材料力学课件全套2 已打教材
合集下载
材料力学课件
剪切面
剪切实用计算中,假定剪切面上各点处的切应力相等,于是得剪切面上的名义切应力为:
——剪切强度条件
剪切面为圆形时,其剪切面积为:
对于平键 ,其剪切面积为:
例题 如图所示冲床,Fmax=400kN,冲头[σ]=400MPa,冲剪钢板τu=360 MPa,设计冲头的最小直径值及钢板厚度最大值。
1.超静定问题-----仅用平衡方程不能求出 反力的问题。
2.变形协调方程-----构件变形关联点之间的几何数量关系。
3.解超静定问题方法-----列静力方程、变形协调方程、物理方程。
例 左端固定铰支的刚性横杆AB,用两根材料相等、截面面积相同的钢杆支撑使AB杆处于水平位置。右杆稍短D距离,现需要在AB杆右端加外载F多大,才能使右孔也铆上。 [解] (板书)
I
I
II
II
| FN |max=100kN
FN2= -100kN
100kN
II
II
FN2
FN1=50kN
I
FN1
I
50kN
50kN
100kN
§2.3 轴向拉、压杆的应力 应力和应变的概念 杆件轴向拉压时横截面上的应力 杆轴向拉伸或压缩时斜截面上的应力
F
A
M
C点全应力(总应力):
应力的概念——截面上某点的内力集度。
FN—轴力 A---横截面面积
σ的正负号与FN相同;即拉伸为正压缩为负
2.3.1轴向拉伸或压缩时横截面上的正应力
例3 已知 F1=2.5kN,F3=1.5kN, 求杆件各段的轴力。
例4 一中段开槽的直杆如图,受轴向力F作用;已知:F=20kN,h=25mm,h0=10mm,b=20mm;试求杆内的最大正应力
剪切实用计算中,假定剪切面上各点处的切应力相等,于是得剪切面上的名义切应力为:
——剪切强度条件
剪切面为圆形时,其剪切面积为:
对于平键 ,其剪切面积为:
例题 如图所示冲床,Fmax=400kN,冲头[σ]=400MPa,冲剪钢板τu=360 MPa,设计冲头的最小直径值及钢板厚度最大值。
1.超静定问题-----仅用平衡方程不能求出 反力的问题。
2.变形协调方程-----构件变形关联点之间的几何数量关系。
3.解超静定问题方法-----列静力方程、变形协调方程、物理方程。
例 左端固定铰支的刚性横杆AB,用两根材料相等、截面面积相同的钢杆支撑使AB杆处于水平位置。右杆稍短D距离,现需要在AB杆右端加外载F多大,才能使右孔也铆上。 [解] (板书)
I
I
II
II
| FN |max=100kN
FN2= -100kN
100kN
II
II
FN2
FN1=50kN
I
FN1
I
50kN
50kN
100kN
§2.3 轴向拉、压杆的应力 应力和应变的概念 杆件轴向拉压时横截面上的应力 杆轴向拉伸或压缩时斜截面上的应力
F
A
M
C点全应力(总应力):
应力的概念——截面上某点的内力集度。
FN—轴力 A---横截面面积
σ的正负号与FN相同;即拉伸为正压缩为负
2.3.1轴向拉伸或压缩时横截面上的正应力
例3 已知 F1=2.5kN,F3=1.5kN, 求杆件各段的轴力。
例4 一中段开槽的直杆如图,受轴向力F作用;已知:F=20kN,h=25mm,h0=10mm,b=20mm;试求杆内的最大正应力
简明材料力学全套精品课件
解: 用截面m-m将钻床截为两部分,取上半 部分为研究对象,
受力如图:
列平衡方程:
M
Y 0 FN P
Mo(F) 0
FN
Pa M 0
M Pa
目录
§1.4 内力、截面法和应力的概念
为了表示内力在一点处的强度,引入内力集度,
即应力的概念。
F
pm
F A
—— 平均应力
A
C
目录
§1.1 材料力学的任务
四、材料力学的研究对象 构件的分类:杆件、板壳、块体
材料力学主要研究杆件
{ 直杆—— 轴线为直线的杆 曲杆—— 轴线为曲线的杆
{等截面杆——横截面的大小 形状不变的杆 变截面杆 ——横截面的大小 或形状变化的杆 等截面直杆 ——等直杆
目录
§1.2 变形固体的基本假设
在外力作用下,一切固体都将发生变形, 故称为变形固体。在材料力学中,对变形固体 作如下假设: 1、连续性假设: 认为整个物体体积内毫无空隙地充满物质 灰口铸铁的显微组织 球墨铸铁的显微组织
杆切开
F1
(2)留下左半段或右半段
F2
(3)将弃去部分对留下部
F5
分的作用用内力代替 F1
(4)对留下部分写平衡方
F2
程,求出内力的值。
m F4
m
F3
F4
F3
目录
§1.4 内力、截面法和应力的概念 例如
F
a
a
F
M FS
FS=F M Fa
目录
§1.4 内力、截面法和应力的概念
例 1.1 钻床 求:截面m-m上的内力。
古代建筑结构
传统具有柱、梁、檩、椽的木 制房屋结构
