火线100天(四川专版)中考数学一轮复习 专题三 多结论
火线100天(四川专版)中考数学一轮复习 第一单元 数与式 第3讲 分式-人教版初中九年级全册数学试

第3讲分式分式的概念分式概念形如AB(A、B是整式,B中含有①________,且B≠0)的式子叫做分式. 有意义的条件分母不为0.值为零的条件分子为0,且分母不为0.分式的基本性质分式的基本性质AB=A×MB×M,AB=A÷MB÷M(M是不为零的整式).约分把分式的分子和分母中的②________约去,叫做分式的约分.通分根据分式的③________,把异分母的分式化为④________的分式,这一过程叫做分式的通分.分式的运算分式的乘除法ab·cd=acbd,ab÷cd=ab·dc=adbc.分式的乘方(ab)n=a nb n(n为整数).分式的加减法ac±bc=a±bc,ab±cd=ad±bcbd.分式的混合运算在分式的混合运算中,应先算乘方,再将除法化为乘法,进行约分化简,最后进行加减运算.遇到有括号,先算括号里面的.【易错提示】分式运算的结果一定要化成最简分式.1.乘方时一定要先确定乘方结果的符号,负数的偶次方为正,负数的奇次方为负.2.在分式的加减运算中,如需要通分时,一定要先把分母可以分解因式的多项式分解因式后再找最简公分母,分式的乘除运算中,需要约分时,也要先把可以分解因式的多项式先分解因式再约分.命题点1 分式有意义、值为零的条件(2014·某某)当分式1x -2有意义时,x 的取值X 围为________.当分式的分母为零时,分式无意义;当分式的分母不为零时,分式有意义;当分式的分子为零,且分式的分母不为零时,分式的值为零.1.当分式1x +5有意义时,x 的取值X 围为________. 2.(2013·某某)若分式x 2-1x +1的值为0,则实数x 的值为________. 3.(2014·凉山)分式||x -3x +3的值为零,则x 的值为() A .3B .-3C .±3D .任意实数命题点2 分式的运算(2015·某某)先化简:(2x 2+2x x 2-1-x 2-x x 2-2x +1)÷x x +1,然后解答下列问题: (1)当x =3时,求原代数式的值;(2)原代数式的值能等于-1吗?为什么?【思路点拨】 (1)先进行括号内的异分母加减运算,再进行分式的除法运算;最后代数求值;(2)先假设原代数式的值等于-1,即是原式化简后的值为1,求出未知数x 的值,再看x 的值能否使原代数式有意义,若有意义,则能;否则不能.【解答】分式运算的常见技巧有:(1)式子中的某些分式的分子、分母能约分的可先约分,再按运算法则计算化简;(2)当括号外的因式与括号内的分母能约分时,可依照分配律先去括号,再化简计算.对于分式化简求值题目,还必须注意一点:未知数的取值不仅要使得所有分式的分母不为零,而且还要使除式的分子不为零,如本例第(2)小题.1.(2015·某某)化简x 2x -1+11-x的结果是() A .x +1B.1x +1 C .x -1 D.x x -1 2.(2015·某某)化简:(a a +2+1a 2-4)÷a -1a +2.3.(2015·某某)化简求值:2a a 2-4÷(a 2a -2-a),其中a =3-2.1.(2015·某某)分式-11-x可变形为() A .-1x -1B.11+x C .-11+x D.1x -1 2.(2014·某某)要使分式x +1x -2有意义,则x 的取值应满足() A .x ≠2B .x ≠-1C .x =2D .x =-13.(2014·某某)若分式x 2-1x -1的值为零,则x 的值为() A .0 B .1C .-1D .±14.(2015·某某)化简a 2+2ab +b 2a 2-b 2-b a -b的结果是() A.a a -b B.b a -b C.a a +b D.b a +b 5.(2015·某某)如果分式2x x +3有意义,那么x 的取值X 围是________. 6.当x =________时,代数式1|x|-1无意义. 7.(2015·某某)若代数式x 2-5x +62x -6的值等于0,则x =________. 8.(2015·某某)化简2x +6x 2-9得________. 9.(2015·某某)计算:a a +2-4a 2+2a=________. 10.(2014·某某)化简(1-1x -1)÷x -2x 2-2x +1的结果是________. 11.(2015·眉山)计算:x 2-1x 2-2x +1÷x 2+x x -1. 12.(2015·某某)化简:2a a +1-2a -4a 2-1÷a -2a 2-2a +1.13.(2015·某某)化简:(1a -1-1a 2-1)÷a 2-a a 2-1.14.(2015·某某)计算:(a +2-5a -2)·2a -43-a.15.(2015·资阳)先化简,再求值:(1x -1-1x +1)÷x +2x 2-1,其中x 满足2x -6=0.16.(2014·某某)已知a 2+3ab +b 2=0(a≠0,b ≠0),则代数式b a +a b的值等于________. 17.(2015·凉山)先化简:(x +1x -1+1)÷x 2+x x 2-2x +1+2-2x x 2-1,然后从-2≤x≤2的X 围内选取一个合适的整数作为x 的值代入求值.18.(2015·达州)化简a a 2-4·a +2a 2-3a -12-a,并求值,其中a 与2、3构成△ABC 的三边,且a 为整数.参考答案考点解读考点1 ①字母考点2 ②公因式 ③基本性质 ④同分母各个击破例1 x≠2题组训练 1.x≠-5 2.1 3.A例2 (1)原式=[2x (x +1)(x +1)(x -1)-x (x -1)(x -1)2]·x +1x=(2x x -1-x x -1)·x +1x=x x -1·x +1x =x +1x -1. 当x =3时,原式=3+13-1=2. (2)如果x +1x -1=-1,那么x +1=1-x ,解得x =0, 当x =0时,除式x x +1=0,原式无意义, 故原代数式的值不能等于-1.题组训练1.A2.原式=(a 2-2a a 2-4+1a 2-4)·a +2a -1=(a -1)2(a +2)(a -2)·a +2a -1=a -1a -2. 3.原式=2a (a +2)(a -2)÷a 2-a (a -2)a -2=2a (a +2)(a -2)·a -22a =1a +2. 当a =3-2时,原式=13-2+2=33. 整合集训基础过关1.D 2.A 3.C 4.A 5.x≠-3 6.±1 7.2 8.2x -3 9.a -2a10.x -111.原式=(x +1)(x -1)(x -1)2·x -1x (x +1)=1x. 12.原式=2a a +1-2(a -2)(a +1)(a -1)·(a -1)2a -2=2a a +1-2(a -1)(a +1) =2a +1. 13.原式=[a +1(a -1)(a +1)-1(a -1)(a +1)]·(a -1)(a +1)a (a -1)=a (a -1)(a +1)·(a -1)(a +1)a (a -1) =1a -1. 14.原式=(a +2)(a -2)-5a -2·2(a -2)3-a=(a +3)(a -3)a -2·2(a -2)3-a=-2(a +3)=-2a -6.15.原式=[x +1(x -1)(x +1)-x -1(x -1)(x +1)]÷x +2x 2-1=2(x -1)(x +1)·(x -1)(x +1)x +2 =2x +2. ∵2x -6=0,∴x =3.当x =3时,原式=25. 能力提升16.-317.原式=(x +1x -1+x -1x -1)·(x -1)2x (x +1)+2(1-x )(x +1)(x -1)=2x x -1·(x -1)2x (x +1)-2x +1=2(x -1)x +1-2x +1 =2x -4x +1. 满足-2≤x≤2的整数有:-2、-1、0、1、2,但是,x =-1、0、1时,原式无意义, ∴x =-2或2.当x =-2时,原式=2×(-2)-4-2+1=-8-1=8; 当x =2时,原式=2×2-42+1=03=0. 18.原式=a (a +2)(a -2)·a +2a (a -3)+1a -2=1(a -2)(a -3)+1a -2 =1+a -3(a -2)(a -3) =a -2(a -2)(a -3) =1a -3. ∵a 与2、3构成△ABC 的三边,且a 为整数,∴1<a <5,即a =2,3,4.当a =2或a =3时,原式没有意义,则a =4时,原式=1.。
火线100天(四川专版)中考数学一轮复习 题型1 与三角形 四边形有关的几何综合题-人教版初中九年级

几何图形综合题几何图形综合题是某某各地中考的必考题,难度较大,分值也较大,要想在中考中取得较高的分数,必须强化这类题目的训练.题型1 与三角形、四边形有关的几何综合题类型1 操作探究题(2015·某某)如图,点P是正方形ABCD内一点,点P到点A,B和D的距离分别为1,22,10.△ADP 沿点A旋转至△ABP′,连PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小;(3)求CQ的长.【思路点拨】(1)利用旋转相等的线段、相等的角△APP′是等腰直角三角形;(2)利用勾股定理逆定理证△BPP′是直角三角形,再利用(1)的结论,得∠BPQ的大小;(3)过点B作BM⊥AQ于M,充分利用等腰直角三角形、直角三角形的性质,特别是锐角三角函数,先求得正方形的边长和BQ的长,进而求得CQ的长度.【解答】(1)证明:由旋转可得:AP=AP′,∠BAP′=∠DAP.∵四边形ABCD是正方形,∴∠BAD=90°.∴∠PAP′=∠PAB+∠BAP′=∠PAB+∠DAP=∠BAD=90°.∴△APP′是等腰直角三角形.(2)由(1)知∠PAP′=90°,AP=AP′=1,∴PP′= 2.∵P′B=PD=10,PB=22,∴P′B2=PP′2+PB2.∴∠P′PB=90°.∵△APP′是等腰直角三角形,∴∠APP′=45°.∴∠BPQ=180°-90°-45°=45°.(3)过点B 作BM ⊥AQ 于M. ∵∠BPQ =45°,∴△PMB 为等腰直角三角形.由已知,BP =22,∴BM =PM =2.∴AM =AP +PM =3.在Rt △ABM 中,AB =AM 2+BM 2=32+22=13.∵cos ∠QAB =AM AB =AB AQ ,即313=13AQ , ∴AQ =133. 在Rt △ABQ 中,BQ =AQ 2-AB 2=2313. ∴QC =BC -BQ =13-2313=133.1.图形的旋转涉及三角形的全等,会出现相等的线段或者角.若旋转角是直角,则会出现等腰直角三角形,若旋转角是60度,则会出现等边三角形.2.旋转的题目中若出现三条线段的长度,则不妨考虑通过旋转将条件集中,看是否存在直角三角形.1.(2015·某某)在△ABC 中,AB =AC =5,cos ∠ABC =35,将△ABC 绕点C 顺时针旋转,得到△A 1B 1C.图1 图2(1)如图1,当点B 1在线段BA 延长线上时.①求证:BB 1∥CA 1;②求△AB 1C 的面积;(2)如图2,点E是BC上的中点,点F为线段AB上的动点,在△ABC绕点C顺时针旋转过程中,点F的对应点是F1,求线段EF1长度的最大值与最小值的差.2.(2013·某某)将两块全等的三角板如图1摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图1中的△A1B1C顺时针旋转45°得图2,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;(2)在图2中,若AP1=2,则CQ等于多少?(3)如图3,在B1C上取一点E,连接BE、P1E,设BC=1,当BE⊥P1B时,求△P1BE面积的最大值.3.(2013·内江)如图,在等边△ABC中,AB=3,D,E分别是AB,AC上的点,且DE∥BC,将△ADE沿DE翻折,与梯形BCED重叠的部分为图形L.(1)求△ABC的面积;(2)设AD =x ,图形L 的面积为y ,求y 关于x 的函数解析式;(3)已知图形L 的顶点均在⊙O 上,当图形L 的面积最大时,求⊙O 的面积.类型2 动态探究题(2015·某某)如图1,四边形ABCD 中,∠B =∠D=90°,AB =3,BC =2,tanA =43. (1)求CD 边的长;(2)如图2,将直线CD 边沿箭头方向平移,交DA 于点P ,交CB 于点Q(点Q 运动到点B 停止),设DP =x ,四边形PQCD 的面积为y ,求y 与x 的函数关系式,并求出自变量x 的取值X 围.【思路点拨】 (1)分别延长AD 、BC 相交于E ,通过构造的Rt△ABE、Rt△DCE 求解;(2)利用△EDC∽△EPQ 及S 四边形PQCD =S △EPQ -S △EDC 求解.【解答】 (1)分别延长AD 、BC 相交于E.在Rt△ABE 中,∵tanA =43,AB =3,∴BE =4. ∵BC =2,∴EC =2. 在Rt△ABE 中,AE =AB 2+BE 2=32+42=5.∴sinE =35=DC EC .∴CD =65. (2)∵∠B=∠ADC=90°,∠E =∠E,∴∠ECD =∠A.∴tan ∠ECD =tanA =43. ∴ED CD =ED 65=43,解得ED =85. 如图4,由PQ∥DC,可知△EDC∽△EPQ,∴ED EP =DC PQ .∴8585+x =65PQ ,即PQ =65+34x. ∵S 四边形PQCD =S △EPQ -S △EDC ,∴y =12PQ ·EP -12DC ·ED =12(65+34x)(85+x)-12×65×85=38x 2+65x. 如图5,当Q 点到达B 点时,EC =BC ,DC ∥PQ ,可证明△DCE≌△HQC,从而得CH =ED =85, ∴自变量x 的取值方X 围为:0<x≤85.动态型问题包括动点、动线、动形问题,解动态问题的关键就是:从特殊情形入手,变中求不变,动中求静,抓住静的瞬间,以静制动,把动态的问题转化为静态的问题来解决.本题化动为静后利用三角形相似列比例式,表示出相关线段的长,求出函数关系.1.(2013·某某)如图,点B 在线段AC 上,点D ,E 在AC 的同侧,∠A =∠C=90°,BD ⊥BE ,AD =BC.(1)求证:AC =AD +CE ;(2)若AD =3,AB =5,点P 为线段AB 上的动点,连接DP ,作PQ⊥DP,交直线BE 于点Q.①当点P 与A ,B 两点不重合时,求DP PQ的值;②当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)2.(2015·某某)如图1,矩形ABCD 的两条边在坐标轴上,点D 与坐标原点O 重合,且AD =8,AB =6,如图2,矩形ABCD 沿OB 方向以每秒1个单位长度的速度运动,同时点P 从A 点出发也以每秒1个单位长度的速度沿矩形ABCD 的边AB 经过点B 向点C 运动,当点P 到达C 时,矩形ABCD 和点P 同时停止运动,设点P 的运动时间为t 秒.(1)当t=5时,请直接写出点D、点P的坐标;(2)当点P在线段AB或线段BC上运动时,求出△PBD的面积S关于t的函数关系式,并写出相应t的取值X围;(3)点P在线段AB或线段BC上运动时,作PE⊥x轴,垂足为点E,当△PEO与△BCD相似时,求出相应的t值.3.(2015·某某)如图,在边长为2的正方形ABCD中,G是AD延长线上的一点,且DG=AD,动点M从A点出发,以每秒1个单位的速度沿着A、C、G的路线向G点匀速运动(M不与A、G重合),设运动时间为t秒,连接BM并延长交AG于N.(1)是否存在点M,使△ABM为等腰三角形?若存在,分析点M的位置;若不存在,请说明理由;(2)当点N 在AD 边上时,若BN⊥HN,NH 交∠CDG 的平分线于H ,求证:BN =NH ;(3)过点M 分别作AB 、AD 的垂线,垂足分别为E 、F ,矩形AEMF 与△ACG 重叠部分的面积为S ,求S 的最大值.类型3 类比探究题(2015·某某)已知AC ,EC 分别为四边形ABCD 和EFCG 的对角线,点E 在△ABC 内,∠CAE +∠CBE=90°.(1)如图1,当四边形ABCD 和EFCG 均为正方形时,连接BF.①求证:△CAE∽△CBF;②若BE =1,AE =2,求CE 的长.(2)如图2,当四边形ABCD 和EFCG 均为矩形,且AB BC =EF FC=k 时,若BE =1,AE =2,CE =3,求k 的值; (3)如图3,当四边形ABCD 和EFCG 均为菱形,且∠DAB=∠GEF=45°时,设BE =m ,AE =n ,CE =p ,试探究m ,n ,p 三者之间满足的等量关系.(直接写出结果,不必写出解答过程)【思路点拨】 (1)利用“夹这个角的两边对应成比例”得△CAE∽△CBF,进而证明∠EBF=90°,利用勾股定理求EF ,进而求CE ;(2)类比(1)解题思路以及相似三角形性质得到对应边成比例,进而用含有k 的式子表示出CE ,BF ,并建立CE 2,BF 2的等量关系,从而求出k ;(3)类比(1)、(2)的思路及菱形的性质找m ,n ,p 的关系.【解答】 (1)①∵∠ACE+∠ECB=45°,∠BCF +∠ECB=45°,∴∠ACE =∠BCF.又∵AC BC =CE CF=2,∴△CAE ∽△CBF. ②∵AE BF =AC BC =2,AE =2,∴BF = 2.由△CAE∽△CBF 可得∠CAE=∠CBF. 又∠CAE+∠CBE=90°, ∴∠CBF +∠CBE=90°,即∠EBF=90°. ∴EF =BE 2+BF 2= 3. ∴CE =2EF = 6.(2)连接BF ,同理可得∠EBF=90°,由AB BC =EF FC =k ,可得BC∶AB∶AC=1∶k∶k 2+1,CF ∶EF ∶EC =1∶k∶k 2+1. ∴AC BC =AE BF=k 2+1. ∴BF =AE k 2+1,BF 2=AE 2k 2+1. ∴CE 2=k 2+1k 2×EF 2=k 2+1k 2(BE 2+BF 2), 即32=k 2+1k 2(12+22k 2+1),解得k =104. (3)p 2-n 2=(2+2)m 2.提示:连接BF ,同理可得∠EBF=90°,过C 作CH⊥AB,交AB 延长线于H ,可解得AB 2∶BC 2∶AC 2=1∶1∶(2+2),EF 2∶FC 2∶EC 2=1∶1∶(2+2),∴p 2=(2+2)EF 2=(2+2)(BE 2+BF 2)=(2+2)(m 2+n 22+2)=(2+2)m 2+n 2. ∴p 2-n 2=(2+2)m 2.本例是将某一问题的解决方法,运用到解决不同情境下的类似问题,这类题充分体现了实践性、探究性,其解答思路的突破点是紧扣题中交代的思想方法,结合不同情境中对应知识来解决问题.1.(2013·某某)阅读下列材料:如图1,在梯形ABCD 中,AD ∥BC ,点M ,N 分别在边AB ,DC 上,且MN∥AD,记AD =a ,BC AM MB =m n ,则有结论:MN =bm +an m +n. 请根据以上结论,解答下列问题:如图2,图3,BE ,CF 是△ABC 的两条角平分线,过EF 上一点P 分别作△ABC 三边的垂线段PP 1,PP 2,PP 3,交BC 于点P 1,交AB 于点P 2,交AC 于点P 3.(1)若点P 为线段EF 的中点.求证:PP 1=PP 2+PP 3;(2)若点P为线段EF上的任意位置时,试探究PP1,PP2,PP3的数量关系,并给出证明.2.(2015·随州)问题:如图1,点E、E分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.[发现证明]小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图1证明上述结论.[类比引申]如图2,四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD 满足______关系时,仍有EF=BE+FD.[探究应用]如图3,在某公园的同一水平面上,四条道路围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(3-1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:2≈1.41,3≈).参考答案 类型1 操作探究题 1.(1)①证明:∵AB =AC ,∴∠B =∠ACB.∵B 1C =BC ,∴∠CB 1B =∠B.又由旋转性质得∠A 1CB 1=∠ACB,∴∠CB 1B =∠A 1CB 1.∴BB 1∥CA 1.②过A 作AG⊥BC 于G ,过C 作CH⊥AB 于H.∵AB=AC ,AG ⊥BC ,∴BG =CG.∵在Rt△AGB 中,cos ∠ABC =BG AB =35,AB =5, ∴BG =3.∴BC =6.∴B 1C =BC =6.∵B 1C =BC ,CH ⊥AB ,∴BH =B 1H.∴B 1B =2BH.∵在Rt△BHC 中,cos ∠ABC =BH BC =35, ∴BH =185.∴BB 1=365.∴AB 1=BB 1-AB =365-5=115,CH =BC 2-BH 2=62-(185)2=245. ∴S △AB 1C =12AB 1·CH =12×115×245=13225. (2)过点C 作CF⊥AB 于F ,以点C 为圆心,CF 为半径画圆交BC 于F 1,此时EF 1最小.此时在Rt △BFC 中,CF =245. ∴CF 1=245.∴EF 1的最小值为CF -CE =245-3=95. 以点C 为圆心,BC 为半径画圆交BC 的延长线于F ′1,此时EF′1有最大值.此时EF ′1=EC +CF′1=3+6=9.∴线段EF 1的最大值与最小值的差9-95=365. 2.(1)证明:∵∠B 1CB =45°,∠B 1CA 1=90°,∴∠B 1CQ =∠BCP 1=45°.在△B 1CQ 和△BCP 1中,⎩⎪⎨⎪⎧∠B 1CQ =∠BCP 1,B 1C =BC ,∠B 1=∠B,∴△B 1CQ ≌△BCP 1.∴CQ =CP 1. (2)作P 1D ⊥CA 于D ,∵∠A =30°,∴P 1D =12AP 1=1. ∵∠P 1CD =45°,∴CP 1=2P 1D = 2.∵CP 1=CQ ,∴CQ = 2.(3)∵∠ACB=90°,∠A =30°,∴AC =3BC.∵BE ⊥P 1B ,∠ABC =60°,∴∠CBE =30°. ∴∠CBE =∠A.由旋转的性质可得:∠ACP 1=∠BCE,∴△AP 1C ∽△BEC.∴AP 1∶BE =AC∶BC=3∶1.设AP 1=x ,则BE =33x ,在Rt△ABC 中,∠A =30°, ∴AB =2BC =2.∴BP 1=2-x.∴S △P 1BE =12×33x(2-x)=-36x 2+33x =-36(x -1)2+36, ∵-36<0, ∴当x =1时,△P 1BE 面积的最大值为36. 3.(1)作AH⊥BC 于H ,∴∠AHB =90°.在Rt△AHB 中,AH =AB·sinB =3×sin60°=3×32=332. ∴S △ABC =3×3232=934. (2)如图1,,y =S △ADE .图1 作AG⊥DE 于G ,∴∠AGD =90°,∠DAG =30°.∴DE =x ,AG =32x. ∴y =x ×32x 2=34x 2. 如图2,当1.5<x <3时,作MG⊥DE 于G ,图2∵AD =x ,∴DE =AD =x ,BD =DM =3-x.∴DG =12(3-x),MF =MN =2x -3. ∴MG=32(3-x). ∴y=(2x -3+x )32(3-x )2=-334x 2+33x -934. ∴y =⎩⎪⎨⎪⎧34x 2(0<x≤1.5),-334x 2+33x -934(1.5<x <3). ,y =34x 2,∵a =34>0,开口向上,在对称轴的右侧y 随x 的增大而增大,∴x ,y 最大=9316,如图3,当1.5<x <3时,y =-334x 2+33x -934, ∴y =-334(x 2-4x)-934=334(x -2)2+334. ∵a =-334<0,开口向下,∴x =2时,y 最大=334.∵334>9316, ∴y 最大时,x =2.图3∴DE =AD =2,BD =DM =1.作FO⊥DE 于O ,连接MO ,ME.∴DO =OE =1.∴DM=DO.∵∠MDO=60°,∴△MDO 是等边三角形.∴∠DMO =∠DOM=60°,MO =DO =1.∴MO=OE ,∠MOE =120°.∴∠OME =30°.∴∠DME =90°.∴DE 是直径,S ⊙O =π×12=π.类型2 动态探究题1.(1)证明:∵BD⊥BE,A ,B ,C 三点共线,∴∠ABD +∠CBE=90°.∵∠C=90°,∴∠CBE +∠E=90°.∴∠ABD =∠E.又∵∠A=∠C,AD =BC ,∴△DAB ≌△BCE(AAS).∴AB=CE.∴AC=AB +BC =AD +CE.(2)①连接DQ ,设BD 与PQ 交于点F.∵∠DPF=∠QBF=90°,∠DFP =∠QFB,∴△DFP ∽△QFB.∴DF QF =PF BF. 又∵∠DFQ=∠PFB,∴△DFQ ∽△PFB.∴∠DQP =∠DBA.∴tan ∠DQP =tan ∠DBA.即在Rt△DPQ 和Rt△DAB 中,DP PQ =DA AB. ∵AD =3,AB =CE =5,∴DP PQ =35.②过Q 作QH⊥BC 于点H.∵PQ⊥DP,∠A =∠H=90°,∴△APD ∽△HQP.∴DP PQ =DA PH =35.∵DA =3,∴PH =5. ∵AP=PC =4,AB =PH =5,∴PB =CH =1. ∵EC⊥BH,QH ⊥BH ,∴EC QH =BC BH .∴5QH =34.∴QH =203. 在Rt△BHQ 中,BQ =BH 2+QH 2=(203)2+(123)2=4343. ∵MN 是△BDQ 的中位线,∴MN =2343. 2.(1)D(-4,3),P(-12,8). (2)当点P 在边AB 上时,BP =6-t.∴S=12BP ·AD =12(6-t)·8=-4t +24. 当点P 在边BC 上时,BP =t -6.∴S=12BP ·AB =12(t -6)·6=3t -18. ∴S =⎩⎪⎨⎪⎧-4t +24(0≤t≤6),3t -18(6<t≤14). (3)∵D(-45t ,35t),当点P 在边AB 上时,P(-45t -8,85t).若PE OE =CD CB 时,85t 45t +8=68,PE OE =CB CD 时,85t 45t +8=86,解得t =20. ∵0≤t≤6,∴t =20时,点P 不在边AB 上, 不合题意.当点P 在边BC 上时,P(-14+15t ,35t +6).若PE OE =CD BC 时,35t +614-15t =68,解得t =6. 若PE OE =BC CD 时,35t +614-15t =86,解得t =19013. ∵6≤t ≤14,∴t =19013时,点P 不在边BC 上,不合题意. ∴当t =6时,△PEO 与△BCD 相似.3.(1)当点M 为AC 的中点时,有AM =BM ,则△ABM 为等腰三角形;当点M 与点C 的重合时,BA =BM ,则△ABM 为等腰三角形;当点M 在AC 上且AM =2时,AM =AB ,则△ABM 为等腰三角形;当点M 为CG 的中点时,有AM =BM ,则△ABM 为等腰三角形.(2)证明:在AB 上取点K ,使AK =AN ,连接KN.∵AB=AD ,BK =AB -AK ,ND =AD -AN ,∴BK =DN.又DH 平分直角∠CDG,∴∠CDH =45°.∴∠NDH =90°+45°=135°.∵∠BKN =180°-∠AKN=135°,∴∠BKN =∠NDH.∵在Rt△ABN 中,∠ABN +∠ANB=90°,又BN⊥NH ,即∠BNH=90°,∴∠ANB +∠DNH =180°-∠BNH=90°.∴∠ABN =∠DNH.∴△BNK≌△NHD(ASA),∴BN =NH.(3)①当M 在AC 上时,即0<t≤22时,易知:△AMF 为等腰直角三角形.∵AM=t ,∴AF =FM =22t.∴S =12AF ·FM =12·22t ·22t =14t 2. 当M 在CG 上时,即22<t <42时,CM =t -AC =t -22,MG =42-t.∵AD=DC ,∠ADC =∠CDG,CD =CD ,∴△ACD ≌△GCD(SAS).∴∠ACD=∠GCD=45°. ∴∠ACM =∠ACD+∠GCD=90°.∴∠G=90°-∠GCD=90°-45°=45°. ∴△MFG 为等腰直角三角形.∴FG=MG·cos45°=(42-t)·22=4-22t. ∴S =S △ACG -S △MCJ -S △FMG =12×4×2-12·CM ·CM -12·FG ·FM =4-12·(t -22)2-12·(4-22t)2=-34t 2+42t -8. ∴S=⎩⎨⎧14t 2(0<t≤22),-34t 2+42t -8(22<t <42). ②在0<t≤22X 围内,当t =22时,S 的最大值为14×(22)2=2; 在22<t <42X 围内,S =-34(t -823)2+83.当t =823时,S 的最大值为83. ∵83>2,∴当t =823秒时,S 的最大值为83. 类型3 类比探究题1.(1)证明:过点E 作ER⊥BC 于点R ,ES ⊥AB 于点S.∵BE 为角平分线,∴ER =ES.过点F 作FM⊥BC 于点M ,FN ⊥AC 于点N ,同理FM =FN.∵ES⊥B A ,PP 2⊥AB ,∴PP 2∥ES.同理得PP 3∥FN ,FM ∥PP 1∥ER.∵点P 为EF 中点,PP 2∥ES ,∴△FPP 2∽△FES.∴ES =2PP 2,同理FN =2PP 3.∴FM =2PP 3,ER =2PP 2.在梯形FMRE 中,FM ∥PP 1∥ER ,FP PE =11, ∴根据题设结论可知:PP 1=ER×1+FM×11+1=ER +FM 2=2PP 2+2PP 32=PP 2+PP 3. (2)探究结论:PP 1=PP 2+PP 3.证明:过点E 作ER⊥BC 于点R ,ES ⊥AB 于点S ,则有ER =ES.过点F 作FM⊥BC 于点M ,FN ⊥AC 于点N ,,不妨设FP PE =m n ,则PF EF =m m +n ,PE EF =n m +n .∵PP 2∥ES ,∴PP 2ES =PF EF =n m +n. ∴ES =m +n mPP 2.∵PP 3∥FN ,∴PP 3FN =PE EF =n m +n .∴FN =m +n n PP 3.∴ER =m +n m PP 2,FM =m +n nPP 3. 在梯形FMRE 中,FM ∥PP 1∥ER ,PF PE =m n, ∴根据题设结论可知:PP 1=mER +nFM m +n =m ·m +n m PP 2+n ·m +n n PP 3m +n =(m +n )PP 2+(m +n )PP 3m +n=PP 2+PP 3. 2.[发现证明]:将△ABE 绕点A 逆时针旋转90°至△ADG,使AB 与AD 重合. ∴△ABE≌△ADG.∴∠BAE=∠DAG,∠B =∠ADG,AE =AG ,BE =DG.∴∠GAF=∠GAD+∠DAF=∠BAE+∠DAF=45°.在正方形ABCD 中,∠B =∠ADF=90°.∴∠ADG +∠ADF=180°,即点G 、D 、F 在一条直线上.在△EAF 和△GAF 中,⎩⎪⎨⎪⎧AE =AG ,∠EAF =∠GAF=45°,AF =AF ,∴△EAF ≌△GAF.∴EF =GF.又GF =DG +DF =BE +DF.∴EF=BE +FD.[类比引申]:∠EAF=12∠BAD , 理由如下:将△ABE 绕点A 逆时针方向旋转∠D AB 至△ADG,使AB 与AD 重合.∴△ABE≌△ADG.∴∠BAE=∠DAG,∠B =∠ADG,AE =AG ,BE =DG.∴∠GAF=∠GAD+∠DAF=∠BAE+∠DAF=12∠BAD. ∵在四边形ABCD 中,∠B +∠ADF=180°.∴∠ADG +∠ADF=180°,即点G 、D 、F 在一条直线上.在△EAF 和△GAF 中,⎩⎪⎨⎪⎧AE =AG ,∠EAF =∠GAF=12∠BAD,AF =AF ,∴△EAF ≌△GAF.∴EF =GF.又GF =DG +DF =BE +DF ,∴EF =BE +FD.[探究应用]:连接AF ,延长BA 、CD 交于点O.则∠BOC=180°-∠B-∠C=90°.∴△AOD 为直角三角形.在Rt△AOD 中,∠ODA =60°,∠OAD =30°,AD =80米.∴AO=403米,OD =40米.∵OF=OD +DF =40+40(3-1)=403(米),∴AO =OF.∴∠OAF=45°.∴∠DAF =45°-30°=15°.∴∠EAF =90°-15°=75°.∴∠EAF =12∠BAD. ∵∠BAE =180°-∠OAF-∠EAF=60°,∠B =60°,∴△BAE 为等边三角形. ∴BE=AB =80米.由[类比引申]的结论可得EF =BE +DF =40(3+1)≈109(米).。
火线100天(四川专版)中考数学总复习 第6讲 一元二次方程-人教版初中九年级全册数学试题

