初一数学整式的乘法练习题
整式乘法计算40道(含答案)
整式乘法计算题40道(含答案)一.解答题(共40小题)1.计算:2x3•x3+(3x3)2﹣8x6.2.计算(1)4a2b(﹣2ab)3(2)(3+m)(3﹣m)﹣m(m﹣6)﹣7 3.计算:a3•a4•a+(﹣2a4)2.4.计算:n2•n4+4(n2)3﹣5n3•n25.计算:3a(2﹣a)+3(a﹣3)(a+3).6.计算:m4n2+2m2⋅m4+(m2)3﹣(m2n)27.计算:(1)(﹣t4)3+(﹣t2)6;(2)(m4)2+(m3)2﹣m(m2)2•m3.8.计算a2•a4+(a3)2﹣32a610.计算:(x+3)(x﹣4)﹣x(x+2)﹣511.计算:①(a﹣2b+1)(a+2b+1)②(x+2y﹣1)2 12.计算:(a+b(a﹣b)+(2a﹣b)213.化简:(m+2)(m﹣2)−m3×3m.14.计算:(1)(a﹣2)2﹣2a3+a(2)(x+2y)(x﹣3y)+(x+y)(x﹣y)15.计算:3(2x﹣1)﹣(﹣3x﹣4)(3x﹣4)16.计算:(1)(−12x2y3)3(2)m2•(2m3)2+(﹣m2)418.计算:(1)x2(x﹣1)﹣x(x2+x﹣1)(2)(y+2)(y﹣2)﹣(y﹣1)(y+5)19.计算﹣4(a+1)2﹣(5+2a)(5﹣2a)20.计算:(1)(﹣3a2b)3﹣(2a3)2•(﹣b)3+3a6b3(2)(2a+b)(2a﹣b)﹣(a﹣b)221.化简:(1)(﹣2x2)3+4x2•3x4;(2)(a+1)2+(a+3)(3﹣a).22.计算:(2a+b)(2a﹣b)﹣2a(a﹣2b)23.计算:(2m2n)2+(﹣mn)(−13m3n).24.计算(1)(x+3)(x﹣5);(2)(x﹣2y)2+(x+y)(x﹣y).25.计算:(﹣2x2)(4xy3﹣y2)+(2xy)3.26.(1)计算:(﹣3xy)2•4x2;(2)计算:(x+2)(2x﹣3).27.计算:(2x﹣1)2﹣x(4x﹣1)28.计算:(m+n+2)(m+n﹣2)﹣m(m+4n).29.计算(1)(3x﹣2)(2x+3)﹣(x﹣1)2;(2)(x+2y)(x﹣2y)﹣2y(x﹣2y)+2xy.30.计算:(2x﹣y)2﹣(y2﹣4xy)﹣(2x+y)(x﹣2y).31.计算:(1)(﹣2x)3(2x3−12x﹣1)﹣2x(2x3+4x2);(2)(x+3)(x﹣7)﹣x(x﹣1).32.计算:(﹣2x)2﹣(2x+1)(2x﹣1)+(x﹣2)233.计算:(1)a(a+b)﹣b(a﹣b);(2)(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2 34.计算:(x+y)2﹣y(2x+y)﹣8x35.运用乘法公式计算:(2x﹣1)(2x+1)﹣(x﹣6)(4x+3).36.计算:4(x﹣y)2﹣(2x﹣y)(2x+y)37.计算:(1)3a3b•(﹣2ab)+(﹣3a2b)2(2)(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2.38.计算:(1)(﹣a2)3•4a(2)2x(x+1)+(x+1)2.39.计算:(a+1)(a﹣3)﹣(a﹣2)2.40.4(x+1)2﹣(2x+5)(2x﹣5)参考答案与试题解析一.解答题(共40小题)1.计算:2x3•x3+(3x3)2﹣8x6.【解答】解:2x3•x3+(3x3)2﹣8x6=2x6+9x6﹣8x6=3x6.2.计算(1)4a2b(﹣2ab)3(2)(3+m)(3﹣m)﹣m(m﹣6)﹣7【解答】解:(1)原式=4a2b(﹣8a3b3)=﹣32a5b4;(2)原式=9﹣m2﹣m2+6m﹣7=﹣2m2+6m+2.3.计算:a3•a4•a+(﹣2a4)2.【解答】解:a3•a4•a+(﹣2a4)2=a8+4a8=5a8.4.计算:n2•n4+4(n2)3﹣5n3•n2【解答】解:n2•n4+4(n2)3﹣5n3•n2=n6+4n6﹣5n5=5n6﹣5n5.5.计算:3a(2﹣a)+3(a﹣3)(a+3).【解答】解:原式=6a﹣3a2+3(a2﹣9)=6a﹣3a2+3a2﹣27=6a﹣27.6.计算:m4n2+2m2⋅m4+(m2)3﹣(m2n)2【解答】解:原式=m4n2+2m6+m6﹣m4n2,=3m6.7.计算:(1)(﹣t4)3+(﹣t2)6;(2)(m4)2+(m3)2﹣m(m2)2•m3.【解答】解:(1)原式=﹣t12+t12=0;(2)原式=m8+m6﹣m8=m6.8.计算a2•a4+(a3)2﹣32a6【解答】解:原式=a6+a6﹣32a6=﹣30a6.9.化简(5x)2•x7﹣(3x3)3+2(x3)2+x3【解答】解:(5x)2•x7﹣(3x3)3+2(x3)2+x3=25x2•x7﹣27x9+2x6+x3=25x9﹣27x9+2x6+x3=﹣2x9+2x6+x3.10.计算:(x+3)(x﹣4)﹣x(x+2)﹣5【解答】解:(x+3)(x﹣4)﹣x(x+2)﹣5=x2﹣4x+3x﹣12﹣x2﹣2x﹣5=﹣3x﹣17.11.计算:①(a﹣2b+1)(a+2b+1)②(x+2y﹣1)2【解答】解:①原式=(a+1)2﹣(2b)2=a2+2a+1﹣4b2②原式=[(x+2y)﹣1]2=(x+2y)2﹣2(x+2y)+1=x2+4xy+4y2﹣2x﹣4y+1=x2+4y2+4xy﹣2x﹣4y+1.12.计算:(a+b(a﹣b)+(2a﹣b)2【解答】解:原式=a2﹣b2+4a2﹣4ab+b2=5a2﹣4ab13.化简:(m+2)(m﹣2)−m3×3m.【解答】解:原式=m2﹣4﹣m2=﹣4.14.计算:(1)(a﹣2)2﹣2a3+a(2)(x+2y)(x﹣3y)+(x+y)(x﹣y)【解答】解:(1)原式=a2﹣4a+4﹣2a3+a,=﹣2a3+a2﹣3a+4;(2)原式=x2﹣3xy+2xy﹣6y2+x2﹣y2,=2x2﹣xy﹣7y2.15.计算:3(2x﹣1)﹣(﹣3x﹣4)(3x﹣4)【解答】解:原式=6x﹣3﹣(16﹣9x2)=6x﹣3﹣16+9x2=9x2+6x﹣19.16.计算:(1)(−12x2y3)3(2)m2•(2m3)2+(﹣m2)4【解答】解:(1)原式=−18x6y9;(2)原式=m2•4m6+m8=5m8.17.计算:(x+y)2﹣(x+2y)(2x﹣y).【解答】解:原式=x2+2xy+y2﹣(2x2+3xy﹣2y2)=x2+2xy+y2﹣2x2﹣3xy+2y2=﹣x2﹣xy+3y2.18.计算:(1)x2(x﹣1)﹣x(x2+x﹣1)(2)(y+2)(y﹣2)﹣(y﹣1)(y+5)【解答】解:(1)x2(x﹣1)﹣x(x2+x﹣1)=x3﹣x2﹣x3﹣x2+x=﹣2x2+x;(2)(y+2)(y﹣2)﹣(y﹣1)(y+5)=y2﹣4﹣(y2+4y﹣5)=y2﹣4﹣y2﹣4y+5=﹣4y+1.19.计算﹣4(a+1)2﹣(5+2a)(5﹣2a)【解答】解:原式=﹣4(a2+2a+1)﹣(25﹣4a2)=﹣4a2﹣8a﹣4﹣25+4a2=﹣8a﹣29.20.计算:(1)(﹣3a2b)3﹣(2a3)2•(﹣b)3+3a6b3(2)(2a+b)(2a﹣b)﹣(a﹣b)2【解答】解:(1)原式=﹣27a6b3﹣4a6(﹣b3)+3 a6b3=﹣20a6b3;(2)原式=4a2﹣b2﹣(a2﹣2ab+b2)=3a2+2ab﹣2b2.21.化简:(1)(﹣2x2)3+4x2•3x4;(2)(a+1)2+(a+3)(3﹣a).【解答】解:(1)原式=﹣8x6+12x6=4x6;(2)原式=a2+2a+1+(9﹣a2)=a2+2a+1+9﹣a2=2a+10.22.计算:(2a+b)(2a﹣b)﹣2a(a﹣2b)【解答】解:(2a+b)(2a﹣b)﹣2a(a﹣2b)=4a2﹣b2﹣2a2+4ab=2a2﹣b2+4ab.23.计算:(2m2n)2+(﹣mn)(−13m3n).【解答】解:原式=4m4n2+13m4n2=(4+13)m4n2=133m4n2.24.计算(1)(x+3)(x﹣5);(2)(x﹣2y)2+(x+y)(x﹣y).【解答】解:(1)原式=x2﹣5x+3x﹣15=x2﹣2x﹣15;(2)原式=x2﹣4xy+4y2+x2﹣y2=2x2﹣4xy+3y2.25.计算:(﹣2x2)(4xy3﹣y2)+(2xy)3.【解答】解:原式=﹣8x3y3+2x2y2+8x3y3=2x2y2.26.(1)计算:(﹣3xy)2•4x2;(2)计算:(x+2)(2x﹣3).【解答】解:(1)原式=9x2y2•4x2=36x4y2;(2)解:原式=2x2﹣3x+4x﹣6=2x2+x﹣6.27.计算:(2x﹣1)2﹣x(4x﹣1)【解答】解:(2x﹣1)2﹣x(4x﹣1)=4x2﹣4x+1﹣4x2+x=﹣3x+1.28.计算:(m+n+2)(m+n﹣2)﹣m(m+4n).=m2+2mn+n2﹣4﹣m2﹣4mn,=n2﹣2mn﹣4.29.计算(1)(3x﹣2)(2x+3)﹣(x﹣1)2;(2)(x+2y)(x﹣2y)﹣2y(x﹣2y)+2xy.【解答】解:(1)原式=6x2+9x﹣4x﹣6﹣x2+2x﹣1=5x2+7x﹣7;(2)原式=x2﹣4y2﹣2xy+4y2+2xy=x2.30.计算:(2x﹣y)2﹣(y2﹣4xy)﹣(2x+y)(x﹣2y).【解答】解:(2x﹣y)2﹣(y2﹣4xy)﹣(2x+y)(x﹣2y)=4x2﹣4xy+y2﹣y2+4xy﹣(2x2﹣3xy﹣2y2)=4x2﹣2x2+3xy+2y2=2x2+3xy+2y2.31.计算:(1)(﹣2x)3(2x3−12x﹣1)﹣2x(2x3+4x2);(2)(x+3)(x﹣7)﹣x(x﹣1).【解答】解:(1)原式=−8x3(2x3−12x−1)−(4x4+8x3)=−16x6+4x4+8x3﹣4x4﹣8x3=﹣16x6;(2)原式=x2﹣7x+3x﹣21﹣x2+x=﹣3x﹣21.32.计算:(﹣2x)2﹣(2x+1)(2x﹣1)+(x﹣2)2=x2﹣4x+5.33.计算:(1)a(a+b)﹣b(a﹣b);(2)(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2【解答】解:(1)原式=a2+ab﹣ab+b2=a2+b2;(2)原式=x2﹣4xy+4y2﹣(x2﹣y2)﹣2y2,=x2﹣4xy+4y2﹣x2+y2﹣2y2,=﹣4xy+3y2.34.计算:(x+y)2﹣y(2x+y)﹣8x【解答】解:原式=x2+2xy+y2﹣2xy﹣y2﹣8x=x2﹣8x.35.运用乘法公式计算:(2x﹣1)(2x+1)﹣(x﹣6)(4x+3).【解答】解:(2x﹣1)(2x+1)﹣(x﹣6)(4x+3)=(2x)2﹣1﹣(4x2+3x﹣24x﹣18)=4x4﹣1﹣4x2﹣3x+24x+18=21x+17.36.计算:4(x﹣y)2﹣(2x﹣y)(2x+y)【解答】解:4(x﹣y)2﹣(2x﹣y)(2x+y)=4(x2﹣2xy+y2)﹣(4x2﹣y2)=4x2﹣8xy+4y2﹣4x2+y2=5y2﹣8xy.37.计算:(1)3a3b•(﹣2ab)+(﹣3a2b)2(2)(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2.【解答】解:(1)3a3b•(﹣2ab)+(﹣3a2b)2=﹣6a4b2+9a4b2=3a4b2(2)(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣538.计算:(1)(﹣a2)3•4a(2)2x(x+1)+(x+1)2.【解答】解:(1)原式=﹣a6•4a=﹣4a7;(2)原式=2x2+2x+x2+2x+1=3x2+4x+1.39.计算:(a+1)(a﹣3)﹣(a﹣2)2.【解答】解:(a+1)(a﹣3)﹣(a﹣2)2.=a2﹣2a﹣3﹣(a2﹣4a+4)=2a﹣7.40.4(x+1)2﹣(2x+5)(2x﹣5)【解答】解:原式=4x2+8x+4﹣4x2+25=8x+29.。
七年级数学整式的乘法练习
●方法点拨[例 1]计算(1)(-3.5 x2y2)·(0.6 xy4z)(2)(- ab3)2·(-a2b)点拨:先确立运算次序,再利用单项式乘单项式的法例进行计算.(1) 直接作乘法即可,(2)先作乘方运算,再作乘法运算.解: (1)(-3.5 x2y2 )·(0.6 xy4z)(系数相乘)(同样字母相乘)(不一样字母相乘)(在x2·x中,x的指数是1,不要遗漏)=-2.1 x3y6z(2)(- ab3)2·(-a2b)=a2b6·(-a2b)——先算乘方=-( a2·a2)( b6·b) ——再算乘法=-a4b7[例 2]计算(1) a m(a m-a3+9)(2)(4 x3)2[·x3-x·(2 x2-1) ]点拨:先确立运算次序,再运用相应的公式进行计算.(2) 顶用到了幂的乘方,单乘多及去括号几种运算公式及方法,要一步步进行.解:[例 3]计算(1)(2 a+3 b)(3 a+2 b)(2)(3 m-n)2点拨:这两题都需运用多项式相乘的法例进行计算,能归并同类项的要将结果化到最简的形式 .注意第( 2)题要化为多乘多的形式.解:(2)(3 m-n)2注意乘方的意义=(3 m- n)(3 m-n)=3 m·3m-3 m·n-n·3m+n·n=9 m2-3 mn -3 mn +n2=9 m2-6 mn +n21[例 4]( 1) (-xy2)2·[ xy(2 x-y)+xy2]3(2)(-3 x)2-2( x-5)( x-2)点拨:关于混淆运算,必定要注意运算次序,特别是乘方运算,每次运算后的结果要打上括号才能进行下一步运算.解: (1)(-1xy2)2·[ xy (2 x-y)+xy2]3=1x2y4[·2x2y-xy2+xy 2]9=1x2y4·(2 x2 y) 9=2x4 y5 9(2)(-3 x)2-2( x-5)( x-2)=9 x2 -2( x2-2 x-5 x+10)=9 x2 -2( x2-7 x+10)=9 x2 -2 x2+14 x-20=7 x2 +14 x-20说明:一般来说,为了简化运算,能归并同类项的可先归并同类项,减少项数,再进行下一步的运算 .[例 5]解以下方程8x2-(2 x-3)(4 x+2)=14点拨:利用多乘多法例将方程左侧部分化简,再运用解方程的方法求出x.解: 8x2 -(2 x-3)(4 x+2)=148x2-(8 x2+4 x-12 x-6)=148x2-(8 x2-8 x-6)=148x2-8 x2+8 x+6=148x=8x=1[例 6]长方形的一边长 3 m+2 n,另一边比它大m-n,求长方形的面积.点拨:先分别求出长和宽,再依据“长方形的面积=长×宽”求出头积.列式的时候,表示每条边的多项式都要用括号括起来.解:长方形的宽:3m+2 n长方形的长 =(3 m+2 n)+( m-n)=4 m+n长方形的面积:(3m +2 n)·(4 m+n)=3 m·4m+3 m·n+2 n·4m+2 n·n=12 m2 +3 mn +8 mn +2 n2=12 m2 +11 mn +2n2答:长方形的面积是12 m2+11 mn+2 n2.。
整式乘法练习题及答案
整式乘法练习题及答案在代数学中,整式乘法是一项重要的基础技能。
通过掌握整式乘法,我们可以解决多种数学问题,包括方程组的解法、因式分解以及多项式的展开等。
本文将提供一些整式乘法的练习题,以及它们的详细解答。
1. 练习题1:计算下列整式的积:(2x + 3)(x^2 - 4x + 5)解答:我们可以使用分配律逐项相乘的方法来计算整式的乘积:(2x + 3)(x^2 - 4x + 5) = 2x * (x^2 - 4x + 5) + 3 * (x^2 - 4x + 5)首先计算第一项:2x * (x^2 - 4x + 5)= 2x * x^2 - 8x^2 + 10x= 2x^3 - 8x^2 + 10x然后计算第二项:3 * (x^2 - 4x + 5)= 3 * x^2 - 12x + 15= 3x^2 - 12x + 15将两项相加得到最终结果:(2x + 3)(x^2 - 4x + 5) = 2x^3 - 8x^2 + 10x + 3x^2 - 12x + 15= 2x^3 - 5x^2 - 2x + 15因此,(2x + 3)(x^2 - 4x + 5)的乘积为2x^3 - 5x^2 - 2x + 15。
