(word完整版)高中数学选修2-3导学案,正规模版1.2
人教B版选修2-3高中数学1.2.1《排列与排列数》word导学案1
人教B版选修2-3高中数学1.2.1《排列与排列数》w o r d导学案1-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN§1.2.1(1)排列与排列数学习目标1.通过分步计数原理理解排列的基本特征;2.会利用排列数解决相应的问题;学习过程【任务一】观察问题问题:从1,2,3这三个数字中,组成一个两位数共有多少种不同的数字?问题1:从1,2,3这三个数字中,组成一个无重复数字的两位数共有多少种不同的数字?问题2:从1,2,3,4这四个数字中,组成一个无重复数字的三位数共有多少种不同的数字?问题3:从1,2,3,4,5这五个数字中,组成一个无重复数字的四位数共有多少种不同的数字?问题4:从1,2,3,4,5,6这六个数字中,组成一个无重复数字的五位数共有多少种不同的数字?【任务二】基本概念排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.... 说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列;(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同3.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号m n A 表示注意区别排列和排列数的不同:“一个排列”是指:从n 个不同元素中,任取m 个元素按照一定的顺序.....排成一列,不是数;“排列数”是指从n 个不同元素中,任取m (m n ≤所以符号m n A 只表示排列数,而不表示具体的排列4.排列数的理解【任务三】典型例题分析例1.解方程:3322126xx x A A A +=+. 例2:解不等式:2996x x A A ->例3:求证:n m n m n n n m A A A --=⋅并利用计数原理直接解释该等式成立。
(word完整版)高中数学选修2-3导学案,正规模版1.2
I变式:乘积(55 n)(56 n)L (68 n)(69 n)用排列数符号表示.(n N,)变式求证:A888A777A66A77小结:排列数A n m可以用阶乘表示为A n m=※ 动手试试练1. 填写下表:2. 一个火车站有8 股岔道,停放4 列不同的火车,有多少种不同的停放方法(假设每股道只能停放1 列火车)?练2. 从2,3,5,7,11 这五个数字中,任取2 个数字组成分数,不同值的分数共有多少个?5. 从1,2,3,4 这4 个数字中,每次取出3个排成一个3 位数,共可得到不同的三位数.例3 求证:A n m nA n m11n 1 n 2 n 11. 求证:A n 1 A n n A n 1张家口东方中学导学案年级:高二科目:数学选修2-3 1-1-1 使用时间:2016-03-01 编制:阎银燕审核:高二数学组《排列(2)》导学案【学习目标】1. 排列数的定义2. 排列数公式及其全排列公式.【重点难点】1. 排列数的定义2. 排列数公式及其全排列公式.【学法指导】(预习教材P5~ P10,找出疑惑之处)复习1 :.什么叫排列?排列的定义包括两个方面分别是和;两个排列相同的条件是相同,也相同复习2:排列数公式:A n m=(m,n N ,m n )全排列数:A n n==.复习3 从5 个不同元素中任取2 个元素的排列数是,全部取出的排列数是【教学过程】(一)导入探究任务一:排列数公式应用的条件问题1:⑴ 从5 本不同的书中选3 本送给3名同学,每人各1 本,共有多少种不同的送法?⑵ 从5 种不同的书中买3 本送给3名同学,每人各1 本,共有多少种不同的送法?新知:排列数公式只能用在从n 个不同元素中取出m 个元素的的排列数,对元素可能相同的情况不能使用.探究任务二:解决排列问题的基本方法问题2:用0到9这10个数字,可以组成多少个没有重复数字的三位数?新知:解排列问题时,当问题分成互斥各类时,根据加法原理,可用分类法;当问题考虑先后次序时,根据乘法原理,可用位置法;这两种方法又称作直接法.当问题的反面简单明了时,可通过求差采用间接法求解;另外,排列中“相邻”问题可以用“捆绑法”;“分离”问题可能用“插空法”等.(二)深入学习例1 (1)6男2女排成一排,2女相邻,有多少种不同的站法?(2)6男2女排成一排,2女不能相邻,有多少种不同的站法?(3)4 男4 女排成一排,同性者相邻,有多少种不同的站法?(4)4 男4 女排成一排,同性者不能相邻,有多少种不同的站法?变式::某小组6 个人排队照相留念.(1)若排成一排照相,甲、乙两人必须在一起,有多少种不同的排法?(2)若排成一排照相,其中甲必在乙的右边,有多少种不同的排法?(3)若排成一排照相,其中有3 名男生3 名女生,且男生不能相邻有多少种排法?(4)若排成一排照相,且甲不站排头乙不站排尾,有多少种不同的排法?(5)若分成两排照相,前排2 人,后排4 人,有多少种不同的排法?小结:对比较复杂的排列问题,应该仔细分析,选择正确的方法. 例2 用0,1,2,3,4,5 六个数字,能排成多少个满足条件的四位数(1)没有重复数字的四位偶数?(2)比1325 大的没有重复数字四位数?变式:用0,1,2,3,4,5,6 七个数字,⑴ 能组成多少个没有重复数字的四位奇数?⑵ 能被5 整除的没有重复数字四位数共有多少个?※ 动手试试练1.从4 种蔬菜品种中选出3 种,分别种植在不同土质的3 块土地上进行实验,有多少种不同的种植方法?2. 学校要安排一场文艺晚会的11 个节目的演出顺序.除第一个节目和最后一个节目已确定外,4个音乐节目要求排在第2,5,7,10 的位置,3 个舞蹈节目要求排在第3,6,9的位置,2个曲艺节目要求排在第4,8的位置,求共有多少种不同的排法?练2. 在3000 至8000 之间有多少个无重复数字的奇数?张家口东方中学导学案年级:高二科目:数学选修2-3 1-1-1 使用时间:2016-03-01 编制:阎银燕审核:高二数学组【当堂检测】1. 某农场为了考察3 个水稻品种和5 个小麦品种的质量,要在土质相同的土地上进行试验,应该安排的试验区共有块.2. 某人要将4 封不同的信投入3 个信箱中,不同的投寄方法有种.3. 用1,2,3,4,5,6 可组成比500000 大、且没有重复数字的自然数的个数是.4. 现有4 个男生和2 个女生排成一排,两端不能排女生,共有种不同的方法5. 在5 天内安排3 次不同的考试,若每天至多安排一次考试,则不同的排法有种.1. .一个学生有20 本不同的书. 所有这些书能够以多少种不同的方式排在一个单层的书架上?【反思】1. 正确选择是分类还是分步的方法,分类要做到“不重不漏” ,分步要做到“步骤完2..正确分清是否为排列问题满足两个条件:从不同元素中取出元素,然后排顺序4张家口东方中学导学案 年级:高二 科目:数学 选修 2-3 1-1-1 使用时间 : 2016-03-01 编制:阎银燕 审核:高二数学组《 组合( 1 )》导学案【学习目标 】1. 正确理解组合与组合数的概念;2. 弄清组合与排列之间的关系;3. 会做组合数的简单运算; .【重点难点 】1. 正确理解组合与组合数的概念;2. 弄清组合与排列之间的关系;3. 会做组合数的简单运算; .【学法指导 】(预习教材 P21~ P23,找出疑惑之处)复习 1:什么叫排列?排列的定义包括两个方面, 分别是 和 . 复习 2:排列数的定义:从 个不同元素中,任取 个元素的 排列的个数叫做从 n 个元素中取出 m 元素的排列数,用符号 表示 复习 3:排列数公式: An = ( m,n N ,m n )【教学过程 】(一)导入 探究任务一:组合的概念 问题:从甲,乙,丙 3 名同学中选出 2 名去参加一项活动,有多少种不同的选法?Cn m我们规定: (二)深入学习 例 1 甲、乙、丙、丁 4个人,( 1)从中选 3 个人组成一组,有多少种不同的方法?列出所有可能情况; (2)从中选 3 个人排成一排,有多少种不同的方法?变式: 甲、乙、丙、丁 4 个足球队举行单循环赛: (1)列出所有各场比赛的双方; ( 2)列出所有冠亚军的可能情况 .小结:排列不仅与元素有关,而且与元素的排列顺序有关,组合只与元素有关,与 顺序无关,要正确区分排列与组合 .试试:试写出集合 a,b,c,d,e 的所有含有 2 个元素的子集从 n 个 元素中取出 m m n 个元素的 组合的个数, 叫做从 n 个不同元素中5知:一般地,从 个 元素中取出 m n 个元素 一组,叫做从 n 个不同 元素中取出 m 个元素的一个组合 .例 2 计算: 1) 2)7 10取出 m 个元素的组合数.用符号表示.探究任务三 组合数公式 反思:组合与元素的顺序 关,两个相同的组合需要 个条件,是 排列与组合有何关系?探究任务二.组合数的概念:变式:求证:Cmnm1 nmm1 n张家口东方中学导学案 年级:高二 科目:数学 选修 2-3 1-1-1 使用时间 : 2016-03-01 编制:阎银燕 审核:高二数学组1. 计算:2. 圆上有 10 个点:⑴ 过每 2 个点画一条弦,一共可以画多少条弦?⑵ 过每 3 点画一个圆内接三角形,一共有多少个圆内接三角形?【 反思 】1. 正确理解组合和组合数的概念2. 组合数公式:或者:4. 从 2,3,5,7 四个数字中任取两个不同的数相乘,有 m 个不同的积;任取两个不同的数相除,有 n 个不同的商,则 m : n = .5. 写出从 a,b,c,d,e 中每次取 3 个元素且包含字母 a ,不包含字母 b 的所有组合 6 合抱之木,生于毫末;九层之台,起于累土;千里之行,始于足下※ 动手试试 练 1. 计算:C 2 ⑴ C 6 ; C 3 C 1 2C 7 C 6C 3 C8 ;3C832CC 125;;⑵C 63当堂检测 】m C nn!m!(n m)! (n,mN , 且m n)3. 计算: C 130 练 2. 已知平面内 A , B , C ,D 这 4 个点中任何 3 个点都不在一条直线上,写出由其 中每3 点为顶点的所有三角形 .练 3. 学校开设了 6 门任意选修课, 要求每个学生从中选学 3 门,共有多少种选法?C nm A A n mm n(n 1)(n 2)L (n m 1)m!老子》使用时间 :2016-03-01 编制:阎银燕 审核:高二数学组张家口东方中学导学案 年级:高二 科目:数学 选修 2-3 1-1-1§ 1.2.2 组合( 2)【学习目标 】1. 掌握组合数的两个性质;2. 进一步熟练组合数的计算公式,能够运用公式解决一些简单的应用问题;【重点难点 】1. 掌握组合数的两个性质;2. 进一步熟练组合数的计算公式,能够运用公式解决一些简单的应用问题;【学法指导 】(预习教材 P 24~ P 25,找出疑惑之处)复习 1:从 个 元素中取出 m n 个元素 一组,叫做从 n 个不同元素 中取出 m 个元素的 一个组合 ;从 个 元素中取出 m n 个元素的 组合 的个数,叫做从 n 个不同元素中取出 m 个元素的 组.合.数..用符号 表示 . 复习 2: 组合数公式:mC n= =【教学过程 】 (一)导入探究任务一 : 组合数的性质问题 1:高二( 6)班有 42 个同学⑴ 从中选出 1 名同学参加学校篮球队有多少种选法? ⑵ 从中选出 41 名同学不参加学校篮球队有多少种选法? ⑶ 上面两个问题有何关系?试试 :计算: C 2108反思:⑴若 x y ,一定有 C n x C n y ?⑵若 C n x C n y ,一定有 x y 吗?问题 2 从a 1, a 2, , a n 1这 n +1 个不同元素中取出 m 个元素的组合数是 ,这些组合可以分为两类:一类含有元素a 1 ,一类是不含有 a 1 .含有 a 1 的组合是从a 2, a 3, ,a n 1这个元素中取出 个元素与 a 1组成的,共有 个;不含有 a 1的组合是从 a 2,a 3, , a n 1这 个元素中取出 个元素组成的,共有 个.从中你能得到什么结论?新知 2 组合数性质 2 C n m 1=C n m +C n m 1(二)深入学习例 1(1)计算: C 7 C 7 C 8 C 9 ;变式 1:计算 C 32 C 42 C 52 L C 1200例 2 求证: C m n 2 =C m n +2C m n 1+C m n 2新知 1:组合数的性质 1: C n m C n n m .一般地,从 n 个不同元素中取出 m 个元素后,剩下 n m 个元素.因为从 n 个不同 元素中取出 m 个元素的每一个组合, 与剩下的 n m 个元素的每一个组合一一.对.应.. , 所以从 n 个不同元素中取出m 个元素的组合数,等于从这 n 个元素中取出 n m 个 元素的组合数,即: C n m C n n m7变式 2:证明 :C n m C n m 1 C n m 11小结 :组合数的两个性质对化简和计算组合数中用用处广泛,但在使用时要看清公 式的形式 .张家口东方中学导学案年级:高二科目:数学选修2-3 1-1-1 使用时间:2016-03-01 编制:阎银燕审核:高二数学组例3 解不等式C1n03C1n0-2n N+. 练3 :解不等式:C4n C6n 2. 若C1n2C122n-3,则n3.有3 张参观券,要在5 人中确定3 人去参观,不同方法的种数是若C n71C n7C n899化简:C m9- C m9 1 计算:C197C200 ;4.5.1.⑴※ 动手试试练1.若C65-C44C42x C42x 1,求x的值2.练2. (1)解方程:x1C132x 3C13【反思】1. 组合数的性质1:2)x2C x 2x3C x 2 10A x332. 组合数性质知识拓展计算C33n8计算C30【当堂检测90 1. C100 -C 】8999 =3.,则C m8C n n 2 n 1 ?C n拾圆的人民币各 1 张,一共可以组成多少种币值?m n m C nC nm=m m 12:C n 1 =C n +C nn 3nC21 n1 2 17C41C52L C2107若C1n2C n8,求C2n1的值8张家口东方中学导学案年级:高二科目:数学选修2-3 1-1-1 使用时间:2016-03-01 编制:阎银燕审核:高二数学组《1.2.2 组合(3)》导学案【学习目标】1. 进一步理解组合的意义,区分排列与组合;2. 进一步巩固组合、组合数的概念及其性质;3. 熟练运用排列与组合,解较简单的应用问题.【重点难点】1. 进一步理解组合的意义,区分排列与组合;2. 进一步巩固组合、组合数的概念及其性质;3. 熟练运用排列与组合,解较简单的应用问题.【学法指导】(预习教材P27~ P28,找出疑惑之处)复习1 :⑴ 从个元素中取出m n 个元素的组合的个数,叫做从n 个不同元素中取出m 个元素的组.合.数.,用符号表示;从个元素中取出(m n )个元素的的个数,叫做从n 个不同元素取出m 元素的排列数,用符合表示.⑵ A n m=C n ==A n m与C n m关系公式是复习2:组合数的性质1:.组合数的性质2:.探究任务一:排列组合的应用问题:一位教练的足球队共有17 名初级学员,他们中以前没有一人参加过比赛.按照足球比赛规则,比赛时一个足球队的上场队员是11 人.