第6讲一元二次方程一元二次方程的概念及解法一元二次方程的概念只含有①________个未知数,且未知数的最高次数是②________的整式方程,叫做一元二次方程.它的一般形式是ax2+bx+c=0(a≠0).一元二次方程的解法解一元二次方程的基本思想是③________,主要方法有:直接开平方法、④________法、公式法、⑤________法等.一元二次方程根的判别式及根与系数的关系根的判别式的定义关于x的一元二次方程ax2+bx+c=0(a≠0)的根的判别式为⑥________.判别式与根的关系(1)b2-4ac>0一元二次方程⑦__________的实数根;(2)b2-4ac=0一元二次方程⑧__________的实数根;(3)b2-4ac<0一元二次方程⑨________实数根.根与系数的关系如果一元二次方程ax2+bx+c=0(a≠0)的两根分别是x1、x2,则x1+x2=-ba,x1·x2=ca.【易错提示】(1)在使用根的判别式解决问题时,如果二次项系数中含有字母,要加上二次项系数不为0这个限制条件.(2)利用根与系数的关系解题时,要注意根的判别式b2-4ac≥0.一元二次方程的应用正确列出一元二次方程的前提是准确理解题意、找出等量关系,进而达到求解的目的.在此过程中往往要借助于示意图、列表格等手段帮助我们分析数量关系,并能根据具体问题的实际意义检验结果是否合理.1.已知方程一根求另一根和参数系数,可将已知根代入方程求出参数系数的值,再解方程另一根;也可以利用根与系数的关系求解.2.解一元二次方程需要根据方程特点选用适当的方法,一般情况下:(1)首先看能否用直接开平方法或因式分解法;(2)不能用以上方法时,可考虑用公式法;(3)除特别指明外,一般不用配方法.命题点1 一元二次方程的解法(2014·某某)解方程:3x(x-2)=2(2-x).【思路点拨】可以运用因式分解法比较简捷.【解答】一元二次方程的解法有四种:因式分解法、开平方法,配方法与公式法.若方程的右边为0,且左边能分解因式,则宜选用因式分解法;若方程形如x2=c、(ax+b)2=c(c≥0)或可化为这种形式的一类方程,则宜选用开平方法;若方程二次项系数为1,一次项的系数为偶数时,则宜选用配方法;若用直接开平方法、配方法、因式分解法都不简便时,则用公式法.1.(2015·某某A卷)一元二次方程x2-2x=0的根是()A.x1=0,x2=-2 B.x1=1,x2=2C.x1=1,x2=-2 D.x1=0,x2=22.(2015·滨州)用配方法解一元二次方程x2-6x-10=0时,下列变形正确的为()A.(x+3)2=1 B.(x-3)2=1C.(x+3)2=19 D.(x-3)2=193.解方程:4x2-12x+5=0.4.(2013·某某)用配方法解关于x的一元二次方程ax2+bx+c=0.命题点2 一元二次方程根的判别式及根与系数(2015·某某)已知关于x的一元二次方程(x-1)(x-4)=p2(p为实数).(1)求证:方程有两个不相等的实数根;(2)p为何值时,方程有整数解.(直接写出三个,不需说明理由)【思路点拨】(1)首先将方程化为一般式,然后计算根的判别式为正,从而结论得以证明;(2)可以利用一元二次方程的根与系数的关系讨论得出p的值.【解答】利用一元二次方程的根与系数的关系求字母系数的值的前提条件是方程必有两个实数根,也就是Δ≥0.1.(2015·眉山)下列一元二次方程中有两个不相等的实数根的方程是()A.(x-1)2=0 B.x2+2x-19=0C.x2+4=0 D.x2+x+1=02.(2015·某某)关于x的一元二次方程kx2+2x-1=0有两个不相等实数根,则k的取值X围是() A.k>-1 B.k≥-1C.k≠0 D.k>-1且k≠03.(2015·内江)已知关于x的方程x2-6x+k=0的两根分别是x1,x2,且满足1x1+1x2=3,则k的值是________.4.(2014·某某)已知关于x的一元二次方程x2-22x+m=0,有两个不相等的实数根.(1)某某数m的最大整数值;(2)在(1)的条件下,方程的实数根是x1,x2,求代数式x21+x22-x1x2的值.命题点3 一元二次方程的应用(2015·某某)如图,某农场有一块长40 m,宽32 m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路,要使种植面积为1 140 m2,求小路的宽.【思路点拨】设小路的宽x m,将四块种植地平移为一个矩形,矩形的长为(40-x)m,宽为(32-x)m,根据矩形的面积公式可建立一元二次方程,解之可得答案.【解答】列方程解应用题的关键是找到相等关系.而在找相等关系时,有时可借助图表,在求出方程的解后,要检验它是否符合实际意义.对于商品销售问题,相等关系是:总利润=每件利润×销售数量.1.(2015·某某)某种品牌运动服经过两次降价,每件件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315 B.560(1-x)2=315C.560(1-2x)2=315 D.560(1-x2)=3152.(2015·达州)新世纪百货大楼“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调査,如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1 200元,则每件童装应降价多少元?设每件童装应降价x元,可列方程为________________.3.(2015·乌鲁木齐)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6 080元的利润,应将销售单价定位多少元?4.(2015·某某)李明准备进行如下操作实验,把一根长40 cm 的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm 2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48 cm 2,你认为他的说法正确吗?请说明理由.1.(2014·某某)一元二次方程x 2-x -2=0的解是() A .x 1=1,x 2=2B .x 1=1,x 2=-2C .x 1=-1,x 2=-2D .x 1=-1,x 2=22.(2015·随州)用配方法解一元二次方程x 2-6x -4=0,下列变形正确的是() A .(x -6)2=-4+36 B .(x -6)2=4+36 C .(x -3)2=-4+9D .(x -3)2=4+93.(2015·某某)若一元二次方程x 2+2x +a =0有实数解,则a 的取值X 围是() A .a<1B .a ≤4C .a ≤1D .a ≥14.(2015·达州)方程(m -2)x 2-3-mx +14=0有两个实数根,则m 的取值X 围为()A .m>52B .m ≤52且m≠2C .m ≥3D .m ≤3且m≠25.(2015·某某)一个等腰三角形的两条边长分别是方程x 2-7x +10=0的两根,则该等腰三角形的周长是() A .12B .9C .13D .12或96.(2015·某某)若关于x 的方程x 2+3x +a =0有一个根为-1,则另一个根为() A .-2 B .2 C .4 D .-37.(2015·某某)如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2 m ,另一边减少了3 m ,剩余一块面积为20 m 2的矩形空地,则原正方形空地的边长是()A .7 mB .8 mC .9 mD .10 m8.(2015·某某)解一元二次方程x 2+2x -3=0时,可转化为两个一元一次方程,请写出其中的一个一元一次方程________________.9.(2015·)关于x 的一元二次方程ax 2+bx +14=0有两个相等的实数根,写出一组满足条件的实数a ,b的值:a =________,b =________.10.(2015·甘孜)若矩形ABCD 的两邻边长分别为一元二次方程x 2-7x +12=0的两个实数根,则矩形ABCD 的对角线长为________.11.(2015·呼和浩特)若实数a 、b 满足(4a +4b)(4a +4b -2)-8=0,则a +b =________. 12.(2015·某某)关于x 的一元二次方程x 2-x +m =0没有实数根,则m 的取值X 围是________. 13.(2015·某某)解方程:x 2-3x +2=0.14.(2015·某某)已知:关于x的方程x2+2mx+m2-1=0.(1)不解方程,判断方程根的情况;(2)若方程有一个根为3,求m的值.15.(2015·某某)关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1,x2.(1)某某数k的取值X围;(2)若方程两实根x1,x2满足|x1|+|x2|=x1·x2,求k的值.16.(2015·东营)2013年,东营市某楼盘以每平方米6 500元的均价对外销售.因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2015年的均价为每平方米5 265元.(1)求平均每年下调的百分率;(2)假设2016年的均价仍然下调相同的百分率,X强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,X强的愿望能否实现?(房价每平方米按照均价计算)17.(2015·某某)关于x的一元二次方程(m-2)x2+(2m+1)x+m-2=0有两个不相等的正实数根,则m的取值X 围是()A .m >34B .m >34且m≠2C .-12<m <2D.34<m <2 18.(2015·株洲)有两个一元二次方程:M :ax 2+bx +c =0,N :cx 2+bx +a =0,其中a +c =0,以下列四个结论中,错误的是()A .如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根B .如果方程M 有两根符号相同,那么方程N 的两根符号也相同C .如果5是方程M 的一个根,那么15是方程N 的一个根D .如果方程M 和方程N 有一个相同的根,那么这个根必是x =119.(2015·某某)关于m 的一元二次方程7nm 2-n 2m -2=0的一个根为2,则n 2+n -2=________. 20.(2015·凉山)已知实数m 、n 满足3m 2+6m -5=0,3n 2+6n -5=0,则n m +m n=________.参考答案 考点解读考点1 ①一 ②2 ③降次 ④配方 ⑤因式分解考点2 ⑥b 2-4ac ⑦有两个不相等 ⑧有两个相等 ⑨没有 各个击破,得(x -2)(3x +2)=0. ∴x-2=0或3x +2=0.因此,原方程的解为x 1=2,x 2=-23.题组训练 1.D 2.D 1=52,x 2=12.4.∵关于x 的方程ax 2+bx +c =0是一元二次方程, ∴a≠0.∴由原方程,得x 2+b a x =-c a.等式的两边都加上(b 2a )2,得x 2+b a x +(b 2a )2=-c a +(b 2a )2,配方,得(x +b 2a )2=-4ac -b24a 2, 开方,得x +b 2a =±b 2-4ac2a,解得x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac2a.例2 (1)化简方程,得x 2-5x +(4-p 2)=0,Δ=(-5)2-4(4-p 2)=9+4p 2. ∵p 为实数, ∴9+4p 2>0.∴方程有两个不相等的实数根.(2)当p 为0、2、-2时,方程有整数解. 题组训练 1.B 2.D 3.24.(1)∵一元二次方程x 2-22x +m =0有两个不相等的实数根, ∴Δ=8-4m >0,解得m <2,故整数m 的最大整数值为1. (2)∵m=1,∴此一元二次方程为x 2-22x +1=0.∴x 1+x 2=22,x 1x 2=1,∴x 21+x 22-x 1x 2=(x 1+x 2)2-3x 1x 2=8-3=5. 例3 设小路的宽为x m ,依题意,, 得x 21=2,x 2=70(不合题意,舍去). 答:小路的宽为2 m.题组训练 1.B 2.(40-x)(20+2x)=1 200 ,则售价为(60-x)元,销售量为(300+20x)件,根据题意得(60-x -40)(300+20x)=6 080,解得x 1=1,x 2=4. 又∵要让顾客得实惠, 故取x =4,即定价为56元. 答:应将销售单价定位56元.4.(1)设剪成的较短的这段为x cm ,较长的这段就为(40-x) cm , 由题意,得(x 4)2+(40-x 4)2=58,解得x 1=12,x 2=28.当x =12时,较长的为40-12=28(cm), 当x =28时,较长的为40-28=12<28(舍去). 答:李明应该把铁丝剪成12 cm 和28 cm 的两段. (2)李明的说法正确.理由如下:设剪成的较短的这段为m cm ,较长的这段就为(40-m)cm ,由题意,得(m 4)2+(40-m 4)2=48,变形为m 2-40m +416=0.∵Δ=(-40)2-4×416=-64<0, ∴原方程无实数根,即李明的说法正确,这两个正方形的面积之和不可能等于48 cm 2. 整合集训 基础过关1.D 2.D 3.C 4.B 5.A 6.A 7.A 8.x +3=0(或x -1=0) 9.1 1 10.5 11.1或-12 12.m>1413.∵a=1,b =-3,c =2,∴Δ=b 2-4ac =(-3)2-4×1×2=1. ∴x=3±12×1=3±12. ∴x 1=1,x 2=2.14.(1)因为Δ=(2m)2-4(m 2-1)=4>0,所以,原方程有两个不相等的实数根.(2)将x =3代入原方程,得32+6m +m 2-1=0,即m 2+6m +8=0,解得m =-2或m =-4.15.(1)∵原方程有两个不相等的实数根,∴Δ=(2k +1)2-4(k 2+1)=4k 2+4k +1-4k 2-4=4k -3>0,即k >34. (2)∵k >34, ∴x 1+x 2=-(2k +1)<0.又∵x 1·x 2=k 2+1>0,∴x 1<0,x 2<0.∴|x 1|+|x 2|=-x 1-x 2=-(x 1+x 2)=2k +1.∵|x 1|+|x 2|=x 1·x 2,∴2k +1=k 2+1.∴k 1=0,k 2=2.又∵k>34, ∴k =2.16.(1)设平均每年下调的百分率为x ,根据题意,得6 500(1-x)2=5 265,解得x 1=0.1=10%,x 2=1.9(不合题意,舍去).答:平均每年下调的百分率为10%.(2)若下调的百分率相同,2016年的房价为5 265×(1-10%)=4 738.5(元/m 2). 则100平方米的住房的总房款为:100×4 738.5=473 850(元)=47.385(万元). ,∴X 强的愿望可以实现.能力提升22 17.D 18.D 19.26 20.-5。
【火线100天】(四川专版)中考数学专题复习一规律与猜想

