1-1线性空间的概念

合集下载

1.1线性空间

1.1线性空间

Ⅱ 求 (1)基I到基II的过渡矩阵; (2)向量 31 23 在基I下的坐标以及在自然基 e1 , e 2 下的坐标; T (3)向量 4,1,2 在基(I)下的坐标.
24
, e3
1.3 线性子空间 定义1.8 设V为数域P上的线性空间,W是线性空间V的 非空子集,若W关于V中的线性运算也构成数域P上的 线性空间,则称W是V的线性子空间,简称子空间. 对任何线性空间V,显然由中单个零向量构成的子 集是的子空间,称为的零子空间,记为{0};V本身也是 V的子空间.这两个子空间称为V的平凡子空间.的其它 子空间称为V的非平凡子空间. 若WV,且WV,称W是V的真子空间。
例1.2 1. n维向量空间Rn按照向量的加法以及向量与实数的数乘 都构成实线性空间. 2.全体 mn实矩阵,在矩阵的加法及数乘两种运算下构成一个 实线性空间,记为Rmn. 3.区间[a,b]上的全体连续实函数,按照函数的加法及数与函数 的乘法构成一个实线性空间,记为C[a,b]. 4.全体次数小于 n的多项式连同零多项式,按照多项式的加法 与数乘构成一个实线性空间,记为 Pn[x]. 5.齐次线性方程组 AX=0的全体解向量,在向量的加法及数乘 两种运算下构成一个线性空间,也就是通常所说的解空间; 注:非齐次线性方程组AX=b的全体解向量,在上述两种运算下 不构成一个线性空间.
4.向量组
1,2 ,L ,m线性相关当且仅当其中至少
有一个向量是其余向量的线性组合。
11
5.向量组 1 ,2 ,L , m 线性无关,而 , 1 , 2 ,L , m 线性相关,则可以由向量组 表示。
1,2 ,L ,m
唯一 线性
6.线性无关组不含零向量,等价的含零向量的向量组必定 线性相关。 7. 如果向量组 1 , 2 ,L , 线性无关,并且可由向量组 s 线性表示,则 s t 8.等价的线性无关向量组必定含有相同个数的向量.

第二节线性空间的定义与简单性质

第二节线性空间的定义与简单性质

注 ◆ 例 8 中集合 V 满足线性空间定义中的其 他七条公理, 可见第五条虽然比较简单, 但是不可 由其他七条推出.
◆ 在 8 条公理中只有第一条加法满足交换律不 是独立的.
证明 ∵ 2( )=2 2 =(1+1) +(1 +1) =(1 +1 )+(1 +1 )=(+ )+( + )= +( + )+ ,
, , , … 表示线性空间 V 中的元素,用小写的
拉丁字母 a, b, c, … 表示数域 P 中的数.
注 ◆ 向量空间的定义可简单记为 “1128 ” ,
即一个数域 P,这是基础域; 一个集合V; 两个
运算,又叫做线性运算;八条规则,其中前四条是
加法的运算律,这时称V对加法做成一个加群,第
例 3 全体定义在区间 [a,b]上的连续函数组成 的集合V, 对于函数的加法及实数与连续函数的乘 法, 构成实数域上的一个线性空间. 用 C [a,b] 表示.
例 4 数域 P 上一元多项式环 P[ x ], 按通常 的多项式加法和数与多项式的乘法,构成数域 P 上 的一个线性空间. 如果只考虑其中次数小于 n 的多 项式,再添上零多项式也构成数域 P 上的一个线性 空间,用 P[ x ]n 表示. 但是,数域 P 上的 n 次多 项式集合对同样的运算不构成线性空间,因为两个 n 次多项式的和可能不是 n 次多项式.
证明 + 0 = 1 + 0 = (1 + 0) = 1 = .
所以
0 = 0 .
k0 + k = k (0 +) = k
所以
k0 = 0 .
(-1) + = (-1) + 1 =[(-1) + 1] = 0 =0 ,
所以

11线性空间

11线性空间
例 3 在实数域上,次数不超过 n 的多项式的全体
P[x]n {an xn an1xn1 a1x a0 an , an1,, a0 R}
对于通常的多项式加法,数与多项式的乘法构成线性空 间.
例 4 在实数域上, m n 矩阵全体 Rmn 按照通常矩阵的
加法,数与矩阵的乘法构成一个线性空间.
例 1. 实数域 R 按照实数间的加法与乘法,构成一 个自身上的线性空间,仍记为 R .
例 2 分量属于数域 P 的全体 n 元数组 (x1, x2 , , xn )T 按照通常的加法与数与 n 元数组的乘法,构成 P 上的一个 线性空间,记作 Pn .当 P = C 时,Pn 称为 n 元复线性空间, 记作 C n ;当 P = R 时,Pn 称为 n 元实线性空间,记作 Rn .
S x Ax , x Cn 是否构成线性空间?
例 9 设 an ,bn 是两个收敛于 0 的实数无穷序列,则
lnim(an

bn
)

lim
n
an

lim
n
bn
0;
且 a R, 有
lim
n
aan

a
lim
n
an
0;
并且易证八条性质也成立. 所以,一切收敛于 0 的实序列对于如上
此基称为 R n 的标准基. 因对于任意的 (a1, a2 , , an )T R n ,

a11 a2 2 an n ,
所以 在基1, 2 ,, n 下的坐标为 (a1, a2 ,, an )T .
例 15 在 Rn 中如下的 n 个向量
1 (1,1,1,,1),T 2 (0,1,1,,1)T , , n (0,0,,0,1)T 也是 R n 的一个基,因为对于任意的 (a1, a2 , , an )T R n ,有

矩阵分析引论--第一章 线性空间与线性变换-线性空间的概念、 基变换与坐标变换

矩阵分析引论--第一章 线性空间与线性变换-线性空间的概念、 基变换与坐标变换
二、线性空间的定义 1、数域
复数集的一个非空子集,含非零数,对和、差、 积、商(除数不为零)运算封闭.
• 性质:
必包含0与1; 有理数域是最小的数域.
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
2、线性空间
定义1-1(线性空间) 设V是一非空集合,P是一数域,若
(1)在V上定义了一个二元运算(称为加法, a与b 的和记为a+b), 且 a , b V,有 a b V ;
(2)在P与V的元素之间还定义了一种运算(称为
数乘, k与a的数乘记为ka),
且 a V ,k P, 有 ka V ;
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
(3)加法与数乘满足以下八条规则:
(ⅰ) a b b a; (ⅱ) (a b ) a (b );
第一章第一二节 线性空间的概念、基变换与坐标变换
第一节 线性空间的概念
一、线性代数回顾
★ n维向量:有序数组 ★ 线性运算:加法、数乘 ★ 运算律(八条) ★ 向量关系:线性相关、线性无关 ★ 向量空间 ★ 子空间 ★基
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
(ⅲ) a 0 a;
(ⅳ) a (a ) 0;
(ⅴ) 1a a;
(ⅵ) k(la ) (kl)a;
(ⅶ) (k l)a ka la ;(ⅷ) k(a b ) ka kb .
则称集合V为数域P上的线性空间或向量空间.
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
又若向量 b k1a1 k2a2 knan , 则b 也称为向量 a1,a2,,an 的线性组合,或称 b 可以由向量 a1,a2,,an 线性表示.