问:⑴ 这位教练从17 位学员中可以形成多少种学员上场方案?⑵ 如果在选出11 名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事?元素的顺序有关,而组合只要选出元素即可,不要考虑元素的顺序试试:⑴平面内有10 个点,以其中每2 个点为端点的线段共有多少条?⑵平面内有10 个点,以其中每2 个点为端点的有向线段多少条?反思:排列组合在一个问题中能同时使用吗?(二)深入学习例1 在100 件产品中,有98 件合格品,2件次品.从这100 件产品中任意抽出⑴ 有多少种不同的抽法?⑵ 抽出的3 件中恰好有1 件是次品的抽法有多少种?⑶ 抽出的3 件中至少有1 件是次品的抽法有多少种?变式:在200 件产品中有2 件次品,从中任取5 件:⑴ 其中恰有2 件次品的抽法有多少种?⑵ 其中恰有1 件次品的抽法有多少种?⑶ 其中没有次品的抽法有多少种?⑷ 其中至少有1 件次品的抽法有多少种?小结:对综合应用两个计数原理以及组合知识问题,思路是:先分类,后分步例2 现有6 本不同书,分别求下列分法种数:⑴ 分成三堆,一堆3 本,一堆2 本,一堆1 本;⑵ 分给3 个人,一人3 本,一人2 本,一人1 本;⑶ 平均分成三堆.5 人,每人至少1 本,有多少种不同的送书方法?新知:排列组合在实际运用中,可以同时使用,但要分清他们的使用条件:排列与93件. 变式:6 本不同的书全部送给张家口东方中学导学案 年级:高二 科目:数学 选修 2-3 1-1-1 使用时间 : 2016-03-01 编制:阎银燕 审核:高二数学组例 3 现有五种不同颜色要对如图中的四个部分进行着色,要求 有公共边的两块不能用一种颜色,问共有几种不同的着色方 法? 变式:某同学邀请 10位同学中的 6 位参加一项活动,其中两位 同学要么都请,要么都不请,共有多少种邀请方法 ?4. 有 5 名工人要在 3 天中各自选择 1 天休息,不同方法的种数是 ;5. 从 1,3,5,7,9中任取 3 个数字,从 2,4,6,8中任取 2 个数字,一共可以组 成没有重复数字的五位数?1. 在一次考试的选做题部分,要求在第 1 题的 4 个小题中选做 3 个小题,在第 2 题 的 3 个小题中选做 2 个小题,在第 3 题的 2 个小题中选做 1 个小题 .有多少种不同的 选法?※ 动手试试练 1. 甲、乙、丙三人值周,从周一至周六,每人值两天,但甲不值周一,乙不值周 六,问可以排出多少种不同的值周表 ?103. 一部记录片在 4 个单位轮映,每一单位放映 1 场,有多少种轮映次序? 【反思】 1. 排列数的定义练 2. 高二( 1)班共有 35 名同学 ,其中男生 20 名,女生 15名,今从中取出 3 名同学参 加活动 , ( 1)其中某一女生必须在内 ,不同的取法有多少种 ? ( 2)其中某一女生不能在内 , 不同的取法有多少种 ? (3)恰有 2 名女生在内,不同的取法有多少种 ? ( 4)至少有 2 名女生在内,不同的取法有多少种 ? ( 5)至多有 2 名女生在内,不同的取法有多少种 ?2. 从 5 名男生和 4 名女生中选出 4 人去参加辩论比赛 . ⑴ 如果 4 人中男生和女生各选 2 名,有多少种选法?⑵ 如果男生中的甲和女生中的乙必须在内,有多少种选法? ⑶ 如果男生中的甲和女生中的乙至少有 1 人在内,有多少种选法? ⑷ 如果 4 人中必须既有男生又有女生,有多少种选法?【当堂检测 】1. 凸五边形对角线有 条;2. 以正方体的顶点为顶点作三棱锥,可得不同的三棱锥有 个;【反思 】1. 正确区分排列组合问题2. 对综合问题,要“先分类,后分步” ,对特别元素,应优先考虑 .※ 知识拓展根据某个福利彩票方案,在 1 至 37 这 37 个数字中,选取 7 个数字,如果选出的 7 个数字与开出的 7 个数字一样既得一等奖 .问多少注彩票可有一个一等奖?如果要将 等奖的机会提高到6000000以上且不超过3.要从 5件不同的礼物中选出 3件送给 3 个同学,不同方法的种数是1 500000可在 37 个数中取几个数字?张家口东方中学导学案年级:高二科目:数学选修2-3 1-1-1 使用时间:2016-03-01 编制:阎银燕审核:高二数学组2. 排列数公式及其全排列公式.【当堂检测】1. 计算:5A534A42;2.. 计算:A41A42A43A44 *;3. 某年全国足球甲级( A组)联赛共有14 队参加,每队都要与其余各队在主客场分别比赛1 次,共进行场比赛;4. 5 人站成一排照相,共有种不同的站法;21. 若8 名学生每2 人互通一次电话,共通次电话.2. 设集合 A a,b,c,d,e ,B A,已知a B,且B中含有3个元素,则集合B有个.合抱之木,生于毫末;九层之台,起于累土;千里之行,始于足下.——《老子》。
高二数学选修2-3导学案--排列
一、三维目标:知识与技能:了解排列和排列数的概念并应用其解决简单的排列问题;过程与方法:通过实例让学生理解排列的概念,能用列举法、树形图列出排列,并从列举过程中体会排列数与计数原理的关系,体会将实际问题归为计数问题的方法。
通过排列数公式的推导,体会从特殊到一般的思考问题的方法情感态度与价值观:通过学习,让学生知道能用计数原理推导排列数公式,并能解决实际问题,体会数学的力量,积发学习热情;同时培养有序、全面地思考问题的习惯。
二、学习重、难点:重点:理解排列的概念,能用列举法、树形图列出排列,从简单排列问题的计数过程中体会排列数公式。
难点:对排列要完成的“一件事”的理解,对“一定顺序”的理解。
三、学法指导:本节的学习主要应用两个计数原理,解题是要注意:1.分清要完成的事情是什么;2.是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;3.有无特殊条件的限制。
四、知识链接:1.分类加法计数原理定义:2.分步乘法计数原理定义:五、学习过程:A问题1:从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?A问题2:从3个不同的元素 a , b ,c中任取 2 个,然后按照一定的顺序排成一列,一共有多少种不同的排列方法?所有不同的排列是什么?A问题3:从1,2,3,4这 4 个数字中,每次取出3个排成一个三位数,共可得到多少个不同的三位数?用树型图排出,并写出所有的排列?A问题4:试归纳排列的概念?说明:排列的定义包括两个方面:①取出元素,②按一定的顺序排列;B 问题5:两个排列相同的条件? ① ②A 问题6:排列数的定义:注意区别排列和排列数的不同:“一个排列”是指:从n 个不同元素中,任取m (m n ≤)个元素按照一定的顺序.....排成一列,不是数;“排列数”是指从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数,是一个数。
高二选修2一3数学教案(优秀5篇)
高二选修2一3数学教案(优秀5篇)高二选修2一3数学教案篇一[学习目标](1)会用坐标法及距离公式证明Cα+β;(2)会用替代法、诱导公式、同角三角函数关系式,由Cα+β推导Cα—β、Sα±β、Tα±β,切实理解上述公式间的关系与相互转化;(3)掌握公式Cα±β、Sα±β、Tα±β,并利用简单的三角变换,解决求值、化简三角式、证明三角恒等式等问题。
[学习重点]两角和与差的正弦、余弦、正切公式[学习难点]余弦和角公式的推导[知识结构]1、两角和的余弦公式是三角函数一章和、差、倍公式系列的基础。
其公式的证明是用坐标法,利用三角函数定义及平面内两点间的距离公式,把两角和α+β的余弦,化为单角α、β的三角函数(证明过程见课本)2、通过下面各组数的值的比较:①cos(30°—90°)与cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。
我们应该得出如下结论:一般情况下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。
但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。
3、当α、β中有一个是的整数倍时,应首选诱导公式进行变形。
注意两角和与差的三角函数是诱导公式等的基础,而诱导公式是两角和与差的三角函数的特例。
高二选修2一3数学教案篇二一、教学目标:1、知识与技能目标①理解循环结构,能识别和理解简单的框图的功能。
②能运用循环结构设计程序框图解决简单的问题。
2、过程与方法目标通过模仿、操作、探索,学习设计程序框图表达,解决问题的过程,发展有条理的思考与表达的能力,提高逻辑思维能力。
3、情感、态度与价值观目标通过本节的自主性学习,让学生感受和体会算法思想在解决具体问题中的意义,增强学生的创新能力和应用数学的意识。
高中数学选修2-3第一章 排列组合二项式定理导学案
§1.1分类加法计数原理与分步乘法计数原理(一)【学习要求】1.理解分类加法计数原理与分步乘法计数原理.2.会用这两个原理分析和解决一些简单的实际计数问题【学法指导】两个计数原理是推导排列数、组合数计算公式的依据,其基本思想贯穿本章始终,理解两个原理的关键是分清分类与分步.【知识要点】两个计数原理1.分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=种不同的方法.2.分步乘法计数原理:完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=种不同的方法.【问题探究】探究点一分类加法计数原理问题1用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能编出多少种不同的号码?问题2问题1中最重要的特征是什么?问题3由问题1你能归纳出一般结论吗?问题4分类加法计数原理中的“各种方法”与“完成这件事”有什么关系?例1在填写高考志愿表时,一名高中毕业生了解到A、B两所大学各有一些自己感兴趣的强项专业,具体情况如下:如果这名同学只能选一个专业,那么他共有多少种选择呢?问题5若还有C大学,其中强项专业为:新闻学、金融学、人力资源学,那么,这名同学可能的专业选择共有多少种?小结如果完成一件事有n类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,……,在第n类方案中有m n种不同的方法,那么完成这件事共有m1+m2+m3+…+m n种不同的方法.跟踪训练1某校高三共有三个班,其各班人数如下表:(1)从三个班中选一名学生会主席,有多少种不同的选法?(2)从(1)班、(2)班男生中或从(3)班女生中选一名学生任学生会生活部部长,有多少种不同的选法?探究点二分步乘法计数原理问题1如图,从丽水经杭州到上海的途径有多少种?问题2用前6个大写英文字母和1~9九个阿拉伯数字,以A1,A2,…,B1,B2,…的方式给教室里的座位编号,总共能编出多少个不同的号码?问题3由上述问题1,2,你能归纳猜想出一般结论吗?问题4分步乘法计数原理中的“各步方法”与“完成这件事”有什么关系?问题5如果完成一件事需要三个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,做第3步有m3种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事需要n个步骤,做每一步中都有若干种不同的方法,那么应当如何计数呢?例2某商店现有甲种型号电视机10台,乙种型号电视机8台,丙种型号电视机12台,从这三种型号的电视机中各选一台检验,有多少种不同的选法?小结利用分步乘法计数原理解决问题时,一定要正确设计“分步”的程序,即完成这件事共分几步,每一步的具体内容是什么,各步的方法、种数是多少,最后用分步乘法计数原理求解.跟踪训练2已知a∈{3,4,6},b∈{1,2,7,8},r∈{8,9},则方程(x-a)2+(y-b)2=r2可表示不同的圆的个数是多少?探究点三两个计数原理的综合应用问题比较分类加法计数原理和分步乘法计数原理,你能找出它们的区别与联系吗?例3书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.(1)从书架上任取1本书,有多少种不同的取法?(2)从书架的第1、2、3层各取1本书,有多少种不同的取法?(3)从书架上任取两本不同学科的书,有多少种不同的取法?小结解两个计数原理的综合应用题时,最容易出现不知道应用哪个原理解题的情况,其思维障碍在于没有区分该问题是“分类”还是“分步”,突破方法在于认真审题,明确“完成一件事”的含义.具体应用时灵活性很大,要在做题过程中不断体会和思考,基本原则是“化繁为简”.跟踪训练3现有5幅不同的国画,2幅不同的油画,7幅不同的水彩画.(1)从中任选一幅画布置房间,有几种不同的选法?(2)从这些国画、油画、水彩画中各选一幅布置房间,有几种不同的选法?(3)从这些画中选出两幅不同种类的画布置房间,有几种不同的选法?(4)要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?【当堂检测】1.现有4件不同款式的上衣和3条不同颜色的长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数为( )A .7B .12C .64D .812.从A 地到B 地,可乘汽车、火车、轮船三种交通工具,如果一天内汽车发3次,火车发4次,轮船发2次,那么一天内乘坐这三种交通工具的不同走法为 ( ) A .1+1+1=3 B .3+4+2=9 C .3×4×2=24 D .以上都不对 3.十字路口来往的车辆,如果不允许回头,共有不同的行车路线 ( ) A .24种 B .16种 C .12种 D .10种4.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a ,b 组成复数a +b i ,其中虚数有________个. 5.将3封信投入6个信箱内,不同的投法有________种.【课堂小结】1.本课主要学习了两个重要的计数原理,应用两个原理时,要仔细区分原理的不同,加法原理关键在于分类,不同类之间互相排斥,互相独立;乘法原理关键在于分步,各步之间互相依存,互相联系. 2.通过对这两个原理的学习,要进一步体会分类讨论思想及等价转化思想在解题中的应用.【拓展提高】1.用前六个大写的英文字母和1~9九个阿拉伯数字,以,,,,,2121B B A A ⋅⋅⋅…的方式给教室的座位编号,总共能编出多少种不同的号码?2.一种号码拨号锁有4个拨号盘,每个拨号盘上有从0到9共10个数字,这4个拨号盘可以组成 个四位数号码.3.现有高一年级的学生3名,高二年级的学生5名,高三年级的学生4名. (1)从中任选1人参加接待外宾的活动,有多少种不同的选法?(2)从3个年级的学生中各选1人参加接待外宾的活动,有多少种不同的选法?【课后作业】§1.1分类加法计数原理与分步乘法计数原理(二)【学习要求】巩固分类加法计数原理和分步乘法计数原理,并能应用两个原理解决实际问题.【学法指导】用两个计数原理解决具体问题时,首先要分清是“分类”还是“分步”,其次要清楚“分类”或“分步”的具体标准,在“分类”时要做到“不重不漏”,在“分步”时要正确设计“分步”的程序,注意步与步之间的连续性.