规律与猜想学习数学很重要的一个目的,就是要善于捕捉事物的规律,用数学形式和数学方法表示出来.规律与猜想类试题选材一般有一定的趣味性,呈现形式多样,便于学生观察,侧重考查学生观察和归纳能力,让学生从不同的角度,利用不同的方法探索并发现数学规律,并自我验证,最后用于解决相关问题,真正考查了学生的数学思考能力.类型1 数式规律(2015·巴中)a 是不为1的数,我们把11-a 称为a 的差倒数,如:2的差倒数为11-2=-1;-1的差倒数是11-(-1)=12;已知a 1=3,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…依此类推,则a 2 015=________.【思路点拨】 先根据差倒数的定义表示出各项,再归纳总结规律,最后利用规律表示a 2 015的值.【解答】 a 1=3;a 2是a 1的差倒数,即a 2=11-3=-12; a 3是a 2的差倒数,即a 3=11+12=23; a 4是a 3的差倒数,即a 4=11-23=3; …依此类推,∵2 015÷3=671……2,∴a 2 015=-12. 故答案为-12.解答数式规律探索题的一般步骤:第一步:找序数;第二步:找规律,分别比较数式中各部分与序数之间的关系,把其蕴含的规律用含序数的式子表示出来;第三步:根据找出的规律得出第n 个数式.有时,也会根据计算前面几个数式,总结出循环规律,再求解,如本例题.1.(2015·临沂)观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,…按照上述规律,第2 015个单项式是( )A .2 015x2 015 B .4 029x 2 014 C .4 029x 2 015 D .4 031x 2 0152.(2015·泰安)下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为( )A .135B .170C .209D .2523.(2013·绵阳)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现用等式A M =(i ,j)表示正奇数M 是第i 组第j 个数(从左往右数),如A 7=(2,3),则A 2 013=( )A .(45,77)B .(45,39)C .(32,46)D .(32,23)4.(2013·广元)观察下列等式:21=2;22=4;23=8;24=16;25=32;26=64;27=128;…,通过观察,用你所发现的规律确定22 013的个位数字是________.5.(2015·恩施)观察下列一组数:1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,…其中每个数n 都连续出现n 次,那么这一组数的第119个数是________.6.(2015·平凉)古希腊数学家把数形结合1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是________,2 016是第________个三角形数.7.(2014·南充)一列数a 1,a 2,a 3,…,a n ,其中a 1=-1,a 2=11-a 1,a 3=11-a 2,…,a n =11-a n -1,则a 1+a 2+a 3+…+a 2 014=________.8.(2014·黄石)观察下列等式:第一个等式:a 1=31×2×22=11×2-12×22; 第二个等式:a 2=42×3×23=12×22-13×23; 第三个等式:a 3=53×4×24=13×23-14×24; 第四个等式:a 4=64×5×25=14×24-15×25; 按上述规律,回答以下问题:用含n 的代数式表示第n 个等式:a n =____________=________________;式子a1+a2+a3+…+a20=________.类型2 图形规律(2015·内江)如图是由火柴棒搭成的几何图案,则第n个图案中有______根火柴棒.(用含n的代数式表示)…【思路点拨】本题可分别写出n=1,2,3,…时所对应的火柴棒的根数.然后进行归纳即可得出最终答案.【解答】依题意得:n=1,根数为4=2×1×(1+1);n=2,根数为12=2×2×(2+1);n=3,根数为24=2×3×(3+1);…第n个图案火柴棒根数为2n(n+1).解答图形排列中的规律的一般步骤为:第一步:标图形序数;第二步:找关系,找一个图形相比前一个图形中所求量之间的关系,或找出图形中的所求量与图形序数之间的关系;第三步:计算每个图形中所求量的个数;第四步:对求出的结果进行一定的变形,使其呈现一定的规律;第五步:归纳结果与序数之间的关系,即可得到第n个图形中的所求量的个数;第六步:验证.对于图形循环变换类规律题,求经过n次变换后对应的图形的解题步骤为:第一步:通过观察,得到该组图形经过一个循环的次数,即为a;第二步:用n除以a,商b余m(0≤m<a)时,第n次变换后对应的图形就是一个循环变换中第m次变换后对应的图形;第三步:根据题意,找出第m次变换后对应的图形,推断出第n次变换后对应的图形.1.(2014·攀枝花)如图,两个连接在一起的菱形的边长都是1 cm,一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2 014 cm时停下,则它停的位置是( )A.点F B.点E C.点A D.点C2.(2015·绵阳)将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n 个“龟图”中有245个“○”,则n =( )…A .14B .15C .16D .173.(2014·宜宾)如图,将n 个边长都为2的正方形按如图所示摆放,点A 1,A 2,…,A n 分别是正方形的中心,则这n 个正方形重叠部分的面积之和是( )A .nB .n -1C .(14)n -1 D.14n 4.(2014·内江)如图,将若干个正三角形、正方形和圆按一定规律从左向右排列,那么第2 014个图形是________.5.(2015·山西)如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,…依此规律,第(n)个图案有________个三角形(用含n 的代数式表示).6.(2014·德阳)如图,直线a∥b,△ABC 是等边三角形,点A 在直线a 上,边BC 在直线b 上,把△ABC 沿BC 方向平移BC 的一半得到△A′B′C′(如图1);继续以上的平移得到图2,再继续以上的平移得到图3,…;请问在第100个图形中等边三角形的个数是________.7.(2015·随州)观察下列图形规律:当n =________时,图形“的个数和“△”的个数相等.…8.(2014·绵阳)将边长为1的正方形纸片按图1所示方法进行对折,记第1次对折后得到的图形面积为S 1,第2次对折后得到的图形面积为S 2,…,第n 次对折后得到的图形面积为S n ,请根据图2化简,S 1+S2+S3+…+S2 014=________.9.(2015·潍坊)如图,正△ABC的边长为2,以BC边上的高AB1为边作正△AB1C1,△ABC与△AB1C1公共部分的面积记为S1;再以正△AB1C1边B1C1上的高AB2为边作正△AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2;…,以此类推,则S n=________.(用含n的式子表示)10.(2014·成都)在边长为1的小正方形组成的方格纸中,称小正方形的顶点为“格点”,顶点全在格点上的多边形为“格点多边形”.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L,例如,图中三角形ABC是格点三角形,其中S=2,N=0,L=6;图中格点多边形DEFGHI所对应的S,N,L分别是________.经探究发现,任意格点多边形的面积S可表示为S=aN+bL+c,其中a,b,c为常数,则当N=5,L=14时,S=________.(用数值作答)类型3 坐标规律(2015·德阳)如图,在直角坐标系xOy中,点A在第一象限,点B在x轴的正半轴上,△AOB为正三角形,射线OC⊥AB,在OC上依次截取点P1,P2,P3,…,P n,使OP1=1,P1P2=3,P2P3=5,…,P n-1P n =2n-1(n为正整数),分别过点P1,P2,P3,…,P n向射线OA作垂线段,垂足分别为点Q1,Q2,Q3,…,Q n,则点Q n的坐标为________.【思路点拨】 利用特殊直角三角形求出OP n 的值,再利用∠AOB=60°即可求出点Q n 的坐标.【解答】 ∵△AOB 为正三角形,射线OC⊥AB,∴∠AOC =30°.又∵P n -1P n =2n -1,P n Q n ⊥OA ,∴OQ n =32(OP 1+P 1P 2+P 2P 3+…+P n -1P n )=32(1+3+5+…+2n -1)=32n 2. ∴Q n 的坐标为(32n 2·cos60°,32n 2·sin60°),即Q n 的坐标为(34n 2,34n 2).本题主要考查了坐标与图形性质,解题的关键是正确地求出OQ n 的值.点的坐标变化主要是点所在的图形的位置在发生变化,解决这类问题,先应分析坐标系中的图形的位置变化规律,然后再根据图形的变化规律寻找图形上的点的坐标的变化规律.1.(2015·济南)在平面直角坐标系中有三个点A(1,-1),B(-1,-1),C(0,1),点P(0,2)关于A 的对称点为P 1,P 1关于B 的对称点为P 2,P 2关于C 的对称点为P 3,按照此规律继续以A 、B 、C 为对称中心重复前面的操作,以此得到P 4,P 5,P 6,…,则点P 2 015的坐标是( )A .(0,0)B .(0,2)C .(2,-4)D .(-4,2)2.(2014·内江)如图,已知A 1、A 2、A 3、…、A n 、A n +1是x 轴上的点,且OA 1=A 1A 2=A 2A 3=…=A n A n +1=1,分别过点A 1、A 2、A 3、…、A n 、A n +1作x 轴的垂线交直线y =2x 于点B 1、B 2、B 3、…、B n 、B n +1,连接A 1B 2、B 1A 2、B 2A 3、…、A n B n +1、B n A n +1,依次相交于点P 1、P 2、P 3、…、P n .△A 1B 1P 1、△A 2B 2P 2、…、△A n B n P n 的面积依次记为S 1、S 2、…、S n ,则S n 为( )A.n +12n +1 B.n 3n -1C.n 22n -1D.n 22n +13.(2015·成都)已知菱形A 1B 1C 1D 1的边长为2,∠A 1B 1C 1=60°,对角线A 1C 1,B 1D 1相交于点O.以点O 为坐标原点,分别以OA 1,OB 1所在直线为x 轴、y 轴,建立如图所示的直角坐标系.以B 1D 1为对角线作菱形B 1C 2D 1A 2∽菱形A 1B 1C 1D 1,再以A 2C 2为对角线作菱形A 2B 2C 2D 2∽菱形B 1C 2D 1A 2,再以B 2D 2为对角线作菱形B 2C 3D 2A 3∽菱形A 2B 2C 2D 2,…,按此规律继续作下去,在x 轴的正半轴上得到点A 1,A 2,A 3,…,A n ,则点A n 的坐标为________.4.(2015·达州)在平面直角坐标系中,直线y =x +1与y 轴交于点A 1,按如图方式作正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 3C 2…,A 1、A 2、A 3…在直线y =x +1上,点C 1、C 2、C 3…在x 轴上,图中阴影部分三角形的面积从左到右依次记为S 1、S 2、S 3、…S n ,则S n 的值为________(用含n 的代数式表示,n 为正整数).5.(2015·东营)如图放置的△OAB 1,△B 2A 2B 3,…都是边长为1的等边三角形,点A 在x 轴上,点O ,B 1,B 2,B 3,…都在直线l 上,则点A 2 015的坐标是________________.6.(2013·内江)如图,已知直线l :y =3x ,过点M(2,0)作x 轴的垂线交直线l 于点N ,过点N 作直线l 的垂线交x 轴于点M 1;过点M 1作x 轴的垂线交直线l 于N 1,过点N 1作直线l 的垂线交x 轴于点M 2,…;按此作法继续下去,则点M 10的坐标为____________.(2013·自贡)如图,在函数y =8x(x >0)的图象上有点P 1、P 2、P 3…、P n 、P n +1,点P 1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P 1、P 2、P 3…、P n 、P n +1分别作x 轴、y 轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S 1、S 2、S 3…、S n ,则S 1=________,S n =________.(用含n 的代数式表示)参考答案类型1 数式规律1.C 2.C 3.C 4.2 5.15 6.45 63 7.2 0112 8.n+2n (n +1)·2n +1 1n·2n -1(n +1)·2n +112-121×221类型2 图形规律1.A 2.C 3.B 4.正方形 5.(3n +1) 6.301 7.5 8.1-122 014 9.32(34)n 10.7,3,10 11类型3 坐标规律1.A 2.D 3.(3n -1,0) 4.22n -3 5.(2 0172,2 01532) 6.(2 097 152,0)7.4 8n (n +1)。
火线100天(四川专版)中考数学一轮复习 专题一 规律与猜想-人教版初中九年级全册数学试题

规律与猜想 学习数学很重要的一个目的,就是要善于捕捉事物的规律,用数学形式和数学方法表示出来.规律与猜想类试题选材一般有一定的趣味性,呈现形式多样,便于学生观察,侧重考查学生观察和归纳能力,让学生从不同的角度,利用不同的方法探索并发现数学规律,并自我验证,最后用于解决相关问题,真正考查了学生的数学思考能力. 类型1 数式规律(2015·某某)a 是不为1的数,我们把11-a 称为a 的差倒数,如:2的差倒数为11-2=-1;-1的差倒数是11-(-1)=12;已知a 1=3,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…依此类推,则a 2 015=________. 【思路点拨】 先根据差倒数的定义表示出各项,再归纳总结规律,最后利用规律表示a 2 015的值.【解答】 a 1=3;a 2是a 1的差倒数,即a 2=11-3=-12; a 3是a 2的差倒数,即a 3=11+12=23; a 4是a 3的差倒数,即a 4=11-23=3; …依此类推,∵2 015÷3=671……2,∴a 2 015=-12. 故答案为-12.解答数式规律探索题的一般步骤:第一步:找序数;第二步:找规律,分别比较数式中各部分与序数之间的关系,把其蕴含的规律用含序数的式子表示出来;第三步:根据找出的规律得出第n 个数式.有时,也会根据计算前面几个数式,总结出循环规律,再求解,如本例题.1.(2015·某某)观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,…按照上述规律,第2 015个单项式是( )A .2 015x2 015 B .4 029x 2 014 C .4 029x 2 015 D .4 031x 2 0152.(2015·某某)下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为( )A .135B .170C .209D .2523.(2013·某某)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现用等式A M =(i ,j)表示正奇数M 是第i 组第j 个数(从左往右数),如A 7=(2,3),则A 2 013=( )A .(45,77)B .(45,39)C .(32,46)D .(32,23)4.(2013·某某)观察下列等式:21=2;22=4;23=8;24=16;25=32;26=64;27=128;…,通过观察,用你所发现的规律确定22 013的个位数字是________.5.(2015·某某)观察下列一组数:1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,…其中每个数n 都连续出现n 次,那么这一组数的第119个数是________.6.(2015·某某)古希腊数学家把数形结合1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是________,2 016是第________个三角形数.7.(2014·某某)一列数a 1,a 2,a 3,…,a n ,其中a 1=-1,a 2=11-a 1,a 3=11-a 2,…,a n =11-a n -1,则a 1+a 2+a 3+…+a 2 014=________.8.(2014·某某)观察下列等式:第一个等式:a 1=31×2×22=11×2-12×22; 第二个等式:a 2=42×3×23=12×22-13×23; 第三个等式:a 3=53×4×24=13×23-14×24; 第四个等式:a 4=64×5×25=14×24-15×25; 按上述规律,回答以下问题:用含n 的代数式表示第n 个等式:a n =____________=________________;式子a 1+a 2+a 3+…+a 20=________.类型2 图形规律(2015·内江)如图是由火柴棒搭成的几何图案,则第n个图案中有______根火柴棒.(用含n的代数式表示)…【思路点拨】本题可分别写出n=1,2,3,…时所对应的火柴棒的根数.然后进行归纳即可得出最终答案.【解答】依题意得:n=1,根数为4=2×1×(1+1);n=2,根数为12=2×2×(2+1);n=3,根数为24=2×3×(3+1);…第n个图案火柴棒根数为2n(n+1).解答图形排列中的规律的一般步骤为:第一步:标图形序数;第二步:找关系,找一个图形相比前一个图形中所求量之间的关系,或找出图形中的所求量与图形序数之间的关系;第三步:计算每个图形中所求量的个数;第四步:对求出的结果进行一定的变形,使其呈现一定的规律;第五步:归纳结果与序数之间的关系,即可得到第n个图形中的所求量的个数;第六步:验证.对于图形循环变换类规律题,求经过n次变换后对应的图形的解题步骤为:第一步:通过观察,得到该组图形经过一个循环的次数,即为a;第二步:用n除以a,商b余m(0≤m<a)时,第n次变换后对应的图形就是一个循环变换中第m次变换后对应的图形;第三步:根据题意,找出第m次变换后对应的图形,推断出第n次变换后对应的图形.1.(2014·某某)如图,两个连接在一起的菱形的边长都是1 cm,一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2 014 cm时停下,则它停的位置是( )A.点F B.点E C.点A D.点C2.(2015·某某)将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n 个“龟图”中有245个“○”,则n=( )…A .14B .15C .16D .173.(2014·某某)如图,将n 个边长都为2的正方形按如图所示摆放,点A 1,A 2,…,A n 分别是正方形的中心,则这n 个正方形重叠部分的面积之和是( )A .nB .n -1C .(14)n -1 D.14n 4.(2014·内江)如图,将若干个正三角形、正方形和圆按一定规律从左向右排列,那么第2 014个图形是________.5.(2015·某某)如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,…依此规律,第(n)个图案有________个三角形(用含n 的代数式表示).6.(2014·德阳)如图,直线a∥b,△ABC 是等边三角形,点A 在直线a 上,边BC 在直线b 上,把△ABC 沿BC 方向平移BC 的一半得到△A′B′C′(如图1);继续以上的平移得到图2,再继续以上的平移得到图3,…;请问在第100个图形中等边三角形的个数是________.7.(2015·随州)观察下列图形规律:当n =________时,图形“”的个数和“△”的个数相等.…8.(2014·某某)将边长为1的正方形纸片按图1所示方法进行对折,记第1次对折后得到的图形面积为S 1,第2次对折后得到的图形面积为S 2,…,第n 次对折后得到的图形面积为S n ,请根据图2化简,S 1+S 2+S 3+…+S 2 014=________.9.(2015·潍坊)如图,正△ABC 的边长为2,以BC 边上的高AB 1为边作正△AB 1C 1,△ABC 与△AB 1C 1公共部分的面积记为S1;再以正△AB1C1边B1C1上的高AB2为边作正△AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2;…,以此类推,则S n=________.(用含n的式子表示)10.(2014·某某)在边长为1的小正方形组成的方格纸中,称小正方形的顶点为“格点”,顶点全在格点上的多边形为“格点多边形”.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L,例如,图中三角形ABC是格点三角形,其中S=2,N=0,L=6;图中格点多边形DEFGHI所对应的S,N,L分别是________.经探究发现,任意格点多边形的面积S可表示为S=aN+bL+c,其中a,b,c为常数,则当N=5,L=14时,S=________.(用数值作答)类型3 坐标规律(2015·德阳)如图,在直角坐标系xOy中,点A在第一象限,点B在x轴的正半轴上,△AOB为正三角形,射线OC⊥AB,在OC上依次截取点P1,P2,P3,…,P n,使OP1=1,P1P2=3,P2P3=5,…,P n-1P n=2n-1(n为正整数),分别过点P1,P2,P3,…,P n向射线OA作垂线段,垂足分别为点Q1,Q2,Q3,…,Q n,则点Q n的坐标为________.【思路点拨】利用特殊直角三角形求出OP n的值,再利用∠AOB=60°即可求出点Q n的坐标.【解答】∵△AOB为正三角形,射线OC⊥AB,∴∠AOC=30°.又∵P n-1P n=2n-1,P n Q n⊥OA,∴OQ n=32(OP1+P1P2+P2P3+…+P n-1P n)=32(1+3+5+…+2n-1)=32n2.∴Q n的坐标为(32n2·cos60°,32n2·sin60°),即Q n的坐标为(34n2,34n2).本题主要考查了坐标与图形性质,解题的关键是正确地求出OQ n的值.点的坐标变化主要是点所在的图形的位置在发生变化,解决这类问题,先应分析坐标系中的图形的位置变化规律,然后再根据图形的变化规律寻找图形上的点的坐标的变化规律.1.(2015·某某)在平面直角坐标系中有三个点A(1,-1),B(-1,-1),C(0,1),点P(0,2)关于A的对称点为P1,P1关于B的对称点为P2,P2关于C的对称点为P3,按照此规律继续以A、B、C为对称中心重复前面的操作,以此得到P4,P5,P6,…,则点P2 015的坐标是( )A.(0,0) B.(0,2) C.(2,-4) D.(-4,2)2.(2014·内江)如图,已知A1、A2、A3、…、A n、A n+1是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1、A2、A3、…、A n、A n+1作x轴的垂线交直线y=2x于点B1、B2、B3、…、B n、B n+1,连接A1B2、B1A2、B2A3、…、A n B n +1、B n A n+1,依次相交于点P1、P2、P3、…、P n.△A1B1P1、△A2B2P2、…、△A n B n P n的面积依次记为S1、S2、…、S n,则S n为( )A.n+1 2n+1B.n3n-1C.n2 2n-1D.n2 2n+13.(2015·某某)已知菱形A1B1C1D1的边长为2,∠A1B1C1=60°,对角线A1C1,B1D1,分别以OA1,OB1所在直线为x轴、y轴,建立如图所示的直角坐标系.以B1D1为对角线作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此规律继续作下去,在x轴的正半轴上得到点A1,A2,A3,…,A n,则点A n的坐标为________.4.(2015·达州)在平面直角坐标系中,直线y =x +1与y 轴交于点A 1,按如图方式作正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 3C 2…,A 1、A 2、A 3…在直线y =x +1上,点C 1、C 2、C 3…在x 轴上,图中阴影部分三角形的面积从左到右依次记为S 1、S 2、S 3、…S n ,则S n 的值为________(用含n 的代数式表示,n 为正整数).5.(2015·东营)如图放置的△OAB 1,△B 2A 2B 3,…都是边长为1的等边三角形,点A 在x 轴上,点O ,B 1,B 2,B 3,…都在直线l 上,则点A 2 015的坐标是________________.6.(2013·内江)如图,已知直线l :y =3x ,过点M(2,0)作x 轴的垂线交直线l 于点N ,过点N 作直线l 的垂线交x 轴于点M 1;过点M 1作x 轴的垂线交直线l 于N 1,过点N 1作直线l 的垂线交x 轴于点M 2,…;按此作法继续下去,则点M 10的坐标为____________.(2013·某某)如图,在函数y =8x(x >0)的图象上有点P 1、P 2、P 3…、P n 、P n +1,点P 1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P 1、P 2、P 3…、P n 、P n +1分别作x 轴、y 轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S 1、S 2、S 3…、S n ,则S 1=________,S n =________.(用含n 的代数式表示)参考答案类型1 数式规律1.C 2.C 3.C 4.2 5.15 6.45 63 7.2 0112 8.n +2n (n +1)·2n +11n·2n -1(n +1)·2n +112-121×221 类型2 图形规律1.A 2.C 3.B 4.正方形 5.(3n +1) 6.301 7.5 8.1-122 014 9.32(34)n ,3,10 11 类型3 坐标规律1.A 2.D 3.(3n -1,02n -3 5.(2 0172,2 01532) 6.(2 097 152,0) 7.48n (n +1)。
火线100天中考数学一轮复习 第3讲 整式及因式分解