第1章 线性空间与线性变换

第1章 线性空间与线性变换

请双面打印/复印(节约纸张)工程矩阵理论主讲: 张小向第一章 线性空间与线性变换第一节 线性空间的基本概念 第二节 基, 维数与坐标变换 第三节 子空间的和与交 第四节 线性映射 第五节 线性映射的矩阵 第六节 线性映射的值域与核 第七节 几何空间线性变换的例子 第八节 线性空间的同构第一章 线性空间与线性变换§1.1 线性空间的基本概念第一章 线性空间与线性变换§1.1 线性空间的基本概念§1.1 线性空间的基本概念 一. 几个具体的例子 1.n= {(a1, …, an)T | a1, …, an ∈ }.2, 3).1. n. 2. [x]. 3. Mm×n( ). 4. { f(x) | f: → }. 5. = {x∈ | x > 0}. a⊕b = ab, ∀a, b∈ +; k⊗a = ak, ∀a∈ 6. V = {α}.+, +非空集合(特例: 2. [x] ={a0+a1x+…+anxn a11 a21 … am1| a1, …, an ∈ }. .3. Mm×n( ) =a12 … a1n a22 … a2n 诸aij ∈ … …… am2 … amn共 同 点系数域 两种运算 八条规则∀k∈ .α +α = α, kα = α, ∀k∈ .第一章 线性空间与线性变换§1.1 线性空间的基本概念第一章 线性空间与线性变换§1.1 线性空间的基本概念二. 线性空间的定义与性质 定义1.1.1 线性空间V(F). V——非空集合 F——数域 加法交换律 结合律 有零元素 每个元素都有负元素 1α = α k(lα) = (kl)α (k+l)α = kα + lα k(α+β) = kα + kβ定理1.1.1. (1) 零向量唯一; (2) 任一向量的负向量唯一; (3) 0α = θ; (4) kθ = θ; (5) (−1)α = −α, (−k)α = −(kα); (6) kα = θ ⇒ k = 0或α = θ.数乘272365083@1请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.1 线性空间的基本概念第一章 线性空间与线性变换§1.1 线性空间的基本概念三. 线性组合, 线性表示 1. 设α1, …, αk ∈V(F), x1, …, xk ∈F, 则称 x1α1 + … + xkαk 为α1, …, αk的一个线性组合. 2. 设α1, …, αk, β ∈ V(F). 若∃ x1, …, xk ∈ F s.t. β = x1α1 +…+ xkαk 则称β能由向量组α1, …, αk线性表示. 3. 若β1, …, βl都能由α1, …, αk线性表示,则称向量组β1, …, βl能由α1, …, αk线性表 示.四. 形式矩阵 设α1, …, αk , β1, …, βk ∈V(F). 1. 若α1 = β1, …, αk = βk , 则记(α1, …, αk) = (β1, …, βk). 2. 规定 (α1, …, αk) + (β1, …, βk) = (α1+β1, …, αk+βk). 3. 若a ∈F, 则规定 a(α1, …, αk) = (aα1, …, aαk).第一章 线性空间与线性变换§1.1 线性空间的基本概念第一章 线性空间与线性变换§1.1 线性空间的基本概念4. 若x1, …, xk ∈F, 则记 x1α1 +…+ xkαk = (α1, …, αk) x1 . xk 5. 若A = (A1, …, As) ∈ Mk×s(F), 则规定 (α1, …, αk)A = ((α1, …, αk)A1, …, (α1, …, αk)As). …注: 设α1, …, αk , β1, …, βk ∈V(F). a, b ∈ F, A, B ∈ Mk×s(F), C ∈ Ms×t(F). 记α = (α1, …, αk), β = (β1, …, βk), 则可以验证下列等式成立: ① a(α + β) = aα + aβ, ② (a+b)α = aα + bα, ③ a(bα) = (ab)α. ④ (α + β)A = αA + βA, ⑤ α(A+B) = αA + αB, ⑥ (αA)C = α(AC), ⑦ (aα)A = a(αA) = α(aA).第一章 线性空间与线性变换§1.1 线性空间的基本概念第一章 线性空间与线性变换§1.1 线性空间的基本概念五. 线性空间的子空间 定义1.1.2 子空间, W ≤ V(F) 定理1.1.2. 设∅ ≠ W ⊆ V(F), 则 W ≤ V(F) ⇔ W关于的加法和数乘封闭. 注: V(F)的两个平凡的子空间. {θ}, V(F)六. 由子集合{α1, α2, …, αk}生成的子空间 {α1, α2, …, αk}——生成系, 生成元集i=1 k∑ xiαi —— α1, α2, …, αk的一个线性组合 组合系数 W = { ∑ xiαi | ∀xi∈ F}.k记为L[α1, α2, …, αk]或span{α1, α2, …, αk}.i=1272365083@2请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.2 基, 维数与坐标变换第一章 线性空间与线性变换§1.2 基, 维数与坐标变换§1.2 基, 维数与坐标变换 一. 向量组的线性相关性 定义1.2.1 线性相关, 线性无关. 定理1.2.1 设(I) α1, α2, …, αs线性无关, 且能由 (II) β1, β2, …, βt线性表示, 则s ≤ t. 推论1 设(I)与(II)都线性无关, 且等价, 则s = t. 推论2 设(I)能由(II)线性表示, 且s > t, 则(I)必线性相关.二. 基、维数 定义1.2.2 基, 维数. 例子. 1. n. 2. [x], [x]n = {a0+a1x+…+an−1xn−1 | …}. 3. Mm×n( ). 4. { f(x) | f: → }. 5. = {x∈ | x > 0}. a⊕b = ab, ∀a, b∈ +; k⊗a = ak, ∀a∈ +, ∀k∈ . 6. V = {θ}.+第一章 线性空间与线性变换§1.2 基, 维数与坐标变换第一章 线性空间与线性变换§1.2 基, 维数与坐标变换定理1.2.2 若dimV = n, 则V中任意 n 个线性无 关的向量都构成V的一组基. 定理1.2.3 若W ≤ V, dimV = n, α1, …, αr 为W 的一组基, 则∃αr+1, …, αn∈ V 使得 α1, …, αr, αr+1, …, αn构成V的一组 基.三. 坐标 定义1.2.3 设α1, …, αn为V的一组基, ξ ∈ V. 若ξ = x1α1 + … + xnαn, 则称有序数组(x1, …, xn)为ξ在基 α1, …, αn下的坐标, (x1, …, xn)T称为ξ的坐标向量.第一章 线性空间与线性变换§1.2 基, 维数与坐标变换第一章 线性空间与线性变换§1.2 基, 维数与坐标变换定理1.2.4 设α1, …, αn为V的一组基, (β1, …, βr) = (α1, …, αn)x11 … x1r x11 … x1r xn1 … xnr … …四. 坐标变换 V的两组基 , P, 可逆X=xn1 … xnr,p11 … p1n (β1, …, βn) = (α1, …, αn) … … … , pn1 … pnn 称P为从基α1, …, αn到β1, …, βn的过渡矩 阵.…则β1, …, βr线性无关 ⇔ 秩(X) = r.272365083@…3请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.2 基, 维数与坐标变换第一章 线性空间与线性变换§1.3 子空间的和与交四. 坐标变换 V的两组基 P, 可逆§1.3 子空间的和与交 一. 基本概念与结论 定义1.3.1 设V1, V2 ≤ V. V1与V2的和: V1 + V2 = {α1 + α2 | α1∈V1, α2∈V2}. V1与V2的交: V1∩V2 = {α∈V | α∈V1且α∈V2}. 定理1.3.1 V1, V2 ≤ V ⇒ V1 + V2, V1∩V2 ≤ V.p11 … p1n (β1, …, βn) = (α1, …, αn) … … … , pn1 … pnnξ = (α1, …, αn)X = (β1, …, βn)Y,(α1, …, αn)PY ⇒ X = PY, Y = P−1X. ——坐标变换公式 =第一章 线性空间与线性变换§1.3 子空间的和与交第一章 线性空间与线性变换§1.3 子空间的和与交注: ① 子空间V1∩V2与集合V1∩V2是一致的. ② 一般情况下, V1+V2 ≠ V1∪V2. 例如V =3,zOV1 = xOy平面, V2 = yOz平面, V1+V2 = V, V1∩V2 = y轴.定理1.3.2 (维数定理) 设V1, V2是V的两个有限维子空间, 则 dimV1 + dimV2 = dim(V1+V2) + dim(V1∩V2). 证明: (关键步骤) y(1) 取V1∩V2的一组基α1, …, αr ; (2) 把α1, …, αr扩充成V1的一组基 α1, …, αr, βr+1, …, βs ; (3) 把α1, …, αr扩充成V2的一组基 α1, …, αr, γr+1, …, γt ; (4) 验证α1, …, αr, βr+1, …, βs, γr+1, …, γt 线性无关(从而构成V1+V2的一组基).x③ V1+V2 = V1∪V2 的充分必要条件是 V1⊆V2 或 V2⊆V1.第一章 线性空间与线性变换§1.3 子空间的和与交第一章 线性空间与线性变换§1.3 子空间的和与交k1α1+…+krαr+kr+1βr+1+…+ksβs+lr+1γr+1+…+ltγt = 0 ⇒ lr+1γr+1+…+ltγt = −k1α1−…−krαr−kr+1βr+1−…−ksβs ∈ V1∩V2 ⇒ ∃l1, …, lr s.t. lr+1γr+1+…+ltγt = l1α1+…+lrαr i.e. l1α1+…+lrαr −lr+1γr+1−…−ltγt = 0 ⇒ l1 = … = lr = lr+1 = … = lt = 0 ⇒ k1α1+…+krαr+kr+1βr+1+…+ksβs = 0 ⇒ k1 = … = kr = kr+1 = … = ks = 0dimV1 + dimV2 = dim(V1+V2) + dim(V1∩V2) 例1(1) V = 3, V1 = xOy平面, V2 = yOz平面, V1+V2 = V, V1∩V2 = y轴, dimV1 = dimV2 = 2, dim(V1+V2) = 3, dim(V1∩V2) = 1. zOyx272365083@4请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.3 子空间的和与交第一章 线性空间与线性变换§1.3 子空间的和与交例1(2) V = V2 =2×2,V1 =x y z tx = y ≤ V,例1(3) V = V2 =2×2,V1 =x −x y −yx, y ∈ ≤ V,≤ V,x y z tx + y + z = 0 ≤ V,x y z tx y x yx, y ∈0 0V1+V2 = ______. V1∩V2 =x=y且x+y+z=0 ,则 0 0 , 构成V1的一组基, 1 −11 0 0 1 , 构成V2的一组基, 1 0 0 11 −1dimV1 = dimV2 = 3, dim(V1∩V2) = 2, 故dim(V1+V2) = 3 + 3 − 2 = 4 = dimV, 可见V1+V2 = V.故dimV1 = dimV2 = 2.x −x y −y ∈V2 ⇔ x = y. x −x 故V1∩V2 = x −x x ∈.第一章 线性空间与线性变换§1.3 子空间的和与交第一章 线性空间与线性变换§1.3 子空间的和与交可见1 −1 构成V1∩V2的一组基, 1 −1dim(V1∩V2) = 1. 故dim(V1+V2) = dimV1 + dimV2 − dim(V1∩V2) = 2 + 2 − 1 = 3. 事实上,1 0 0 1 1 −1 0 0 , , 1 0 , 0 1 线性相关, 0 0 1 −1二. 子空间的直和 定义1.3.2 设V1, V2 ≤ V. 若对于∀α∈V1+V2, ∃| α1∈V1, α2∈V2, s.t. α = α1 + α2, 则称V1 + V2为V1与V2的直和, 记为V1⊕V2.其中任意3个都线性无关, 因而构成V1+V2的 一组基.α = α1 + α2, α1∈V1, α2∈V2 ⇒ α = β1 + β2, β1∈V1, β2∈V2 α1 = β1, α2 = β2.第一章 线性空间与线性变换§1.3 子空间的和与交第一章 线性空间与线性变换§1.3 子空间的和与交定理1.3.3 设V1, V2 ≤ V, 则下列条件等价: (1) V1 + V2是直和; (2) V1 + V2中0分解式唯一, 即 0 = α1+α2 (αi∈Vi) ⇒ α1 = α2 = 0; (3) V1∩V2 = {0}; 当dimV1, dimV2 < ∞时, 上述条件还等价于 (4) dim(V1+V2) = dimV1 + dimV2.定理1.3.4 设V1 ≤ V, dimV = n, dimV1 = r, 则存在V的n−r维子空间V2使得 V = V1⊕V2. 定义1.3.3 设V1, …, Vs ≤ V, 则V1, …, Vs的和 V1 + … + Vs = {α1 +…+ αs | αi∈Vi}. 若对于∀α ∈ V1 + … + Vs , ∃| αi∈Vi (i = 1, …, s) s.t. α = α1 + … + αs , 则称V1 +…+ Vs为V1, …, Vs的直和, 记为V1⊕…⊕Vs .272365083@5请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.3 子空间的和与交第一章 线性空间与线性变换§1.3 子空间的和与交定理1.3.5 设Vi ≤ V (i = 1, …, s), 则TFAE: (1) V1 + … + Vs是直和; (2) V1 + … + Vs中0分解式唯一; (3) Vk∩Σi≠kVi = {0}, k = 1, …, s; 当dimVi < ∞ (i = 1, …, s)时, 上述条件还等价于 (4) Σ dimVi = dim( Σ Vi).i=1 i=1 s s例2. 设A2 = A ∈ Fn×n, V1 = {X ∈ Fn | AX = 0}, V2 = {X∈Fn | AX = X}. 证明: Fn = V1⊕V2. 证明: (1) 容易验证V1, V2 ≤ Fn. (2) ∀α∈Fn, 有α = (α − Aα) + Aα, A(α − Aα) = Aα − A2α = 0, A(Aα) = A2α = Aα. 可见α ∈ V1+V2. 这就证明了Fn ⊆ V1+V2. 又因为V1+V2 ⊆ Fn, 所以Fn = V1+V2.第一章 线性空间与线性变换§1.3 子空间的和与交第一章 线性空间与线性变换§1.4 线性映射例2. 设A2 = A ∈ Fn×n, V1 = {X ∈ Fn | AX = 0}, V2 = {X∈Fn | AX = X}. 证明: Fn = V1⊕V2. 证明: (1) 容易验证V1, V2 ≤ (2) Fn = V1+V2. (3) 若α∈V1∩V2, 则α = Aα = 0. Fn. 可见V1∩V2 ⊆ {0}. 又因为{0} ⊆ V1∩V2, 所以V1∩V2 = {0}. 综上所述, Fn = V1⊕V2.§1.4 线性映射 一. 映射 定义1.4.1 像 原像 • • • 映射 • • • • • • 满射 • •第一章 线性空间与线性变换§1.4 线性映射第一章 线性空间与线性变换§1.4 线性映射• • 单射 注:• • •• • • 双射• • •f:→; a → |a| ;a→ √a2(∀a∈ ) (∀a∈ )g: →f = g —— ∀a∈ , f(a) = g(a) 一般地, 若映射f, g: A → B满足 f(a) = g(a) (∀a∈A) 则称映射f与g相等, 记为f = g.