【双基检测】1.如图所示,在由开关组A 与B 所组成的并联电路中,接通电源,则只闭合一个开关能使电灯发光的方法种数为 ()A .6B .5C .30D .12.用4种不同的颜色涂入如图所示的矩形A ,B ,C ,D 中,每个矩形只涂入一种,要求相邻的矩形涂色不同,则不同的涂色方法共有 ( ) A .72种 B .48种 C .24种 D .12种3.在夏季,一个女孩有红、绿、黄3件上衣,红、绿、黄、白、黑5种裙子,这位女孩夏季某一天去学校上学,有________种不同的穿法.【题型解法】题型一 两个计数原理在排数中的应用 例1 数字不重复的四位偶数共有多少个?小结 排数问题实际就是分步问题,需要用乘法原理解决.此题中,由于数字0的出现,又进行了分类讨论,即在解决相关的排数问题时,要注意两个原理的综合应用. 跟踪训练1 用0,1,…,9这十个数字,可以组成多少个: (1)三位整数?(2)无重复数字的三位整数?(3)小于500的无重复数字的三位整数?题型二 两个计数原理的实际应用 例2 (1)给程序模块命名,需要用3个字符,其中首字符要求用字母A ~G 或U ~Z ,后两个要求用数字1~9,最多可以给多少个程序命名?(2)核糖核酸(RNA)分子是在生物细胞中发现的化学成分.一个RNA 分子是一个有着数百个甚至数千个位置的长链,长链中每个位置上都有一个称为碱基的化学成分所占据.总共有4种不同的碱基,分别用A 、C 、G 、U 表示(如图所示).在一个RNA 分子中,各种碱基能以任意次序出现,所以在任意一个位置上的碱基与其他位置上的碱基无关.假设有一类RNA 分子由100个碱基组成,那么能有多少种不同的RNA 分子?小结 以上两个问题分别表示两个原理在计算机字节与生物学中的应用,要解决好实际问题,首先要将问题与学习过的两个原理联系,确定用分类还是分步,或是分类和分步综合应用.跟踪训练2 电子元件很容易实现电路的通与断、电位的高与低等两种状态,而这也是最容易控制的两种状态,因此计算机内部就采用了每一位只有0或1两种数字的记数法,即二进制.为了使计算机能够识别字符,需要对字符进行编码,每个字符可以用一个或多个字节来表示,其中字节是计算机中数据存储的最小计量单位,每个字节由8个二进制位构成.问:(1)一个字节(8位)最多可以表示多少个不同的字符?(2)计算机汉字国标码(GB 码)包含了6 763个汉字,一个汉字为一个字符,要对这些汉字进行编码,每个汉字至少要用多少个字节表示?【当堂检测】1.某小组有8名男生,6名女生,从中任选男生、女生各一人去参加座谈会,则不同的选法有() A.48种B.24种C.14种D.12种2.已知函数y=ax2+bx+c为二次函数,其中a,b,c∈{0,1,2,3,4},则不同的二次函数的个数为() A.125 B.15 C.100 D.103.(a1+a2)·(b1+b2+b3)·(c1+c2+c3+c4)的展开式中有________项.4.由0,1,2,3这四个数字,可组成多少个:(1)无重复数字的三位数?(2)可以有重复数字的三位数?5.随着人们生活水平的提高,某城市家庭汽车拥有量迅速增长,汽车牌照号码需要扩容.交通管理部门出台了一种汽车牌照号码组成办法,每一个汽车牌照都必须有3个不重复的英文字母和3个不重复的阿拉伯数字,并且3个字母必须合成一组出现,3个数字也必须合成一组出现.那么按照这种办法共能给多少辆汽车上牌照?【课堂小结】本课时主要讲解了两个基本原理的应用,通过不同类型的题目,要仔细体会两个计数原理的具体用法,尤其是在自然科学、现代科技中处处都离不开两个计数原理的应用,从而深刻体会数学本身的重要性,进一步坚定学好数学的信念.【拓展提高】1.某商场有6个门,如果某人从其中的任意一个门进入商场,并且要求从其他的门出去,共有多少种不同的进出商场的方式?2.在在平面直角坐标系内,斜率在集合B={1,3,5,7}, y轴上的截距在集合C={2,4,6,8}内取值的不同直线共有条.3.将三封信投入4个邮箱,不同的投法有种.4.自然数2520有多少个约数?5.现要排一份5天的值班表,每天有1人值班,共有5个人,每个人都可以值多天或不值班,但相邻两天不准同一个人值班,问此值班表共有多少种不同的选法?6.用1,2,3三个数字,可组成个无重复数字的自然数.【课后作业】§1.1习题课分类加法计数原理与分步乘法计数原理【学习要求】1.进一步理解和掌握分类加法计数原理和分步乘法计数原理.2.能根据实际问题特征,正确选择原理解决实际问题.【知识要点】两个计数原理在解决计数问题中的用法在利用两个计数原理解决计数问题时,最重要的是在开始计算之前要进行仔细分析,是分类还是分步.【题型解法】题型一抽取(分配)问题例1高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有()A.16种B.18种C.37种D.48种小结解决抽取(分配)问题的方法(1)当涉及对象数目不大时,一般选用枚举法、树状图法、框图法或者图表法.(2)当涉及对象数目很大时,一般有两种方法:①直接使用分类加法计数原理或分步乘法计数原理.一般地,若抽取是有顺序的就按分步进行;若是按对象特征抽取的,则按分类进行.②间接法:去掉限制条件,计算所有的抽取方法数,然后减去所有不符合条件的抽取方法数即可.跟踪训练13个不同的小球放入5个不同的盒子,每个盒子至多放一个小球,共有多少种方法?题型二涂色问题例2一个同心圆形花坛,分为两部分,中间小圆部分种植草坪和绿色灌木,周围的圆环分为n(n≥3,n∈N)等份,种植红、黄、蓝三色不同的花,要求相邻两部分种植不同颜色的花.(1)如图1,圆环分成的3等份为a1,a2,a3,有多少种不同的种植方法?(2)如图2,圆环分成的4等份为a1,a2,a3,a4,有多少种不同的种植方法?小结(1)涂色问题的基本要求是相邻区域不同色,但是不相邻的区域可以同色.因此一般以不相邻区域同色,不同色为分类依据,相邻区域可用分步涂色的办法涂色.(2)涂色问题往往涉及分类、分步计数原理的综合应用,因此,要找准分类标准,兼顾条件的情况下分步涂色.跟踪训练2如图所示的几何体是由一个正三棱锥P-ABC与正三棱柱ABC-A1B1C1组合而成的,现用3种不同颜色对这个几何体的表面染色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的染色方案共有________种.题型三 种植问题例3 从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,求有多少种不同的种植方法.小结 按元素性质分类,按事件发生过程分步是计数问题的基本思想方法,区分“分类”与“分步”的关键,是验证所提供的某一种方法是否完成了这件事情,分类中的每一种方法都完成了这件事情,而分步中的每一种方法不能完成这件事情,只是向事情的完成迈进了一步.跟踪训练3 将3种作物种植在如图所示的5块试验田里,每块种植一种作物且相邻的试验田不能种植同一种作物,不同的种植方法共有________种(以数字作答).【当堂检测】1.某电话局的电话号码为168*****,若后面的五位数字是由6或8组成的,则这样的电话号码一共有 ( ) A .20个 B .25个 C .32个 D .48个2.从集合{1,2,3,4,5}中任取2个不同的数,作为直线Ax +By =0的系数,则形成不同的直线最多有 ( ) A .18条 B .20条 C .25条 D .10条3.如图是5个相同的正方形,用红、黄、蓝、白、黑5种颜色涂这些正方形,使每个正方形涂一种颜色,且相邻正方形涂不同的颜色.如果颜色可反复使用,那么共有________种涂色方法.4.由0,1,2,3这四个数字,可组成多少个: (1)无重复数字的三位数? (2)可以有重复数字的三位数?【课堂小结】1.分类加法计数原理与分步乘法计数原理是两个最基本、也是最重要的原理,是解答排列、组合问题,尤其是较复杂的排列、组合问题的基础.2.应用分类加法计数原理要求分类的每一种方法都能把事件独立完成;应用分步乘法计数原理要求各步均是完成事件必须经过的若干彼此独立的步骤.3.一般是先分类再分步,分类时要设计好标准,设计好分类方案,防止重复和遗漏. 4.若正面分类,种类比较多,而问题的反面种类比较少时,则使用间接法会简单一些.【拓展提高】1.有4名同学分别报名参加学校的足球队,篮球队,乒乓球队,每人限报其中的一个运动队,不同的报名种数是2.如图6个扇形区域F E D C B A 、、、、、,现给这6个区域着色,要求同一区域涂同一种颜色,相邻的两个区域不得使用同一种颜色,现有4种不同的颜色可供选择,有多少种染色方法?3.将一个四棱锥S ABCD 的每个顶点染上一种颜色,并使同一条棱的两端点异色,如果只有5种颜色可供使用,那么不同的染色方法的总数是多少?§1.2.1排列(一)【学习要求】1.理解并掌握排列的概念.2.理解并掌握排列数公式,能应用排列知识解决简单的实际问题.【学法指导】排列是分步乘法计数原理的一个重要应用,学习中要理解排列数公式的推导过程,从中体会“化归”的数学思想.【知识要点】1.排列:一般地,从n 个不同元素中取出m (m ≤n )个元素,按照 排成一列,叫做从n 个不同元素中取出m 个元素的一个排列(arrangement).2.排列数:从n 个不同元素中取出m (m ≤n )个元素的 叫做从n 个不同元素中取出m 个元素的排列数,用符号 表示.3.排列数公式:A mn = (n ,m ∈N *,m ≤n )= .【问题探究】探究点一 排列(数)的概念问题1 从甲、乙、丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,另1名同学参加下午的活动,有多少种不同的安排方法?问题2 从1,2,3,4这4个数字中,每次取出3个排成一个三位数,共可得到多少个不同的三位数? 问题3 怎样判断一个具体问题是否为排列问题? 例1 判断下列问题是否是排列问题.(1)从1、2、3、4四个数字中,任选两个做加法,其结果有多少种不同的可能? (2)从1、2、3、4四个数字中,任选两个做除法,其结果有多少种不同的可能? (3)会场有50个座位,要求选出3个座位安排3位客人就座,有多少种不同的方法?小结 判断一个问题是否为排列问题的依据是否是有顺序,有顺序且是从n 个不同的元素中任取m (m ≤n )个不同的元素的问题就是排列,否则就不是排列. 跟踪训练1 判断下列问题是否是排列问题:(1)某班共有50名同学,现要投票选举正、副班长各一人,共有多少种可能的选举结果? (2)从2,3,5,7,9中任取两数分别作对数的底数和真数,有多少不同对数值?(3)从1到10十个自然数中任取两个数组成点的坐标,可得多少个不同的点的坐标?探究点二 排列的列举问题问题 对于简单的排列问题,怎样写出从n 个不同元素中取出m 个元素的所有排列? 例2 写出下列问题的所有排列:(1)从1,2,3,4四个数字中任取两个数字组成两位数,共有多少个不同的两位数? (2)写出从4个元素a ,b ,c ,d 中任取3个元素的所有排列.小结 在写出所要求的排列时,可采用“树形”图或“框”图一一列出,一定保证不遗漏.跟踪训练2 写出下列问题的所有排列:(1)北京、广州、南京、天津4个城市相互通航,应该有多少种机票?(2)A 、B 、C 、D 四名同学排成一排照相,要求自左向右,A 不排第一,B 不排第四,共有多少种不同的排列方法?探究点三 排列数公式的推导及应用问题1 由例2中两个问题知:A 24=4×3=12,A 34=4×3×2=24,你能否得出A 2n 的意义和A 2n 的值? 问题2 由以上规律,你能写出A m n 吗?有什么特征?若m =n 呢?例3 (1)计算:2A 58+7A 48A 88-A 59. (2)求证:A m n +1=m ·A m -1n +A m n .小结 利用排列数公式进行运算时,要注意排列数之间的关系,两种形式中,一种形式用于化简,证明等,而另一种形式常用于求解.跟踪训练3 (1)某年全国足球甲级(A 组)联赛共有10个队参加,每队要与其余各队在主、客场分别比赛一次,共进行多少场比赛?(2)解不等式:2996->x X A A【当堂检测】1.下列问题属于排列问题的是 ( ) ①从10个人中选2人分别去种树和扫地; ②从10个人中选2人去扫地;③从班上30名男生中选出5人组成一个篮球队; ④从数字5,6,7,8中任取两个不同的数作幂运算. A .①④ B .①② C .④ D .①③④2.从甲、乙、丙三人中选两人站成一排的所有站法为( )A .甲乙,乙甲,甲丙,丙甲B .甲乙丙,乙丙甲C .甲乙,甲丙,乙甲,乙丙,丙甲,丙乙D .甲乙,甲丙,乙丙 3.设m ∈N *,且m <15,则(15-m )(16-m )…(20-m )等于( )A .A 615-mB .A 15-m 20-mC .A 620-m D .A 520-m4.8种不同的菜种,任选4种种在不同土质的4块地上,有________种不同的种法(用数字作答).【课堂小结】1.排列有两层含义:一是“取出元素”,二是“按照一定顺序排成一列”.这里“一定的顺序”是指每次取出的元素与它所排的“位置”有关,所以,取出的元素与“顺序”有无关系就成为判断问题是否为排列问题的标准.2.排列数公式有两种形式,可以根据要求灵活选用.【拓展提高】1.(1)215A;(2)66A(3)28382AA -;(4)6688A A .2.某年全国足球甲级(A 组)联赛共有14队参加,每队都要与其余各队在主客场分别比赛1次,共进行 场比赛;3.一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假设每股道只能停放1列火车)?【课后作业】§1.2.1排列(二)【学习要求】1.进一步加深对排列概念的理解.2.掌握几种有限制条件的排列,能应用排列数公式解决简单的实际问题.【双基检测】1.4×5×6×…×(n -1)×n 等于( )A .A 4nB .A n -4nC .n !-4!D .A n -3n2.6名学生排成两排,每排3人,则不同的排法种数为( ) A .36 B .120 C .720 D .2403.从集合M ={1,2,…,9}中,任取两个元素作为a ,b , ①可以得到多少个焦点在x 轴上的椭圆方程x 2a 2+y 2b 2=1?②可以得到多少个焦点在x 轴上的双曲线方程x 2a 2-y 2b2=1?其中属于排列问题的是________,其结果为________.4.有5名男生和3名女生,从中选出5人分别担任语文、数学、英语、物理、化学学科的科代表,若某女生必须担任语文科代表,则不同的选法共有________种(用数字作答).【题型解法】题型一 无限制条件的排列问题例1 (1)有5本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的送法? (2)有5种不同的书,要买3本送给3名同学,每人各1本,共有多少种不同的送法?小结 本题两小题的区别在于:第(1)小题是从5本不同的书中选出3本分别送给3名同学,各人得到的书不同,属于求排列数问题;而第(2)小题中,给每人的书均可以从5种不同的书中任选1本,各人得到哪本书相互之间没有联系,要用分步乘法计数原理进行计算.