2. 练习题2:计算下列整式的积:(3x - 2y)(2x + 5y)解答:同样地,我们可以使用分配律逐项相乘的方法来计算整式的乘积:(3x - 2y)(2x + 5y) = 3x * (2x + 5y) - 2y * (2x + 5y)首先计算第一项:3x * (2x + 5y)= 6x^2 + 15xy然后计算第二项:-2y * (2x + 5y)= -4xy - 10y^2将两项相加得到最终结果:(3x - 2y)(2x + 5y) = 6x^2 + 15xy - 4xy - 10y^2= 6x^2 + 11xy - 10y^2因此,(3x - 2y)(2x + 5y)的乘积为6x^2 + 11xy - 10y^2。
整式的乘法100题专项训练(精心整理)
..整式的乘法 100 题专项训练同底数幂的乘法:底数不变,指(次)数相加。
公式:a m· a n =a m+n 1、填空:(1)x3x5; a a2 a3;x n x 2;(2)( a2) ( a)3; b2 b3 b x 2= x 6;(3)(x)2 x3;10410; 33233;(4)a a 4a 3=;2 2 3 2 5=;(5) a 2 a 5a3=;2a3=___________;(1)aa2( a) ( a)6;3452;(6)m m m m =(7)(b a) 3 (b a) 4; x n x2;1)216(8)(;10 610 4332、简单计算:(1)a4a6(2)b b5(3)m m2m3( 4)c c3c5c93. 计算:(1)b 3b2()( a)a32(3)( y)2( y)3(4)( a)3( a)4(5)3432(6)( 5)7( 5)6(7)( q)2n( q)3(8)( m)4( m)2(9) 23(10)( 2)4( 2)5 4.下面的计算对不对?如果不对,应怎样改正?(1)233265;(2)a3a3a6;(3)y n y n 2 y 2n;( 4)m m2m2;(5)(a)22)a4;()a3a4a12 ;( a6二、幂的乘方:幂的乘方,底数不变,指数相乘.即: ( a m )n =a mn 1、填空:(1)( 22) 4=___________ (2)( 33)2=___________(3)(22) 2=___________( 4)(22)2=___________753( 5)(m 7)= ___________( 6)m (m 3) = ___________2、计算 :(1)(22)2;(2)(y 2) 5(3)(x 4)3(4)3( b m)3 2 2 3 54 2 7(4)(y ) ? (y )(5)a ( a) ( a)(6)2 ( x 3) x x三、积的乘方:等于把积的每一个因式分别乘方, 再把所得的幂相乘. (ab) n =a n b n1、填空:( 1)( 2x )2=___________( ab )3 =_________(ac) 4. =__________2a 2) 22(2)(- 2x ) 3=___________(=_________ (a4) =_________32( 3)( 2a 2b ) =_______ ( 2a 2b 4) =_________(4)( xy 3) 2=_________( 5)(ab)n__________n21 a 2 b 3)3(6) (abc)__________ (n 为正整数 ) ( 7)(__________3332(8)( ab) a b__________ ( 9)( 3x 2y)__________3(9)(a nb 3n )3(10)( x 2y 3)________ (a2n 3=___________b )________( x 3y 2 2 ___________)2、计算:(1)( 3a )2 (2)(- 3a ) 3 (3)( ab 2)2 ( 4)(- 2× 103) 3(5)( 103) 3 (6)( a 3) 7( 7)( x 2) 4; (8)( a 2)? 3 ? a 53、选择题:(1)下列计算中,错误的是()A 2 3 2 4 6B2 2244(a b )a b(3x y ) 9x yC33D3 2 26 4( xy)x y(m nm n )(2)下面的计算正确的是()A235B235m m mm m m3 252mnmn(m n)2Cm nD22四、整式的乘法1、单项式乘单项式 1、 ( 3x 2 ) · 2x 32、3a 3 · 4a 43、 4m 5 ·3m 24、(5a 2b)3 ( 3a)25、 x 2 · x · x 56、 ( 3x) · 2xy7、 4a 2 · 3a 28、 ( 5a 2 b) · ( 3a)9、 3x · 3x510、 4b 3c · 1abc 11、 2x 3 · ( 3x) 212、 4 y · ( 2xy 2 )213、 ( 3x 2y) · ( 1xy 2 )14、 (2 104)· ( 4 105)15 、 7 x 4 · 2 x 3316、 3a 4 b 3 · ( 4a 2b 3c 2 )17、 19、 x 2 · y 2 ( xy 3 )2. .18、 (5a 2b)3 · ( ab 2c)319、 ( 2a)3 · ( 3a) 220 、5m · ( 10m 4 )221、 3m nm n22、(3x2323、 4ab21 2 c)x· 4xy) · ( 4x)· ( 8 a24、 ( 5ax) ·222 4 2252 3(3 x y)、( m a b ) ·( mab ) 26、4x y ·2x ( y) z2527、 ( 3a 3bc)3 · ( 2ab 2 ) 2 28 、(4 ab) · ( 3ab)2 29、 (2 x)3· ( 5xy 2 )330、 ( 2x 3 y 4 )3 ( x 2 yc)231 、 4xy 2· ( 3x 2 yz 3 )32、 ( 2ab 3c)2 · (2 x) 2833、( 3a 2b 3 ) 2 ·( 2ab 3 c)334、( 3a 3b 2)( 2 1a 3b 3c)35、( 4x 2 y) ·( x 2 y 2) ·( 1y 3 )7 3 236、 4xy 2 · ( 5x 3 y 2 ) · ( 2x 2 y)37、 ( 2x 2 y) 2 · (1 xyz) · 3 x 3 z 32 538、 ( 1 xyz) ·2x 2 y 2· (3yz 3 )39、 6m 2 n · ( x y)3 · ( y x) 22 3 540、 ( 1 ab 2c)2 · ( 1 a bc 2 )3· ( 1 a 3 )41、、 2xy · ( 1 x 2 y 2 z) · ( 3x 3 y 3)2 3 2242、 ( 1 ab 3 )3 · ( 1 ab) · ( 8a 2b 2 ) 243、 6a 2b · ( x y)3 · 1 ab 2 · ( y x)22 432221344、 ( 4x y) · ( x y ) · y二、单项式乘多项式: (利用乘法分配率,转变为单项式乘单项式,然后把结果相加减) 1、 2m(3 x 4 y)2 、 1 ab(ab1) 3 、 x(x 2x 1)4 、 2a(3a 22b 1)2 25、 3x( x 2 2x 1) 6 、 4x(3xy) 7 、 ab (a b)8、 6x(2 x 1)9、 x(x 1)10、 3a(5a 2b)11 、 3x(2 x 5)12、 2x 2 ( x1 )213、 3a 2 (a 3b 2 2a) 14 、 (x3y)( 6 x) 15、 x( x 2 y 2 xy) 16 、 (4 a b 2 )( 2b)17、 ( 3x 1)( 2x 2)18 、 ( 2a) · ( 1a 31)19 、 ( 3x 2 )(2 x 3 x 2 1)4 220、(2ab 22ab) ·1ab 21、 4m( 3m2 n 5mn2 )22 、( 3ab )(2a2b ab 2)3223、5ab·(2 a b 0.2)24 、(2 a22a4) · ( 9a) 25、 3x(2 x25x 1) 3926、2x( x2x 1)27、2x·(1x21)28、 3x(1x22)23329、4a(2 a23a 1)30、(3x2 )( x22x 1)31、xy( x2y51) 32、2x2y(13xy y)33 、3xy(3 x2y24xy2 )34、 3ab( a2 b ab2ab)235、ab2(2a23ab 2a)36 、1a2b ·(6 a23ab 9b2 ) 37、 (2 x 4 x38)(1 x2) 3238、2x3(3 x25x 6) 39、 (3a33b2c6ac2 ) ·1ab43 40、x( x1) 2x( x 1) 3x(2 x5)..41、a(b c) b(c a) c(a b)42 、(3x21y2y2 )(1xy)3 23243、(1x2 y 2xy y2 ) · ( 4xy)43 、(5a2b10a3b21)(1a b)233512244、、(x y 2xy y )( 4xy)三、多项式乘多项式:(转化为单项式乘多项式, 然后在转化为单项式乘单项式)1、(3x1)(x 2)2、( x8 y)( x y)3、(x1)(x 5)4、(2 x1)(x3)5、(m2n)(m 3n)6、 (a 3b)(a 3b)7、 (2 x21)(x 4)8 、(x23)(2 x5) 9、( x2)( x 3)10、( x4)( x 1)11、( y4)( y 2)12、( y5)( y3)13、(x p)( x q)14 、( x 6)( x 3)15 、(x 1)( x1) 16、 (3 x 2)( x 2) 2317、(4 y1)( y 5)18、( x2)( x24)19、(x4)( x 8)20、( x4)( x9)21、( x2)( x 18)22、( x3)( x p)23、( x6)( x p)24、( x7)( x5)25、( x 1)(x5)26 、1127、28 、3229、(4 x25xy)(2 x y)30、( y3)(3 y 4)31、(x3)( x 2) 32、(2 a b)(a 2b)33、(2 x3)( x 3)34、( x3)( x a)35、( x1)(x 3)36、(a2)(b2)37、(3 x 2 y)(2 x 3 y) 38、( x 6)( x 1)39、( x3y)(3 x 4 y) 40、( x 2)( x1)41、(2 x3y)(3 x 2 y)42 、(1x x2 )( x 1)43、(a b)(a2ab b2 )44、(3x22x 1)(2 x23x 1) 45、 (a b)( a2ab b2 ) 46、 ( x2xy y2 )( x y)47、(x a)( x2ax a 2 )48、(x y)( x2xy y2 ) 49、 (3x43x21)( x4x22)50、(x y)( x2xy y2 )四、平方差公式和完全平方公式1、( x1)( x 1)2、 (2 x1)(2 x1) 3 、( x5y)( x5y) 4 、(3 x2)(3 x2)5、(b2a)(2 a b) 6 、(x 2 y)( x 2 y)7、(a b)( b a) 8、( a b)(a b)9、(3a2b)(3a2b)10 、52)(a 5b2)11、(2 a5)(2 a5) 12、(1m)( 1m)(a b13、(1a b)(1a b) 14、 ( ab 2)(2ab) 15、10298 16、 97 103 2217、 4753 18 、 (a b)(a b)( a 2 b 2 ) 19 、 (3a 2b)(3a 2b)20、 ( 7m 11n)(11n 7m) 21 、 (2 y x)( x 2 y)22、 (4 a)( 4 a)23、 (2a 5)(2 a 5) 24 、 (3a b)(3 a b)25、 (2 x y)(2 x y)完全平方: 1、 ( p 1)2 2、 ( p1)2 3 、(a b)2 4、 (ab)2 5、( m2)26、 (m 2)27 、 (4 mn) 2 8 、 ( y1 )2 9 、 ( x 3y)2 10 、 ( a 2b)2211、 (a1 )2 12 、 (5 x 2 y)213 、 (2 ab)214 、 ( 1x y) 2 15 、 (2 a 3b)2a216、 (3 x 2 y)217 、 ( 2m n)218 、 (2a2c)219、(23a)220 、 (1x 3 y)2321、(3a 2b)2 22 、( a 2 b 2 )2 23 、( 2x 2 3 y) 224、(1 xy) 2 25 、(1 x 2 y 2 )2..五、同底数幂的除法:底数不变,指数相减。
整式的乘法练习题(含解析答案)
北师大版数学七年级下册第一章1.4整式的乘法课时练习一、选择题1.(-5a2b)·(-3a)等于()A.15a3b B.-15a2b C.-15a3b D.-8a2b答案:A解析:解答:(-5a2b)·(-3a)=15a3b,故A项正确.分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题.2.(2a)3·(-5b2)等于()A.10a3b B.-40a3b2C.-40a3b D.-40a2b答案:B解析:解答:(2a)3·(-5b2)=-40a3b2,故B项正确.分析:先由积的乘方法则得(2a)3=8a3,再由单项式乘单项式法则可完成此题.3.(2a3b)2·(-5ab2c)等于()A.-20a6b4c B.10a7b4c C.-20a7b4c D.20a7b4c答案:C解析:解答:(2a3b)2·(-5ab2c)=-20a7b4c,故C项正确.分析:先由积的乘方法则得(2a3b)2=-4a6b2,再由单项式乘单项式法则与同底数幂的乘法可完成此题.4.(2x3y)2·(5xy2)·x7 等于()A.-20x6y4B.10x y y4C.-20x7y4D.20x14y4答案:D解析:解答:(2x3y)2·(5xy2)·x7 =-20x14y4,故D项正确.分析:先由积的乘方法则得(2x3y)2=-4x6y2,再由单项式乘单项式法则与同底数幂的乘法法则可完成此题.5.2a3·(b2-5ac)等于()A.-20a6b2c B.10a5b2c C.2a3b2-10a4c D.a7b4c-10a4c答案:C解析:解答:2a3·(b2-5ac)=2a3b2-10a4c,故C项正确.分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题.6.x3y·(xy2+z)等于()A.x4y3+xyz B.xy3+x3yz C.z x14y4 D.x4y3+x3yz答案:D解析:解答:x3y·(xy2+z)=x4y3+x3yz,故D项正确.分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题.7.(-x7)2·(x3y+z)等于()A.x17y+x14z B.-xy3+x3yz C.-x17y+x14z D.x17y+x3yz答案:A解析:解答:(-x7)2·(x3y+z)=x17y+x14z,故A项正确.分析:先由幂的乘方法则得(-x7)2=x14,再由单项式乘多项式法则与同底数幂的乘法法则可完成此题.8.[(-6)3]4 .(b2-ac)等于()A.-612b2-b2c B.10a5-b2c C.612b2-612ac D.b4c-a4c答案:C解析:解答:[(-6)3]4 .(b2-ac)=612b2-612ac,故C项正确.分析:先由幂的乘方法则得[(-6)3]4=612,再由单项式乘多项式法则与同底数幂的乘法法则可完成此题.9.(2x)3.(x3y+z)等于()A.8x6y+x14z B.-8x6y+x3yz C.8x6y+8x3z D.8x6y+x3yz答案:C解析:解答:(2x)3.(x3y+z)=8x6y+8x3z,故C项正确.分析:先由积的乘方法则得(2x)3=8x3,再由单项式乘多项式法则与同底数幂的乘法法则可完成此题.10.(2x)2.[(-y2)2+z]等于()A.4xy4+xz B.-4x2y4+4x2z C.2x2y4+2x2z D.4x2y4+4x2z答案:D解析:解答:(2x)2.[(-y2)2+z]=4x2y4+4x2z,故D项正确.分析:先由积的乘方法则得(2x)2=4x2,由幂的乘方法则得(-y2)2=y4再由单项式乘多项式法则与同底数幂的乘法法则可完成此题.11.x2.x5.(y4+z)等于()A.x7y4+x7z B.-4x2y4+4x2z C.2x2y4+2x2z D.4x2y4+4x2z答案:A解析:解答:x2.x5.(y4+z)=x7y4+x7z,故A项正确.分析:先由同底数幂的乘法法则得x2.x5=x7,再由单项式乘多项式法则可完成此题. 12.x2·(x y2+z)等于()A.xy+xz B.-x2y4+x2z C.x3y2+x2z D.x2y4+x2z答案:C解析:解答:x2.(x y2+z)=x3y2+x2z,故C项正确.