分式及分式方程知识点总结

合集下载

分式与分式方程

分式与分式方程

分式与分式方程一认识分式知识点一分式的概念1、分式的概念从形式上来看,它应满足两个条件:(1)写成的形式(A、B表示两个整式) (2)分母中含有这两个条件缺一不可2、分式的意义(1)要使一个分式有意义,需具备的条件是(2)要使一个分式无意义,需具备的条件是(3)要使分式的值为0,需具备的条件是知识点二、分式的基本性质分式的分子与分母都乘以(或除以)同一个分式的值不变用字母表示为AB =,A M A A MB M B B M⨯÷=⨯÷(其中M是不等于零的整式)知识点三、分式的约分1、概念:把一个分式的分子和分母中的公因式约去,这种变形称为分式的约分2、依据:分式的基本性质注意:(1)约分的关键是正确找出分子与分母的公因式(2)当分式的分子和分母没有公因式时,这样的分式称为最简分式,化简分式时,通常要使结果成为最简分式或整式。

(3)要会把互为相反数的因式进行变形,如:(x--y )2=(y--2)2二、分式的乘除法 【巩固训练】 1、要使分式51x -有意义,则x 的取值范围是( )(A)x ≠1 (B)x >1 (C)x <1 (D)x ≠-12、分式242x x -+的值为0,则x 的取值是A .2x =-B .2x =±C .2x =D .0x =3、函数y=中自变量x 的取值范围是( ) A . x >3 B .x <3 C .x ≠3 D . x ≠﹣34.式子有意义的x 的取值范围是( ) 5.分式的值为零,则x 的值为( )A . ﹣1B .0 C .±1 D . 16.当x= 时,分式无意义.7、使式子1+1 x -1有意义的x 的取值范围是 。

8、在函数3xy x =+中,自变量x 的取值范围是 . 9、已知关于x 的方程123++x nx =2的解是负数,则n 的取值范围为 . 10、化简:111x x x ---= . 11、化简212(1)211a a a a +÷+-+-的结果是( )A .11a - B .11a + C .211a - D .211a + 12、 化简:111x x x ---= . 13、化简的结果为( ) A . ﹣1 B . 1 C .D .14、化简+的结果为 .15、化简分式的结果是( )A .2B .C .D .-216.若m 为正实数,且13m m -=,221m m-则= 17分式方程2102x x-=-的根是( ) A .x =1 B .x =-1 C .x =2D .x =-218、分式方程xx 325=-的解是( )A .x =3B .x =3-C .x =34D .x =34-19、分式方程的解是( ) A . x =﹣2B .x =1 C . x =2 D . x =320、已知关于x 的方程123++x nx =2的解是负数,则n 的取值范围为 . 21.分式方程21311x x x+=--的解是_________________.22. 从三个代数式:①222b ab a +-,②b a 33-,③22b a -中任意选择两个代数式构造成分式,然后进行化简,并求当a =6,b =3时该分式的值.23、先化简,再求值:,其中,.24.先化简,再求值:23111x x x x -⎛⎫÷+- ⎪--⎝⎭,其中x =3-2.25.先化简,再求值: (1)12a )111(2++÷+-a a a ,其中a=3-1.6.(2)244412222+-÷⎪⎭⎫ ⎝⎛++--+-a a a a a a a a ,其中a=2-1.26、.先化简,再求值: 22111121x x x x x x x ++⎛⎫+÷ ⎪---+⎝⎭, 2.x =其中27.解方程:.28.解分式方程:12422=-+-x xx .29.甲计划用若干个工作日完成某项工作,从第三个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作的天数是A.8B.7C.6D.530、小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,并且在距离学校60米的地方追上了他。

