. 选择进入变量:选择目标函数系数最大的非基变量,即选择y进入基变量。

b. 选择离开变量:计算各个约束条件的最小比值,选择比值最小的非基变量对应的约束条件的基变量离开基变量。

在本例中,计算得到最小比值为4,对应的约束条件为x ≥ 0,所以x对应的基变量离开基变量。

c. 更新单纯形表:基变量 | x | y | s1 | 常数项-----------------------------Z | 0 | 0 | -2 | -400-----------------------------s1 | 1 | 2 | 1 | 8d. 继续迭代计算,直到目标函数系数均为负数或零,达到最优解。

线性规划经典例题

线性规划经典例题

线性规划经典例题引言概述:线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。

本文将介绍几个经典的线性规划例题,以匡助读者更好地理解和应用线性规划的原理和方法。

一、问题一:生产计划问题1.1 生产目标:某公司希翼最大化其利润。

1.2 生产约束:公司有两种产品A和B,每周生产时间有限,每一个产品的生产时间和利润有限制。

1.3 数学建模:设产品A和B的生产时间分别为x和y,利润分别为p和q,则目标函数为Maximize p*x + q*y,约束条件为x + y ≤ 40,3x + 2y ≤ 120,x ≥ 0,y ≥ 0。

二、问题二:资源分配问题2.1 目标:某公司希翼最大化其销售额。

2.2 约束:公司有三个部门,每一个部门需要的资源不同,且资源有限。

2.3 建模:设三个部门分别为A、B和C,资源分别为x、y和z,销售额为p、q和r,则目标函数为Maximize p*x + q*y + r*z,约束条件为x + y + z ≤ 100,2x + y + 3z ≤ 240,x ≥ 0,y ≥ 0,z ≥ 0。

三、问题三:投资组合问题3.1 目标:某投资者希翼最大化其投资组合的收益。

3.2 约束:投资者有多个可选的投资项目,每一个项目的收益和风险不同,且投资金额有限。

3.3 建模:设投资项目分别为A、B和C,收益分别为p、q和r,风险分别为a、b和c,投资金额为x、y和z,则目标函数为Maximize p*x + q*y + r*z,约束条件为x + y + z ≤ 100,a*x + b*y + c*z ≤ 50,x ≥ 0,y ≥ 0,z ≥ 0。

四、问题四:运输问题4.1 目标:某物流公司希翼最小化运输成本。

4.2 约束:公司有多个供应地和多个销售地,每一个供应地和销售地之间的运输成本和需求量不同,且供应量和销售量有限。

4.3 建模:设供应地和销售地分别为A、B和C,运输成本为p、q和r,需求量为x、y和z,供应量为a、b和c,则目标函数为Minimize p*x + q*y + r*z,约束条件为x + y + z ≤ a + b + c,x ≤ a,y ≤ b,z ≤ c,x ≥ 0,y ≥ 0,z ≥ 0。

线性规划经典例题

线性规划经典例题

线性规划经典例题一、问题描述某工厂生产两种产品A和B,每天可用的原料有限,而每种产品的制造需要不同数量的原料。

产品A每单位利润为10元,产品B每单位利润为8元。

产品A每天的制造时间为6小时,产品B每天的制造时间为4小时。

已知制造一个单位的产品A需要2小时,而制造一个单位的产品B需要1小时。

工厂的目标是最大化每天的利润。

二、数学建模1. 定义变量:- x1: 每天制造的产品A的单位数量- x2: 每天制造的产品B的单位数量2. 建立目标函数:目标函数为最大化每天的利润,即:Maximize Z = 10x1 + 8x23. 建立约束条件:- 原料的限制:每天可用的原料有限,产品A每单位需要2单位原料,产品B每单位需要3单位原料。