跟踪训练1 (1)某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任意挂1面、2面或3面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的 信号?(2)将4位司机、4位售票员分配到四辆不同班次的公共汽车上,每一辆汽车分别有一位司机和一位售票员,共有多少种不同的分配方案?题型二 元素“在”与“不在”问题例2 用0到9这10个数字,可以组成多少个没有重复数字的三位数?小结解决排列应用题,常用的思考方法有直接法和间接法.排列问题的实质是“元素”占“位子”问题,有限制条件的排列问题的限制条件主要表现在某元素不排在某个位子上或某个位子不排某些元素,解决该类排列问题的方法主要是按“优先”原则,即优先排特殊元素或优先满足特殊位子.跟踪训练2五个学生和一个老师站成一排照相,问老师不排在两端的排法有多少种?题型三元素“相邻”与“不相邻”问题例37人站成一排.(1)甲、乙两人相邻的排法有多少种?(2)甲、乙两人不相邻的排法有多少种?(3)甲、乙、丙三人必相邻的排法有多少种?(4)甲、乙、丙三人两两不相邻的排法有多少种?小结处理元素“相邻”“不相邻”问题应遵循“先整体,后局部”的原则.元素相邻问题,一般用“捆绑法”,先把相邻的若干个元素“捆绑”为一个大元素与其余元素全排列,然后再松绑,将这若干个元素内部全排列.元素不相邻问题,一般用“插空法”,先将不相邻元素以外的“普通”元素全排列,然后在“普通”元素之间及两端插入不相邻元素.跟踪训练3对于本例中的7人,(1)甲、乙两人之间只有1人的排法有多少种?(2)甲、乙、丙排序一定时,有多少种排法?(3)甲在乙的左边(不一定相邻)有多少种不同的排法?【当堂检测】1.用1,2,3,4,5这5个数字,组成无重复数字的三位数,其中奇数共有()A.30个B.36个C.40个 D.60个2.6人站成一排,甲、乙、丙3个人不能都站在一起的排法种数为()A.720 B.144 C.576 D.6843.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个节目插入原节目单中,那么不同的插法种数为()A.42 B.30 C.20 D.124.将红、黄、蓝、白、黑5种颜色的小球,分别放入红、黄、蓝、白、黑5种颜色的小口袋中,若不允许有空袋,且红口袋中不能装入红球,则有________种不同的放法.【课堂小结】1.对有特殊限制的排列问题,优先安排特殊元素或特殊位置.2.对从正面分类繁杂的排列问题,可考虑使用间接法.3.对要求某些元素相邻或不相邻的排列问题,可使用“捆绑法”、“插空法”.【拓展提高】1.(1)6男2女排成一排,2女相邻,有多少种不同的站法?(2)6男2女排成一排,2女不能相邻,有多少种不同的站法?(3)4男4女排成一排,同性者相邻,有多少种不同的站法?(4)4男4女排成一排,同性者不能相邻,有多少种不同的站法?2.用0到9这10个数字,可以组成多少个没有重复数字的三位数?3.用0,1,2,3,4,5六个数字,能排成多少个满足条件的四位数.(1)没有重复数字的四位偶数?(2)比1325大的没有重复数字四位数?4.有4位男学生3位女学生排队拍照,根据下列要求,各有多少种不同的排列结果?(1)4个男学生必须连在一起;(2)其中甲、乙两人之间必须间隔2人.(3)若三女生互不相邻(4)若甲、乙两位同学必须排两端(5)若甲、乙两位同学不得排两端(6)若甲、乙两女生相邻且不与第三女生相邻5.学校要安排一场文艺晚会的11个节目的演出顺序.除第一个节目和最后一个节目已确定外,4个音乐节目要求排在第2,5,7,10的位置,3个舞蹈节目要求排在第3,6,9的位置,2个曲艺节目要求排在第4,8的位置,求共有多少种不同的排法?6.一条铁路原有n个车站,为适应客运需要新增)1(mm个车站,客运车票增加62种,问原有多少个车站,现有多少个?【课后作业】§1.2.2组合(一)【学习要求】1.理解组合及组合数的概念.2.能利用计数原理推导组合数公式,并会应用公式解决简单的组合问题.【学法指导】组合研究的问题与排列是平行的,两者的区别是有无“顺序”.学习中可和排列相比较,领悟概念的本质,组合数公式推导中要研究组合与排列的关系.【知识要点】1.组合:一般地,从n个不同元素中,叫做从n个不同元素中取出m个元素的一个组合(combination).2.组合数:从n个不同元素中取出m (m≤n)个元素的的个数,叫做从n个不同元素中取出m个元素的组合数,用符号表示.3.组合数公式:C m n=A m nA m m==(n,m∈N*,m≤n).【问题探究】探究点一组合的概念问题1从3名同学甲、乙、丙中选2名去参加一项活动,有多少种不同选法?问题2问题1和“从3名同学中选出2名去参加一项活动,其中1名参加上午的活动,1名参加下午的活动”有何区别?问题3排列与组合有什么联系和区别?例1判断下列各事件是排列问题,还是组合问题.(1)10个人相互各写一封信,共写了多少封信?(2)10个人规定相互通一次电话,共通了多少次电话?(3)10支球队以单循环进行比赛(每两队比赛一次),这次比赛需要进行多少场次?。
高中数学选修2-3导学案58453
—-可编辑修改,可打印——别找了你想要的都有!精品教育资料——全册教案,,试卷,教学课件,教学设计等一站式服务——全力满足教学需求,真实规划教学环节最新全面教学资源,打造完美教学模式§2.1.1 离散型随机变量学习目标1.理解随机变量的定义;2.掌握离散型随机变量的定义.课前预习导学案一、课前准备(预习教材,找出疑惑之处)复习1:掷一枚骰子,出现的点数可能是,出现偶数点的可能性是.复习2:掷硬币这一最简单的随机试验,其可能的结果是,两个事件.课内探究导学案二、新课导学※学习探究探究任务一:在掷硬币的随机试验中,其结果可以用数来表示吗?我们确定一种 关系,使得每一个试验结果都用一个 表示,在这种 关系下,数字随着试验结果的变化而变化 新知1:随机变量的定义:像这种随着试验结果变化而变化的变量称为 , 常用字母 、 、 、 …表示. 思考:随机变量与函数有类似的地方吗?新知2:随机变量与函数的关系:随机变量与函数都是一种 ,试验结果的范围相当于函数的 ,随机变量的范围相当于函数的 . 试试:在含有10件次品的100件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个 ,其值域是 . 随机变量{}0=X 表示 ;{}4=X 表示 ;{}3<X 表示 ;“抽出3件以上次品”可用随机变量 表示.新知3:所有取值可以 的随机变量,称为离散型随机变量. 思考:① 电灯泡的寿命X 是离散型随机变量吗?②随机变量⎩⎨⎧≥<=小时寿命小时寿命1000,11000,0Y 是一个离散型随机变量吗?※ 典型例题例1.某林场树木最高可达36m ,林场树木的高度η是一个随机变量吗?若是随机变量,η的取值范围是什么?例2 写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5,现从该袋内随机取出3只球,被取出的球的最大号码数ξ;(2)某单位的某部电话在单位时间内收到的呼叫次数η.※ 动手试试练1.下列随机试验的结果能否用离散型号随机变量表示:若能,请写出各随机变量可能的取值并说明这些值所表示的随机试验的结果(1)抛掷两枚骰子,所得点数之和; (2)某足球队在5次点球中射进的球数;(3)任意抽取一瓶某种标有2500ml 的饮料,其实际量与规定量之差.练2.盒中9个正品和3个次品零件,每次取一个零件,如果取出的次品不再放回,且取得正品前已取出的次品数为ξ.(1)写出ξ可能取的值; (2)写出1=ξ所表示的事件三、总结提升 ※ 学习小结1.随机变量; 2.离散型随机变量.课后练习与提高※ 当堂检测(时量:5分钟 满分:10分)计分:1.下列先项中不能作为随机变量的是( ).A .投掷一枚硬币80次,正面向上的次数B .某家庭每月的电话费C .在n 次独立重复试验中,事件发生的次数D .一个口袋中装有3个号码都为1的小球,从中取出2个球的号码的和2.抛掷两枚骰子,所得点数之和记为ξ,那么,4=ξ表示随机实验结果是 ( ) . A .一颗是3点,一颗是1点B .两颗都是2点C .两颗都是4点D .一颗是3点,一颗是1点或两颗都是2点3.某人射击命中率为0.6,他向一目标射击,当第一次射击队中目标则停止射击,则射击次数的取值是( ). A .1,2,3,… ,n 6.0 B .1,2,3,…,n ,… C .0,1,2,… ,n 6.0 D .0,1,2,…,n ,…4.已知ξ2=y 为离散型随机变量,y 的取值为1,2,…,10,则ξ的取值为 . 5.一袋中装有6个同样大小的黑球,编号为1,2,3,4,5,6,现从中随机取出3个球,以ξ表示取出的球的最大号码,则4=ξ表示的试验结果是 .课后作业1在某项体能测试中,跑1km 成绩在4min 之内为优秀,某同学跑1km 所花费的时间X 是离散型随机变量吗?如果我们只关心该同学是否能够取得优秀成绩,应该如何定义随机变量?2下列随机试验的结果能否用离散型随机变量表示:若能,请写出各随机变量可能的取值并说明这些值所表示的随机试验的结果.(1)从学校回家要经过5个红绿灯口,可能遇到红灯的次数;(2)在优、良、中、及格、不及格5个等级的测试中,某同学可能取得的成绩.§2.1.2 离散型随机变量的分布列学习目标1.理解离散型随机变量的分布列的两种形式; 2.理解并运用两点分布和超几何分布.课前预习导学案一、课前准备(预习教材,找出疑惑之处)复习1:设某项试验的成功率是失败率的2倍,用随机变量ξ描述1次试验的成功次数,则ξ的值可以是( ). A .2 B .2或1 C .1或0 D .2或1或0复习2:将一颗骰子掷两次,第一次掷出的点数减去第二次掷出的点数的差是2的概率是 .课内探究导学案二、新课导学※ 学习探究探究任务一:抛掷一枚骰子,向上一面的点数是一个随机变量X .其可能取的值是 ;它取各个不同值的概率都等于 问题:能否用表格的形式来表示呢?X 123456P新知1:离散型随机变量的分布列:若离散型随机变量X 可能取的不同值为n i x x x x ,,,,,21 ,X 取每一个值),,2,1(n i x i =的概率i i p x X P ==)(.则①分布列表示:X 1x 2x … i x… n x P1p2p…i p…n p②等式表示: ③图象表示:新知2:离散型随机变量的分布列具有的性质: (1) ; (2) 试试:某同学求得一离散型随机变量的分布列如下:X0 1 2 3 P0.20.30.150.45试说明该同学的计算结果是否正确.※ 典型例题例1在掷一枚图钉的随机试验中,令⎩⎨⎧=.,0;,1针尖向下针尖向上X 如果针尖向上的概率为p ,试写出随机变量X 的分布列.变式:篮球比赛中每次罚球命中得1分,不中得0分,已知某运动员罚球命中的概率为 0.7,求他一次罚球得分的分布列新知3:两点分布列:X 01Pp -1 p称X 服从 ;称)1(==X P p 为 例2在含有5件次品的100件产品中,任取3件,试求: (1)取到的次品数X 的分布列; (2)至少取到1件次品的概率.变式:抛掷一枚质地均匀的硬币2次,写出正面向上次数X 的分布列?新知4:超几何分布列:X 0 1 … mPn N n M N M C C C 00-- nNn MN M C C C 11-- …nNm n MN m M C C C --※ 动手试试练1.在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有10个红球和20个白球,这些球除颜色外完全相同.一次从中摸出5个球,至少摸到3个红球就中奖.求中奖的概率.练2.从一副不含大小王的52张扑克牌中任意抽出5张,求至少有3张A 的概率.三、总结提升 ※ 学习小结1.离散型随机变量的分布列; 2.离散型随机变量的分布的性质; 3.两点分布和超几何分布.课后练习与提高※ 当堂检测(时量:5分钟 满分:10分)计分:1.若随机变量ξ的概率分布如下表所示,则表中a 的值为( ).ξ1 2 3 4 P1/21/61/6aA .1B .1/2C .1/3D .1/62.某12人的兴趣小组中,有5名“三好生”,现从中任意选6人参加竞赛,用ξ表示这6人中“三好生”的人数,则概率等于6123735C C C 的是( ) . A .)2(=ξP B .)3(=ξP C .)2(≤ξP D .)3(≤ξP3.若a n P -=≤1)(ξ,b m P -=≥1)(ξ,其中n m <,则)(n m P ≤≤ξ等于( ). A .)1)(1(b a -- B .)1(1b a -- C .)(1b a +- D .)1(1a b -- 4.已知随机变量ξ的分布列为ξ 1 2 3 4 5 P0.10.20.40.20.1则ξ为奇数的概率为 .5.在第4题的条件下,若32-=ξη,则η的分布列为 .课后作业1.学校要从30名候选人中选10名同学组成学生会,其中某班有4名候选人,假设每名候选人都有相同的机会被选到,求该班恰有2名同学被选到的概率.2.老师要从10篇课文中随机抽3篇让学生背诵,规定至少要背出其中2篇才能及格.某同学只能背诵其中的6篇,试求:(1)抽到他能背诵的课文的数量的分布列; (2)他能及格的概率.§2.2.1 条件概率学习目标1.在具体情境中,了解条件概率的意义; 2.学会应用条件概率解决实际问题.课前预习导学案一、课前准备(预习教材,找出疑惑之处)复习1:下面列出的表达式是否是离散型随机变量X 的分布列( ). A .0.2)(==i X P ,4,3,2,1,0=iB .0.2)(==i X P ,5,4,3,2,1=iC .505)(2+==i i X P ,5,4,3,2,1=iD .10)(ii X P ==,4,3,2,1=i复习2:设随机变量的分布如下:ξ1 2 3… nPK K 2 K 4…K n 12-求常数K .课内探究导学案二、新课导学 ※ 学习探究探究:3张奖券中只有1张能中奖,现分别由3名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比其他同学小?若抽到中奖奖券用“Y ”表示,没有抽到用“Y ”表示,则所有可能的抽取情况为{=Ω },用B表示最后一名同学抽到中奖奖券的事件,则{=B},故最后一名同学抽到中奖奖券的概率为:=Ω=)()()(n B n B P 思考:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到中奖奖券的概率又是?因为已经知道第一名同学没有抽到中奖奖券,故所有可能的抽取情况变为{=A }最后一名同学抽到中奖奖券的概率为=)()(A n B n 记作:)(A B P新知1:在事件A 发生的情况下事件B 发生的条件概率为:)(A B P =)()(A n AB n = 新知2:条件概率具有概率的性质:≤)(A B P ≤如果B 和C 是两个互斥事件,则)(A C B P ⋃=※ 典型例题例1在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求: (1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.变式:在第1次抽到理科题的条件下,第2次抽到文科题的概率?例2一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字.