分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题.13.(a3+b2)·(-5ac)等于()A.-5a6b2-c B.5a5-b2c C.5a3b2-10a4c D.-5a4c-5ab2c答案:D解析:解答:(a3+b2)·(-5ac)=-5a4c-5ab2c,故D项正确.分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题.14.(x2+y5)·(y2+z)等于()A.x2y2+x2z+y7+y5z B.2x2y2+x2z+y5z C.x2y2+x2z+y5z D.x2y2+y7+y5z 答案:A解析:解答:(x2+y5).(y2+z)=x2y2+x2z+y7+y5z,故A项正确.分析:由多项式乘多项式法则与同底数幂的乘法法则可完成此题.15.2(a2+b5)·a2等于()A.a2c+b5c B.2a4+2b5a2C.a4+2b5a2D.2a4+ba2答案:B解析:解答:2(a2+b5)·a2=2a4+2b5a2,故B项正确.分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题.二、填空题16.5x2·(xy2+z)等于;答案:5x3y2+5x2z解析:解答:5x2·(xy2+z)=5x2·xy2+5x2·z=5x3y2+5x2z分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题17.2a2·(ab2+4c)等于;答案:2a3b2+8a2c解析:解答:2a2·(ab2+4c)=2a2·ab2+2a2·4c=2a3b2+8a2c分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题18.2a2·(3ab2+7c)等于;答案:6a3b2+14a2c解析:解答:2a2·(3ab2+7c=2a2·3ab2+2a2·7c=6a3b2+14a2c分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题19.(-2a2)·(3a+c)等于;答案:-6a3-2a2c解析:解答:-2a2·(3a+c)=(-2a2)·3a+(-2a2)·c=-6a3-6a2c分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题20.(-4x2)·(3x+1)等于;答案:-12x3-4x2解析:解答:(-4x2)·(3x+1)=(-4x2)·3x+(-4x2)·1=-12x3-4x2分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题三、计算题21.(-10x2y)·(2xy4z)答案:-20 x3 y5 z解析:解答:解:(-10x2y)·(2xy4z)= -20 x2+1·y4+1·z=-20 x3 y5 z分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题22.(-2 x y2)·(-3 x2y4)·(- x y)答案:-6 x4 y7解析:解答:解:(-2 x y2)·(-3 x2y4)·(- x y)= -6 x1+2+1·y2+4+1=-6 x4 y7分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题23.2a·(a+1)- a(3a-2)+2a2 (a2-1)答案:2a4 -3a2+4a解析:解答:解:2a·(a+1)- a(3a-2)+2a2(a2-1) =2a2+2a-3a2+2a+2a4-2a2=2a4-3a2+4a 分析:先由单项式乘多项式法则与同底数幂的乘法法则计算,再合并同类项可完成此题. 24.3ab·(a2b+ ab2-ab)答案:3a3b2+3 a2b3- 3 a2b2解析:解答:解:3ab·(a2b+ ab2-ab)=3ab·a2b+3ab·ab2- 3ab·ab=3a3b2+3 a2b3- 3 a2b2分析:由单项式乘多项式法则与同底数幂的乘法法则计算可完成题.25.(x-8y)·(x-y)答案:x2-9xy +8y2解析:解答:解:(x-8y)·(x-y)= x1+1-xy-8xy+8y1+1= x2-9xy +8y2分析:先由多项式乘多项式法则与同底数幂的乘法法则计算,再合并同类项可完成此题.。
整式乘法计算50题(含解析)
整式乘除50题一、幂的运算1.计算:(1)x n﹣2•x n+2;(n是大于2的整数)(2)﹣(x3)5;(3)[(﹣2)2]3;(4)[(﹣a)3]2.2.若n为正整数且(m n)2=9,求.3.已知x a﹣3=2,x b+4=5,x c+1=10;求a、b、c间的关系.4.已知a n=2,b2n=3,求(a3b4)2n的值.5.计算:(1)﹣()1000×(﹣10)1001+()2013×(﹣3)2014(2)(8)100×(﹣)99×.6.化简:(x+y)5÷(﹣x﹣y)2÷(x+y)7.已知10x=a,10y=b,求103x+3y+103x﹣2y的值.8.己知53x+1÷5x﹣1=252x﹣3,求x的值.9.已知(x2n)2÷(x3n+2÷x3)与﹣x3是同类项,求4n2﹣1的值.10.我们约定:a⊗b=10a÷10b,如4⊗3=104÷103=10.(1)试求:12⊗3和10⊗4的值;(2)试求:21⊗5×103.二、整式乘法计算题11.计算:4xy2•(﹣x2yz3).12.计算:(a3b2)(﹣2a3b3c).13.计算:(3a2)3×b4﹣3(ab2)2×a4.14.计算:(a n•b n+1)3•(ab)n.15.计算:[﹣2a2(x+y)3]•[3a3•b(x+y)2].16.计算:﹣6a2b(x﹣y)3•ab2(y﹣x)2.17.计算:.18.计算:(﹣5x2y3)2•(﹣2x4y2)3•(xy2)4.19.计算:(﹣x3y2)3•(2xy2)2﹣(﹣x4y3)2•x3y4.20.计算:.21.计算:(x﹣2)(x2+4).22.计算:(﹣7x2﹣8y2)(﹣x2+3y2)23.计算:(2x﹣3y﹣1)(﹣2x﹣3y+5).24.计算:(2x﹣x2﹣3)(x3﹣x2﹣2).25.计算:(a﹣b+c﹣d)(c﹣a﹣d﹣b)26.计算:(x+3)(x﹣5)﹣(x﹣3)(x+5)27.计算:5x2﹣(x﹣2)(3x+1)﹣2(x+1)(x﹣5)28.计算:3(2x﹣1)(x+6)﹣5(x﹣3)(x+6)29.计算:(a+b)(a2﹣ab+b2)30.计算:(x﹣y)(x2+xy+y2)三、乘法公式及应用31.化简:(x+1)2﹣(x+2)(x﹣2).32.已知2x+2y=﹣5,求2x2+4xy+2y2﹣7的值.33.已知(a+b)2=17,ab=3.求(a﹣b)2的值.34.已知:x+y=﹣1,xy=﹣12,求x2+y2﹣xy和(x﹣y)2的值.35.已知x+y=2,x2+y2=10,求xy的值.36.已知实数x满足x+=3,则x2+的值为7.37.求代数式5x2﹣4xy+y2+6x+25的最小值.38.已知(a+1)2﹣(3a2+4ab+4b2+2)=0,求a,b的值.39.已知13x2﹣6xy+y2﹣4x+1=0,求(x+y)13•x10的值.40.已知a,b,c为实数,设.证明:A,B,C中至少有一个值大于零.41.计算:2(m+1)2﹣(2m+1)(2m﹣1).42.已知a﹣b=2,b﹣c=2,a+c=14,求a2﹣b2.43.若a=,b=,试不用将分数化小数的方法比较a、b的大小.44.用平方差公式计算:(1)99.8×100.2=(2)40×39=45.计算3001×2999的值.46.计算:(x+y)(x﹣y)(x2+y2)(x4+y4)47.计算:(x+2y)(x﹣2y)(x4﹣8x2y2+16y4)48.计算103×97×10009的值.49.对于算式2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1.(1)计算出算式的结果;(2)结果的个位数字是几?50.计算12﹣22+32﹣42+52+62+…+20002﹣20012.参考答案与试题解析一、幂的运算1.计算:(1)x n﹣2•x n+2;(n是大于2的整数)(2)﹣(x3)5;(3)[(﹣2)2]3;(4)[(﹣a)3]2.解答:解:(1)原式=x n﹣2+n+2=x2n;(2)原式=﹣x15;(3)原式=43=64;(4)原式=a6.2.若n为正整数且(m n)2=9,求.解答:解:∵(m n)2=9,∴m n=±3,∴=m9n×m4n=m13n=(m n)13=±×313=±310.3.已知x a﹣3=2,x b+4=5,x c+1=10;求a、b、c间的关系.解答:解:∵2×5=10,∴x a﹣3×x b+4=x c+1,∴x a+b+1=x c+1,∴a+b=c.4.已知a n=2,b2n=3,求(a3b4)2n的值.解答:解:∵a n=2,b2n=3,∴(a3b4)2n=a6n b8n=(a n)6×(b2n)4=26×34=24×34×22=64×4=5184.5.计算:(1)﹣()1000×(﹣10)1001+()2013×(﹣3)2014(2)(8)100×(﹣)99×.解答:解:(1)原式=(×10)1000×(﹣10)+(×)2013×=﹣10+=﹣;(2)原式=﹣(×)99××=﹣.6.化简:(x+y)5÷(﹣x﹣y)2÷(x+y)解答:解:(x+y)5÷(﹣x﹣y)2÷(x+y)=(x+y)5÷(x+y)2÷(x+y)=(x+y)2.7.已知10x=a,10y=b,求103x+3y+103x﹣2y的值.解答:解:∵10x=a,10y=b,∴103x+3y+103x﹣2y=103x×103y+103x÷102y=a3×b3+a3÷b2=a3b3+=.8.己知53x+1÷5x﹣1=252x﹣3,求x的值.解答:解:原式等价于52x+2=54x﹣62x+2=4x﹣6x=4.故答案为:4.9.已知(x2n)2÷(x3n+2÷x3)与﹣x3是同类项,求4n2﹣1的值.解答:解:(x2n)2÷(x3n+2÷x3)=x n+1,可得x n+1与﹣x3是同类项,即n+1=3,解得:n=2,则原式=16﹣1=15.10.我们约定:a⊗b=10a÷10b,如4⊗3=104÷103=10.(1)试求:12⊗3和10⊗4的值;(2)试求:21⊗5×103.解答:解:(1)∵a⊗b=10a÷10b,如4⊗3=104÷103=10,∴12⊗3=1012÷103=109,10⊗4=1010÷104=106;(2)21⊗5×103=1021÷105×103=1019.二、整式乘法计算题11.计算:4xy2•(﹣x2yz3).解答:解:4xy2•(﹣x2yz3)=﹣x3y3z3.12.计算:(a3b2)(﹣2a3b3c).解答:解:(a3b2)(﹣2a3b3c)=﹣a6b5c.13.计算:(3a2)3×b4﹣3(ab2)2×a4.解答:解:(3a2)3×b4﹣3(ab2)2×a4=27a6×b4﹣3a2b4×a4=27a6b4﹣3a6b4=24a6b4.14.计算:(a n•b n+1)3•(ab)n.解答:解:原式=a3n×b3n+3×a n b n=a3n+n b3n+3+n=a4n b4n+3.15.计算:[﹣2a2(x+y)3]•[3a3•b(x+y)2].解答:解:原式=﹣6a5b(x+y)5.16.计算:﹣6a2b(x﹣y)3•ab2(y﹣x)2.解答:解:原式=﹣6a2b(x﹣y)3•ab2(x﹣y)2=﹣2a3b3(x﹣y)5.17.计算:.解答:解:原式=﹣x4y5.18.计算:(﹣5x2y3)2•(﹣2x4y2)3•(xy2)4.解答:解:原式=25x4y6•(﹣8x12y6)•(x4y8)=﹣x20y20.19.计算:(﹣x3y2)3•(2xy2)2﹣(﹣x4y3)2•x3y4.解答:解:(﹣x3y2)3•(2xy2)2﹣(﹣x4y3)2•x3y4=﹣x9y6•4x2y4﹣x8y6•x3y4=﹣x11y10﹣x11y10=﹣x11y10.20.计算:.解答:解:原式=﹣x4y4z﹣3x4y4z=﹣x4y4z.21.计算:(x﹣2)(x2+4).解答:解:原式=x3+4x﹣2x2﹣8.22.计算:(﹣7x2﹣8y2)(﹣x2+3y2)解答:解:原式=﹣7x2•(﹣x2)+(﹣7x2)•3y2﹣8y2•(﹣x2)﹣8y2•3y2 =7x4﹣21x2y2+8x2y2﹣24y4=7x4﹣13x2y2﹣24y4.23.计算:(2x﹣3y﹣1)(﹣2x﹣3y+5).解答:解:原式=﹣4x2﹣6xy+10x+6xy+9y2﹣15y+2x+3y﹣5=﹣4x2+(﹣6xy+6xy)+(10x+2x)+9y2+(3y﹣15y)﹣5=﹣4x2+12x+9y2﹣12y﹣5.24.计算:(2x﹣x2﹣3)(x3﹣x2﹣2).解答:解:原式=2x4﹣2x3﹣4x﹣x5+x4+2x2﹣3x3+3x2+6=3x4﹣x5﹣5x3++5x2﹣4x+6.25.计算:(a﹣b+c﹣d)(c﹣a﹣d﹣b)解答:解:原式=[(c﹣b﹣d)+a][(c﹣b﹣d)﹣a]=(c﹣b﹣d)2﹣a2=(c﹣b)2﹣2(c﹣b)d+d2﹣a2=c2﹣2cb+b2﹣2cd+2bd+d2﹣a2 26.计算:(x+3)(x﹣5)﹣(x﹣3)(x+5)解答:解:(x+3)(x﹣5)﹣(x﹣3)(x+5)=x2﹣2x﹣15﹣(x2+2x﹣15)=x2﹣2x﹣15﹣x2﹣2x+15=﹣4x.27.计算:5x2﹣(x﹣2)(3x+1)﹣2(x+1)(x﹣5)解答:解:原式=5x2﹣(3x2﹣5x﹣2)﹣2(x2﹣4x﹣5),=5x2﹣3x2+5x+2﹣2x2+8x+10,=13x+12.28.计算:3(2x﹣1)(x+6)﹣5(x﹣3)(x+6)解答:解:3(2x﹣1)(x+6)﹣5(x﹣3)(x+6)=3(2x2+12x﹣x﹣6)﹣5(x2+6x﹣3x﹣18)=6x2+33x﹣18﹣5x2﹣15x+90=x2+18x+7229.计算:(a+b)(a2﹣ab+b2)解答:解:原式=a3+a2b﹣a2b﹣ab2+ab2+b3,=a3+b3.30.计算:(x﹣y)(x2+xy+y2)解答:解:原式=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.三、乘法公式及应用31.化简:(x+1)2﹣(x+2)(x﹣2).解答:解:原式=x2+2x+1﹣x2+4=2x+5.32.已知2x+2y=﹣5,求2x2+4xy+2y2﹣7的值.解答:解:∵2x+2y=﹣5,∴x+y=,∴2x2+4xy+2y2﹣7=2(x+y)2﹣7,当x+y=时,原式=2×()2﹣7=.33.已知(a+b)2=17,ab=3.求(a﹣b)2的值.解答:解:∵(a+b)2=17,ab=3,∴a2+2ab+b2=17,则a2+b2=17﹣2ab=17﹣6=11,∴(a﹣b)2=a2﹣2ab+b2=11﹣6=5.34.已知:x+y=﹣1,xy=﹣12,求x2+y2﹣xy和(x﹣y)2的值.解答:解:∵x+y=﹣1,xy=﹣12,∴x2+y2﹣xy=(x+y)2﹣3xy=1+36=37;(x﹣y)2=(x+y)2﹣4xy=1+48=49.35.已知x+y=2,x2+y2=10,求xy的值.解答:解:将x+y=2进行平方得,x2+2xy+y2=4,∵x2+y2=10,∴10+2xy=4,解得:xy=﹣3.36.已知实数x满足x+=3,则x2+的值为7.解答:解:由题意得,x+=3,两边平方得:x2+2+=9,故x2+=7.故答案为:7.37.求代数式5x2﹣4xy+y2+6x+25的最小值.解答:解:5x2﹣4xy+y2+6x+25=4x2﹣4xy+y2+x2+6x+9+16=(2x﹣y)2+(x+3)2+16而(2x﹣y)2+(x+3)2≥0,∴代数式5x2﹣4xy+y2+6x+25的最小值是16.38.已知(a+1)2﹣(3a2+4ab+4b2+2)=0,求a,b的值.解答:解:∵(a+1)2﹣(3a2+4ab+4b2+2)=0,∴2a2﹣2a+4b2+4ab+1=0,∴(a﹣1)2+(a+2b)2=0,∴a﹣1=0,a+2b=0,解得a=1,b=﹣.故a=1,b=﹣.39.已知13x2﹣6xy+y2﹣4x+1=0,求(x+y)13•x10的值.解答:解:∵13x2﹣6xy+y2﹣4x+1=0,∴9x2﹣6xy+y2+4x2﹣4x+1=0,即(3x﹣y)2+(2x﹣1)2=0,∴3x﹣y=0,2x﹣1=0,解得x=,y=,当x=,y=时,原式=(+)13•()10=(2×)10×23=8.40.已知a,b,c为实数,设.证明:A,B,C中至少有一个值大于零.