大庆实验中学2020-2021上学期高三期末考试数学(理)试题
2020-2021学年黑龙江省大庆实验中学高三英语上学期期中试题及答案
2020-2021学年黑龙江省大庆实验中学高三英语上学期期中试题及答案第一部分阅读(共两节,满分40分)第一节(共15小题;每小题2分,满分30分)阅读下列短文,从每题所给的A、B、C、D四个选项中选出最佳选项ACharlie Thorne and the Last Equationby Stuart GibbsThe CIA is on a task to find an equation (方程式) called Pandora, which could destroy the world if the wrong people get it. For help, they turn to Charlie, a 12-year-old girl who's as smart as Albert Einstein. People who like action-packed mysteries will enjoy reading this exciting book.AstroNutsby Jon Scieszka and Steven WeinbergIn AstroNuts, the Earth has been destroyed by humans for thousands of years. Four animals set out from Mount Rushmore, the headquarters (总部) of NNASA. Their task is to find a new planet fit for human life. Finally, they discover one: Plant Planet. The story's theme (主题) is simple: Don't harm the planet. Readers who love fantasy will enjoy AstroNuts.Stargazingby Jen WangChristine hears that Moon, who's new in town, is the kind of kid who beats people up for fun. But Moon and her mum come to live with Christine's family, and the two kids become best friends. Moon even shares a big secret with Christine. Stargazing is based on author Jen Wang's experiences as a child. The story is about the power of friendship and how people are able to change.Roll with Itby Jamie SumnerRoll with It is a story about a 12-year-old girl named Ellie. She has difficulty walking on her own and uses a wheelchair. When Ellie and her mum move to another state to take care of Ellie's grandpa, she must learn to navigate (处理) a new school and new friendships. This page-turner is a must-read for everyone. It's a heartwarming story that really shows the value of familyand how being different is special.1. Which book tells readers to protect the place we live in?A.AstroNutsB.Stargazing.C.Roll with It.D.Charlie Thorne and the Last Equation.2. What makes Stargazing different from the other three books?A. It talks about friendship.B. It tells stories about animals.C. It contains lots of scientific knowledge.D. It was written according to the author's experiences.3. What happened to Ellie?A. She had difficulty in making friends.B. She had an accident which left her in a wheelchair.C. She went to a new school and had to start all over again.D. She lost her mum and was taken care of by her grandpa.BMany of us were delighted to learn that a high school senior Kwasi Enin was accepted to all eight Ivy League universities. To our surprise, he wasn't excited as expected, but appeared extra calm. He announced that he would revisit the universities to find the best suitable in music or medicine. He also wanted to compare their financial aid packages.Kwasi's success story is rare, but his reaction is not. After the admission letters arrive at home, students have 30 days to really think about what kind of school would help them grow as a person, which school would best prepare them for the future, and at which school they would be happiest. And they also have to think about whether they can afford the school they choose.But how to answer the questions about which school is the best suitable university? Some young people are attracted to large universities with great school spirit and a list of offerings. But besides those advantages, many of these universities focus on graduate work and research, with undergraduates taught mostly by part-time instructors. Others are attracted to smaller boarding schools with discussion-based classes. But some of these schools will have much limitation for students who want a high-energy city life experience.Many students today seem to think they should pick the university where they will get the diploma that will help them get the most highly paid job. This is a sad misunderstanding of what a college education should provide.A good college education should prepare them to overcome any difficulty andthrivein society. It helps them to form the habit of creative mind and spirit that will continue to develop far beyond their university years. So when you choose college, you should consider if it is filled with useful learning to help create new spaces for different possibilities of growth.4. What can we know about Kwasi Enin from paragraph 1?A. He was from a very poor family.B. He would choose the top university.C. He was too excited to calm himself at the good news.D. He considered his interests when choosing his university.5. What can you infer from paragraph 2?A. Few students can be admitted to university.B. Many students face the choices like Kwasi.C. Top universities are the first choice for most students.D. American students can afford their university by themselves.6. Which of the following can best explain the underlined word “thrive” in paragraph 4?A. FailB. SucceedC. ResearchD. Work7. What should the best university be like according to the text?A. Very large and have good instructors.B. Small boarding schools with discussion-based classes.C. It will offerthe diploma to get the most highly paid job.D. It will help continue to develop far beyond university years.CWhile space travel still gets lot of attention, not enough attention has been paid to the exploration of oceans, about which we know much less than the dark side of the moon.Ninety percent of the ocean floor has not even been recorded and while we have been to the moon, the technology to explore the ocean's floors is still being developed. For example, a permanent partially-underwater sea exploration station, called the Sea Orbiter, is currently in development.The oceans play a major role in controlling our climate. But we have not learned yet how to use them to cool us off rather than contribute to our overheating. Ocean organisms are said to hold the promise of cures for a wide of the unique eyes of skate (ray fish) led to advances in conquering blindness, the horseshoe crab was important indeveloping a test for bacterial pollution, and sea urchins helped in the development of test-tube fertilization(人工授精). The toadfish's' ability to regenerate its central nervous system is of much interest to neuroscientists. A recent Japanese study concluded that the drug Eribulin, which was taken from sea sponges, is effective in fighting with breast, colon, and Urinary cancer.Given the approaching crisis of water insufficiency, we badly need to improve current methods, of desalinating(淡化) ocean water and make them more efficient and less costly. By 2025, 1.8 billion people are expected to suffer from severe water shortage, with that number jumping to 3. 9 billion by 2050-well over a third of the entire global population.If the oceansdo not make your heart go beating faster, how about engineering a bacterium that eats carbon dioxide — and thus helps protect the world from overheating — and produces fuel which will allow us to drive our cars and machines, without oil? I cannot find any evidence that people young or old, Americans or citizens of other nations would be less impressed or less inspired with such a breakthrough than with one more set of photos of a faraway galaxy or a whole Milky Way full of stars.8. What does the author think about the ocean exploration?A. It is equal to the space exploration.B. It is well developed.C. It deserves more attention and devotion.D. It is beyond our knowledge.9. What technology has been developed to make use of the oceans?A. Curing human diseases with ocean organisms.B. Preventing the world getting warmer.C. Mapping the global ocean floor.D. Removing salt from sea water.10. What does the author imply in the last paragraph?A. The temperature rise will be overcome by a bacterium.B. Solving the existing problems is more significant.C. The space exploration is worth the efforts.D. The ocean exploration is not inspiring.11. What is the best title of the passage?A. Oceans, the Last Hope.B. Oceans, the Hidden Treasure.C. Space, the Final Frontier.D. Space, the Faraway Dream.DAncient Dunhuang manuscripts housed abroad have been edited and published by the Institute for Overseas National Literature of Northwest Minzu University since 2006. Up till now, 9 manuscripts kept in the British Library and22 inthe National Library of France have been finished, the institute said on April 24, 2018.Tens of thousands of valuable ancient documents and cultural relics, discovered in the Mogao Grottos in Dunhuang, Gansu province, were scattered overseas in the early 20th century. Dunhuang manuscripts currently in the British Library and the National Library of France are the most important ancient national documents housed abroad.Co-edited by Institute for Overseas National Literature of Northwest Minzu University, Shanghai Classics Publishing House, the British Library and the National Library of France, these Dunhuang manuscripts return home in publication form for the first time. The institute is also preparing an online database of the manuscripts.According to Cai Rang, associate director of the institute, Dunhuang manuscripts scattered overseas in Russia, Britain, France and Japan have rich contents, including Buddhism law, social contract, history,linguisticsand art. The institute has edited and published 31 manuscripts over the past 13 years, but the work has not been finished. It plans to publish 15 from the British Library and over 30 from the National Library of France all together. In addition, it will also publish manuscripts collected by other countries.