因此,原料的约束条件为:2x1 + 3x2 ≤ 原料数量- 时间的限制:每天的制造时间有限,产品A每单位需要2小时制造,产品B每单位需要1小时制造。

因此,时间的约束条件为:2x1 + x2 ≤ 制造时间- 非负约束:每天制造的产品数量不能为负数,因此,非负约束条件为:x1 ≥ 0x2 ≥ 0三、求解线性规划问题利用线性规划的求解方法,可以求解出最优解。

1. 图形法:通过绘制约束条件的直线或曲线,找到目标函数的最大值所在的区域。

2. 单纯形法:单纯形法是一种常用的求解线性规划问题的方法。

通过迭代计算,找到目标函数的最大值所在的点。

四、数值计算为了方便计算,我们假设原料数量为20单位,制造时间为10小时。

1. 图形法:绘制约束条件的直线或曲线,找到目标函数的最大值所在的区域。

在本例中,约束条件的直线为:2x1 + 3x2 ≤ 202x1 + x2 ≤ 10绘制直线后,找到目标函数的最大值所在的区域。

2. 单纯形法:利用单纯形法,可以求解出最优解。

根据约束条件和目标函数,可以构建如下的单纯形表格:| 基变量 | x1 | x2 | 原料数量 | 制造时间 | 目标函数 ||--------|----|----|----------|----------|---------|| x3 | 0 | 0 | 20 | 10 | 0 || x1 | 1 | 0 | 2 | 2 | 10 || x2 | 0 | 1 | 3 | 1 | 8 |通过迭代计算,可以得到最优解为:x1 = 5x2 = 0最大利润为:50元五、结果分析根据数值计算的结果,最优解为每天制造5个单位的产品A,不制造产品B,可以获得最大利润为50元。

线性规划题型整理与例题(含答案)

线性规划题型整理与例题(含答案)

积储知识:一. 1.点P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+By0+C=02. 点P(x0,y0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax0+By0+C>0;当B<0时,Ax0+By0+C<03. 点P(x0,y0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax0+By0+C<0;当B<0时,Ax0+By0+C>0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同, (2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反, 即:1.点P(x1,y1)和点Q(x2,y2)在直线 Ax+By+C=0的同侧,则有(Ax1+By1+C)(Ax2+By2+C)>02.点P(x1,y1)和点Q(x2,y2)在直线 Ax+By+C=0的两侧,则有(Ax1+By1+C)( Ax2+By2+C)<0二.二元一次不等式表示平面区域:①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域. 不.包括边界;②二元一次不等式Ax+By+C≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界;注意:作图时,不包括边界画成虚线;包括边界画成实线.三、判断二元一次不等式表示哪一侧平面区域的方法:方法一:取特殊点检验; “直线定界、特殊点定域原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.特殊地,当C≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。

八种经典线性规划例题

八种经典线性规划例题

线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。

一、求线性目标函数的取值范围例1、若x、y满足约束条件222xyx y≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y的取值范围是()A、[2,6]B、[2,5]C、[3,6]D、(3,5]解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选 A二、求可行域的面积例2、不等式组260302x yx yy+-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为()A、4B、1C、5D、无穷大解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC 的面积减去梯形OMAC的面积即可,选 B三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有()A、9个B、10个C、13个D、14个解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2(0,0) x y x yx y x yx y x yx y x y+≤≥≥⎧⎪-≤≥⎪⎨-+≤≥⎪⎪--≤⎩作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D四、求线性目标函数中参数的取值范围例4、已知x、y满足以下约束条件5503x yx yx+≥⎧⎪-+≤⎨⎪≤⎩,使z=x+ay(a>0)取得最小值的最优解有无数个,则a的值为()A、-3B、3C、-1D、1解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选 D五、求非线性目标函数的最值例5、已知x、y满足以下约束条件220240330x yx yx y+-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x2+y2的最大值和最小值分别是()A、13,1B、13,2C、13,45D、解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方,即为45,选 C六、求约束条件中参数的取值范围例6、已知|2x-y+m|<3表示的平面区域包含点(0,0)和(-1,1),则m的取值范围是()A、(-3,6)B、(0,6)C、(0,3)D、(-3,3)解:|2x-y+m|<3等价于230 230 x y mx y m-++>⎧⎨-+-<⎩由右图可知3330mm+>⎧⎨-<⎩,故0<m<3,选 C七·比值问题当目标函数形如y az x b-=-时,可把z 看作是动点(,)P x y 与定点(,)Q b a 连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。