• • •• • •• •• • •不是映射不是映射272365083@6请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.4 线性映射第一章 线性空间与线性变换§1.4 线性映射• • • f • • •• • •• • • g • • • gf• • •注① 映射的复合运算满足结合律: f: A → B, g: B → C, h: C → D (hg)f = h(gf). A B f b• g C c• h D d•• • •a•[(hg)f](a) = (hg)[f(a)] = (hg)(b) = h[g(b)] = h{g[f(a)]} = h[(gf)(a)] = [h(gf)](a)f: A → B与g: B → C的乘积 gf: A → C定义为 ( gf )(a) = g[ f(a)] (∀a∈A).第一章 线性空间与线性变换§1.4 线性映射第一章 线性空间与线性变换§1.4 线性映射注② 1A: A → A, f: A → B, 1B: B → B f⋅1A = f, A a• 1A A a• f 1B⋅f = f. B b• 1B B b• • • • 双射f • • • • • • • • •f的逆映射( f⋅1A)(a) = f [1A(a)] = f(a) (1B⋅f )(a) = 1B[ f(a)] = f(a)若映射f: A → B, g: B → A满足 gf = 1A, fg = 1B, 则称g为f 的逆映射, 记为g = f −1. 注① g = f −1 ⇒ f = g−1. 注② f: A → B有逆映射⇔ f: A → B为双射.第一章 线性空间与线性变换§1.4 线性映射第一章 线性空间与线性变换§1.4 线性映射注② f: A → B有逆映射⇔ f: A → B为双射.证明: (⇒) 设f: A → B有逆映射g: B → A, 则 (1) ∀x, y ∈ A, 由 f(x) = f(y)可得 x = 1A(x) = gf(x) = gf(y) = 1A(y) = y. 可见 f: A → B为单射. (2) ∀b ∈ B, ∃a = g(b) ∈ A s.t. f(a) = f[g(b)] = fg(b) = 1B(b) = b. 可见 f: A → B为满射. 所以 f: A → B为双射.注② f: A → B有逆映射⇔ f: A → B为双射.证明: (⇐) 设 f: A → B为双射, 则 ∀b ∈ B, ∃| a ∈ A s.t. f(a) = b. 令g(b) = a, 可得 映射g: B → A. 而且 (1) ∀b ∈ B, 有 fg(b) = f[g(b)] = f(a) = b. 这就是说, fg = 1B. (2) ∀a ∈ A, 令b = f(a) ∈ B, 按g的定义, gf(a) = g[ f(a)] = g(b) = a. 这就是说, gf = 1A, 可见 f: A → B有逆映射g: B → A.272365083@7请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.4 线性映射第一章 线性空间与线性变换§1.4 线性映射例1. 设A为数域F上的n阶方阵, Fn = {(a1, …, an)T | a1, …, an∈F}. 映射f: Fn→ Fn定义为 f(x) = Ax. 证明下列条件等价: (1) f: Fn→ Fn为单射; (2) f: Fn→ Fn为满射; (3) A可逆.证明: (1)⇒(3) 假设A不可逆, 则|A| = 0, 故r(A) < n, 因而Ax = 0有非零解, 即存在x ≠ 0使得Ax = 0, 于是f(x) = Ax = 0 = A0 = f(0). 这与“f: F n→ F n为单射”矛盾. 所以A可逆. (3)⇒(1) 对于任意的x, y ∈ F n, 若f(x) = f(y), 即Ax = Ay, 因为A可逆, 所以x = A−1Ax = A−1Ay = y. 可见 f: F n→ F n为单射.第一章 线性空间与线性变换§1.4 线性映射第一章 线性空间与线性变换§1.4 线性映射证明: (2)⇒(3) 因为f: F n→ F n是满射, 所以存在n阶方阵B = (ξ1, …, ξn)使得 AB = (Aξ1, …, Aξn) = ( f(ξ1), ..., f(ξn)) = (e1, …, en) = I. 从而|A|×|B| = |AB| = |I| = 1, 故|A| ≠ 0, 因而A可逆. (3)⇒(2) 对于任意的y ∈ F n, 令x = A−1y, 则x ∈ F n, 而且f(x) = Ax = AA−1y = y. 可见f: F n→ F n为满射.二. 线性映射与线性变换 定义1.4.2 设U, V为数域F上的线性空间. 若映射 f: V → U保持加法和数乘, 即 f(α+β) = f(α) + f(β), f(kα) = kf(α), ∀α, β ∈ V, k ∈ F, 则称 f 为线性映射. 特别地, 当U = V时, 称线性映射 f: V → V为V上的线性变换. 注① f(kα+lβ) = kf(α) + lf(β), ∀α, β ∈ V, k ∈ F.第一章 线性空间与线性变换§1.4 线性映射第一章 线性空间与线性变换§1.4 线性映射注② Hom(V, U) = { f: V → U | f为线性映射}. 注③ 若 f ∈ Hom(V, U), 则 f(0V) = 0U; f(−α) = −f(α); f(x1α1+…+xsαs) = x1 f(α1) +…+ xs f(αs); α1, …, αs线性相关 ⇒ f(α1), …, f(αs)线性相关. 注④ 若 f: V → U 满足 f(α) = 0, ∀α∈V, 则 f ∈ Hom(V, U), 称为零映射, 记为0.注⑤ 若 f: V → V 满足 f(α) = α, ∀α∈V, 则 f ∈ Hom(V, V), 称为V上的恒等变换, 记为 I 或 IdV . 注⑥ 对于 f ∈ Hom(V, U), 可以把 ( f(α1), …, f(αs))记为f(α1, …, αs). 相应地, 可以把 f(x1α1+…+xsαs) = x1 f(α1) +…+ xs f(αs) 改写成 ( α1, ), …, f(α f((α1, …, αs)X) = f(f(α1…, αs)X. s))X272365083@8请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.4 线性映射第一章 线性空间与线性变换§1.4 线性映射三. 线性映射的运算 定义1.4.3 (1) 线性运算 设 f, g ∈ Hom(V, U), k ∈ F. 定义 ( f + g)(α) = f(α) + g(α), (kf )(α) = kf(α), ∀α∈V. (2) 复合运算 设 f∈Hom(V, U), g∈Hom(U, W). 定义 (gf )(α) = g[ f(α)], ∀α∈V.注: 对于V上的线性变换 f 及正整数s, 定义 f 0 = I, f 1 = f, f 2 = ff, …, f s = ff s−1. 定理1.4.1(1) 设 f, g ∈ Hom(V, U), k ∈ F, 则 f + g, kf ∈ Hom(V, U). (2) 设 f∈Hom(V, U), g∈Hom(U, W), 则 gf∈ Hom(V, W). 证明: (2) (gf )(kα+lβ) = g[ f(kα+lβ)] = g[kf(α) + lf(β)] = kg[ f(α)] + lg[ f(β)] = k(gf )(α) + l(gf )(β).第一章 线性空间与线性变换§1.4 线性映射第一章 线性空间与线性变换§1.5 线性映射的矩阵定理1.4.2 设 f ∈ Hom(V, U). 若 f 可逆, 则 f −1 ∈ Hom(U, V). 证明: ∀ξ, η ∈ U, k, l ∈ F, 令α = f −1(ξ ), β = f −1(η)∈ V, 则 f [ f −1(kξ + lη)] = kξ + lη = kf(α) + lf(β) = f(kα + lβ), 故 f −1(kξ + lη) = kα + lβ = kf −1(ξ ) + lf −1(η).§1.5 线性映射的矩阵 一. 线性映射在给定的基偶下的矩阵 设α1, …, αn为V的一组基, β1, …, βs为U的一组基, f ∈ Hom(V, U), 则存在A = (aij)s×n使得 ( f(α1), …, f(αn)) = (β1, …, βs)a11 … a1n as1 … asn,简记为 f(α1, …, αn) = (β1, …, βs)A. 称为 f 在基偶{α1, …, αn}与{β1, …, βs}下 的矩阵表示. A —— f 在基偶…下的矩阵.……第一章 线性空间与线性变换§1.5 线性映射的矩阵第一章 线性空间与线性变换§1.5 线性映射的矩阵特别地, 设α1, …, αn为V的一组基, f ∈ Hom(V, V), 则存在A = (aij)n×n使得 ( f(α1), …, f(αn)) = (α1, …, αn)a11 … a1n an1 … ann注① 零映射在任意基偶下的矩阵都是O; 恒等变换在任一组基下的矩阵都是I. 注② 设α1, …, αn为V的一组基, ,…简记为 f(α1, …, αn) = (α1, …, αn)A. 称为 f 在基{α1, …, αn}下的矩阵表示. A —— f 在基{α1, …, αn}下的矩阵.…β1, …, βs为U的一组基, f(α1, …, αn) = (β1, …, βs)A. 若ξ = x1α1 + … + xnαn = (α1, …, αn)X, 则 f(ξ) = f(x1α1 + … + xnαn) = x1 f(α1) + … + xn f(αn) = ( f(α1), …, f(αn))X = f(α1, …, αn)X = (β1, …, βs)AX.272365083@9请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.5 线性映射的矩阵第一章 线性空间与线性变换§1.5 线性映射的矩阵例2. 在 [x]n中, D[p(x)] = p′(x), D(1, x, x2, …, xn−2, xn−1)0 0 0 . 0 … 0 1 0 … 0 0 0 2 … 0 … 2, …, xn−2, xn−1) 0 0 0 = (1, x, x n−2 0 0 0 … 0 0 0 0 … 0 … … …例3. D: [x]n → D(1, x, x2,[x]n−1, D[p(x)] = p′(x), …, xn−2, xn−1)0 0 0 . …0 1 0 … 0 0 0 2 … 0 = (1, x, x2, …, xn−2) 0 0 0 … … … ……n−1…0 0 0 … 0 n−1n−2例4. 设A ∈F s×n, f: F n → F s, f(X) = AX. f(e1, …, en) = (Ae1, …, Aen) = AIn = A = IsA = (ε1, …, εs)A.第一章 线性空间与线性变换§1.5 线性映射的矩阵第一章 线性空间与线性变换§1.5 线性映射的矩阵二. 线性映射在两对基偶下的矩阵间的联系 定理1.5.1 设 f ∈ Hom(V, U), 其中 V的一组基α1, …, αn到另一组基 β1, …, βn的过渡矩阵为P; U的一组基ξ1, …, ξs到另一组基 η1, …, ηs的过渡矩阵为Q. 若 f(α1, …, αn) = (ξ1, …, ξs)A, f(β1, …, βn) = (η1, …, ηs)B, 则B = Q−1AP.证明: (β1, …, βn) = (α1, …, αn)P (η1, …, ηs) = (ξ1, …, ξs)Q f(α1, …, αn) = (ξ1, …, ξs)A f(β1, …, βn) = (η1, …, ηs)B⇒(ξ1, …, ξs)AP = f(α1, …, αn)P = f((α1, …, αn)P) = f(β1, …, βn) = (η1, …, ηs)B = (ξ1, …, ξs)QB ⇒ AP = QB ⇒ B = Q−1AP.第一章 线性空间与线性变换§1.5 线性映射的矩阵第一章 线性空间与线性变换§1.5 线性映射的矩阵定理1.5.2 设 f ∈ Hom(V, V), 其中 V的一组基α1, …, αn到另一组基 β1, …, βn的过渡矩阵为P. 若 f(α1, …, αn) = (α1, …, αn)A, f(β1, …, βn) = (β1, …, βn)B, 则B = P−1AP.三. 线性变换运算的矩阵 设V的一组基为α1, …, αn , 线性变换 f: V→V在这组基下的矩阵记为 [ f ]. 定理1.5.3 设 f, g ∈ Hom(V, V), k ∈ F, 则 (1) [ f + g] = [ f ] + [g]. (2) [kf ] = k[ f ]. (3) [ fg] = [ f ][g]. (4) f 可逆⇒[ f −1] = [ f ]−1.272365083@10请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.5 线性映射的矩阵第一章 线性空间与线性变换§1.5 线性映射的矩阵证明: (1)( f + g)(α1, …, αn) = (( f + g)(α1), …, ( f + g)(αn)) = ( f(α1)+g(α1), …, f(αn)+g(αn)) = ( f(α1), …, f(αn)) + (g(α1), …, g(αn)) = f(α1, …, αn) + g(α1, …, αn) = (α1, …, αn)[ f ] + (α1, …, αn)[g] = (α1, …, αn){[ f ]+[g]}.证明: (2)(kf )(α1, …, αn) = ((kf )(α1), …, (kf )(αn)) = (kf(α1), …, kf(αn)) = k( f(α1), …, f(αn)) = kf(α1, …, αn) = k{(α1, …, αn)[ f ]} = (α1, …, αn){k[ f ]}.第一章 线性空间与线性变换§1.5 线性映射的矩阵第一章 线性空间与线性变换§1.5 线性映射的矩阵证明: (3)( fg)(α1, …, αn) = (( fg)(α1), …, ( fg)(αn)) = ( f(g(α1)), …, f(g(αn))) = f(g(α1), …, g(αn)) = f(g(α1, …, αn)) = f((α1, …, αn)[g]) = f(α1, …, αn)[g] = ((α1, …, αn)[ f ])[g] = (α1, …, αn)([ f ][g]).证明: (4) 设[ f −1] = B, 即 f −1(α1, …, αn) = (α1, …, αn)B, 则(α1, …, αn) = ( ff −1)(α1, …, αn) = f( f −1(α1, …, αn)) = f((α1, …, αn)B) = f(α1, …, αn)B = ((α1, …, αn)[ f ])B = (α1, …, αn)([ f ]B), 由此可得[ f ]B = I, 因而[ f −1] = B = [ f ]−1.第一章 线性空间与线性变换§1.5 线性映射的矩阵第一章 线性空间与线性变换§1.5 线性映射的矩阵例5. 设dimV = n, f ∈ Hom(V, V), f 2 = I. 证明: [ f ]相似于 Ir O (0 ≤ r ≤ n). O −In−r证明: 令V1 = {α∈V | f(α) = α}, V2 = {α∈V | f(α) = −α}, 则V1, V2 ≤ V 且V1∩V2 = {0}. 