“Some manuscripts are hard to read because of the indecipherable words. So we read carefully and understand them by comparing with Buddhism documents handed down from ancient times,” Cai said. “Next, document classification and compilation will be our key work for further research.”The work done by the institute is helpful to study the history and culture of Tubo(present-day Tibet) during the period of 8th to 11th century and the history of national cultural exchanges at that time.12. When did so many valuable ancient documents, discovered in the Mogao Grottos, were scattered overseas?A. In the late 19th century.B. In the middle of the 19th century.C. At the beginning of the 19th century.D. At the beginning of the 20th century.13. How do the members of the institute understand some manuscripts that are hard to read?A. By using modern technology.B. By asking other famous experts.C. By comparing them with Buddhism documents.D. By studying the history and culture of Tubo.14. The possible meaning of the underlined word “linguistics” in paragraph 4 is “______”.A. the scientific study of languageB. the opinion that people have about someone or somethingC. something that people may have as part of their characterD. a system or method for carrying passengers or goods from one place to another15. What is the theme of the news report?A. Dunhuang manuscripts scattered overseas have rich contents.B. China publishes Dunhuang manuscripts housed overseas.C. High value of ancient documents and cultural relics in Mogao Grottos.D. Prepare an online database of Dunhuang manuscripts housed overseas.第二节(共5小题;每小题2分,满分10分)阅读下面短文,从短文后的选项中选出可以填入空白处的最佳选项。
辽宁省五大名校(辽宁实验中学等)2020-2021学年度上学期期末考试高三年级数学科试卷
2020—2021学年度上学期期末考试高三年级数学科试卷命题学校:辽宁省实验中学命题人:高三数学组 校对人:高三数学组一、选择题:本小题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合AA ={xx |xx 2≤4},BB ={xx ||xx |>1},则AA ∩BB =( )AA . {xx |1<xx ≤2} BB . {xx |−2<xx <−1或1<xx <2} CC . {xx |−2≤xx <−1} DD . {xx |−2≤xx <−1或1<xx ≤2} 2.复数zz 满足:zz (1+ii )=1−ii ,则zz 的虚部等于( ) AA . −ii BB . −1 CC .0 DD . 13. 某公司为了解用户对其产品的满意度,从甲、乙两地区分别随机调查了100个用户,根据用户对产品的满意度评分,分别得到甲地区和乙地区用户满意度评分的频率分布直方图.若甲地区和乙地区用户满意度评分的中位数分别为1m ,2m ;标准差分别为1s ,2s ,则下面正确的是( )AA . 12m m >,12s s > BB . 12m m >,12s s < CC . 12m m <,12s s <DD . 12m m <,12s s >4.设0.45a =,0.4log 0.5b =,5log 0.4c =,则,,a b c 的大小关系是( ) AA . a b c << BB . c a b <<CC .c b a << DD . b c a <<5. 已知α是第二象限角,54sin =α,则=α2sin ( ) AA . 2524− BB . 2524 CC .2512− DD . 25126. 四个人排一个五天的值班表,每天一人值班,并且每个人至少值班一次,则有( )种不同的排班方式.AA . 240 BB . 480 CC .420 DD . 360 7.已知抛物线CC :yy 2=2ppxx (pp >0),过焦点FF 的直线ll 交抛物线CC 于PP 、QQ 两点,交yy 轴于点AA ,若点PP 为线段FFAA 的中点,且|FFQQ |=2,则pp 的值为( )AA .32 BB . 34CC . 2 DD . 3 8.在底面边长为1的正四棱柱1111ABCD A B C D −中,侧棱长等于2,则( )AA . 在正四棱柱的棱上到异面直线AA 1BB 和CC 1CC 距离相等的点有且只有一个BB . 在正四棱柱的棱上到异面直线AA 1BB 和CC 1CC 距离相等的点有且只有两个CC . 在正四棱柱的棱上到异面直线AA 1BB 和CC 1CC 距离相等的点有且只有三个DD . 在正四棱柱的棱上到异面直线AA 1BB 和CC 1CC 距离相等的点有且只有四个二、选择题:本小题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对得5分,有选错的得0分,部分选对得3分. 9.已知等比数列{aa nn }的前nn 项和为SS nn ,公比qq >1,nn ∈NN +,则( )AA . {aa nn }一定是递增数列 BB . {aa nn }可能是递增数列也可能是递减数列CC . aa 3、aa 7、aa 11仍成等比 DD . ∀nn ∈NN +,SS nn ≠010.定义在实数集RR 上的函数ff (xx )满足ff (1+xx )=−ff (1−xx ),且xx ≥1 时函数ff (xx )单调递增则( )AA . ff (1)=0 BB .ff (xx )是周期函数CC .方程ff (xx )=0有唯一实数解 DD .函数ff (xx )在(−∞,0)内单调递减11.为了得到)32sin(2π−=x y 的图像只需把函数)62cos(2π+=x y 的图像( ) AA .向右平移2πBB .向左平移2πCC .关于直线xx =4π轴对称 DD .关于直线xx =6π轴对称12.方程ee xx +xx −2=0的根为xx 1,ln xx +xx −2=0的根为xx 2,则( ) AA . xx 1xx 2>12BB .xx 1ln xx 2+xx 2ln xx 1<0CC .ee xx 1+ee xx 2<2ee DD . xx 1xx 2<√ee 2三、填空题:本小题共4小题,每小题5分,共20分.13.已知21,F F 为双曲线191622=−y x 的左、右焦点,则||21F F =14.已知正实数aa 、bb 满足aa +2bb =1,则2aa +1bb的最小值为15.某校为了丰富学生的课余生活,组建了足球、篮球、排球、羽毛球四个兴趣小组,要求每一名学生选择其中的两个小组参加.现有D C B A ,,,四位同学,已知AA 与BB 没有选择相同的兴趣小组,CC 与DD 没有选择相同的兴趣小组,BB 与CC 选择的兴趣小组恰有一个相同,且BB 选择了足球兴趣小组.给出如下四个判断:①CC 可能没有选择足球兴趣小组;②AA 、DD 选择的两个兴趣小组可能都相同; ③DD 可能没有选择篮球兴趣小组;④这四人中恰有两人选择足球兴趣小组; 其中正确判断是16.已知c b a ,,是平面向量,c a ,是单位向量,且3,π>=<c a ,若02092=+⋅−c b b ,则最大值是四、解答题:本题共6道小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17. (本小题满分10分)在①74=ac ②sin BB =2sin AA ③csin AA =√3这三个条件中任选一个,补充在下面的问题中,若问题中的三角形存在,求c 值;若问题中的三角形不存在,说明理由.问题:是否存在∆AABBCC ,它的内角C B A ,,所对的边分别为c b a ,,,且bb cos AA +aa cos BB +2cc cos CC =0,∆AABBCC 的面积是32, ?18.(本小题满分12分)某公司在联欢活动中设计了一个摸奖游戏,在一个口袋中装有3个红球和4个白球,这些球除颜色外完全相同.游戏参与者可以选择有放回或者不放回的方式从中依次随机摸出3个球,规定至少摸到两个红球为中奖.现有一位员工参加此摸奖游戏.(1)如果该员工选择有放回的方式(即每摸出一球记录后将球放回袋中再摸下一个)摸球,求他能中奖的概率;(2)如果该员工选择不放回的方式摸球,设在他摸出的3个球中红球的个数为XX ,求XX 的分布列和数学期望;(3)该员工选择哪种方式摸球中奖的可能性更大?请说明理由.19. (本小题满分12分)在四棱锥PP −AABBCCDD 中,PPDD ⊥底面AABBCCDD ,底面AABBCCDD 是菱形,PPDD =AADD =4, 60=∠BAD ,点FF 在棱PPDD 上. (1)若PD PF 21=,在棱BBCC 上是否存在一点EE ,使得CCFF //平面PPAAEE ,并说明理由; (2)若直线AAFF 与平面BBCCFF 所成的角的正弦值是1015,求二面角AA −FFBB −CC 的余弦值.20. (本小题满分12分)已知数列{}n a 前n 项和为n S ,且,31=a11−=+n n a S ,数列{}n b 为等差数列,42b a =,且752b b b =+,(Ⅰ)求数列{}n a 和{}n b 的通项公式; (Ⅱ)若()12++=n nn nb n b ac ,求{}n c 的前n 项和n T .21. (本小题满分12分)已知椭圆Γ中心在坐标原点,焦点FF 1、FF 2在x 轴上,离心率21=e ,经过点)3,(−c M (cc 为椭圆的半焦距).(1)求椭圆Γ的标准方程;(2)21MF F ∠的平分线l 与椭圆的另一个交点为N ,O 为坐标原点,求直线OOOO 与直线OONN 斜率的比值.22. (本小题满分12分)设函数x e ax x f 2)1()(−+=,曲线)(x f y =在))0(,0(f 处的切线方程为1+−=x y . (1)求实数a 的值.(2)求证:当[]1,0∈x 时,)6cos 4(2)(22−+≥−x x x x f .。
黑龙江省大庆实验中学2020学年高一数学上学期期中试卷(含解析)
黑龙江省大庆实验中学2020学年高一数学上学期期中试卷(含解析)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、单选题1.已知集合,,则A. B. C . D .2.的值为A. B. C. D .3.下列函数中,是偶函数且在上为减函数的是A. B. C. D.4.下列说法正确的有①大庆实验中学所有优秀的学生可以构成集合;②;③集合与集合表示同一集合;④空集是任何集合的真子集.A .1个B .2个 C.3个 D.4个5.已知函数的一个零点在区间内,则实数的取值范围是A . B. C . D.6.已知,,,则A .B . C. D .7.已知函数是幂函数,且其图像与轴没有交点,则实数A.或 B . C . D .8.已知角α的终边上一点的坐标为(sin,cos),则角α的最小正值为( )A .B .C . D.9.已知,,若,则实数的取值范围是( )A. B. C . D.10.已知在单调递减,则实数的取值范围是A. B . C. D.11.已知,且,若存在,,使得成立,则实数的取值范围是A .B . C. D.12.已知函数在上有且只有一个零点,则正实数的取值范围是A. B.C. D.二、填空题13.已知4510a b==,则12a b+=__________.14124cos4sin-=________.15.若关于的方程的两实根是,则_____.16.已知函数和同时满足以下两个条件:(1)对于任意实数,都有或;(2)总存在,使成立.则实数的取值范围是 __________.三、解答题17.(1)将写成的形式,其中;(2)写出与(1)中角终边相同的角的集合并写出在的角. 18.已知关于的不等式的解集为.(1)求集合;(2)若,求的最大值与最小值.19.已知函数是定义在的增函数,对任意的实数,都有,且.(1)求的值;(2)求的解集.20.已知.(1)求的值;(2)若为第二象限角,且角终边在上,求的值.21.已知二次函数对任意的实数都有成立,且.(1)求函数的解析式;(2)函数在上的最小值为,求实数的值.22.已知定义域为的函数是奇函数.(1)求的值;(2)当时,恒成立,求实数的取值范围.2020学年黑龙江省大庆实验中学高一上学期期中考试数学试题数学答案参考答案1.D【解析】【分析】题干可得到集合A,B再由函数补集的概念得到结果.【详解】集合,,则故答案为:D。
黑龙江省大庆实验中学2019_2020学年高一数学上学期第一次月考试题(含解析)
黑龙江省大庆实验中学2019-2020学年高一数学上学期第一次月考试题(含解析)一、选择题(本大题共12小题)1.已知集合2,3,,,则A. B. C. D.2.下列各组函数表示同一函数的是A. ,B. ,C. ,D. ,3.函数的定义域为A. B. C. D.4.已知函数,则A. 是奇函数,且在上是增函数B. 是偶函数,且在上是增函数C. 是奇函数,且在上是减函数D. 是偶函数,且在上是减函数5.函数的单调递增区间为A. B. C. D.6.设偶函数的定义域为R,当时是增函数,则,,的大小关系是A. B.C. D.7.函数在上单调递减,且为奇函数.若,则满足的x的取值范围是A. B. C. D.8.已知函数,若,则A. 2B. 4C. 6D. 89.设,且,则A. B. 10 C. 20 D. 10010.集合,,若,则实数a的取值范围是A. B. C. D.11.已知函数,且是单调递增函数,则实数a的取值范围是A. B. C. D.12.记不大于x的最大整数为,定义函数,若不等式恒成立,则实数a的取值范围是A. B.C. ,D.二、填空题(本大题共4小题)13.计算: ______ .14.已知函数在区间上的最大值是,则实数a的值为______.15.函数的图象不经过第二象限,则实数m的取值范围是______用区间表示16.已知函数其中a,b为常数,,且的图象经过,若不等式在上恒成立,则实数m的最大值为______.三、解答题(本大题共6小题)17.已知全集.求,,;若,求实数a的取值范围.18.已知函数.用定义证明在上是增函数;求函数在区间上的值域.19.若二次函数满足,且.求的解析式;设,求在上的最小值的解析式.20.设函数是定义在R上的奇函数,当时,确定实数m的值并求函数在R上的解析式;求满足方程的x的值.21.定义在R上的函数对任意x,都有,且当时,.求证:为奇函数;求证:为R上的增函数;若对任意恒成立,求实数k的取值范围.22.定义:若函数在某一区间D上任取两个实数,,都有,则称函数在区间D上具有性质T.试判断下列函数中哪些函数具有性质给出结论即可;;;.从中选择一个具有性质T的函数,用所给定义证明你的结论.若函数在区间上具有性质T,求实数a的取值范围.答案和解析1.【答案】D【解析】【分析】本题考查了交集及其运算,熟练掌握交集的定义是解本题的关键,属于基础题.把A中元素代入中计算求出y的值,确定出B,找出A与B的交集即可.【解答】解:把,2,3,4分别代入得:,4,7,10,即4,7,,2,3,,.故选D.2.【答案】C【解析】解:A.的定义域为R,的定义域为,定义域不同,不是同一函数;B.的定义域为R,的定义域为,定义域不同,不是同一函数;C.的定义域为R,的定义域为R,定义域和解析式都相同,是同一函数;D.的定义域为,的定义域为,定义域不同,不是同一函数.故选:C.通过求定义域可判断选项A,B,D的两函数都不是同一函数,从而A,B,D都错误,只能选C.考查函数的定义,判断两函数是否为同一函数的方法:看定义域和解析式是否都相同.3.【答案】D【解析】解:要使函数有意义,则,得,得,即或,即函数的定义域为,故选:D.根据函数成立的条件进行求解即可.本题主要考查函数定义域的求解,结合函数成立的条件建立不等式关系是解决本题的关键.比较基础.4.