八种 经典线性规划例题(超实用)

八种 经典线性规划例题(超实用)

线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。

一、求线性目标函数的取值范围例1、若x、y满足约束条件222xyx y≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y的取值范围是()A、[2,6]B、[2,5]C、[3,6]D、(3,5]解:如图,作出可行域,作直线l:x+2y=0,将【l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选A二、求可行域的面积例2、不等式组260302x yx yy+-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为()A、4B、1C、5D、无穷大解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC 的面积减去梯形OMAC的面积即可,选B'三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有()A、9个B、10个C、13个D、14个解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2(0,0) x y x yx y x yx y x yx y x y+≤≥≥⎧⎪-≤≥⎪⎨-+≤≥⎪⎪--≤⎩作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选D四、求线性目标函数中参数的取值范围例4、已知x、y满足以下约束条件5503x yx yx+≥⎧⎪-+≤⎨⎪≤⎩,使z=x+ay(a>0)取得最小值的最优解有无数个,则a的值为()A、-3B、3C、-1D、1解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选D~五、求非线性目标函数的最值例5、已知x、y满足以下约束条件220240330x yx yx y+-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x2+y2的最大值和最小值分别是()A、13,1B、13,2 .C、13,45D、5解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方,即为45,选C六、求约束条件中参数的取值范围例6、已知|2x-y+m|<3表示的平面区域包含点(0,0)和(-1,1),则m的取值范围是()"A、(-3,6)B、(0,6)C、(0,3)D、(-3,3)解:|2x-y+m|<3等价于230 230x y mx y m-++>⎧⎨-+-<⎩由右图可知3330m m +>⎧⎨-<⎩,故0<m <3,选C七·比值问题当目标函数形如y az x b-=-时,可把z 看作是动点(,)P x y 与定点(,)Q b a 连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。

线性规划经典例题

线性规划经典例题

线性规划经典例题一、问题描述某公司生产两种产品A和B,每个单位产品A的利润为100元,每个单位产品B的利润为150元。

公司有两个车间可用于生产这两种产品,每个车间每天的工作时间为8小时。

产品A在车间1生产需要1小时,产品B在车间1生产需要2小时;产品A在车间2生产需要2小时,产品B在车间2生产需要1小时。

每天车间1的生产能力为400个单位产品A或200个单位产品B,车间2的生产能力为300个单位产品A或150个单位产品B。

公司的目标是在满足车间生产能力的前提下,最大化利润。

二、数学建模设x1为在车间1生产的产品A的数量,x2为在车间1生产的产品B的数量,x3为在车间2生产的产品A的数量,x4为在车间2生产的产品B的数量。

目标函数:max Z = 100x1 + 150x2 + 100x3 + 150x4约束条件:车间1的生产能力:x1 + x2 ≤ 4002x1 + x2 ≤ 800车间2的生产能力:x3 + x4 ≤ 300x3 + 2x4 ≤ 300非负约束:x1, x2, x3, x4 ≥ 0三、求解过程使用线性规划的求解方法,可以得到最优解。