解答:证明:由题设有A+B+C=()+()+(),=(a2﹣2a+1)+(b2﹣2b+1)+(c2+2c+1)+π﹣3,=(a﹣1)2+(b﹣1)2+(c+1)2+(π﹣3),∵(a﹣1)2≥0,(b﹣1)2≥0,(c+1)2≥0,π﹣3>0,∴A+B+C>0.若A≤0,B≤0,C≤0,则A+B+C≤0与A+B+C>0不符,∴A,B,C中至少有一个大于零.41.计算:2(m+1)2﹣(2m+1)(2m﹣1).解答:解:2(m+1)2﹣(2m+1)(2m﹣1),=2(m2+2m+1)﹣(4m2﹣1),=2m2+4m+2﹣4m2+1,=﹣2m2+4m+3.42.已知a﹣b=2,b﹣c=2,a+c=14,求a2﹣b2.解答:解:∵b﹣c=2,a+c=14,∴a+b=16,∵a﹣b=2,∴a2﹣b2=(a+b)(a﹣b)=16×2=32.43.若a=,b=,试不用将分数化小数的方法比较a、b的大小.解答:解:∵a==(3分)b=(4分)20082﹣12<20082(5分)∴a<b(6分)说明:求差通分,参考此标准给分.若只写结论a<b,给(1分).44.用平方差公式计算:(1)99.8×100.2=(2)40×39=解答:解:(1)99.8×100.2,=(100﹣0.2)(100+0.2),=1002﹣0.22,=9999.96.(2)40×39,=(40+)(40﹣),=402﹣()2,=1599.45.计算3001×2999的值.解答:解:3001×2999=(3000+1)(3000﹣1)=30002﹣12=8999999.46.计算:(x+y)(x﹣y)(x2+y2)(x4+y4)解答:解:原式=(x2﹣y2))(x2+y2)(x4+y4)=(x4﹣y4)(x4+y4)=x8﹣y8.47.计算:(x+2y)(x﹣2y)(x4﹣8x2y2+16y4)解答:解:原式=(x2﹣4y2)(x2﹣4y2)2=(x2﹣4y2)3=x6﹣12x4y2+48x2y4﹣64y6.48.计算103×97×10009的值.解答:解:103×97×10009,=(100+3)(100﹣3)(10000+9),=(1002﹣9)(1002+9),=1004﹣92,=99999919.49.对于算式2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1.(1)计算出算式的结果;(2)结果的个位数字是几?解答:解:(1)原式=(3﹣1)×(3+1)×(32+1)×(34+1)×(38+1)×(316+1)×(332+1)+1 =(32﹣1)×(32+1)×(34+1)×(38+1)×(316+1)×(332+1)+1=(34﹣1)×(34+1)×(38+1)×(316+1)×(332+1)+1=(332﹣1)×(332+1)+1=364;②∵31=3,32=9,33=27,34=8135=243,36=729,…∴每3个数一循环,∵64÷3=21…1,∴364的个位数字是3.50.计算12﹣22+32﹣42+52+62+…+20002﹣20012.解答:解:原式=﹣[(20012﹣20002)+(19992﹣19982)+…+(62﹣52)+(42﹣32)+(22﹣12)] =﹣[(2001+2000)×1+(1999+1998)×1+…+(6+5)×1+(4+3)+(2+1)×1]=﹣(2001+2000+1999+1998+…+6+5+4+3+2+1)=﹣2003001.。
(完整版)整式的乘法习题(含详细解析答案)
整式的乘法测试1.列各式中计算结果是x2-6x+5的是( )A.(x-2)(x-3)B.(x-6)(x+1)C.(x-1)(x-5)D.(x+6)(x-1)2.下列各式计算正确的是( )A.2x+3x=5B.2x•3x=6C.(2x)3=8D.5x6÷x3=5x23.下列各式计算正确的是( )A.2x(3x-2)=5x2-4xB.(2y+3x)(3x-2y)=9x2-4y2C.(x+2)2=x2+2x+4D.(x+2)(2x-1)=2x2+5x-24.要使多项式(x2+px+2)(x-q)展开后不含x的一次项,则p与q的关系是( )A.p=qB.p+q=0C.pq=1D.pq=25.若(y+3)(y-2)=y2+my+n,则m、n的值分别为( )A.m=5,n=6B.m=1,n=-6C.m=1,n=6D.m=5,n=-66.计算:(x-3)(x+4)=_____.7.若x2+px+6=(x+q)(x-3),则pq=_____.8.先观察下列各式,再解答后面问题:(x+5)(x+6)=x2+11x+30;(x-5)(x-6)=x2-11x+30;(x-5)(x+6)=x2+x-30;(1)乘积式中的一次项系数、常数项与两因式中的常数项有何关系?(2)根据以上各式呈现的规律,用公式表示出来;(3)试用你写的公式,直接写出下列两式的结果;①(a+99)(a-100)=_____;②(y-500)(y-81)=_____.9.(x-y)(x2+xy+y2)=_____;(x-y)(x3+x2y+xy2+y3)=_____根据以上等式进行猜想,当n是偶数时,可得:(x-y)(x n+x n-1y+y n-2y2+…+x2y n-2+xy n-1+y n)=_____.10.三角形一边长2a+2b,这条边上的高为2b-3a,则这个三角形的面积是_____.11.若(x+4)(x-3)=x2+mx-n,则m=_____,n=_____.12.整式的乘法运算(x+4)(x+m),m为何值时,乘积中不含x项?m为何值时,乘积中x项的系数为6?你能提出哪些问题?并求出你提出问题的结论.13.如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片()张.14.计算:(1)(5mn2-4m2n)(-2mn)(2)(x+7)(x-6)-(x-2)(x+1)15.试说明代数式(2x+1)(1-2x+4x2)-x(3x-1)(3x+1)+(x2+x+1)(x-1)-(x-3)的值与x无关.参考答案1.答案:C解析:【解答】A、(x-2)(x-3)=x2-6x+6,故本选项错误;B、(x-6)(x+1)=x2-5x-6,故本选项错误;C、(x-1)(x-5)=x2-6x+5,故本选项正确;D、(x+6)(x-1)=x2+5x-6,故本选项错误;故选C.【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,进行计算即可得出正确答案.2.答案:A解析:【解答】A、2x+3x=5x,故A选项正确;B、2x•3x=6x2,故B选项错误;C、(2x)3=8x3,故C选项错误;D、5x6÷x3=5x3,故D选项错误;故选A.【分析】根据整式乘法和幂的运算法则.3.答案:B解析:【解答】A、2x(3x-2)=6x2-4x,故本选项错误;B、(2y+3x)(3x-2y)=9x2-4y2,故本选项正确;C、(x+2)2=x2+4x+4,故本选项错误;D、(x+2)(2x-1)=2x2+3x-2,故本选项错误.故选B.【分析】根据整式乘法的运算法则、平方差公式、完全平方公式的知识求解,即可求得答案.注意排除法在解选择题中的应用.4.答案:D解析:【解答】(x2+px+2)(x-q)=x3-qx2+px2-pqx+2x-2q=x3+(p-q)x2+(2-pq)x-2q,∵多项式不含一次项,∴pq-2=0,即pq=2.故选D【分析】利用多项式乘以多项式法则计算,合并同类项得到最简结果,由结果中不含x的一次项,令一次项系数为0即可列出p与q的关系.5.答案:B解析:【解答】∵(y+3)(y-2)=y2-2y+3y-6=y2+y-6,∵(y+3)(y-2)=y2+my+n,∴y2+my+n=y2+y-6,∴m=1,n=-6.故选B.【分析】先根据多项式乘以多项式的法则计算(y+3)(y-2),再根据多项式相等的条件即可求出m、n的值.6.答案:x2+x-12解析:【解答】(x-3)(x+4)=x2+4x-3x-12=x2+x-12【分析】根据(a+b)(m+n)=am+an+bm+bn展开,再合并同类项即可.7.答案:10解析:【解答】∵(x+q)(x-3)=x2+(-3+q)x-3q,∴x2+px+6=x2+(-3+q)x-3q,∴p=-3+q,6=-3q,∴p=-5,q=-2,∴pq=10.故答案是10.【分析】等式的右边根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn 进行计算,再根据等式的性质可得关于p、q的方程组,求解即可.8.答案:①a2-a-9900;②y2-581y+40500.解析:【解答】(1)两因式中常数项的和等于乘积中的一次项系数,常数项的积等于乘积中的常数项;(2)(x+a)(x+b)=x2+(a+b)x+ab.(3)①(a+99)(a-100)=a2-a-9900;②(y-500)(y-81)=y2-581y+40500.【分析】(1)根据乘积式中的一次项系数、常数项与两因式中的常数项之间的规律作答;(2)根据(1)中呈现的规律,列出公式;(3)根据(2)中的公式代入计算.9.答案:x3-y3;x4-y4;x n+1-y n+1.解析:【解答】原式=x3+x2y+xy2-x2y-xy2-y3=x3-y3;原式=x4+x3y+x2y2+xy3-x3y-x2y2-xy3-y4=x4-y4;原式=x n+1+x n y+xy n-2+x2y n-1+xy n-x n y-x n-1y2-y n-1y2-…-x2y n-1-xy n-y n+1=x n+1-y n+1,【分析】根据多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.10.答案:-3a2+2b2-ab.解析:【解答】∵三角形一边长2a+2b,这条边上的高为2b-3a,∴这个三角形的面积为:(2a+2b)(2b-3a)÷2=(a+b)(2b-3a)=-3a2+2b2-ab.【分析】根据三角形的面积=底×高÷2列出表示面积是式子,再根据多项式乘以多项式的法则计算即可.11.答案:1,12.解析:【解答】∵(x+4)(x-3)=x2-3x+4x-12=x2+x-12=x2+mx-n,∴m=1,-n=-12,即m=1,n=12.【分析】将已知等式左边利用多项式乘以多项式法则计算,根据多项式相等的条件得出m 与n的值,代入所求式子中计算,即可求出值.12.答案:-4,2解析:【解答】∵(x+4)(x+m)=x2+mx+4x+4m若要使乘积中不含x项,则∴4+m=0∴m=-4若要使乘积中x项的系数为6,则∴4+m=6∴m=2提出问题为:m为何值时,乘积中不含常数项?若要使乘积中不含常数项,则∴4m=0∴m=0【分析】把式子展开,若要使乘积中不含x项,则令含x项的系数为零;若要使乘积中x项的系数为6,则令含x项的系数为6;根据展开的式子可以提出多个问题.13.答案:3张.解析:【解答】(a+2b)(a+b)=a2+3ab+2b2.则需要C类卡片3张.【分析】拼成的大长方形的面积是(a+2b)(a+b)=a2+3ab+2b2,即需要一个边长为a的正方形,2个边长为b的正方形和3个C类卡片的面积是3ab.14.答案:(1)10m2n3+8m3n2;(2)2x-40.解析:【解答】(1)原式=-10m2n3+8m3n2;(2)原式=x2-6x+7x-42-x2-x+2x+2=2x-40.【分析】(1)原式利用单项式乘以多项式法则计算,合并即可得到结果;(2)原式两项利用多项式乘以多项式法则计算,去括号合并即可得到结果.15.答案:代数式的值与x无关解析:【解答】原式=2x-4x2+8x3+1-2x+4x2-9x3-x+x3-1+x-3=-3,则代数式的值与x无关.【分析】原式利用多项式乘以多项式法则计算,去括号合并得到最简结果,即可做出判断.。
整式乘法相关练习题
整式乘法相关练习题一、单项式乘单项式1. 计算:(3x)(4x)2. 计算:(2a)(5b)3. 计算:(m^2)(n^3)4. 计算:(4xy^2)(3x^2y)5. 计算:(a^3b^2)(2a^2b)二、单项式乘多项式1. 计算:(3x)(x + 2y 3)2. 计算:(4a)(a^2 3a + 2)3. 计算:(5m^2n)(2mn^2 3m^2n + 4)4. 计算:(2xy)(x^2y xy^2 + 3x^2)5. 计算:(3a^2b)(a^3b 2a^2b^2 + 4ab)三、多项式乘多项式1. 计算:(x + 2)(x 3)2. 计算:(a 4)(a + 5)3. 计算:(2m + 3n)(3m 2n)4. 计算:(x^2 + 3x 2)(x 4)5. 计算:(a^2 2ab + b^2)(a + b)四、平方差公式1. 计算:(x + 3)(x 3)2. 计算:(2a + 5)(2a 5)3. 计算:(m 4n)(m + 4n)4. 计算:(x^2 + 6)(x^2 6)5. 计算:(a^3 + b^3)(a^3 b^3)五、完全平方公式1. 计算:(x + 4)^22. 计算:(2a 3)^23. 计算:(m + 2n)^24. 计算:(x^2 5x + 6)^25. 计算:(a^3 + 2a^2b 3ab^2)^2六、整式乘法在实际问题中的应用1. 一个长方形的长是x米,宽是y米,求这个长方形的面积。
2. 一个正方形的边长是a米,求这个正方形的面积。
3. 一个长方体的长是x米,宽是y米,高是z米,求这个长方体的体积。
4. 一辆汽车以v千米/小时的速度行驶了t小时,求汽车行驶的路程。
5. 一个等腰三角形的底边长是b米,高是h米,求这个等腰三角形的面积。
七、多项式乘单项式的扩展1. 计算:(x^3 2x^2 + 4x)(3x^2)2. 计算:(2a^4 5a^3 + 3a^2)(a)3. 计算:(m^2n 3mn^2 + 2n^3)(4mn)4. 计算:(4x^3y^2 3x^2y^3 + 2xy^4)(2xy)5. 计算:(a^2b^3 2ab^4 + 3b^5)(5a^2b^2)八、多项式乘多项式的扩展1. 计算:(x^2 + 3x 2)(x^2 3x + 2)2. 计算:(a^3 2a^2 + a)(a^2 + 2a 1)3. 计算:(2m^2 5mn + 3n^2)(4m^2 + 7mn 2n^2)4. 计算:(x^4 3x^3 + 2x^2)(x^3 + 2x^2 x)5. 计算:(a^4 b^4)(a^2 + b^2)九、混合运算1. 计算:(2x 3)(x + 4) + (x 2)^22. 计算:(3a + 4)(2a 5) (a^2 6)3. 计算:(m n)(m + n) + (2m^2 3mn)4. 计算:(4x^2 5x + 1)(3x 2) (x^3 2x^2)5. 计算:(a^2 + 2ab b^2)(a b) + (a^3 b^3)十、特殊乘法1. 计算:(x + 1)(x + 2)(x + 3)2. 计算:(a 1)(a + 1)(a^2 + 1)3. 计算:(2m n)(m + n)(m n)4. 计算:(x^2 1)(x^2 + 1)(x^4 + 1)5. 计算:(a^3 + b^3)(a^3 b^3)(a + b)答案一、单项式乘单项式1. 12x^22. 10ab3. m^5n^34. 12x^3y^35. 2a^5b^3二、单项式乘多项式1. 3x^2 + 6xy 9x2. 4a^3 + 12a^2 8a3. 10m^3n^3 15m^4n^2 + 20m^2n^34. 2x^3y^2 2x^2y^3 + 6x^3y5. 3a^5b + 6a^4b^2 12a^3b^2三、多项式乘多项式1. x^2 3x + 62. a^2 + a 203. 6m^2 + mn 6n^24. x^3 11x^2 + 28x 245. a^4 3a^3b + 3a^2b^2 a^2b^3四、平方差公式1. x^2 92. 4a^2 253. m^2 16n^24. x^4 365. a^6 b^6五、完全平方公式1. x^2 + 8x + 162. 4a^2 12a + 93. m^2 + 4mn + 4n^24. x^4 10x^3 + 19x^2 12x + 365. a^6 + 4a^5b 12a^4b^2 + 12a^3b^3 9a^2b^4六、整式乘法在实际问题中的应用1. xy2. a^23. xyz4. vt5. (1/2)bh七、多项式乘单项式的扩展1. 3x^5 6x^4 + 12x^32. 2a^5 + 5a^4 3a^33. 4m^3n^2 12m^2n^3 + 8mn^44. 8x^4y^3 + 6x^3y^4 4x^2y^55. 5a^4b^5 10a^3b^6 + 15a^2b^7八、多项式乘多项式的扩展1. x^4 6x^3 + 9x^2 + 6x 42. a^5 4a^4 + a^3 + 2a^2 a3. 8m^4 31m^3n + 41m^2n^2 15mn^3 + 6n^44. x^7 5x^6 + 8x^5 2x^45. a^5 a^4b^4 a^3b^4 + a^2b^8九、混合运算1. 2x^2 + 5x 142. 6a^2 7a 223. m^2 n^2 + 2m^2 3mn4. 12x^3 23x^2 + 9x 25. a^4 2a^3b a^2b^2 + a^3b a^2b^3十、特殊乘法1. x^3 + 6x^2 + 11x + 62. a^4 13. m^3 2m^2n mn^2 + 2n^34. x^8 x^4 15. a^6 b^6a + a^6b b^6。