【答案】A【解析】【分析】本题考查函数的奇偶性与单调性,指数函数及其性质,属于基础题.由已知得,即函数为奇函数,由函数为增函数,为减函数,结合“增”“减”“增”,可得答案.【解答】解:函数的定义域为,,,即函数为奇函数,又由函数为增函数,为减函数,故函数为增函数.故选A.5.【答案】D【解析】解:令,可得函数的对称轴为:,,是减函数,由复合函数的单调性可知,函数的单调递增区间为,故选:D.利用指数函数的单调性,通过二次函数的性质可得结论.本题主要考查复合函数的单调性,指数函数、二次函数的性质,体现了转化的数学思想,属于基础题.6.【答案】A【解析】解:由偶函数与单调性的关系知,若时是增函数则时是减函数,故其图象的几何特征是自变量的绝对值越小,则其函数值越小,故选:A.由偶函数的性质,知若时是增函数则时是减函数,此函数的几何特征是自变量的绝对值越小,则其函数值越小,故比较三式大小的问题,转化成比较三式中自变量,,的绝对值大小的问题.本题考点是奇偶性与单调性的综合,对于偶函数,在对称的区间上其单调性相反,且自变量相反时函数值相同,将问题转化为比较自变量的绝对值的大小,做题时要注意此题转化的技巧.7.【答案】C【解析】解:因为为奇函数,所以,于是等价于,又在单调递减,,.故选:C.根据函数的奇偶性以及函数的单调性求出x的范围即可.本题考查了函数的单调性和奇偶性问题,考查转化思想,是一道常规题.8.【答案】B【解析】解:函数,,,,且,解得,.故选:B.推导出,,且,推导出,由此能求出的值.本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.9.【答案】A【解析】解:,,又,.故选:A.直接化简,用m代替方程中的a、b,然后求解即可.本题考查指数式和对数式的互化,对数的运算性质,是基础题.10.【答案】A【解析】解:集合,,,当时,,解得,当时,,解得.综上,实数a的取值范围是.故选:A.当时,;当时,,由此能求出实数a的取值范围.本题考查实数的取值范围的求法,考查集合的包含关系、不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.11.【答案】A【解析】解:函数,函数为递增函数,,即,解得.故选:A.分段函数的单调递增则需在每一段上单调递增,且在端点处也满足条件列出不等式组求解即可.本题主要考查了函数单调性的性质,以及分段函数的单调性,同时考查了计算能力,属于基础题.12.【答案】B【解析】解:,,又当时,;当时,,当时,当时,;同理,当时,,不等式恒成立,则,所以,则实数a的取值范围或,故选:B.这是一道取整的问题,先要弄清楚的取值情况,求的最值时,先平方在求的方法;这是一道信息题,也是常见的信息,先要对信息进行分析处理,以及平方求最值方法的应用,也可用均值不等式求最值;13.【答案】3【解析】解::.故答案为:3.直接利用对数运算法则化简求解即可.本题考查有理指数幂的运算法则以及对数运算法则的应用,是基础题.14.【答案】或【解析】解:二次函数对称轴,开口向下,,则函数在单调递减,时,,解得,,则函数在单调递增,时,,解得,故答案为:或.由函数的解析式可知,对称轴,开口向下,进而求解.考查二次函数对称轴,开口方向,单调区间,在特定区间内的最值.15.【答案】【解析】解:函数的图象如图,时,,时函数是增函数,函数的图象不经过第二象限,.故答案为:.根据条件作出函数的图象,利用数形结合求解即可.本题主要考查基本函数的图象变换,通过变换了解原函数与新函数的图象和性质.16.【答案】【解析】解:由题意:函数的图象经过,.可得,解得那么不等式在上恒成立,是递减函数,当时,y取得最小值为.则实数m的最大值为.故答案为:.根据函数的图象经过,求解a,b的值,带入不等式,根据指数的单调性即可求解m的最大值.本题考查了指数函数的单调性求解最值问题.属于基础题.17.【答案】解:,,,,;,,,,,的取值范围是.【解析】可以求出集合B,然后进行交集、并集和补集的运算即可;根据可得出,从而可得出.考查描述法的定义,交集、并集和补集的运算,以及子集、并集的定义.18.【答案】解:证明:任取,,且,又由,则,,,故,即;在单调递增;由知,在单调递增,则,故在上的值域是.【解析】根据题意,任取,,且,用作差法证明即可,根据题意,由的结论可得在上单调性,据此分析可得答案.本题考查函数的单调性的性质以及应用,涉及函数的值域,属于基础题.19.【答案】解:解:设二次函数的解析式为由已知:,又对称轴为当即时在上单调递增当即时在上单调递减当即时在单调递减,在单调递增,综上可知:【解析】利用待定系数法设二次函数的方程,由,且可求得方程;根据区间与轴的关系讨论二次函数的单调性,进而求得最小值.本题主要考察二次函数解析式的求法,根据函数的单调性求函数的最值和分类讨论的思想.20.【答案】解:根据题意,是定义在R上的奇函数,则当时,,解可得:,设,则,则,又由,则,故;当时,,令,得,即,解可得或,即,;又由是定义在R上的奇函数,则当时根为;综合可得:方程的根为,,【解析】根据题意,由奇函数的性质可得,解可得:,即可得函数的解析式,结合函数的奇偶性分析可得答案;根据题意,由函数的解析式,当时,,令可得此时方程的根,结合函数的奇偶性分析可得答案.本题考查函数的奇偶性的性质以及应用,涉及函数的解析式的求法,属于基础题.21.【答案】证明:令,得得令,得,,为奇函数,证明:任取,,且,,,,,即,是R的增函数;解:,,是奇函数,,是增函数,,,令,下面求该函数的最大值,令则当时,y有最大值,最大值为,,的取值范围是.【解析】利用函数奇偶性的定义,结合抽象函数,证明为奇函数;利用函数单调性的定义,结合抽象函数,证明为增函数利用函数的单调性和奇偶性解不等式即可.本题主要考查抽象函数的应用,利用抽象函数研究函数的奇偶性单调性,以及二次函数的应用.综合性应用.22.【答案】解:具有性质T.如果选择证明如下:任取两个实数,则,具有性质T.由于在区间上具有性质T,任取,则.,的取值范围是,【解析】根据函数的图象判定具有性质T.选择证明如下:任取两个实数即可.由于在区间上具有性质T,任取,则,只需在、上恒成立,可求实数a的取值范围.本题以函数为载体,考查新定义,考查恒成立问题,解题的关键是对新定义的理解,恒成立问题采用分离参数法.。
黑龙江省大庆实验中学2021-2022学年高三上学期期中考试化学试题 Word版含答案
大庆试验中学2021-2022学年度上学期期中考试高三化学试题说明:考试时间90分钟,满分100分。
相对原子质量:Na 23 Fe 56 Ba 137 S 32 Cl 35.5 O 16第Ⅰ卷一.单项选择题(每题只有一个正确选项,多选、错选均不给分。
每题2分,共30分)1.生活中的一些问题常涉及到化学学问,下列叙述正确的是()A.晶体硅具有半导体的性质,所以可以制作光导纤维B.燃煤中加入生石灰可以削减二氧化硫的排放C.明矾和漂白粉常用于自来水的处理,两者的作用原理相同D.氯化铁溶液可用于制作印刷电路板是由于其具有氧化性,与铜发生置换反应2. 下列有关化学用语表示正确的是( )A .过氧化钠的电子式: B.次氯酸的结构式:H—Cl—OC .硫原子的结构示意图: D.NH4Cl的电子式:3.下列说法正确的是( )A.依据是否有丁达尔效应,将分散系分为溶液、胶体和浊液B.SO2和SiO2都是酸性氧化物,都能与水反应生成酸C.漂白粉、水玻璃、氨水均为混合物D.Na2O和Na2O2组成元素相同,与CO2反应产物也完全相同4.设N A为阿伏伽德罗常数的值,下列说法正确的是( )A.1 mol Cl2与足量的NaOH溶液反应,转移的电子数为1N AB.标况下,11.2L SO3所含的分子数目为0.5 N AC.5.6克铁粉与硝酸反应失去的电子肯定为0.3N AD.50 mL 18.4 mol·L-1浓硫酸与足量铜微热反应,生成SO2分子的数目为0.46NA5.试验室中,以下物质的贮存、处理方法,不正确的是()A.少量钠保存在煤油中B.氢氧化钠溶液贮存在带橡胶塞的玻璃试剂瓶中C.浓硝酸用带橡胶塞的细口、棕色试剂瓶盛放,并贮存在阴凉处D.液溴易挥发,在存放液溴的试剂瓶中应加水封6.下列制备单质的方法中,需要加入还原剂才能实现的是( )A.高炉炼铁 B.电解法制金属镁C.加热氧化汞制金属汞 D.从海带灰浸取液中(含I-)提取碘单质7.向含有下列各离子组的溶液中通入足量相应气体后,各离子还能大量存在的是()A.二氧化碳:K+、Na+、SiO32-、Cl- B.氨气:Ag+、Al3+、Na+、NO3-C.氯化氢:Ca2+、Fe3+、NO3-、Cl-D.氯气:Na+、Ba2+、I-、HSO3-8. 下列物质能通过化合反应直接制得的是()①FeCl2②H2SO4 ③NH4NO3 ④HCl ⑤Fe(OH)3A.只有①②③ B.只有②③ C.只有①③④ D.全部9.下列说法正确的是( )A、用广泛pH试纸测氯水的pH=4B、欲配制1L,1mol/L的NaCl溶液,可将58.5gNaCl溶于1 L水中C、配制溶液定容时,仰视容量瓶刻度会使所配溶液浓度偏低D、用瓷坩埚加热熔化氢氧化钠固体10. 下列试验“操作和现象”与“结论”都正确的是( )操作和现象结论A 切开金属钠,钠表面的银白色会渐渐褪去Na在空气中会生成Na2O2B 铝箔插入浓硝酸中,无明显现象铝与浓硝酸不反应C 向Fe(NO3)2溶液中滴加稀硫酸和KSCN溶液,溶液变成红色溶液中有Fe3+生成D 将FeCl2溶液滴加到少许酸性KMnO4溶液中,溶液褪色FeCl2具有漂白性11.下列离子方程式正确的是( )A.硅酸钠溶液与足量CO2反应: SiO32—+CO2+H2O = H2SiO3↓+CO32—B.FeBr2溶液中通入足量的Cl2:2Fe2++Cl2 = 2Fe3++2Cl—C.新制的氧化铝可溶于氢氧化钠溶液:Al2O3+2OH–= 2AlO2–+H2OD.碳酸氢钠溶液中滴入足量氢氧化钙溶液:HCO3—+OH–= CO32—+ H2O12.用含有少量Mg的Al片制取纯洁的Al(OH)3,下列操作中最恰当的组合是( )①加盐酸溶解②加NaOH溶液③过滤④加盐酸生成Al(OH)3⑤通入过量CO2生成Al(OH)3⑥加过量氨水生成Al(OH)3A.②③⑤③B.①③⑥③ C.①⑥③ D.②③④③13. 关于下列各试验装置的叙述中,正确的是( )①②③④A.装置①可用于分别C2H5OH和H2O的混合物B.装置②可用于将海带灼烧成灰C.装置③可用于除去氯气中的HCl D.装置④可用于试验室制取NO14. 相同质量的铜片分别与体积相同且过量的浓硝酸、稀硝酸反应,二者比较,相等的是( )①铜片消耗完所需时间②反应中氧化剂得到电子的总数③反应生成气体的体积(同温、同压) ④反应后溶液中铜离子浓度A.①③ B.②④ C.①④D.②③15.下列各组物质相互混合反应后,既有气体生成,最终又有沉淀生成的是()①金属钠投入到FeCl3溶液中②Na2O2投入FeCl2溶液中③过量NaOH溶液和明矾溶液混合④NaAlO2溶液和NaHCO3溶液混合A、只有①②B、只有④C、只有③④D、只有①②④二.单项选择题(每题只有一个正确选项,多选、错选均不给分。
大庆实验中学2020_2021学年高二生物上学期期末考试试题
黑龙江省大庆实验中学2020-2021学年高二生物上学期期末考试试题一、选择题(本大题共40小题,1—30每道题1分,31-40每道题2分)1.如图是人体肌肉组织结构示意图,a、b、c、d分别表示人体内不同部位的体液。
下列相关说法正确的是()A.图中a表示细胞液,b表示组织液B.细胞代谢需要大量的O2,所以a处O2浓度大于b处C.血红蛋白、抗体、激素、尿素都是c的成分D.白细胞生存的内环境可以是c、d2.下列关于人体神经调节和体液调节的叙述,正确的是()A. 成年后生长激素不再分泌,身高不再增加B。
体内多种激素具有直接降低血糖的作用C. 与神经调节相比,体液调节通常作用缓慢、持续时间长D. 神经中枢只能通过发出神经冲动的方式调节相关器官的生理活动3.下列关于激素、抗体、酶和神经递质的叙述,正确的是()A.激素和抗体都具有特异性,只能作用于特定的靶细胞B.肾上腺素可与特定分子结合后在神经元之间传递信息C.酶和激素都具有高效性,能产生酶的细胞一定能产生激素D.激素弥散在全身的体液中,一经靶细胞接受1即被灭活4.激素是生命活动的重要调节物质。
下列关于激素类药物在实践中应用的叙述正确的是()A.因病切除甲状腺的患者,需要长期服用促甲状腺激素B.在渔业生产中,通常是给雌雄亲鱼注射性激素类药物,有利于进行人工授精和育苗C.某些运动员服用人工合成的睾酮衍生物,可促进肌肉的生长,提高比赛成绩D.桑叶适量喷洒人工合成的保幼激素类似物,可提前蚕作茧的时间,提高吐丝量5.如图是人体内某些生命活动的调节过程示意图(a~e表示信息分子),下列相关分析错误的是()A.与信息分子b相比,a参与调节的反应更加迅速B.体温调节过程与信息分子a、c、d有关C.信息分子a~e均需借助血液运输才能作用于靶细胞D.幼年时信息分子d缺乏,会影响脑的发育6.下列有关免疫的叙述,正确的是() A.人体的免疫系统包括免疫器官、免疫细胞和免疫活性物质,免疫活性物质包括抗体、淋巴因子和溶酶体B.在特异性免疫过程中,吞噬细胞、T细胞、B细胞、记忆细胞和浆细胞都能识别抗原C.皮肤对各种病原体的屏障作用、白细胞吞2噬病菌、溶菌酶对病原菌的溶解作用以及有些人对花粉过敏身上出现红色丘疹等均属于非特异性免疫D.吞噬细胞在非特异性免疫和特异性免疫过程中均能发挥作用,T细胞在细胞免疫和体液免疫中均起作用7.下列有关植物生长素的叙述,正确的是()A. 生长素是由达尔文通过胚芽鞘向光性实验发现的B。
2020-2021学年黑龙江省大庆实验中学高二下学期期中数学复习卷(2)(含解析)
2020-2021学年黑龙江省大庆实验中学高二下学期期中数学复习卷(2)一、单选题(本大题共21小题,共60.0分)1.已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的真子集有()A. 3个B. 4个C. 6个D. 8个2.已知i为虚数单位,复数z=2i(2−i)的实部为a,虚部为b,则log a b等于()A. 0B. 1C. 2D. 33.θ=π4(ρ≥0)表示的图形是()A. 一条直线B. 一条射线C. 一条线段D. 圆4.集合,,给出下列四个图形,其中能表示以为定义域,为值域的函数关系的是().A.B.C.D.A. AB. BC. CD. D5.如图,若图中直线 1, 2, 3的斜率分别为k1,k2,k3,则A. k1<k2<k3B. k3<k1<k2C. k3<k2<k1D. k1<k3<k26.命题“∀x∈[0,+∞),e x≥1+sinx”的否定是()A. ∀x∈[0,+∞),e x<1+sinxB. ∀x∉[0,+∞),e x≥1+sinxC. ∃x∈[0,+∞),e x<1+sinxD. ∃x∉[0,+∞),e x<1+sinx7.已知椭圆x2a2+y2b2=1(a>b>0)的离心率为2√55,以原点为圆心,以椭圆短半轴长为半径的圆与直线y=2x+1相切,则a=()A. 2B. √5C. √3D. 18.若f(x)在R上是奇函数,且有f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(11)=()A. 242B. −242C. 2D. −29. 设命题p :lg(2x −1)≤0,命题q :x−(a+1)x−a≤0,若q 是p 的必要不充分条件,则实数a 的取值范围是( )A. [0,12]B. (0,12)C. [0,12)D. ⌀10. 在同一平面直角坐标系中,经过伸缩变换{x′=7xy′=4y后,曲线C 变为曲线x′2+8y′2=1,则曲线C 的方程为( )A. 49x 2+128y 2=1B. 49x 2+64y 2=1C. 49x 2+32y 2=1D. 249x 2+12y 2=111. 对于任意的两个实数对(a,b)和(c,d),规定(a,b)=(c,d)当且仅当a =c ,b =d ;运算“⊗”为:(a,b)⊗(c,d)=(ac −bd,bc +ad), 运算“⊕”为:(a,b)⊕(c,d)=(a +c,b +d),设p ,q ∈R ,若(1,2)⊗(p,q)=(5,0),则(1,2)⊕(p,q)=( )A. (0,−4)B. (4,0)C. (0,2)D. (2,0)12. 1.设椭圆(m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为,则此椭圆的方程为( )A. B. C.D.13. 2.下列结论错误的是A. 若“p 且q ”与“﹁p 或q ”均为假命题,则p 真q 假.B. 若一个命题的逆命题为真,则它的否命题也一定为真;C. “x =1”是“x 2−3x +2=0”的充分不必要条件.D. “若am 2<bm 2,则a <b ”的逆命题为真.14. 3.是成立的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件15. 4.若椭圆的离心率,则m 值A. 3B. 3或C.D. 或16. 5.函数f(x)=ax 3−x在R上为减函数,则()A. a≤0B. a<1C. a<2D.17. 6.设,则方程不能表示的曲线为A. 椭圆B. 双曲线C. 抛物线D. 圆18.7.在三棱锥P−ABC中,PA⊥平面ABC,∠BAC=90°,D,E,F分别是棱AB,BC,CP的中点,AB=AC=1,PA=2,则直线PA与平面DEF所成角的正弦值为()A. B. C. D.19.8.已知点在曲线上,为曲线在点处的切线的倾斜角,则的取值范围是A. B. C. D.20.9.过抛物线的焦点的直线交抛物线于两点,点是原点,若;则的面积为()A. B. C. D.21.10.直线L经过双曲(a>0,b>0)右焦点F与其一条渐近线垂直且垂足为A,与另一条渐近线交于B点,=,则双曲线的离心率为()A. B. C. D. 2二、单空题(本大题共4小题,共20.0分)22.i是虚数单位,则|i1+i|的值为______.23.在平面上取定一点O,从O出发引一条射线Ox,再取定一个长度单位及计算角度的正方向(取逆时针方向为正),就称建立了一个极坐标系,这样,平面上任一点P的位置可用有序数对(ρ,θ)确定,其中ρ表示线段OP的长度,θ表示从Ox到OP的角度.在极坐标系下,给出下列命题:(1)平面上的点A(2,−π6)与B(2,2kπ+11π6)(k∈Z)重合;(2)方程θ=π3和方程ρsinθ=2分别都表示一条直线;(3)动点A在曲线ρ(cos2θ2−12)=2上,则点A与点O的最短距离为2;(4)已知两点A(4,2π3),B(4√33,π6),动点C在曲线ρ=8上,则△ABC面积的最大值为40√33.其中正确命题的序号为______ (填上所有正确命题的序号).24.观察如图,则第______行的各数之和等于20172.12 3 43 4 5 6 74 5 6 7 8 9 10…25.过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1)、B(x2,y2)两点,若x1+x2=10,则弦AB的长度为______ .三、解答题(本大题共6小题,共70.0分)26.已知命题p:关于x的方程x2+2x+a=0有实数解,命题q:关于x的不等式x2+ax+a>0的解集为R,若(¬p)∧q是真命题,求实数a的取值范围.27.在平面直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知在极坐标系中,A(3√3,π2),B(3,π3),圆C的方程为ρ=2cosθ.(1)求在平面直角坐标系xOy中圆C的标准方程;(2)已知P为圆C上的任意一点,求△ABP面积的最大值.28.已知函数f(x)=x2+2ax,x∈[−5,5].(1)若y=f(x)−2x是偶函数,求f(x)的最大值和最小值;(2)如果f(x)在[−5,5]上是单调函数,求实数a的取值范围。
2020-2021学年黑龙江省大庆实验中学高一上学期期末考试数学试题(解析版)