分式必考知识点

分式必考知识点

分式是数学中的一个重要知识点,也是许多学生在学习数学过程中较为困惑的部分。

本文将从基础概念、分式的基本运算、简化分式以及分式方程等方面,逐步介绍分式的必考知识点。

一、基础概念1.分式的定义:分式是指一个整体被分为若干等份,每份的大小用分母表示,总份数用分子表示。

分子在上,分母在下,二者之间用一条水平线隔开,如:1/2。

2.分子和分母:在分式中,分子表示被分割的整体中的一份,分母表示整体被分割成的份数。

3.分式的值:分式的值等于分子除以分母的结果。

例如,1/2表示整体被分为2份,其中的1份。

二、基本运算1.分式的加减法:分式的加减法要求分母相同,通过找到分式的最小公倍数,将分式的分母转换为相同的数,然后对分子进行加减。

例如,1/3 +1/4 = 4/12 + 3/12 = 7/12。

2.分式的乘法:分式的乘法要求将分子与分母分别相乘。

例如,1/2 ×2/3 = (1 × 2)/(2 × 3) = 2/6 = 1/3。

3.分式的除法:分式的除法可以转化为乘法的倒数运算。

将除法转换为乘法,并将除数的分子与被除数的分母相乘,除数的分母与被除数的分子相乘。

例如,1/2 ÷ 2/3 = 1/2 × 3/2 = 3/4。

三、简化分式1.约分:将分式的分子与分母同时除以它们的最大公约数,得到一个等价的最简分式。

例如,4/8可以约分为1/2,因为4和8的最大公约数是4。

2.整数部分化为分数:将整数转化为分数形式,分子为整数,分母为1。

例如,2可以表示为2/1。

四、分式方程1.分式方程的定义:分式方程是含有分式的等式。

分式方程的求解过程与一元一次方程类似。

2.分式方程的求解步骤:–对分式方程的两边进行通分,将分式方程转化为整式方程。

–将方程两边的分式化为最简分式。

–化简方程两边的整式,并合并同类项。

–通过移项和合并同类项,将方程化为一元一次方程。

–求解方程,得到未知数的值。

分式方程知识点归纳

分式方程知识点归纳

分式方程知识点归纳分式方程是指含有分子和分母的方程,分子和分母分别为代数式或数字,并且方程中包含有未知数的方程。

下面将分式方程的知识点进行归纳,以便更好地理解和应用分式方程。

一、基本概念:1.分式方程的定义:含有未知数、带有分式形式的等式称为分式方程。

2.分式的定义:分式是由一个或多个代数式构成的比。

二、分式方程的解的性质:1.分式方程的等价方程:分式方程可以转化为多项式方程进行求解,这样可以得到等价的方程,两者的解是相同的。

2.分式方程的根的性质:一个分式方程的解,如果使得分式方程中的分子等于0,则该解就是方程的根。

三、分数的性质:1.分式的约分:分式的分子和分母同时除以它们的公因式,可以得到分式的约分式。

2.分式的通分:将不同分母的分式通过找到它们的最小公倍数,转化为具有相同分母的等价分式。

3.分数的四则运算:分数之间可以进行加减乘除的运算,需要注意分子和分母的相应运算。

四、分式方程的解法:1.乘法解法:对分式方程的两边同乘以一个使得方程中的分母消去的数,从而化简为一个多项式方程。

2.加减消去解法:对分式方程的两边同乘以使得方程中的分母消去的数,然后将方程中的分式整理为一个多项式,并进行求解。

3.代入解法:将分式方程中的一个未知数表示成另一个未知数的代数式,再代入到分式方程中,得到一个不含有代入的未知数的分式方程,进而进行求解。

4.通分解法:对分式方程的两边同时乘以方程中所有的分母的积,将分式方程化简为一个多项式方程进行求解。

五、分式方程的解的判定:1.当方程的分式的分子为0时,方程的解为0。

2.当方程的分式的分子和分母存在着相同的因式时,方程的解为使得分式方程中的分子等于0的值。

3.当分式方程的分母的值等于0时,方程没有解。

六、应用:分式方程在实际问题中的应用非常广泛,例如在物理学和金融学中,经常需要使用分式方程来解决实际问题。

比如计算财务利润率、财务收益率、物体的运动速度等。

七、常见的分式方程:1.一次方程:分式方程的分子和分母都是一次函数的方程。

分式与分式方程知识点总结

分式与分式方程知识点总结

分式与分式方程知识点总结分式是一种特殊的代数表达式,有分子和分母组成,通常用斜杠“/”或者横线“-”表示分数线。

分式可以表示为a/b的形式,其中a为分子,b为分母。

分式的乘法和除法的法则:1.分式乘法法则:分式的乘法可以简化为分子相乘,分母相乘的运算。

即(a/b)*(c/d)=(a*c)/(b*d)。

2.分式除法法则:将除法转化为乘法后,取除数的倒数,然后按照分式乘法法则进行运算。

即(a/b)/(c/d)=(a*d)/(b*c)。

分式的加法和减法的法则:1.分式加法法则:要进行分式的加法,需要先找到两个分式的共同分母。

然后将分式的分子按照共同分母的比例进行加法运算。

即a/b+c/d=(a*d+b*c)/(b*d)。

2.分式减法法则:和分式加法法则类似,需要找到两个分式的共同分母。

然后将分式的分子按照共同分母的比例进行减法运算。

即a/b-c/d=(a*d-b*c)/(b*d)。

分式的化简:将分式化简为最简形式的步骤如下:1. 如果分子和分母有相同的公因子,可以约分掉。

即a/b =(a/gcd(a,b)) / (b/gcd(a,b))。

2.如果分数的分子和分母都是整数,并且分子能整除分母,可以化简为整数。

即a/b=a/b,其中a能整除b。

3.如果分式的分子和分母都是多项式,并且可以进行因式分解,可以使用因式分解后的形式来化简分式。

分式方程是包含一个或多个分式的方程。

求解分式方程的一般步骤如下:1.将方程两边的分式通过相乘分母的方法,化简为有理式。

2.对于有理式的方程,可以通过解方程的方法求出x的值。

3.检验所求得的x的值是否满足原方程,如果满足,即为解;如果不满足,则该方程无解。

在求解分式方程时,需要注意以下几个问题:1.分母不能为0,需要排除分母为0的解。

2.对于含有分式的方程,需要注意去除分式的分母后方程是否成立,避免出现无意义的解。

3.可能出现分母为0的情况,需要排除该解,以免引起除法运算错误。

分式及分式方程知识点总结

分式及分式方程知识点总结

分式及分式方程知识点总结分式(Fraction)是由两个整数构成的比值,其中一个是分子(Numerator),另一个是分母(Denominator)。

分式可以表示为 a/b,其中 a 是分子,b 是分母。

分式可以是一个整数、一个小数、或者是两个整数的比值。

分式可以用于表示实际问题中的比例、率、百分比等。

在数学中,分式经常被用于代替除法运算,因为分式的形式更加简洁。

在处理分式时,有几个关键概念和知识点需要了解。

一、分式的简化与等价分式2.等价分式:如果两个分式的值相等,那么它们是等价的。

可以通过将一个分式的分子乘以另一个分式的分母,分母乘以另一个分式的分子,化简两个分式,然后判断它们的值是否相等,确定它们是否等价。

二、分式的加减乘除2.分式的乘除:两个分式的乘积等于它们的分子乘积作为新分子,分母乘积作为新分母;两个分式的除法等于第一个分式的分子乘以第二个分式的倒数作为新分子,第一个分式的分母乘以第二个分式的分子作为新分母。