受力如图:
列平衡方程:
M
Y 0 FN P
Mo(F) 0
FN
Pa M 0
M Pa
目录
§1.4 内力、截面法和应力的概念
为了表示内力在一点处的强度,引入内力集度,
即应力的概念。
F
pm
F A
—— 平均应力
A
C
目录
§1.1 材料力学的任务
四、材料力学的研究对象 构件的分类:杆件、板壳、块体
材料力学主要研究杆件
{ 直杆—— 轴线为直线的杆 曲杆—— 轴线为曲线的杆
{等截面杆——横截面的大小 形状不变的杆 变截面杆 ——横截面的大小 或形状变化的杆 等截面直杆 ——等直杆
目录
§1.2 变形固体的基本假设
在外力作用下,一切固体都将发生变形, 故称为变形固体。在材料力学中,对变形固体 作如下假设: 1、连续性假设: 认为整个物体体积内毫无空隙地充满物质 灰口铸铁的显微组织 球墨铸铁的显微组织
杆切开
F1
(2)留下左半段或右半段
F2
(3)将弃去部分对留下部
F5
分的作用用内力代替 F1
(4)对留下部分写平衡方
F2
程,求出内力的值。
m F4
m
F3
F4
F3
目录
§1.4 内力、截面法和应力的概念 例如
F
a
a
F
M FS
FS=F M Fa
目录
§1.4 内力、截面法和应力的概念
例 1.1 钻床 求:截面m-m上的内力。
古代建筑结构
传统具有柱、梁、檩、椽的木 制房屋结构
刘鸿文主编(第4版) 高等教育出版社《材料力学》课件全套
解: 用截面m-m将钻床截为两部分,取上半 部分为研究对象,
受力如图:
列平衡方程:
M
Y 0 FN P
Mo(F) 0
FN
Pa M 0
M Pa
目录
§1.4 内力、截面法和应力的概念
为了表示内力在一点处的强度,引入内力集度,
即应力的概念。
F A
pm
F A
—— 平均应力
C
p lim F A0 A
径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
B 解:1、计算各杆件的轴力。 (设斜杆为1杆,水平杆为2杆)
F 用截面法取节点B为研究对象
Fx 0 FN1 cos 45 FN2 0
x
Fy 0 FN1 sin 45 F 0
FN1 28.3kN
FN 2 20kN
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m
F m
F
FN
FN
Fx 0
FN F 0 FN F
2、轴力:截面上的内力
F
由于外力的作用线
与杆件的轴线重合,内
力的作用线也与杆件的
轴线重合。所以称为轴
力。 F 3、轴力正负号:
拉为正、压为负
4、轴力图:轴力沿杆 件轴线的变化
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
例题2.1
A
F1
若:构件横截面尺寸不足或形状
不合理,或材料选用不当
___ 不满足上述要求,
不能保证安全工作.
若:不恰当地加大横截面尺寸或
选用优质材料
___ 增加成本,造成浪费
}均 不 可 取
研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。因此在 进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和 手段。
受力如图:
列平衡方程:
M
Y 0 FN P
Mo(F) 0
FN
Pa M 0
M Pa
目录
§1.4 内力、截面法和应力的概念
为了表示内力在一点处的强度,引入内力集度,
即应力的概念。
F A
pm
F A
—— 平均应力
C
p lim F A0 A
径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
B 解:1、计算各杆件的轴力。 (设斜杆为1杆,水平杆为2杆)
F 用截面法取节点B为研究对象
Fx 0 FN1 cos 45 FN2 0
x
Fy 0 FN1 sin 45 F 0
FN1 28.3kN
FN 2 20kN
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m
F m
F
FN
FN
Fx 0
FN F 0 FN F
2、轴力:截面上的内力
F
由于外力的作用线
与杆件的轴线重合,内
力的作用线也与杆件的
轴线重合。所以称为轴
力。 F 3、轴力正负号:
拉为正、压为负
4、轴力图:轴力沿杆 件轴线的变化
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
例题2.1
A
F1
若:构件横截面尺寸不足或形状
不合理,或材料选用不当
___ 不满足上述要求,
不能保证安全工作.