第3讲整式及因式分解整式的相关概念单项式概念由数与字母的①____组成的代数式叫做单项式(单独的一个数或一个②____也是单项式).系数单项式中的③____因数叫做这个单项式的系数.次数单项式中的所有字母的④________叫做这个单项式的次数.多项式概念几个单项式的⑤____叫做多项式.项多项式中的每个单项式叫做多项式的项.次数一个多项式中,⑥________的项的次数叫做这个多项式的次数.整式单项式与⑦______统称为整式.同类项所含字母⑧____并且相同字母的指数也⑨____的项叫做同类项.所有的常数项都是⑩____项.整式的运算整式的加减合并同类项(1)字母和字母的指数不变;(2)⑪____相加减作为新的系数.添(去)括号添(去)括号:括号前面是“+”号,添(去)括号都⑫______符号;括号前面是“-”号,添(去)括号都要⑬____符号.幂的运算同底数幂的乘法a m·a n=⑭__注意:a≠0,b≠0,且m、n都为整数. 幂的乘方(a m)n=⑮__积的乘方(ab)n=⑯__同底数幂的除法a m÷a n=⑰____整式的乘法单项式与单项式相乘把它们的⑱____、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的⑲____作为积的一个因式.单项式与多项式相乘用单项式去乘多项式的每一项,再把所得的积⑳____,即m(a+b+c)=○21____________.多项式与多项式相乘先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积○22____,即(m+n)(a+b)=○23______________.整式的除法单项式除以单项式把系数与同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的○24____作为商的一个因式.多项式除以单项式先把这个多项式的每一项分别除以这个单项式,然后把所得的商○25____.乘法平方差公式(a+b)(a-b)=○26______公式完全平方公式(a±b)2=○27____________因式分解定义把一个多项式化成几个整式○28____的形式,就是因式分解.方法提公因式法ma+mb+mc=○29__________公式法a2-b2=○30__________a2±2ab+b2=○31________步骤(1)若有公因式,应先○32________;(2)看是否可用○33______;(3)检查各因式能否继续分解【易错提示】因式分解必须分解到每一个多项式不能再分解为止.1.求代数式的值主要用代入法,代入法分为直接代入法、间接代入法和整体代入法.2.整式的运算时不要盲目入手,先观察式子的结构特征,确定解题思路,结合有效的数学思想:整体代入、降次、数形结合、逆向思维等,使解题更加方便快捷.命题点1 代数式及其求值(2015·扬州)若a2-3b=5,则6b-2a2+2 015=________.【思路点拨】把6b-2a2+2 015变形为2(3b-a2)+2 015,把a2-3b=5化为3b-a2=-5后代入求值.求代数式的值时,常采用以下两种方法:①应用整体代入求值;②把已知的式子化为一个字母用另外的字母表示,代入所求代数式,进行化简求值.1.(2015·湖州)当x=1时,代数式4-3x的值是( )A.1 B.2 C.3 D.42.(2015·自贡)为庆祝抗战胜利70周年,我市某楼盘让利于民,决定将原价为a元/米2的商品房价降价10%销售,降价后的销售价为( )A.a-10% B.a·10%C.a(1-10%) D.a(1+10%)3.(2014·苏州)若a-2b=3,则9-2a+4b的值为________.4.(2015·遵义)如果单项式-xy b+1与12x a-2y3是同类项,那么(a-b)2 015=________.命题点2 整式的运算(2015·江西)先化简,再求值:2a(a+2b)-(a+2b)2,其中a=-1,b= 3.【思路点拨】先利用公式进行整式的乘法运算,再进行整式的加减运算,化简后代入求值.【解答】进行整式的运算时,要先进行整式的乘法运算,再合并同类项,结果应为最简的.代入求值时,要注意整体添加括号.1.(2015·聊城)下列运算正确的是( )A .a 2+a 3=a 5B .(-a 3)2=a 6C .ab 2·3a 2b =3a 2b 2D .-2a 6÷a 2=-2a 32.(2015·天津)计算x 2·x 5=________.3.(2015·绵阳)计算:a(a 2÷a)-a 2=________.4.(2015·菏泽)若x 2+x +m =(x -3)(x +n)对x 恒成立,则n =________. 5.(2015·丽水)先化简,再求值:a(a -3)+(1-a)(1+a),其中a =33.命题点3 因式分解(2015·威海)分解因式:-2x 2y +12xy -18y =____________.因式分解,首先需观察有无公因式可提,然后再考虑是否可用公式法分解,直到分解到不能再分解为止.1.(2015·菏泽)将多项式ax 2-4ax +4a 分解因式,下列结果中正确的是( )A .a(x -2)2B .a(x +2)2C .a(x -4)2D .a(x +2)(x -2)2.(2015·嘉兴)因式分解:ab -a =__________.3.(2015·绵阳)在实数范围内因式分解:x 2y -3y =__________________.4.(2015·潍坊)因式分解:ax 2-7ax +6a =____________________.1.(2015·台州)单项式2a 的系数是( )A .2B .2aC .1D .a2.(2015·济宁)化简-16(x -0.5)的结果是( )A .-16x -0.5B .16x +0.5C .16x -8D .-16x +83.(2015·巴中)若单项式2x 2y a +b 与-13x a -by 4是同类项,则a ,b 的值分别为( )A .a =3,b =1B .a =-3,b =1C .a =3,b =-1D .a =-3,b =-14.(2015·临沂)多项式mx 2-m 与多项式x 2-2x +1的公因式是( )A .x -1B .x +1C .x 2-1D .(x -1)25.(2015·呼和浩特)下列运算,结果正确的是( )A .m 2+m 2=m 4B .(m +1m )2=m 2+1m2 C .(3mn 2)2=6m 2n 4 D .2m 2n ÷m n=2mn 2 6.(2014·江西)下列运算正确的是( )A .a 2+a 3=a 5B .(-2a 2)3=-6a 6C .(2a +1)(2a -1)=2a 2-1D .(2a 3-a 2)÷a 2=2a -17.(2014·乐山)苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需( )A .(a +b)元B .(3a +2b)元C .(2a +3b)元D .5(a +b)元8.(2013·枣庄)图1是一个长为2a ,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积是( )A .2a bB .(a +b)2C .(a -b)2D .a 2-b 29.(2014·苏州)计算:a ·a 2=________.10.(2015·株洲)因式分解:x 2(x -2)-16(x -2)=________________.11.(2015·金华)已知a +b =3,a -b =5,则代数式a 2-b 2=________.12.(2014·咸宁)体育委员小金带了500元钱去买体育用品,已知一个足球x 元,一个篮球y 元.则代数式500-3x -2y 表示的实际意义是____________________.13.(2015·安顺)如图所示是一组有规律的图案,第1个图案是由4个基础图形组成,第2个图案是由7个基础图形组成,…,第n(n 是正整数)个图案中的基础图形的个数为________(用含n 的式子表示).14.(2015·益阳)化简:(x +1)2-x(x +1).15.(2015·长沙)先化简,再求值:(x +y)(x -y)-x(x +y)+2xy ,其中x =(3-π)0,y =2.16.(2013·娄底)先化简,再求值:(x +y)(x -y)-(4x 3y -8xy 3)÷2xy ,其中x =-1,y =33.17.(2013·北京)已知x 2-4x -1=0,求代数式(2x -3)2-(x +y)(x -y)-y 2的值.18.(2014·威海)已知x 2-2=y ,则x(x -3y)+y(3x -1)-2的值是( )A .-2B .0C .2D .419.(2014·日照)若3x =4,9y =7,则3x -2y 的值为( ) A.47 B.74 C .-3 D.2720.(2015·南京)分解因式(a -b)(a -4b)+ab 的结果是__________.21.(2015·铜仁)请看杨辉三角(图1),并观察下列等式(图2):11 11 2 11 3 3 11 4 6 4 1…图1(a +b)1=a +b(a +b)2=a 2+2ab +b 2(a +b)3=a 3+3a 2b +3ab 2+b 3(a +b)4=a 4+4a 3b +6a 2b 2+4ab 3+b 4…图2根据前面各式的规律,则(a+b)6=________________________________________________________________.22.(2013·义乌)如图1,从边长为a 的正方形纸片中剪去一个边长为b 的小正方形,再沿着线段AB 剪开,把剪成的两张纸片拼成如图2的等腰梯形.(1)设图1中阴影部分面积为S 1,图2中阴影部分面积为S 2,请直接用含a ,b 的代数式表示S 1、S 2;(2)请写出上述过程所揭示的乘法公式.温馨提示:“整合集训”完成后,可酌情使用P15滚动小专题(一)类型2“整式的运算”进行强化训练!考点解读①乘积 ②字母 ③数字 ④指数的和 ⑤和 ⑥次数最高 ⑦多项式 ⑧相同 ⑨相同 ⑩同类 ⑪系数 ⑫不改变 ⑬改变 ⑭a m +n ⑮a mn ⑯a n b n ⑰a m -n ⑱系数 ⑲指数 ⑳相加 ○21ma +mb +mc ○22相加 ○23ma +mb +na +nb ○24指数 ○25相加 ○26a 2-b 2 ○27a 2±2ab +b 2 ○28乘积 ○29m(a +b +c) ○30(a +b)(a -b) ○31(a±b)2 ○32提公因式 ○33公式法 各个击破例1 2 005题组训练 1.A 2.C 3.3 4.1例2 原式=2a 2+4ab -(a 2+4ab +4b 2)=2a 2+4ab -a 2-4ab -4b 2=a 2-4b 2.当a =-1,b =3时,原式=(-1)2-4×(3)2=-11.题组训练 1.B 2.x 7 3.0 4.4 5.原式=a 2-3a +1-a 2=1-3a.当a =33时,原式=1-3a =1- 3. 例3 -2y(x -3)2题组训练 1.A 2.a(b -1) 3.y(x -3)(x +3) 4.a(x -1)(x -6)整合集训1.A2.D3.A4.A5.D6.D7.C8.C9.a 3 10.(x -2)(x -4)(x +4) 11.15 12.体育委员小金购买3个足球,2个篮球后剩余的钱 13.3n +114.方法一:原式=(x +1)(x +1-x)=x +1.方法二:原式=x 2+2x +1-x 2-x =x +1.15.原式=x 2-y 2-x 2-xy +2xy =xy -y 2.当x =(3-π)0,y =2时,原式=2-4=-2.16.原式=x 2-y 2-2x 2+4y 2=-x 2+3y 2.当x =-1,y =33时,原式=-(-1)2+3×(33)2=0.17.原式=4x 2-12x +9-x 2+y 2-y 2=3x 2-12x +9=3(x 2-4x)+9.∵x 2-4x -1=0,∴x 2-4x =1.∴原式=3×1+9=12.18.B 19.A 20.(a -2b)2 21.a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 622.(1)S 1=a 2-b 2,S 2=12(2b +2a)(a -b)=(a +b)(a -b).(2)(a +b)(a -b)=a 2-b 2.。
【火线100天】(四川专版)中考数学专题复习三多结论判断题

多结论判断题在四川中考中,多结论判断题一般位于选择题或填空题的最后一个,综合性很强,难度很大,且考查频率较高,属于拉分题,复习时要注意这类题型的练习.类型1 代数结论判断题(2014·南充)二次函数y =ax 2+bx +c(a≠0)图象如图,下列结论:①abc >0;②2a +b =0;③当m≠1时,a +b >am 2+bm ;④a -b +c >0;⑤若ax 21+bx 1=ax 22+bx 2,且x 1≠x 2,x 1+x 2=2.其中正确的有( )A .①②③B .②④C .②⑤D .②③⑤【解答】 ∵抛物线开口向下,∴a <0.∵抛物线对称轴为x =-b 2a=1, ∴b =-2a >0,即2a +b =0,故②正确;∵抛物线与y 轴的交点在x 轴上方,∴c >0.∴abc <0,故①错误;∵抛物线对称轴为x =1,∴函数的最大值为a +b +c.∴当m≠1时,a +b +c >am 2+bm +c ,即a +b >am 2+bm ,故③正确;∵抛物线与x 轴的一个交点在(3,0)的左侧,而对称轴为x =1,∴抛物线与x 轴的另一个交点在(-1,0)的右侧.∴当x =-1时,y <0,∴a -b +c <0,故④错误;∵ax 21+bx 1=ax 22+bx 2,∴ax 21+bx 1-ax 22-bx 2=0,∴a(x 1+x 2)(x 1-x 2)+b(x 1-x 2)=0.∴(x 1-x 2)[a(x 1+x 2)+b]=0.又x 1≠x 2,∴a(x 1+x 2)+b =0,即x 1+x 2=-b a. ∵b =-2a ,∴x 1+x 2=2,故⑤正确.故选D.本题考查了二次函数图象与系数的关系:二次函数y =ax 2+bx +c(a≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线开口向上;当a <0时,抛物线开口向下;一次项系数b 和二次项系数a 共同决定对称轴的位置,当a 与b 同号时(即ab >0),对称轴在y 轴左边;当a 与b 异号时(即ab <0),对称轴在y 轴右边;常数项c 决定抛物线与y 轴交点.抛物线与y 轴交于(0,c);抛物线与x 轴交点个数由Δ决定,Δ=b 2-4ac >0时,抛物线与x 轴有2个交点;Δ=b 2-4ac =0时,抛物线与x 轴有1个交点;Δ=b 2-4ac <0时,抛物线与x 轴没有交点.1.(2015·南充)关于x 的一元二次方程x 2+2mx +2n =0有两个整数根且乘积为正,关于y 的一元二次方程y 2+2ny +2m =0同样也有两个整数根且乘积为正.给出三个结论:①这两个方程的根都是负根;②(m -1)2+(n -1)2≥2;③-1≤2m-2n≤1.其中正确结论的个数是( )A .0个B .1个C .2个D .3个 2.(2013·自贡)已知关于x 的方程x 2-(a +b)x +ab -1=0,x 1、x 2是此方程的两个实数根,现给出三个结论:①x 1≠x 2;②x 1x 2<ab ;③x 21+x 22<a 2+b 2.则正确结论的序号是________.(填上你认为正确结论的所有序号)3.(2013·绵阳)二次函数y =ax 2+bx +c 的图象如图所示,给出下列结论:①2a +b >0;②b >a >c ;③若-1<m <n <1,则m +n <-b a;④3|a|+|c|<2|b|.其中正确的结论是________(写出你认为正确结论的所有序号).4.(2013·德阳)已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,有下列5个结论:①abc <0;②b <a +c ;③4a +2b +c >0;④2c <3b ;⑤a +b <m(am +b)(m≠1的实数),其中正确结论的序号有________.类型2 几何结论判断题(2015·攀枝花)如图,在菱形ABCD 中,AB =BD ,点E 、F 分别是AB 、AD 上任意的点(不与端点重合),且AE =DF ,连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H.给出如下几个结论:①△AED ≌△DFB ;②S 四边形BCDG =32CG 2;③若AF =2DF ,则BG =6GF ;④CG 与BD 一定不垂直;⑤∠BGE 的大小为定值.其中正确的结论个数为( )A .4B .3C .2D .1【解答】 ①∵ABCD 为菱形,∴AB =AD.∵AB =BD ,∴△ABD 为等边三角形.∴∠A =∠BDF =60°.又∵AE =DF ,AD =BD ,∴△AED ≌△DFB.故本选项正确;②∵∠BGE =∠BDG +∠DBF =∠BDG +∠GDF =60°=∠BCD ,即∠BGD +∠BCD =180°,∴点B 、C 、D 、G 四点共圆.∴∠BGC =∠BDC =60°,∠DGC =∠DBC =60°.∴∠BGC =∠DGC =60°,过点C 作CM ⊥GB 于M ,CN ⊥GD 于N(如图1),则△CBM ≌△CDN(AAS),∴S 四边形BCDG =S 四边形CMGN ,S 四边形CMGN =2S △CMG .∵∠CGM =60°,∴GM =12CG ,CM =32CG ,∴S 四边形CMGN =2S △CMG =2×12×12CG ×32CG =34CG 2,故本选项错误; ③过点F 作FP ∥AE 于P 点(如图2),∵AF =2FD ,∴FP ∶AE =DF ∶DA =1∶3.∵AE =DF ,AB =AD ,∴BE =2AE.∴FP ∶BE =FP ∶12AE =1∶6.∵FP ∥AE ,∴PE ∥BE ,∴FG ∶BG =FP ∶BE =1∶6,即BG =6GF ,故本选项正确; ④当点E ,F 分别是AB ,AD 中点时(如图3),由(1)知,△ABD ,△BDC 为等边三角形,∵点E ,F 分别是AB ,AD 中点,∴∠BDE =∠DBG=30°.∴DG =BG.在△GDC 与△GBC 中,∵DG =BG ,CG =CG ,CD =CB ,∴△GDC ≌△GBC ,∴∠DCG =∠BCG,∴CH ⊥BD ,即CG⊥BD,故本选项错误;⑤∵∠BGE =∠BDG+∠DBF=∠BDG+∠GDF=60°,为定值,故本选项正确;综上所述,正确的结论有①③⑤,共3个,故选B.图1 图2 图31.(2015·绥化)如图,ABCD 的对角线AC 、BD 交于点O ,AE 平分∠BAD 交BC 于点E ,且∠AD C =60°,AB =12BC ,连接OE.下列结论:①∠CAD=30°,②S ABCD =AB·AC,③OB =AB ,④OE =14BC ,成立的个数有( )A .1个B .2个C .3个D .4个2.(2015·达州)如图,AB 为半圆O 的直径,AD 、BC 分别切⊙O 于A 、B 两点,CD 切⊙O 于点E ,连接OD 、OC ,下列结论:①∠DOC=90°,②AD +BC =CD ,③S △AOD ∶S △BOC =AD 2∶AO 2,④OD ∶OC =DE∶EC,⑤OD 2=DE·CD,正确的有( )A .2个B .3个C .4个D .5个3.(2015·湖州)如图,AC 是矩形ABCD 的对角线,⊙O 是△ABC 的内切圆,现将矩形ABCD 按如图所示的方式折叠,使点D 与点O 重合,折痕为FG ,点F ,G 分别在AD ,BC 上,连接OG ,DG ,若OG⊥DG,且⊙O 的半径长为1,则下列结论不成立的是( )A .CD +DF =4B .CD -DF =23-3C .BC +AB =23+4D .BC -AB =24.(2014·攀枝花)如图,正方形ABCD 的边CD 与正方形CGFE 的边CE 重合,O 是EG 的中点,∠EGC 的平分线GH 过点D ,交BE 于H ,连接OH 、FH ,EG 与FH 交于M ,对于下面四个结论:①GH ⊥BE ;②HO12BG ;③点H 不在正方形CGFE 的外接圆上;④△GBE∽△GMF.其中正确的结论有( )A .1个B .2个C .3个D .4个5.(2013·南充)如图1,点E 为矩形ABCD 边AD 上一点,点P ,点Q 同时从点B 出发,点P 沿BE→ED→DC 运动到点C 停止,点Q 沿BC 运动到点C 停止,它们运动的速度都是1 cm/s ,设P ,Q 出发t 秒时,△BPQ 的面积为y cm 2,已知y 与t 的函数关系的图形如图2(曲线OM 为抛物线的一部分),则下列结论:①AD=BE =5 cm ;②当0<t≤5时,y =25t 2;③直线NH 的解析式为y =-52t +27;④若△ABE 与△QBP 相似,则t =294秒.其中正确的结论个数为( )A .4B .3C .2D .16.(2013·广元)以如图1(以O 为圆心,半径为1的半圆)作为“基本图形”,分别经历如下变换能得到图2的有________(只填序号).①只要向右平移1个单位;②先以直线AB 为对称轴进行翻折,再向右平移1个单位;③先绕着点O 旋转180°,再向右平移一个单位;④绕着OB 的中点旋转180°即可.7.(2015·南充)如图,正方形ABCD 边长为1,以AB 为直径作半圆,点P 是CD 中点,BP 与半圆交于点Q ,连接DQ.给出如下结论:①DQ=1;②PQ BQ =32;③S △PDQ =18;④cos ∠ADQ =35.其中正确结论是________.(填写序号)8.(2015·广元)如图,在⊙O 中,AB 是直径,点D 是⊙O 上一点,点C 是AD ︵的中点,CE ⊥AB 于点E ,过点D 的切线交EC 的延长线于点G.连接AD ,分别交CE ,CB 于点P ,Q ,连接AC.关于下列结论:①∠BAD =∠ABC;②GP=GD ;③点P 是△ACQ 的外心.其中正确的是________(只需填写序号).9.(2013·攀枝花)如图,分别以直角△ABC 的斜边AB ,直角边AC 为边向△ABC 外作等边△AB D 和等边△ACE,F 为AB 的中点,DE 与AB 交于点G ,EF 与AC 交于点H ,∠ACB =90°,∠BAC=30°.给出如下结论:①EF ⊥AC ;②四边形ADFE 为菱形;③AD=4AG ;④FH=14BD.其中正确结论的为________(请将所有正确的序号都填上).10.(2015·宜宾)如图,在正方形ABC'D 中,△BPC 是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F ,连接BD 、DP ,BD 与CF 相交于点H.给出下列结论:①△ABE ≌△DCF ;②FP PH =35;③DP 2=PH·PB;④S △BPD S 正方形ABCD =3-14. 其中正确的是________(写出所有正确结论的序号).11.(2014·德阳)在四边形ABCD 中,AD ∥BC ,∠ABC =90°,AB =BC ,E 为AB 边上一点,∠BCE =15°,且AE =AD.连接DE 交对角线AC 于H ,连接BH.下列结论正确的是________.(填序号)①AC⊥DE;②BE HE =12;③CD=2DH ;④S △BEH S △BEC =DH AC.参考答案类型1 代数结论判断题1.D 2.①② 3.①③④ 4.①③④类型2 几何结论判断题1.C 2.D 3.A 4.C 5.B 6.②③④7.①②④8.②③9.①③④10.①③④11.①③④。
火线100天四川专版2016年中考数学一轮复习题型2与圆有关的几何综合题