三、分式方程分式方程(Fractional Equation)是包含一个或多个分式的方程。

解分式方程的关键是找到合适的方法将方程转化为整式方程。

1.方法一:通分2.方法二:消去如果分式方程中有一个分式,可以通过消去(Cancellation)或者消去因子(Cancellation Factor)的方式将分母消去,得到一个整式方程。

3.方法三:代入如果分式方程比较复杂,无法通过通分或者消去的方法解得,可以通过代入(Substitution)的方法,将一个变量用另一个变量的表达式代入,然后去掉分式,得到一个整式方程进行求解。

需要注意的是,在解分式方程时,需要验证得到的解是否满足原方程,因为有时候方程中的一些值可能导致分母为零,从而使分式无解。

四、常见的分式及分式方程1.比例和比例方程:比例是两个分式的等价形式,比例方程是一个或多个比例的方程。

2.百分比和百分比方程:百分比是分数的一种特殊形式,百分比方程是包含百分比的方程。

北师大版八年级下册数学 第五章 分式与分式方程(知识点)

北师大版八年级下册数学  第五章 分式与分式方程(知识点)

第五章分式与分式方程知识点1:分式的概念1、分式的定义:一般地,用A,B表示两个正式,A÷B可以表示成AB的形式。

如果B中含有字母,那么称AB为分式,其中A称为分式的分子,B称为分式的分母。

分式需要满足的三个条件:(1)是形如AB的式子;(2)A,B都整式;(3)分母B中必须含有字母。

分式有意义的条件:分母不能为0.分式无意义的条件:分母等于0.分式的值为0的条件:分子等于0且分母不等于0.知识点2:分式的性质2、分式的基本性质分式的基本性质:分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变。

字母表示:AB =A·CB·C,AB=A÷CB÷C(C≠0,其中A,B,C均是整式)运用条件:(1)分子和分母要同时做“乘法(或除法)”运算;(2)“乘(或除以)”的对象必须是同一个不等于0的整式。

3、分式的符号法则法则内容:分式的分子、分母与分式本身的符号同时改变其中两个,分式的值不变。

字母表示:AB =−A−B=−−AB=−A−B知识点3:分式的约分与通分4、分式的约分约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分,即A·CB·C =AB(C为整式且C≠0).约分的方法:如果分式的分子、分母都是单项式,那么直接约去分子、分母的公因式;如果分式的分子、分母中至少有一个多项式,那么先分解因式,再约去分子、分母的公因式。

最简分式:分子与分母没有公因式的分式,叫做最简分式。

5、分式的通分通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

用字母表示:将AB 和CD通分,AB=A·DB·D,CD=B·CB·D(分母都为B·D)。

通分的步骤:(1)将所有分式的分母化为乘积的形式,当分母为多项式时,应进行因式分解;(2)确定最简公分母,即各分母的所有因式的最高次幂的积;(3)将分子、分母同乘一个因式,使分母变为最简公分母。

分式与分式方程辅导讲义

分式与分式方程辅导讲义

分式与分式方程【知识框架】【知识点&例题】知识点一:分式的基本概念一般地,如果,表示两个整式,并且中含有字母,那么式子B A 叫做分式,为分子,为分母。

知识点二:分式的基本性质 分式的分子和分母同乘(或除以)一个不等于的整式,分式的值不变。

字母表示:C B C••=A B A,C B C÷÷=A B A ,其中、、是整式,。

拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即B B AB B --=--=--=AAA注意:在应用分式的基本性质时,要注意这个限制条件和隐含条件B ≠0。

知识点三:分式的乘除法法则分式乘分式:用分子的积作为积的分子,分母的积作为积的分母。

式子表示为:db c a d c b a ••=•分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。

式子表示为cc ••=•=÷bd a d b a d c b a 分式的乘方:把分子、分母分别乘方。

式子n n nb a b a =⎪⎭⎫ ⎝⎛巩固练习:1.若分式的值为0,则x 的值为 .2.当= 时,分式的值为零.3.计算x xy y xy y xy y x xy y22222222++-÷+-+4.先化简,再求值:其中.242x x --x 26(1)(3)x x x x ----2291333x x x x x ⎛⎫-⋅ ⎪--+⎝⎭13x =5.先化简,再求值:,其中.6、先化简,再求值:,其中7、解下列方程:(1)(2)(3) (4)532224x x x x -⎛⎫--÷ ⎪++⎝⎭3x 22144(1)1a a a a a-+-÷--1a =-3522x x =-223444x x x x =--+22093x x x +=-+35012x x -=+9、在年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地千米.抢修车装载着所需材料先从供电局出发,分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的倍,求这两种车的速度。