若:不恰当地加大横截面尺寸或
选用优质材料
___ 增加成本,造成浪费
}均 不 可 取
研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。因此在 进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和 手段。
《材料力学第二章》课件
弹性变形与塑性变形的区别
弹性变形是可恢复的,而塑性变形是不可恢复的。
弹性变形能与塑性变形能
弹性变形能
01
物体在弹性变形过程中所吸收的能量,与应力和应变关系呈正
比。
塑性变形能
02
物体在塑性变形过程中所吸收的能量,与应力和应变关系呈非
线性。
弹性变形能与塑性变形能的比较
03
弹性变形能是可逆的,而塑性变形能是不可逆的。
材料力学的重要性
总结词
材料力学是工程设计和科学研究的重要基础,对于保证工程安全、优化产品设 计、降低成本等方面具有重要意义。
详细描述
在工程设计和科学研究中,材料力学提供了对材料行为的深入理解,有助于保 证工程结构的稳定性和安全性,优化产品的设计,降低生产成本,提高经济效 益。
材料力学的基本假设和单位
04
CATALOGUE
变形分析
变形的基本概念
变形
物体在外力作用下,形状 和尺寸发生变化的现象。
弹性变形
当外力去除后,物体能够 恢复原状的变形。
塑性变形
当外力去除后,物体不能 恢复原状的变形。
弹性变形与塑性变形
弹性变形特点
可逆、无残余应变、与外力大小成正比。
塑性变形特点
不可逆、有残余应变、外力达到屈服极限后发生。
建筑结构的优化设计
利用材料力学理论,对建筑结构进行优化设计,降低建筑物的重量 和成本,提高建筑物的性能和寿命。
机械工程中的应用
机械零件的强度和刚度分析
利用材料力学知识,对机械零件的强度和刚度进行分析和计算,确保零件在使用过程中不 会发生断裂或变形。
机械设备的动力学分析
通过材料力学的方法,对机械设备的动力学特性进行分析和计算,确保机械设备在使用过 程中具有良好的稳定性和可靠性。
弹性变形是可恢复的,而塑性变形是不可恢复的。
弹性变形能与塑性变形能
弹性变形能
01
物体在弹性变形过程中所吸收的能量,与应力和应变关系呈正
比。
塑性变形能
02
物体在塑性变形过程中所吸收的能量,与应力和应变关系呈非
线性。
弹性变形能与塑性变形能的比较
03
弹性变形能是可逆的,而塑性变形能是不可逆的。
材料力学的重要性
总结词
材料力学是工程设计和科学研究的重要基础,对于保证工程安全、优化产品设 计、降低成本等方面具有重要意义。
详细描述
在工程设计和科学研究中,材料力学提供了对材料行为的深入理解,有助于保 证工程结构的稳定性和安全性,优化产品的设计,降低生产成本,提高经济效 益。
材料力学的基本假设和单位
04
CATALOGUE
变形分析
变形的基本概念
变形
物体在外力作用下,形状 和尺寸发生变化的现象。
弹性变形
当外力去除后,物体能够 恢复原状的变形。
塑性变形
当外力去除后,物体不能 恢复原状的变形。
弹性变形与塑性变形
弹性变形特点
可逆、无残余应变、与外力大小成正比。
塑性变形特点
不可逆、有残余应变、外力达到屈服极限后发生。
建筑结构的优化设计
利用材料力学理论,对建筑结构进行优化设计,降低建筑物的重量 和成本,提高建筑物的性能和寿命。
机械工程中的应用
机械零件的强度和刚度分析
利用材料力学知识,对机械零件的强度和刚度进行分析和计算,确保零件在使用过程中不 会发生断裂或变形。
机械设备的动力学分析
通过材料力学的方法,对机械设备的动力学特性进行分析和计算,确保机械设备在使用过 程中具有良好的稳定性和可靠性。
材料力学课件PPT
梁的剪力与弯矩
1
梁的剪力
解析剪力对梁的影响和剪切应力。
2
梁的弯曲
讨论梁的弯曲行为和弯曲应力。
3
横截面性能
探索截面形状对梁的强度和刚度的影响。
梁的挠度
1 挠度与刚度
2 梁的支撑条件
3 挠度计算
研究梁的弯曲变形和挠度。
解释梁的不同支撑条件对 挠度的影响。
介绍计算梁挠度的工程方 法。
杆件的稳定性
1
稳定性概念
材料力学课件PPT
材料力学课件PPT是一个全面的教学工具,涵盖了力学基础、应力与变形、杆 件的轴向受力、梁的剪力与弯矩、梁的挠度、杆件的稳定性以及结构稳定裂 解和破坏形态。
力学基础
1
牛顿力学原理
解释物体运动和力的相互作用。
2
力的向量和标量
了解力量的方向和大小。
3
运动和加速度
讨论物体的运动和加速度。
应力与变形
应力
探讨物体所受力的影响。
塑性变形
讲解材料在超出弹性范围时的塑性行为。
弹性变形
解析材料的弹性性质和应变量。
断裂
探索材料的破裂过程和强度。
杆件的轴向受力
拉力
描述由拉力引起的变形和破坏。
压力
研究由压力引起的压缩变形和破坏。
剪力
解释由剪切力引起的变形和破坏。
扭矩
探讨由扭转力引起的变形和破坏。
介绍杆件的稳定性和失稳行为。
2
纯压杆件
研究纯压杆件的稳定性和临界长度。
பைடு நூலகம்
3
压弯杆件
探讨压弯杆件的稳定性和稳定方程。
结构稳定裂解和破坏形态
稳定性裂解
解释结构在突然失去稳定性时的裂解过程。
材料力学全套ppt课件
___ 不满足上述要求,
不能保证安全工作.