与圆有关的几何综合题(2015·德阳)如图,已知BC是⊙O的弦,△ABC为正三角形,D为BC的中点,M是⊙O上一点,并且∠BMC =60°.(1)求证:AB为⊙O的切线;(2)若E、F分别是AB、AC上的两个动点,且∠EDF=120°,⊙O的半径为2,试问BE+CF的值是否为定值,若是,求出这个定值;若不是,请说明理由.【思路点拨】(1)连接OB,证OB⊥AB即可;(2)取AB的中点G,连接DG,易证得△EGD≌△FCD,从而猜测出BE +DF的值是个定值,这个定值应该等于AB长的一半.【解答】(1)证明:∵△ABC为正三角形,D为BC的中点,∴OD⊥BC,AO平分∠BAC.∴∠BAD=30°.∵∠BMC=60°,∴∠BOA=∠BMC=60°.∴∠BAD+∠BOA=90°.∴∠ABO=90°.∴OB⊥AB.∵OB是⊙O的半径,∴AB是⊙O的切线.(2)∵∠BAD=30°,OB⊥AB,OB=2,∴AB=2 3.取AB的中点G,连接DG,∴AG=BG= 3.∵∠ABD=60°,∴△BDG是等边三角形.∴∠DGE=60°,GD=BD.∵∠FCD=60°,CD=BD,∴∠FCD=∠EGD,GD=CD.∵∠EDF=120°,∴∠FDC+∠BDE=60°.∵∠BDG=60°,∴∠EDG+∠BDE=60°.∴∠EDG=∠FDC.∴△EGD≌△FCD.∴FC=EG.∴BG=BE+EG=BE+CF= 3.即BE+CF的值是定值,这个值是 3.动态问题常见有两大类:动态问题中的定值和动态问题中的变值.动态问题中的定值往往包含关于角度、线段、面积等定值问题.解决这类问题时,要搞清图形的变化过程,正确分析变量与其他量之间的内在联系,建立它们之间的关系.要善于探索动点运动的特点和规律,抓住图形在变化过程中不变的元素.必要时,多作出几个符合条件的草图也是解决问题的好办法.1.(2015·内江)如图,在△ACE中,CA=CE,∠CAE=30°,⊙O经过点C,且圆的直径AB在线段AE上.(1)试说明CE是⊙O的切线;(2)若△ACE 中AE 边上的高为h ,试用含h 的代数式表示⊙O 的直径AB ;(3)设点D 是线段AC 上任意一点(不含端点),连接OD ,当12CD +OD 的最小值为6时,求⊙O 的直径AB 的长.2.(2015·乐山)已知Rt△ABC 中,AB 是⊙O 的弦,斜边AC 交⊙O 于点D ,且AD =DC ,延长CB 交⊙O 于点E.(1)图1的A 、B 、C 、D 、E 五个点中,是否存在某两点间的距离等于线段CE 的长?请说明理由;(2)如图2,过点E 作⊙O 的切线,交AC 的延长线于点F.①若CF =CD 时,求sin ∠CAB 的值;②若CF =aCD(a >0)时,试猜想sin ∠CAB 的值.(用含a 的代数式表示,直接写出结果)3.(2014·南充)如图,已知AB 是⊙O 的直径,BP 是⊙O 的弦,弦CD⊥AB 于点F ,交BP 于点G ,E 在DC 的延长线上,EP =EG.(1)求证:直线EP为⊙O的切线;(2)点P在劣弧AC上运动,其他条件不变,若BG2=BF·BO.试证明BG=PG;(3)在满足(2)的条件下,已知⊙O的半径为3,sinB=33.求弦CD的长.4.(2014·攀枝花)如图,以点P(-1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D两点(A 在D的下方),AD=23,将△ABC绕点P旋转180°,得到△MCB.(1)求B、C两点的坐标;(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE 的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.参考答案1.(1)连接OC.∵CA=CE ,∠CAE =30°,∴∠E =∠CAE=30°,∠COE =2∠A=60°.∴∠OCE =90°.∴CE 是⊙O 的切线.(2)过点C 作CH⊥AB 于H.由题可得CH =h.在Rt△OHC 中,CH =OC·sin ∠COH , ∴h =OC·sin60°=32OC.∴OC =2h3=233h.∴AB =2OC =433h.(3)作OF 平分∠AOC,交⊙O 于F ,连接AF 、CF 、DF ,则∠AOF=∠COF=12∠AOC =12(180°-60°)=60°.∵OA =OF =OC ,∴△AOF 、△COF 是等边三角形.∴AF=AO =OC =FC.∴四边形AOCF 是菱形.∴根据对称性可得DF =DO.过点D 作DM⊥OC 于M ,∵OA =OC ,∴∠OCA =∠OAC=30°.∴DM =DC·sin ∠DCM =DC·sin30°=12DC.∴12CD +OD =DM +FD.根据两点之间线段最短可得:当F 、D 、M 三点共线时,DM +FD(即12CD +OD)最小.此时FM =OF·sin ∠FOM =32OF =6,则OF =4 3.∴AB =2OF =8 3.∴当12CD +OD 的最小值为6时,⊙O 的直径AB 的长为8 3.2.(1)存在.AE =CE.连接AE ,∵∠ABC =90°,∴AE 为⊙O 的直径.连接ED ,∴∠ADE =90°.又∵AD=DC.∴ED 为AC 的中垂线.∴AE=CE.(2)①连接AE 、DE.∵EF 是⊙O 的切线,∴∠AEF =90°.由(1)可知∠ADE=90°,∴∠AED +∠EAD=90°,∠AED +∠DEF=90°.∴∠EAD =∠DEF.∴△AED∽△EFD. ∴AD ED =ED DF .∴ED 2=AD·DF. 又AD =DC =CF ,∴ED 2=2AD·AD=2AD 2. 在Rt△AED 中,∵AE 2=AD 2+ED 2=3AD 2,∴sin ∠CAB =sin∠CED=sin∠AED=AD AE =13=33.②sin ∠CAB =a +2a +2.3.(1)证明:连接OP.∵EP=EG ,∴∠EPG =∠EGP.又∵∠EGP=∠BGF,∴∠EPG =∠BGF.∵OP=OB ,∴∠OPB =∠OBP.∵CD⊥AB,∴∠BFG =∠BGF+∠OBP=90°.∴∠EPG +∠OPB=90°.∴直线EP 为⊙O 的切线.(2)证明:连接OG .∵BG 2=BF ·BO ,∴BG BO =BFBG .又∵∠OBG=∠GBF,∴△BFG ∽△BGO.∴∠BGO =∠BFG=90°.∴BG =PG.(3)连接AC 、BC.∵sinB =33,∴OGOB =33.∵OB =r =3,∴OG =3,由(2)得∠GBF+∠FGB=90°,∠OGF +∠FGB=90°,∴∠GBF =∠OGF.∴sin∠OGF=33=OFOG .∴OF =33·OG =33·3=1.∴BF=BO -OF =3-1=2,FA =OF +OA =1+3=4,∵AB 为⊙O 的直径,∴∠ACB =∠A CF +∠BCF=90°.∵∠ACF +∠A=90°,∴∠BCF =∠A.∴△BCF∽△CAF.∴CF AF =BF CF .∴CF 2=BF·FA.∴CF=BF·FA=2×4=2 2.∴CD =2CF =4 2.4.(1)连接PA.∵PO⊥AD,AD =23,∴OA =12AD = 3.∵点P 坐标为(-1,0),∴OP =1.∴PA=OP 2+OA 2=12+(3)2=2.∴BP=CP =2.∴B(-3,0),C(1,0).(2)延长AP 交⊙P 于点M ,连接MB 、MC.线段MB 、MC 即为所求.四边形ACMB 是矩形. 理由如下:∵△MCB 由△ABC 绕点P 旋转180°所得,∴四边形ACMB 是平行四边形.∵BC 是⊙P 的直径,∴∠CAB =90°.∴平行四边形ACMB 是矩形.过点M 作MH⊥BC,垂足为H.在△MHP 和△AOP 中,∵∠MHP =∠AOP,∠HPM =∠OPA,MP =AP ,∴△MHP ≌△AOP.∴MH =OA =3,PH =PO =1.∴OH=2.∴点M 的坐标为(-2,3).(3)在旋转过程中∠MQG 的大小不变.∵四边形ACMB 是矩形,∴∠BMC =90°. ∵EG ⊥BO ,∴∠BGE =90°.∴∠BMC =∠BGE=90°.∵点Q 是BE 的中点,∴QM =QE =QB =QG.∴点E 、M 、B 、G 在以点Q 为圆心,QB 为半径的圆上,如图所示.∴∠MQG=2∠MBG.∵∠COA=90°,OC =1,OA =3,∴tan ∠OCA =OA OC = 3.∴∠OCA =60°.∴∠MBC =∠BCA=60°.∴∠MQG =120°.∴在旋转过程中∠MQG 的大小不变,始终等于120°.。
【火线100天】中考数学专题复习 规律与猜想

规律与猜想学习数学很重要的一个目的,就是要善于捕捉事物的规律,用数学形式和数学方法表示出来.规律与猜想类试题选材一般来源于学生熟悉的生活,有一定的趣味性,呈现形式多样,便于学生观察,侧重考查学生观察和归纳能力,让学生从不同角度,利用不同方法探索并发现数学规律,同时利用发现的规律,让学生学会自我验证,真正考查了学生的数学思考能力.类型之一数式的变化规律例1 (2014·安徽)观察下列关于自然数的等式:32-4×12=552-4×22=972-4×32=13……根据上述规律解决下列问题:(1)完成第四个等式:92-4×( )2=( );(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.【思路点拨】(1)从等式的结构看,等于号的左边第一项的底数依次增大2,第二项的底数依次增大1,等于号的右边依次增大4.依次规律就可写出第四个等式;(2)先根据分析的规律用含n的等式表示出第n个等式,然后将等号的一边经过整理与另一边相同.【解答】(1)4,17.(2)(2n+1)2-4×n2=4n+1.验证:∵左边=4n2+4n+1-4n2=4n+1=右边,∴等式成立.方法归纳:探究等式变化规律的题目,关键把握两点:一是找出等式中“变”与“不变”的部分;二是分析出“变”的规律即等式的个数之间存在的规律.1.(2014·东营)将自然数按以下规律排列:表中数2在第二行,第一列,与有序数对(2,1)对应;数5与(1,3)对应;数14与(3,4)对应;根据这一规律,数2 014对应的有序数对为 .2.(2014·菏泽)下面是一个按某种规律排列的数阵:根据数阵排列的规律,第n行(n是整数,且n≥3)从左至右数第n-2个数是 (用含n的代数式表示). 3.(2014·滨州)计算下列各式的值:= .4.(2014·巴中)如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n (n 为非负整数)的展开式中a 按次数从大到小排列的项的系数.例如,(a+b)2=a 2+2ab+b 2展开式中的系数1、2、1恰好对应图中第三行的数字;再如,(a+b)3=a 3+3a 2b+3ab 2+b 3展开式中的系数1、3、3、1恰好对应图中第四行的数字.请认真观察此图,写出(a-b)4的展开式为 .5.(2014·黄石)观察下列等式:第一个等式:a 1=23122⨯⨯=112⨯-2122⨯第二个等式:a 2=34232⨯⨯=2122⨯-3132⨯ 第三个等式:a 3=45342⨯⨯=3132⨯-4142⨯ 第四个等式:a 4=56452⨯⨯=14142⨯-5152⨯按上述规律,回答以下问题: 用含n 的代数式表示第n 个等式:a n = = ;式子a 1+a 2+a 3+…+a 20= .6.(2014·烟台)…,若(1,4), (2,3),则这组数中最大的有理数的位置记为( ) A.(5,2) B.(5,3) C.(6,2) D.(6,5)类型之二 图形的变化规律例2 (2014·金华)一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式进行拼接. (1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人? (2)若有餐的人数有90人,则这样的餐桌需要多少张?【思路点拨】由拼图可知,每多拼一张餐桌,可坐的人数就增多4人,依次规律可探究出餐桌的个数与可坐人数之间的关系.从而就可解决问题.【解答】(1)根据图中的规律我们可以发现,每多拼接一张餐桌,可坐的人数就增多4人.即:拼接x张餐桌可以就餐的人数为:6+4(x-1)=4x+2(人).所以,拼4张可以坐4×4+2=18(人),拼8张可以坐4×8+2=34(人).(2)由题意可知4x+2=90.解得x=22.答:这样的餐桌需要拼接22张.方法归纳:当图形在变换时,图形的个数与对应的另一个变换的量的关系很难直接观察出规律时,可以通过建立这两个变量之间的函数关系,利用已知的几对对应值求出函数关系式,然后去论证.1.(2014·重庆A卷)如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,……,按此规律,则第(6)个图形中面积为1的正方形的个数为( )A.20B.27C.35D.402.(2014·武汉)观察下列一组图形中点的个数,其中第1个图片共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第5个图中共有点的个数是( )A.31B.46C.51D.663.(2014·重庆B卷)下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,……,依此规律,第五个图形中三角形的个数是( )A.22B.24C.26D.284.(2014·宜宾)如图,将n个边长都为2的正方形按照如图所示摆放,点A1,A2,…,A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是( )A.nB.n-1C.(14)n-1 D.14n5.(2014·鄂州)如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,如此进行下去,得到四边形A n B n C n D n.下列结论正确的是( )①四边形A 4B 4C 4D 4是菱形;②四边形A 3B 3C 3D 3是矩形;③四边形A 7B 7C 7D 7周长为8a b +;④四边形A n B n C n D n 面积为·2n a b. A.①②③ B.②③④ C.①③④ D.①②③④6.(2014·内江)如图,已知A 1、A 2、……、A n 、A n +1是x 轴上的点,且OA 1=A 1A 2=A 2A 3=……=A n A n +1=1,分别过点A 1、A 2、……、A n 、A n +1作x 轴的垂线交直线y =2x 于点B 1、B 2、……、B n 、B n +1,连接A 1B 2、B 1A 2、A 2B 3、B 2A 3、……、A n B n +1、B n A n +1,依次相交于点P 1、P 2、P 3、……、P n ,△A 1B 1P 1、△A 2B 2P 2、……、△A n B n P n 的面积依次为S 1、S 2、……、S n ,则S n 为( )A.121n n ++ B.231n n - C.221n n - D.22+1n n7.(2014·内江)如图所示,将若干个正三角形、正方形和圆按一定规律从左向右排列,那么第 2 014个图形是 .△△□□□△○○□□□△○○□□□△○○□……8.(2014·娄底)如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n (n 为正整数)个图案由 个▲组成.9.(2014·盐城)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y =x 的图象上,从左向右第3个正方形中的一个顶点A 的坐标为(8,4),阴影三角形部分的面积从左向右依次记为S 1,S 2,S 3,…,S n ,则S n 的值为 .(用含n 的代数式表示,n 为正整数)类型之三 点的坐标的变化规律例3 (2014·泰安)如图,在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去……,若点A(53,0),B(0,4),则点B2 014的横坐标为 .【思路点拨】先根据勾股定理求出AB的长度,再根据第4个图形与第1个图形的位置相同,可知每三个三角形为一个循环依次循环,然后求出每个循环组中B点坐标的变化规律即可.【解答】由题意可得:∵AO=53,BO=4,∴AB=133,∴OA+AB1+B1C2=53+133+4=6+4=10,∴B2的横坐标为10,B4的横坐标为2×10=20,∴点B2 014的横坐标为:20142×10=10 070.故答案为:10 070.方法归纳:由于图形在坐标系中的运动而导致的点的坐标的变化情况,先应该分析图形的运动规律,然后结合点在图形中的位置找出点的坐标的变化规律.1.如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,……,都是斜边在x轴上、斜边长分别为2,4,6,……的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2 014的坐标为 .2.(2013·湛江)如图,所有正三角形的一边平行于x轴,一顶点在y轴上,从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A3、A4、…表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,则顶点A3的坐标是,A22的坐标是 .3.(2014·孝感)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是 .4.(2014·德州)如图,抛物线y =x 2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A 1,A 2,A 3,…A n ,….将抛物线y =x 2沿直线l :y =x 向上平移,得一系列抛物线,且满足下列条件: ①抛物线的顶点M 1,M 2,M 3,…M n ,…都在直线l :y =x 上; ②抛物线依次经过点A 1,A 2,A 3,…A n ,…. 则顶点M 2 014的坐标为 .参考答案类型之一 数式的变化规律1.(45,12) 3.102 0141=100=1023,4,=102 014.故答案为102 014.4.a 4-4a 3b+6a 2b 2-4ab 3+b 45.()1212n n n n +++;1·2n n -()1112n n ++;12-211212⨯ 6.C类型之二 图形的变化规律1.B2.B3.C提示:每一次操作三角形个数增加6个. 4.B提示:每两个之间重叠部分的面积都等于正方形面积的14,正方形的面积为4,所以重叠部分的面积为1,n 个正方形有(n-1)个重叠部分,故重叠部分的面积之和为(n-1). 5.A 6.D提示:A n B n当底,利用函数y=2x即可求得,利用黑白三角形相似如△A1B1P1∽△B2A2P1等求得P n到A n B n的距离,从而得△A n B n P n的面积.7.正方形8.3n+19.24n-5提示:根据A点的坐标为(8,4)即可得出正方形的边长依次为20、21、22、23、…,第n个正方形的边长为2n-1计算,第n个阴影部分是在第2n-1和2n个正方形中,与求S2的方法一样,第n个阴影部分的面积是第2n-1个正方形面积的一半,∴S n=12×(22n-1-1)2=24n-5.类型之三点的坐标的变化规律1.(1,-1 007)2.(0-1) (-8,-8)提示:由于22÷3=7……1,而A1的坐标为(-1,-1);A4的坐标为(-2,-2);A7的坐标为(-3,-3);……;A22的坐标为(-8,-8).3.(63,32)提示:A1(0,1),B1(1,1);A2(1,2)B2(3,2),A3(3,4),B3(7,4);依次类推A n(2n-1,2n-1),所以B6(63,32).4.(4 027,4 027)提示:M1(a1,a1)是抛物线y1=(x-a1)2+a1的顶点,抛物线y=x2与抛物线y1=(x-a1)2+a1相交于A1,得x2=(x-a1)2+a1,即2a1x=a21+a1,x=12(a1+1).∵x为整数点,∴a1=1,M1(1,1);同理M2(3,3),M3(5,5),……,∴M2 014(2 014×2-1,2014×2-1),即M2014(4 027,4 027).。
火线100天(四川专版)中考数学一轮复习 第一单元 数与式 第1讲 实数及其运算-人教版初中九年级全