整式的乘法练习题(含答案)
整式的乘法练习题(含答案)一.选择题(共10小题,满分30分,每小题3分)1.计算20200的结果是()A.2020B.1C.0D.2.下列运算正确的是()A.a2•a3=a6B.(3a)3 =9a3C.3a﹣2a=1D.(﹣2a2)3=﹣8a63.多项式2m+4与多项式m2+4m+4的公因式是()A.m+2B.m﹣2C.m+4D.m﹣44.下列四个等式从左到右的变形是因式分解的是()A.(a+b)(a﹣b)=a2﹣b2 B.ab﹣a2=a(b﹣a)C.x2+x﹣5=x(x+1)﹣5D.x2+1=x(x+)5.下列式子不能用平方差公式计算的是()A.(a﹣b)(a+b)B.(a﹣1)(﹣a+1)C.(﹣x﹣y)(x﹣y)D.(﹣x+1)(﹣1﹣x)6.下列多项式中,能用完全平方公式分解因式的是()A.a2+4B.a2+ab+b2C.a2+4ab+b2D.x2+2x+17.(2x+p)(x﹣2)的展开式中,不含x的一次项,则p值是()A.﹣1B.﹣4C.1D.48.某同学在计算﹣3x2乘一个多项式时错误的计算成了加法,得到的答案是x2﹣x+1,由此可以推断该多项式是()A.4x2﹣x+1B.x2﹣x+1C.﹣2x2﹣x+1D.无法确定9.如图,在边长为a+b的正方形的四个角上,分别剪去直角边长分别为a,b的四个直角三角形,则剩余部分面积,即图中的阴影部分的面积是()A.a2﹣b2B.2ab C.a2+b2D.4ab10.设a,b是实数,定义*的一种运算如下:a*b=(a+b)2,则下列结论有:①a*b=0,则a=0且b=0②a*b=b*a③a*(b+c)=a*b+a*c④a*b=(﹣a)*(﹣b)正确的有()个.A.1B.2C.3D.4二.填空题(共6小题,满分24分,每小题4分)11.分解因式:axy﹣ay2=.12.若x2+4x+m能用完全平方公式因式分解,则m的值为.13.若a m=9,a n=3,则a m﹣n=.14.计算:0.1252020×(﹣8)2021=.15.已知a﹣b=﹣5,ab=﹣2,则(a+b)(a2﹣b2)的值为.16.如图,利用图①和图②的阴影面积相等,写出一个正确的等式.三.解答题(共7小题,满分46分)17.(6分)因式分解:(1)m3﹣16m;(2)xy3﹣10xy2+25xy.18.(6分)已知有理数x,y满足x+y=,xy=﹣3.(1)求(x+1)(y+1)的值;(2)求x2+y2的值.19.(6分)我们约定a☆b=10a×10b,如2☆3=102×103=105.(1)试求12☆3和4☆8的值;(2)(a+b)☆c是否与a☆(b+c)相等?并说明理由.20.(6分)下面是一个正确的因式分解,但是其中部分一次式被墨水污染看不清了.2x2+3x﹣6+=(x﹣2)(2x+5).(1)求被墨水污染的一次式;(2)若被墨水污染的一次式的值不小于2,求x的取值范围.21.(6分)对于二次三项式a2+6a+9,可以用公式法将它分解成(a+3)2的形式,但对于二次三项式a2+6a+8,就不能直接应用完全平方式了,我们可以在二次三项式中先加上一项9,使其成为完全平方式,再减去9这项,使整个式子的值保持不变,于是有:a2+6a+8=a2+6a+9﹣9+8=(a+3)2﹣1=[(a+3)+1][(a+3)﹣1]=(a+4)(a+2)请仿照上面的做法,将下列各式因式分解:(1)x2﹣6x﹣16;(2)x2+2ax﹣3a2.22.(8分)请仔细阅读下面某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程,然后回答问题:解:令x2﹣4x+2=y,则:原式=y(y+4)+4(第一步)=y2+4y+4(第二步)=(y+2)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的;A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)另外一名同学发现第四步因式分解的结果不彻底,请你直接写出因式分解的最后结果;(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.23.(8分)数形结合是解决数学问题的一种重要的思想方法,借助图的直观性,可以帮助理解数学问题.(1)请写出图1,图2,图3阴影部分的面积分别能解释的乘法公式.图1,图2,图3.(2)用4个全等的长和宽分别为a,b的长方形拼摆成一个如图4的正方形,请你通过计算阴影部分的面积,写出这三个代数式(a+b)2,(a﹣b)2,ab之间的等量关系.(3)根据(2)中你探索发现的结论,计算:当x+y=3,xy=﹣10时,求x﹣y的值.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:20200=1,故选:B.2.解:A、a2•a3=a5,故原题计算错误;B、(3a)3 =27a3,故原题计算错误;C、3a﹣2a=a,故原题计算错误;D、(﹣2a2)3=﹣8a6,故原题计算正确;故选:D.3.解:2m+4=2(m+2),m2+4m+4=(m+2)2,∴多项式2m+4与多项式m2+4m+4的公因式是(m+2),故选:A.4.解:A、是整式的乘法,故此选项不符合题意;B、把一个多项式化为几个整式的积的形式,故此选项符合题意;C、没把一个多项式化为几个整式的积的形式,故此选项不符合题意;D、把一个多项式化为整式与分式的积的形式,不是把一个多项式化为几个整式的积的形式,故此选项不符合题意;故选:B.5.解:A、能用平方差公式进行计算,故本选项不符合题意;B、结果是﹣(a﹣1)2,不能用平方差公式进行计算,故本选项符合题意;C、能用平方差公式进行计算,故本选项不符合题意;D、能用平方差公式进行计算,故本选项不符合题意;故选:B.6.解:A、a2+4,无法分解因式,故此选项错误;B、a2+ab+b2,无法运用公式分解因式,故此选项错误;C、a2+4ab+b2,无法运用公式分解因式,故此选项错误;D、x2+2x+1=(x+1)2,正确.故选:D.7.解:根据题意得:(2x+p)(x﹣2)=2x2﹣4x+px﹣2p=2x2+(﹣4+p)x﹣2p,∵(2x+p)与(x﹣2)的乘积中不含x的一次项,∴﹣4+p=0,∴p=4;故选:D.8.解:根据题意得:多项式为x2﹣x+1﹣(﹣3x2),x2﹣x+1﹣(﹣3x2)=x2﹣x+1+3x2=4x2﹣x+1,故选:A.9.解:由题意得,S阴影部分=S正方形﹣4S三角形=(a+b)2﹣ab×4=a2+2ab+b2﹣2ab═a2+b2,故选:C.10.解:∵a*b=0,a*b=(a+b)2,∴(a+b)2=0,即:a+b=0,∴a、b互为相反数,因此①不符合题意,a*b=(a+b)2,b*a=(b+a)2,因此②符合题意,a*(b+c)=(a+b+c)2,a*b+a*c=(a+b)2+(a+c)2,故③不符合题意,∵a*b=(a+b)2,(﹣a)*(﹣b)=(﹣a﹣b)2,∵(a+b)2=(﹣a﹣b)2,∴a*b=(﹣a)*(﹣b)故④符合题意,因此正确的个数有2个,故选:B.二.填空题(共6小题,满分24分,每小题4分)11.解:axy﹣ay2=ay(x﹣y).故答案为:ay(x﹣y).12.解:x2+4x+4=(x+2)2,故答案为:4.13.解:∵a m=9,a n=3,∴a m﹣n=a m÷a n=9÷3=3.故答案为:3.14.解:0.1252020×(﹣8)2021=0.1252020×82020×(﹣8)=(0.125×8)2020×(﹣8)=12020×(﹣8)=1×(﹣8)=﹣8.15.解:∵(a+b)2=(a﹣b)2+4ab,a﹣b=﹣5,ab=﹣2,∴(a+b)2=25﹣8=17,∴(a+b)(a2﹣b2)=(a+b)(a+b)(a﹣b)=(a+b)2(a﹣b)=17×(﹣5)=﹣85.16.解:①阴影部分的面积=(a+2)(a﹣2);②阴影部分的面积=a2﹣22=a2﹣4;∴(a+2)(a﹣2)=a2﹣4,故答案为(a+2)(a﹣2)=a2﹣4;三.解答题(共7小题,满分46分)17.解:(1)原式=m(m2﹣16)=m(m+4)(m﹣4);(2)原式=xy(y2﹣10y+25)=xy(y﹣5)2.18.解:(1)(x+1)(y+1)=xy+(x+y)+1=﹣3++1=﹣1;(2)x2+y2=(x+y)2﹣2xy=﹣6=﹣5.19.解:(1)12☆3=1012×103=1015;4☆8=104×108=1012;(2)相等,理由如下:∵(a+b)☆c=10a+b×10c=10a+b+c,a☆(b+c)=10a×10b+c=10a+b+c,∴(a+b)☆c=a☆(b+c).20.解:(1)被墨水污染的一次式为(x﹣2)(2x+5)﹣(2x2+3x﹣6)=2x2+5x﹣4x﹣10﹣2x2﹣3x+6=﹣2x﹣4;(2)根据题意得:﹣2x﹣4≥2,解得:x≤﹣3,即x的取值范围是x≤﹣3.21.解:(1)x2﹣6x﹣16=x2﹣6x+9﹣9﹣16=(x﹣3)2﹣25=(x﹣3+5)(x﹣3﹣5)=(x+2)(x﹣8);(2)x2+2ax﹣3a2=x2+2ax+a2﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+a+2a)(x+a﹣2a)=(x+3a)(x﹣a).22.解:(1)运用了C,两数和的完全平方公式;故答案为:C;(2)x2﹣4x+4还可以分解,分解不彻底;(x2﹣4x+4)2=(x﹣2)4.故答案为:(x﹣2)4.(3)设x2﹣2x=y.(x2﹣2x)(x2﹣2x+2)+1,=y(y+2)+1,=y2+2y+1,=(y+1)2,=(x2﹣2x+1)2,=(x﹣1)4.23.解:(1)图1、;图2、;图3、.(2)由题意可知,阴影部分的面积=大正方形面积﹣4×小长方形面积,大正方边长为(a+b),面积为(a+b)2,小长方形长为a,宽为b,面积为ab,则=a2+2ab+b2﹣4ab=a2﹣2ab+b2=(a﹣b)2,∴(a﹣b)2=(a+b)2﹣4ab.(3)由(x﹣y)2=(x+y)2﹣4xy,∴(x﹣y)2=32﹣4×(﹣10)=49,∴x﹣y=±7.。
整式的乘法专题训练
整式的乘法专题训练题目一:(2x)(3x)解析:根据单项式乘以单项式法则,系数相乘,字母部分按同底数幂相乘,结果为6x²。
题目二:(-3a²b)(4ab²)解析:系数相乘为-12,同底数幂相乘,a 的次数为2+1 = 3,b 的次数为1+2 = 3,结果是-12a³b³。
题目三:(2x²y)(-3xy³)解析:系数相乘为-6,x 的次数为2+1 = 3,y 的次数为1+3 = 4,答案是-6x³y⁴。
题目四:(5m²n)(-2m³n²)解析:系数相乘为-10,m 的次数为2+3 = 5,n 的次数为1+2 = 3,结果是-10m⁴n³。
题目五:(3x)(x² - 2x + 1)解析:用3x 分别乘以括号里的每一项,3x·x² = 3x³,3x·(-2x) = -6x²,3x·1 = 3x,结果为3x³ - 6x² + 3x。
题目六:(2x - 1)(x + 3)解析:用2x 乘以(x + 3)得2x² + 6x,再用-1 乘以(x + 3)得-x - 3,最后相加,2x² + 6x - x - 3 = 2x² + 5x - 3。
题目七:(x - 2)(x² + 3x - 1)解析:x 乘以(x² + 3x - 1)得x³ + 3x² - x,-2 乘以(x² + 3x - 1)得-2x² - 6x + 2,相加得x³ + 3x² - x - 2x² - 6x + 2 = x³ + x² - 7x + 2。
题目八:(3x + 2)(2x² - 5x + 1)解析:3x 乘以(2x² - 5x + 1)得6x³ - 15x² + 3x,2 乘以(2x² - 5x + 1)得4x² -10x + 2,相加得6x³ - 15x² + 3x + 4x² - 10x + 2 = 6x³ - 11x² - 7x + 2。
整式的乘法练习题(超经典含答案)
1.(-5x )2·25xy 的运算结果是 A .103x yB .-103x yC .-2x 2yD .2x 2y2.已知22193()3m m n +÷=,n 的值是 A .2-B .2C .0.5D .0.5-3.如果2(2)(6)x x x px q +-=++,则p 、q 的值为 A .4p =-,12q =- B .4p =,12q =- C .8p =-,12q =-D .8p =,12q =4.已知30x y +-=,则22y x ⋅的值是 A .6B .6-C .18D .85.计算3n·(-9)·3n +2的结果是A .-33n -2B .-3n +4C .-32n +4D .-3n +66.计算232323()a a a a a -+⋅-÷的结果为 A .52a a -B .512a a-C .5aD .6a7.若32144m n x y x y x ÷=,则m ,n 的值是 A .6m =,1n = B .5m =,1n = C .5m =,0n =D .6m =,0n =8.计算(-x )2x 3的结果等于__________. 9.(23a a a ⋅⋅)³=__________.10.若25m =,26n =,则22m n +=__________.11.计算:(a 2b 3-a 2b 2)÷(ab )2=__________. 12.计算:a 8÷a 4·(a 2)2=__________. 13.计算:(1)21(2)()3(1)3x y xy x -⋅-+⋅-; (2)23(293)4(21)a a a a a -+--.14.先化简,再求值:(1)x (x -1)+2x (x +1)-(3x -1)(2x -5),其中x =2; (2)243()()m m m -⋅-⋅-,其中m =2-.15.(1)已知4m a =,8n b =,用含a ,b 的式子表示下列代数式:①求:232m n +的值; ②求:462m n -的值.(2)已知2328162x ⨯⨯=,求x 的值.16.如果22(43)43a b ab M a b -÷=-+,那么单项式M 等于A .aB .b -C .abD .ab -17.计算5642333312(3)2a b c a b c a b c ÷-÷,其结果正确的是A .2-B .0C .1D .218.计算:(7)(6)(2)(1)x x x x +---+=__________. 19.如果1()()5x q x ++展开式中不含x 项,则q =__________. 20.已知:2x =3,2y =6,2z=12,试确定x ,y ,z 之间的关系.21.在一次测试中,甲、乙两同学计算同一道整式乘法:(2x +a )(3x +b ),由于甲抄错了第一个多项式中的符号,得到的结果为6x 2+11x -10;由于乙漏抄了第二个多项式中的系数,得到的结果为2x 2-9x +10. (1)试求出式子中a ,b 的值;(2)请你计算出这道整式乘法的正确结果.22.(2018·辽宁大连)计算(x 3)2的结果是A .x5B .2x3C .x9D .x 623.(2018·湖南益阳)下列运算正确的是A .339·x x x =B .842x x x ÷=C .326()ab ab =D .33(2)8x x =24.(2018·浙江金华)计算(-a )3÷a 结果正确的是A .a2B .-a2C .-a3D .-a 425.(2018·四川攀枝花)下列运算结果是a 5的是A .a 10÷a2B .(a 2)3C .(-a )5D .a 3·a 226.(2018·山东聊城)下列计算错误的是A .a 2÷a 0·a 2=a4B .a 2÷(a 0·a 2)=1 C .(-1.5)8÷(-1.5)7=-1.5D .-1.58÷(-1.5)7=-1.527.