2020-2021学年黑龙江省大庆实验中学高一上学期期末考试数学试题一、单选题1.由实数2,,|,x x x -所组成的集合,最多可含有( )个元素A .2B .3C .4D .5【答案】B【分析】把2,,|,x x x -分别可化为x ,x -,2x ,x ,2x ,,根据集合中元素的互异性,即可得到答案. 【详解】由题意,当0x ≠时所含元素最多,此时2,,|,x x x -分别可化为x ,x -,2x ,所以由实数2,,|,x x x -所组成的集合,最多可含有3个元素.故选:B2.“||||||x y x y +=+”是“0xy >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .不充分不必要条件【答案】B【分析】根据充分条件,必要条件及绝对值的定义即可求解.【详解】由绝对值的定义知,||||||,x y x y x y +=+⇒同号或至少有一个为0, 所以||||||x y x y +=+成立推不出0xy >,0xy >⇒||||||x y x y +=+,所以“||||||x y x y +=+”是“0xy >”的必要不充分条件, 故选:B3.sin2cos3tan4的值( ) A .等于0 B .大于0 C .小于0 D .不存在【答案】C【解析】试题分析:∵1弧度大约等于57度,2弧度等于114度,∴20sin >,∵3弧度小于π弧度,在第二象限,∴30cos <,∵4弧度小于32π弧度,大于π弧度,在第三象限,∴40tan >,∴2340sin cos tan <,故选C. 【解析】三角函数值的符号.4.下图是函数()||2y sin x πωϕϕ⎛⎫=+<⎪⎝⎭的图象,那么( )A .2,6πωϕ==-B .2,3πωϕ==C .3=2,πωϕ=-D .=2,6πωϕ=【答案】B 【分析】根据2362T πππ⎛⎫=--= ⎪⎝⎭求出T 的值即可求ω,令()226k k Z πϕπ⎛⎫⨯-+=∈ ⎪⎝⎭结合||2ϕπ<即可求ϕ得值,进而可得正确选项.【详解】由图知:2362T πππ⎛⎫=--= ⎪⎝⎭,解得:T π=, 所以222T ππωπ===,()2y sin x ϕ=+ 令()226k k Z πϕπ⎛⎫⨯-+=∈ ⎪⎝⎭, 所以()23k k Z πϕπ=+∈, 因为||2ϕπ<,所以0,3k πϕ==,所以2,3πωϕ==,故选:B5.如图所示,面积为8的平行四边形OABC 的对角线AC ⊥CO ,AC 与BO 交于点E .若指数函数(0x y a a =>且1)a ≠的图象经过点E ,B ,则a 等于( )A .B .C .2D .3【答案】A【分析】由已知可得848(,),(,),(,2)A m E m B m m m m,根据点E ,B 在指数函数的图象上,列出方程组,即可求解.【详解】设点(0,)(0)C m m >,则由已知可得848(,),(,),(,2)A m E m B m m m m, 又因为点E ,B 在指数函数的图象上,所以48(1)2(2)mm m am a ⎧=⎪⎨⎪=⎩, (1)式两边平方得82mm a =,(3)(2)(3)联立,得220m m -=,所以0m =(舍去)或2m =,所以2a =故选:A.【点睛】本题主要考查了指数函数的图象与性质及其应用,其中解答中根据指数函数的解析式列出方程组是解答的关键,着重考查推理与运算能力. 6.函数()f x 对于任意x ∈R ,恒有()12f x f x ⎛⎫<+ ⎪⎝⎭,那么( ) A .可能不存在单调区间 B .()f x 是R 上的增函数 C .不可能有单调区间 D .一定有单调区间【答案】A【分析】根据题意,举出两个满足()12f x f x ⎛⎫<+⎪⎝⎭的例子,据此分析选项可得答案.【详解】根据题意,函数()f x 对于任意x ∈R ,恒有()12f x f x ⎛⎫<+ ⎪⎝⎭,则()f x 的解析式可以为:()2,1 1.51,0.510,00.5x f x x x ⎧⎪<≤⎪⎪=<≤⎨⎪<≤⎪⎪⎩,满足()12f x f x ⎛⎫<+ ⎪⎝⎭,不是增函数,没有单调区间,也可以为()f x x =,满足()12f x f x ⎛⎫<+ ⎪⎝⎭, 是增函数,其递增区间为R ,则()f x 可能存在单调区间,也可能不存在单调区间, 则A 正确;BCD 错误; 故选:A.【点睛】关键点睛:本题考查函数单调性的定义,构造反例是解决本题的关键. 7.对任意实数x ,不等式2(2)2(2)40a x a x -+--<恒成立,则a 的取值范围是( ). A .22a -<≤B .22a -≤≤C .2a <-或2a ≥D .2a ≤-或2a ≥【答案】A【分析】20a -≠时,利用二次函数的性质可求解,20a -=时直接验证即得.【详解】由已知得220[2(2)]4(2)(4)0a a a -<⎧⎨∆=---⨯-<⎩,即222a a <⎧⎨-<<⎩,解得22a -<<.又当2a =时,原不等式可化为40-<,显然恒成立. 故a 的取值范围是22a -<. 故选:A .【点睛】本题考查一元二次不等式恒成立问题,解题时要注意对最高次项系数分类讨论, 8.若定义在R 上的函数()f x 满足:对任意1,x 2x R ∈有1212()()()1f x x f x f x +=++则下列说法一定正确的是A .()f x 为奇函数B .()f x 为偶函数C .()1f x +为奇函数D .()1f x +为偶函数 【答案】C【详解】x 1=x 2=0,则()()()0001f f f =++,()01f ∴=-, 令x 1=x ,x 2=-x ,则()()()01f f x f x =+-+, 所以()()110f x f x ++-+=,即()()11f x f x ⎡⎤+=--+⎣⎦,()1f x +为奇函数,故选C. 9.函数y =的值域是( ) A .11,22⎡⎤-⎢⎥⎣⎦ B .[]0,1C .10,2⎡⎤⎢⎥⎣⎦D .[)0,+∞【答案】C 【分析】令t =,转化为21ty t =+,0t ≥,根据均值不等式求解即可. 【详解】令t =,则0t ≥,当0t =时,0y =,当0t ≠时,2110112t y t t t <==≤=++,当且仅当1t =时,即2x =时等号成立, 综上102y ≤≤, 故选:C【点睛】关键点点睛:注意含根号式子中,经常使用换元法,利用换元法可简化运算,本题注意均值不等式的使用,属于中档题.10.若函数()()2log 3a f x x ax =-+在区间,2a ⎛⎤-∞ ⎥⎝⎦上是减函数,则a 的取值范围是( ) A .()0,1 B.(C.(D .()(0,1⋃【答案】C【分析】函数()()2log 3a f x x ax =-+是由log a y t =和23t x ax =-+复合而成,23t x ax =-+在,2a ⎛⎤-∞ ⎥⎝⎦单调递减,所以log a y t =为增函数,可得1a >,且min 02a t t ⎛⎫=> ⎪⎝⎭,即可求得a 的范围.【详解】函数()()2log 3a f x x ax =-+是由log a y t =和23t x ax =-+复合而成,因为23t x ax =-+为开口向上的抛物线,对称轴为2a x =, 所以23t x ax =-+在,2a ⎛⎤-∞ ⎥⎝⎦单调递减,且2min 30222a a a t t a ⎛⎫⎛⎫==-⨯+> ⎪ ⎪⎝⎭⎝⎭,即234a <,解得:a -<<又因为函数()()2log 3a f x x ax =-+在区间,2a ⎛⎤-∞ ⎥⎝⎦上是减函数,所以log a y t =为增函数,所以1a >,所以1a << 故选:C【点睛】关键点点睛:本题解题的关键是根据内层函数23t x ax =-+在,2a ⎛⎤-∞ ⎥⎝⎦单调递减,以及函数()()2log 3a f x x ax =-+在区间,2a ⎛⎤-∞ ⎥⎝⎦上是减函数,可得log a y t=为增函数,还必须使23t x ax =-+最小值大于0,两个条件可破解此问题. 11.为使函数()cos 02y x πωω⎛⎫=->⎪⎝⎭在区间[]0,1上至少出现100次最大值,则ω的最小整数值是( ) A .616 B .624C .627D .629【答案】B【分析】根据诱导公式化简函数解析式,利用一个周期内只有一个最大值,即可求解. 【详解】由()cos sin 02y x x πωωω⎛⎫=-=>⎪⎝⎭知, 在区间[]0,1上至少出现100次最大值,需要最少有99+4TT 个周期,所以21299+14ππωω⨯⨯≤, 解得623.29ω≥, 故ω的最小整数值是624. 故选:B12.已知函数()(2f x m x =+,()22xg x lnx+=-,[]10,1x ∃∈,对于[]20,4x ∀∈都有()()12g x f x <,则实数m 的取值范围是( )A .1,12⎡⎤-⎢⎥⎣⎦B .1113,13422ln ln ⎛⎫--⎪⎝⎭C .1,12⎛⎫- ⎪⎝⎭D .1113,13422ln ln ⎡⎤--⎢⎥⎣⎦ 【答案】C【分析】由题意可得()()min min g x f x <,判断g (x )在[0,1]递增,可得其最小值;再讨论m =0,m <0,m >0,结合函数y =x 和y =f (x )的单调性,可得其最小值,解不等式可得m 的取值范围.【详解】由∃x 1∈[0,1],对于∀x 2∈[0,4]都有g (x 1)<f (x 2),可得()()min min g x f x <, 由2()ln()2x g x x +=-,得4()ln(1)2g x x =---在[0,1]递增, ∴g (x )min =g (0)=0,∵()(2f x m x =-+, ∴当m =0,f (x )=2>0恒成立;当m >0时,f (x )在[0,4]递增,可得f (x )min =f (0)=﹣2m +2, 由﹣2m +2>0,解得m <1,即0<m <1成立;当m <0时,f (x )在[0,4]递减,可得f (x )min =f (4)=4m +2, 由4m +2>0,解得12m >-,即102m -<<.综上,m 的范围是1,12⎛⎫- ⎪⎝⎭. 故选:C【点睛】关键点点睛:本题关键点在于对[]10,1x ∃∈,对于[]20,4x ∀∈都有()()12g x f x <的理解,理解为()()min min g x f x <是解题的关键所在,属中档题.二、填空题 13.()tan 225︒-=_____.【答案】1-【分析】利用诱导公式及特殊角的三角函数值进行求值. 【详解】由()()tan 225tan 18045tan 451︒-=-︒-︒=-︒=-,故答案为:1-14.已知函数2log my x =,当01x <<时图象在直线y x =上方,则m 的取值范围是____.【答案】(0,2) 【分析】根据函数2log my x=,当01x <<时图象在直线y x =上方,可得2log m x x >,再求出m 的取值范围即可. 【详解】函数2log my x=,当01x <<时图象在直线y x =上方,当01x <<时,2log m x x >,2log 1m ∴<, 02m ∴<<,∴m 的取值范围是(0,2)故答案为:(0,2)15.已知实数x 满足316281536x x x ⨯+⨯=⨯,则x 的值为____. 【答案】0或12【分析】根据指数幂的运算将式子因式分解,再分别解方程即可;【详解】解:因为316281536x x x ⨯+⨯=⨯,所以()2443223523xx x ⨯+⨯=⨯⨯,42243223523x x x x ⨯+⨯=⨯⨯,所以422432235230x x x x ⨯+⨯-⨯⨯=,即()()22223223230xxxx --⨯⨯=,所以2232230x x -⨯⨯=,或22230x x -=解得12x =或0x = 故答案为:0或1216.给出下列4个命题:①若函数()f x 在(2021,2023)上有零点,则一定有()()202120230f f ⋅<; ②函数y =既不是奇函数又不是偶函数;③若函数()f x 满足条件()()14,0f x f x x R x x ⎛⎫-=∈≠⎪⎝⎭,则()||f x 的最小值为415. ④若函数()()254f lg ax x x =++的值域为R .则实数a 的取值范围是250,16⎛⎤⎥⎝⎦. 其中正确命题的序号是____.(写出所有正确命题的序号) 【答案】③【分析】对于①:直接利用函数的零点的概念判断选项;对于②:函数的定义域和函数的奇偶性判断选项;对于③:赋值法求函数的解析式判断选项;对于④:特殊值代入法判断选项即可;【详解】对于①:若函数()f x 在(2021,2023)上有零点, 且函数()f x 在(2021,2023)上严格单调, 则一定有()()202120230f f ⋅<, 当函数()f x 在(2021,2023)上有零点, 但函数()f x 在(2021,2023)上不单调时, 不一定得到()()202120230f f ⋅<;例如:如果函数()f x 在(2021,2022)上单调递减, 在(2022,2023)上单调递增,且()20220f =, 满足函数()f x 在(2021,2023)上有零点, 但是不能得到()()202120230f f ⋅<; 故①错;对于②:由函数y =,得函数的定义域:()-4,4,所以函数y =令()f x则()()-f x f x ,则函数y =为偶函数,故②错误;对于③:函数()f x 满足条件()()14,0f x f x x R x x ⎛⎫-=∈≠ ⎪⎝⎭(1), 用1x替换x , 则得()114f f x x x ⎛⎫-=⎪⎝⎭(2), 由(1)(2)得:()41515xf x x =--, ()4415151515x x f x x x =--=+, 因为415x 与15x同号,所以()4441515151515x x f x x x =+=+≥=, 当且仅当421515x x x =⇒=±时取等号; 故③正确;对于④:若函数()()254f lg ax x x =++的值域为R ,当0a =时,()()54f lg x x =+,值域为R , 故④不正确; 故答案为:③.【点睛】关键点睛:本题考查了函数的综合问题;熟练的掌握函数的零点概念,函数的定义域以及函数的奇偶性的定义,赋值法求函数的解析式,以及对数的性质是解决本题的关键.三、解答题17.已知关于x 的函数()22sin cos 2y a x x a b =-++的定义域是0,2π⎡⎤⎢⎥⎣⎦,值域为[]4,1-,求实数a ,b 的值.【答案】52a =-,72b =或52a =,132b =-.【分析】由已知利用同角三角函数基本关系式化简可得函数解析式为22sin y a x a b =++,结合范围x ∈0,2π⎡⎤⎢⎥⎣⎦,可求2sin [0,1]x ∈,利用正弦函数的性质分类讨论即可求解.【详解】()222sin cos 22sin y a x x a b a x a b =-++=++, ∵0,2x π⎡⎤∈⎢⎥⎣⎦∴2sin [0,1]x ∈. 当0a >时,有31,4,a b a b +=⎧⎨+=-⎩得52a =,132b =-;当0a <时,有34,1,a b a b +=-⎧⎨+=⎩得52a =-,72b =.18.已知函数()326f x sin x π⎛⎫=+ ⎪⎝⎭.(1)求函数()f x 在[]0,π上的单调增区间; (2)当,63x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数值的取值范围; (3)若将此图象向右平移()0θθ>个单位后图象关于y 轴对称,求θ的最小值. 【答案】(1)06,π⎡⎤⎢⎥⎣⎦和2π,π3;(2)3,32⎡⎤-⎢⎥⎣⎦;(3)3π. 【分析】(1)令()222262k x k k Z πππππ-+≤+≤+∈,求得x 的范围再与[]0,π求交集即可; (2)先由,63x ππ⎡⎤∈-⎢⎥⎣⎦求出26x π+的范围,再结合正弦函数的性质求出sin 26x 的范围即可求解;(3)先求出()f x 图象向右平移()0θθ>个单位后的解析式为()3sin 226f x x πθ⎛⎫=+- ⎪⎝⎭,再利用其为偶函数即可求解.【详解】(1)令()222262k x k k Z πππππ-+≤+≤+∈,解得:()36k x k k Z ππππ-+≤≤+∈,令0k =可得36x ππ-≤≤,令1k =可得2736x ππ≤≤, 因为[]0,x π∈,所以06x π≤≤或2ππ3x,所以函数()f x 在[]0,π上的单调增区间为06,π⎡⎤⎢⎥⎣⎦和2π,π3; (2)因为,63x ππ⎡⎤∈-⎢⎥⎣⎦,所以52666x πππ-≤+≤, 所以1sin 2126x π⎛⎫-≤+≤ ⎪⎝⎭,33sin 2326x π⎛⎫-≤+≤ ⎪⎝⎭,所以当,63x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数值的取值范围为3,32⎡⎤-⎢⎥⎣⎦; (3)将()326f x sin x π⎛⎫=+ ⎪⎝⎭图象向右平移()0θθ>个单位后可得()()323sin 2266f x sin x x ππθθ⎡⎤⎛⎫=-+=+- ⎪⎢⎥⎣⎦⎝⎭,因为其图象关于y 轴对称, 所以()262k k Z ππθπ-=+∈,解得()62k k Z ππθ=--∈, 所以1k =-时,θ最小为623πππ-+=,【点睛】结论点睛:三角函数的奇偶性 ①对于()y Asin x ωϕ=+,若为奇函数,则()k k Z ϕπ=∈,若为偶函数,则()2k k Z πϕπ=+∈;②对于函数()cos y A x ωϕ=+ 若为奇函数,则()2k k Z πϕπ=+∈,若为偶函数,则()k k Z ϕπ=∈;③对于函数()tan y A x ωϕ=+, 若为奇函数,则()2k k Z πϕ=∈. 19.已知二次函数264y ax x a =+-的图像开口向上,且与x 轴由左到右分别交于A ,B 两点,且||42AB =. (1)求这条抛物线的解析式;(2)设抛物线的顶点为C ,与y 轴的交点为D ,求A ,B ,C ,D 四点围成的四边形的面积.【答案】(1)23662y x x =+-;(2)12182+. 【分析】(1)利用已知条件得到264(4)a a AB a--=求解即可;(2)由题意可求,C D ,然后结合二次函数与x 轴交点与二次方程根的关系可求,A B ,进而可求. 【详解】解:(1)0a >,0∆>,且264(4)42a a AB a--==,易解得294a =, 则32a =, 故23662y x x =+-.(2)点(2,12)C --,点(0,6)D -. 令0y =,解得1222x =--2222x =-+, 故点(22,0)A --,(2B -+.连接OC (O 为坐标原点), 则AOCOCDBOD ABCD S SSS ∆=++四边形111(21262(26222=+⨯+⨯⨯+-+⨯12=+20.设函数()221xf x a =-+. (1)求证:()f x 为增函数(2)若()f x 为奇函数,求实数a 的值,并求出()f x 的值域. 【答案】(1)证明见解析;(2)1,(1,1)-.【分析】(1)利用定义法证明()f x 为增函数,先假设12x x <,然后计算并化简()()12f x f x -,通过分析()()12f x f x -与0的大小关系,确定出()()12,f x f x 的大小关系,由此证明出单调性;(2)先根据()f x 为奇函数,得到()()f x f x -=-,由此求解出a 的值,然后结合不等式以及指数函数的值域求解出()f x 的值域.