第一单元数与式第1讲实数及其运算实数的概念及其分类整数和分数统称为有理数,有理数和①________统称为实数,实数有如下分类:实数⎩⎪⎨⎪⎧有理数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫整数⎩⎪⎨⎪⎧正整数②负整数分数⎩⎪⎨⎪⎧正分数③有限小数或④小数无理数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫正无理数负无理数无限不循环小数实数的有关概念名称定义性质数轴规定了⑤________、⑥______、⑦____的直线.数轴上的点与实数一一对应.相反数只有⑧________不同的两个数,即实数a的相反数是-a.(1)若a、b互为相反数,则a+b=0;(2)在数轴上,表示相反数的两个数的点位于原点⑨________,且到原点的距离相等.绝对值在数轴上表示数a的点与原点的⑩________,记作||a.||a={a(a>0),0(a=0),-a(a<0).倒数○11________为1的两个数互为倒数,非零实数a的倒数为○12________.(1)ab=1a、b互为倒数;(2)0没有倒数;(3)倒数等于本身的数是1或-1.科学记数法和近似数科学记数法把一个数写成○13________的形式(其中1≤||a<10,n为整数),这种记数法称为科学记数法.近似数一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位.平方根、算术平方根、立方根名称定义性质平方根如果x2=a(a≥0),那么这个数x就叫做a的平方根.记作± a. 正数的平方根有两个,它们互为○14________;○15________没有平方根;0的平方根是○16________.算术平方根如果x2=a(x>0),那么这个正数x就叫做a的算术平方根.记作 a.0的算术平方根是○17________.立方根若x3=a,则x叫做a的立方根,记作3a. 正数有一个○18________立方根;0的立方根是0;负数有一个○19 ________立方根.实数的大小比较代数比较规则正数○20________零,负数○21________零,正数大于一切负数;两个正数,绝对值大的较大;两个负数,绝对值大的反而○22________.几何比较规则在数轴上表示的两个数,左边的数总是○23________右边的数.实数的运算内容运算法则加法法则、减法法则、乘法法则、除法法则、乘方与开方等.特别地,a0=○24________(其中a≠0),a-p=○25________(其中p为正整数,a≠0).运算律交换律、结合律、分配律.运算性质有理数一切运算性质和运算律都适应于实数运算.运算顺序先算乘方、开方,再算○26________,最后算○27________,有括号的要先算○28________的,若没有括号,在同一级运算中,要从左到右进行运算.1.用科学记数法表示较大的正数或较小的正数的方法:(1)将较大正数N(N>1)写成a×10n的形式,其中1≤a<10,指数n等于原数的整数位数减1;(2)将较小正数N(N<1)写成a×10n的形式,其中1≤a<10,指数n等于原数中左起第一个非零数前零的个数(含小数点前面的零)的相反数.2.比较实数的大小可直接利用法则进行比较,还可以采用作差法、倒数法及估算法,也可借助数轴进行比较.命题点1 实数的概念及其分类(1)(2015·某某)一个数的相反数是3,这个数是()A.13B.-13C.3 D.-3(2)(2015·某某)在实数0 、π 、227、2、-9中,无理数的个数有()A.1个 B.2个 C.3个 D.4个一个数的相反数在其前面加上负号即可;初中常见的无理数有三种情形:一是含有根号,但开方开不出来;二是含有π的数;三是人为构造且有一定规律的数,且后面要加上省略号,如0.123 456 789 101 112 13….1.,0,1,2中是负数的是()A.-3.14 B.0 C.1 D.22.(2015·资阳)-6的绝对值是()A.6 B.-6 C.16D.-163.(2015·某某)±2是4的()A.平方根 B.相反数C.绝对值 D.算术平方根4.(2015·某某)下列实数中,为无理数的是()A.0.2 B.12C. 2 D.-5命题点2 实数的大小比较(2015·某某)比较大小:5-12________58.(填“>”“<”或“=”)两个实数的大小比较,通常按照“负数<零<正数”进行比较.若其中有无理数,则可借助数轴或估算的方法进行比较.1.(2015·呼和浩特)以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是() A .-3 ℃ B.15 ℃C .-10 ℃ D .-1 ℃2.(2015·某某)给出四个数0,3,12,-1,其中最小的是()A .0B. 3C.12D .-13.(2015·某某)若m =22×(-2),则有() A .0<m <1B .-1<m <0C .-2<m <-1D .-3<m <-24.(2015·达州)在实数-2、0、-1、2、-2中,最小的是________. 命题点3 科学记数法(2015·某某)福布斯2015年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以242亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为() ×1010美元 B .0.242×1011美元 ×1010美元 D .2.42×1011美元科学记数法的表示形式为a×10n.其中1≤||a <10,n 为整数.在确定n 的值时,,n 为它的整数位数减1;当该数的绝对值小于1时,n 的绝对值为它第一个非零数字前0的个数(含小数点前的1个0).如果数带有万、亿这样的数字单位,应先将其还原,再用科学记数法表示.1.(2015·某某)今年5月,在某某举行的世界机场城市大会上,某某新机场规划蓝图首次亮相.新机场建成后,某某将成为继、某某之后,国内第三个拥有双机场的城市,按照远期规划,新机场将新建的4个航站楼的总面积约为126万平方米,用科学计数法表示126万为() A .126×104×105×106×1072.(2015·内江)用科学记数法表示0.000 006 1,结果是()×10-5×10-6×10-5D .61×10-73.(2015·某某)将2.05×10-3用小数表示为() A .0.000 205 B .0.020 5 C .0.002 05D .-0.002 054.用四舍五入法求近似数:(1)3 054 900(精确到万位)≈________; (2)0.006 52(精确到0.001)≈________. 命题点4 实数的运算(2015·德阳)计算:2-1+tan45°-|2-327|+18÷8. 【解答】解答本题的关键是掌握负整数指数幂a -n=1an (a≠0)、特殊角的三角函数值、立方根的意义以及二次根式除法的法则.1.(2015·某某)计算3+(-3)的结果是() A .6B .-6C .1D .02.(2015·某某)若等式0□1=-1成立,则□内的运算符号为() A .+ B .- C .× D.÷3.(2015·某某)计算:9+|-4|+(-1)0-(12)-1=________.4.(2015·某某)计算:-14+(2-22)0+|-2 015|-4cos60°.1.(2015·黔西南)下列各数是无理数的是() A. 4B .-13C .πD .-12.(2015·六盘水)下列说法正确的是() A.||-2=-2 B .0的倒数是0C .4的平方根是2D .-3的相反数是33.(2015·威海)检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数.从轻重的角度看,最接近标准的工件是() A .-2 B .-3 C .3 D .5 4.(2015·东营)|-13|的相反数是()A.13B .-13C .3D .-35.(2015·某某)与1+5最接近的整数是() A .4B .3C .2D .16.(2015·某某)数轴上到原点的距离等于1的点所表示的数是() A .±1B .0C .1D .-17.(2015·某某)实数a 、b 在数轴上对应的点的位置如图所示,计算||a -b 的结果为()A .a +bB .a -bC .b -aD .-a -b8.(2015·德阳)中国的领水面积约为370 000 km 2,将数370 000用科学记数法表示为() A .37×104×104C .0.37×104×1059.估计5+12介于() A .1.410.(2015·某某)12的倒数是________.11.(2015·某某)从某某市交通局获悉,我市2015年前4月在巴陕高速公路完成投资8 400万元,请你将8 400万元用科学记数记表示为________元.12.(2015·某某)实数8的立方根是________.13.(2015·某某)计算8-2sin45°的结果是________. 14.(2015·某某)已知(39+813)×(40+913)=a +b ,若a 是整数,1<b <2,则a =________. 15.(2015·某某)计算:⎪⎪⎪⎪⎪⎪-12+8-4cos45°+(-1)2 015.16.(2015·某某)计算:(2 015-π)0+(-13)-1+|3-1|-3tan30°+613.17.(2014·陇南)观察下列各式: 13=12, 13+23=32, 13+23+33=62, 13+23+33+43=102, …猜想13+23+33+…+103=________.18.(2015·莱芜)已知:C 23=3×21×2=3,C 35=5×4×31×2×3=10,C 46=6×5×4×31×2×3×4=15,…,观察上面的计算过程,寻找规律并计算C 610=________. 19.(2015·某某)若1(2n -1)(2n +1)=a 2n -1+b2n +1,对任意自然数n 都成立,则a =________,b =________;计算:m =11×3+13×5+15×7+…+119×21=________.参考答案 考点解读考点1 ①无理数 ②零 ③负分数 ④无限循环考点2 ⑤原点 ⑥正方向 ⑦单位长度 ⑧符号 ⑨两侧 ⑩距离 ○11乘积 ○121a 考点3 ○13a ×10n 考点4 ○14相反数 ○15负数 ○160○170○18正的 ○19负的 考点5 ○20大于 ○21小于 ○22小 ○23小于 考点6 ○241○251a p ○26乘除 ○27加减 ○28括号内 各个击破 例1 (1)D (2)B题组训练 1.A 2.A 3.A 4.C 例2 <题组训练 1.C 2.D 3.C 4.-2 例3 C题组训练 1.C 2.B 3.C 例4 原式=12+1-||2-3+94=12+1-1+32=2. 题组训练 1.D 2.B 3.6 4.原式=-1+1+2 015-4×12=2 013.整合集训1.C 2.D 3.A 4.B 5.B 6.A 7.C 8.D 9.C 10.2 ×10712.2 13. 2 14.1 611 15.原式=12+22-4×22-1=-12.16.原式=1-3+3-1-3+23=23-3.2210 12 -121021。
新火线100天中考数学复习1.1实数的相关概念(含答案解析)

新火线100天中考数学复习1.1实数的有关观点(含答案分析)第一单元数与式第1讲实数的有关观点考点1实数的观点及其分类整数和分数统称为有理数,有理数和①__________统称为实数,实数有以下分类:正整数整数②有理数负整数有限小数或④小数实数正分数分数③正无理数无理数无穷不循环小数负无理数考点2实数的有关观点名称定义数轴规定了⑤________、⑥________、⑦________的直线.只有⑧__________不一样的两个数,即实数a的相反数是-a.相反数在数轴上表示数a的点与原点的⑩__________,记作|a|.绝对值__________的两个数互为倒数,非零实数a的倒数为?倒数__________.性质数轴上的点与实数一一对应.①若a、b互为相反数,则a+b=0.②在数轴上,表示相反数的两个数的点位于点⑨__________,且到原点的距离相等.aa0|a|=0a0aa0①ab=1a、b互为倒数;②0没有倒数;③倒数等于自己的数是1或-1.考点3科学记数法和近似数科学记数法把一个数写成?__________的形式(此中1≤|a|<10,n为整数),这类记数法称为科学记数法.近似数一个近似数四舍五入到哪一位,就说这个近似数精准到哪一位.用科学记数法表示较大的正数或较小的正数的方法:(1)将较大正数N(N>1)写成a310n的形式,此中1≤a<10,指数n等于原数的整数位数减1;(2)将较小正数N(N<1)写成a310n的形式,此中1≤a<10,指数n等于原数中左起第一个非零数前零的个数(含小数点前面的零)的相反数.命题点1实数的观点及其分类例1(20142凉山)在实数5,22,0,,36,-1.414中,有理数有()72A.1个B.2个C.3个D.4个方法概括:常有的无理数包含三种状况:①含有根号,但开方开不出来;②含有π的数;③人为结构的且有必定规律的数,且后边要加上省略号,如1.010010001,.1.(20142咸宁)以下实数中,属于无理数的是()1A.-3C.D.332.(20132丽水)在数0,2,-3,-1.2中,属于负整数的是()A.0B.2C.-3D.-1.23.(20142潍坊)以下实数中是无理数的是()··A.22B.2-2D.sin45°74.(20132咸宁)假如温泉河的水位高升0.8m 时水位变化记作﹢0.8m ,那么水位降落0.5m时水位变化记作()A.0mB.0.5mC.-0.8mD.-0.5m命题点2实数的有关观点例2(20142内江)2的相反数是()222A.-B.C.-2D.222方法概括:一般地,我们确立一个数的相反数时,只要在这个数前面加上负号即可,即数a的相反数是-a.1.(20142烟台)-3的绝对值等于()1A.-3B.3C.±3D.32.(20142河北)-2是2的()A.倒数B.相反数C.绝对值D.平方根3.(20152天津模拟)如图,在数轴上点A 表示的数可能是()4.(20142甘孜)-1的倒数是() 511A. B.- C.-5 D.5555.(20142成都)计算:|-2|=__________.命题点3科学记数法例3(20142莱芜)2014年4月25日青岛世界园艺展览会成功开幕,估计将招待1500万人前来赏析.将1500万用科学记数法表示为()A.153105B.1.53105107108方法概括:任何一个大于10的数表示成a310n时,确立a和n有以下规律:此中a是整数数位只有一位的数,n是原数的整数数位减去 1.假如数含有万、亿这样的数字单位,应先将数复原,再用科学记数法表示.1.(20142资阳)餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易.舌尖上的浪费让人触目惊心,据统计,中国每年浪费食品总量折合成粮食约500亿千克,这个数据用科学记数法表示为()A.531010千克B.503109千克C.53109千克D.0.531011千克2.(20142衡阳)环境空气质量问题已成为人们平时生活所关怀的重要问题,我国新订正的《环境空气质量标准》中增添了PM2.5监测指标,“PM2.5”是指大气中危害健康的直径小于或等于2.5微米的颗粒物.2.5微米即0.0000025米.用科学记数法表示0.0000025为()A.2.5310-5B.2.53105C.2.5310-6D.2.53 1063.(20142玉林)将6.18310-3化为小数的是()6181884.(20142娄底)五月初五是我国的传统节日——端午节,今年端午节,小王在“百度”搜寻引擎中输入“端午节”,搜寻到与之有关的结果约为75100000个.75100000用科学记数法表示为__________.5.用四舍五入法求近似数:(1)0.00356(精准到0.0001)≈__________;(2)566.235(精准到个位)≈__________.1.(20142娄底)2014的相反数为()11A. B.- C.-2014 D.2014201420142.(20142襄阳)有理数-5的倒数是() 35533A. B.- C. D.-33553.(20142达州)向东行驶3km,记作+3km,向西行驶2km记作()A.+2kmB.-2kmC.+3kmD.-3km4.(20142莱芜)以下四个实数中,是无理数的为()3A.0B.-3C.8D.1115.(20142南充)|-|的值是()311A.3B.-3C.D.-336.(20152达州模拟)以下四个数中,是负数的是()2A.|-2|B.(-2)2C.-2D.27.(20142枣庄)2014年世界杯马上在巴西举行,依据估算巴西将总合花销14000000000美元,用于修筑和翻新12个体育场,升级联邦、各州和各市的基础设备,以及为32支队伍和估计约60万名观众供给安保,将14000000000用科学记数法能够表示为()A.14031081091010 D.1.4310118.(20132资阳)资阳市2012年财政收入获得重要打破,地方公共财政收入用四舍五入法取近似值后为27.39亿元.那么这个数值()A.精准到亿位B.精准到百分位C.精准到千万位D.精准到百万位9.(20142重庆B卷)实数-12的相反数是__________.10.(20142泉州)2014年6月,阿里巴巴注资1200000000元入股广州恒大,将数据1200000 000用科学记数法表示为__________.11.如图,数轴上的点P表示的数是-1,将点P向右挪动3个单位长度获得点P′,则点P′表示的数是2.12.(20132昭通)实数22,7,-8,32,36,中的无理数是__________.7313.(20142江西)据有关报导,截止到今年四月,我国已达成 5.78万个乡村教课点的建设任务.5.78万可用科学记数法表示为__________.14.如图,数轴的单位长度为是()1,假如点A,B表示的数的绝对值相等,那么点A表示的数A.-4B.-2C.0D.415.(20142烟台)烟台市经过扩花费、促投资、稳外需的共同发力,激发了地区发展活力,实现了经济安稳较快发展,2013年全市生产总值(GDP)达5613亿元,该数据用科学记数法表示为()A.5.61331011B.5.613310121010 D.0.56133101216.数轴上点A,B的地点以下图,若点B对于点A的对称点为C,则点C表示的数为__________.17.(20152南京模拟)一个自然数的立方,能够分裂为若干个连续奇数的和,比如:23,33和43分别能够按以下图的方式“分裂”为2个、3个和4个连续奇数的和,即23=3+5;33=7+9+11;43=13+15+17+19,,,;若63也依据此规律进行“分裂”,则63“分裂”出的奇数中,最大的那个奇数是__________.参照答案考点解读①无理数②零③负分数④无穷循环⑤原点⑥正方向⑦单位长度⑧符号1n⑨双侧⑩距离乘积?a310a各个击破例1D题组训练 1.D 2.C 3.D 4.D例2A题组训练 1.B 2.B 3.C 4.C 5.2例3C题组训练 1.A 2.C 3.B 4.7.513107 5.(1)0.0036(2)566整合集训1.C2.D3.B4.C5.C6.C7.C8.D9.1210.1.2310911.212.7,32,3 13.5.78310414.B15.A16.-517.41。
火线100天(四川专版)中考数学一轮复习 第二单元 方程与不等式 第8讲 一元一次不等式(组)-人教