求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.变式:任意按最后一位数字,第3次就按对的概率?※动手试试练1.从一副不含大小王的52张扑克牌中不放回地抽取2次,每次抽1张.已知第1次抽到A,求第2次也抽到A的概率.练2.某地区气象台统计,该地区下雨的概率是154,刮三级以上风的概率为52,既刮风又下雨的概率为101,设A为下雨,B为刮风,求:(1))(BAP;(2))(ABP.三、总结提升※学习小结1.理解条件概率的存在;2.求条件概率;3.条件概率中的“条件”就是“前提”的意思.课后练习与提高※当堂检测(时量:5分钟满分:10分)计分:1.下列正确的是().A.)(ABP=)(BAP B.)(BAP=)()(BnABnC.1)(0<<ABP D.)(AAP=02.盒中有25个球,其中10个白的,5个黄的,10个黑的,从盒子中任意取出一个球,已知它不是黑球,则它是黄球的概率为( ) .A.1/3 B.1/4 C.1/5 D.1/63.某种动物由出生算起活到20岁的概率为0.8,活到25岁的概率为0.4,现有一个20岁的动物,问它能活到25岁的概率是( ).A .0.4B .0.8C .0.32D .0.54.5.0)(=A P ,3.0)(=B P ,2.0)(=AB P ,则)(B A P = ,)(A B P = . 5.一个家庭中有两个小孩,已知这个家庭中有一个是女孩,问这时另一个小孩是男孩的概率是 .课后作业1.设某种灯管使用了500h 能继续使用的概率为0.94,使用到700h 后还能继续使用的概率为0.87,问已经使用了500h 的灯管还能继续使用到700h 的概率是多少?2.100件产品中有5件次品,不入回地抽取2次,每次抽1件.已知第1次抽出的是次品,求第2次抽出正品的概率.§2.2.2 事件的相互独立性学习目标1.了解相互独立事件的意义,求一些事件的概率;2.理解独立事件概念以及其与互斥,对立事件的区别与联系.课前预习导学案一、课前准备(预习教材,找出疑惑之处)复习1:把一枚硬币任意掷两次,事件=A “第一次出现正面”,事件B =“第二次出现正面”,则)(A B P 等于?复习2:已知0)(>B P ,φ=21A A ,则 成立. A .0)(1>B A PB .=+)(21B A A P )(1B A P +)(2B A PC .0)(21≠B A A PD .1)(21=B A A P课内探究导学案二、新课导学 ※ 学习探究探究:3张奖券中只有1张能中奖,现分别由3名同学有放回地抽取,事件A 为“第一名同学没有抽到奖券”,事件B 为“最后一名同学抽到奖券”,事件A 的发生会影响事件B 发生的概率吗?新知1:事件A 与事件B 的相互独立:设B A ,为两个事件,如果 ,则称事件A 与事件B 的相互独立.注意:①在事件A 与B 相互独立的定义中,A 与B 的地位是对称的;②不能用)()(B P A B P =作为事件A 与事件B 相互独立的定义,因为这个等式的适用范围是0)(>A P ; ③如果事件A 与B 相互独立,那么A 与B ,A 与B ,A 与B 也都相互独立. 试试:分别抛掷2枚质地均匀的硬币,设A 是事件“第1枚为正面”,B 是事件“第2枚为正面”,C 是事件“2枚结果相同”,问:C B A ,,中哪两个相互独立?小结:判定相互独立事件的方法:①由定义,若)()()(B P A P AB P =,则B A ,独立; ②根据实际情况直接判定其独立性. ※ 典型例题例1某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券.奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中奖概率都是05.0,求两次抽奖中以下事件的概率: (1)都抽到某一指定号码; (2)恰有一次抽到某一指定号码; (3)至少有一次抽到某一指定号码.变式:两次都没有抽到指定号码的概率是多少?思考:二次开奖至少中一次奖的概率是一次开奖中奖概率的两倍吗?例2.下列事件中,哪些是互斥事件,哪些是相互独立事件? (1)“掷一枚硬币,得到正面向上”与“掷一枚骰子,向上的点是2点”; (2)“在一次考试中,张三的成绩及格”与“在这次考试中李四的成绩不及格”;(3)在一个口袋内有3白球、2黑球,则“从中任意取1个球得到白球”与“从中任意取1个得到黑球”※ 动手试试练1.天气预报,在元旦假期甲地的降雨概率是2.0,乙地的降雨概率是3.0,假定在这段时间内两地是否降雨相互之间没有影响,计算在这段时间内: (1)甲、乙两地都降雨的概率; (2)甲、乙两地都不降雨的概率; (3)其中至少一个地方降雨的概率.练2.某同学参加科普知识竞赛,需回答3个问题.竞赛规则规定:答对第一、二、三问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为6.0,7.0,8.0,且各题答对与否相互之间没有影响.(1)求这名同学得300分的概率; (2)求这名同学至少得300分的概率.三、总结提升 ※ 学习小结1.相互独立事件的定义;2.相互独立事件与互斥事件、对立事件的区别.课后练习与提高※ 当堂检测(时量:5分钟 满分:10分)计分:1. 甲打靶的命中率为7.0,乙的命中率为8.0,若两人同时射击一个目标,则都未中的概率为( ). A .06.0 B .44.0 C .56.0 D .94.02.有一道题,C B A 、、三人独自解决的概率分别为413121、、,三人同时独自解这题,则只有一人解出的概率为 ( ) . A .241 B .2411 C . 2417 D . 31 3.同上题,这道题被解出的概率是( ). A .43 B .32 C . 54 D .107 4.已知A 与B 是相互独立事件,且3.0)(=A P ,6.0)(=B P ,则=⋅)(B A P .5.有100件产品,其中5件次品,从中选项取两次:(1)取后不放回,(2)取后放回,则两次都取得合格品的概率分别为 、 .课后作业1.一个口袋内装有2个白球和2个黑球,那么先摸出1个白球放回,再摸出1个白球的概率是多少?2.甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为41,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为121,甲、丙两台机床加工的零件都是一等品的概率为92(1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.§2.2.3独立重复试验与二项分布学习目标1.了解独立重复试验;2.理解二项分布的含义.课前预习导学案一、课前准备(预习教材,找出疑惑之处)复习1:生产一种产品共需5道工序,其中1~5道工序的生产合格率分别为96%,99%,98%,97%,96%,现从成品中任意抽取1件,抽到合格品的概率是多少?复习2:掷一枚硬币3次,则只有一次正面向上的概率为.课内探究导学案二、新课导学※学习探究探究1:在n次重复掷硬币的过程中,各次掷硬币试验的结果是否会受其他掷硬币试验的影响?新知1:独立重复试验:在的条件下做的n次试验称为n次独立重复试验.探究2:投掷一枚图钉,设针尖向上的概率为p,则针尖向下的概率为pq-=1,连续掷一枚图钉3次,仅出现1次针尖向上的概率是多少?新知2:二项分布:一般地,在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为:)(kXP== ,nk,,2,1,0=则称随机变量X服从.记作:X~B(),并称p为.试试:某同学投篮命中率为6.0,他在6次投篮中命中的次数X是一个随机变量,X~B()故他投中2次的概率是.※典型例题例1某射手每次射击击中目标的概率是8.0,求这名射击手在10次射击中(1)恰有8次击中目标的概率;(2)至少有8次击中目标的概率.变式:击中次数少于8次的概率是多少?例2.将一枚硬币连续抛掷5次,求正面向上的次数X的分布列?变式:抛掷一颗骰子5次,向上的点数是2的次数有3次的概率是多少?※动手试试练1.若某射击手每次射击击中目标的概率是9.0,每次射击的结果相互独立,那么在他连续4次的射击中,第1次未击中目标,但后3次都击中目标的概率是多少?练2.如果生男孩和生女孩的概率相等,求有3个小孩的家庭中至少有2个女孩的概率.三、总结提升※学习小结1.独立重复事件的定义;2.二项分布与二项式定理的公式.课后练习与提高※当堂检测(时量:5分钟满分:10分)计分:1.某学生通过计算初级水平测试的概率为21,他连续测试两次,则恰有1次获得通过的概率为().A.31B.21C.41D.432.某气象站天气预报的准确率为80%,则5次预报中至少有4次准确的概率为( ) .A.2.0B.41.0C.74.0D.67.03.每次试验的成功率为)10(<<pp,则在3次重复试验中至少失败1次的概率为().A.3)1(p-B.31p-C.)1(3p-D.)1()1()1(223ppppp-+-+-4.在3次独立重复试验中,随机事件恰好发生1次的概率不大于其恰好发生两次的概率,则事件A在一次试验中发生的概率的范围是.5.某种植物种子发芽的概率为7.0,则4颗种子中恰好有3颗发芽的概率为.课后作业1.某盏吊灯上并联着3个灯泡,如果在某段时间内每个灯泡能正常照明的概率都是7.0,那么在这段时间内吊灯能照明的概率是多少?2.甲、乙两选手比赛,假设每局比赛甲胜的概率为6.0,乙胜的概率为4.0,那么采用3局2胜制还是采用5局3胜制对甲更有利?§2.3.1离散型随机变量的均值(1)学习目标1.理解并应用数学期望来解决实际问题;2.各种分布的期望.课前预习导学案一、课前准备(预习教材,找出疑惑之处)复习1:甲箱子里装3个白球,2个黑球,乙箱子里装2个白球,2个黑球,从这两个箱子里分别摸出1个球,则它们都是白球的概率?复习2:某企业正常用水的概率为43,则5天内至少有4天用水正常的概率为.课内探究导学案二、新课导学※学习探究探究:某商场要将单价分别为18元/kg,24元/kg,36元/kg的3种糖果按1:2:3的比例混合销售,如何对混合糖果定价才合理?新知1:均值或数学期望:若离散型随机变量X的分布列为:X1x2x…i x…n xP1p2p…i p…n p则称=EX.为随机变量X的均值或数学期望.它反映离散型随机变量取值的.新知2:离散型随机变量期望的性质:若baXY+=,其中ba,为常数,则Y也是随机变量,且baEXbaXE+=+)(.注意:随机变量的均值与样本的平均值的:区别:随机变量的均值是 ,而样本的平均值是 ;联系:对于简单随机样本,随着样本容量的增加,样本平均值越来越接近于总体均值. ※ 典型例题例1在篮球比赛中,罚球命中1次得1分,不中得0分.如果某运动员罚球命中的概率为7.0,那么他罚球1次的得分X 的均值是多少?变式:.如果罚球命中的概率为8.0,那么罚球1次的得分均值是多少? 新知3:①若X 服从两点分布,则=EX ; ②若X ~),(p n B ,则=EX .例2.一次单元测验由20个选择题构成,每个选择题有4个选项,其中仅有一个选项正确.每题选对得5分,不选或选错不得分,满分100分.学生甲选对任意一题的概率为9.0,学生乙则在测验中对每题都从各选项中随机地选择一个.分别求甲学生和乙学生在这次测验中的成绩的均值 .思考:学生甲在这次单元测试中的成绩一定会是90分吗?他的均值为90分的含义是什么?※ 动手试试练1.已知随机变量X 的分布列为:X 0 1 2 3 4 5 P0.10.20.30.20.10.1求EX .练2.同时抛掷5枚质地均匀的硬币,求出现正面向上的硬币数X 的均值.X1 3 5P 0.5 0.3 0.2三、总结提升 ※ 学习小结1.随机变量的均值; 2.各种分布的期望.课后练习与提高※ 当堂检测(时量:5分钟 满分:10分)计分:1. 随机变量X 的分布列为则其期望等于( ).A .1B .31C .5.4D .4.22.已知32+=ξη,且53=ξE ,则=ηE ( ) . A .53 B .56 C . 521 D . 512 3.若随机变量X 满足1)(==c X P ,其中c 为常数,则=EX ( ). A .0 B .1 C . c D .不确定4.一大批进口表的次品率15.0=P ,任取1000只,其中次品数ξ的期望=ξE .5.抛掷两枚骰子,当至少有一枚出现6点时,就说这次试验成功,则在30次试验中成功次数的期望 .课后作业1.抛掷1枚硬币 ,规定正面向上得1分,反面向上得1-分,求得分X 的均值.2.产量相同的2台机床生产同一种零件,它们在一小时内生产出的次品数21,X X 的分布列分别如下:1X0 1 2 3 P0.40.30.20.12X0 1 2 P0.30.50.2问哪台机床更好?请解释所得出结论的实际含义.§2.3.1离散型随机变量的均值(2)学习目标1.进一步理解数学期望;2.应用数学期望来解决实际问题.课前预习导学案一、课前准备(预习教材P 72~ P 74,找出疑惑之处)复习1:设一位足球运动员,在有人防守的情况下,射门命中的概率为3.0=p ,求他一次射门时命中次数ξ的期望复习2:一名射手击中靶心的概率是9.0,如果他在同样的条件下连续射击10次,求他击中靶心的次数的均值?课内探究导学案二、新课导学探究:某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%,下表是过去200例类拟项目开发的实施结果:投资成功 投资失败 192次8次则该公司一年后估计可获收益的期望是 元.※ 典型例题例1 已知随机变量X 取所有可能的值n ,,2,1 是等到可能的,且X 的均值为5.50,求n 的值例2.根据气象预报,某地区近期有小洪水的概率为25.0,有大洪水的概率为01.0.该地区某工地上有一台大型设备,遇到大洪水时要损失60000元,遇到小洪水时要损失10000元.为保护设备,有以下3种方案: 方案1:运走设备,搬运费为3800元方案2:建保护围墙,建设费为2000元,但围墙只能防小洪水 . 方案3:不采取措施,希望不发生洪水. 试比较哪一种方案好.思考:根据上述结论,人们一定采取方案2吗?※ 动手试试练1.现要发行10000张彩票,其中中奖金额为2元的彩票1000张, 10元的彩票300张, 50元的彩票100张, 100元的彩票50张, 1000元的彩票5张,问一张彩票可能中奖金额的均值是多少元?练2.抛掷两枚骰子,当至少有一枚5点或6点出现时,就说这次试验成功,求在20次试验中成功次数X 的期望.三、总结提升 ※ 学习小结1.随机变量的均值;2.各种分布的期望.课后练习与提高※ 当堂检测(时量:5分钟 满分:10分)计分:1.若ξ是一个随机变量,则)(ξξE E -的值为( ). A .无法求 B .0 C .ξE D .ξE 2 2设随机变量ξ的分布列为41)(==k P ξ,4,3,2,1=k ,则ξE 的值为 ( ) . A .25B .5.3C . 25.0D . 2 3.若随机变量ξ~)6.0,(n B ,且3=ξE ,则)1(=ξP 的值是( ). A .44.02⨯ B .54.02⨯ C .44.03⨯ D .46.03⨯ 4.已知随机变量ξ的分布列为:ξ0 1 2 34 P1.02.0.0x1.0则x = ;=<≤)31(ξP ;ξE = .5.一盒内装有5个球,其中2个旧的,3个新的,从中任意取2个,则取到新球个数的期望值为 .课后作业1.已知随机变量X 的分布列:X2- 1 3 P16.044.040.0求)52(,+X E EX2.一台机器在一天内发生故障的概率为1.0,若这台机器一周5个工作日不发生故障,可获利5万元;发生1次故障仍可获利5.2万元;发生2次故障的利润为0元;发生3次或3次以上故障要亏损1万元,问这台机器一周内可能获利的均值是多少?§2.3.2 离散型随机变量的方差(1)学习目标1.理解随机变量方差的概念; 2.各种分布的方差.课前预习导学案一、课前准备(预习教材,找出疑惑之处)复习1:若随机变量 Y ~)8.0,5(B ,则=EY ;又若42+=Y X ,则=2EX 复习2:已知随机变量ξ的分布列为 :ξ1xP51 p103且1.1=ξE ,则=p ;=x课内探究导学案二、新课导学 ※ 学习探究探究:要从两名同学中挑出一名,代表班级参加射击比赛,根据以往的成绩纪录,第一名同学击中目标靶的环数1X ~)8.0,10(B ,第二名同学击中目标靶的环数42+=Y X ,其中Y ~)8.0,5(B ,请问应该派哪名同学参赛?新知1:离散型随机变量的方差:当已知随机变量ξ的分布列为()k k p x P ==ξ ),2,1( =k 时,则称=ξD 为ξ的方差,=σξ 为ξ的标准差随机变量的方差与标准差都反映了随机变量取值的 .ξD 越小,稳定性越 ,波动越 .新知2:方差的性质:当b a ,均为常数时,随机变量b a +=ξη的方差=+=)()(b a D D ξη .特别是: ①当0=a 时,()=b D ,即常数的方差等于 ;②当1=a 时,=+)(b D ξ ,即随机变量与常数之和的方差就等于这个随机变量的方差 ; ③当0=b 时,()=ξa D ,即随机变量与常之积的方差,等于常数的 与这个随机变量方差的积 新知2:常见的一些离散型随机变量的方差: (1)单点分布:=ξD ; (2)两点分布:=ξD ; (3)二项分布:=ξD .※ 典型例题例1已知随机变量X 的分布列为:X 0 1 2 3 4 5 P0.10.20.30.20.10.1求DX 和X σ.。