分式与分式方程知识点

分式与分式方程知识点

分式与分式方程知识点分式是数学中的一个重要概念,它是由两个整数的比构成的表达式。

在分数中,分子表示被分割的数量,分母表示将整体划分的份数。

掌握好分式的相关知识,对于解决各种实际问题以及在后续数学学习中起到至关重要的作用。

1. 分式的基本运算在进行分式的基本运算时,需要掌握分式的相加、相减、相乘和相除四种基本运算法则。

首先,当分式的分母相同的时候,可以直接将分子相加或相减。

例如,分式 1/4 + 2/4 = 3/4;分式 5/7 - 3/7 = 2/7。

其次,当分式的分母不同但可以化为相同分母的时候,可以通过找到最小公倍数,将分数化为相同的分母之后再进行运算。

例如,分式 1/2 + 1/3 可以通过最小公倍数为6,将分式转化为 3/6 + 2/6 = 5/6。

另外,分式的相乘和相除运算需要分别将分子与分母相乘或相除。

例如,分式 2/3 * 4/5 = 8/15;分式 3/7 ÷ 1/4 = 12/7。

2. 分式方程的解分式方程是由分式构成的方程,它的未知数通常出现在分数的分子或分母中。

解分式方程的关键在于消除分母,使方程转化为一般方程,从而求解未知数。

解分式方程的基本步骤如下:(1) 消去分母。

通过将方程两边同乘以分母的最小公倍数,可以将方程中的分母消除,形成原方程的等效方程。

例如,对于分式方程 1/x + 1/(x+1) = 1/2,可以将方程两边同乘以2x(x+1),得到 2(x+1) + 2x = x(x+1)。

(2) 解一元方程。

将经过一次化简后的方程转化为一般的方程形式,并进行进一步的求解。

对于上述的等效方程,按照一般方程的解法进行处理,得到 x = 2。

(3) 验证解的可行性。

将得到的解代入原方程进行验证,确保解的可行性。

对于分式方程 1/x + 1/(x+1) = 1/2,将 x = 2 代入方程左侧得到 1/2 +1/3 = 1/2,等式成立。

因此, x = 2 是原方程的解。

分式知识点总结与分式方程的应用

分式知识点总结与分式方程的应用

分式知识点总结与分式方程的应用一、分式的定义和基本性质分式是指两个整数的比的形式,分子和分母都可以是整数。

分式的一般形式为a/b,其中a为分子,b为分母。

分式也可以是带有字母的表达式。

1.分式的定义:分式表示两个数的比。

分子表示比的被除数,分母表示比的除数。

2.分式的基本性质:①分式的值是确定的:分式的值只与分子和分母有关,而与分子和分母的选取方法无关。

②分式的约定:分式的分母不能为0,即b≠0。

③分式的约分:分式a/b可以约分为最简分式的条件是a和b都有因数c,这样a和b都可以被c整除。

④分式的最简形式:分式a/b的最简形式是分子分母互为质数⑤分式的倒数:若分式a/b不等于0,则它的倒数为b/a。

⑥分式的乘法:若a/c和b/d是两个非零分式,则a/c与b/d的乘积为(a·b)/(c·d)。

⑦分式的除法:分式a/b除以c/d可真分式以d/c乘,得(a·d)/(b·c)。

⑧分式的加法:根据通分的定义,可得a/c+b/d=(a·d+b·c)/(c·d)⑨分式的减法:根据通分的定义,可得a/c-b/d=(a·d-b·c)/(c·d)分式方程的一般形式为:分子中含有未知数的为分式方程。

例如:2/x=3/41.解分式方程的基本步骤:(1)去分母:将分式方程中的每个分式的分母去掉,得到一个整式方程。

(2)解整式方程:使用解整式方程的方法解方程。

(3)检验解:将求得的解代入原分式方程,检验是否满足。

2.分式方程的常见类型:(1)一次分式方程:分子和分母的最高次幂都是1(2)整式方程:分式方程中的分子和分母都是整式。

(3)二次分式方程:分子和分母的最高次幂都是2(4)退化分式方程:当方程中出现0/0的情况,方程可能退化为整式方程或无解。

3.分式方程的注意事项:(1)除法的解答有条件:可能有解,也可能无解。

(2)变量的取值范围:要满足约束条件。

分式与分式方程知识点

分式与分式方程知识点

分式与分式方程知识点一、分式的定义1. 分式(Fraction):形如 A/B 的代数表达式,其中 A 是分子,B 是分母,B ≠ 0。

2. 有理表达式(Rational Expression):包含分式的代数表达式。

二、分式的基本性质1. 等值变换:分式可以通过乘以或除以相同的非零表达式进行等值变换。

例如:(2/3) * (4/5) = (2*4)/(3*5) = 8/152. 分式的加减法:只有当分母相同时,才能直接进行加减运算。

例如:(2/5) + (3/5) = (2+3)/5 = 5/5 = 13. 分式的乘除法:分子乘分子,分母乘分母。

例如:(2/3) * (4/5) = (2*4)/(3*5) = 8/154. 分式的化简:通过约分,将分子和分母中的公因数相除,得到最简分式。

例如:(12/16) -> (12÷4)/(16÷4) = 3/4三、分式方程1. 分式方程(Fractional Equation):含有分式的方程。

2. 解分式方程的基本原则:将分式方程转化为整式方程进行求解。

3. 去分母:通过将方程两边同时乘以所有分母的最简公分母,消除分母。

例如:(2/x) + (3/y) = 5 => 2y + 3x = 5xy (假设 x, y > 0) 4. 检验解:将求得的整式解代入最简公分母中,确保不会得到零。