【详解】(1)∵()f x 的定义域为R ,∴任取12,x x R ∈且12x x <,则()()()()()121212122222221211212x x x x x x f x f x a a ⋅--=--+=++++, ∵12x x <,∴12220x x -<,()()1212120xx ++>,∴()()120f x f x -<,即()()12f x f x <,所以不论a 为何实数()f x 总为增函数; (2)∵()f x 为奇函数,∴()()f x f x -=-,即222121x xa a --=-+++, ∴2222222212121x x x x a -⋅+=+==+++,解得:1a =,∴2()121xf x =-+. 由以上知2()121xf x =-+,∵211x +>,∴20221x <<+, ∴22021x -<-<+,∴1()1f x -<<, 所以()f x 的值域为(1,1)-.【点睛】思路点睛:用定义法证明函数单调性的步骤:(1)设:设两个自变量12,x x ,并给定大小关系; (2)作差:计算()()12f x f x -;(3)变形:将()()12f x f x -的结果化简至容易判断出正负;(4)判号:根据()()12f x f x -的化简结果并结合12,x x 的大小,判断出()()12f x f x -的正负;(5)下结论:说明()f x 的单调性. 21.已知函数()2ln2ax f x x +=+,且()f x 不恒为0. (1)若()f x 为奇函数,求实数a 的值; (2)若()()x f g x e=,且函数()g x 在()0,1上单调递减,求实数a 的取值范围.【答案】(1)1-;(2)21a -≤<.【分析】(1)由条件可知()()f x f x -=-,由此列出关于a 的方程,求解出a 的值; (2)先计算出()g x 的解析式,采用分离常数的方法对()g x 进行变形,然后结合单调性和对数的真数大于零列出关于a 的不等式组,求解出a 的取值范围. 【详解】(1)由奇函数的定义可知:()()f x f x -=-,即222lnln ln 222ax ax x x x ax -+++=-=-+++,则:2222ax x x ax -++=-++22244x a x ⇔-=-1a ⇔=±,又当1a =时,()f x 恒为0,矛盾,所以1a =-. (2)()()f xg x e=在()0,1x ∈上单调递减,()202ax g x x +∴=>+在()0,1x ∈上恒成立,且()22222ax ag x a x x +-==+++在()0,1x ∈上单调递减,()()min 2103a g x g +∴==≥且220a ->, 解得:21a -≤<.【点睛】结论点睛:常见函数的单调性分析:(1)一次函数()()0f x kx b k =+≠:当0k >时,在R 上递增,当0k <时,在R 上递减;(2)反比例类型的函数()()0kf x k x a=≠-,当0k >时,在(),a -∞和(),a +∞上递减;当0k <时,在(),a -∞和(),a +∞上递增;(3)二次函数()()20f x ax bx c a =++≠:当0a >时,在,2b a ⎛⎫-∞-⎪⎝⎭上递减,在,2b a ⎛⎫-+∞ ⎪⎝⎭上递增;当0a <时,在,2b a ⎛⎫-∞- ⎪⎝⎭上递增,在,2b a ⎛⎫-+∞ ⎪⎝⎭上递减. 22.已知定义域为R 的函数()f x 和()g x ,其中()f x 是奇函数,()g x 是偶函数,且()()12x f x g x ++=.(1)求函数()f x 和()g x 的解析式; (2)解不等式:()()2f x g x ;(3)已知实数0λ>,且关于x 的方程()()10x f x g λ-+=有实根,求λ的表达式(用x 表示),并求λ的取值范围.【答案】(1)()22x xf x -=-,()22x xg x -=+;(2)21log 3,2⎡⎫+∞⎪⎢⎣⎭;(3)2222121x x xλ+-=+,⎛⎝⎦. 【分析】(1)利用奇偶性,结合()()12x f x g x ++=,得到1()()2x f x g x -+-+=,联立方程解得()f x 和()g x 的解析式即可;(2)代入函数解析式并化简得到223x ≥,再结合指数函数单调性解不等式即可;(3)代入函数解析式并分离参数得到2222121x x xλ+-=+,再进行换元20x t =>,使22212111t t t t t λ+--==+++有正根,设2t m -=,则2m >-,转化成2145m m m λ=+++有2m >-的实根,最后对m 进行讨论,结合对勾函数的单调性研究值域问题即可. 【详解】解:(1)因为()f x 是奇函数,()g x 是偶函数, 所以()()f x f x -=-,()()g x g x -=, 因为1()()2x f x g x ++=,所以1()()2x f x g x -+-+-=,即1()()2x f x g x -+-+=,联立两个方程,可解得1122()222x x x x f x +-+--==-,()22x x g x -=+;(2)2()()f x g x ≥可化为()22222x xxx ---≥+,化简得232x x -≥⨯,即223x ≥,而2log 332=,所以22log 3x ≥,得21log 32x ≥, 所以不等式2()()f x g x ≥的解集为21log 3,2⎡⎫+∞⎪⎢⎣⎭;(3)关于x 的方程()()10f x g x λ-+=有实根,即()222210x x x xλ----++=有实根,所以()()22212120x x x λ⎡⎤--++=⎢⎥⎣⎦有实根, 则2222121x x xλ+-=+. 令20x t =>,则()22110t t t λ--++=有正根,所以22212111t t t t t λ+--==+++有正根, 因为222211(22)1(2)4(2)5t t t t t λ--=+=+-++-+-+,设2t m -=,则2m >-,2145mm m λ=+++.当0m =时,1λ=,此时22x t ==,方程有实根1x =;当0m ≠且2m >-时,方程即2145541m m m m mλ++==++-有2m >-的实根,则11λ-的值域,即是54m m++的值域.因为对勾函数5()4m m mϕ=++在(2,0)-上递减,在上递减,在)+∞上递增,故(2,0)m ∈-时,1()(2)2m ϕϕ<-=;(0,)m ∈+∞时()4m ϕϕ≥=+所以1112λ<--或141λ≥+-0λ>,故解得01λ<<或12λ<≤,综上所述:λ取值范围是⎛ ⎝⎦. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.。
导数构造函数十二种题型归类(学生版)
导数构造函数十二种题型归类内容速递一、知识梳理与二级结论二、热考题型归纳【题型一】 导数四则运算基础【题型二】 幂函数与f(x)积型【题型三】 幂函数与f(x)商型【题型四】 指数函数与f(x)积型【题型五】 指数函数与f(x)商型【题型六】 正弦函数与f(x)型【题型七】 余弦函数与f(x)型【题型八】 对数函数与f(x)型【题型九】 一元二次(一次)与f(x)线性【题型十】 指数型线性【题型十一】对数型线性【题型十二】综合构造三、高考真题对点练四、最新模考题组练知识梳理与二级结论一、导数的运算(1)基本初等函数的导数公式原函数导函数f(x)=c(c为常数)f′(x)=0 f(x)=xα(α∈Q,且α≠0)f′(x)=αxα-1 f(x)=sin x f′(x)=cos xf(x)=cos x f′(x)=-sin x f(x)=a x(a>0,且a≠1)f′(x)=a x ln a f(x)=ex f′(x)=e xf(x)=log a x(a>0,且a≠1)f′(x)=1 x ln af(x)=ln x f′(x)=1 x(2)导数的四则运算法则法则和差[f(x)±g(x)]′=f′(x)±g′(x)积[f(x)g(x)]′=f'x g x +f x g'x ,特别地,[cf(x)]′=cf′(x) 商f(x)g(x)′=f(x)g(x)-f(x)g (x)g(x)2(g(x)≠0)(3)简单复合函数的导数一般地,对于两个函数y=f(u)和u=g(x),如果通过中间变量u,y可以表示成x的函数,那么称这个函数为函数y=f(u)和u=g(x)的复合函数,记作y=f(g(x)). 它的导数与函数y=f(u),u=g(x)的导数间的关系y ′x =y ′u ·u ′x即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.二、导数构造规律(1)、关系式为“加”型,常构造为乘法①fx +f x ≥0,构造F x =e xf x ,Fx =e xf x +fx ,②xfx +f x ≥0,构造F x =xf x ,Fx =xfx +f x ,③xfx +nf x ≥0,构造F x =x nf x ,Fx =x n -1xfx +nf x ;(2)、关系式为“减”型,常构造为除法①fx -f x ≥0,构造F x =f x e x ,F x =f x -f x ex,②xf x -f x ≥0,构造F x =f x x ,Fx =xfx -f x x 2,③xf x -nf x ≥0,构造F x =f x x n ,Fx =xf x -nf x xn +1.热点考题归纳【题型一】导数四则运算基础【典例分析】1(2022春·北京·高三模拟)若f x =e x ln x ,则f x =()A.e xln x +e xxB.e x ln x -e xxC.e x xD.e x ln x 2(2023春·黑龙江伊春·高三模拟)函数y =e x sin2x 的导数为()A.y =2e x cos2xB.y =e x sin2x +2cos2xC.y =2e x sin2x +cos2xD.y =e x 2sin2x +cos2x【提分秘籍】基础求导公式:C=0;x α=αx α-1;a x=axln a ;log a x=1x ln a ;sin x=cos xcos x=sin x【变式演练】3(2022春·北京·高三清华附中校考)函数f x =sin xx的导数是()A.x sin x +cos xx 2B.x cos x +sin xx 2C.x sin x -cos x x 2D.x cos x -sin xx 24(2023春·四川资阳·高三联考)已知函数y =x ⋅tan x 的导函数为()A.y =sin x cos x +xcos 2x B.y =sin x cos x +x cos2xcos 2xC.y =sin x cos x +1cos 2xD.y =sin x cos x +cos2xcos 2x【题型二】幂函数与f (x )积型【典例分析】1设函数f x 是定义在0,+∞ 上的可导函数,其导函数为f x ,且有2f x +xf x >0,则不等式x -20212f x -2021 -f 1 >0的解集为()A.2020,+∞B.0,2022C.0,2020D.2022,+∞2(黑龙江省大庆实验中学2020-2021学年高三数学试题)函数f x 是定义在区间0,+∞ 上的可导函数,其导函数为f x ,且满足xf x +2f x >0,则不等式(x +2020)f (x +2020)3<3f (3)x +2020的解集为()A.x |x >-2017 B.x |x <-2017C.x |-2020<x <0D.x |-2020<x <-2017【提分秘籍】若已知对于xf(x )+kf (x )>0(<0),构造g (x )=x k∙f (x )分析问题;【变式演练】3(江西省赣州市八校协作体2020-2021学年高三联考数学(理)试题)已知定义在R 上的奇函数f (x ),其导函数为f (x ),当x ≥0时,恒有x3f (x )+f (x )>0.则不等式x 3f (x )-(1+2x )3f (1+2x )<0的解集为().A.{x |-3<x <-1} B.x -1<x <-13C.{x |x <-3或x >-1}D.{x |x <-1或x >-13}4(山西省忻州市岢岚县中学2020-2021学年高三4月数学(理)试题)设函数f x 是定义在(-∞,0)上的可导函数,其导函数为f 'x ,且有2f x +xf 'x >x 2则不等式x +2019 2f x +2019 -4f -2 <0的解集为()A.(-2019,-2017)B. (-2021,-2019)C.(-2019,-2018)D.(-2020,-2019)5(安徽省黄山市屯溪第一中学2020-2021学年高三数学试题)已知函数f (x )是定义在R 上的奇函数,其导函数为f x ,若对任意的正实数x ,都有x f x +2f (x )>0恒成立,且f 2 =1,则使x 2f (x )<2成立的实数x 的集合为()A.-∞,-2 ∪2,+∞B.-2,2C.-∞,2D.2,+∞【题型三】幂函数与f (x )商型【典例分析】1(2022届湖南省衡阳市高三上学期期末考试数学试卷)函数f x 在定义域0,+∞ 内恒满足:①f x >0,②2f x <xf x <3f x ,其中f x 为f x 的导函数,则() A.14<f 1 f 2<12 B.116<f 1 f 2<18 C.13<f 1 f 2<12 D.18<f 1 f 2<142(黑龙江省哈尔滨市第三中学2021-2022学年高三第一次阶段性测试数学试题)已知偶函数f x 的导函数为f x ,且满足f 2 =0,当x >0时,xf x >2f x ,使得f x >0的x 的取值范围为【提分秘籍】对于x ∙f (x )-kf (x )>0(<0),构造g (x )=f (x )x k【变式演练】3(河南省郑州市示范性高中2020-2021学年高三阶段性考试(三)数学(理)试题)已知函数f x 的导函数为f x ,若f x <x ,f x <2,f x -x 对x ∈0,+∞ 恒成立,则下列个等式中,一定成立的是()A.f 2 3+12<f 1 <f 2 2 B.f 2 4+12<f 1 <f 2 2C.3f 2 8<f 1 <f 2 3+12D.f 2 4+12<f 1 <3f 2 84(江西省上高二中2021届高三上学期第四次月考数学试题)已知定义在R 上的偶函数f x ,其导函数为f x ,若y ,f -2 =1,则不等式f x x 2<14的解集是()A.-2,2B.-∞,-2 ∪2,+∞C.-2,0 ∪0,2D.-∞,0 ∪0,25设f x 是偶函数f x x ≠0 的导函数,当x ∈0,+∞ 时,y ,则不等式4f x +2019 -x +2019 2f -2 <0的解集为()A.-∞,-2021B.-2021,-2019 ∪-2019,-2017C.-2021,-2017D.-∞,-2019 ∪-2019,-2017【题型四】指数函数与f (x )积型【典例分析】1(【全国百强校】广东省阳春市第一中学2022届高三第九次月考数学(理)试题)已知函数f (x )(x ∈R )的导函数为f (x ),若2f (x )+f (x )≥2,且f (0)=8,则不等式f (x )-7e -2x >1的解集为()A.(-∞,0)B.(0,+∞)C.(-∞,-1)∪(0,+∞)D.(1,+∞)2(广东省普宁市华美实验学校2020-2021学年高三第一次月考数学试题)已知f x 是R上可导的图象不间断的偶函数,导函数为f x ,且当x>0时,满足f x +2xf x >0,则不等式e1-2x f x-1> f-x的解集为()A.12,+∞B.-∞,12C.-∞,0D.0,+∞【提分秘籍】对于f (x)+kf(x)>0(<0),构造g(x)=e kx∙f(x)【变式演练】3(2020届河南省八市重点高中联盟领军考试高三11月数学(理)试题)已知定义在R上的函数f x 的导函数为f x ,若f1 =1,ln f x +f x +1>0,则不等式f x ≥e1-x的解集为()A.-∞,1B.-∞,eC.1,+∞D.e,+∞4已知函数f x 的导函数为f x ,且对任意的实数x都有f x =e-x2x+5 2-f x (e是自然对数的底数),且f0 =1,若关于x的不等式f x -m<0的解集中恰有唯一一个整数,则实数m的取值范围是()A.-e2,0B.-e2,0C.-3e4,0D.-3e4,92e【题型五】指数函数与f(x)商型【典例分析】1定义在(-2,2)上的函数f(x)的导函数为f x ,满足:f x +e4x f-x=0,f1 =e2,且当x>0时,f (x)>2f(x),则不等式e2x f(2-x)<e4的解集为()A.(1,4)B.(-2,1)C.(1,+∞)D.(0,1)2已知定义在R上的函数f(x)的导函数为f'(x),且满足f'(x)-f(x)>0,f(2021)=e2021,则不等式f1 e ln x<e x的解集为()A.e2021,+∞B.0,e2021C.e2021e,+∞D.0,e2021e【提分秘籍】对于f (x)-kf(x)>0(<0),构造g(x)=f(x) e kx【变式演练】3(天一大联考高三毕业班阶段性测试(四)理科数学)定义在R上的函数f x 的导函数为f x ,若f x <2f x ,则不等式e4f-x>e-8x f3x+2的解集是()A.-12,+∞B.-∞,12C.-12,1D.-1,124已知定义在R上的函数f(x)的导函数为f (x),且满足f (x)-f(x)>0,f(2021)=e2021,则不等式f1 3ln x<3x的解集为()A.(e6063,+∞)B.(0,e2021)C.(e2021,+∞)D.(0,e6063)5(贵州省凯里市第三中学2022届高三上学期第二次月考数学(理)试题)已知函数f(x)是定义域为R,f (x)是f(x)的导函数,满足f (x)<f(x),且f(1)=4,则关于不等式f(x)-4e x-1>0的解集为()A.(-∞,1)B.1e ,1C.1e,eD.1e,+∞【题型六】正弦函数与f(x)型【典例分析】1(【衡水金卷】2021年普通高等学校招生全国统一考试高三模拟研卷卷四数学试题)已知定义在区间0,π2上的函数f x ,f x 为其导函数,且f x sin x-f x cos x>0恒成立,则()A.fπ2>2fπ6 B.3fπ4 >2fπ3C.3fπ6<fπ3 D.f1 <2fπ6 sin12(【市级联考】广西玉林市2018-2019学年高三上学期考试数学试题)已知f'(x)为函数y=f(x)的导函数,当x x∈0,π2是斜率为k的直线的倾斜角时,若不等式f(x)-f'(x)⋅k<0恒成立,则()A.{x22-m ln x2-2mx2=0x22-ln x2-m=0B.f(1)sin1>2fπ6C.f(x)=x2+6x-10D.3fπ6-fπ3 >0【提分秘籍】对于sin x∙f (x)+cos x∙f(x)>0(<0),构造g(x)=f(x)∙sin x对于sin x∙f (x)-cos x∙f(x)>0(<0),构造g(x)=f(x) sin x【变式演练】3(贵州省遵义航天高级中学222届高三第五次模拟考试数学试题)已知定义在0,π2上的函数,f(x)为其导函数,且f(x)sin x<f (x)cos x恒成立,则()A.f π2 >2f π6B.3f π4>2f π3 C.3f π6 <f π3 D.f (1)<2f π6 sin14已知奇函数f x 的导函数为f x ,且f x 在0,π2上恒有f (x )cos x -f (x )sin x <0成立,则下列不等式成立的()A.2f π6>f π4 B.f -π3 <3f -π6 C.3f -π4 <2f -π3D.22f π3 <3f π4 5(广东省七校联合体2021届高三下学期第三次联考(5月)数学试题)设f x 是定义在-π2,0 ∪0,π2 上的奇函数,其导函数为f x ,当x ∈0,π2 时,f x -f x cos xsin x<0,则不等式f x <233f π3sin x 的解集为()A.-π3,0 ∪0,π3 B.-π3,0 ∪π3,π2C.-π2,-π3 ∪π3,π2D.