若:不恰当地加大横截面尺寸或
选用优质材料
___ 增加成本,造成浪费
}均 不 可 取
研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。因此在 进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和 手段。
目录
10
§1.1 材料力学的任务
四、材料力学的研究对象
m F4
m
F3
F4
F3
目录
17
§1.4 内力、截面法和应力的概念 例如
F
a
a
F
M FS
FS=F M Fa
目录
18
§1.4 内力、截面法和应力的概念
例 1.1 钻床 求:截面m-m上的内力。
解: 用截面m-m将钻床截为两部分,取上半 部分为研究对象,
受力如图:
列平衡方程:
M
Y 0 FN P
灰口铸铁的显微组织 球墨铸铁的显微组织
目录
12
§1.2 变形固体的基本假设
2、均匀性假设: 认为物体内的任何部分,其力学性能相同 普通钢材的显微组织 优质钢材的显微组织
目录
13
§1.2 变形固体的基本假设
3、各向同性假设: 认为在物体内各个不同方向的力学性能相同
(沿不同方向力学性能不同的材料称为各向异性 材料。如木材、胶合板、纤维增强材料等)
材料力学
目录
1
第一章 绪论
§1.1 材料力学的任务 §1.2 变形固体的基本假设 §1.3 外力及其分类 §1.4 内力、截面法及应力的概念 §1.5 变形与应变 §1.6 杆件变形的基本形式
目录
《材料力学》课件2-2轴力及轴力图
清晰性
确保轴力图清晰易懂,能 够让其他人快速理解结构 和受力情况。
03
轴力的分类
按作用方式分类
拉伸或压缩轴力
由于拉伸或压缩作用产生的轴力,其方向与杆件轴线平行。
弯曲轴力
由于弯曲作用产生的轴力,其方向与杆件轴线垂直。
按作用效果分类
拉力
使杆件产生拉伸变形的轴力。
压力
使杆件产生压缩变形的轴力。
按作用位置分类
感谢您的观看
THANKS
绘制杆件
根据杆件的位置和 方向,绘制出各段 杆件。
绘制轴力
根据杆件上各点的 受力情况,绘制出 轴力。
确定受力点
根据受力分析,确 定各段杆件上的受 力点。
标注重力
根据重力方向和大 小,标注重力。
标注轴力
在轴力图上标注出 各点的轴力大小和 方向。
轴力图的应用场景
机械设计
在机械设计中,轴力图可用于分 析机械结构的受力情况,优化设
计。
建筑分析
在建筑结构分析中,轴力图可用于 分析建筑结构的稳定性,确保安全。
车辆工程
在车辆工程中,轴力图可用于分析 车辆的行驶稳定性,提高车辆性能。
轴力图的绘制注意事项
01
02
03
准确性
确保轴力图绘制准确,能 够真实反映结构的受力情 况。
完整性
确保轴力图绘制完整,包 括所有需要分析的杆件和 受力点。
轴力的计算方法
截面法
通过截取物体的一部分,分析其受力情况,然后根据力的平衡条件计算轴力。
转矩平衡法
利用转矩平衡原理,通过分析物体的转矩平衡条件,计算出轴力的大小。
轴力的单位与符号
单位
牛顿(N),国际单位制中的基本单 位。
材料力学全ppt课件
x
切应变(角应变)
M点处沿x方向的应变: M点在xy平面内的切应变为:
x
lim
x0
s x
g lim ( LM N)
MN0 2
ML0
类似地,可以定义 y , z ,g 均为无量纲的量。
目录
§1.5 变形与应变
例 1.2
c
已知:薄板的两条边
4、稳定性:
在载荷 作用下,构 件保持原有 平衡状态的 能力。
强度、刚度、稳定性是衡量构件承载能力 的三个方面,材料力学就是研究构件承载能力 的一门科学。
目录
§1.1 材料力学的任务
三、材料力学的任务
材料力学的任务就是在满足强度、刚度 和稳定性的要求下,为设计既经济又安全的构 件,提供必要的理论基础和计算方法。
目录
§1.3 外力及其分类
按外力与时间的关系分类
静载: 载荷缓慢地由零增加到某一定值后,就保持不变或变动很不显著, 称为静载。
动载: 载荷随时间而变化。
如交变载荷和冲击载荷
交变载荷
冲击载荷
目录
§1.4 内力、截面法和应力的概念
内力:外力作用引起构件内部的附加相互作用力。 求内力的方法 — 截面法
传统具有柱、梁、檩、椽的木 制房屋结构
建于隋代(605年)的河北赵州桥桥 长64.4米,跨径37.02米,用石2800 吨
目录
§1.1 材料力学的任务
古代建筑结构
建于辽代(1056年)的山西应县佛宫寺释迦塔 塔高9层共67.31米,用木材7400吨 900多年来历经数次地震不倒,现存唯一木塔
目录
§1.1 材料力学的任务
架的变形略去不计。计算得到很大的简