四、特殊类型的分式方程1. 一元一次分式方程:只含有一个未知数,且未知数的最高次数为一的分式方程。

2. 二元一次分式方程:含有两个未知数,且每个未知数的最高次数为一的分式方程。

3. 高次分式方程:含有未知数的最高次数大于一的分式方程。

五、解分式方程的步骤1. 确定最简公分母。

2. 去分母,将分式方程转化为整式方程。

3. 解整式方程,求得未知数的值。

4. 检验解的有效性。

5. 写出最终解。

六、应用题1. 理解题意,找出等量关系。

2. 列出分式方程。

分式与分式方程知识点总结

分式与分式方程知识点总结

分式与分式方程专题一、分式基本知识1、分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA叫做分式。

(1)分式与整式最本质的区别:分式的分母必须含有字母,即未知数;分子可含字母可不含字母。

(2)分式有意义的条件:分母不为零,即分母中的代数式的值不能为零。

(3)分式的值为零的条件:分子为零且分母不为零。

2、分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

用式子表示 其中A 、B 、C 为整式(0≠C ) (1)利用分式的基本性质进行分式变形是恒等变形,不改变分式值的大小,只改变形式。

(2)应用基本性质时,要注意C ≠0,以及隐含的B ≠0。

(3)注意“都”,分子分母要同时乘以或除以,避免只乘或只除以分子或分母的部分项,或避免出现分子、分母乘除的不是同一个整式的错误。

3、分式的通分和约分:关键先是分解因式(1)分式的约分定义:利用分式的基本性质,约去分式的分子与分母的公因式,不改变分式的值。

(2)最简分式:分子与分母没有公因式的分式(3)分式的通分的定义:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母的分式化成分母相同的分式。

(4)最简公分母:取“各个分母”的“所有因式”的最高次幂的积做公分母,它叫做最简公分母。

4、分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个分式的值不变。

注:分子与分母变号时,是指整个分子或分母同时变号,而不是指改变分子或分C B C A B A ⋅⋅=CB CA B A ÷÷=鑫鹏学校母中的部分项的符号。

5、分式的运算:(1)分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

(2)分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(3)分式乘方法则:分式乘方要把分子、分母分别乘方。

(4)分式乘方、乘除混合运算:先算乘方,再算乘除,遇到括号,先算括号内的,不含括号的,按从左到右的顺序运算(5)分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。

分式概念知识点总结

分式概念知识点总结

分式概念知识点总结一、分式的概念分式是指一个整体被分成若干个相等的部分,其中每个部分被称为分子,整体被称为分母。

分式通常以 a/b 的形式表示,其中 a 和 b 都为整数,b 不为0。

分数的分母表示被分成的份数,分子表示取了多少份。

例如,2/3 表示整体被分成了3份,取了其中的2份。

二、分式的基本形式1. 真分式:分数的分子小于分母,即 |a| < b。

2. 假分式:分数的分子大于或等于分母,即|a| ≥ b。

3. 显分式:分式中的分子和分母都是已知的数。

4. 隐分式:未知数出现在分子或分母中。

三、分式的性质1. 两个分式相乘:a/b * c/d = ac/bd2. 两个分式相除:a/b ÷ c/d = ad/bc3. 两个分式相加:a/b + c/d = (ad + bc)/bd4. 两个分式相减:a/b - c/d = (ad - bc)/bd四、分式的化简1. 将分子和分母约分到最简形式。

2. 若分数中含有开平方,可将分子或分母的平方根提出来。

3. 若分数中含有负号,可将负号移到分子或分母。

五、分式的运算1. 分式的四则运算:包括加、减、乘、除。

2. 分式的化简:将分数化成最简形式。

3. 分式的混合运算:结合整数和分数进行运算。

六、分式方程1. 单分式方程:方程中只有一个分式。

2. 复分式方程:方程中含有多个分式。

七、分式的应用1. 比例问题:利用分式来描述两个量的比值,解决比例问题。

2. 百分比问题:将百分数化成分式,进行计算和比较。

3. 复利问题:利用复利的计算公式,将利率和时间表示成分式,求解复利问题。

八、分式的图形表示1. 分式在直角坐标系中的图形表示:分数可以表示成长度或面积的比值,可以在直角坐标系中用直线或曲线表示。

2. 分式在统计图中的表示:在统计图中,分数可以表示成比例的形式,用图形表示出来。

九、分式的应用领域1. 数学:在代数、几何、概率等方面,分式的概念和运算都有广泛的应用,是数学中重要的基础知识。

初二数学八上分式和分式方程所有知识点总结和常考题型练习题

初二数学八上分式和分式方程所有知识点总结和常考题型练习题

初二数学八上分式和分式方程所有知识点总结和常考题型练习题分式知识点一、分式的定义如果A ,B 表示两个整数,并且B 中含有字母,那么式子B A 叫做分式,A 为分子,B 为分母。

二、与分式有关的条件①分式有意义:分母不为0(0B ≠) ②分式无意义:分母为0(0B =)③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A ) ④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<0B A ) ⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><0B A ) ⑥分式值为1:分子分母值相等(A=B )⑦分式值为-1:分子分母值互为相反数(A+B=0) 三、分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。