第8讲一元一次不等式(组) 不等式的概念及性质不等式的有关概念用不等号连接起来的式子叫做不等式,使不等式成立的未知数的取值X围叫做不等式的解集.不等式的基本性质性质1 若a<b,则a±c<b±c;性质2 若a<b且c>0,则ac①____bc(或ac②____bc);性质3 若a<b且c<0,则ac③____bc(或ac④____bc).一元一次不等式(组)的解法一元一次不等式的解法(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.不等式组的解法一般先分别求出不等式组中各个不等式的解集,并表示在数轴上,再求出他们的公共部分,就得到不等式组的解集.不等式组的解集情况(假设b<a) {x>a,x≥b x>a 同大取大{x<a,x≤b x≤b 同小取小{x<a,x≥b b≤x<a 大小小大中间找{x>a,x≤b无解大大小小无处找不等式的应用列不等式解应用题和列方程解应用题的一般步骤基本相似,其步骤包括:(1)审清题意;(2)设未知数;(3)列不等式;(4)解不等式;(5)⑤________作答.1.已知不等式(组)的解集确定不等式(组)中字母的取值X围有以下四种方法:(1)逆用不等式(组)解集确定;(2)分类讨论确定;(3)从反面求解确定;(4)借助数轴确定.2.列不等式(组)解应用题应紧紧抓住“至多”、“至少”、“不大于”、“不小于”、“不超过”、“大于”、“小于”等关键词列出不等量关系式,进而求解.命题点1 不等式的性质(2015·某某)下列说法不一定成立的是() A .若a>b ,则a +c>b +c B .若a +c>b +c ,则a>b C .若a>b ,则ac 2>bc 2D .若ac 2>bc 2,则a>b利用不等式性质1和性质2对不等式变形,不等号的方向不改变;利用不等式性质3对不等式变形,不等号的方向必须改变.1.(2015·某某)若m >n ,下列不等式不一定成立的是() A .m +2>n +2 B .2m >2n C.m 2>n 2D .m 2>n 22.(2013·某某)若a>b ,则下列不等式变形错误的是() A .a +1>b +1B.a 2>b 2C .3a -4>3b -4D .4-3a>4-3b3.下列说法中,一定成立的有()①若a<b ,c>0,则ac +c>bc +c ;②若a>0,b<0,c<0,则(a -b)c<0;③若a m ≥b m ,则a<b ;④若a>b ,则a 2>b 2;⑤若ac 2>bc 2,则a>b. A .2个 B .3个 C .4个 D .5个命题点2 一元一次不等式的解法(2015·某某)解不等式:2x -13≤3x +24-1,并把解集表示在数轴上. 【思路点拨】 依照解一元一次不等式的步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1进行解答.【解答】解一元一次不等式的步骤与解一元一次方程的步骤相同.值得注意的是,在利用不等式的性质去分母或系数化为1时,如果两边同乘以负数,不等号一定要改变方向;另外,在数轴上表示不等式的解集时,一定要注意包含界点用实心圆点,不包含界点用空心圆圈.1.(2013·某某改编)下列数值中不是不等式2x -1>3的解的是() A .3B .4C .2D .52.(2015·某某)不等式x -12>1的解集是________.3.(2015·某某)解不等式:4x -13-x>1,并把解集表示在数轴上.命题点3 一元一次不等式组的解法(2015·某某)求不等式组⎩⎪⎨⎪⎧3x -7<2,①2x +3≥1②的解集,并把它们的解集在数轴上表示出来.【思路点拨】 考查了不等式组的解法和解集在数轴上表示.先确定每个不等式的解集,再确定不等式组的解集.然后将其解集在数轴上表示. 【解答】解一元一次不等式组的步骤是:(1)求出这个不等式组中各个不等式的解集;(2)利用数轴求出这些不等式解集的公共部分,就是求出这个不等式组的解集.确定不等式组的解集通常有两种方法:即数轴法与口诀法.1.(2014·某某改编)不等式组⎩⎪⎨⎪⎧-2x +3≥0,x -1>0的解集是()A .x <1B .x ≥32C .1≤x <32D .1<x ≤322.(2014·某某)不等式组⎩⎪⎨⎪⎧12(x +1)≤2,x -3<3x +1的解集在数轴上表示正确的是()3.(2015·某某)一元一次不等式组⎩⎪⎨⎪⎧2x +1>0,x -5≤0的解集中,整数解的个数是()A .4B .5C .6D .74.(2015·某某)一元一次不等式组⎩⎪⎨⎪⎧x +2≥0,5x -1>0的解集是________.5.(2013·德阳改编)适合不等式组⎩⎪⎨⎪⎧5x -1>3x -4,23-x≥-13的全部整数解的和是________. 6.(2015·某某)解不等式组⎩⎪⎨⎪⎧-2x<6,①3(x +1)≤2x+5,②并将解集在数轴上表示出来.命题点4 一元一次不等式(组)的应用(2013·某某)某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满. (1)求该校的大小寝室每间各住多少人;(2)预测该校今年招收的高一新生中有不少于630名女生将入住寝室80间,问该校有多少种安排住宿的方案? 【思路点拨】 (1)根据等量关系构造二元一次方程组求解;(2)先根据题意列出不等式组,求出不等式组的解集,再由解集的整数解的个数确定方案. 【解答】一次方程(组)与一元一次不等式(组)的综合应用的考查是中考命题热点.解决这类问题的关键是根据题意构建出一次方程(组)与一元一次不等式(组).其中,对于“至多”、“至少”这类问题,常直接设未知数,列出不等式,解不等式求出相应的X围,最后由X围中的最小(大)整数解得到问题的答案.1.(2014·某某)某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足()A.n≤m B.n≤100m100+mC.n≤m100+mD.n≤100m100-m2.(2015·眉山)某厂为了丰富大家的业余生活,组织了一次工会活动,准备一次性购买若干钢笔和笔记本(每支钢笔的价格相同,每本笔记本的价格相同)作为奖品.若购买2支钢笔和3本笔记本共需62元,购买5支钢笔和1本笔记本共需90元.(1)购买一支钢笔和一本笔记本各需多少元?(2)工会准备购买钢笔和笔记本共80件作奖品,根据规定购买的总费用不超过1 100元,则工会最多可以购买多少支钢笔?3.(2014·某某)在我市举行的中学生安全知识竞赛中共有20道题.每一题答对得5分,答错或不答都扣3分.(1)小李考了60分,那么小李答对了多少道题?(2)小王获得二等奖(75~85分),请你算算小王答对了几道题?1.(2015·某某)不等式3x≤2(x-1)的解集为() A .x ≤-1B .x ≥-1C .x ≤-2D .x ≥-22.(2015·某某)不等式组⎩⎪⎨⎪⎧x +1<3,2x -1>x 的解集是()A .x >1B .x <2C .1≤x ≤2D .1<x <23.(2015·某某)如图,数轴上所表示关于x 的不等式组的解集是()A .x ≥2B .x>2C .x>-1D .-1<x≤24.(2015·某某)下列不等式变形正确的是() A .由a >b 得ac >bc B .由a >b 得-2a >-2b C .由a >b 得-a <-b D .由a >b 得a -2<b -25.(2013·内江)把不等式组⎩⎪⎨⎪⎧x >-1,x +2≤3的解集表示在数轴上,下列选项正确的是()A B C D6.(2013·某某)不等式组⎩⎪⎨⎪⎧3(x +1)>x -1,-23x +3≥2的整数解是()A .-1,0,1B .0,1C .-2,0,1D .-1,17.(2015·东营)东营市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收1.5元(不足1千米按1千米计).某人从甲地到乙地经过的路程是x 千米,出租车费为,那么x 的最大值是() A .11B .8C .7D .58.(2015·某某)关于x 的不等式组⎩⎪⎨⎪⎧x >a ,x >1的解集为x >1,则a 的取值X 围是()A .a >1B .a <1C .a ≥1D .a ≤19.(2015·德阳)不等式组⎩⎪⎨⎪⎧x +1>0,1-13x≥0的解集为________.10.(2015·某某)不等式组⎩⎪⎨⎪⎧3x +4≥0,12x -24≤1的所有整数解的积为________.11.(2014·某某)铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160 cm.某厂家生产符合该规定的行李箱,已知行李箱的高为30 cm ,长与宽的比为3∶2,则该行李箱的长的最大值为________cm.12.(2015·某某)解不等式组:⎩⎪⎨⎪⎧x +3≥6,①2x -1≤9.②请结合题意填空,完成本题的解答. (1)解不等式①,得________; (2)解不等式②,得________;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为________.13.(2014·某某)解不等式组:⎩⎪⎨⎪⎧2x +1≥-1,①1+2x 3>x -1.②并把不等式组的解集在数轴上表示出来.14.(2015·)解不等式组⎩⎪⎨⎪⎧4(x +1)≤7x+10,①x -5<x -83,②并写出它的所有非负整数解.15.(2015·呼和浩特)若关于x 、y 的二元一次方程组⎩⎪⎨⎪⎧2x +y =-3m +2,①x +2y =4②的解满足x +y>-32,求出满足条件的m的所有正整数值.16.(2015·某某)暑期临近,某某某旅行社准备组织“亲子一家游”活动,去我省沿海城市旅游,报名的人数共有69人,其中成人的人数比儿童人数的2倍少3人. (1)旅游团中成人和儿童各有多少人?(2)旅行社为了吸引游客,打算给游客准备一件T 恤衫,成人T 恤衫每购买10件赠送1件儿童T 恤衫(不足10件不赠送),儿童T 恤衫每件15元,旅行社购买服装的费用不超过1 200元,请问每件成人T 恤衫的价格最高是多少元?17.(2015·某某)电影《X 三姐》中,秀才和X 三姐对歌的场面十分精彩.罗秀才唱到:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得均?”X 三姐示意舟妹来答,舟妹唱道:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条财主请来当奴才.”若用数学方法解决罗秀才提出的问题,设“一少”的狗有x 条,“三多”的狗有y 条,则解此问题所列关系式正确的是()A.⎩⎪⎨⎪⎧x +3y =3000<x<y<300B.⎩⎪⎨⎪⎧x +3y =3000<x<y<300x 、y 为奇数C.⎩⎪⎨⎪⎧x +3y =3000<3x =y<300x 、y 为奇数D.⎩⎪⎨⎪⎧x +3y =3000<x<3000<y<300x 、y 为奇数18.(2015·某某)关于x 的不等式组⎩⎪⎨⎪⎧3x -1>4(x -1),x<m 的解集为x <3,那么m 的取值X 围为()A .m =3B .m >3C .m <3D .m ≥319.(2015·永州)若不等式组⎩⎪⎨⎪⎧x <1,x >m -1恰有两个整数解,则m 的取值X 围是()A .-1≤m<0B .-1<m≤0C .-1≤m≤0D .-1<m <020.(2015·达州)对于任意实数m 、n ,定义一种运算m ※n =mn -m -n +3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5-3-5+3=10.请根据上述定义解决问题:若a <2※x<7,且解集中有两个整数解,则a 的取值X 围是________.21.(2014·陇南)阅读理解: 我们把⎪⎪⎪⎪⎪⎪a bc d 称作二阶行列式,规定他的运算法则为⎪⎪⎪⎪⎪⎪a b c d ⎪⎪⎪⎪⎪⎪2345=2×5-3×4=-2. 如果有⎪⎪⎪⎪⎪⎪23-x 1x >0,求x 的解集.22.(2015·某某)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1 520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样). (1)求每本文学名著和动漫书各多少元;(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2 000元,请求出所有符合条件的购书方案.参考答案 考点解读考点1 ①< ②< ③> ④> 考点3 ⑤检验 各个击破 例1 C题组训练 1.D 2.D 3.A例2 去分母,得4(2x -1)≤3(3x+2)-12. 去括号,得8x -4≤9x+6-12. 移项,得8x -9x≤6-12+4. 合并同类项,得-x≤-2, 系数化为1,得x≥2. 不等式的解集在数轴上表示为:题组训练 1.C 2.x >3 ,得4x -1-3x>3, 移项,得4x -3x>3+1, 合并同类项,得x>4.不等式的解集在数轴上表示为: 例3 解不等式①,得x<3; 解不等式②,得x≥-1 .则不等式组的解集是-1≤x<3. 解集在数轴上表示出来为: 题组训练 1.D 2.D 3.C 4.x>156.解不等式①,得x>-3.解不等式②, 得x≤2.原不等式组的解集为-3<x≤2. 解集在数轴上表示为:例4 (1)设该校的大寝室每间住x 人,小寝室每间住y 人,由题意得⎩⎪⎨⎪⎧55x +50y =740,50x +55y =730.解得⎩⎪⎨⎪⎧x =8,y =6.答:该校的大寝室每间住8人,小寝室每间住6人.(2)设大寝室a 间,则小寝室(80-a)间,由题意得⎩⎪⎨⎪⎧8a +6(80-a )≥630,a ≤80.解得75≤a≤80. ①a=75时,80-75=5,②a =76时,80-a =4,③a =77时,80-a =3,④a =78时,80-a =2,⑤a =79时,80-a =1,⑥a =80时,80-a =0.故共有6种安排住宿的方案.题组训练 1.B2.(1)设一支钢笔需x 元,一本笔记本需y 元,由题意得⎩⎪⎨⎪⎧2x +3y =62,5x +y =90.解得⎩⎪⎨⎪⎧x =16,y =10. 答:一支钢笔需16元,一本笔记本需10元.(2)设购买钢笔的数量为a ,则笔记本的数量为80-a ,由题意得16a +10(80-a)≤1 100,解得a≤50. 答:工会最多可以购买50支钢笔.3.(1)设小李答对了x 道题.依题意得5x -3(20-x)=60.解得x =15.答:小李答对了15道题.(2)设小王答对了y 道题,依题意得⎩⎪⎨⎪⎧5y -3(20-y )≥75,5y -3(20-y )≤85.解得1358≤y ≤1458. ∵y 是正整数,∴y =17或18.答:小王答对了17道题或18道题.整合集训基础过关1.C 2.D 3.A 4.C 5.B 6.A 7.B 8.D 9.-1<x≤3 10.0 11.7812.(1)x≥3 (2)x≤5 (3)图略 (4)3≤x≤513.由①,得x≥-1.由②,得x <4.故此不等式组的解集为-1≤x<4.在数轴上表示为:14.解不等式①,得x≥-2.解不等式②,得x<72. ∴原不等式组的解集为-2≤x<72. 因此,非负整数解为0、1、2、3.15.①+②,得3(x +y)=-3m +6,∴x +y =-m +2. ∵x+y>-32, ∴-m +2>-32. 解得m<72. ∵m 为正整数,∴m =1、2、3.16.(1)设旅游团中儿童有x 人,则成人有(2x -3)人,根据题意得x +(2x -3)=69,解得x =24.则2x -3=2×24-3=45.答:旅游团中成人有45人,儿童有24人.,∴可赠送4件儿童T 恤衫,设每件成人T 恤衫的价格是m 元,根据题意可得45m +15(24-4)≤1 200,解得m≤20.答:每件成人T 恤衫的价格最高是20元.能力提升17.B 18.D 19.A 20.4≤a<5,得2x -3+x >0.移项、合并同类项,,得x >1. 22.(1)设每本文学名著x 元,动漫书y 元,可得⎩⎪⎨⎪⎧20x +40y =1 520,20x -20y =440.解得⎩⎪⎨⎪⎧x =40,y =18. 答:每本文学名著和动漫书各为40元和18元.(2)设学校要求购买文学名著x 本,动漫书为(x +20)本,根据题意可得⎩⎪⎨⎪⎧x +x +20≥72,40x +18(x +20)≤2 000.解得26≤x≤82029.因为x取整数,所以x取26,27,28. 方案一:文学名著26本,动漫书46本;方案二:文学名著27本,动漫书47本;方案三:文学名著28本,动漫书48本.。
【火线100天】中考数学 滚动阶段测试一 数与代数

数与代数(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分) 1.|-15|的值是( ) A.5 B.-5 C.15 D.-152.(2014·常德模拟)甲型H7N7流感病毒的直径大约是0.000 000 081米,用科学记数法表示为( )A.8.1×10-9米B.8.1×10-8米C.81×10-9米D.0.81×10-7米 3.(2014·潍坊)若代数式()231x x +-有意义,则实数x 的取值范围是( )A.x ≥-1B.x ≥-1且x ≠3C.x >-1D.x >-1且x ≠3 4.在一节数学复习课上,王老师在小黑板上写出四道判断题:;②分解因式:16x 4-1=(4x 2+1)(4x 2-1)x 3·x+2x 5÷x=3x 4.其中正确的个数是( )A.1个B.2个C.3个D.4个5.(2014·福州)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( ) A.60050x +=450x B.60050x -=450x C.600x =45050x + D.600x =45050x - 6.(2014·自贡)一元二次方程x 2-4x+5=0的根的情况是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C.只有一个实数根 D.没有实数根 7.(2014·凉山)下列图形中阴影部分的面积相等的是( )A.②③B.③④C.①②D.①④8.(2014·随州)某通讯公司提供了两种移动电话收费方式:方式1,收月基本费20元,再以每分钟0.1元的价格按通话时间计费;方式2,收月基本费20元,送80分钟通话时间,超过80分钟的部分,以每分钟0.15元的价格计费.下列结论:①如图描述的是方式1的收费方法;②若月通话时间少于240分钟,选择方式2省钱;③若月通讯费为50元,则方式1比方式2的通话时间多;④若方式1比方式2的通讯费多10元,则方式1比方式2的通话时间多100分钟.其中正确的是( )A.只有①②B.只有③④C.只有①②③D.①②③④9.(2014·孝感)如图,直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-2,则关于x的不等式-x+m>nx+4n>0的整数解为( )A.-1B.-5C.-4D.-310.(2014·聊城)如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=-1是对称轴,有下列判断:①b-2a=0;②4a-2b+c<0;③a-b+c=-9a;④若(-3,y1),(32,y2)是抛物线上两点,则y1>y2.其中正确的是( )A.①②③B.①③④C.①②④D.②③④二、填空题(每小题4分,共24分)11.(2014·娄底)按照图所示的操作步骤,若输入的值为3,则输出的值为 .12.(2014·泰州)点P(-2,3)关于x轴对称的点P′的坐标为 .13.(2014·福州)计算:-1)= .14.(2014·益阳)小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是米/分钟.15.在同一平面直角坐标系内,将函数y=2x2+4x-3的图象向右平移2个单位,再向下平移1个单位得到图象的顶点坐标是 .16.(2014·黔西南)在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变化:①f(m,n)=(m,-n),如f(2,1)=(2,-1);②g(m,n)=(-m,-n),如g(2,1)=(-2,-1).按照以上变换有:f[g(3,4)]=f(-3,-4)=(-3,4),那么g [f(-3,2)]= .三、解答题(共66分)17.(8分)(1)(2014·菏泽)计算:2-1-3tan30°(2)(2014·丽水)解一元一次不等式组:32122x xx⎧⎩+≤⎪>⎪⎨,,并将解集在数轴上表示出来.18.(8分)(2014·成都)先化简,再求值:(aa b--1)÷22ba b-,其中,-1.19.(8分)(2014·莱芜改编)某市为打造“绿色城市”,积极投入资金进行河道治污与园林绿化两项工程.已知2013年投资1 000万元,预计2015年投资1 210万元.若这两年内平均每年投资增长的百分率相同.求平均每年投资增长的百分率.20.(10分)(2014·襄阳)如图,一次函数y1=-x+2的图象与反比例函数y2=kx的图象相交于A,B两点,与x轴相交于点C.已知tan∠BOC=12,点B的坐标为(m,n).(1)求反比例函数的解析式;(2)请直接写出当x<m时,y2的取值范围.21.(10分)南方地区遭遇罕见的低温雨雪冰冻天气,赣南脐橙受灾滞销,为了减少果农的损失,政府部门出台了相关的补贴政策:采取每千克补贴0.2元的办法补偿果农.如图是“绿荫”果园受灾期间政府补助前、后脐橙销售总收入y(万元)与销售量x(吨)的关系图,请结合图象回答以下问题:(1)在出台该优惠政策前,脐橙的售价为每千克多少元?(2)出台该优惠政策后,“绿荫”果园将剩余脐橙按原售价打九折赶紧全部销完,加上政府补贴共收入11.7万元,求果园共销售了多少吨脐橙?(3)求出台该优惠政策后y与x的函数关系式.22.(10分)(2013·玉林)工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料煅烧到800 ℃,然后停止煅烧进行锻造操作.第8 min时,材料温度降为600 ℃,煅烧时,温度y(℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x(min)成反比例关系(如图),已知该材料初始温度是32 ℃.(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;(2)根据工艺要求,当材料温度低于480 ℃时,须停止操作,那么锻造的操作时间有多长?23.(12分)(2014·呼和浩特)如图,已知直线l的解析式为y=12x-1,抛物线y=ax2+bx+2经过点A(m,0),B(2,0),D(1,54)三点. (1)求抛物线的解析式及A 点的坐标,并在图示坐标系中画出抛物线的大致图象; (2)已知点P(x ,y)为抛物线在第二象限部分上的一个动点,过点P 作PE 垂直x 轴于点E,延长PE 与直线l 交于点F ,请你将四边形PAFB 的面积S 表示为点P 的横坐标x 的函数,并求出S 的最大值及S 最大时点P 的坐标;(3)将(2)中S 最大时的点P 与点B 相连,求证:直线l 上的任意一点关于x 轴的对称点一定在PB 所在直线上.参考答案1.C2.B3.B4.B5.A6.D7.A8.C9.D 10.B 提示:①∵-2ba=-1,∴b-2a=0,故正确;②当x=-2时,y>0,即4a-2b+c>0,故错误;③当x=-4时,y=0,即16a-4b+c=0.又b=2a,∴16a-b-3·2a+c=016a-b-6a+c=0a-b+c=-9a,故正确;④由图象可知,(-3,y 1)离对称轴较近,∴y 1>y 2,故正确,综上,答案应选B. 11.55 12.(-2,-3) 13.1 14.80 15.(1,-6) 16.(3,2) 17.(1)原式=12-332(2)32122x x x +>⎧⎪⎨≤⎪⎩,①,②由①,得x>-1;由②,得x ≤4. ∴-1<x ≤4.把①②解集表示在数轴上为:18.原式=(a a b --a ba b--)·22a b b -=b a b-·()()a b a b b +- =a+b.当,时,原式19.设平均每年投资增长的百分率是x.由题意得1 000(1+x)2=1 210,解得x 1=0.1=10%,x 2=-2.1(不合题意,舍去). 答:平均每年投资增长的百分率为10%. 20.(1)∵点B 在直线y 1=-x+2上, ∴n=-m+2.过点B 作BD ⊥x 轴于点D ,则BD=m-2,OD=m.∵tan ∠BOD=BD OD =12,∴OD=2BD , 即m=2(m-2).解得m=4. 则n=-m+2=-2,∴点B 的坐标为(4,-2).将(4,-2)代入y 2=k x ,得-2=4k,∴k=-8. ∴反比例函数的解析式为y 2=-8x.(2)y 2<-2或y 2>0.21.(1)政策出台前的脐橙售价为30 00010 000=3(元/千克).(2)设果园共销售了x 吨脐橙,则1 000×(3×0.9+0.2)(x-10)=(11.7-3)×10 000.解得x=40. 答:该果园共销售了40吨脐橙.(3)设这个一次函数解析式为y=mx+n(10≤x ≤40), 代入两点(10,3),(40,11.7),得310,11.740m n m n =+⎧⎨=+⎩.解得0.29,0.1m n =⎧⎨=⎩. ∴y 与x 的函数关系式为y=0.29x+0.1(10≤x ≤40). 22.(1)设锻造时的函数关系式为y=kx(k ≠0),则 600=8k,∴k=4 800, ∴锻造时解析式为y=4 800x (x ≥6).当y=800时,800=4 800x,x=6,∴点B 坐标为(6,800).设煅烧时的函数关系式为y=kx+b ,则32,6800,b k b =⎧⎨+=⎩解得128,32k b =⎧⎨=⎩. ∴煅烧时解析式为y=128x+32(0≤x ≤6). (2)x=480时,y=4 800480=10,10-6=4(min), ∴锻造的操作时间有4分钟.23.(1)∵y=ax 2+bx+2经过点B 、D ,∴422052.4a b a b ++=⎧⎪⎨++=⎪⎩,解之得1,41.2a b ⎧=-⎪⎪⎨⎪=-⎪⎩ ∴y=14-x 212-x+2. ∵A(m,0)在抛物线上,∴0=14-m 212-m+2. 解得m=2(舍去)或-4,∴A(-4,0).图象如图.(2)由题设知直线l 的解析式为y=12x-1. ∴S=12AB ·PF=12×6·PF=3(14-x 2-12x+2+1-12x)=-34x 2-3x+9=-34(x+2)2+12,其中-4<x<0.∴S 最大=12,此时点P 的坐标为(-2,2).(3)∵直线PB 过点P (-2,2)和点B (2,0), ∴PB 所在直线的解析式为y=12-x+1. 设Q (a,12a-1)是y=12x-1上的任一点,则Q 点关于x 轴的对称点为(a,1-12a). 将(a,1-12a)代入y=-12x+1显然成立.∴直线l 上任意一点关于x 轴的对称点一定在PB 所在的直线上.。
火线100天(四川专版)中考物理考点复习 第3讲 透镜及其应用-人教版初中九年级全册物理试题