1. 将目标函数和约束条件转化为标准形式:目标函数:max Z = 100x1 + 150x2 + 100x3 + 150x4约束条件:x1 + x2 + 0x3 + 0x4 ≤ 4002x1 + x2 + 0x3 + 0x4 ≤ 8000x1 + 0x2 + x3 + x4 ≤ 3000x1 + 0x2 + x3 + 2x4 ≤ 300x1, x2, x3, x4 ≥ 02. 使用线性规划求解器求解得到最优解:最优解为:x1 = 200, x2 = 200, x3 = 0, x4 = 100最大利润为:Z = 100(200) + 150(200) + 100(0) + 150(100) = 50000元四、结果分析根据求解结果,最优解是在车间1生产200个单位产品A,200个单位产品B,在车间2生产100个单位产品B,不需要在车间2生产产品A。

八种经典线性规划例题最全总结(经典)

八种经典线性规划例题最全总结(经典)

线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。

一、求线性目标函数的取值范围例1、若x 、y 满足约束条件,则z=x+2y 的取值范围是 ( )A 、[2,6]B 、[2,5]C 、[3,6]D 、(3,5]解:如图,作出可行域,作直线l :x+2y =0,将l 向右上方平移,过点A (2,0)时,有最小值2,过点B (2,2)时,有最大值6,故选A二、求可行域的面积例2、不等式组表示的平面区域的面积为 ( )A 、4B 、1C 、5D 、无穷大解:如图,作出可行域,△ABC 的面积即为所求,由梯形OMBC的面积减去梯形OMAC 的面积即可,选B三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( ) A 、9个 B 、10个 C 、13个 D 、14个解:|x|+|y|≤2等价于作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选D222x y x y ≤⎧⎪≤⎨⎪+≥⎩260302x y x y y +-≥⎧⎪+-≤⎨⎪≤⎩2(0,0)2(0,0)2(0,0)2(0,0)x y x y x y x y x y x y x y x y +≤≥≥⎧⎪-≤≥⎪⎨-+≤≥⎪⎪--≤⎩四、求线性目标函数中参数的取值范围例4、已知x 、y 满足以下约束条件,使z=x+ay(a>0)取得最小值的最优解有无数个,则a 的值为 ( ) A 、-3 B 、3 C 、-1 D 、1解:如图,作出可行域,作直线l :x+ay =0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x+y =5重合,故a=1,选D五、求非线性目标函数的最值例5、已知x 、y 满足以下约束条件 ,则z=x 2+y 2的最大值和最小值分别是( )A 、13,1B 、13,2C 、13,D 、,解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为,选C 六、求约束条件中参数的取值范围例6、已知|2x -y +m|<3表示的平面区域包含点(0,0)和(-1,1),则m 的取值范围是 ( )A 、(-3,6)B 、(0,6)C 、(0,3)D 、(-3,3)解:|2x -y +m|<3等价于由右图可知 ,故0<m <3,选C5503x y x y x +≥⎧⎪-+≤⎨⎪≤⎩220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩4545230230x y m x y m -++>⎧⎨-+-<⎩3330m m +>⎧⎨-<⎩七、比值问题当目标函数形如时,可把z 看作是动点与定点连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。

(完整版)线性规划案例

(完整版)线性规划案例

(完整版)线性规划案例1.人力资源分配问题设司机和乘务人员分别在各时间段开始时上班,并连续工作8小时,问该公交线路应怎样安排司机和乘务人员,既能满足工作需要,又使配备司机和乘务人员的人数最少?解:设x i 表示第i班次时开始上班的司机和乘务人员数,这样我们建立如下的数学模型。

目标函数:Min x1 + x2 + x3 + x4 + x5 + x6约束条件:s.t. x1 + x6 ≥60x1 + x2 ≥70x2 + x3 ≥60x3 + x4 ≥50x4 + x5 ≥20x5 + x6 ≥30x1,x2,x3,x4,x5,x6 ≥0运用lingo求解:Objective value: 150.0000ariable Value Reduced Cost X1 60.00000 0.000000X2 10.00000 0.000000X3 50.00000 0.000000X4 0.000000 0.000000X5 30.00000 0.000000X6 0.000000 0.000000例2.一家中型的百货商场,它对售货员的需求经过统计分析如下表所示。