字母表示:C B C ••=A B A ,CB C÷÷=A B A ,其中A 、B 、C 是整式,C ≠0。

四、分式的约分定义:把分式的分子与分母的公因式约去,叫做分式的约分。

步骤:把分式分子分母因式分解,然后约去分子与分母的公因。

分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。

式子表示为: db ca d cb a ••=• 分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。

式子表示为 cc ••=•=÷b da db a dc b a ① 分式的乘方:把分子、分母分别乘方。

式子nn nb a b a =⎪⎭⎫⎝⎛② 分式的加减法则:同分母分式加减法:分母不变,把分子相加减。

式子表示为cb ac b ±=±c a异分母分式加减法:先通分,化为同分母的分式,然后再加减。

式子表示为 bdbcad d c ±=±b a 整式与分式加减法:可以把整式当作一个整数,整式前面是负号,要加括号,看作是分母为1的分式,再通分。

分式和分式方程知识点总结大全

分式和分式方程知识点总结大全

分式和分式方程知识点总结大全分式:分式是指含有变量的有理数表达式,通常以a/b的形式表示,其中a和b是整数,而b不等于0。

基本概念:1.分子和分母:分数中的a称为分子,b称为分母。

2.真分数和假分数:如果分子小于分母,则分式称为真分数;如果分子大于或等于分母,则分式称为假分数。

3.约分:对于一个分式a/b,如果a和b有公约数,则可以将a和b同时除以它们的最大公约数,得到分式的最简形式。

4.相等分式:两个分子和分母比值相等的分式称为相等分式。

例如,2/3和4/6是相等的分式。

分式的运算:1.加法和减法:对于两个分式a/b和c/d来说,只有当b和d相等时,才能进行加法和减法运算。

运算结果的分母保持不变,并将分子相加或相减。

2.乘法:两个分式a/b和c/d相乘,将分子相乘得到新的分子,分母相乘得到新的分母。

结果要简化。

3.除法:两个分式a/b和c/d相除,将第一个分式的分子乘以第二个分式的分母,第一个分式的分母乘以第二个分式的分子。

结果要简化。

分式方程:分式方程是指含有分式的方程。

解分式方程的步骤:1.清除分母:将分式方程的两边同乘以分母的最小公倍数,从而消除分母。

2.化简方程:将方程中的分式进行化简,得到方程的最简形式。

3.解方程:根据方程的形式,进行求解。

常见的方法包括合并同类项、配方、移项等等。

常见的分式方程类型:1.一次分式方程:方程中只含有一次分式的方程。

例如,(x+1)/2=32.二次分式方程:方程中含有二次分式的方程。

例如,(x^2+1)/(x+2)=43.多次分式方程:方程中含有多次分式的方程。

例如,(x^3+1)/(x^2+2)=5应用场景:分式和分式方程在数学中的应用非常广泛,尤其在代数、几何、经济学等领域中有着重要的应用。

例如,在解决实际问题中,经常会用到比例关系,而分式可以很好地描述比例关系。

在几何学中,分式用于解决一些面积、体积等问题。

在经济学中,分式用于解决利润、成本等相关问题。

八年级数学《分式方程》知识点

八年级数学《分式方程》知识点

一、基本概念
1.分式:分子和分母都是多项式的数叫做分式。

2.分式方程:含有一个或多个未知数的分式等式叫做分式方程。

二、分式方程的解
1.分式方程的解:使得方程两边分式等价的数叫做分式方程的解。

2.适合分式方程的解:使得分式方程的任意代入都可以使分式方程成立的解叫做适合分式方程的解。

三、分式方程的解的判定
1.分式方程的解的判定方法:将找到的解代入方程,若等式两边可以变成同一个数,则该解为分式方程的解。

2.分式方程的解的验证方法:将方程两边合并,并对两边进行化简,最后验证等式是否成立。

四、分式方程的解的性质
1.分式方程的根的性质:若一个数是分式方程的根,则这个数的相反数也是该方程的根。

2.分式方程的根的性质的应用:利用分式方程的根的性质,可以通过已知根推出其他根。

五、分式方程的解的求解
1.解分式方程的一般步骤:先合并同类项,再化简,最后通过代数运算求解未知数。

2.解分式方程的具体方法:可以通过交叉相乘、通分和消分的方法来解决不同类型的分式方程。

六、分式方程的应用
1.代入法解分式方程:利用推导和分项代入法,将问题转化为分式方程,然后再用分式方程的解来解决问题。

2.混合运算解分式方程:先利用等式性质将分子展开,再通过合并同类项化简,最后求解分式方程得到解。

总结:。

分式和分式方程培优精讲

分式和分式方程培优精讲

二、知识点梳理知识点一:分式的定义一般地.如果A.B 表示两个整数.并且B 中含有字母.那么式子BA叫做分式.A 为分子.B 为分母。

知识点二:与分式有关的条件1、分式有意义:分母不为0(0B ≠)2、分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A )3、分式无意义:分母为0(0B =)4、分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A )5、分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A )知识点三:分式的通分① 分式的通分:根据分式的基本性质.把几个异分母的分式分别化成与原来的分式相等的同分母分式.叫做分式的通分。

② 分式的通分最主要的步骤是最简公分母的确定。

最简公分母的定义:取各分母所有因式的最高次幂的积作公分母.这样的公分母叫做最简公分母。

确定最简公分母的一般步骤: Ⅰ 取各分母系数的最小公倍数;Ⅱ 单独出现的字母(或含有字母的式子)的幂的因式连同它的指数作为一个因式;Ⅲ 相同字母(或含有字母的式子)的幂的因式取指数最大的。

Ⅳ 保证凡出现的字母(或含有字母的式子)为底的幂的因式都要取。

注意:分式的分母为多项式时.一般应先因式分解。

知识点四:分式的四则运算与分式的乘方 1、分式的乘除法法则:分式乘分式.用分子的积作为积的分子.分母的积作为积的分母。

式子表示为:db c a d c b a ∙∙=∙ 分式除以分式:式子表示为cc ∙∙=∙=÷bd a d b a d c b a 2、分式的乘方:把分子、分母分别乘方。