1 1 ∀α∈V, 令β = −(α +f(α)), γ = −(α −f(α)), 2 2 则由f 2 = I 可得 f(β) = β, f(γ) = γ, 故β ∈V1, γ ∈V2, α = β + γ ∈V1 + V2. 可见V1 + V2 ⊆ V ⊆ V1 + V2.因而V = V1 + V2 = V1⊕V2 . 设V1的一组基为α1, …, αr , V2的一组基为βr+1, …, βn , f 在V的基α1, …, αr , βr+1, …, βn下的矩阵为 Ir O . O −In−r 由定理1.5.2可知, [ f ]相似于 Ir O . O −In−r272365083@11请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.5 线性映射的矩阵第一章 线性空间与线性变换§1.5 线性映射的矩阵四. 不变子空间 定义1.5.1 设 f ∈ Hom(V, V), W ≤ V. 若∀α∈W, 有 f(α)∈W, 则称W为V的关于 f 的不变子空间, 简称为 f 的不变子空间. 此时, 定义 f |W: W → W; α → f(α), 则 f |W ∈ Hom(W, W), 称为f 在W上 的限制.例如: ① 例5中, f ∈ Hom(V, V), f 2 = I, 则 V1 = {α∈V | f(α) = α}, V2 = {α∈V | f(α) = −α} 都是 f 的不变子空间. ② ∀ f ∈ Hom(V, V), {0}和V都是 f 的不变子空间.第一章 线性空间与线性变换§1.5 线性映射的矩阵第一章 线性空间与线性变换§1.6 线性映射的值域与核注: 设dimV = n, f ∈ Hom(V, V), V = U⊕W, 其中U, W都是 f 的不变子空间, U的一组基为α1, …, αr , W的一组基为βr+1, …, βn , 则 f |U(βi) = 0, i = r+1, …, n, f |W(αi) = 0, i = 1, …, r. 设 f |U在U的基α1, …, αr下的矩阵为A, f |W在W的基βr+1, …, βn下的矩阵为B, 则 f 在V的基α1, …, αr , βr+1, …, βn下的矩 A O 阵为 O B .§1.6 线性映射的值域与核 一. 定义 设 f ∈ Hom(V, U), 则称 f(V) = { f(α) |α∈V}为 f 的值域, 记为R( f ); 称K( f ) = {α∈V | f(α) = 0}为 f 的核. VK( f )U f → f(V) 0U第一章 线性空间与线性变换§1.6 线性映射的值域与核第一章 线性空间与线性变换§1.6 线性映射的值域与核二. 性质 定理1.6.1 设 f ∈ Hom(V, U), 则 (1) R( f ) ≤ U. (2) K( f ) ≤ V. (3) 当U = V时, R( f )和K( f )都是 f 的不变子空间. VK( f )U f → f(V) 0U例1. 设A ∈ Fs×n, f: Fn→ Fs定义为 f(X) = AX. 则R( f ) = {AX | X ∈ Fn} ≤ Fs, 这是A的列空间, 也称为A的值域, 记为R(A); K( f ) = {X ∈ Fn | AX = 0}, 这是AX = 0的解空间, 也称为A的核, 记为K(A).272365083@12请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.6 线性映射的值域与核第一章 线性空间与线性变换§1.6 线性映射的值域与核定理1.6.2 设 f ∈ Hom(V, U), dimV < ∞, 则 dimR( f ) + dimK( f ) = dimV. VK( f )U f → f(V) 0U ...... ...证明: 设α1, …, αk为K( f )的一组基, α1, …, αk, αk+1, …, αn为V的一组基, 则R( f ) = span{ f(αi) | i = 1, …, n} = span{ f(αi) | i = k+1, …, n}. 若ck+1 f(αk+1) + … + cn f(αn) = 0, 则 f(ck+1αk+1 + … + cnαn) = 0, 即ck+1αk+1 + … + cnαn ∈ K( f ), 故存在c1, …, ck使得 ck+1αk+1 + … + cnαn = c1α1 + … + ckαk , 即c1α1 + … + ckαk − ck+1αk+1 − … − cnαn = 0, 由此可得ck+1 = … = cn = 0. 可见 f(αk+1), …, f(αn) 线性无关, 故dimR( f ) + dimK( f ) = dimV.第一章 线性空间与线性变换§1.6 线性映射的值域与核第一章 线性空间与线性变换§1.6 线性映射的值域与核例2. 设A = 1 1 , f(X) = AX, ∀X∈ 2×2. (1) 分别求R( f )及K( f )的一组基, (2) R( f ) + K( f )是否为直和. 解: 取 2×2的一组基E11, E12, E21, E22. 则R( f ) = span{ f(E11), f(E12), f(E21), f(E22)}, 其中 f(E11) = f(E21) = E11 + E21, f(E12) = f(E22) = E12 + E22, 且E11 + E21, E12 + E22线性无关, 因此, E11 + E21, E12 + E22构成R( f )的一组 基.1 1设X = x1 x2 , 则 3 4 AX ⇔ x1 + x3 = x2 + x4 = 0 ⇔ X = x1(E11 − E21) + x2(E12 − E22). 又因为E11 − E21, E12 − E22线性无关, 可见E11 − E21, E12 − E22构成K( f )的一组基. (E11 + E21, E12 + E22, E11 − E21, E12 − E22)1 0 1 0x x= (E11, E12, E21, E22) 0 1 0 1 ,1 0 −1 0 0 1 0 −1第一章 线性空间与线性变换§1.6 线性映射的值域与核第一章 线性空间与线性变换§1.6 线性映射的值域与核(E11 + E21, E12 + E22, E11 − E21, E12 − E22)1 = (E11, E12, E21, E22) 0 1 0 1 0 1 0 0 其中r 0 1 −1 1 = 4. 1 0 0 0 1 0 −1 0 1 0 1 1 0 −1 0 0 1 , 0 −1故E11 + E21, E12 + E22, E11 − E21, E12 − E22线性 无关, 因而R( f ) + K( f )为直和.事实上, 若B ∈ R( f ) ∩ K( f ), 则存在X∈ 2×2 使得B = AX, 而且AB = O. 于是可得 2AX = A2X = A(AX) = AB = O, 故B = AX = O. 可见R( f ) ∩ K( f ) = {O}, 因此R( f ) + K( f )为直和.272365083@13请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.6 线性映射的值域与核第一章 线性空间与线性变换§1.6 线性映射的值域与核例3. 设A = 0 0 , f(X) = AX, ∀X∈ 2×2. (1) 分别求R( f )及K( f )的一组基, (2) R( f ) + K( f )是否为直和. 解: 取 2×2的一组基E11, E12, E21, E22. 则R( f ) = span{ f(E11), f(E12), f(E21), f(E22)}, 其中 f(E11) = f(E12) = O, f(E21) = E11, f(E22) = E12, 且 E11, E12 线性无关, 因此, E11, E12构成R( f )的一组基.0 1设X = x1 x2 , 则 3 4 AX ⇔ x3 = x4 = 0 ⇔ X = x1E11 + x2E12. 又因为E11, E12 线性无关, 可见E11, E12构成K( f )的一组基. 因为R( f ) = span{E11, E12} = K( f ), 因此R( f ) + K( f )不是直和.x x第一章 线性空间与线性变换§1.7 几何空间线性变换的例子第一章 线性空间与线性变换§1.7 几何空间线性变换的例子§1.7 几何空间线性变换的例子 一. 辐射相似变换 f:3二. 平行于某矢量的投影变换 对于任意的OP ∈P e23,e3→3OP → kOP (k > 0).设OP = x1e1 + x2e2 + x3e3, 令 f(OP) = x1e1 + x2e2, 则 f ∈ Hom(3, 3),e3 P O e1 1 0 0 0 0 0 e2O e1f在3的任意一组基下的矩阵都是kI.OP − f(OP) // e3,→ 0<k<1 压缩→ k>1 放大f 在e1, e2, e3下的矩阵为 0 1 0 , R( f ) = span{e1, e2}, K( f ) = span{e3}.第一章 线性空间与线性变换§1.7 几何空间线性变换的例子第一章 线性空间与线性变换§1.7 几何空间线性变换的例子三. 平行于某一方向的压缩(或延伸) 对于任意的OP ∈3,四. 平行于某一方向的推移 对于任意的OP ∈P e23,e3e3P e2设OP = x1e1 + x2e2 + x3e3,f(OP) = x1e1 + x2e2 + ax3e3, O (a > 0).e13, 3),设OP = x1e1 + x2e2 + x3e3,O e1f(OP) = (x1+ax2)e1 + x2e2 + x3e3, (a ≠ 0). 则 f ∈ Hom(3, 3),则 f ∈ Hom(OP − f(OP) // e3,1 0 0 0 0 a→OP − f(OP) // e1, f 在e1, e2, e3下的矩阵为 0 1 0 .0 0 1 1 a 0f 在e1, e2, e3下的矩阵为 0 1 0 .272365083@14请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.7 几何空间线性变换的例子第一章 线性空间与线性变换§1.7 几何空间线性变换的例子五. 旋转变换 见下一章. 六. 镜像变换 见下一章.平面上的例子:0 • 7 • 5 7 0 • 7 • 5 6• 0 5 x 7 0 y5 0 1 0 −0.2 1 0 5 x 7 0 y • 5 −1第一章 线性空间与线性变换§1.7 几何空间线性变换的例子第一章 线性空间与线性变换§1.7 几何空间线性变换的例子平面上的例子:平面上的例子:β αAβ = 0.5β2 0 A = 0 0.5β αcosφ sinφ B = −sinφ cosφ π/6Aα = 2 α第一章 线性空间与线性变换§1.7 几何空间线性变换的例子第一章 线性空间与线性变换§1.8 线性空间的同构平面上的例子: Cβ = β§1.8 线性空间的同构 一. 定义 设V, U都是数域F上的线性空间. 若∃双射σ∈ Hom(V, U), 则称V与U同构, 记为V ≅ U. 并且称σ为V到U的一个同构映射.βCα = − αα0 C = −1 1 0272365083@15请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.8 线性空间的同构第一章 线性空间与线性变换§1.8 线性空间的同构→二. 性质 定理1.8.1 设σ为线性空间V到U的同构映射, 则中向量α1, …, αk线性无关 ⇔ σ(α1), …, σ(αk)线性无关. 证明: (⇒) 设α1, …, αk线性无关, 则 c1σ(α1) + … + ckσ(αk) = 0 ⇒ σ(c1α1 + … + ckαk) = 0 = σ(0) ⇒ c1α1 + … + ckαk = 0 ⇒ c1 = … = ck = 0. 可见σ(α1), …, σ(αk)线性无关.→→第一章 线性空间与线性变换§1.8 线性空间的同构第一章 线性空间与线性变换§1.8 线性空间的同构二. 性质 定理1.8.1 设σ为线性空间V到U的同构映射, 则中向量α1, …, αk线性无关 ⇔ σ(α1), …, σ(αk)线性无关. 证明: (⇐) 设σ(α1), …, σ(αk)线性无关, 则 c1α1 + … + ckαk = 0 ⇒ c1σ(α1) + … + ckσ(αk) = σ(c1α1 + … + ckαk) = σ(0) = 0 ⇒ c1 = … = ck = 0. 可见α1, …, αk线性无关.三. 判定 定理1.8.2 设V与U是数域F上的有限维线性空 间, 则V ≅ U ⇔ dimV = dimU. 证明: (⇒) 设σ为V到U的一个同构映射, 则R(σ) = U, K(σ) = {0}. 故dimV = dimR(σ) + dimK(σ) = dimU.第一章 线性空间与线性变换§1.8 线性空间的同构第一章 线性空间与线性变换§1.8 线性空间的同构(⇐) 设dimV = dimU = n, α1, …, αn为V的一组基, ξ1, …, ξn为U的一组基. 对于任意的α = a1α1 + … + anαn ∈ V, 令σ(α) = a1ξ1 + … + anξn, 则 (1) σ : V → U为单射. 事实上, … (2) σ : V → U为单射. 事实上, … (3) σ ∈ Hom(V, U). 事实上, … 故V ≅ U.(1) σ : V → U为单射. 事实上, 若α = a1α1 +…+ anαn, β = b1α1 +…+ bnαn, 且σ(α) = σ(β), 则 a1ξ1 + … + anξn = b1ξ1 + … + bnξn, 故(a1−b1)ξ1 + … + (an−bn)ξn = 0, 由此可得 a1−b1 = … = an−bn = 0, 即(a1, …, an) = (b1, …, bn), 因而α = a1α1 +…+ anαn = b1α1 +…+ bnαn = β.272365083@16请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.8 线性空间的同构第一章 线性空间与线性变换§1.8 线性空间的同构(2) σ : V → U为满射. 事实上, ∀ξ∈U, 设ξ = a1ξ1 + … + anξn, 于是令α = a1α1 +…+ anαn, 则α ∈ V 且σ(α) = a1ξ1 + … + anξn = ξ.(3) σ ∈ Hom(V, U). 事实上, ∀α = a1α1 +…+ anαn, β = b1α1 +…+ bnαn, k, l ∈ F, 有 σ(kα + lβ) = σ((ka1+ lb1)α1 +…+ (kan+ lbn)αn) = (ka1+ lb1)ξ1 + … + (kan+ lbn)ξn = k(a1ξ1 +…+ anξn) + l(b1ξ1 +…+ bnξn) = kσ(α) + lσ(β).第一章 线性空间与线性变换§1.8 线性空间的同构第一章 线性空间与线性变换§1.8 线性空间的同构四. 例子 1. [x]n = {a0+…+an−1xn−1 | a0, …, an−1x∈ }. dim [x]n = n = dim 事实上, 容易验证n,2. dimM2×3( ) = 6, 故M2×3( ) ≅ 事实上, 容易验证6.故 [x]n ≅n;n.σ : M2×3( ) →a11 a12 a13 a21 a22 a236;σ : [x]n →a0+…+an−1xn−1 → 为同构映射.a0 an−1 …a11 a12 a → a13 21 a22 a23为同构映射.第一章 线性空间与线性变换§1.8 线性空间的同构3.= {x∈ | x > 0}. a⊕b = ab, ∀a, b∈ +; k⊗a = ak, ∀a∈ +, ∀k∈ . dim + = 1, 故 + ≅ . 事实上, 容易验证 → ; x → logax++为同构映射.272365083@17。