高中数学选修23导学案,正规模版
《 正态分布》导学案【学习目标 】1.了解正态曲线的形状;2.会求服从正态分布的随机变量X 的概率分布. 【重点难点 】1.了解正态曲线的形状;2.会求服从正态分布的随机变量X 的概率分布. 【学法指导 】(预习教材P 80~ P 86,找出疑惑之处) 复习1:函数2221)(x ex f -=π的定义域是 ;它是 (奇或偶)函数;当=x 时,函数有最 值,是 .复习2:已知抛物线322++-=x x y ,则其对称轴为 ;该曲线与直线1=x ,2=x ,x 轴所围的成的图形的面积是?【教学过程 】 (一)导入※ 学习探究探究1.一所学校同年级的同学的身高,特别高的同学比较少,特别矮的同学也不多,大都集中在某个高度左右;2.某种电子产品的使用寿命也都接近某一个数,使用期过长,或过短的产品相对较少.生活中这样的现象很多,是否可以用数学模型来刻划呢?新知1:正态曲线: 函数222)(,21)(σμσμσπϕ--=x ex ,),(+∞-∞∈x ,(其中实数μ和σ)0(>σ为参数)的图象为正态分布密度曲线,简称正态曲线.试试:下列函数是正态密度函数的是( ).222)(21)(σμπσ-=x ex f ,)0(,>σσμ是实数 B .2222)(x e x f -=ππ C .4)1(2221)(--=x ex f πD .2221)(x e x f π=新知2:正态分布:如果对于任何实数b a <,随机变量X 满足,)(b X a P ≤<= ,则称X 的分布为正态分布.记作:X ~N ( ). 新知3:正态曲线的特点:(1)曲线位于x 轴 ,与x 轴 ; (2)曲线是单峰的,它关于直线 对称; (3)曲线在 处达到峰值 ; (4)曲线与x 轴之间的面积为 .新知4:正态曲线随着μ和σ的变化情况:①当σ一定时,曲线随着μ的变化而沿x 轴 ;②当μ一定时,曲线的 由σ确定. σ越小,曲线越“ ”,表示总体的分布越 ;σ越大,曲线越“ ”,表示总体的分布越 .试试:把一个正态曲线a 沿着横轴方向向右移动2个单位,得到新的一条曲线b ,下列说法中不正确的是( ).A .曲线b 仍然是正态曲线B .曲线a 和曲线b 的最高点的纵坐标相等C .以曲线b 为概率密度曲线的总体的期望比以曲线a 为概率密度曲线的总体的期望大2D .以曲线b 为概率密度曲线的总体的方差比以曲线a 为概率密度曲线的总体的方差大2新知5:正态分布中的三个概率:=+≤<-)(σμσμX P ;=+≤<-)22(σμσμX P ;=+≤<-)33(σμσμX P .新知6:小概率事件与σ3原则:在一次试验中几乎不可能发生,则随机变量X 的取值范围是 . (二)深入学习例1若一个正态分布的概率密度函数是一个偶函数,且该函数的最大值等于π241,求该正态分布的概率密度函数的解析式.例2.在某次数学考试中,考生的成绩ξ服从一个正态分布,即ξ~)100,90(N . (1)试求考试成绩ξ位于区间(70,110)上的概率是多少?(2)若这次考试共有 2000名考生,试估计考试成绩在(80,100)间的考生大约有多少人?※ 动手试试练1.某地区数学考试的成绩X 服从正态分布,其密度函数曲线图形最高点坐标(π281,60),成绩X 位于区间(]68,52的概率是多少?【当堂检测 】1.若2)1(221)(--=x ex f π,则下列正确的是( ).A .有最大值、最小值B .有最大值,无最小值C .无最大值,有最小值D .无最大值、最小值2.设随机变量ξ~)4,2(N ,则)21(ξD = ( ) .A .1B .2C .21D . 4 3.若随机变量满足正态分布),(2σμN ,则关于正态曲线性质的叙述正确的是( ).A .σ越大,曲线越“矮胖”,σ越小,曲线越“高瘦”B .σ越小,曲线越“矮胖”,σ越大,曲线越“高瘦”C .σ的大小,和曲线的“高瘦”、“矮胖”没有关系D .曲线的“高瘦”、“矮胖”受到μ的影响4.期望是2,标准差为π2的正态分布密度函数的解析式是 . 5.若随机变量X ~)2,5(2N ,则=≤<)73(X P .1.标准正态总体的函数为2221)(x ex f -=π,),(+∞-∞∈x(1)证明)(x f 是偶函数; (2)求)(x f 的最大值;(3)利用指数函数的性质说明)(x f 的增减性.2.商场经营的某种包装的大米质量服从正态分布)1.0,10(2N (单位:kg )任选一袋这种大米,质量在9.8~10.2kg 的概率是多少?【反思 】1.正态密度曲线及其特点;2.服从正态分布的随机变量的概率.《第二章 随机变量及其分布(复习)》导学案 【学习目标 】1.掌握离散型随机变量及其分布列; 2.会求离散型随机变量的期望和方差; 3.掌握正态分布的随机变量X 的概率分布. 【重点难点 】【学法指导】(预习教材P87~ P89,找出疑惑之处)复习1:知识结构:1.离散型随机变量及其分布列①离散型随机变量;②分布列;③两点分布;④二项分布.2.离散型随机变量的期望和方差①离散型随机变量的期望及性质;②离散型随机变量的方差及性质;③二项分布的期望和方差.3.正态分布①正态密度曲线;②正态分布中的三个概率.【教学过程】例1袋中有5个大小相同的小球,其中1个白球和4个黑球,每次从中任取一球,每次取出的黑球不再放回去,直到取出白球为止.求取球次数ξ的期望和方差.例2.已知每门大炮射击一次击中目标的概率是3.0,那么要多少门这样的大炮同时对某一目标射击一次,才能使目标被击中的概率超过%95?例3:某商场要根据天气预报来决定国庆节是在商场内还是在商场外展开促销活动.统计资料表明,每年国庆商场内的促销活动可获得经济效益2万元;商场外的促销活动如果不遇到有雨天气可获得经济效益10万元,如果遇到有雨天气则带来经济损失4万元,9月30日气象台预报国庆节当地的降水概率是40%,商场应该选择哪种促销方式?例4:一批电池用于手电筒的寿命是均值为35.6小时、标准差为4.4小时的正态分布.随机从这批电池中任意取一节电池装在电筒中,问这节电池可持续使用不小于40.0小时的概率是多少?※动手试试练1.园林公司种植的树的成活率为90%,该公司种植的10棵树中有8棵或8棵以上将成活的概率是多少?从平均的角度来看,该公司种植的10棵树中将有多少棵成活?练2:NBA总决赛采取七局四胜制.预计本次比赛,两队的实力相当,有每场比赛组织者可获利200万美元(1)求组织者在本次比赛区中获利不低于1200万美元的概率;(2)组织者在本次比赛中期望获利多少?【当堂检测】1.则等于().A.0.1 B.0.2 C.0.5 D.0.672.设服从二项分布),(p n B 的随机变量ξ的期望和方差分别是15和445,则p n ,的值分别是( ) . A .41,50 B .41,60 C .43,50 D . 43,60则ξ的数学期望的最小值是( ).A .21B .0C .2D . 随p 的变化而变化 4.连续抛掷两枚骰子,所得点数之差是一个随机变量ξ,则=≤≤-)44(ξP .5.正态总体)94,0(N ,则数据落在)32,(-∞内的概率是 . 1.某种兔子的繁殖后代中有41具有长毛,在一窝6只兔崽中恰有3只有长毛的概率是多少?2.在某次大型考试中,某班同学的成绩服从正态分布)5,80(2N ,现已知该班同学成绩在80~85分的同学有17人,试计算该班同学中成绩在90分以上的同学有多少个?【反思 】1.离散型随机变量的分布列,期望与方差;2.正态分布及其应用.※ 知识拓展一位同学每天上学路上所花时间X 的样本均值为22分钟,其样本标准差为2分钟,如果X 服从正态分布,学校8点钟开始上课,为使该同学至少能够以0.99的概率保证上课不迟到,该名同学至少要提前二十八分钟出发.。
高二选修2一3数学教案【精选3篇】
高二选修2一3数学教案【精选3篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高二选修2一3数学教案【精选3篇】作为新的老师教案的重要性是不容小觑的,随着教案的完成,对于教材和知识点的把握更有力度,更有利于将来的讲课。
高中数学选修2-3导学案
—-可编辑修改,可打印——别找了你想要的都有!精品教育资料——全册教案,,试卷,教学课件,教学设计等一站式服务——全力满足教学需求,真实规划教学环节最新全面教学资源,打造完美教学模式第一章1.1分类加法计数原理与分步乘法计数原理导学案课前预习学案一、预习目标准确理解两个原理,弄清它们的区别;会用两个原理解决一些简单问题。
二、预习内容分类计数原理:完成一件事, 有n类方式, 在第一类方式,中有m1种不同的方法,在第二类方式,中有m2种不同的方法,……,在第n类方式,中有mn种不同的方法. 那么完成这件事共有 N= 种不同的方法.分步计数原理:完成一件事,需要分成n个,做第1步有m1种不同的方法,做第2步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N= 种不同的方法。
课内探究学案一、学习目标二、准确理解两个原理,弄清它们的区别;会用两个原理解决一些简单问题。
学习重难点:教学重点:两个原理的理解与应用教学难点:学生对事件的把握二、学习过程情境设计1、从学校南大门到图艺中心有多少种不同的走法?2、从学校南大门经图艺中心到食堂有多少种不同的走法?(请画分析图)3、课件中提供的生活实例。
新知分类计数原理:完成一件事, 有n类 , 在第一类方式,中有m1种不同的方法,在第二类方式,中有m2种不同的方法,……,在第n类方式,中有mn种不同的方法. 那么完成这件事共有 N= 种不同的方法.分步计数原理:完成一件事,需要分成n个,做第1步有m1种不同的方法,做第2步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=n种不同的方法。
巩固原理例1、某班共有男生28名,女生20名,从该班选出学生代表参加校学代会。
(1)若学校分配给该班1名代表,有多少不同的选法?(2)若学校分配给该班2名代表,且男、女代表各一名,有多少种不同的选法?解:练习1、乘积()()1231234a a ab b b b++⋅+++⋅()12345c c c c c++++展开后共有多少项?例2(1)在下图(1)的电路中,只合上一只开关以接通电路,有多少种不同的方法? (2)在下图(2)的电路中,合上两只开关以接通电路,有多少种不同的方法?(1)(2)例3、为了确保电子信箱的安全,在注册时通常要设置电子信箱密码.在网站设置的信箱中, (1)密码为4位,每位均为0到9这10个数字中的一个数字,这样的 密码共有多少个? (2)密码为4位,每位是0到9这10个数字中的一个,或是从A 到Z 这26个英文字母中的1个,这样的密码共有多少个? (3)密码为4~6位,每位均为0到9这10个数字中的一个数字,这样的 密码共有多少个? 解: 例4、用4种不同颜色给下图示的地图上色, 要求相邻两块涂不同的颜色, 共有多少种不同的涂法?解:三、学生反思总结1. 分类计数与分步计数原理是两个最基本,也是最重要的原理,是解答排列、组合问题,尤其是较复杂的排列、组合问题的基础.2.辨别运用分类计数原理还是分步计数原理的关键是“分类”还是“分步”,也就是说“分类”时,各类办法中的每一种方法都是独立的,都能直接完成这件事,而“分步”时,各步中的方法是相关的,缺一不可,当且仅当做完个步骤时,才能完成这件事. 四、当堂检测课本P10:练习1—5五、作业 课本p12 习题1.1 A 组 1、2、3题六、教学反思(1)(2)(4) (3)课后练习与提高一、选择题1.将5封信投入3个邮筒,不同的投法共有().A.种B.种C.种D.种2.将4个不同的小球放入3个不同的盒子,其中每个盒子都不空的放法共有().A.种B.种C.18种D.36种3.已知集合,,从两个集合中各取一个元素作为点的坐标,则这样的坐标在直角坐标系中可表示第一、二象限内不同的点的个数是().A.18 B.10 C.16 D.144.用1,2,3,4四个数字在任取数(不重复取)作和,则取出这些数的不同的和共有().A.8个B.9个C.10个D.5个二、填空题1.由数字2,3,4,5可组成________个三位数,_________个四位数,________个五位数.2.用1,2,3…,9九个数字,可组成__________个四位数,_________个六位数.3.商店里有15种上衣,18种裤子,某人要买一件上衣或一条裤子,共有_______种不同的选法.要买上衣、裤子各一件,共有_________种不同的选法.4.大小不等的两个正方体玩具,分别在各面上标有数字1,2,3,4,5,6,则向上的面标着的两个数字之积不小于20的情形有_______种.三、解答题1.从1,2,3,4,7,9中任取不相同的两个数,分别作为对数的底数和真数,能得到多少个不同的对数值?2.在连结正八边形的三个顶点组成的三角形中,与正八边形有公共边的有多少个?1.2.1排列学习目标1.理解并掌握排列、排列数的概念2.掌握排列数公式及其变式,并运用排列数公式熟练地进行相关运算3.在解排列应用问题中,通过正、逆向的思考,提高学生的逻辑思维能力、辩证思维能力及数学应用能力【重点】排列的定义,排列数公式及其应用。