式子n n nb a b a =⎪⎭⎫⎝⎛3、分式的加减法则:同分母分式加减法:分母不变.把分子相加减。

式子表示为 cba cb ±=±c a异分母分式加减法:先通分.化为同分母的分式.然后再加减。

式子表示为bdbcad d c ±=±b a 注意:加减后得出的结果一定要化成最简分式(或整式)。

北师大版初二数学下册分式与分式方程知识点梳理

北师大版初二数学下册分式与分式方程知识点梳理

第五章分式与分式方程复习总结第一课时知识点梳理肇州三中黄国庆教学目标1•将本章知识点形成知识脉络。

2. 培养学生如何建立完整的知识体系的能力。

教学重点1. 分式的概念及其基本性质。

2. 分式的运算法则。

3. 分式方程的概念、解法。

教学难点分式的运算及分式方程的解法.教学过程一、知识点梳理:1. 分式的定义:如果A B表示两个整式,并且B中含有字母,那么式子A叫做分式。

B1)分式与整式最本质的区别:分式的字母必须含有字母,即未知数;分子可含字母可不含字母2)分式有意义的条件:分母不为零,即坟墓中的代数式的值不能为零。

3)分式的值为零的条件:分子为零且分母不为零2. 分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

用式子表示A^C I A-C其中A B、C为整式(C 0)B BC B B C注:(1)利用分式的基本性质进行分时变形是恒等变形,不改变分式值的大小,只改变形式。

(2)应用基本性质时,要注意C M0,以及隐含的B M0。

(3)注意“都”,分子分母要同时乘以或除以,避免只乘或只除以分子或分母的部分项,或避免出现分子、分母乘除的不是同一个整式的错误。

3. 分式的通分和约分:关键先是分解因式1)分式的约分定义:利用分式的基本性质,约去分式的分子与分母的公因式,不改变分式的值。

2)最简分式:分子与分母没有公因式的分式3)分式的通分的定义:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母的分式化成分母相同的分式。

4)最简公分母:取“各个分母”的“所有因式”的最高次幕的积做公分母,它叫做最简公分母4. 分式的运算:1)分式乘法法则:分式乘分式,用分子的积作为积的分子,分母 的积作为分母。

2)分式除法法则:分式除以分式,把除式的分子、分母颠倒位置 后,与被除式相乘a c ac a c ad ad■b d bd b d be be3)分式的加减法则:同分母的分式相加减,分母不变,把分子相加减异分母的分式相加减,先通分,变为同分母分式,然后再加减a b a b a c ad be ad be c c c ,b d bd bd bd5. 分式方程:含分式,并且分母中含未知数的方程 分式方程。

分式方程知识点总结♂

分式方程知识点总结♂

分式方程知识点总结♂一般来说,分式方程可以写成形如$\frac{M(x)}{N(x)} = P(x)$的形式,其中$M(x)$、$N(x)$和$P(x)$分别是$x$的多项式。

分式方程的解是满足方程的$x$的值,即找出使等式成立的$x$的值。

下面我们就来总结一下关于分式方程的一些知识点。

一、分式的定义和性质1. 分式是指形如$\frac{m}{n}$的数,其中$m$和$n$是整数,$n$不等于0。

分式可以表示数的比值,包括有理数和实数。

2. 分式的性质:分式有一些基本的性质,比如分式的加减乘除法原则,以及分式的化简和通分规则等。

这些性质是处理分式方程时必须掌握的基础知识。

二、分式方程的基本概念1. 分式方程的定义:分式方程是指方程中含有分式的方程,通常以$\frac{M(x)}{N(x)} = P(x)$的形式出现,其中$M(x)$、$N(x)$和$P(x)$分别是$x$的多项式。

2. 分式方程的解:分式方程的解是指满足方程的$x$的值,即找出使等式成立的$x$的值。

对于分式方程,解的求解方法通常需要进行化简、通分、消元等操作。

三、分式方程的解法1. 分式方程的解法一般分为以下几种方法:(1)通分法:将分式方程中的分母进行通分,使得方程中的分母相同,从而化简方程。

(2)消元法:通过消去分式方程中的分母,将分式方程化简为一般的代数方程,然后求解。

(3)换元法:通过引入新的未知数或代换,将分式方程化简为一般的代数方程,然后求解。

2. 在实际问题中,分式方程的解法可能会涉及到不同的数学方法和技巧,需要根据具体的问题进行分析和处理。

四、分式方程的应用1. 分式方程在代数学、数学分析、几何学等领域具有广泛的应用。

它常常用于描述各种物理、经济、工程等实际问题中的关系和规律。

2. 在解决实际问题时,我们可以将实际问题转化为分式方程,利用代数运算和方程的解法来求解问题,从而得到问题的答案。

五、分式方程的教学与学习1. 在教学中,分式方程应该与分数、代数方程等知识紧密结合,引导学生深入理解分式方程的概念和性质,掌握分式方程的基本解法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式及分式方程 聚焦考点☆温习理解
一、分式
1、分式的概念
一般地,用A 、B 表示两个整式,A ÷B就可以表示成B A 的形式,如果B 中含有字母,式子B
A 就叫做分式。

其中,A叫做分式的分子,
B 叫做分式的分母。

分式和整式通称为有理式。

2、分式的性质
(1)分式的基本性质:
分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

(2)分式的变号法则:
分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

3、分式的运算法则
;;bc
ad c d b a d c b a bd ac d c b a =⨯=÷=⨯ );()(为整数n b
a b a n n n = ;c
b a
c b c a ±=± bd
bc ad d c b a ±=± 二、分式方程
1、分式方程
分母里含有未知数的方程叫做分式方程。

2、分式方程的一般方法
解分式方程的思想是将“分式方程”转化为“整式方程”。

它的一般解法是:
(1)去分母,方程两边都乘以最简公分母
(2)解所得的整式方程
(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。