(2018·湖北武汉)计算(a -2)(a +3)的结果是A .a 2-6B .a 2+a -6C .a 2+6D .a 2-a +628.(2018·江苏泰州)计算:12x ·(-2x 2)3=__________. 29.(2018·广西玉林)已知ab =a +b +1,则(a -1)(b -1)=__________. 30.(2018·四川达州)已知a m=3,a n=2,则a 2m -n的值为_____.【解析】3n ·(-9)·3n +2=-3n ·32·3n +2=-32n +4,故选C .6.【答案】D【解析】根据幂的乘方、同底数幂相乘除,可知232323()a a a a a -+⋅-÷=655a a a +-=6a .故选D . 7.【答案】B 【解析】因为33121444m n m n x y x y x y x --÷==,所以32m -=,10n -=,5m =,1n =,故选B . 8.【答案】x 5【解析】根据积的乘方以及同底数幂的乘法法则可得:(-x )2x 3=x 2·x 3=x 5.故答案为:x 5. 9.【答案】a 18【解析】(23a a a ⋅⋅)³=(6a )³=a 18.故答案为:a 18. 10.【答案】180【解析】∴2m =5,2n =6,∴2m +2n=2m ·(2n )2=5×62=180.故答案为:180.11.【答案】1b -【解析】(a 2b 3-a 2b 2)÷(ab )2=(a 2b 3-a 2b 2)÷a 2b 2=a 2b 3÷a 2b 2-a 2b 2÷a 2b 2=1b -.故答案为:1b -. 12.【答案】a 8【解析】a 8÷a 4·(a 2)2=a 4·a 4=a 8.故答案为:a 8. 13.【解析】(1)原式=2x 2y +3xy -x 2y=x 2y +3xy .(2)原式=6a 3-27a 2+9a -8a 2+4a =6a 3-35a 2+13a .15.【解析】(1)∵4m a =,8n b =,∴22m a =,32n b =,2323222m n m n ab +=⋅=①. 2464622322222(2)(2)m nmnm n a b-=÷=÷=②.(2)∵2328162x ⨯⨯=, ∴34232(2)22x ⨯⨯=, ∴34232222x ⨯⨯=, ∴13423x ++=, 解得:6x =. 16.【答案】D【解析】根据“除式=被除式÷商”可得,22(43)(43)a b ab a b ab -÷-+=-,故选D .【解析】因为5642333352363341312(3)222a b c a b c a b c a b c ------÷-÷=-=-,故选A . 18.【答案】2x -40【解析】原式=(x 2+x -42)-(x 2-x -2)=2x -40.故答案为:2x -40. 19.【答案】15-【解析】1()()5x q x ++=211()55x q x q +++,由于展开式中不含x 的项,∴105q +=,∴15q =-.故答案为:15-.22.【答案】D【解析】(x 3)2=x 6,故选D . 23.【答案】D【解析】A 、错误.应该是x 3·x 3=x 6; B 、错误.应该是x 8÷x 4=x 4; C 、错误.(ab 3)2=a 2b 6. D 、正确.故选D . 24.【答案】B【解析】(-a )3÷a =-a 3÷a =-a 3-1=-a 2,故选B .【解析】A、a10÷a2=a8,错误;B、(a2)3=a6,错误;C、(-a)5=-a5,错误;D、a3·a2=a5,正确.故选D.26.【答案】D【解析】∵a2÷a0·a2=a4,∴选项A不符合题意;∵a2÷(a0·a2)=1,∴选项B不符合题意;∵(-1.5)8÷(-1.5)7=-1.5,∴选项C不符合题意;∵-1.58÷(-1.5)7=1.5,∴选项D符合题意.故选D.。
七年级数学整式的乘法同练习含答案.doc
10.4整式的乘法一、基础训练1. 下列说法不正确的是()A. 两个单项式的积仍是单项式B. 两个单项式的积的次数等于它们的次数Z 和C. 单项式乘以多项式,积的项数与多项式项数相同D. 多项式乘以多项式,合并同类项前,积的项数等于两个多项式的项数Z 和 2. 下列多项式相乘的结果是a 2-a-6的是()A. (a-2) (a+3) C. (a-6)(a+1)B. D. (a+2) (a-3) (a+6)(a-1)3.下列计算止确的是()A. -a (3a 2-l) =-3a A - aB. (a~b) 2=a 2-b 2C. (2a-3)(2a+3) =4a 2-9D. (3a+l)(2a-3) =6a 2-9a+2a=6a 2-7a1 2 4.当 x 二一,y=-l, z=- —2 '3吋,x (y-z) -y (z-x) +z (x-y)等于() A. - B. -2- C.4D. -233 35.边长为a 的止方形,边长减少b 以后所得较小止方形的面积比原來止方形的而积减少A. b ,B. b 2+2ab c. 2ab D. b (2a~b)6. 计算2x? (~2xy )・(-—xy)的结果是 ____________ .27.(3X10") X (-4X101) = ____________________________ (用科学计数法表示).8. 计算(~mn) 2 (m+加咕)=;(-丄 x'y) (-9xy+l ).3 '9. 计算(5b+2) (2b-l)二 ___________ ; (3-2x) (2x-2)二 _________ ・ 10. 若(x-7) (x+5)二x'+bx+c,则 b 二 __________ , c= _________ .11.计算:(1) — x3yz2• (~10x2y3) ;(2) (-mn) 3• (-2m2n) 4;(9) (a2+3) (a-2) -a (『-2a~2) •.先化简,后求值.(3) (-8ab2) • (-ab) ' • 3a bc;(2xy'-3x'yT )• —xvz;2・(5) (-2a) 2• (a2b-ab2);(6) (x-2y)〈(7) (x+1) (x,-x+1): (8) (5x+2y) (5x-2y);(1) x ( X2+3 ) +x2 (x-3) 一3x (x'-xT) 其中x=-3.(2) (x+5y) (x+4y) - (x-y)2 ] (x+y),其中x=2—, y二-一•3 7二、能力训练13.若(x+m) (x+n)二x?-6x+8,则()A• m, n同时为负 B. m, n同时为正C. m, n异号D. m, n异号且绝对值小的为正14.已矢l【m, n 满足| m+2 | + (n-4) 2=0,化简(x-m) (x-n)二15.解方程组:x(x-5) + y(y + 6) = x2 + y2 - 39, x(x + 7)-y(y-8) = x2 - y2 - 11.16.解不等式(组)(1) (3x-2) (2x-3) W (6x+5) (x-1);⑵]兀(2兀-5)〉2兀? - 3兀-4,[(x +1)(% - 3) + 8x > (x 4- 5)(% -5)-2.17.—个长80cm,宽60cm的铁皮,将四个允各裁去边长为bcm的正方形,做成一个没有盖的盒子,则这个盒子的底血积是多少?当W10时,求它的底面积.18.某公园欲建如图13-2-3所示形状的草坪(阴影部分),求盂要铺设草坪多少平方米?若每平方米草坪需120元,则为修建该草坪需投资多少元?(旳位:米)三、综合训练19.对于任意口然数,试说明代数式n (n+7) - (n-3) (n~2)的值都能被6整除.参考答案1.D点拨:D项积的项数等于两个多项式的项数之积.2. B 点拨:B 项Q+2) (a-3) =a2-3a+2a-6=a-a-6.3.C点拨:A项的积中第二项的符号搞错,应为-3a3+a;B 项(a-b) 2= (a-b) (a-b) =a2-2ab+b2; D 项中漏掉IX (-3),结果应为6a2-7a-3.3 1 74.B点拨:解法一:由题意可知x-y=-, y-z=—, z-x二——,然后整体代入所求值的2 3 6代数式;解法二:所求值的代数式化简后得2xy-2zy.5. D点拨:a2- (a~b) 2=a2- (a2-2ab+b2) =a2-a2+2ab-b2=2ab-b2.6. -x6y42 '7. -1.2X10138. mX+Zni1!?;3x3y2- — x2y ' 3'9. 10b2-b-2;- 4x'+10x - 610. -2, -35 点拨:(x-7) (x+5) =x2-2x-35=x2+bx+c,故b二-2,c=-355 一.3111.(1) - — x y^z2; (2) -16m n n7; (3) -24a'b°c; (4) x2y3z~ — x3y2z~ — xyz; (5) 4a b-4aV;2 2 ' 2 '(6) x2-4xy+4y2;(7) x3+l;(8) 25x2-4y2;(9) 5a-6.12.(1) 9;(2) -3点拨:(1)的化简结果是-X3+6X;(2)的化简结果是21y2+9xy.13.A点拨:mn二8, m+n=-6, ni与n积为正,说明m, n同号,和乂为负,所以m, n应同为负.14.X2-2X-8点拨:山已知得m+2二0 且n-4=0,所以m二-2, n=4,所以(x-m) (x-n)二(x+2) (x~4) =X2-2X~8.(x = 315.\ ' 点拨:按照解方程组的一般步骤即可.卜二-4.16.(1) x> —;(2) -4<x<2.17.W:这个盒子的底面是长(80-2b) cm,宽为(60-2b) cm的长方形.底面积为(80-2b)(60-2b) =4b-280b+4800,当b二10 时,它的底面积为4X102-280X 10+4800=2400 (cm2).点拨:先山题意得出这个盒子底而的形状,把底面图形边长找出,然后列代数式并化简.18.解:由图形及图形中的数据可得草坪的面积二a ・3a+a • 4a+2a • 3a+2a • 4a=2la2 (m2).每平方米120元,需投资:21(X120二2520((元).答:需要铺设草坪21(平方米,修建草坪需投资2520a2元.点拨:仔细观察图,阴影部分的面积由4个矩形组成,分別找出每个矩形的长和宽,表示出面积即可.19.解:n (n+7) - (n-3) (n-2) =n2+7n-n2+5n~6=l2n~6=6 (2n-l).I大I为n为自然数,所以6 (2n-l) 一定是6的倍数.点拨:说明某个代数式能被某个数整除,只要把这个代数式整理为这个数乘以整式的形式,其中整式代表的是整数.20.解:设a2+a3+•••+a n-i=x.・°・原式二(ai+x) (x+a n) -x (ai+x+an)=aix+aian+x2+anx-aix-x2-anx=aian.点拨:按多项式乘法展开太麻烦,观察到被减数的第一个因式是从①到第二个因式是从实到缶,项数相同,减数的第一个因式是从32到亦,第二个因式是从创到缶的和, 所有这四个式子均有氐到如I,设x=a2+a3+・・・+a「】可转化为较简单的整式乘法.。
(完整版)整式乘法练习题(共14页)
32 .33 . 下列计算中错误的是 [(a+b)2]3=(a+b)6; B .(-2x 3y 4)3 的值是[] -6x 6y 7; B . -8x 27y 64;[] [(x+y) 2n ]5=(x+y) 2n+5 ; C . [(x+y)m ]n =(x+y)mn ; D . [(x+y) m+1]n =(x+y) mn+nC . -8x 9y 12;D . -6xy 10 .41. F 列计算中,[] (1)b(x-y)=bx-by , (2)b(xy)=bxby , (3)b x-y =b x -b y , (4)2164=(64)3, (5)x 2n-1y 2n-1=xy 2n-242 . 只有⑴与⑵正确;B .只有(1)与⑶正确;C .只有(1)与⑷正确;D .只有⑵与⑶正确.(-6x n y )2 • 3x n-1y 的计算结果是[]18x 3n-1y 2; B . -36x 2n-1y 3; C . -108x 3n-1y ; D . 108x 3n-1y 3 .44 .下列计算正确的是[] 2 2 2 2 (6xy 2-4x 2y) • 3xy=18xy 2-12x 2y ;(-x)(2x+x 2-1)=-x 3-2x 2+1 ;(-3x 2y)(-2xy+3yz-1)=6x 3y 2-9x 2y 2z 2-3x 2y ;討需J* 2ab = — - ab*.整式的乘法练习题(一)填空1. a 8=(-a 5) _______ .2. a 15=( )5.3. 3m 2 • 2m 3= _________ .4. (x+a)(x+a)= ______ .5. a 3 • (-a)5 • (-3a)2 ____________ • (-7ab 3)=. 6. _________ (-a 2b)3 • (-ab 2)= . 7 . (2x)2 • x 4=( )2 .8 . 24a 2b 3=6a 2 • ______ . 9 . [(a m )n ]p = _______ . 10 . (-mn)2(-m 2n)3= ________ .I 「I 1 j ' - 14 . (3X 2)3-7X 3[X 3-X (4X 2+1)]= _______ . 17 . 一长方体的高是(a+2)厘米,底面积是(a 2+a-6)厘米2,则它的体积是 _____________ .19 . 3(a-b)2[9(a-b)3](b-a) 5= _____ .21.若 a 2n-1 • a 2n+1=a 12,则 n= __________ .(二)选择28 .下列计算正确的是[]A . 9a 3 • 2a 2=18a 5;B . 2x 5 • 3x 4=5x 9;C . 3x 3 • 4x 3=12x 3;D . 3y 3 • 5y 3=15y 9 .29 . (y m )3 • y n 的运算结果是[]B y 3m+n ;C . y 3(m+n) ;D . y 3mn下列计算错误的是[](x+1)(x+4)=x 2+5x+4 ; B . (m-2)(m+3)=m 2+m-6 ; C . (y+4)(y-5)=y 2+9y-20 ; D . (x-3)(x-6)=x 2-9x+18 .计算-a 2b 2 • (-ab 3)2所得的结果是[]a 4b 8; B . -a 4b 8; C . a 4b 7; D . -a 3b 8 .30 . 31 .45.下列计算正确的是[]A . (a+b)2=a 2+b 2;B . a m • a n =a mn ;C . (-a 2)3=(-a 3)2;D . (a-b)3(b-a)2=(a-b)5. 47.把下列各题的计算结果写成 10的幕的形式,正确的是[] A . 100X 103=106;B . 1000 X 1O 1°°=io 3°°°; C. 1002n X 1000=104n +3; D . 1005X 10=10005=1015.48. t 2-(t+1)(t-5)的计算结果正确的是 []A . -4t-5 ;B . 4t+5 ;C . t 2-4t+5 ;D . t 2+4t-5 .(三)计算(6 X 108)(7 X 109)(4 X104). (-5x n+1y) • (-2x).(-3ab) • (-a 2c) • 6ab 2 .(-4a) • (2a 2+3a-1).52. 53. 54. 55. 56. (-3xy) * 5x 2y + fix 3 • 57. 2 r 4 —ab 2 -2ab + — bF7 、-xy -2y• iab..2 58. (3m-n)(m-2n).59. 60. 61. 62. 63. (x+2y)(5a+3b).(-ab)3 • (-a 2b) • (-a 2b 4c)2 . [(-a)2m ]3 •a 3m +[(-a)5m ]2 . x n+1(x n -x n-1+x).2 2(x+y)(x -xy+y ).3sy 6xy^Jxy-\3yjj. 65. : tn 2T-ij2) 3 \ L 4 J 67 . (2X -3)(X +4).C3.(宀疔)护〜]的.-2a a *-5ab • (a 2-1) 70 . (-2a m b n )(-a 2b n )(-3ab 2).25X (X 2+2X +1)-(2X +3)(X -5).-a a (4ab a i-Sa^b-a 1) * C-5a a b*J. (m_n)(m 5+m 4n+m 3n 2+m 2n 3+mn 4+n 5). (2a 2-1)(a-4)(a 2+3)(2a-5). 