第1章 线性空间与线性变换讲义

第1章 线性空间与线性变换讲义
定义加法:
a + b = ( x 1 + y1 , x 2 + y 2 , , x n + y n ) T
定义数乘:
ka = ( kx1 , kx 2 , , kx n ) T ,
R n 是数域 R 上的线性空间。 C n 是数域 C 上的线性空间。
4
例2 实数域 R上的全体 m×n 矩阵,对矩阵的加法 和数乘运算构成 R上的线性空间,记作 Rm×n
定义:设 V 是一个非空集合,F 为数域,a, b, g V, 对于任意的a, b V, 总有唯一的元素 g V
与之对应,称 g 为a 与b 的和,记作 g =a +b,且
(1) a + b = b + a ;
( 2 ) (a + b ) + g = a + ( b + g );
( 3) 存在零元素: b V , a V , a + b = a, 称 b 为零元素, 并记 b 为 0 ; ( 4) 存在负元素 a V , b V, a + b = 0; 称 b 为 a 的负元素, 并记 b 为 - a ;
(1) a , b W , 则a + b W (2) a W , k F , 则 ka W
则称W 是V 的子空间。
21
例1. 实数域上 n 维向量的集合
W = { ( 0, x 2 , , x n ) T | x 2 , , x n R }
则 W是 R n 的 子 空 间 。
则 P 称为由基 a 1 , a 2 , , a n 到基 b 1 , b 2 , , b n 的 转移矩阵(或过渡矩阵),其中
p11 p21 P= p n1 p12 p22 pn 2 p1n p2 n pnn

1-1 线性空间

1-1 线性空间

2. 线性空间的基与坐标
(a) 基与坐标 给定数域K上的线性空间 上的线性空间V, 中的r个 给定数域 上的线性空间 ,x1,x2,…,xr是V中的 个 中的 向量。如果满足: 线性无关; 向量。如果满足:1. x1,x2,…,xr线性无关;2. V中 中 任意一个向量都可以由 一个向量都可以由x 线性表出, 任意一个向量都可以由 1,x2,…,xr线性表出,则称 x1,x2,…,xr是V的一组基(base),并称 i为基向量。 的一组基 的一组 ,并称x 基向量。 线性空间的维数就是基中所含基向量个数。 线性空间的维数就是基中所含基向量个数。 维线性空间V的一组基 坐标系。 称n维线性空间 的一组基 1,x2,…,xn为坐标系。 维线性空间 的一组基x 对任意x∈ , 对任意 ∈V,在该组基下的线性表示为 x = ξ1 x1 + ξ 2 x2 + L + ξ n xn , 在该坐标系下的坐标 则称ξ1,ξ2,…,ξn是x在该坐标系下的坐标 在该坐标系下的 (coordinate)或分量,记为 ξ1,ξ2,…,ξn)T。 或分量,记为(
第一章
线性空间与线性变换
1.1 线性空间 1.2 线性变换及其矩阵表示 1.3 常见特殊矩阵
1.1 线性空间
1. 线性空间及其性质 2. 线性空间的基与坐标 3. 线性子空间
1. 线性空间及其性质
(a) 集合 集合(set):是指一些对象的总体。 :是指一些对象的总体。 集合 元素(element):这些对象称为集合的元素。 这些对象称为集合的元素。 元素 这些对象称为集合的元素 整数集; 整数集; 线性方程组的解集; 线性方程组的解集; 由某个平面上所有的点构成的点集。 由某个平面上所有的点构成的点集。 表示集合, 是 的元素 用S表示集合,a是S的元素 a ∈ S 表示集合 a不是 的元素 a ∉ S 不是S的元素 不是