3、分式方程的特殊解法
换元法:
换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。

名师点睛☆典例分类
考点典例一、分式的值
【例1】(2015·黑龙江绥化)若代数式6
265x 2-+-x x 的值等于0 ,则x=_________.
【点睛】分式6
265x 2-+-x x 的值为零则有x2-5x +6为0分母2x-6不为0,从而即可求出x 的值. 【举一反三】
1.要使分式x 1x 2
+-有意义,则x 的取值应满足( ) A. x 2≠ B. x 1≠- C. x 2= D. x 1=-
2.(2015·湖南常德)若分式211
x x -+的值为0,则x = 考点典例二、分式的化简
【例2】化简:2x x x 1x 1
---=( ) A、0 B 、1 C 、x D、
1
x x -
【点睛】观察所给式子,能够发现是同分母的分式减法。

利用同分母分式的减法法则计算即可得到结果.
【举一反三】 1.化简22
a b ab b a
--结果正确的是【 】 2.若241()w 1a 42a
+⋅=--,则w =( )
A.a 2(a 2)+≠- B . a 2(a 2)-+≠ C. a 2(a 2)-≠ D. a 2(a 2)--≠-
3.计算:2111
a a a -=-- 考点典例三、分式方程
【例3】(2015自贡)方程01
12=+-x x 的解是( ) A .1或﹣1 B.﹣1 C .0 D.1
【点睛】先去掉分母,观察可得最简公分母是x+1,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解。

【举一反三】
1.(2015攀枝花)分式方程
1311
x x =-+的根为 . 2.(2015绵阳)(8分)解方程:311221x x =-++. 考点典例四、分式方程的应用
【例5】((2015遂宁)遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩平均产量x 万千克,则改良后平均每亩产量为1.5x 万千克,根据题意列方程为( ) A.
36369201.5x x +-= B.3636201.5x x -= C.36936201.5x x +-= D.36369201.5x x ++=
【点睛】方程的应用解题关键是设出未知数,找出等量关系,列出方程求解.
【举一反三】
1..甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x 千米/时,可列方程为( )
A.42042021.5x x += B.42042021.5x x -= C. 1.52420420x x +=D . 1.52420420
x x -= 2.甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米.高速公路通车后,某长途汽车的行驶速度提高了45千米/时,从甲地到乙地的行驶时间缩短了一半.设该长途汽车在原来国道上行驶的速度为x千米/时,根据题意,下列方程正确的是( )
A .2001801452x x =⋅+
B .2002201452x x =⋅+
C .2001801452x x =⋅-
D . 2002201452x x =⋅- 课时作业☆能力提升
一.选择题
1.(2015·黑龙江省黑河市、齐齐哈尔市、大兴安岭)关于x的分式方程52
a x x =-有解,则字母a的取值范围是( )
A.a =5或a =0 B .a ≠0 C .a ≠5 D.a ≠5且a ≠0
2.(2015·辽宁营口)若关于x 的分式方程2
233x m
x x ++=--有增根,则m 的值是( ).
A.1m =- B.0m = C .3m = D.0m =或=3
m
3.(2015·湖南常德)分式方程2
3122x
x x +=--的解为:( )
A、1 B 、2 C 、1
3 D、0
4.(2015·山东济宁)解分式方程22
311x x x 时,去分母后变形正确的为( )
A .2+(x+2)=3(x-1) B.2-x+2=3(x-1)
C .2-(x+2)=3 D. 2-(x+2)=3(x-1)
二.填空题
5. (2015·湖北衡阳,16题,3分)方程13
2x x =-的解为 .
6.(2015·湖北襄阳,14题)分式方程2110
051025x x x 的解是 .
7.分式方程21
2
011x x +=--的解是__________.
8.若分式方程1x x -﹣1m
x -=2有增根,则这个增根是 .
9.(山东威海,第16题,4分)分式方程的解为 .
三、解答题
10.计算:22a 1a 1
a 2a a --÷+.
11.先化简,再求值:222
1a a
a 1a a 2a 1+⎛⎫
-÷ ⎪--+⎝⎭,其中2a a 20+-=.
12.先化简,再求值:22x 9x 3x x 8x 16x 4x 4
--÷-++++
,其中x 4. 13.先化简,再求值:222x 1x 12x x x ⎛⎫-+÷+ ⎪-⎝⎭
,
其中x 1= 14. (2015·山东枣庄,第19题,8分)(本题满分8分)
先化简,再求值:x x x x x x x -++÷⎪⎪⎭
⎫ ⎝⎛-+-+-144214222,其中x满足x ²-4x+3=0 15.(2015·山东泰安,第25题)(8分)某服装店购进一批甲、乙两种款型时尚T 恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.
(1)甲、乙两种款型的T 恤衫各购进多少件?
(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?
16.(2015·山东济南,第24题,8分)(8分)济南与北京两地相距480km,乘坐高铁列车比乘坐普通快车能提前4h到达,已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.
17.(2015·辽宁大连)甲乙两人制作某种机械零件.已知甲每小时比乙多做3个,甲做96个所用时间与乙做84个所用时间相等,求甲乙两人每小时各做多少个零件?
18.(2015.宁夏,第17题,6分)解方程:221111
x x x x --=-- 19. (2015.北京市,第21题,5分)为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行
车供市民使用.到2013年底,全市已有公租自行车25000辆,租赁点600个.预计到2015年底,全市将有公租自行车50000辆,并且平均每个租赁点的公租自行车数量是2013年成平均每个租赁点的公租自行车数量的1.2倍.预计2015年底,全市将租赁点多少个?。

相关文档
最新文档