2[(x+2)(x+1)-3]+(x-1)(x-2)-3x(x+3) (0.3a 3b 4)2 • (-0.2a 4b 3)3. (-4xy 3) • (-xy)+(-3xy 2)2.6X100-01 -6.(5a 3+2a-a 2-3)(2-a+4a 2).(3x 4-2x 2+x-3)(4x 3-x 2+5).1 , 工 _ —ab + b A + 5ab * 12 」(3a m+2b n+2)(2a m +2a m -2b n-2+3b n ).j ' 2ir?r?・ J (泅卄罷一(一隔十9怡. [(-a 2b)3]3 • (-ab 2). (-2ab 2)3 • (3a 2b-2ab-4b 2). 「护y +树训一制.2(x + y)3 • 5(n+y)t+3 • 4(x+j)n .iab a c(-0.5ab)a • ^-lbc 2j . (_2x m y n )3 • (-x 2y n ) • (-3xy 2)2. (0.2a-1.5b+1)(0.4a-4b-0.5). -8(a-b)3 • 3(b-a).(x+3y+4)(2x-y).I / 3 \ i -ab TQa 儿 -b -1-3.5a) * -b\ M 丿 x 5 J y[y-3(x-z)]+y[3z-(y-3x)]. 计算[(-a)2m ]3 • a 3m +[(-a) 3m ]3(m 为自然数).7L72.73.74.75.76.77. 78.79.80.81. 82.83.34.35. 86.87.S3.89. get91 .92.93.94. 95.96.97.(-2a 3(四)化简99.--少】b叫時*(-2 25严01尹1).L 3 丿I a :2100.\胡・(一站刖.■■10L •[(m-n)Cm-n)p]<1Q2.* 2ab -* 3abU 2 J 乜 6 J103. m-丄(m +1) + 丄(ni-l)+丄2 3 6(五)求值104.先化简y n(y n+9y-12)-3(3y n+1-4y n),再求其值,其中y=-3, n=2 .31 •105.先化简(x-2)(x-3)+2(x+6)(x-5)-3(x 2-7x+13),再求其值,其中x=-106.光的速度每秒约3X 105千米,太阳光射到地球上需要的时间约是5X 102秒. 约是多少千米?(用科学记数法写出来)107.已知ab2=-6,求-ab(a2b5-ab3-b)的值.108.已知a+b=1 , a(a2+2b)+b(-3a+b 2)=0.5,求ab 的值.109.己知签=5 y = *求藍—0•(严夕的值(n为自然数).110.已知(x-1)(x+1)(x-2)(x-4)三(x2-3x)2+a(x2-3x)+b,求a, b 的值.111.多项式x4+mx2+3x+4中含有一个因式x2-x+4,试求m的值,并求另一个因式.112.若x3-6x2+11x-6 = (x-1)(x 2+mx+ n),求m, n 的值.113.已知一个两位数的十位数字比个位数字小原数的乘积比原数的平方多405,求原数. 1,若把十位数字与个位数字互换,所得的新两位数与9& 2xy(0 75x nH-1问地球与太阳的距离114.试求(2-1)(2+1)(2 2+1)(24+1)…(232+1)+1 的个位数字.115.比较2100与375的大小.116 .解方程3x(x+2)+(x+1)(x-1)=4(x 2+8).】5组伫■驚舄•118.求不等式(3x+4)(3x-4) > 9(x-2)(x+3)的正整数解.119.已知2a=3b=6c(a, b, c 均为自然数),求证:ab-cb=ac.120.求证:对于任意自然数n, n(n+5)-(n-3) x (n+2)的值都能被6整除. 121.已知有理数x, y, z 满足|x-z-2|+(3x-6y-7) 2+|3y+3z-4|=0,求证:x3n y3n-1z3n+1-x=0 .122.已知x=b+c , y=c+a, z=a+b,求证: (x-y)(y-z)(z-x)+(a-b)(b-c)(c-a)=0123.证明(a-1)(a1 2-3)+a2(a+1)-2(a3 4-2a-4)-a 的值与 a 无关.124.试证代数式(2x+3)(3x+2)-6x(x+3)+5x+16 的值与x 的值无关.125.求证:(m+1)(m-1)(m-2)(m-4)=(m 2-3m)2-2(m2-3m)-8 .12若2x + 5y— 3 = 0 贝咛"=3已知 a = 355,b = 444,c = 533则有( )A . a < b < cB. c < b < aC. a < c < bD. c < a < b4已知2小+戶+严=4鳴,则x = 5、21990 X31991的个位数字是多少6、计算下列各题⑴⑵7、计算(—2x —5)(2x—5)8、 计算"■ -■1)仏 +2比-2)以-+2x4) 69、 计算 '人八 儿 丿,当a 6 = 64时,该式的值。
7年级整式的乘法练习题
7年级整式的乘法练习题一、选择题(每题3分,共15分)1. 若(3x-2)(ax+b)=3x^2+5x-10,求a和b的值。
A. a=1, b=-5B. a=1, b=5C. a=-1, b=-5D. a=-1, b=52. 计算下列表达式的结果:(2x-3y)^2。
A. 4x^2-12xy+9y^2B. 4x^2+12xy+9y^2C. -4x^2+12xy-9y^2D. -4x^2-12xy+9y^23. 已知(2x+3)(3x-2)=6x^2+5x-6,计算(2x+3)(3x+2)的结果。
A. 6x^2+5x+6B. 6x^2-5x+6C. 6x^2+5x-6D. 6x^2-5x-64. 计算下列表达式:(-2x+y)(-2x-y)。
A. 4x^2-y^2B. -4x^2+y^2C. y^2-4x^2D. 4x^2+y^25. 以下哪个表达式是(2x-y)^2的展开式?A. 4x^2-4xy+y^2B. 4x^2+4xy+y^2C. -4x^2+4xy+y^2D. -4x^2-4xy+y^2二、填空题(每题2分,共10分)1. 若(3x-4)(2x+1)=6x^2-x-12,求x的值。
2. 计算(3x-2y)(2x+3y)的结果。
3. 已知(2x+1)^2=4x^2+4x+1,求2x+1的值。
4. 计算(2x+3)(3x-1)的结果。
5. 若(a+b)(a-b)=a^2-b^2,求a和b的值。
三、解答题(每题5分,共30分)1. 计算下列表达式:(2x+3)(2x-3)-(3x+2)(3x-2)。
2. 已知(2x-3)(2x+3)=4x^2-9,求2x-3的值。
3. 计算下列表达式:(2x+5)^2-(3x-2)^2。
4. 已知(2x+3)(2x-3)=4x^2-9,求2x+3的值。
5. 计算下列表达式:(3x-2y)(3x+2y)-(2x-3y)(2x+3y)。
6. 已知(2x+1)(2x-1)=4x^2-1,求2x的值。
整式的乘法练习题(含解析答案)
整式的乘法练习题(含解析答案)北师大版数学七年级下册第一章1.4整式的乘法课时练一、选择题1.(-5a2b)·(-3a)等于()A.15a3bB.-15a2bC.-15a3bD.-8a2b答案:A解析:解答:(-5a2b)·(-3a)=15a3b,故A项正确.分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题.2.(2a)3·(-5b2)等于()A.10a3bB.-4a3b2C.-40a3bD.-40a2b答案:B解析:解答:(2a)3·(-5b2)=-4a3b2,故B项正确.分析:先由积的乘方法则得(2a)3=8a3,再由单项式乘单项式法则可完成此题.3.(2a3b)2·(-5ab2c)等于()A.-20a6b4cB.10a7b4cC.-20a7b4cD.20a7b4c答案:C 剖析:解答:(2a3b)2·(-5ab2c)=-20a7b4c,故C项正确.阐发:先由积的乘办法例得(2a3b)2=-4a6b2,再由单项式乘单项式法例与同底数幂的乘法可完成此题.4.(2x3y)2·(5xy2)·x7即是()A.-XXX.-20x7y4D.20x14y4答案:D解析:解答:(2x3y)2·(5xy2)·x7=-20x14y4,故D项正确.分析:先由积的乘方法则得(2x3y)2=-4x6y2,再由单项式乘单项式法则与同底数幂的乘法法则可完成此题.5.2a3·(b2-5ac)等于()A.-20a6b2cB.10a5b2cC.2a3b2-10a4cD.a7b4c-1a4c答案:C剖析:解答:2a3·(b2-5ac)=2a3b2-10a4c,故C项正确.阐发:由单项式乘多项式法例与同底数幂的乘法法例可完成此题.6.x3y·(xy2+z)即是()A.x4y3+xyzB.xy3+x3yzC.zx14y4D.x4y3+x3yz答案:D解析:解答:x3y·(xy2+z)=x4y3+x3yz,故D项正确.分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题.7.(-x7)2·(x3y+z)等于()A.x17y+x14zB.-xy3+x3yzC.-x17y+x14zD.x17y+x3yz答案:A解析:解答:(-x7)2·(x3y+z)=x17y+x14z,故A项正确.分析:先由幂的乘方法则得(-x7)2=x14,再由单项式乘多项式法则与同底数幂的乘法法则可完成此题.8.[(-6)3]4.(b2-ac)等于()A.-612b2-b2cB.10a5-b2cC.612b2-612acD.b4c-a4c答案:C解析:解答:[(-6)3]4.(b2-ac)=612b2-612ac,故C项正确.分析:先由幂的乘方法则得[(-6)3]4=612,再由单项式乘多项式法则与同底数幂的乘法法则可完成此题.9.(2x)3.(x3y+z)等于()A.8x6y+x14zB.-8x6y+x3yzC.8x6y+8x3zD.8x6y+x3yz答案:C解析:解答:(2x)3.(x3y+z)=8x6y+8x3z,故C项正确.阐发:先由积的乘办法例得(2x)3=8x3,再由单项式乘多项式法例与同底数幂的乘法法例可完成此题.10.(2x)2.[(-y2)2+z]等于()A.4xy4+xzB.-4x2y4+4x2zC.2x2y4+2x2zD.4x2y4+4x2z答案:D剖析:解答:(2x)2.[(-y2)2+z]=4x2y4+4x2z,故D项正确.阐发:先由积的乘办法例得(2x)2=4x2,由幂的乘办法例得(-y2)2=y4再由单项式乘多项式法例与同底数幂的乘法法例可完成此题.11.x2.x5.(y4+z)等于()A.x7y4+x7zB.-4x2y4+4x2zC.2x2y4+2x2zD.4x2y4+4x2z答案:A剖析:解答:x2.x5.(y4+z)=x7y4+x7z,故A项正确.分析:先由同底数幂的乘法法则得x2.x5=x7,再由单项式乘多项式法则可完成此题.12.x2·(xy2+z)等于()A.xy+xzB.-x2y4+x2zC.x3y2+x2zD.x2y4+x2z答案:C解析:解答:x2.(xy2+z)=x3y2+x2z,故C项正确.分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题.13.(a3+b2)·(-5ac)等于()A.-5a6b2-cB.5a5-b2cC.5a3b2-10a4cD.-5a4c-5ab2c答案:D剖析:解答:(a3+b2)·(-5ac)=-5a4c-5ab2c,故D项正确.阐发:由单项式乘多项式法例与同底数幂的乘法法例可完成此题.14.(x2+y5)·(y2+z)即是()A.x2y2+x2z+y7+y5zB.2x2y2+x2z+y5zC.x2y2+x2z+y5 zD.x2y2+y7+y5z答案:A解析:解答:(x2+y5).(y2+z)=x2y2+x2z+y7+y5z,故A项正确.分析:由多项式乘多项式法则与同底数幂的乘法法则可完成此题.15.2(a2+b5)·a2等于()A.a2c+b5cB.2a4+2b5a2C.a4+2b5a2D.2a4+ba2答案:B剖析:解答:2(a2+b5)·a2=2a4+2b5a2,故B项正确.分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题.二、填空题16.5x2·(xy2+z)即是;答案:5x3y2+5x2z剖析:解答:5x2·(xy2+z)=5x2·xy2+5x2·z=5x3y2+5x2z阐发:由单项式乘多项式法例与同底数幂的乘法法例可完成此题17.2a2·(ab2+4c)即是;答案:2a3b2+8a2c剖析:解答:2a2·(ab2+4c)=2a2·ab2+2a2·4c=2a3b2+8a2c阐发:由单项式乘多项式法例与同底数幂的乘法法例可完成此题18.2a2·(3ab2+7c)即是;答案:6a3b2+14a2c剖析:解答:2a2·(3ab2+7c=2a2·3ab2+2a2·7c=6a3b2+14a2c阐发:由单项式乘多项式法例与同底数幂的乘法法例可完成此题19.(-2a2)·(3a+c)即是;答案:-6a3-2a2c剖析:解答:-2a2·(3a+c)=(-2a2)·3a+(-2a2)·c=-6a3-6a2c阐发:由单项式乘多项式法例与同底数幂的乘法法例可完成此题20.(-4x2)·(3x+1)即是;答案:-12x3-4x2剖析:解答:(-4x2)·(3x+1)=(-4x2)·3x+(-4x2)·1=-12x3-4x2阐发:由单项式乘多项式法例与同底数幂的乘法法例可完成此题三、计算题21.(-10x2y)·(2xy4z)答案:-20x3y5z解析:解答:解:(-10x2y)·(2xy4z)= -20x2+1·y4+1·z=-20x3y5z分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题22.(-2x y2)·(-3x2y4)·(-x y)答案:-6x4y7解析:解答:解:(-2x y2)·(-3x2y4)·(-x y)= -6x1+2+1·y2+4+1=-6x4y7分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题23.2a·(a+1)-a(3a-2)+2a2(a2-1)答案:2a4-3a2+4a剖析:解答:解:2a·(a+1)-a(3a-2)+2a2(a2-1)=2a2+2a-3a2+2a+2a4-2a2=2a4-3a2+4a阐发:先由单项式乘多项式法例与同底数幂的乘法法例计算,再归并同类项可完成此题.24.3ab·(a2b+ab2-ab)答案:3a3b2+3a2b3-3a2b2解析:解答:解:3ab·(a2b+ab2-ab)=3ab·a2b+3ab·ab2-3ab·ab=3a3b2+3a2b3-3a2b2分析:由单项式乘多项式法则与同底数幂的乘法法则计算可完成题.25.(x-8y)·(x-y)。
初一整式的乘法(含答案)
整式的乘法一、基础知识1、整式的乘法:单项式与单项式相乘,把它们系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
单项式与多项式相乘,就是把单项式与多项式的每一项相乘,再把所得的积相加。
多项式与多项式相乘,就是用多项式的每一项和另一个多项式的每一项相乘,再把所得的积相加。