-π2,-π3 ∪0,π3【题型七】余弦函数与f (x )型【典例分析】1(2023春·新疆克孜勒苏·高三模拟)已知函数y =f x 对于任意的x ∈-π2,π2满足f x cos x +f x sin x >0(其中fx 是函数f x 的导函数),则下列不等式成立的是()A.f 0 >2f π4 B.2f -π3 >f -π4 C.2f π3 >f π4D.f 0 >2f π3 2(2023·全国·高三专题练习)定义在0,π2上的函数f x ,已知f x 是它的导函数,且恒有cos x ⋅f x +sin x ⋅f x <0成立,则有()A.3x -y -1=0B.3f π6>f π3C.f π6>3f π3D.2f π6<3f π4【提分秘籍】对于cos x ∙f (x )-sin x ∙f (x )>0(<0),构造g (x )=f (x )∙cos x ,对于cos x ∙f (x )+sin x ∙f (x )>0(<0),构造g (x )=f (x )cos x【变式演练】3(四川省成都市第七中学2022-2023学年高三上学期10月阶段考试理科数学试题)已知偶函数f (x )是定义在[-1,1]上的可导函数,当x ∈[-1,0)时,f (x )cos x +f (x )sin x >0,若cos (a +1)f (a )≥f (a +1)cos a ,则实数a 的取值范围为()A.[-2,-1]B.-1,-12C.-12,0D.-12,+∞ 4(四川省南充高级中学2021-2022学年高三考试数学试题)已知偶函数f (x )的定义域为-π2,π2,其导函数为f '(x ),当0<x <π2时,有f (x )cos x +f (x )sin x <0成立,则关于x 的不等式f (x )<2f π3 cos x 的解集为()A.0,π3B.π3,π2C.-π3,0 ∪0,π3D.-π2,-π3 ∪π3,π2【题型八】对数与f (x )型【典例分析】1已知函数f ′(x )是奇函数f (x )(x ∈R )的导函数,且满足x >0时,ln xf (x )+1xf (x )<0,则(x -2019)f (x )>0的解集为()A.(-1,0)∪(1,2019)B.(-2019,-1)∪(1,2019)C.(0,2019)D.(-1,1)2(【全国百强校】重庆市巴蜀中学20-20学年高三下考试理科数学试题)定义在0,+∞ 上的函数f x 满足x ⋅f 'x ⋅ln x +f x >0(其中f 'x 为f x 的导函数),则下列各式成立的是()A.ef e>π-f 1π>1 B.ef e<π-f 1π<1 C.ef e>1>π-f 1πD.ef e<1<π-f 1π【提分秘籍】对于f (x )ln x +f (x )x>0(<0),构造g x =ln x ∙f (x )【变式演练】3(江西省新余市第四中学2023届高三上学期第一次段考数学试题)已知定义在[e ,+∞)上的函数f (x )满足f (x )+x ln xf ′(x )<0且f (2018)=0,其中f ′(x )是函数f x 的导函数,e 是自然对数的底数,则不等式f (x )>0的解集为()A.[e ,2018)B.[2018,+∞)C.(e ,+∞)D.[e ,e +1)4(山东省招远一中2019届高三上学期第二次月考数学试题)定义在(0,+∞)上的函数f (x )满足xf '(x )ln x +f (x )>0(其中f '(x )为f (x )的导函数),若a >1>b >0,则下列各式成立的是()A.af (a )>bf (b )>1 B.af (a )<bf (b )<1 C.af (a )<1<bf (b )D.af (a )>1>bf (b )5(2023重庆渝中·高三重庆巴蜀中学校考阶段练习)已知函数f x 是奇函数f x x ∈R 的导函数,且满足x >0时,ln x ⋅f x +1x f x <0,则不等式x -985 f x >0的解集为()A.985,+∞B.-985,985C.-985,0D.0,985【题型九】一元二次(一次)与f (x )线性【典例分析】1(2021届云南省昆明第一中学高中新课标高三第三次双基检测数学试题)函数y =f (x )的定义域为R ,其导函数为f (x ),∀x ∈R ,有f (x )+f (-x )-2x 2=0在(0,+∞)上f (x )>2x ,若f (4-t )-f (t )≥16-8t ,则实数t 的取值范围为()A.[-2,2]B.[2,+∞)C.[0,+∞)D.(-∞,2]2(2020届黑龙江省实验中学高三上学期期末考试数学(理)试题)设函数f x 在R 上存在导函数f x ,∀x ∈R ,有f x -f -x =x 3,在0,+∞ 上有2f x -3x 2>0,若f m -2 -f m ≥-3m 2+6m -4,则实数m 的取值范围为()A.-1,1B.-∞,1C.1,+∞D.-∞,-1 ∪1,+∞【提分秘籍】二次构造:f (x )×÷r (x )±g (x ),其中r (x )=x n,e nx,sin x ,cos x 等【变式演练】3(江苏省盐城中学2020-2021学年高三上学期第二次阶段性质量检测数学试题)已知定义在R 上的函数f (x )的导函数为f (x ),且对任意x ∈R 都有f (x )>2,f (1)=3,则不等式f (x )-2x -1>0的解集为()A.(-∞,1)B.(1,+∞)C.(0,+∞)D.(-∞,0)4(吉林省蛟河市第一中学校2021-2022学年高三下学期第三次测试数学试题)已知定义在R 上的可导函数f (x ),对于任意实数x 都有f (-x )=f (x )-2x 成立,且当x ∈(-∞,0]时,都有f '(x )<2x +1成立,若f (2m )<f (m -1)+3m (m +1),则实数m 的取值范围为()A.-1,13B.(-1,0)C.(-∞,-1)D.-13,+∞ 5(【市级联考】福建省龙岩市2021届高三第一学期期末教学质量检查数学试题)已知定义在R 上的可导函数f (x )、g (x )满足f (x )+f (-x )=6x 2+3,f (1)-g 1 =3,g (x )=f (x )-6x ,如果g (x )的最大值为M ,最小值为N ,则M +N =()A.-2B.2C.-3D.3【题型十】指数型线性【典例分析】1(安徽省阜阳市第三中学2021-2022学年高三上学期第二次调研考试数学试题)设函数f x 定义域为R ,其导函数为f x ,若f x +f x >1,f 0 =2,则不等式e x f x >e x +1的解集为()A.-∞,0 ∪0,+∞B.-∞,0C.2,+∞D.0,+∞2(黑龙江省哈尔滨市第六中学2020-2021学年高三3月阶段性测试数学试题)已知函数f x =e 2x -ax 2+bx -1,其中a ,b ∈R ,e 为自然对数底数,若(0,1],f x 是f x 的导函数,函数f x 在0,1 内有两个零点,则a 的取值范围是()A.2e 2-6,2e 2+2B.e 2,+∞C.-∞,2e 2+2D.e 2-3,e 2+1【提分秘籍】对于f (x )-f (x )>k (<0),构造g x =e x f x -k【变式演练】3(金科大联考2020-2021学年高三10月质量检测数学试题)设函数f (x )的定义域为R ,f (x )是其导函数,若f (x )+f (x )>-e -x f (x ),f 0 =1,则不等式f (x )>2e x +1的解集是()A.(0,+∞)B.(1,+∞)C.(-∞,0)D.(0,1)4(2023春·福建龙岩·高三联考)∀x ∈R ,f x -f x =-2x +1 e x ,f 0 =-3,则不等式f x >-5e x 的解集为()A.-2,1B.-2,-1C.-1,1D.-1,25(2023春·四川眉山·高三模拟)函数f x 的定义域是R ,f 1 =2,对任意x ∈R ,f x +f x >1,则不等式e x f (x )>e x +e 的解集为()A.x |x >1B.x |x <1C.{x |x <-1或0<x <1}D.{x |x <-1或x >1}【题型十一】对数型线性【典例分析】1(2023春·安徽合肥·高三合肥一中校考)已知函数f x 的定义域为0,+∞ ,其导函数为f x ,若xf x -1<0,f e =2,则关于x 的不等式f e x<x +1的解集为()A.0,1B.1,eC.1,+∞D.e ,+∞2(2022春·江西赣州·高三赣州市赣县第三中学校考阶段练习)定义在(0,+∞)的函数f (x )满足xf x -1<0,f 1 =0,则不等式f e x-x <0的解集为()A.(-∞,0)B.(-∞,1)C.(0,+∞)D.(1,+∞)【提分秘籍】y =ln (kx +b )与y =f (x )的加、减、乘、除各种结果逆向思维【变式演练】3(2023·全国·高三专题练习)若函数f x 满足:x -1 fx -f x =x +1x-2,f e =e -1,其中f x 为f x 的导函数,则函数y =f x 在区间1e,e的取值范围为()A.0,eB.0,1C.0,eD.0,1-1e4(2021年全国高中名校名师原创预测卷新高考数学(第八模拟))已知函数f (x )的定义域为R ,且f (x +2)是偶函数,f (x )>12x -1+ln (x -1)(f (x )为f (x )的导函数).若对任意的x ∈(0,+∞),不等式f -t 2+2t +1 ≥f 12 x-2 恒成立,则实数t 的取值范围是()A.[-2,4]B.(-∞,-2]∪[4,+∞)C.[-1,3]D.(-∞,-1]∪[3,+∞)【题型十二】综合构造【典例分析】1(河北省沧州市沧县中学2020-2021学年高三数学)已知定义在R 上的可导函数f (x )的导函数为f '(x ),对任意实数x 均有(1-x )f (x )+xf '(x )>0成立,且y =f (x +1)-e 是奇函数,不等式xf (x )-e x >0的解集是()A.1,+∞B.e ,+∞C.-∞,1D.-∞,e2(江西省吉安市重点高中2020-2021学年高三5月联考数学试题)已知函数f x 是定义域为0,+∞ ,fx 是函数f x 的导函数,若f 1 =e ,且xfx -1+x f x >0,则不等式f ln x <x ln x 的解集为()A.0,eB.e ,+∞C.1,eD.0,1【变式演练】3(2022·高三测试)已知定义在R 上的函数f (x )的导函数是f (x ),若f (x )+xf (x )-xf (x )>0对任意x ∈R 成立,f 1 =e .则不等式f (x )<e xx 的解集是()A.(1,+∞)B.(-1,0)∪(0,1)C.(-1,0)D.(0,1)4(2023·四川·校联考模拟预测)定义在0,+∞ 上的函数f x 的导函数为f x ,且x 2+1 f x <x -1x f x ,若θ∈0,π4 ,a =tan θ,b =sin θ+cos θ,则下列不等式一定成立的是()A.f 1 <f a B.f 1 >2bf b2+sin2θC.f 1 >f a sin2θD.f a 2+sin2θ <f b 1sin θ+1cos θ5(2023春·江西吉安·高三模拟)若定义在R 上的可导函数f (x )满足(x +3)f (x )+(x +2)f (x )<0,f (0)=1,则下列说法正确的是()A.f (-1)<2eB.f (1)<23eC.f (2)>12e 2D.f (3)>25e 3高考真题对点练一、单选题1(浙江·高考真题)设f x 是函数f x 的导函数,y =f x 的图象如图所示,则y =f x 的图象最有可能的是()A .B .C .D .2(江西·高考真题)已知函数y =xf (x )的图象如图所示(其中f (x )是函数f (x )的导函数),则下面四个图象中,y =f x 的图象大致是()A. B.C. D.3(陕西·高考真题)f x 是定义在(0,+∞)上的非负可导函数,且满足xf ′x +f x ≤0.对任意正数a ,b ,若a <b ,则必有()A.af b ≤bf aB.bf a ≤af bC.af a ≤f bD.bf b ≤f a4(湖南·高考真题)设f (x )、g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f (x )g (x )+f (x )g (x )>0.且g (-3)=0,则不等式f (x )g (x )<0的解集是()A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)5(2015·福建·高考真题)若定义在R 上的函数f x 满足f 0 =-1,其导函数f x 满足f x >k >1,则下列结论中一定错误的是()A.f 1k<1kB.f 1k>1k -1C.f 1k -1<1k -1D.f 1k -1>kk -16(2013·辽宁·高考真题)设函数f x 满足x 2fx +2xf x =e x x ,f 2 =e 28,则x >0时,f x ()A.有极大值,无极小值B.有极小值,无极大值C.既有极大值又有极小值D.既无极大值也无极小值7(2015·全国·高考真题)设函数f '(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf '(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0)D.(0,1)∪(1,+∞)8(辽宁·高考真题)函数f x 的定义域为R ,f -1 =2,对任意x ∈R ,f x >2,则f x >2x +4的解集为()A.-1,1B.-1,+∞C.-∞,-1D.-∞,+∞最新模考真题一、单选题1(2023·西藏日喀则·统考一模)如图,已知函数f x 的图象在点P 2,f 2 处的切线为直线l ,则f 2 +f 2 =()A.-3B.-2C.2D.12(2023·陕西榆林·统考三模)定义在0,+∞ 上的函数f x ,g x 的导函数都存在,f x g x +f (x )g x =2x -1x ln x +x +1x2,则曲线y =f x g x -x 在x =1处的切线的斜率为()A.12 B.1 C.32D.23(2023·四川成都·统考模拟预测)已知定义在R 上的函数f x 的导函数为f x ,若f x <e x ,且f 2 =e 2+2,则不等式f ln x >x +2的解集是()A.0,2B.0,e 2C.e 2,+∞D.2,+∞4(2023·陕西咸阳·校考模拟预测)已知函数f x 是定义在R 上的可导函数,其导函数记为f x ,若对于任意实数x ,有f x >f x ,且f 0 =1,则不等式f x <e x 的解集为()A.-∞,0B.0,+∞C.-∞,e 4D.e 4,+∞5(2023·河南·校联考模拟预测)已知函数f x 的定义域为R ,f x 为函数f x 的导函数,当x ∈0,+∞ 时,sin2x -f x >0,且∀x ∈R ,f -x +f x -2sin 2x =0,则下列说法一定正确的是()A.f π3-f π6 >12 B.f π3-f π4 <14C.f π3 -f 3π4 <14 D.f π3 -f -3π4 >146(2023·黑龙江大庆·大庆实验中学校考模拟预测)已知函数f x 的定义域为0,+∞ ,f x 为函数f x 的导函数,若x 2f x +xf x =1,f 1 =0,则不等式f 2x -3 >0的解集为()A.0,2B.log 23,2C.log 23,+∞D.2,+∞7(2023·山东烟台·统考二模)已知函数f x 的定义域为R ,其导函数为f x ,且满足f x +f x =e -x ,f 0 =0,则不等式e 2x -1 f x <e -1e的解集为( ).A.-1,1eB.1e ,e C.-1,1 D.-1,e8(2023·安徽·校联考模拟预测)已知函数f x 、g x 是定义域为R 的可导函数,且∀x ∈R ,都有f x >0,g x >0,若f x 、g x 满足f x f x <g xg x ,则当x 1<x <x 2时下列选项一定成立的是()A.f x 2 g x 1 >f x 1 g x 2B.f x g x 1 >f x 1 g xC.f x 2 -g x 2 f x 1 -g x 1 <g x 2 g x 1 D.f x 2 g x 2 <f x 1 +f x 2g x 1 +g x 2二、多选题9(2022·重庆九龙坡·重庆市育才中学校考模拟预测)已知函数f (x )对于任意的x ∈0,π2都有f (x )cos x -f (x )sin x >0,则下列式子成立的是()A.3f π6>2f π4 B.2f π4<f π3 C.2f (0)<f π4 D.2f (0)>f π3 10(2020·山东泰安·校考模拟预测)定义在0,π2 上的函数f (x ),f x 是f (x )的导函数,且fx <-tan x ⋅f (x )恒成立,则() A.f π6>2f π4B.3f π6 >f π3C.f π6>3f π3D.2f π6>3f π411(2023·黑龙江·黑龙江实验中学校考三模)已知函数f x 在R 上可导,其导函数为f x ,若f x 满足:x -1 fx -f x >0,f 2-x =f x e 2-2x ,则下列判断不正确的是()A.f 1 <ef 0B.f 2 >e 2f 0C.f 3 >e 3f 0D.f 4 <e 4f 012(2023·辽宁锦州·校考一模)定义在R 上的函数f x 满足xf x -f x =1,则y =f x 的图象可能为()A. B.C. D.三、填空题13(2024·四川成都·石室中学校考模拟预测)已知函数f x 的定义域为-π2 ,π2,其导函数是f x .有f x cos x+f x sin x<0,则关于x的不等式f(x)>2fπ3cos x的解集为.14(2023·广东佛山·统考模拟预测)已知f x 是定义在R上的偶函数且f1 =2,若f x <f x ln2,则f x -2x+2>0的解集为.15(2023·广东广州·广州市从化区从化中学校考模拟预测)设函数y=f x 在R上存在导数y=f x ,对任意的x∈R,有f x -f-x=2sin x,且在0,+∞上f x >cos x.若fπ2-t-f t >cos t-sin t.则实数t的取值范围为.16(2023·山东·模拟预测)定义在0,π2上的可导函数f x 的值域为R,满足f x tan x≥2sin x-1f x ,若fπ6=1,则fπ3 的最小值为.。
黑龙江省大庆实验中学实验三部2022-2023学年高二下学期期末考试数学试题