数学选修2-3教案
数学选修2-3教案【篇一:高中数学全套教案新人教版选修2-3】高中数学选修2-3修订教案王国昌1.1基本计数原理(第一课时)教学目标:(1)理解分类计数原理与分步计数原理(2)会利用两个原理分析和解决一些简单的应用问题教学重点:(1)理解分类计数原理与分步计数原理(2)会利用两个原理分析和解决一些简单的应用问题教学过程一、复习引入:一次集会共50人参加,结束时,大家两两握手,互相道别,请你统计一下,大家握手次数共有多少?某商场有东南西北四个大门,当你从一个大门进去又从另一个大门出来,问你共有多少种不同走法?二、讲解新课:问题1 春天来了,要从济南到北京旅游,有三种交通工具供选择:长途汽车、旅客列车和客机。
已知当天长途车有2班,列车有3班。
问共有多少种走法?设问1:从济南到北京按交通工具可分____类方法? 第一类方法, 乘火车,有___ 种方法; 第二类方法, 乘汽车,有___ 种方法;∴从甲地到乙地共有__________ 种方法设问2:每类方法中的每种一方法有什么特征?问题2:春天来了,要从济南到北京旅游,若想中途参观南开大学,已知从济南到天津有3种走法,从天津到北京有两种走法;问要从济南到北京共有多少种不同的方法?从济南到北京须经 ____ 再由_____到北京有____个步骤第一步, 由济南去天津有___种方法第二步, 由天津去北京有____种方法,设问2:上述每步的每种方法能否单独实现从济南村经天津到达北京的目的? 1分类计数原理:(1)加法原理:如果完成一件工作有k种途径,由第1种途径有n1种方法可以完成,由第2种途径有n2种方法可以完成,??由第k种途径有nk种方法可以完成。
那么,完成这件工作共有n1+n2+??+nk种不同的方法。
1.标准必须一致,而且全面、不重不漏!2“类”与“类”之间是并列的、互斥的、独立的即:它们两两的交集为空集! 3每一类方法中的任何一种方法均能将这件事情从头至尾完成1标准必须一致、正确。
高中数学选修2-3导学案
§2.1.1 离散型随机变量1.理解随机变量的定义;2.掌握离散型随机变量的定义.课前预习导学案一、课前准备(预习教材,找出疑惑之处)复习1:掷一枚骰子,出现的点数可能是,出现偶数点的可能性是.复习2:掷硬币这一最简单的随机试验,其可能的结果是,两个事件.课内探究导学案二、新课导学※学习探究探究任务一:在掷硬币的随机试验中,其结果可以用数来表示吗?我们确定一种关系,使得每一个试验结果都用一个表示,在这种关系下,数字随着试验结果的变化而变化新知1:随机变量的定义:像这种随着试验结果变化而变化的变量称为, 常用字母、、、…表示.思考:随机变量与函数有类似的地方吗?新知2:随机变量与函数的关系:随机变量与函数都是一种,试验结果的范围相当于函数的,随机变量的范围相当于函数的.试试:在含有10件次品的100件产品中,任意抽取4件,可能含有的次品件数X将随着抽取结果的变化而变化,是一个,其值域是.随机变量{}0=X表示;{}4=X表示;{}3<X表示;“抽出3件以上次品”可用随机变量表示.新知3:所有取值可以的随机变量,称为离散型随机变量.思考:①电灯泡的寿命X是离散型随机变量吗?②随机变量⎩⎨⎧≥<=小时寿命小时寿命1000,11000,0Y是一个离散型随机变量吗?※典型例题例1.某林场树木最高可达36m,林场树木的高度η是一个随机变量吗?若是随机变量,η的取值范围是什么?例2写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5,现从该袋内随机取出3只球,被取出的球的最大号码数ξ;(2)某单位的某部电话在单位时间内收到的呼叫次数η.※动手试试练1.下列随机试验的结果能否用离散型号随机变量表示:若能,请写出各随机变量可能的取值并说明这些值所表示的随机试验的结果(1)抛掷两枚骰子,所得点数之和;(2)某足球队在5次点球中射进的球数;(3)任意抽取一瓶某种标有2500ml的饮料,其实际量与规定量之差.练2.盒中9个正品和3个次品零件,每次取一个零件,如果取出的次品不再放回,且取得正品前已取出的次品数为ξ.(1)写出ξ可能取的值; (2)写出1=ξ所表示的事件三、总结提升 ※学习小结1.随机变量; 2.离散型随机变量.课后练习与提高※当堂检测(时量:5分钟 满分:10分)计分: 1.下列先项中不能作为随机变量的是( ).A .投掷一枚硬币80次,正面向上的次数B .某家庭每月的电话费C .在n 次独立重复试验中,事件发生的次数D .一个口袋中装有3个号码都为1的小球,从中取出2个球的号码的和2.抛掷两枚骰子,所得点数之和记为ξ,那么,4=ξ表示随机实验结果是 ( ) . A .一颗是3点,一颗是1点B .两颗都是2点C .两颗都是4点D .一颗是3点,一颗是1点或两颗都是2点3.某人射击命中率为0.6,他向一目标射击,当第一次射击队中目标则停止射击,则射击次数的取值是( ). A .1,2,3,… ,n 6.0 B .1,2,3,…,n ,… C .0,1,2,… ,n 6.0 D .0,1,2,…,n ,…4.已知ξ2=y 为离散型随机变量,y 的取值为1,2,…,10,则ξ的取值为.5.一袋中装有6个同样大小的黑球,编号为1,2,3,4,5,6,现从中随机取出3个球,以ξ表示取出的球的最大号码,则4=ξ表示的试验结果是.1在某项体能测试中,跑1km 成绩在4min 之内为优秀,某同学跑1km 所花费的时间X 是离散型随机变量吗?如果我们只关心该同学是否能够取得优秀成绩,应该如何定义随机变量?2下列随机试验的结果能否用离散型随机变量表示:若能,请写出各随机变量可能的取值并说明这些值所表示的随机试验的结果.(1)从学校回家要经过5个红绿灯口,可能遇到红灯的次数;(2)在优、良、中、及格、不及格5个等级的测试中,某同学可能取得的成绩.§2.1.2 离散型随机变量的分布列1.理解离散型随机变量的分布列的两种形式; 2.理解并运用两点分布和超几何分布.课前预习导学案一、课前准备(预习教材,找出疑惑之处)复习1:设某项试验的成功率是失败率的2倍,用随机变量ξ描述1次试验的成功次数,则ξ的值可以是( ). A .2 B .2或1 C .1或0 D .2或1或0复习2:将一颗骰子掷两次,第一次掷出的点数减去第二次掷出的点数的差是2的概率是.课内探究导学案二、新课导学 ※学习探究探究任务一:抛掷一枚骰子,向上一面的点数是一个随机变量X .其可能取的值是;它取各个不同值的概率都等于 问题:能否用表格的形式来表示呢?新知1:离散型随机变量的分布列:若离散型随机变量X 可能取的不同值为n i x x x x ,,,,,21 ,X 取每一个值),,2,1(n i x i =的概率i i p x X P ==)(.则①分布列表示:②等式表示: ③图象表示:新知2:离散型随机变量的分布列具有的性质: (1); (2) 试试:某同学求得一离散型随机变量的分布列如下:※典型例题例1在掷一枚图钉的随机试验中,令⎩⎨⎧=.,0;,1针尖向下针尖向上X 如果针尖向上的概率为p ,试写出随机变量X 的分布列.变式:篮球比赛中每次罚球命中得1分,不中得0分,已知某运动员罚球命中的概率为 0.7,求他一次罚球得分的分布列新知3:两点分布列:称X 服从;称)1(==X P p 为例2在含有5件次品的100件产品中,任取3件,试求: (1)取到的次品数X 的分布列; (2)至少取到1件次品的概率.变式:抛掷一枚质地均匀的硬币2次,写出正面向上次数X 的分布列?新知4:超几何分布列:※动手试试练1.在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有10个红球和20个白球,这些球除颜色外完全相同.一次从中摸出5个球,至少摸到3个红球就中奖.求中奖的概率.练2.从一副不含大小王的52张扑克牌中任意抽出5张,求至少有3张A 的概率.三、总结提升 ※学习小结1.离散型随机变量的分布列; 2.离散型随机变量的分布的性质; 3.两点分布和超几何分布.课后练习与提高※当堂检测(时量:5分钟 满分:10分)计分:1.若随机变量ξ的概率分布如下表所示,则表中a 的值为( ).A .1B .1/2C .1/3D .1/62.某12人的兴趣小组中,有5名“三好生”,现从中任意选6人参加竞赛,用ξ表示这6人中“三好生”的人数,则概率等于6123735C CC 的是( ) . A .)2(=ξP B .)3(=ξP C .)2(≤ξPD .)3(≤ξP3.若a n P -=≤1)(ξ,b m P -=≥1)(ξ,其中n m <,则)(n m P ≤≤ξ等于( ). A .)1)(1(b a -- B .)1(1b a -- C .)(1b a +- D .)1(1a b --4.已知随机变量ξ的分布列为则ξ为奇数的概率为.5.在第4题的条件下,若32-=ξη,则η的分布列为.1.学校要从30名候选人中选10名同学组成学生会,其中某班有4名候选人,假设每名候选人都有相同的机会被选到,求该班恰有2名同学被选到的概率.2.老师要从10篇课文中随机抽3篇让学生背诵,规定至少要背出其中2篇才能及格.某同学只能背诵其中的6篇,试求:(1)抽到他能背诵的课文的数量的分布列; (2)他能及格的概率.§2.2.1条件概率1.在具体情境中,了解条件概率的意义; 2.学会应用条件概率解决实际问题.课前预习导学案一、课前准备(预习教材,找出疑惑之处)复习1:下面列出的表达式是否是离散型随机变量X 的分布列( ). A .0.2)(==i X P ,4,3,2,1,0=i B .0.2)(==i X P ,5,4,3,2,1=iC .505)(2+==i i X P ,5,4,3,2,1=iD .10)(ii X P ==,4,3,2,1=i 复习2:设随机变量的分布如下:求常数K .课内探究导学案二、新课导学 ※学习探究探究:3张奖券中只有1张能中奖,现分别由3名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比其他同学小?若抽到中奖奖券用“Y ”表示,没有抽到用“Y ”表示,则所有可能的抽取情况为{=Ω},用B 表示最后一名同学抽到中奖奖券的事件,则{=B },故最后一名同学抽到中奖奖券的概率为:=Ω=)()()(n B n B P思考:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到中奖奖券的概率又是?因为已经知道第一名同学没有抽到中奖奖券,故所有可能的抽取情况变为{=A }最后一名同学抽到中奖奖券的概率为=)()(A n B n 记作:)(A B P新知1:在事件A 发生的情况下事件B 发生的条件概率为:)(A B P =)()(A n AB n = 新知2:条件概率具有概率的性质:≤)(A B P ≤如果B 和C 是两个互斥事件,则)(A C B P ⋃=※典型例题例1在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求:(1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.变式:在第1次抽到理科题的条件下,第2次抽到文科题的概率?例2一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字.求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.变式:任意按最后一位数字,第3次就按对的概率?※动手试试练1.从一副不含大小王的52张扑克牌中不放回地抽取2次,每次抽1.已知第1次抽到A ,求第2次也抽到A 的概率.练2.某地区气象台统计,该地区下雨的概率是154,刮三级以上风的概率为52,既刮风又下雨的概率为101,设A 为下雨,B 为刮风,求: (1))(B A P ; (2))(A B P .三、总结提升 ※学习小结1.理解条件概率的存在; 2.求条件概率;3.条件概率中的“条件”就是“前提”的意思.课后练习与提高※当堂检测(时量:5分钟 满分:10分)计分:1.下列正确的是( ). A .)(A B P =)(B A P B .)(B A P =)()(B n AB n C .1)(0<<A B P D .)(A A P =02.盒中有25个球,其中10个白的,5个黄的,10个黑的,从盒子中任意取出一个球,已知它不是黑球,则它是黄球的概率为( ) .A . 1/3B .1/4C . 1/5D .1/63.某种动物由出生算起活到20岁的概率为0.8,活到25岁的概率为0.4,现有一个20岁的动物,问它能活到25岁的概率是( ).A .0.4B .0.8C .0.32D .0.54.5.0)(=A P ,3.0)(=B P ,2.0)(=AB P ,则)(B A P =,)(A B P =.5.一个家庭中有两个小孩,已知这个家庭中有一个是女孩,问这时另一个小孩是男孩的概率是.1.设某种灯管使用了500h 能继续使用的概率为0.94,使用到700h 后还能继续使用的概率为0.87,问已经使用了500h 的灯管还能继续使用到700h 的概率是多少?2.100件产品中有5件次品,不入回地抽取2次,每次抽1件.已知第1次抽出的是次品,求第2次抽出正品的概率.§2.2.2事件的相互独立性1.了解相互独立事件的意义,求一些事件的概率;2.理解独立事件概念以及其与互斥,对立事件的区别与联系.课前预习导学案一、课前准备(预习教材,找出疑惑之处)复习1:把一枚硬币任意掷两次,事件=A “第一次出现正面”,事件B =“第二次出现正面”,则)(A B P 等于?复习2:已知0)(>B P ,φ=21A A ,则成立. A .0)(1>B A PB .=+)(21B A A P )(1B A P +)(2B A PC .0)(21≠B A A PD .1)(21=B A A P课内探究导学案二、新课导学 ※学习探究探究:3张奖券中只有1张能中奖,现分别由3名同学有放回地抽取,事件A 为“第一名同学没有抽到奖券”,事件B 为“最后一名同学抽到奖券”,事件A 的发生会影响事件B 发生的概率吗?新知1:事件A 与事件B 的相互独立:设B A ,为两个事件,如果,则称事件A 与事件B 的相互独立. 注意:①在事件A 与B 相互独立的定义中,A 与B 的地位是对称的;②不能用)()(B P A B P =作为事件A 与事件B 相互独立的定义,因为这个等式的适用范围是0)(>A P ; ③如果事件A 与B 相互独立,那么A 与B ,A 与B ,A 与B 也都相互独立.试试:分别抛掷2枚质地均匀的硬币,设A 是事件“第1枚为正面”,B 是事件“第2枚为正面”,C 是事件“2枚结果相同”,问:C B A ,,中哪两个相互独立?小结:判定相互独立事件的方法:①由定义,若)()()(B P A P AB P =,则B A ,独立; ②根据实际情况直接判定其独立性. ※典型例题例1某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券.奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中奖概率都是05.0,求两次抽奖中以下事件的概率: (1)都抽到某一指定号码; (2)恰有一次抽到某一指定号码; (3)至少有一次抽到某一指定号码.变式:两次都没有抽到指定号码的概率是多少?