化。
C
δ1
切应变(角应变)
M点处沿x方向的应变: M点在xy平面内的切应变为:
x
lim
x0
s x
g lim ( LM N)
MN0 2
ML0
类似地,可以定义 y , z ,g 均为无量纲的量。
目录
§1.5 变形与应变
例 1.2
c
已知:薄板的两条边
4、稳定性:
在载荷 作用下,构 件保持原有 平衡状态的 能力。
强度、刚度、稳定性是衡量构件承载能力 的三个方面,材料力学就是研究构件承载能力 的一门科学。
目录
§1.1 材料力学的任务
三、材料力学的任务
材料力学的任务就是在满足强度、刚度 和稳定性的要求下,为设计既经济又安全的构 件,提供必要的理论基础和计算方法。
目录
§1.3 外力及其分类
按外力与时间的关系分类
静载: 载荷缓慢地由零增加到某一定值后,就保持不变或变动很不显著, 称为静载。
动载: 载荷随时间而变化。
如交变载荷和冲击载荷
交变载荷
冲击载荷
目录
§1.4 内力、截面法和应力的概念
内力:外力作用引起构件内部的附加相互作用力。 求内力的方法 — 截面法
传统具有柱、梁、檩、椽的木 制房屋结构
建于隋代(605年)的河北赵州桥桥 长64.4米,跨径37.02米,用石2800 吨
目录
§1.1 材料力学的任务
古代建筑结构
建于辽代(1056年)的山西应县佛宫寺释迦塔 塔高9层共67.31米,用木材7400吨 900多年来历经数次地震不倒,现存唯一木塔
目录
§1.1 材料力学的任务
架的变形略去不计。计算得到很大的简
化。
C
δ1
材料力学课件全
塑性力学分析方法的特点:塑性力学分析方法考虑了材料在受力过程中发生的塑性变形,能够更准确地预测材料 的力学行为。
塑性力学分析方法的基本原理:塑性力学分析方法基于弹塑性理论,通过建立材料的本构关系,描述材料在受力 过程中的弹性和塑性行为。
塑性力学分析方法的应用:塑性力学分析方法广泛应用于金属材料、复合材料、陶瓷材料等领域的力学分析和设 计。
弹性与塑性的应用:在工程中如何利用材料的弹性与塑性性质来提高结构性能和安全性
强度与韧性
强度:材料抵抗外力破坏的能力,分为抗拉、抗压、抗弯等强度 韧性:材料在冲击、振动等外力作用下抵抗破坏的能力 影响因素:材料成分、组织结构、温度、环境等 实际应用:设计制造各种结构件,选择合适的材料,提高产品性能和安全性
航空航天领域
飞机设计:材料力学在飞机设计中发挥着重要作用,包括机身、机翼和尾翼的设计。 航天器设计:材料力学在航天器设计中同样重要,如卫星、火箭和空间站的结构设计。
飞行器材料选择:材料力学研究飞行器材料的性能,如强度、刚度和耐腐蚀性等,以确保飞行器的安全和可靠性。
飞行器结构优化:通过材料力学的研究,可以对飞行器的结构进行优化,提高飞行器的性能和效率。
土木工程领域
桥梁工程:利用材料力学原理设计桥梁结构,确保桥梁的稳定性和安全性。
房屋建筑:通过材料力学知识,合理设计房屋结构,提高房屋的抗震性能和承载能力。
水利工程:应用材料力学理论,研究水工结构的应力分布、变形和稳定性,保障水利工程的 安全运行。
交通工程:利用材料力学知识,研究道路、铁路、机场等交通设施的荷载分布、路基设计及 路面材料选择。
智能制造技术:结合人工智能、大数据、物联网等技术,实现制造过程 的自动化、智能化和数字化。
绿色制造技术:采用环保材料和工艺,减少制造过程中的能源消耗和环 境污染。
塑性力学分析方法的基本原理:塑性力学分析方法基于弹塑性理论,通过建立材料的本构关系,描述材料在受力 过程中的弹性和塑性行为。
塑性力学分析方法的应用:塑性力学分析方法广泛应用于金属材料、复合材料、陶瓷材料等领域的力学分析和设 计。
弹性与塑性的应用:在工程中如何利用材料的弹性与塑性性质来提高结构性能和安全性
强度与韧性
强度:材料抵抗外力破坏的能力,分为抗拉、抗压、抗弯等强度 韧性:材料在冲击、振动等外力作用下抵抗破坏的能力 影响因素:材料成分、组织结构、温度、环境等 实际应用:设计制造各种结构件,选择合适的材料,提高产品性能和安全性
航空航天领域
飞机设计:材料力学在飞机设计中发挥着重要作用,包括机身、机翼和尾翼的设计。 航天器设计:材料力学在航天器设计中同样重要,如卫星、火箭和空间站的结构设计。
飞行器材料选择:材料力学研究飞行器材料的性能,如强度、刚度和耐腐蚀性等,以确保飞行器的安全和可靠性。
飞行器结构优化:通过材料力学的研究,可以对飞行器的结构进行优化,提高飞行器的性能和效率。
土木工程领域
桥梁工程:利用材料力学原理设计桥梁结构,确保桥梁的稳定性和安全性。