线性空间的基本内容

线性空间的基本内容
(2)线性变换保持线性组合与线性关系式不变
(3)线性变换将线性相关的向量组变为线性相关的向量组
注意:线性无关的向量组经过线性变换后可能会变成线性相关的向量组,如零变换
3、线性变换的矩阵
(1) 定义 教材P133定义3.11
(2) 求线性变换一组基下的矩阵 教材P134例8---例11。
(2) 正交基与标准正交基 教材P145定义3.17
对一组正交基进行单位化,就得到一组标准正交基
(3) 在标准正交基下,向量坐标可用内积简单表示:见教材P145 定理3.11
在标准正交基下,内积也有特别简单的表达式:设 ,在 的标准正交基 下,有 , ,则
(4)第二章中施密特正交化方法可以推广到一般的欧氏空间 教材P146定理3.12
② 两个等价的线性无关的向量组一定含有相同个数的向量。
(4)基 教材P122定义3.5
(5)坐标 教材P122定义3.6
注意:
① 若是 为 维线性空间 的一组基,则它们线性无关,并且对于任意 , 线性相关。
② 向量在一组基下的坐标唯一。
4、基变换与坐标变换 教材P125定理 3.4
本章小结
线性空间是线性代数最基本的概念之一,也是我们碰到的第一个抽象的概念。在线性空间中,元素之间的联系是通过映射来实现的,而通常将线性空间到自身的映射称为变换。线性变换是其中最基本也是最重要的变换,它是线性代数的主要研究对象之一。本章重点介绍了两方面的内容:线性空间的概念、性质,线性空间的基与坐标;线性变换的定义,线性变换的矩阵。最后简要介绍了欧氏空间。
(3) 线性变换的像 与 的坐标之间的关系 教材P137定理3.7
4、线性变换与矩阵的一一对应关系

第四章_线性空间_S1_线性空间的概念[1][1]

第四章_线性空间_S1_线性空间的概念[1][1]

所以, R+对所定义的运算构成线性空间.
线性空间V具有的性质
1. 零元素是唯一的. 证明: 假设01, 02是线性空间V中的两个零元素. 则对任何V有, +01=, +02= , 由于01, 02V, 则有 02+01=02, 01+02=01.
所以
01=01+02 =02+01 =02.
(6) (k+l) · a = ak+l = ak al = ak al = k· a l · a. (7) k·(ab) = k·(a b) = (a b)k = ak bk = akbk = k· a k· b; (8) k·(l · a) = k· a l = (al)k = ak l = (k l) · a;
例1.实数域上的全体m n矩阵,对于 矩阵的加法和数乘运算构成实数域上
n 的线性空间,记作R m (或 M mn ( R )) .
例2.所有次数不超过n(n是自然数)的实系数多项式 的全体,关于通常多项式的加法以及实数与多项 式的乘法构成一个实线性空间,记作Pn [ x]。 即:Pn [ x] ={ p ( x) a0 a1x L an x n | a0 , a1 ,· · · , an R }
以下用 F(或P) 泛指一般的数域。
Q(有理数),R(实数),C(复数)
二、线性空间的定义
•几个例子
解析几何中,二(三)维向量及其运算 : 向量的基本属性:可以按平行四边形规律相加, 也可以与实数作数量乘法。 不少几何和力学对象的性质是可以通过向量的这 两种运算来描述的。
F1
F3
F2
所有n阶实矩阵:也定义了加法和数量乘法

线性空间与线性变换

线性空间与线性变换

线性空间与线性变换线性空间(也称为向量空间)是线性代数的基本概念之一。

它是指由向量集合组成的集合,满足特定的运算规则。

线性空间中的向量可以是实数域上的实向量,也可以是复数域上的复向量。

线性空间的定义涵盖了许多重要的数学概念和定理,在各个领域中都有广泛的应用。

一、线性空间的定义线性空间的定义遵循以下几个基本条件:1. 封闭性:对于线性空间V中任意向量u和v,它们的线性组合也属于V。

即对于任意的标量a和b,有a*u + b*v∈V。

2. 加法结合性:对于线性空间V中任意向量u、v和w,有(u+v)+w = u+(v+w)。

3. 加法交换性:对于线性空间V中任意向量u和v,有u+v = v+u。

4. 零向量存在性:存在一个特殊的向量0,满足对于线性空间V中任意向量u,有u+0 = u。

5. 加法逆元存在性:对于线性空间V中任意向量u,存在一个向量-v,使得u+(-v) = 0。

6. 数量乘法结合性:对于线性空间V中任意的标量a、b和向量u,有(a*b)*u = a*(b*u)。

7. 标量乘法分配律:对于线性空间V中任意的标量a和向量u、v,有a*(u+v) = a*u + a*v。

8. 向量乘法分配律:对于线性空间V中任意的标量a和b,以及向量u,有(a+b)*u = a*u + b*u。

二、线性变换的定义与性质线性变换是一种将一个线性空间映射到另一个线性空间的函数。

线性变换也被称为线性映射或线性算子。

线性变换保持线性空间的线性结构,即对于线性空间V中任意的向量u和v,以及标量a和b,有以下性质:1. 线性变换将零向量映射到零向量,即T(0) = 0,其中T表示线性变换。

2. 线性变换保持向量的线性组合,即对于线性空间V中任意的向量u和v,以及标量a和b,有T(a*u + b*v) = a*T(u) + b*T(v)。

3. 线性变换的像空间是一个线性空间,即对于线性空间V中的线性变换T,其像空间W也是一个线性空间。

线性空间中的基本定义及性质

线性空间中的基本定义及性质

线性空间中的基本定义及性质线性空间是现今数学中的一个基础概念。

它在向量、矩阵、微积分、拓扑等多个数学分支中都有广泛的应用。

本文将简单介绍线性空间的基本定义及其性质。

一、线性空间的基本定义线性空间是一种包含数个元素的空间,其内部具有向量加法运算和数乘运算。

具体来说,设V为一个非空集合,其中的元素称为向量。

若V上有两种运算,一种为向量加法运算,用+表示,另一种为数乘运算,用·表示,则称(V, +, ·)为一个线性空间,满足以下条件:1.加法交换律:对任意u,v∈V,有u+v=v+u;2.加法结合律:对任意u,v,w∈V,有(u+v)+w=u+(v+w);3.存在零向量:存在一个元素0∈V,使得对任意u∈V,有u+0=u;4.对任意向量u∈V,存在相反元素:对任意u∈V,存在一个元素-v∈V,使得u+(-v)=0;5.数乘结合律:对任意α,α∈R,u∈V,有(αα)u=α(αu);6.分配律:对任意α∈R,u,v∈V,有α(u+v)=αu+αv,(α+α)u=αu+αu;7.标量乘法:对任意u∈V,有1u=u。

在以上定义中,R表示实数集合上的乘法运算。

二、线性空间的性质线性空间的定义虽然简单,但它带来了许多重要的性质。

以下是几个典型的例子:1. 零向量唯一性:线性空间中仅存在一个零向量,任何向量加上该零向量等于其本身。

2. 相反元素唯一性:线性空间中任一向量的相反元素是唯一的。

3. 线性组合性质:设{u1,u2,...,un}为V中的向量。

{a1,a2,...,an}为任意实数,则线性组合a1u1+a2u2+...+anun∈V。

其中,每个ai乘以ui叫做向量ui 的系数。

4. 子空间的定义:设V为一个线性空间,如果它的子集W满足:(1)对于任意向量u,v∈W,u+v∈W;(2)对于任意α∈R,u∈W,有αu∈W;则称W是V的一个子空间。

5. 线性无关性:设V为一个线性空间,{u1,u2,...,un}为其中的向量。

01_矩阵论_第一章线性空间与线性变换

01_矩阵论_第一章线性空间与线性变换

则有
1 0 0 1 0 0 0 0 A a11 0 0 a12 0 0 a21 1 0 a22 0 1
因此 R22 中任何一个向量都可写成向量组
1 0 0 1 0 0 0 0 E11 0 0 , E12 0 0 , E21 1 0 , E22 0 1
Pn [ x] { ai xi | ai R}
i 0 n 1
在通常多项式加法和数乘多项式运算下构成线性 空间 Pn[x]。 值得指出的是次数等于 n 1 的多项式集合
V { ai x | ai R, an1 0}
i i [a, b] = {f (x) | f (x) 是区间 [a, b] 上 实连续函数 } ,对于函数的加法与数乘运算构成 实数域上的线性空间。
定义 1.3 设 1, 2, …, n 是线性空间 Vn(F) 的一组基,若 V,
xi i (1 2
i 1 n
x1 x2 n ) x n
(1.1)
则称数 x1, x2, …, xn 是 在基 {1, 2, …, n} 下 的坐标,(1.1) 式中向量 (x1, x2, …, xn)T 为 的坐 标向量,也简称为坐标。
从上述线性空间例子中可以看到,许多常见 的研究对象都可以在线性空间中作为向量来研究。 另外应理解加法和数乘分别是 V 中的一个二元运 算和数域 F 和 V 中元素间的运算,要求运算满足 定义 1.1 中的八条性质,它们已不再局限在数的 加法、乘法的概念中。
一个数学例子 取集合为正实数集合 R+,F 为实数域 R,加 法“”和数乘“”如下定义 :a, bR+,ab = ab, :kR(i.e. F ),aR+,k a = ak。 在此运算下,R+ 是 R 上的一个线性空间,其中 加法零元素是 R+ 中的数 1,R+ 中元素 a 的负元素 是 a1。

线性代数中的线性空间和线性映射

线性代数中的线性空间和线性映射

线性代数中的线性空间和线性映射线性代数是数学中重要的一门学科,它的研究范围包括向量空间、线性变换、矩阵论等多个方面。

其中,线性空间和线性映射是线性代数的重要概念,本文将从这两个方面入手,探讨它们的定义、性质及应用。

一、线性空间线性空间又称向量空间,是线性代数中的基本概念之一。

它是一个具有加法和数乘运算的集合,满足以下条件:1.对于任意两个向量,其和仍为向量;2.对于任意一个向量和任意一个标量,它们的积仍为向量;3.加法和数乘运算遵从结合律和分配律;4.存在一个零向量,满足加法运算返回自身。