为了保证售货人员充分休息,售货人员每周工作5天,休息两天,并要求休息的两天是连续的。

问应该如何安排售货人员的作息,既满足工作需要,又使配备的售货人员的人数最少?解:设x i ( i = 1,2,…,7)表示星期一至日开始休息的人数,这样我们建立如下的数学模型。

目标函数:Min x1 + x2 + x3 + x4 + x5 + x6 + x7约束条件:s.t. x1 + x2 + x3 + x4 + x5 ≥28x2 + x3 + x4 + x5 + x6 ≥15x3 + x4 + x5 + x6 + x7 ≥24x4 + x5 + x6 + x7 + x1 ≥25x5 + x6 + x7 + x1 + x2 ≥19x6 + x7 + x1 + x2 + x3 ≥31x7 + x1 + x2 + x3 + x4 ≥28x1,x2,x3,x4,x5,x6,x7 ≥0lingo求解Objective value: 36.00000Variable Value Reduced Cost X1 12.00000 0.000000X2 0.000000 0.3333333 X3 11.00000 0.000000X4 5.000000 0.000000X5 0.000000 0.000000X6 8.000000 0.000000X7 0.000000 0.000000例3. 某储蓄所每天的营业时间为上午9:00到下午17:00,根据经验,每天不同时间段所需要储蓄所可以雇佣全时和半时两类服务员。

线性规划经典例题

线性规划经典例题

线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。

一、求线性目标函数的取值范围例1、若x、y满足约束条件222xyx y,则z=x+2y的取值范围是()A、[2,6]B、[2,5]C、[3,6]D、(3,5]解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选 A二、求可行域的面积例2、不等式组260302x yx yy表示的平面区域的面积为()A、4B、1C、5D、无穷大解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBCxyO 22x=2y =2x + y =2BA2x + y –6= 0= 5x+y – 3 = 0OyxABCMy =2的面积减去梯形OMAC的面积即可,选 B三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有()A、9个B、10个C、13个D、14个解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2(0,0) x y x yx y x yx y x yx y x y作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D四、求线性目标函数中参数的取值范围例4、已知x、y满足以下约束条件5503x yx yx,使z=x+ay(a>0)取得最小值的最优解有无数个,则a的值为()A、-3B、3C、-1D、1xyOx + y = 5x – y + 5 = 0Oyxx=3解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选 D五、求非线性目标函数的最值例5、已知x、y满足以下约束条件220240330x yx yx y,则z=x2+y2的最大值和最小值分别是()A、13,1B、13,2C、13,45D、13,255解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方,即为45,选 C六、求约束条件中参数的取值范围例6、已知|2x-y+m|<3表示的平面区域包含点(0,0)和(-1,1),则m的取值范围是()A、(-3,6)B、(0,6)C、(0,3)D、(-3,3)解:|2x-y+m|<3等价于230 230 x y mx y m由右图可知3330mm,故0<m<3,选 CO2x – y = 0y2x – y + 3 = 02x + y - 2= 0= 5x – 2y + 4 = 03x – y – 3 = 0OyxA七·比值问题当目标函数形如y a zxb时,可把z 看作是动点(,)P x y 与定点(,)Q b a 连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。