房屋建筑:通过材料力学知识,合理设计房屋结构,提高房屋的抗震性能和承载能力。
水利工程:应用材料力学理论,研究水工结构的应力分布、变形和稳定性,保障水利工程的 安全运行。
交通工程:利用材料力学知识,研究道路、铁路、机场等交通设施的荷载分布、路基设计及 路面材料选择。
智能制造技术:结合人工智能、大数据、物联网等技术,实现制造过程 的自动化、智能化和数字化。
绿色制造技术:采用环保材料和工艺,减少制造过程中的能源消耗和环 境污染。
材料力学(全套483页PPT课件)-精选全文
三、构件应有足够的稳定性
稳定性(stability)—构件承受外力时, 保持原有平衡状态的能力
4
材料力学的任务: 在满足强度、刚度和稳定性的要
求下,为设计既经济又安全的构件提 供必要的理论基础和计算方法。
5
1.2 变形固体的基本假设
1.连续性假设
假设在变形体所占有的空间内毫无空隙地充满了物质。即认 为材料是密实的。这样,构件内的一些力学量(如各点的位 移)可用坐标的连续函数表示,并可采用无限小的数学分析 方法。
2、横向变形、泊松比
横向线应变: b b1 b
bb
称为泊松比
32
是谁首先提出弹性定律? 弹性定律是材料力学中一个非常重要的基础定
律。一般认为它是由英国科学家胡克(1635一1703) 首先提出来的,所以通常叫做胡克定律。其实,在 胡克之前1500年,我国早就有了关于力和变形成正 比关系的记载。
1-1截面
A
X 0 N1 40 30 20 0 N1 N1 50kN(拉)
2-2截面
X 0 N 2 30 20 0
1 B 2C 3D 40 kN 30 kN 20 kN
N2
30 kN 20 kN
N2 10kN(拉)
3-3截面
N 50 kN
N3
20 kN
X 0
N 3 20 0 N 3 20 kN(压)
10 103 100 103 500 106
10 103 100 103 200 106
mm
0.015mm
计算结果为负,说明整根杆发生了缩短
35
静定汇交杆的位移计算,以例题说明。 例3 图示结构由两杆组成,两杆长度均为 l,B 点受垂直荷 载 P 作用。(1) 杆①为刚性杆,杆②刚度为 EA ,求节点 B 的位移;(2) 杆①、杆②刚度均为 EA,求节点 B 的位 移。
稳定性(stability)—构件承受外力时, 保持原有平衡状态的能力
4
材料力学的任务: 在满足强度、刚度和稳定性的要
求下,为设计既经济又安全的构件提 供必要的理论基础和计算方法。
5
1.2 变形固体的基本假设
1.连续性假设
假设在变形体所占有的空间内毫无空隙地充满了物质。即认 为材料是密实的。这样,构件内的一些力学量(如各点的位 移)可用坐标的连续函数表示,并可采用无限小的数学分析 方法。
2、横向变形、泊松比
横向线应变: b b1 b
bb
称为泊松比
32
是谁首先提出弹性定律? 弹性定律是材料力学中一个非常重要的基础定
律。一般认为它是由英国科学家胡克(1635一1703) 首先提出来的,所以通常叫做胡克定律。其实,在 胡克之前1500年,我国早就有了关于力和变形成正 比关系的记载。
1-1截面
A
X 0 N1 40 30 20 0 N1 N1 50kN(拉)
2-2截面
X 0 N 2 30 20 0
1 B 2C 3D 40 kN 30 kN 20 kN
N2
30 kN 20 kN
N2 10kN(拉)
3-3截面
N 50 kN
N3
20 kN
X 0
N 3 20 0 N 3 20 kN(压)
10 103 100 103 500 106
10 103 100 103 200 106
mm
0.015mm
计算结果为负,说明整根杆发生了缩短
35
静定汇交杆的位移计算,以例题说明。 例3 图示结构由两杆组成,两杆长度均为 l,B 点受垂直荷 载 P 作用。(1) 杆①为刚性杆,杆②刚度为 EA ,求节点 B 的位移;(2) 杆①、杆②刚度均为 EA,求节点 B 的位 移。
全套课件 材料力学性能(第2版)时海芳
e l dL ln L ln L0 L ln(1 )
l0 L
L0
L0
e
F dA
A
ln
F0 A
A0
ln A0 A ln(1 )
2.试样:
K= 11.3
比例试样 l 0 K F 0
K=5.65 非比例试样
3. 加载速度: (形变速率10-2~10-4)
dP dt
屈服前 1kg/mm2·s
屈服后: 生产检验 1~3 kg/mm2·s
夹头 0.5l 0 /min
4. 环境条件:20±10℃
第一章 材料在单向静拉伸载荷下的力学性能 单向静拉伸实验演示
第一章 材料在单向静拉伸载荷下的力学性能