线性空间的定义具有很强的普遍性,它可以适用于实数、复数、函数以及其他更广泛的对象集合。

下面举一个实数向量空间的例子。

考虑一个三维实数向量空间,它包含所有形如 $(x,y,z)$ 的三元组,其中 $x,y,z$ 均为实数。

我们可以定义向量的加法和数乘运算如下:$$(x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1+x_2, y_1+y_2,z_1+z_2)$$$$k(x, y, z) = (kx, ky, kz)$$显然,这样定义的加法和数乘运算符合上述线性空间的定义,因此该三维实数向量空间是一个线性空间。

除了上述基本性质外,线性空间还有许多衍生的性质,如基和维数的概念等。

具体来说,一个线性空间的基是指它的极大线性无关组,而线性空间的维数是其基的元素个数。

这些概念在矩阵论等应用中有广泛的应用。

二、线性映射线性映射是一种特殊的函数,它将一个向量空间映射到另一个向量空间,并保持加法和数乘运算的线性性。

考虑两个向量空间 $V$ 和 $W$,一个从 $V$ 到 $W$ 的线性映射 $T$ 应该满足以下条件:1.对于任意向量 $u,v\in V$,有 $T(u+v) = T(u) + T(v)$;2.对于任意向量 $u\in V$ 和标量 $k$,有 $T(ku) = kT(u)$;3.存在一个零向量 $0$,满足 $T(0)=0$。

线性空间的原理

线性空间的原理

线性空间的原理线性空间是数学中非常重要的概念,它是一种允许进行向量加法和标量乘法的集合。

线性空间广泛应用于数学、物理、工程等领域,是研究向量和线性运算的理论基础。

本文将围绕线性空间的定义、性质和应用展开详细的阐述。

线性空间的定义:线性空间,也称为向量空间,是一种满足特定条件的集合。

对于一个非空集合V,若其中定义了两种运算:向量的加法和标量的乘法,且满足以下八条性质,那么V就是一个线性空间。

1.加法封闭性:对于V中的任意两个向量u和v,它们的和u+v也属于V。

2.加法交换律:对于V中的任意两个向量u和v,满足u+v=v+u。

3.加法结合律:对于V中的任意三个向量u、v和w,满足(u+v)+w = u+(v+w)。

4.零向量存在性:存在一个元素0∈V,使得对于V中的任意向量u,满足u+0=u。

5.加法逆元存在性:对于V中的任意向量u,存在一个元素-u∈V,使得u+(-u)=0。

6.标量乘法封闭性:对于V中的任意标量α和任意向量u,它们的乘积αu属于V。

7.分配律1:对于V中的任意标量α和β以及任意向量u,满足(α+β)u=αu+βu。

8.分配律2:对于V中的任意标量α和β以及任意向量u,满足α(u+v)=αu+αv。

线性空间的性质:线性空间具有一系列重要的性质,这些性质是对其定义中所列条件的进一步推演和说明。

1.线性空间的零向量唯一:对于一个线性空间V,其零向量是唯一的,即不存在不同的零向量。

2.零向量的加法逆元唯一:对于一个线性空间V以及其中的一个向量u,其加法逆元-u是唯一的,即不存在不同的加法逆元。

3.标量乘法的单位元:对于一个线性空间V,乘以标量1的结果是原向量本身,即1u=u。

4.标量乘法的分配律:对于一个线性空间V以及其中的两个标量α和β,乘法分配律表示为(α+β)u=αu+βu和α(u+v)=αu+αv。

5.标量乘法的结合律:对于一个线性空间V以及其中的两个标量α和β,乘法结合律表示为(αβ)u=α(βu)。

线性空间 知识点总结

线性空间 知识点总结

线性空间知识点总结本文将从定义、性质、例子、拓扑结构等多个方面对线性空间进行总结,以帮助读者更全面地理解这一概念。

一、线性空间的定义线性空间的定义较为抽象,它可以用来表示向量、矩阵、多项式等各种类型的数学对象。

线性空间是一个非空集合V,配上两个操作:加法和数乘。

加法指的是将两个向量或数学对象相加得到一个新的向量或数学对象,数乘指的是将一个标量与一个向量或数学对象相乘得到一个新的向量或数学对象。

具体来说,给定一个域F,一个线性空间V满足以下条件:1. 对于V中的任意两个元素x、y,它们的和x+y也属于V。

2. 对于V中的任意元素x和任意标量c,它们的数乘cx也属于V。

3. 加法满足结合律和交换律。

4. 加法单位元(零向量)存在。

5. 数乘满足分配律。

6. 数乘满足标量乘1等于自身。

换句话说,线性空间V是一个满足上述条件的非空集合,它配备了加法和数乘这两种运算,并且这两种运算满足一定的性质。

二、线性空间的性质线性空间有许多重要的性质,这些性质不仅体现了线性空间的内在结构,也为线性空间的进一步研究提供了重要的基础。

下面介绍线性空间的一些主要性质:1. 线性空间中的元素有唯一加法逆元。

对于线性空间V中的任意元素x,存在一个唯一的元素-y,使得x+y=0,其中0表示线性空间V中的零向量。

2. 线性空间中的元素满足交换律和结合律。

即对于线性空间V中的任意元素x、y、z,有x+y=y+x,(x+y)+z=x+(y+z)。

3. 线性空间中的元素满足分配律。

即对于线性空间V中的任意元素x、y、z和任意标量c,有c(x+y)=cx+cy,(c+d)x=cx+dx。

4. 线性空间中的元素满足数乘单位元的性质。

即对于线性空间V中的任意元素x,有1∙x=x。

5. 线性空间中的元素满足数乘交换律。

即对于线性空间V中的任意元素x和任意标量c、d,有c(dx)=(cd)x。

6. 线性空间中的元素满足数乘结合律。

即对于线性空间V中的任意元素x和任意标量c、d,有(c+d)x=cx+dx。

线性空间的概念与性质

线性空间的概念与性质

线性空间和线性变换§1.1 线性空间的概念与性质§1.2 线性空间的基与维数§1.3 线性变换主要讨论线性空间及线性变换的一些基本概念与基本定理,在此基础上使大家能利用这些基本概念与定理解决相关问题。

§1.1 线性空间的概念与性质一、线性空间的定义线性空间是线性代数最基本的概念之一,也是一个抽象的概念。

线性空间是为了解决实际问题而引入的,它是某一类事物从量的方面的一个抽象,即把实际问题看作向量空间,进而通过研究向量空间来解决实际问题。

定义1.设V 是一个非空集合,K是一个数域(有理数域、实数域或复数域)。

在集合V的元素之间定义了一种代数运算,叫做加法:给出了一种法则,对于任意两个元素α,β∈V,总有唯一的一个元素γ∈V与之对应,称为α与β的和,记作:γ=α+β。

在数域K与集合V的元素之间还定义了一种运算,叫做数量乘法:对于任一数λ∈K与任一元素α,总有唯一的一个元素δ∈V与之对应,称为λ与α的数量乘积,记作δ=λα。

如果上述定义的两种运算满足以下八条运算规律,那么V 就称为数域K 上的线性空间(或向量空间)。

(1) (2) ()()(3) (4) (5) 1(6) ()()(7) ()λμλμλμλμλμ∈∈+=+++=++∃∈∀∈+=∀∈∃∈+===+=+αβγV Rαββααβγαβγ0V αV α0ααV βV αβ0ααααααα设、、,、,对,都有,,都有加法:(1)-(4) 数量乘积:(5)(6) 数乘与加法:(7)(8)。

说明:1.凡满足以上八条规律的加法及数乘运算,称为线性运算。

2.线性空间的元素(向量空间中的向量)不一定是有序数组。

3.判别线性空间的方法:一个集合,对于定义的加法和数乘运算不封闭,或者运算不满足八条性质的任一条,则此集合就不能构成线性空间。

线性空间的判定方法:(1)一个集合,如果定义的加法和乘数运算是通常的实数间的加乘运算,则只需检验对运算的封闭性。

线性空间的定义和性质

线性空间的定义和性质
01 02 02
又由于02也是零元素,由定义又应有
从而
01 02 01
01 01 02 02
这证明了零元素的唯一性;
(2) 设αV,β与γ都是 α的负元素,则
0 , 0 这样有
0 ( ) ( ) 0
从而α的负元素是唯一的;
(3) 因为
0 1 0 (1 0) 1
(1) ;
(2) ( ) ( ) ;
(3) V中存在元素0,使对任意αβ有
0 ;
(4) 对于V中任意α,存在V中元素β使

0;
(5) 1α=α ;
(6) k(l) (kl) ;
(7) (k l)α kα lα ;
(8) k( ) k k .
§7.1 线性空间的定义和性质 7.1.1 线性空间的定义 7.1.2 线性空间的初步性质
7.1.1 线性空间的定义 线性空间是本章遇到的第一个抽象概
念.前面遇到过的n维向量、n阶矩阵等都是 一些具体的对象. 为了引出线性空间的一 般概念,我们先仔细观察一下这两个具体
对象. 例7.1.1 实数域上n维向量全体作成
2 2 Q,从而在Q中用实数去进行的
数乘运算不是封闭的.
从这些例子可以知道,线性空间可以 在各种不同的集合上对于各种不同的
加法、数乘运算来定义,只要这个集合上 定义的加法、数乘运算满足封闭性及八条 算律,就可成P上的线性空间V,一般用
例7.1.5 全体有理数所成集合Q,按通 常有理数的加法和有理数对有理数的乘法, 构成一个有理数域上的线性空间. 注意
这个线性空间V及它所属的数域P是同一个 集合. 一般地,任何一个数域P都是P自身 上的线性空间. 但Q不构成实数域R上的线 性空间,因为用一个实数与Q中元素进行 数乘的结果未必是Q中的元素,如