线性规划经典例题

线性规划经典例题

线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。

一、求线性目标函数的取值范围例1、若x、y满足约束条件222xyx y≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y的取值范围是()A、[2,6]B、[2,5]C、[3,6]D、(3,5]解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选 A二、求可行域的面积例2、不等式组260302x yx yy+-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为()A、4B、1C、5D、无穷大解:如图,作出可行域,△A B C的面积即为所求,由梯形O M B C的面积减去梯形O M A C的面积即可,选 B三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有()A、9个B、10个C、13个D、14个解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2(0,0) x y x yx y x yx y x yx y x y+≤≥≥⎧⎪-≤≥⎪⎨-+≤≥⎪⎪--≤⎩作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D四、求线性目标函数中参数的取值范围例4、已知x、y满足以下约束条件5503x yx yx+≥⎧⎪-+≤⎨⎪≤⎩,使z=x+a y(a>0)取得最小值的最优解有无数个,则a的值为()A、-3B、3C、-1D、1解:如图,作出可行域,作直线l:x+a y=0,要使目标函数z=x+a y(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选 D五、求非线性目标函数的最值例5、已知x、y满足以下约束条件220240330x yx yx y+-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x2+y2的最大值和最小值分别是()A、13,1B、13,2C、13,45D、5解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|A O|2=13,最小值为原点到直线2x+y-2=0的距离的平方,即为45,选C六、求约束条件中参数的取值范围例6、已知|2x-y+m|<3表示的平面区域包含点(0,0)和(-1,1),则m的取值范围是()A、(-3,6)B、(0,6)C、(0,3)D、(-3,3)解:|2x-y+m|<3等价于230 230x y mx y m-++>⎧⎨-+-<⎩由右图可知3330mm+>⎧⎨-<⎩,故0<m<3,选 C七·比值问题当目标函数形如y azx b-=-时,可把z看作是动点(,)P x y与定点(,)Q b a连线的斜率,这样目标函数的最值就转化为PQ连线斜率的最值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性规划常见题型及解法
由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。

一、求线性目标函数的取值范围
例1、若x、y满足约束条件
2
2
2
x
y
x y





⎪+≥

,则z=x+2y的取值范围是()
A、[2,6]
B、[2,5]
C、[3,6]
D、(3,5]
解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选 A
二、求可行域的面积
例2、不等式组
260
30
2
x y
x y
y
+-≥


+-≤

⎪≤

表示的平面区域的面积为()
A、4
B、1
C、5
D、无穷大
解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC 的面积减去梯形OMAC的面积即可,选 B
三、求可行域中整点个数
例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有()
A、9个
B、10个
C、13个
D、14个
解:|x|+|y|≤2等价于
2(0,0)
2(0,0)
2(0,0)
2(0,0) x y x y
x y x y
x y x y
x y x y
+≤≥≥

⎪-≤≥


-+≤≥⎪
⎪--≤

作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D
四、求线性目标函数中参数的取值范围
例4、已知x、y满足以下约束条件
5
50
3
x y
x y
x
+≥


-+≤

⎪≤

,使z=x+ay(a>0)
取得最小值的最优解有无数个,则a的值为()
A、-3
B、3
C、-1
D、1
解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选 D
五、求非线性目标函数的最值
例5、已知x、y满足以下约束条件
220
240
330
x y
x y
x y
+-≥


-+≥

⎪--≤

,则z=x2+y2的最大值和最小值分别是()
A、13,1
B、13,2
C、13,4
5
D

解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方,
即为4
5
,选 C
六、求约束条件中参数的取值范围
例6、已知|2x-y+m|<3表示的平面区域包含点(0,0)和(-1,1),则m的取值范围是()
A、(-3,6)
B、(0,6)
C、(0,3)
D、(-3,3)
解:|2x-y+m|<3等价于
230 230
x y m
x y m
-++>⎧

-+-<⎩
由右图可知
33
30
m
m
+>


-<

,故0<m<3,选 C
七·比值问题
当目标函数形如y a
z x b
-=
-时,可把z 看作是动点(,)P x y 与定点(,)Q b a 连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。

例 已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≤0,x ≥1,x +y -7≤0,
则 y
x 的取值范围是( ).
(A )[95,6] (B )(-∞,9
5]∪[6,+∞)
(C )(-∞,3]∪[6,+∞) (D )[3,6]
解析 y x
是可行域内的点M (x ,y )与原点O
(0,0)连线的斜率,当直线OM 过点(52,92)时,y
x 取得
最小值95;当直线OM 过点(1,6)时,y
x
取得最大值6. 答案A。

相关文档
最新文档