二、拉伸力-伸长曲线的类型 a. 脆性材料:
弹性变形
断裂
b. 有色金属:
弹性变形
u
c.高锰钢、铁青铜:
弹性变形
u
d.加工硬化不明显:
弹性变形
b
e. 纯铜、纯铝:
u
断裂
b 断裂
断裂 断裂
第一章 材料在单向静拉伸载荷下的力学性能
三、应力-应变曲线(σ-ε) 将拉伸力-伸长曲线的纵、横坐标分别用拉
绪论
3. 材料力学性能的微观机制
4. 材料力学性能的测试技术
四、研究目的和意义
1.正确地使用材料。 2. 评价材料合成与加工工艺的有效性,并通过控制材料的加工 工艺提高材料的力学性能。
3. 可在材料力学性能理论的指导下,采用新的材料成分和结 构,或新的加工和合成工艺,设计和开发出 新材料,以满足 对材料的更高需求。
第一章
材料在单向静拉伸载荷下 的力学性能
第一章 材料在单向静拉伸载荷下的力学性能
材料力学课件全套2
添加标题
添加标题
添加标题
添加标题
塑性:材料在外力作用下发生形 变,外力去除后不能恢复原状的 性质。
弹性与塑性的应用:在工程实际 中的应用,如桥梁、建筑等。
强度与韧性
韧性:材料在冲击、振动等 外力作用下抵抗破坏的能力
强度:材料抵抗外力破坏的 能力,分为抗拉、抗压、抗 弯等强度
影响因素:材料成分、组织 结构、温度、环境等
其他领域的应用
航空航天领域:材料力 学在航空航天领域中有 着广泛的应用,如飞机、 火箭、卫星等的设计和 制造。
汽车工业:材料力学在 汽车工业中也有着重要 的应用,如汽车车身、 底盘、发动机等的设计 和制造。
建筑领域:材料力 学在建筑领域中也 有着广泛的应用, 如桥梁、房屋、道 路等的设计和建造。
生物医学领域:材料 力学在生物医学领域 中也有着重要的应用, 如医疗器械、生物材 料等的设计和制造。
疲劳
疲劳裂纹萌生: 滑移带开裂、
晶界开裂
疲劳裂纹扩展: 微观扩展、宏
观扩展
04
材料力学的基本原理
弹性力学基本原理
弹性力学的研究对象和基 本假设
弹性力学的基本方程和定 理
弹性力学中的应变和应力
弹性力学中的能量原理和 变分法
塑性力学基本原理
塑性力学的基本概念:塑性力学是研究 材料在塑性状态下变形行为的学科,其 基本概念包括塑性、屈服准则、流动法 则等。
材料力学与生物医学的交叉:研究生物组织的力学性能,为生物 医学工程提供新的思路和方法。 单击此处输入你的项正文,文字是您思想的提炼,言简意赅的阐述观点。
材料力学与环境科学的交叉:研究材料在环境中的力学性能和变 化规律,为环保和可持续发展提供支持。 单击此处输入你的项正文,文字是您思想的提炼,言简意赅的阐述观点。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、切应变 剪切胡克定律
在切应力的作用下,单 元体的直角将发生微小的
G
τ
改变,这个改变量
应变。
称为切
G
—
剪切弹性模量(GN/m2)
当切应力不超过材料 的剪切比例极限时,切应
变与切应力τ成正比,这
各向同性材料, 三个弹性常数之间的 关系:
个关系称为剪切胡克定律。 G E
2(1 )
§3.4 圆轴扭转时的应力
二、切应力互等定理
由平衡方程
,得Mz 0
M e 2 r r
Me 2 r 2
'
Байду номын сангаас
§3.3 纯剪切
切应力互等定理:
纯剪切
在相互垂直的
两个平面上,切
应力必然成对存
在,且数值相等;
两者都垂直于两
个平面的交线,
方向则共同指向
各个截面上只有切应
或共同背离这一 力没有正应力的情况称为
交线。
纯剪切
§3.3 纯剪切
§3.4 圆轴扭转时的应力
Me
pq
Me
_扭转角(rad)
pq p
q
d
a
d
c
a' O b
R
p
b′ q
dx
d _ dx微段两截面的
x
相对扭转角
边缘上a点的错动距离:
aa' Rd dx
边缘上a点的切应变:
R d
dx
发生在垂直于半径的平面内。
§3.4 圆轴扭转时的应力
p
q
d
ae
d
c
a ' e′O b
R
p
b′ q
dx
R dx
d
d
距圆心为的圆周上e点的错动距离:
距圆心为处的切应变:
d —扭转角 沿x轴的变化率。
d
dx
dx
cc' d dx
也发生在垂直于 半径的平面内。
§3.4 圆轴扭转时的应力
2.物理关系
根据剪切胡克定律
距圆心为 处的切应力:
横截面上任意点的切应力
G
G
G
d
dx
1.变形几何关系
Me
Me
pq
观察变形:
x
圆周线长度形状不变,各圆周线间 距离不变,只是绕轴线转了一个微小角 度;纵向平行线仍然保持为直线且相互 平行,只是倾斜了一个微小角度。