2、乘法公式平方差公式:22))((b a b a b a -=-+ 完全平方公式:2222)(b ab a b a +±=± 二、课前预习 (5分钟训练) 1.计算下列各式:(1)(2×103)×(3×104)×(5×102); (2)(13×105)3(9×103)2;(3)45x 2(-53xy 3); (4)(-3ab)(2a 2-13ab+5b 2);2.若x m =3,x n =2,则x 2m+3n =________. 三、课中强化(10分钟训练) 1.下列计算正确的是( )A.(-4x 2)(2x 2+3x -1)=-8x 4-12x 2-4xB.(x+y)(x 2+y 2)=x 3+y 3C.(-4a -1)(4a -1)=1-16a 2D.(x -2y)2=x 2-2xy+4y 22.计算:(1)2(a5)2·(a2)2-(a2)4·(a2)2·a2;(2)(b n)3·(b2)m+3(b3)n·b2·(b m-1)2;(3)(27×81×92)2.3.(1)化简求值:(x-2)(x-3)+2(x+6)(x-5)-3(x2-7x+13),其中x=-7 18;(2)已知|a-2|+(b-12)2=0,求-a(a2-2ab-b2)-b(ab+2a2-b2)的值.4.如图15-2-2,某长方形广场的四角都有一块半径相同的四分之一圆形草地,若圆的半径为r米,长方形长为a米,宽为b米.(1)请用代数式表示空地的面积;(2)若长方形长为300米,宽为200米,圆形的半径为10米,求广场空地的面积(计算结果保留π).图15-2-2四、课后巩固(30分钟训练)1.化简(-2a)·a-(-2a)2的结果是( )A.0B.2a2C.-6a2D.-4a22.下列5个算式中,错误的有( )①a 2b 3+a 2b 3=2a 4b 6 ②a 2b 3+a 2b 3=2a 2b 3 ③a 2b 3·a 2b 3=2a 2b 3 ④a 2b 3·a 2b 3=a 4b 6 ⑤2a 2b·3a 3b 2=6a 6b 2A.1个B.2个C.3个D.4个3.现规定一种运算:a*b =ab+a -b ,其中a 、b 为实数,则a*b+(b -a)*b 等于( )A.a 2-bB.b 2-bC.b 2D.b 2-a4.随着计算机技术的迅猛发展,电脑价格不断降低.某品牌电脑按原售价降低m 元后,又降价20%,现售价为n 元,那么该电脑的原售价为( ) A.(45n+m)元 B.(54n+m)元 C.(5m+n)元 D.(5n+m)元 8.填“输出”结果:(1)输入22321(1)(1)?2x x x x x x x x =→-+--+-→输出 (2)输入323,2,5[3()][3(3)]?37x y z y y x z y z y x =-=-=-→--+--→输出参考答案一、课前预习(5分钟训练)1.计算下列各式:(1)(2×103)×(3×104)×(5×102);(2)(13×105)3(9×103)2;(3)45x2(-53xy3);(4)(-3ab)(2a2-13ab+5b2);(5)(a+13)(a-14).答案:(1)3×1010; (2)3×1021;(3)-43x3y3; (4)-6a3b+a2b2-15ab3;二、课中强化(10分钟训练)1.下列计算正确的是( )答案:C2.计算:解:(1)原式=2a10·a4-a8·a4·a2=2a14-a14=a14.(2)原式=b3n·b2m+3b3n·b2·b2m-2=b3n+2m+3b3n+2m=4b3n+2m.(3)(27×81×92)2=(33×34×34)2=(311)2=322.3解:(1)(x-2)(x-3)+2(x+6)(x-5)-3(x2-7x+13)=18x-93. 当x=-718时,原式=-100.(2)因为|a-2|+(b-12)2=0,所以a-2=0,b-12=0.因此a=2,b=12.-a(a2-2ab-b2)-b(ab+2a2-b2)=-a3+2a2b+ab2-ab2-2a2b+b3=-a3+b3.当a=2,b=12时,原式=-778.4.如图15-2-2,某长方形广场的四角都有一块半径相同的四分之一圆形草地,若圆的半径为r米,长方形长为a米,宽为b米.(1)请用代数式表示空地的面积;(2)若长方形长为300米,宽为200米,圆形的半径为10米,求广场空地的面积(计算结果保留π).图15-2-2思路分析:利用长方形的面积公式.解:(1)空地面积为(ab-πr2)平方米.(2)当a =300,b =200,r =10时,ab -πr 2=300×200-100π=(60 000-100π)平方米.答:广场空地的面积为(60 000-100π)平方米.三、课后巩固(30分钟训练)1.化简(-2a)·a -(-2a)2的结果是( ) 答案:C2.下列5个算式中,错误的有( )思路解析:掌握加法运算与乘法运算的法则,①运算错误,用合并同类项法则,应为a 2b 3+a 2b 3=2a 2b 3;②为合并同类项,运算正确;③为单项式的乘法,运算错误,正确的运算为a 2b 3·a 2b 3=a 4b 6;④正确;⑤为单项式的乘法,运算错误,正确的运算为2a 2b·3a 3b 2=6a 5b 3. 答案:C3.现规定一种运算:a*b =ab+a -b ,其中a 、b 为实数,则a*b+(b -a)*b 等于( )A.a 2-bB.b 2-bC.b 2D.b 2-a 答案:B4.随着计算机技术的迅猛发展,电脑价格不断降低.某品牌电脑按原售价降低m 元后,又降价20%,现售价为n 元,那么该电脑的原售价为( )A.(45n+m)元B.(54n+m)元 C.(5m+n)元 D.(5n+m)元 思路解析:原售价为120%n-+m. 答案:B8.填“输出”结果:(1)输入22321(1)(1)?2x x x x x x x x =→-+--+-→输出(2)输入323,2,5[3()][3(3)]?37x y z y y x z y z y x =-=-=-→--+--→输出思路分析:这是一道混合化简求值题,由单项式和多项式相乘组成,运算顺序依然是先乘法后加减,化简时前后的单项式相乘可以同时进行.对于这类求代数式值的问题,不便直接将字母的值代入代数式,而应先将代数式化简成最简形式,然后再代入求值. (1)x2(x2-x+1)-x(x3-x2+x-1)=x4-x3+x2-x4+x3-x2+x=x,当x=12时,原式=12.(2)y[y-3(x-z)+y[3z-(y-3x)]=y(y-3x+3z)+y(3z-y+3x)=y2-3xy+3yz+3yz-y2+3xy=6yz,当x=-23337,y=-2,z=-5时,原式=6×(-2)×(-5)=60.答案:(1)12(2)60。
整式乘法计算专题训练(含答案)
整式乘法计算专题训练1、(2a+3b)(3a﹣2b)2、3、(x+2y﹣3)(x+2y+3)4、5x(2x2﹣3x+4)5、6、计算: a3·a5+(-a2)4-3a87、﹣5a2(3ab2﹣6a3)8、计算:(x+1)(x+2)9、(x﹣2)(x2+4)10、2x11、计算:(x﹣1)(x+3)﹣x(x﹣2)12、﹣(﹣a)2•(﹣a)5•(﹣a)313、(﹣)×(﹣)2×(﹣)3;14、(x﹣y)(x2+xy+y2).15、(﹣2xy2)2•(xy)3;16、17、计算:(x+3)(x+4)﹣x(x﹣1)18、(a+2b)(3a﹣b)﹣(2a﹣b)(a+6b)19、3x(x﹣y)﹣(2x﹣y)(x+y)20、(﹣a2)3﹣6a2•a421、(y﹣2)(y+2)﹣(y+3)(y﹣1)22、23、(2x﹣y+1)(2x+y+1)24、25、4(a+2)(a+1)-7(a+3)(a-3)参考答案一、计算题1、(2a+3b)(3a﹣2b)=6a2﹣4ab+9ab﹣6b2=6a2+5ab﹣6b2【点评】此题考查多项式的乘法,关键是根据三角函数、零指数幂和负整数指数幂计算.2、3、(x+2y﹣3)(x+2y+3)=(x+2y)2﹣9=x2+4xy+4y2﹣9;4、【考点】单项式乘多项式.【分析】原式利用单项式乘多项式法则计算即可得到结果.【解答】解:原式=10x3﹣15x2+20x.5、6、——————————6分7、原式=﹣15a3b2+30a5;8、原式=x2+2x+x+2=x2+3x+2;9、(x﹣2)(x2+4)=x3﹣2x2+4x﹣8;10、原式=x2﹣2x+x2+2x=2x2;11、(x﹣1)(x+3)﹣x(x﹣2)=x2+2x﹣3﹣x2+2x=4x﹣3;12、原式=﹣a2•a5•a3=﹣a10;13、原式=(﹣)1+2+3=(﹣)6=;14、(x﹣y)(x2+xy+y2)=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.【点评】此题主要考查了整式的混合运算,正确掌握运算法则是解题关键.15、(﹣2xy2)2•(xy)3=4x2y4•x3y3=4x5y7;16、17、【考点】整式的混合运算.【分析】直接利用多项式乘以多项式以及单项式乘以多项式运算法则化简求出即可.【解答】解:(x+3)(x+4)﹣x(x﹣1)=x 2+7x+12﹣x 2+x=8x+12.【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.18、(a+2b )(3a ﹣b )﹣(2a ﹣b )(a+6b )=3a 2﹣ab+6ab ﹣2b 2﹣2a 2﹣12ab+ab+6b 2=a 2﹣6ab+4b 219、原式=3x 2﹣3xy ﹣2x 2﹣xy+y 2=x 2﹣4xy+y 2;20、(﹣a 2)3﹣6a 2•a 4=﹣a 6﹣6a 6=﹣7a 6;21、(y ﹣2)(y+2)﹣(y+3)(y ﹣1)=y 2﹣4﹣y 2﹣2y+3=﹣2y ﹣1;22、==2a 6b 5c 5;23、(2x﹣y+1)(2x+y+1)=[(2x+1)﹣y][(2x+1)+y] =(2x+1)2﹣y2=4x2+4x+1﹣y2;24、6a3-35a2+13a (25、。
整式乘法计算专题训练(含答案)
整式乘法计算专题训练1、(2a+3b)(3a﹣2b)2、3、(x+2y﹣3)(x+2y+3)4、5x(2x2﹣3x+4)5、6、计算: a3·a5+(-a2)4-3a87、﹣5a2(3ab2﹣6a3)8、计算:(x+1)(x+2)9、(x﹣2)(x2+4)10、2x11、计算:(x﹣1)(x+3)﹣x(x﹣2)12、﹣(﹣a)2•(﹣a)5•(﹣a)313、(﹣)×(﹣)2×(﹣)3;14、(x﹣y)(x2+xy+y2).15、(﹣2xy2)2•(xy)3;16、17、计算:(x+3)(x+4)﹣x(x﹣1)18、(a+2b)(3a﹣b)﹣(2a﹣b)(a+6b)19、3x(x﹣y)﹣(2x﹣y)(x+y)20、(﹣a2)3﹣6a2•a421、(y﹣2)(y+2)﹣(y+3)(y﹣1)22、23、(2x﹣y+1)(2x+y+1)24、25、4(a+2)(a+1)-7(a+3)(a-3)参考答案一、计算题1、(2a+3b)(3a﹣2b)=6a2﹣4ab+9ab﹣6b2=6a2+5ab﹣6b2【点评】此题考查多项式的乘法,关键是根据三角函数、零指数幂和负整数指数幂计算.2、3、(x+2y﹣3)(x+2y+3)=(x+2y)2﹣9=x2+4xy+4y2﹣9;4、【考点】单项式乘多项式.【分析】原式利用单项式乘多项式法则计算即可得到结果.【解答】解:原式=10x3﹣15x2+20x.5、6、——————————6分7、原式=﹣15a3b2+30a5;8、原式=x2+2x+x+2=x2+3x+2;9、(x﹣2)(x2+4)=x3﹣2x2+4x﹣8;10、原式=x2﹣2x+x2+2x=2x2;11、(x﹣1)(x+3)﹣x(x﹣2)=x2+2x﹣3﹣x2+2x=4x﹣3;12、原式=﹣a2•a5•a3=﹣a10;13、原式=(﹣)1+2+3=(﹣)6=;14、(x﹣y)(x2+xy+y2)=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.【点评】此题主要考查了整式的混合运算,正确掌握运算法则是解题关键.15、(﹣2xy2)2•(xy)3=4x2y4•x3y3=4x5y7;16、17、【考点】整式的混合运算.【分析】直接利用多项式乘以多项式以及单项式乘以多项式运算法则化简求出即可.【解答】解:(x+3)(x+4)﹣x(x﹣1)=x2+7x+12﹣x2+x=8x+12.【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.18、(a+2b)(3a﹣b)﹣(2a﹣b)(a+6b)=3a2﹣ab+6ab﹣2b2﹣2a2﹣12ab+ab+6b2=a2﹣6ab+4b219、原式=3x2﹣3xy﹣2x2﹣xy+y2=x2﹣4xy+y2;20、(﹣a2)3﹣6a2•a4=﹣a6﹣6a6=﹣7a6;21、(y﹣2)(y+2)﹣(y+3)(y﹣1)=y2﹣4﹣y2﹣2y+3=﹣2y﹣1;22、==2a6b5c5;23、(2x﹣y+1)(2x+y+1)=[(2x+1)﹣y][(2x+1)+y]=(2x+1)2﹣y2=4x2+4x+1﹣y2;24、6a3-35a2+13a (25、Welcome !!! 欢迎您的下载,资料仅供参考!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、填空题
1.计算:①(x+2) (x — 4) = ___________ ; ®(x+2) (x - 2) = ___________ 2 .要使(x 2+ax+1) ? ( — 6x 3)的展开式中不含x 4项,则a= _____________ . 3 .如果x 2+x —仁0,那么代数式2x 2+2x — 6的值为 ___________ .
4.若 3x (x n +4) =3x n+1 — 6,则 x= __________ . 6、若 a 2n-1 • a "n+1=a 12,贝U n=
&已知厂““㈠小心"%则x=_
9、 21990X31991的个位数字是 _______
n n 1 n 1
10、 -6 6 6 的值为( ) A 、0 B 、1或-1 C 、 -6 D 、不能确定
11、 ____________________________ 若 a 2n-1 • a 2n+1=a 12,贝U n= .
三、计算
1.— 2ab? (a 2b+3ab 2 — 1) (x — y+1) (x — y — 3)
2.先化简,再求值: 5a (a 2 — 3a+1)— a 2 (1 — a ),其中 a=2;
3. ①解方程:
(x+7) (x+5) — ( x+1) (x+5) =42
(3x+4) (3x — 4) = 9 (x - 2) (x+3) 、选择题 1. A . 2. A . 3. A . 4. A . 5. 6. A . C . 5. A . 6. A . 9. A . 计算(-3x ) ? (2x 2— 5x — 1)的结果是( )
—6x 2 — 15x 2 — 3x B . — 6x 3+15x 2+3x C . —6x 3+15x 2 D . — 6x 3+15x 2 — 计算 4a (2a +3a 1)的结果疋( ) —8a 3+12a 2— 4a B . — 8a 3— 12a 2+1 C . —8a — 12a 2+4a D . 8a 3+12a 2+4a 计算a (1+a )— a (1 — a )的结果为( ) 2a B . 2孑 C . 0 D . — 2a+2a 一个三角形的底为2m ,高为m+2n ,它的面积是( ) 2 2 2m +4mn B . m +2mn C . m 2+4 mn 2 D . 2m +2mn 若 2x 4y 1, 27y 3x1,则 x y 等于( )A 、一 5 B 、一 3 C 、一 1 D 、1 下列各式计算正确的是( )
(x+5) (x — 5) =x 2 — 10x+25 B . (2x+3) (x — 3) =2x 2— 9 (3x+2) (3x — 1) =9x 2+3x — 2 D . (x — 1) (x+7) =x 2— 6x — 7 计算(x+3) (x — 2) + (x — 3) (x+2) 得(
) 2x 2+12 B . 2x 2— 12 C . 2x 2+x+12 D . 2x 2— x — 12 已知(x+3) (x — 2) =x 2+ax+b ,则 a 、 b 的值分别是( )
a= — 1, b=— 6 B . a=1, b= — 6 C . a= — 1, b=6 D . a=1, b=6 一个长方体的长、宽、高分别是 3x — 4、2x - -1和x ,则它的体积是( ) 6x 3— 5x 2+4x B . 6x 3 — 11x 2+4x C . 6x 3 — 4x 2 D . 6x 3— 4x 2 +x+4 初一数学整式的乘法练习题
四、综合题1.已知32?272=3n,求n (2n- 14)的值.
2•长方形的长、宽、高分别是3x-4, 2x和x,它们的表面积是多少?
3. 已知2a- 3=0,求代数式a (a2- a +a2(5- a)- 9 的值.
4. 已知a+5b=6,求a2+5ab+30b 的值.
5 .已知(x2+px+8 )与(x2- 3x+q)的乘积中不含x3和x2项,求p、q的值.
6.已知(x+my) (x+ny) =x2+2xy - 8y2,求m2n+mn2的值.
7、
8. 若x3-6x2+11x-6=(x-1)(x2+mx+n),求m, n 的值.
9. 求证:对于任意自然数n, n(n+5)-(n-3) x (n+2)的值都能被6整除.
10.证明(a-1)(a2-3)+a2(a+1)-2(『-2a-4)-a 的值与a无关.
11 .观察下列等式:
(x - 1) (x+1) =x2- 1
(x - 1) (x2+x+1) =x3- 1
( x- 1 )(x3+x2+x+1 )=x4- 1
(x - 1) (x4+x3+x2+x+1) =x5- 1 …
运用上述规律,试求26+25+24+23+22+2+1 的值.。