大庆实验中学实验三部2021级高二下学期期末考试数学试题一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,0,1A =−,{}1B x x =∈<N ,则A B ⋃=( ) A .{}0B .{}1,0−C .{}1,0,1−D .(),1−∞2.设()()322f x x a x x =−−−+是定义在[]2,3b b +上的奇函数,则()f a b +=( ) A .-1B .0C .1D .-23.高三1班安排4名男生和3名女生去参加甲、乙两个不同的社团活动,每个社团至少3人,且社团甲的男生数不少于社团乙的男生数,则不同的参加方法种数是( ) A .65B .61C .53D .314.已知p :()1,3x ∃∈−,使得220x a −−≤,若p 为假命题,则a 的取值范围为( ) A .{}2a a <− B .{}1a a <−C .{}7a a <D .{}0a a <5.函数()()af x x b x c=−−的图象如图所示,则( )A .0a >,0b >,0c =B .0a <,0b >,0c =C .0a <,0b =,0c >D .0a <,0b =,0c =6.设定义域为R 的函数()f x 满足()()11f x f x +=−,()()11f x f x −+=,且()f x 在区间[]0,1上满足:①当12x x <时,都有()()12f x f x ≤;②()00f =;③()132x f f x ⎛⎫= ⎪⎝⎭,则5138f f ⎛⎫⎛⎫−+ ⎪ ⎪⎝⎭⎝⎭等于( )A .34B .23C .12D .17.已知a ,b ,c 均为正实数,e 为自然对数的底数,若c a be =,ln ln a b >,则下列不等式一定成立的是( ) A .a b ab +<B .b a a b <C .a bc a b−<+D .21a c >+8.对于函数()y f x =,若存在()()00f x f x =−−,则称点()()00,x f x 与点()()00,x f x −−是函数的一对“隐对称点”.若0m >时,函数()2ln ,0,0x x f x mx mx x >⎧=⎨−−≤⎩的图象上恰有2对“隐对称点”,则实数m 的取值范围为( ) A .10,e ⎛⎫ ⎪⎝⎭B .()1,+∞C .110,,e e ⎛⎫⎛⎫⋃+∞ ⎪ ⎪⎝⎭⎝⎭D .()()0,11,⋃+∞二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的.9.已知二项式32nx ⎛⎫− ⎪⎝⎭的展开式中各项系数之和是164,则下列说法正确的有( ) A .展开式共有6项B .二项式系数最大的项是第4项C .展开式的常数项为540D .展开式的有理项共有5项10.已知一容器中有A 、B 两种菌,且在任何时刻A 、B 两种菌的个数乘积为定值1010,为了简单起见,科学家用lg A A P n =来记录A 菌个数的资料,其中A n 为A 菌的个数,lg B B P n =来记录B 菌个数的资料,其中B n 为B 菌的个数.下列说法正确的是(参考数据:lg 20.3≈)( ) A .1A P ≥B .若今天的A P 值比昨天的A P 值增加1,则今天的A 菌个数比昨天的A 菌个数多90C .假设科学家将B 菌的个数控制为5千个,则此时6 6.5A P <<D .无论A ,B 两种菌的个数分别为多少,A B P P 的值不可能超过2511.若一条直线与两条或两条以上的曲线均相切,则称该直线为这些曲线的公切线,已知直线l :y kx b =+为曲线1C :()0xy aea =>和2C :()ln 0xy a a=>的公切线,则下列结论正确的是( )A .曲线1C 的图象在x 轴的上方B .当1a =时,ln 1k b +=−C .若0b =,则a=D .当1a =时,1C 和2C 必存在斜率为1k的公切线 12.已知函数()21ln 2f x x ax a x =−+的两个极值点分别是1x ,2x ,则下列结论正确的是( )A .0a <或4a >B .22128x x +>C .()()()221212164f x f x x x +<+− D .不存在实数a ,使得()()120f x f x +> 三.填空题:本题共4小题,每小题5分,共20分.13.已知变量x 和y 的统计数据如下表:若由表中数据得到经验回归直线方程为0.8y x a =+,则10x =时的残差为______. 14.若函数()221f x ax x =−+在区间()3,4上单调递减,则实数a 的取值范围为______.15.已知函数())22log 21xx e f x x e =++,若()f x 在区间[](),0t t t −>上的最大值和最小值分别为M ,N ,则函数()()()31g x M N x M N x −=+++−⎡⎤⎣⎦的图像的对称中心为______. 16.已知函数()()2203x m f x m x −=<,()()2ln x g x x −=,设方程()()10f g x m+=的3个实根分别为123,,x x x ,且123x x x <<,则()()()12323g x g x g x ++的取值范围为______.四.解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知函数()21f x x x a =−−−,a ∈R .(1)当2a =,1t ≥时,求()2t y f =的最小值;(2)若不等式()0f x < 的解集是区间()3,3−的子集,求实数a 的取值范围. 18.(本小题满分12分)设a 为实数,函数()323f x x x a =−+,()ln g x x x =.(1)求()f x 的极值;(2)对于[]11,3x ∀∈,21,x e e ⎡⎤∀⎢⎥⎣⎦∈,都有()()12f x g x ≥,求实数a 的取值范围.19.(本小题满分12分)某公司为了丰富员工的业余生活,举行了乒乓球比赛,比赛采用七局四胜制,即先赢四局者获胜.每局比赛胜一球得1分,先得11分的参赛者该局为胜方.若出现10平比分,则双方轮流发球,以先多得2分者为胜方.甲、乙两名员工进行单打比赛.(1)已知甲发球得1分的概率为23,乙发球得1分的概率为12,若某局出现10平比分后甲先发球,求甲以13∶11获胜的概率;(2)若每局比赛甲获胜的概率均为12,比赛局数为X ,求X 的分布列和数学期望. 20.(本小题满分12分)2022年12月份以来,全国多个地区纷纷采取不同的形式发放多轮消费券,助力消费复苏.记发放的消费券额度为x (百万元),带动的消费为y (百万元).某省随机抽查的一些城市的数据如下表所示.(1)根据表中的数据,请用相关系数说明y 与x 有很强的线性相关关系,并求出y 关于x 的经验回归方程; (2)①若该省A 城市在2023年2月份准备发放一轮额度为10百万元的消费券,利用(1)中求得的经验回归方程,预计可以带动多少消费?②当实际值与估计值的差的绝对值与估计值的比值不超过10%时,认为发放的该轮消费券助力消费复苏是理想的.若该省A 城市2月份发放额度为10百万元的消费券后,经过一个月的统计,发现实际带动的消费为30百万元,请问发放的该轮消费券助力消费复苏是否理想?若不理想,请分析可能存在的原因.(结果保留小数点后两位)参考公式:()()niix x y y r −−=∑,()()()121niii nii x x y y b x x ==−−=−∑∑,a y bx =−.当0.75r >时,两个变量之间具有很强的线性相关关系. 5.9≈. 21.(本小题满分12分)为了检测新冠疫苗的效果,需要进行动物试验.研究人员将疫苗注射到200只小白鼠体内,一段时间后测量小白鼠的某项指标值,按[)0,20,[)20,40,[)40,60,[)60,80,[]80,100分组,每组分别有10只,20只,40只,100只,30只.试验发现小白鼠体内没有产生抗体的共有40只,其中该项指标值小于60的有20只.假设小白鼠注射疫苗后是否产生抗体相互独立.(1)完成如图所示列联表,并根据列联表及α=0.05的独立性检验,判断能否认为注射疫苗后小白鼠产生抗体与指标值不小于60有关;(2)用频率估计概率,以动物试验中小白鼠注射疫苗后产生抗体的频率p 作为注射疫苗后产生抗体的概率.记n 只小白鼠注射疫苗后产生抗体的数量为随机变量X .试验后统计数据显示,当且仅当80X =时,()P X 取最大值,求参加接种试验的小白鼠数量n .参考公式:()()()()()22n ad bc a b c d a c b d χ−=++++(其中n a b c d =+++为样本容量)22.(本小题满分12分)设函数()2xxf x xe ae =−,()2g x ax =−−,a ∈R .(1)求()f x 在[)0,x ∈+∞上的单调区间;(2)若在y 轴右侧,函数()f x 图象恒不在函数()g x 的图象下方,求实数a 的取值范围; (3)证明:当*n ∈N 时,()1111ln 2123n n+++⋅⋅⋅+<+.。
大庆实验中学2020-2021学年度上学期高三期末
大庆实验中学2020-2021学年度上学期高三期末英语试题第一部分阅读理解(共两节,满分40分)第一节(共15小题;每小题2分,满分30分)AArt,Culture&Performances in ArizonaArt on the Wild SideThree of Arizona’s favorite painters will exhibit their latest works inspired by the natural world in their unique styles.Through this exhibit,guests can engage in the Zoo’s mission to care for the natural world.Date:February1-April31,2020Location:455N Galvin Pkwy,Phoenix,AZ85008Price:$90Always...Patsy ClineAlways...Patsy Cline is a musical play,complete with country humor,true emotion,and even some audience participation,includes many of Patsy’s unforgettable hits such as“Crazy”,“Fall to Pieces”,“Sweet Dreams,and Walking After Midnight”…27songs in all!Date:June14-21,2020Location:Hale Theater,50West Page Avenue,Gilbert,AZ85233Price:$65The Two Gendemen of VeronaBest friends Valentine and Proteus choose different paths in life only to run into each other again when they both fall in love with the same woman.The Two Gentlemen of Verona is one of Shakespeare's earliest plays,his first comedy and also one of the most rarely performed plays in the canon.Date:July18-25,2020Location:Scottsdale Desert Stages Theatre,7014E Camelback Rd,Scottsdale,AZ85251 Price:$28Mandy MooreMandy Moore is giving a concert in our city!She is touring to support her upcoming album.Mandy's seventh studio work Silver Landings set to be released on September6.Date:September27-October3,2020Location:111N3rd St Phoenix,AZ85004Price:$421.When can you go to an exhibition of paintings?A.In March.B.In June.C.In July.D.In September.2.Where can you go if you are interested in Shakespeare’s plays?A.Art on the Wild Side.B.Always...Patsy Cline.C.The Two Gentlemen of Verona.D.Mandy Moore.3.How much will you pay if you want to enjoy a concert?A.$28.B.$42.C.$65.D.$90.BMy Grandpa Forgets Who I AmA few days ago I visited my grandfather in hospital.He has Alzhemier’s—a degenerative disease that usually starts slowly and gets worse over time.I thought I was prepared to see him.I knew chances were slim that he’d actually recognize me.He didn’t.As a matter of fact,he had no idea that he even had grandchildren.But he was excited that somebody came to visit him.I tried to explain to him who I was.But after he told me multiple times that he didn’t have grandchildren,I gave up.And my heart broke into a million little pieces.I was tired of explaining things to him.So I just smiled.He smiled back.It’s a genuine smile.Like a long time ago,when he’d take me by the hand and made this big world a little bit less scary for me.Now I have to take his hand.We sat in silence for a little while,before he told me to call my grandma.This was the first time I had tried so hard to hold back tears.My grandma died four years ago and he didn’t remember.He thought she was stuck on her way to pick him up.My grandpa used to be a strong,hard-working man.He was the person you turned to when you needed your car fixed,your tires changed or something heavy to be carried.Sadly, that man left this world a long time ago,and left behind a man that is lost and scared.I want to help him.I want to make him feel better.I want to tell him about his old life, and how great it was.So I sat with him and I held his hand,and every once in a while I told him how good he looked and how much I liked the color of his shirt and how it brought out the blue in his eyes.I told him that my grandma was on her way whenever he asked about her,and I made sure the glass in his hand was always filled with water.I can’t take away his pain.I can’t help him remember.I can’t make the disease go away. All I can do is hold on to the memories—hold on for both of us.4.When the author first saw her grandpa in hospital______.A.she gave up on himB.they were both excitedC.he didn’t recognize herD.they talked about the past5.The author was close to tears because______.A.grandma died about four years agoB.grandpa needed to be taken care ofC.grandma didn’t make it to the hospitalD.grandpa believed grandma was still alive6.Which of the following best describe the author?A.Tolerant and merciful.B.Considerate and patient.C.Warm-hearted and grateful.D.Strong-minded and generous.7.The author wrote this passage to______.A.show pity towards her grandpaB.record memories of her grandpaC.express deep love for her grandpaD.call on further study on Alzheimer’sCNow Hear ThisWhat do former American president Bill Clinton and rock musician Pete Townshend have in common?Both men have hearing damage from exposure to loud music,and both now wear hearing aids as a consequence.As a teenager,Clinton played saxophone in a band.Townshend, who has the more severe hearing loss,was a guitarist for a band called the Who.He is one of the first rock musicians to call the public’s attention to the problem of hearing loss from exposure to loud music.Temporary hearing loss can happen after only15minutes of listening to loud music.One early warning sign is when your ears begin to feel warm while you listen to music at a rock concert or through headphones.One later is that an unusual sound or a ringing is sometimes produced in your head after the concert.