Me
pq
pq
Me
x
圆轴扭转的平面假设:
pq
圆轴扭转变形前原为平面的横截面,变形后仍 保持为平面,形状和大小不变,半径仍保持为直线; 且相邻两截面间的距离不变。
§3.4 圆轴扭转时的应力
例题3.4
已知:P=7.5kW, n=100r/min,最大切应力不 得超过40MPa,空心圆轴的内外直径之比 = 0.5。二轴长度相同。
(2)计算扭矩 (3) 扭矩图
§3.2 外力偶矩的计算 扭矩和扭矩图
MB
MC
MD
MA
T3 M A 1432N m
Tmax 1432N m
传动轴上主、 从动轮安装的位 置不同,轴所承 受的最大扭矩也 不同。
B
C
D
A
T3
MA
A
318N.m
795N.m
1432N.m
§3.2 外力偶矩的计算 扭矩和扭矩图
令
Wt
Ip R
抗扭截面系数
max
T Wt
在圆截面边缘上, 有最大切应力
§3.4 圆轴扭转时的应力
I
与
p
Wt
的计算
实心轴
T
Ip
max
T Wt
Wt I p / R 1 D3
16
§3.4 圆轴扭转时的应力
空心轴
则
令
Wt I p /(D / 2)
§3.4 圆轴扭转时的应力
实心轴与空心轴 I p 与 Wt 对比
d 0.945
D
Wt 0.2D3 (1 4 ) 0.2 8.93 (1 0.9454 ) 29 cm3
(2) 强度校核
max
T Wt
1930 29 106
66.7106 Pa
66.7MPa [ ] 70MPa 满足强度要求
§3.4 圆轴扭转时的应力
例3.3 如把上例中的传动轴改为实心轴,要求 它与原来的空心轴强度相同,试确定其直径。 并比较实心轴和空心轴的重量。
解:当实心轴和空心轴的最大应力同 为[]时,两轴的许可扭矩分别为
T1
Wt [
]
16
D13[
]
T2
16
D3(1 4 )[
]
16
(90)3 (1
0.9444 )[
]
若两轴强度相等,则T1=T2 ,于是有
D13 (90)3 (1 0.9444 )
D1 53.1mm 0.0531m
§3.4 圆轴扭转时的应力
实心轴和空心轴横截面面积为
A1
D12
4
(0.0531)2
4
22.2104 m2
A2
4
(D2
d2)
4
[(90 103 )2
(85103)2 ]
6.87 104 m2
在两轴长度相等,材料相同的情况下,两轴重量之比等于横截面面 积之比。
A2 A1
6.87 104 22.2 104
0.31
可见在载荷相同的条件下,空心轴的重量仅为实心轴的31% 。
Wt
Ip
/R
1 D3
16
Wt I p /(D / 2)
§3.4 圆轴扭转时的应力
扭转强度条件:
max
Tmax Wt
1. 等截面圆轴:
2. 阶梯形圆轴:
max
Tmax Wt
max
(Tmax Wt
)max
§3.4 圆轴扭转时的应力
强度条件的应用
(1)校核强度
max
Tmax Wt
§3.3 纯剪切
一、薄壁圆筒扭转时的切应力
将一薄壁圆筒表面用纵向平行线和圆 周线划分;两端施以大小相等方向相反一 对力偶矩。
观察到:
圆周线大小形状不变,各圆周线间距 离不变;纵向平行线仍然保持为直线且 相互平行,只是倾斜了一个角度。
结果说明横截面上没有正应力
§3.3 纯剪切
采用截面法将圆筒截开,横截面 上分布有与截面平行的切应力。由于 壁很薄,可以假设切应力沿壁厚均匀 分布。
垂直于半径
与该点到圆心的距离 成正比。
§3.4 圆轴扭转时的应力
3.静力关系
T A dA
T A dA
G d 2dA
dx A
I p
2dA
A
Ip
横截面对形心的极惯性矩
T
GI p
d
dx
G
d
dx
T Ip
§3.4 圆轴扭转时的应力
公式适用于:
1)圆杆
2) max
p
横截面上某点的切应力的方向与扭矩 方向相同,并垂直于半径。切应力的大 小与其和圆心的距离成正比。
§3.2 外力偶矩的计算 扭矩和扭矩图
例题3.1 传动轴,已知转速 n=300r/min,主动轮A输入功率
PA=45kW,三个从动轮输出功率分别为 PB=10kW,PC=15kW, PD=20kW.试绘轴的扭矩图.
解: (1)计算外力偶矩 由公式 M e 9549P / n
§3.2 外力偶矩的计算 扭矩和扭矩图
max
Tmax Wt
(2)设计截面
Wt
Tmax
(3)确定载荷
Tmax Wt
§3.4 圆轴扭转时的应力
例3.2 由无缝钢管制成的汽车传动轴,外径 D=89mm、壁厚=2.5mm,材料为20号钢,使用 时的最大扭矩T=1930N·m,[]=70MPa.校核此轴 的强度。
解:(1)计算抗扭截面模量