线性空间与子空间的定义与性质

线性空间与子空间的定义与性质

线性空间与子空间的定义与性质线性空间是线性代数中的基本概念之一,它是由一组元素及其对应的运算所构成的数学结构。

本文将介绍线性空间的定义和性质,并讨论其子空间的特点。

一、线性空间的定义线性空间也称为向量空间,它由定义在一个域上的元素所组成,这些元素称为向量。

一个线性空间必须满足以下条件:1. 封闭性:对于任意向量a和b,其线性组合a+b也是线性空间中的向量。

2. 可加性:对于任意向量a、b和c,满足(a+b)+c = a+(b+c)的结合律。

3. 零向量:存在一个零向量0,使得对于任意向量a,有a+0=a。

4. 负向量:对于每个向量a,存在一个负向量-b,使得a+b=0。

5. 数乘性:对于任意向量a和标量k,其标量倍数ka也是线性空间中的向量。

6. 数乘分法:对于任意标量k和l,以及向量a,满足(kl)a=k(la)的结合律。

7. 数乘加法混合性:对于任意向量a和标量k、l,满足(k+l)a=ka+la 的分配律。

8. 数加分法混合性:对于任意向量a、b和标量k,满足k(a+b)=ka+kb的分配律。

二、线性子空间的定义线性子空间是指线性空间中的一个子集,它也是一个线性空间。

对于给定的线性空间V,如果集合W是V的子集,并且满足以下条件:1. 零向量:零向量0属于W。

2. 封闭性:对于任意向量a和b,若a和b都属于W,则其线性组合a+b也属于W。

3. 数乘性:对于任意向量a和标量k,若a属于W,则其标量倍数ka也属于W。

三、子空间的性质线性子空间具有如下性质:1. 非空性:线性子空间不能是空集。

2. 零向量唯一性:线性子空间中的零向量是唯一的。

3. 维数性质:设V是一个线性空间,W是V的一个有限维子空间,如果W的一组基包含n个向量,则W的任意一组线性无关的向量组也包含不超过n个向量。

4. 直和性质:设V是一个线性空间,W是V的一个子空间。

如果存在一个子空间U,使得V是U和W的直和,即任意向量v∈V都可以唯一地表示成v=u+w,其中u∈U,w∈W,则称V是子空间U和W 的直和。

线性空间线性空间的定义及性质知识预备集合笼统的说

线性空间线性空间的定义及性质知识预备集合笼统的说

第一讲线性空间一、线性空间的定义及性质[知识预备]★集合:笼统的说是指一些事物(或者对象)组成的整体。

集合的表示:枚举、表达式集合的运算:并(),交()另外,集合的“和”(+):并不是严格意义上集合的运算,因为它限定了集合中元素须有可加性。

★数域:一种数集,对四则运算封闭(除数不为零)。

比如有理数域、实数域(R)和复数域(C)。

实数域和复数域是工程上较常用的两个数域。

线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础。

1.线性空间的定义:设V是一个非空集合,其元素用zx,,等表示;K是一个数域,y其元素用m,等表示。

如果V满足[如下8条性质,分两类]:k,l(I)在V中定义一个“加法”运算,即当Vx∈,时,有唯一的和y+(封闭性),且加法运算满足下列性质:x∈yV(1)结合律z=+)()(;+y+zxyx+(2)交换律x+;=yyx+(3)零元律存在零元素O,使x+;x=O(4)负元律 对于任一元素V x ∈,存在一元素V y ∈,使O y x =+,且称y 为x 的负元素,记为)(x -。

则有O x x =-+)(。

(II )在V 中定义一个“数乘”运算,即当K k V x ∈∈,时,有唯一的V kx ∈(封闭性),且数乘运算满足下列性质: (5)数因子分配律 ky kx y x k +=+)(; (6)分配律 lx kx x l k +=+)(; (7)结合律 x kl lx k )()(=; (8)恒等律 x x =1; 则称V 为数域K 上的线性空间。

注意以下几点:1)线性空间是基于一定数域来的。

同一个集合,对于不同数域,就可能构成不同的线性空间,甚至对有的数域能构成线性空间,而对其他数域不能构成线性空间。

2)两种运算、八条性质。

数域K 中的运算是具体的四则运算,而V 中所定义的加法运算和数乘运算则是抽象的、形式的。

3)除了两种运算和八条性质外,还应注意唯一性、封闭性是否满足。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
假设 01,02 是线性空间V中的两个零元素,
则对任何 V ,有 01 , 02 .
由于 01,02 V , 所以 02 01 02 ,01 02 01.
01 01 02 02 01 02.
Department of Mathematics
2.负元素是唯一的.
实数间的加乘运算,则只需检验对运算的封闭性.
例1 实数域上的全体 m n 矩阵,对矩阵的加法
和数乘运算构成实数域上的线性空间,记作 Rmn.
Amn Bmn Cmn , Amn Dmn ,
Rmn是一个线性空间.
Department of Mathematics
例2 数域F上次数小于n的多项式的全体,记作: F[ x]n {an1 xn1 an2 xn2 L a1 x a0 ai F } 可以验证:F[ x]构成数域F上的线性空间 通常的多项式加法、数乘多项式的乘法两种运
Q F.
Department of Mathematics
三,线性空间的定义和举例
定义1 设V是一个非空集合,F 为一数域.在V上定
义运算如下:
ⅰ)对任意两个元素 x, y V ,总有唯一的一个元素 z
与之对应,称为 x 与 y 的和,记作 z x y
若对于任一数 F 与任一元素 x V ,总有唯
c d 2 (c d 2)(a b 2) பைடு நூலகம் b 2 (a b 2)(a b 2)
ac a2
2bd 2b2
ad bc a2 2b2
2 Q.
Q( 2)为数域. Gauss数域
类似可证 Q(i) a bi a,b Q, i 1 是数域.
Department of Mathematics
a
b
c
0,
a,
b,
c
R.
解 (1)不构成子空间. 因为对
A B 1 0
0 0
0 0
W1

2 0 0
A B 0
0
0
W1
,
Department of Mathematics
即W1 对矩阵加法不封闭,不构成子空间.
( 2) 因
0 0
0 0
0 0 W2 ,
即W2非空.
对任意
A a1 0
线性空间引论
哈尔滨工程大学理学院应用数学系
Department of Mathematics, College of Sciences
课前预习、课中提高效率、课后复习 作业要求 书后要求的习题,主动自觉做,抽查和不定时收取
使用教材 《 矩阵论 》哈尔滨工程大学主编
其他辅导类参考书(自选)
Department of Mathematics
Department of Mathematics
例7. 对于任意一个有限维线性空间 V, 它必有两个
平凡子空间,即由单个零向量构成的子空间 0 以及线性空间 V 本身。
例8 .设 A Rmn ,那么线性方程组 AX O的全部 解为线性空间 Rn的一个子空间,我们称其为齐次 线性方程组的解空间。
A BW2, 对任意k R有
kA ka1 kb1 0 0 0 kc1
且 ka1 kb1 kc1 0,
即 kAW2 , 故W2是R23的子空间.
Department of Mathematics
张成子空间的定义:
设x1, x2 , , xm 是线性空间V (F )中的向量,
则由 x1, x2 , , xm的所有线性组合:
证明 假设 有两个负元素 与 ,那么
0, 0.
则有 0
0 .
向量 的负元素记为 .
Department of Mathematics
3. 0 0; 1 ; 0 0. 证明 0 1 0 1 0 1 ,
0 0.
1 1 1 1 1 0 0,
验证 R 对上述加法与乘数运算构成线性空间.
Department of Mathematics
证明: a, b R , a b ab R;
R, a R , a a R .
所以对定义的加法与乘数运算封闭.
下面一一验证八条线性运算规律:
(1) a b ab ba b a;
(2)(a b) c (ab) c (ab)c a (b c);
思考题
实数域R上的n元非齐次线性方程组AX B 的所有解向量, 对于通常的向量加法和数量乘法, 是否构成R上的一个线性空间?为什么?
Department of Mathematics
思考题解答
不能构成R上的一个线性空间.

实上,
设X
1
,
X

2
是n元



线




AX B的解向量,则
AX1 B,
x y (a c) (b d ) 2 Q( 2), x y (ac 2bd ) (ad bc) 2 Q( 2) 设 a b 2 0, 于是 a b 2 也不为0.
Department of Mathematics
(否则,若 a b 2 0, 则 a b 2, 于是有 a 2 Q, b 或 a 0,b 0 a b 2 0. 矛盾)
1 .
0 1 0
0.
Department of Mathematics
4.如果 0,则 0 或 0 .
证明 假设 0,
那么
1
1
0
0.
又 1 1 .
0.
同理可证:若 0 则有 0.
Department of Mathematics
(3) R中存在零元素1, 对任何a R , 有
a 1 a 1 a;
(4) a R , 有 负 元 素a1 R , 使
Department of Mathematics
a a1 a a1 1;
(5) 1a a1 a;
(6) a a a a a;
(7) oa a aa a a
(3) 在V中存在零元素0, 对任何x V ,
都有x 0 x ; (4)对任何x V , 都有x的负元素y V ,
使x y 0 ;
(5) 1x x ; (6) x x ;
(7) x x x ; (8)x y x y .
Department of Mathematics
一般线性空间的判定方法 (1)一个集合,如果定义的加法和乘数运算是通常的
Sx 是一个线性空间.
Department of Mathematics
(2) 一个集合,如果定义的加法和乘数运算不 是通 常的实数间的加乘运算,则必需检验是否满足八 条线性运算规律.
例5. 正实数的全体,记作 R ,在其中定义加法
及乘数运算为
a b ab, a a , R,a,b R .
练习:
证明:数域F 上的线性空间V若含有一个非零 向量,则V一定含有无穷多个向量
证:设 V , 且 0
k1, k2 P, k1 k2, 有 k1 , k2 V
又 k1-k2 (k1 k2 ) 0 k1 k2 .
而数域F中有无限多个不同的数,所以V中有无限 多个不同的向量. 注:只含一个向量—零向量的线性空间称为零空间.
m
ki xi
| ki K,i
1,2L
m
i1
构成的集合是V (F )的子空间,称为由 x1, x2 , , xm
张成(生成)的子空间,记为:
L( x1, x2 , , xm )或:span[x1, x2 , xm ]
零向量集合与 V 本身称为平凡子空间, 非平凡 子空间称为 V 的真子空间
Department of Mathematics
对于通常的有序数组的加法及如下定义的乘法
( x1, , xn )T 0, ,0不构成线性空间.
解答: S n对运算封闭.
但1x O, 不满足第五条运算规律.
由于所定义的运算不是线性运算,所以S n不是 线性空间.
Department of Mathematics
二,线性空间的性质
1.零元素是唯一的. 证明:
坐标变换. 难点: 基变换与坐标变换
Department of Mathematics
说明:
1)若数集F中任意两个数作某一运算的结果仍在F 中,则说数集F对这个运算是封闭的.
2)数域的等价定义:如果一个包含0,1在内的数 集F 对于加法,减法,乘法与除法(除数不为0) 是封闭的,则称集 F为一个数域.
当齐次线性方程组 AX O 有无穷多解时,其解空 间的基底即为其基础解系;解空间的维数即为基础解 系所含向量的个数。
Department of Mathematics
例9 R23的下列子集是否构成子空间?为什么?
1 b 0
(1) W1
0
c
d
b,
c,
d
R;
(2) W2
a 0
b 0
0 c
第一章
线性空间与线性映射
Department of Mathematics
教学内容和基本要求
1,理解线性空间的概念,掌握基变换与坐标变换的公式; 2, 掌握子空间与维数定理,理解子空间的相关性质; 3, 理解线性变换的概念,掌握线性变换的矩阵示表示,
了解线性空间同构的含义. 重点: 线性空间的概念;子空间的维数定理;基变换与
二、数域的性质定理
任意数域F都包括有理数域Q. 即:有理数域为最小数域.
证明: 设F为任意一个数域.由定义可知,
0 F, 1 F . 于是有 m Z , m 1 1 L 1 F
进而有 m,n Z , m F , m 0 m F .
n
n
n
相关文档
最新文档