“What happens is that the hair cells in the inner ear are damaged,but they’re not dead,”says physician and ear specialist Dr.Sam Levine.According to Dr.Levine,if you avoid further exposure to loud noise,it’s possible to recondition the cells somewhat.However,he adds,“Eventually,over a long period of time,hair cells are permanently damaged.”And this is no small problem.What sound level is dangerous?According to Dr.Levine,regular exposure to noise above 85decibels(分贝)is considered dangerous.The chart below offers a comparison of decibel levels to certain sounds.Here’s another measurement you can use.If you’re at a rock concert and the music is so loud that you have to shout to make yourself heard,you’re at risk for hearing loss.That’s when wearing protective devices such as earplugs becomes critical.The facts are pretty frightening.But are rock bands turning down the volume?Most aren’t.“Rock music is supposed to be loud,”says drummer Andrew Sather.“I wouldn’t have it any other way.And neither would the real fans of rock.”Continued exposure to loud music and the failure to wear earplugs can lead to deafness, according to Dr.Levine.He states,“There’s no cure for hearing loss.Your ears are trying to tell you something.That ringing is the scream of your hair cells dying.Each time that happens, more and more damage is done.”Levels of Common NoisesNormal conversation................................................50-65dBFood blender.................................................................88dBJet plane flying above a person standing outside.........103dBRock band during a concert..........................................110-140dB8.From Paragraph1,we can learn that_______.A.loud music is a major cause of hearing lossB.famous people tend to have hearing problemsC.teenagers should stay away from school bandsD.the problem of hearing damage is widely known9.In Paragraph3,the underlined word“recondition”means______.A.not to be seenB.to make good againC.to fill with soundD.to become larger in size10.The purpose of the chart at the end of the article is to show_______.A.relationship between daily activities and hearing lossB.the noise levels of familiar soundsC.the effect of rock concertsD.a list of harmful sounds11.Which of the following statements will Dr.Sam Levine probably agree?A.Doctors know how to cure hearing loss.B.Many are taking the risk of losing hearing.C.Drummer Andrew Sather gives good advice.D.When your ears feel warm,your hair cells are dead.DIn the picture Landscape with Diogenes by the17th century French artist Poussin,the ancient philosopher Diogenes is described casting away his last possession,a drinking bowl.He realizes he doesn’t need it after seeing a youth cupping a hand to drink from a river.The significance for us is that Diogenes’spiritual descendant(后代)known as“new minimalists”are now everywhere,if not as completely possession-free as he was.There are hundreds of websites praising the virtues of tidy living.Everyone is trying to cut down on things these days.People are trying to reduce their carbon footprints,their waistlines, and their monthly outgoings.What’s more,there’s a general fear that people are becoming choked by their possessions,and this is fueled by the knowledge that the leading hobby these days seems to be shopping.It’s true,sales of e-readers and e-books go beyond those of paperbacks.As a result,the need for bookshelves is cut out.However,today’s new minimalists don’t urge us to burn our books and destroy our CDs, but just make sure we have them as digital files.So,for example,I have digitised versions of some of my old vinyl LP(黑胶)records and haven’t,as yet,stimulated myself to take the LPs to the nearest charity shop–and I admit I shall probably go on keeping them.Technology has gone beyond our dreams and there is always the doubt that our hard drives will crash and all will be lost.Far more important,however,is the fact that our memories are so inseparably tied to our possessions that we can’t get rid of stuff.We are not exactly suffering withdrawal symptoms(症状)as we try to break our addiction to objects.We are just acquiring new stuff, which means we can bin or recycle our old stuff.I’m happy to have found another website which seems to solve a whole lot of problems at once–a thriving online advice service offering storage solutions.The interior(室内的) designer responsible for this does not suggest getting rid of stuff,but rather recommends buying more stuff such as elegant flexible baskets or colourful lidded containers to hide the first lot of stuff from view.I love this philosophy–convince yourself you’ve got your desire forpossessions under control,without having to lose a thing.After all,wearen’t mercilessenough to follow Diogenes and cast away all our possessions.12.Why does the author mention a picture by the artist Poussin?A.It illustrates a modern trend.B.It describes a wise philosopher.C.Its meaning is only now becoming clear.D.Its message is not as simple as it appears.13.The author believes minimalism may not succeed mainly because of people’s______.A.resistance to media pressureziness in the face of changeck of faith in digital hardwareD.strong bond with physical objects14.According to the author,people invest in smart new storage in order to_____.A.satisfy their desire to make purchasesB.make attractive additions to their homesC.provide a temporary solution to a problemD.ease their conscience over having too many things.15.Which of the following would be the best title for the passage?A.Less is MoreB.Low Carbon Is an AttitudeC.Treasure What You HaveD.Psychology of Overconsumption.第二节(共5小题;每小题2分,满分10分)根据短文内容,从短文后的选项中选出能填入空白处的最佳选项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大庆实验中学2020-2021上学期高三期末考试数学(理)试题答案
一.选择题 ACDBB DABBA AB
二.填空题 13.3log 2±;14.1215;15.2;16.8
三.解答题
17.【解析】(1)当n =1时,12a =,当2n ≥时a 1+a 2+a 3+…+1n a -=12n -②
①-②得1
2n n a -=经检验1a 不符合上式
∴12,1
2,2n n n a n =-=⎧⎨≥⎩.(6分)
(2)由(1)得当n =1时12b =
当2n ≥时()()n 2n b n 1log a 11n n =+=+-(),
∴(
)()()n 1111
12b 11211n n n n n ⎛⎫
==-≥ ⎪-+-+⎝⎭.
()n 12n 1
11521
...b b b 421
n S n n +∴=+++=-+.(12分)
18.【解析】(1)4656
56666676
0.010100.020100.04510222x +++=⨯⨯+⨯⨯+⨯⨯
7686
8696
0.020100.0051022+++⨯⨯+⨯⨯
70=.(3分)
(2)由题意样本方差2100s =
,故10σ≈=.
所以2(70,10)X N ,
由题意,该厂生产的产品为正品的概率(6090)(6070)(7090)P P X P X P X =<<=<<+<<
1
(0.68270.9545)0.81862=+=.(6分)
(3)X 所有可能为0,1,2,3.
()0335385028C C P X C === ()12
353815
128
C C P X C ===
()21353815256C C P X C === ()3035381356
C C P X C ===.(10分) X 的分布列为
X
0 1 2 3 P 528 1528 1556 156
()9
8E X =.(12分)
19.【解析】(1)取BC 的中点F ,连接EF ,HF .
∵H ,F 分别为AC ,BC 的中点,
∴HF ∥AB ,且AB =2HF .
又DE ∥AB ,AB =2DE ,∴HF ∥DE 且HF =DE ,
∴四边形DEFH 为平行四边形.∴EF ∥DH ,
又D 点在平面ABC 内的正投影为AC 的中点H ,
∴DH ⊥平面ABC ,∴EF ⊥平面ABC ,∵EF BCE ⊂面∴ECB ABC ⊥面面.(5分)
(2)∵DH ⊥平面ABC ,AC ⊥BC ,
∴以C 为原点,建立空间直角坐标系,则B (0,2,0),D ⎝⎛⎭⎫1
2,0,1,()0,1,1E
设平面CDE 的法向量n =(x ,y ,z ),CD =⎝⎛⎭⎫12,0,1,CE =()0,1,1,
则1
020
x z y z ⎧
+=⎪⎨⎪+=⎩取y =1,则x =2,z =-1.∴n =(2,1,1),
∵1
,2,12BD ⎛⎫=- ⎪⎝⎭∴214
sin cos ,21BD n BD n BD n α===
∴BD 与面CDE 夹角的余弦值为385
.(12分)
20.解析:【解析】(1)由题意
222222(2)1122b a c a b c ⎧+=⎪⎪⎪-=-⎨⎪=+⎪⎪⎩
,解得222
a b c =
⎧⎪=⎨⎪=⎩,
故椭圆C 的方程为2
2
142x y +=.(4分)
(2)设11(,)P x y 、22(,)Q x y .
将直线与椭圆的方程联立得:()
2231
42y k x x y ⎧=-⎪⎨+=⎪⎩,
消去y ,整理得2222(21)121840k x k x k +-+-=.
由根与系数之间的关系可得:2
1221221k x x k +=+,2122184
21k x x k -⋅=+.
∵点P 关于y 轴的对称点为P ',则11(,)P x y '-. ∴直线P Q '的斜率21
21
y y k x x +=-
方程为:21
1121()y y y y x x x x ++=--,即21
21
112121
()
y y x x y x x y x x y y +-=---+ 212112112121()()()y y y y x x x y x x x y y +++-=--+211221
2121
()y y x y x y x x x y y ++=--+
2112212121(3)(3)()(3)(3)y y x k x x k x x x x k x k x +-+-=---+-2
11212211223()
()
6
y y x x x x x x x x x +-+=--+- 22
22
21221218412232121()126
21k k y y k k x k x x k -
⨯-⨯+++=---+21
214()3
y y x x x +=--. ∴直线P Q '过x 轴上定点4
(,0)3.(12分)
21.解析:
22.【解析】(1)圆C 的普通方程是22(2)4x y -+=,…………………………………2分 将cos x ρθ=,sin y ρθ=,代入上述方程,
得22(cos 2)(sin )4ρθρθ-+=, …………………………………3分
由222x y ρ=+,化简得圆C 的极坐标方程为4cos ρθ=. …………………………5分
(2)设11(,)P ρθ,则有114cos ρθ=, …………………………………6分 设21(,)Q ρθ,且直线l
的方程是(sin )ρθθ+=,
则有2ρ=, …………………………………8分
所以121||||()63OP OQ ππ
ρρθ===≤≤
,……………9分
所以2||||3OP OQ ≤≤. …………………………………10分
23.【解析】(1)因为1
()||2f x x a a =-+,所以1
()||2f x m x m a a +=+-+,………1分
所以()()||||f x f x m x a x m a m -+=--+-≤,………………………………………3分 所以||1m ≤,得11m -≤≤, ………………………………………4分 所以实数m 的最大值为1. ………………………………………5分
(2)当1
2a <时,
1()()|21||||21|2g x f x x x a x a =+-=-+-+1
31,21
1
1,221
1
31,22
x a x a
a
x a a x a x a x a ⎧-+++<⎪⎪⎪=--++≤≤⎨⎪⎪-+->⎪⎩,……7分
所以2min 11
121
[()]()02222a a g x g a a a -++==-+=≤,………………………………8分 所以21
02210a a a ⎧<<
⎪⎨⎪-++≤⎩或20
210a a a <⎧⎨-++≥⎩,………………………………………9分 所以1
02a -≤≤,
所以实数a 的取值范围是1[,0)2
. ………………………………………10分。