思考:二次开奖至少中一次奖的概率是一次开奖中奖概率的两倍吗?例2.下列事件中,哪些是互斥事件,哪些是相互独立事件?(1)“掷一枚硬币,得到正面向上”与“掷一枚骰子,向上的点是2点”; (2)“在一次考试中,张三的成绩及格”与“在这次考试中李四的成绩不及格”;(3)在一个口袋内有3白球、2黑球,则“从中任意取1个球得到白球”与“从中任意取1个得到黑球”※动手试试练1.天气预报,在元旦假期甲地的降雨概率是2.0,乙地的降雨概率是3.0,假定在这段时间内两地是否降雨相互之间没有影响,计算在这段时间内:(1)甲、乙两地都降雨的概率;(2)甲、乙两地都不降雨的概率;(3)其中至少一个地方降雨的概率.练2.某同学参加科普知识竞赛,需回答3个问题.竞赛规则规定:答对第一、二、三问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为6.0,7.0,8.0,且各题答对与否相互之间没有影响.(1)求这名同学得300分的概率;(2)求这名同学至少得300分的概率.三、总结提升※学习小结1.相互独立事件的定义;2.相互独立事件与互斥事件、对立事件的区别.课后练习与提高※当堂检测(时量:5分钟满分:10分)计分:1. 甲打靶的命中率为7.0,乙的命中率为8.0,若两人同时射击一个目标,则都未中的概率为().A.06.0B.44.0C.56.0D.94.02.有一道题,CBA、、三人独自解决的概率分别为413121、、,三人同时独自解这题,则只有一人解出的概率为( ) .A.241B.2411C.2417D.313.同上题,这道题被解出的概率是().A.43B.32C.54D.1074.已知A与B是相互独立事件,且3.0)(=AP,6.0)(=BP,则=⋅)(BAP.5.有100件产品,其中5件次品,从中选项取两次:(1)取后不放回,(2)取后放回,则两次都取得合格品的概率分别为、.1.一个口袋内装有2个白球和2个黑球,那么先摸出1个白球放回,再摸出1个白球的概率是多少?2.甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为41,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为121,甲、丙两台机床加工的零件都是一等品的概率为92(1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.§2.2.3独立重复试验与二项分布1.了解独立重复试验; 2.理解二项分布的含义.课前预习导学案一、课前准备(预习教材,找出疑惑之处)复习1:生产一种产品共需5道工序,其中1~5道工序的生产合格率分别为96%,99%,98%,97%,96%,现从成品中任意抽取1件,抽到合格品的概率是多少?复习2:掷一枚硬币 3次,则只有一次正面向上的概率为.课内探究导学案二、新课导学 ※学习探究探究1:在n 次重复掷硬币的过程中,各次掷硬币试验的结果是否会受其他掷硬币试验的影响?新知1:独立重复试验:在的条件下做的n 次试验称为n 次独立重复试验.探究2:投掷一枚图钉,设针尖向上的概率为p ,则针尖向下的概率为p q -=1,连续掷一枚图钉3次,仅出现1次针尖向上的概率是多少?新知2:二项分布:一般地,在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为:)(k X P ==,n k ,,2,1,0 =则称随机变量X 服从.记作:X ~B ( ),并称p 为.试试:某同学投篮命中率为6.0,他在6次投篮中命中的次数X 是一个随机变量,X ~B ( ) 故他投中2次的概率是. ※典型例题例1某射手每次射击击中目标的概率是8.0,求这名射击手在10次射击中 (1)恰有8次击中目标的概率; (2)至少有8次击中目标的概率.变式:击中次数少于8次的概率是多少?例2.将一枚硬币连续抛掷5次,求正面向上的次数X 的分布列?变式:抛掷一颗骰子5次,向上的点数是2的次数有3次的概率是多少?※动手试试练1.若某射击手每次射击击中目标的概率是9.0,每次射击的结果相互独立,那么在他连续4次的射击中,第1次未击中目标,但后3次都击中目标的概率是多少?练2.如果生男孩和生女孩的概率相等,求有3个小孩的家庭中至少有2个女孩的概率.三、总结提升 ※学习小结1.独立重复事件的定义; 2.二项分布与二项式定理的公式.课后练习与提高※当堂检测(时量:5分钟 满分:10分)计分: 1.某学生通过计算初级水平测试的概率为21,他连续测试两次,则恰有1次获得通过的概率为( ). A .31 B . 21 C .41 D .432.某气象站天气预报的准确率为80%,则5次预报中至少有4次准确的概率为( ) . A .2.0 B .41.0 C . 74.0 D . 67.03.每次试验的成功率为)10(<<p p ,则在3次重复试验中至少失败1次的概率为 ( ).A .3)1(p - B .31p -C .)1(3p -D .)1()1()1(223p p p p p -+-+-4.在3次独立重复试验中,随机事件恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率的范围是.5.某种植物种子发芽的概率为7.0,则4颗种子中恰好有3颗发芽的概率为.1.某盏吊灯上并联着3个灯泡,如果在某段时间内每个灯泡能正常照明的概率都是7.0,那么在这段时间内吊灯能照明的概率是多少?2.甲、乙两选手比赛,假设每局比赛甲胜的概率为6.0,乙胜的概率为4.0,那么采用3局2胜制还是采用5局3胜制对甲更有利?§2.3.1离散型随机变量的均值(1)1.理解并应用数学期望来解决实际问题; 2.各种分布的期望.课前预习导学案一、课前准备(预习教材,找出疑惑之处)复习1:甲箱子里装3个白球,2个黑球,乙箱子里装2个白球,2个黑球,从这两个箱子里分别摸出1个球,则它们都是白球的概率?复习2:某企业正常用水的概率为43,则5天内至少有4天用水正常的概率为. 课内探究导学案二、新课导学 ※学习探究探究:某商场要将单价分别为18元/kg ,24元/kg ,36元/kg 的3种糖果按1:2:3的比例混合销售,如何对混合糖果定价才合理?列为:则称=EX .为随机变量X 的均值或数学期望.它反映离散型随机变量取值的.新知2:离散型随机变量期望的性质:若b aX Y +=,其中b a ,为常数,则Y 也是随机变量,且b aEX b aX E +=+)(.注意:随机变量的均值与样本的平均值的: 区别:随机变量的均值是,而样本的平均值是;联系:对于简单随机样本,随着样本容量的增加,样本平均值越来越接近于总体均值. ※典型例题例1在篮球比赛中,罚球命中1次得1分,不中得0分.如果某运动员罚球命中的概率为7.0,那么他罚球1次的得分X 的均值是多少?变式:.如果罚球命中的概率为8.0,那么罚球1次的得分均值是多少?新知3:①若X 服从两点分布,则=EX ; ②若X ~),(p n B ,则=EX .例2.一次单元测验由20个选择题构成,每个选择题有4个选项,其中仅有一个选项正确.每题选对得5分,不选或选错不得分,满分100分.学生甲选对任意一题的概率为9.0,学生乙则在测验中对每题都从各选项中随机地选择一个.分别求甲学生和乙学生在这次测验中的成绩的均值.思考:学生甲在这次单元测试中的成绩一定会是90分吗?他的均值为90分的含义是什么?※动手试试练1.已知随机变量X 的分布列为:求EX .练2.同时抛掷5枚质地均匀的硬币,求出现正面向上的硬币数X 的均值.三、总结提升 ※学习小结1.随机变量的均值; 2.各种分布的期望.课后练习与提高※当堂检测(时量:5分钟 满分:10分)计分: 1. 随机变量X 的分布列为则其期望等于( ). A .1 B .31C .5.4D .4.2 2.已知32+=ξη,且53=ξE ,则=ηE ( ) . A .53 B .56 C . 521 D . 512 3.若随机变量X 满足1)(==c X P ,其中c 为常数,则=EX ( ). A .0 B .1 C . c D .不确定4.一大批进口表的次品率15.0=P ,任取1000只,其中次品数ξ的期望=ξE .5.抛掷两枚骰子,当至少有一枚出现6点时,就说这次试验成功,则在30次试验中成功次数的期望.1.抛掷1枚硬币 ,规定正面向上得1分,反面向上得1-分,求得分X 的均值.2.产量相同的2台机床生产同一种零件,它们在一小时内生产出的次品数21,X X 的分布列分别如下:问哪台机床更好?请解释所得出结论的实际含义.§2.3.1离散型随机变量的均值(2)1.进一步理解数学期望; 2.应用数学期望来解决实际问题.课前预习导学案一、课前准备(预习教材P 72~ P 74,找出疑惑之处)复习1:设一位足球运动员,在有人防守的情况下,射门命中的概率为3.0=p ,求他一次射门时命中次数ξ的期望复习2:一名射手击中靶心的概率是9.0,如果他在同样的条件下连续射击10次,求他击中靶心的次数的均值?课内探究导学案二、新课导学探究:某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%,下表是过去200例类拟项目开发的实施结果:则该公司一年后估计可获收益的期望是元.※典型例题例1 已知随机变量X 取所有可能的值n ,,2,1 是等到可能的,且X 的均值为5.50,求n 的值例2.根据气象预报,某地区近期有小洪水的概率为25.0,有大洪水的概率为01.0.该地区某工地上有一台大型设备,遇到大洪水时要损失60000元,遇到小洪水时要损失10000元.为保护设备,有以下3种方案: 方案1:运走设备,搬运费为3800元方案2:建保护围墙,建设费为2000元,但围墙只能防小洪水. 方案3:不采取措施,希望不发生洪水. 试比较哪一种方案好.思考:根据上述结论,人们一定采取方案2吗?※动手试试练1.现要发行10000张彩票,其中中奖金额为2元的彩票1000, 10元的彩票300, 50元的彩票100, 100元的彩票50, 1000元的彩票5,问一张彩票可能中奖金额的均值是多少元?练2.抛掷两枚骰子,当至少有一枚5点或6点出现时,就说这次试验成功,求在20次试验中成功次数X 的期望.三、总结提升 ※学习小结1.随机变量的均值; 2.各种分布的期望.课后练习与提高 ※当堂检测(时量:5分钟 满分:10分)计分: 1.若ξ是一个随机变量,则)(ξξE E -的值为( ). A .无法求 B .0 C .ξE D .ξE 2 2设随机变量ξ的分布列为41)(==k P ξ,4,3,2,1=k ,则ξE 的值为 ( ) . A .25B .5.3C . 25.0D . 2 3.若随机变量ξ~)6.0,(n B ,且3=ξE ,则)1(=ξP 的值是( ).A .44.02⨯B .54.02⨯ C .44.03⨯ D .46.03⨯ 4.已知随机变量ξ的分布列为:则x =;=<≤)31(ξP ;ξE =.5.一盒内装有5个球,其中2个旧的,3个新的,从中任意取2个,则取到新球个数的期望值为.1.已知随机变量X 的分布列:求)52(,+X E EX2.一台机器在一天内发生故障的概率为1.0,若这台机器一周5个工作日不发生故障,可获利5万元;发生1次故障仍可获利5.2万元;发生2次故障的利润为0元;发生3次或3次以上故障要亏损1万元,问这台机器一周内可能获利的均值是多少?§2.3.2离散型随机变量的方差(1)1.理解随机变量方差的概念; 2.各种分布的方差.课前预习导学案一、课前准备(预习教材,找出疑惑之处)复习1:若随机变量Y ~)8.0,5(B ,则=EY ;又若42+=Y X ,则=2EX 复习2:已知随机变量ξ的分布列为 :且1.1=ξE ,则=p ;=x课内探究导学案二、新课导学 ※学习探究探究:要从两名同学中挑出一名,代表班级参加射击比赛,根据以往的成绩纪录,第一名同学击中目标靶的环数1X ~)8.0,10(B ,第二名同学击中目标靶的环数42+=Y X ,其中Y ~)8.0,5(B ,请问应该派哪名同学参赛?新知1:离散型随机变量的方差:当已知随机变量ξ的分布列为()k k p x P ==ξ),2,1( =k 时,则称=ξD 为ξ的方差,=σξ为ξ的标准差随机变量的方差与标准差都反映了随机变量取值的.ξD 越小,稳定性越,波动越.新知2:方差的性质:当b a ,均为常数时,随机变量b a +=ξη的方差=+=)()(b a D D ξη.特别是: ①当0=a 时,()=b D ,即常数的方差等于;②当1=a 时,=+)(b D ξ,即随机变量与常数之和的方差就等于这个随机变量的方差; ③当0=b 时,()=ξa D ,即随机变量与常之积的方差,等于常数的与这个随机变量方差的积 新知2:常见的一些离散型随机变量的方差: (1)单点分布:=ξD ; (2)两点分布:=ξD ;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
54
⨯⨯,则
1
2
)(68)(69n -
3
4
5
2)(1)
!n m m -+,N m ∈*
且
7
2100C +
1-n m C +2
-n m C
8
17
20C +
的值
9
例3 现有五种不同颜色要对如图中的四个部分进行着色,要求
有公共边的两块不能用一种颜色,问共有几种不同的着色方
法?
变式:某同学邀请10位同学中的6位参加一项活动,其中两位
同学要么都请,要么都不请,共有多少种邀请方法?
※动手试试
练1. 甲、乙、丙三人值周,从周一至周六,每人值两天,但甲不值周一,乙不值周六,问可以排出多少种不同的值周表?
练2. 高二(1)班共有35名同学,其中男生20名,女生15名,今从中取出3名同学参加活动,
(1)其中某一女生必须在内,不同的取法有多少种?
(2)其中某一女生不能在内, 不同的取法有多少种?
(3)恰有2名女生在内,不同的取法有多少种?
(4)至少有2名女生在内,不同的取法有多少种?
(5)至多有2名女生在内,不同的取法有多少种?
【当堂检测】
1. 凸五边形对角线有条;
2. 以正方体的顶点为顶点作三棱锥,可得不同的三棱锥有个;
3.要从5件不同的礼物中选出3件送给3个同学,不同方法的种数是;
4.有5名工人要在3天中各自选择1天休息,不同方法的种数是;
5. 从1,3,5,7,9中任取3个数字,从2,4,6,8中任取2个数字,一共可以组
成没有重复数字的五位数?
1. 在一次考试的选做题部分,要求在第1题的4个小题中选做3个小题,在第2题
的3个小题中选做2个小题,在第3题的2个小题中选做1个小题.有多少种不同的选法?
2. 从5名男生和4名女生中选出4人去参加辩论比赛.
⑴如果4人中男生和女生各选2名,有多少种选法?
⑵如果男生中的甲和女生中的乙必须在内,有多少种选法?
⑶如果男生中的甲和女生中的乙至少有1人在内,有多少种选法?
⑷如果4人中必须既有男生又有女生,有多少种选法?
【反思】
1. 正确区分排列组合问题
2. 对综合问题,要“先分类,后分步”,对特别元素,应优先考虑.
※知识拓展
根据某个福利彩票方案,在1至37这37个数字中,选取7个数字,如果选出的7个数字与开出的7个数字一样既得一等奖.问多少注彩票可有一个一等奖?如果要将
一等奖的机会提高到
6000000
1
以上
且不超过
500000
1
,可在37个数中取几个数字?
10。