第3讲透镜及其应用透镜认识凸透镜和凹透镜凸透镜凹透镜外形特征中间____、边缘_____ 中间_____、边缘_____ 对光的作用____________ ___________相关概念三条特殊光线【提示】凸透镜表面越凸,焦距越短,折光能力越强.凸透镜成像规律及其应用实验装置安装细节调节烛焰、凸透镜和光屏,使三者的中心大致在同一_________,使像成在光屏的__________评估交流无论如何移动光屏,均得不到像的原因:一是凸透镜、烛焰、光屏的中心不在____________;二是蜡烛在_____________或蜡烛在焦点上深入拓展①遮住凸透镜一部分,成像性质不变,像变_______②蜡烛与光屏对调后,物距变_____距,像距变物距,像的大小与对调前相______,这也说明了光路的可逆性物体到凸透镜的距离u 像的性质像到凸透镜的距离v应用正倒大小虚实u>2f 倒立缩小实像2f>v>f 照相机u=2f 倒立等大实像v=2f 间接测焦距2f>u>f 倒立放大实像v>2f 投影仪u=f 不成像u<f 正立放大虚像v>u 放大镜巧记规律一倍焦距分虚实,二倍焦距分大小;成实像时,物近像远像变大,物远像近像变小【提示】当没有给出凸透镜焦距时,可利用太阳光粗略测量凸透镜的焦距.眼睛和眼镜眼睛照相机成像元件_______、角膜凸透镜承像元件___________ 光屏看远近不同物体的调节调节晶状体的弯曲程度(调节________)调节像距近视眼远视眼视觉特征近处清晰,远处模糊远处清晰,近处模糊形成原因晶状体太_____,折光能力太_____ 晶状体太____,折光能力太_____ 眼球前后方向太_____ 眼球前后方向太_____成像位置在视网膜____方在视网膜____方成像光路矫正镜片凹透镜凸透镜显微镜和望远镜显微镜望远镜物镜成倒立、放大的实像,相当于投影仪成倒立、缩小的实像,相当于照相机目镜成正立、放大的虚像,相当于放大镜(1)定义:由物体两端射出的两条光线在眼球内交叉而成的角叫视角.(2)影响因素:视角与物体本身的________及物体和人眼之间的________有关.命题点1透镜对光线的作用(2015·某某)如图,有两束光线射向凸透镜,请完成光路(F为焦点,O为光心).凸透镜对光线的作用:凸透镜对光线有会聚作用;凸透镜三条特殊光线的作图:①平行于主光轴的光线经凸透镜折射后将过焦点.②通过焦点的光线经凸透镜折射后将平行于主光轴.③过光心的光线经凸透镜折射后传播方向不改变.凹透镜对光线的作用:凹透镜对光线有发散作用;凹透镜三条特殊光线的作图:①平行于主光轴的光线经凹透镜折射后,其折射光线的反向延长线过焦点.②延长线过另一侧焦点的光线经凹透镜折射后将平行于主光轴.③过光心的光线经凹透镜折射后传播方向不改变.1.(2014·某某)取一个大烧杯,里面充以烟雾,倒扣在桌上,用手电筒射出一平行光,要使射入杯中的光束发散,应在杯底放置的器材是()A.平板玻璃 B.平面镜C.凹透镜 D.凸透镜2.(2013·内江)如图所示,已给出了入射光线和出射光线,请在方框内画出合适的透镜.3.(2015·某某)如图所示,两条入射光线(或延长线)分别过凹透镜的光心O和焦点F,分别画出经过凹透镜折射后的光线.命题点2凸透镜成像规律及其应用(2015·某某)某班同学在“探究凸透镜成像规律”的实验中,记录并绘制了像到凸透镜的距离v跟物体到凸透镜的距离u之间关系的图像,如图所示,下列判断正确的是()A.该凸透镜的焦距是16 cmB.当u=12 cm时,在光屏上能得到一个缩小的像C.当u=20 cm时成放大的像.投影仪就是根据这一原理制成的D.把物体从距凸透镜12 cm处移动到24 cm处的过程中,像逐渐变小熟记并理解凸透镜成像的规律(静态、动态变化规律)和其应用,以及凸透镜成实像时,物距、像距、像之间的关系,是解此类题的关键.本题的突破口是当物距u=2f时,像距v=2f,从而算出焦距f.4.(2014·某某)把一个凸透镜正对着太阳光,在距凸透镜15 cm处得到一个最小最亮的光斑.将点燃的蜡烛放在离凸透镜14 cm处,经凸透镜所成的像是()A.正立、放大的虚像B.倒立、放大的实像C.倒立、缩小的实像D.正立、放大的实像5.(2014·某某)X强同学在光具座上做“研究凸透镜成像”的实验中,当光屏、透镜及烛焰的相对位置如图所示时,恰能在光屏上得到一个清晰的像.由此判断,他所用凸透镜的焦距()A.一定大于20 cmB.一定在10 cm到16 cm之间C.一定小于8 cmD.一定在8 cm到10 cm之间6.(2014·某某)某小区楼道设有多功能电子门铃,此装置可以通过其内置摄像镜头来识别来访者,该摄像镜头相当于凸透镜,经摄像镜头所成的是________(填“正立”或“倒立”)、________(填“放大”“缩小”或“等大”)的实像;若镜头的焦距为10 cm,为了能成清晰的像,人到镜头的距离应大于________cm.命题点3眼睛和眼镜(2015·凉山)小莉和外公视力都不正常,小莉看书总把书放得很近,而她外公看报纸时却把报纸放得很远,小莉和外公应分别戴什么样的眼镜矫正视力()A.都是凸透镜B.都是凹透镜C.凸透镜和凹透镜D.凹透镜和凸透镜远视眼是晶状体曲度变小,会聚能力减弱,看近处物体时像呈在视网膜的后方,应佩戴会聚透镜(凸透镜)矫正;近视眼是晶状体曲度变大,会聚能力增强,看远处物体时像呈在视网膜的前方,应佩戴发散透镜(凹透镜)矫正.7.(2014·某某)某小组同学在做凸透镜成像实验时,在图所示光具座上得到一个清晰的像.他们把一个近视眼镜镜片放在凸透镜与蜡烛之间,发现光屏上的像变得模糊不清.他们想再次得到清晰的像,下面是他们的分析,正确的是()A.近视眼镜镜片对光线有发散作用,光屏应向左调B.近视眼镜镜片对光线有发散作用,光屏应向右调C.近视眼镜镜片对光线有会聚作用,光屏应向左调D.近视眼镜镜片对光线有会聚作用,光屏应向右调8.(2013·某某)在如图所示的四幅小图中,正确表示远视眼成像情况的是图________,其矫正做法是________图.9.(2014·资阳)如图所示,图甲是小明奶奶眼睛成像情况示意图,请在图乙中画出矫正小明奶奶视力所需的透镜.命题点凸透镜成像规律及相关探究凸透镜成像规律在中考中通常从以下几个方面考查:实验基本操作过程、不能成像在光屏中心的原因及解决方法、分析实验现象得出凸透镜成像的规律、说出凸透镜成像规律的应用实例.(2014·某某)洋洋同学在探究“凸透镜成像规律及应用”的活动中,选用了焦距未知的凸透镜.(1)将凸透镜安装在光具座上,用平行光作光源,移动光屏,在光屏上得到一个最小最亮的光斑,如图甲所示,则该凸透镜的焦距为________cm.(2)将蜡烛、凸透镜、光屏依次安装在光具座上,并调整蜡烛火焰、凸透镜及光屏三者的中心,使其大致在________上,为实验探究做好准备.(3)如图乙所示,将点燃的蜡烛移到标尺10 cm处,再移动光屏,直到在光屏上得到一个清晰的像为止.生活中________就是利用这一成像原理来工作的.(4)在图乙所示情况下,保持光屏和凸透镜的位置不变,将蜡烛向左移动一段距离后,为了在光屏上再次得到清晰的像,应在凸透镜左侧附近安装一个焦距适当的________.A.凸透镜B.凹透镜(5)若保持凸透镜位置不变,将蜡烛移动到标尺35 cm处,会在光屏上得到一个倒立________的实像.(6)如果用不透明纸板将凸透镜上半部分遮住,结果________.A.没有影响B.不能成像C.成一半的像D.仍能成完整的像,但亮度变暗“探究凸透镜成像规律”的实验,关键掌握凸透镜成像规律及作用.根据凸透镜焦点和焦距定义得出凸透镜的焦距;凸透镜成像的规律涉及四个方面的内容:物距与焦距的关系、成像性质、像距与焦距的关系、凸透镜成像的应用;利用凸透镜的物距进行分析成像特点,凸透镜成实像时遵循物近像远像变大;若将凸透镜的部分挡住,其他部分仍能够折射光线而成像.(7)实验中,某同学在光屏上得到了一个清晰的像,但像的位置偏高,如图1所示(P点是2倍焦距处).你解决的方法是________________.(8)如图1,把蜡烛移到B点处,无论怎样调节光屏,光屏上始终接收不到像,是因为此时成的是正立、放大的________,要想看到这个像,应从图中的________(填“C”或“D”)箭头所示的方向去观察.(9)当两支点燃的蜡烛、凸透镜和光屏分别置于图2所示的位置时,光屏上C、D两处会得到清晰缩小的像,用一厚纸板挡住A处的烛焰,在光屏上________(填“C”或“D”)处仍能得到一个清晰的像.(10)在上述(3)操作的基础上,王老师取下自己戴的眼镜放于蜡烛和凸透镜之间,光屏上的像又变得模糊,洋洋同学发现当光屏向右移动适当距离后像又清晰.由此可知,王老师所戴的眼镜是________透镜,王老师的眼睛属于________(填“近视眼”“远视眼”或“正常眼”).一、选择题1.(2014·某某)小燕同学在做“研究凸透镜成像规律”实验时,将点燃的蜡烛、凸透镜、光屏调节到如图所示的位置,光屏中心正好出现清晰的像(未画出).下列说法中正确的是()A.凸透镜的焦距为25 cmB.屏上的像是倒立缩小的实像C.蜡烛燃烧变短,屏上像的位置会下降D.取走光屏,则凸透镜不成像2.(2014·某某)在“探究凸透镜成像的规律“的实验中,凸透镜焦距为15 cm,把蜡烛放在凸透镜前25 cm 处,光屏上可承接到烛焰放大、倒立、清晰的实像,然后保持凸透镜位置不变,将蜡烛缓慢向凸透镜靠近.最终停在距凸透镜20 cm处,为在光屏上得到烛焰清晰的实像,则光屏的移动方向和光屏上所得到像的大小变化分别是()A.靠近凸透镜,变大B.远离凸透镜,变大C.靠近凸透镜,变小D.远离凸透镜,变小3.(2015·某某)某同学为了探究“视力矫正”原理,利用探究凸透镜成像规律的装置做了以下实验.如图所示,光屏上得到的是模糊的倒立实像,他将一个眼镜片放在凸透镜和烛焰之间,发现光屏上的像变清晰了,他移走眼镜片,稍微将光屏远离凸透镜,屏上再次得到清晰的像,则该眼镜片是()A.远视眼镜片,对光线有会聚作用B.远视眼镜片,对光线有发散作用C.近视眼镜片,对光线有会聚作用D.近视眼镜片,对光线有发散作用4.(2013·某某)常见的视力缺陷有近视和远视.如图所示是一位视力缺陷者的眼球成像示意图,他的视力缺陷类型及矫正视力应该佩戴的透镜种类是()A.远视眼,凸透镜B.远视眼,凹透镜C.近视眼,凸透镜D.近视眼,凹透镜5.(2013·眉山)生活中很多光学器件含有透镜,下列关于光学器件中透镜的说法正确的是()A.教学用的投影仪利用凸透镜成正立放大的实像B.显微镜的物镜相当于凸透镜,目镜相当于凹透镜C.照相机中“调焦环”的作用是调节凸透镜焦距的大小D.近视眼患者眼睛的晶状体变厚,应佩戴凹透镜矫正6.(2013·某某)在“探究凸透镜成像规律的实验”中,将蜡烛置于透镜前30 cm处时,在另一侧的光屏上得到了一个倒立、放大清晰的像,现保持透镜位置不动,将蜡烛和光屏的位置对调,则光屏上()A.无法成像B.呈现正立、放大的像C.呈现倒立、放大的像D.呈现倒立、缩小的像7.(2015·某某)2014年最为特别的天象之一——“超级月亮”出现于8月11日凌晨,它比正常时的月亮要大百分之二十,亮度也有所增加.某天文爱好者为了研究这一现象,于是架设一台天文望远镜做进一步观察,关于该望远镜,下列说法正确的是()A.它的物镜和显微镜的物镜作用相同B.它的物镜相当于放大镜,用来把像放大C.它的物镜的作用是使远处的物体在焦点附近成虚像D.它由两组透镜组成,靠近眼睛的为目镜,靠近被观测物体的为物镜二、填空题8.(2015·某某)凸透镜是应用广泛的光学元件之一,它对光具有________作用.当某一物体位于凸透镜二倍焦距以内时,成________(填“缩小”“等大”或“放大”)的像.9.(2014·某某)把一个凸透镜对准太阳光,可在凸透镜20 cm处得到一个最小、最亮的光斑.若将一物体放在此凸透镜前50 cm处,在凸透镜另一侧的光屏上呈现清晰倒立、缩小的________(填“实”或“虚”)像,生活中应用该原理制作的光学仪器是________.10.(2014·内江)2013年12月6日17时47分,“嫦娥三号”卫星成功靠近月球制动,顺利进入环月轨道.“嫦娥三号”着陆器拍下“玉兔号”巡视器的照片是________(填“倒立”或“正立”)、缩小的________(填“实”或“虚”)像.11.(2014·眉山)如图所示是许多同学用透镜所做的游戏,从游戏中可以看出透镜对光有________作用.用这种性质的透镜做成眼镜可以用来矫正________眼.12.(2013·某某)生活中处处有物理,水平桌面上有一个装满水的圆柱形玻璃杯.把一支铅笔水平地放在玻璃杯的一侧,透过玻璃杯能看到铅笔的像,其成像原因是光的________;把铅笔由贴近玻璃杯的位置向远处慢慢地移动时,透过玻璃杯会看到笔尖逐渐________(填“变长”或“变短”),到某一位置以后,所看见铅笔尖的方向________(填“改变”或“不变”).三、作图题13.(2015·内江)如图所示,是一束菊花的花顶S反射出的三条特殊,SA平行于主光轴,SB经过光心,SC经过左焦点,请画出这三条光线通过凸透镜折射后出射光线.14.(2013·眉山)如图所示,已知射向凹透镜的两条入射光线,请画出对应的折射光线.四、实验探究题15.(2015·某某)小雷对凸透镜焦距与制成凸透镜的材料种类、凸透镜凸起程度的关系进行了探究实验:次数 1 2 3材料玻璃玻璃水晶凸起程度较小较大较大焦距 / cm(1)他第一次测量焦距的实验如图甲所示,则测得的焦距为________cm.(2)由1、2次的实验可得出的结论是:___________________________________________________________________________________________________________________________.(3)小雷回想起白光经三棱镜后,光屏上自上而下出现了红、橙、黄、绿、蓝、靛、紫的色带(如图乙),受此启发,于是他分别用红光和蓝光来进行图甲的实验,结论是:对同一凸透镜,________光入射时焦距小些.(4)探究完成后, cm的凸透镜和蜡烛进行成像实验.从各组汇报数据中发现,当物距均为16.0 cm时,有两个小组所测像距分别为19.0 cm、13.0 cm,与理论像距16.0 cm相比偏差较大.若不是因为长度测量方法错误和测量误差导致的,请分析出现这种情况的原因:________________________________________________________________________________________________________________________________________________.16.(2015·眉山)如图所示,李宁同学在X老师指导下做“探究凸透镜成像规律”的实验.(1)当蜡烛位于图中B处时,移动光屏到D处,观察到光屏上呈现清晰的像,此时像和物大小相等,则该凸透镜焦距为________ cm.(2)李宁同学把蜡烛移动到A处,屏上的像变得模糊,要使像变清晰,光屏应向________(填“左”或“右”)适当移动,此时光屏上的像应该是倒立、________的实像.(3)在上述(2)操作的基础上,X老师取下自己戴的眼睛放于蜡烛和凸透镜之间、光屏上的像又变得模糊,李宁同学发现当光屏向左移动适当距离后像又清晰.由此可知,X老师所戴的眼镜是________透镜,X老师的眼睛属于________(填“近视眼”“远视眼”或“正常眼”).第3讲透镜及其应用考点解读考点1厚薄薄厚会聚发散考点21.高度中央同一高度一倍焦距以内①暗②像反考点31.晶状体视网膜焦距 2.厚强薄弱长短前后考点42.(1)大小距离各个击破例1例2D 例3D题组训练 1.C2.3. 4.A5.D6.倒立缩小20 7.B8.BD9.实验突破例(1)10.0 (2)同一高度(3)照相机(4)B (5)放大(6)D拓展训练(7)升高蜡烛的高度(8)虚像 C (9)C (10)凹近视眼整合集训1.B2.B3.A4.D5.D6.D7.D8.会聚放大9.实照相机10.倒立实11.会聚远视12.折射变长改变13.14.15.(1)10.0 (2)材料和横截面积相同的凸透镜,凸起程度越大其焦距越小(3)蓝(4)光屏上还没有出现清晰的像时就测出了像距16.(1)10.0 (2)左缩小(3)凸远视眼。
《火线100天》2016中考数学(四川专版)总复习:第1讲 实数及其运算

第一单元 数与式 第1讲 实数及其运算实数的概念及其分类整数和分数统称为有理数,有理数和①________统称为实数,实数有如下分类:实数⎩⎪⎨⎪⎧有理数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫整数⎩⎪⎨⎪⎧正整数②负整数分数⎩⎪⎨⎪⎧正分数③ 有限小数或④ 小数无理数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫正无理数负无理数无限不循环小数实数的有关概念名称 定义性质数轴规定了⑤________、⑥______、⑦______的直线.数轴上的点与实数一一对应. 相反数只有⑧________不同的两个数,即实数a 的相反数是-a.(1)若a 、b 互为相反数,则a +b =0;(2)在数轴上,表示相反数的两个数的点位于原点 ⑨________,且到原点的距离相等.绝对值在数轴上表示数a 的点与原点的⑩________,记作||a .||a =错误!倒数○11________为1的两个数互为倒数,非零实数a 的倒数为○12________.(1)ab =1a 、b 互为倒数;(2)0没有倒数;(3)倒数等于本身的数是1或-1.科学记数法和近似数科学记数法 把一个数写成○13________的形式(其中1≤||a <10,n 为整数),这种记数法称为科学记数法.近似数一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位.平方根、算术平方根、立方根名称定义性质平方根如果x 2=a(a ≥0),那么这个数x 就叫做a 的平方根.记作± a.正数的平方根有两个,它们互为○14________; ○15________没有平方根;0的平方根是○16________. 算术平 方根 如果x 2=a(x>0),那么这个正数x 就叫做a 的算术平方根.记作 a.0的算术平方根是 ○17________. 立方根若x 3=a ,则x 叫做a 的立方根,记作3a.正数有一个○18________立方根;0的立方根是0;负数有一个○19________立方根.实数的大小比较 代数比 较规则 正数○20________零,负数○21________零,正数大于一切负数;两个正数,绝对值大的较大;两个负数,绝对值大的反而○22________. 几何比 较规则在数轴上表示的两个数,左边的数总是○23________右边的数. 实数的运算内容运算法则 加法法则、减法法则、乘法法则、除法法则、乘方与开方等.特别地,a 0=○24________(其中a≠0),a -p= ○25________(其中p 为正整数,a ≠0). 运算律 交换律、结合律、分配律.运算性质 有理数一切运算性质和运算律都适应于实数运算.运算顺序先算乘方、开方,再算○26________,最后算 ○27________,有括号的要先算○28________的,若没有括号,在同一级运算中,要从左到右进行运算.1.用科学记数法表示较大的正数或较小的正数的方法:(1)将较大正数N(N >1)写成a×10n的形式,其中1≤a<10,指数n 等于原数的整数位数减1;(2)将较小正数N(N <1)写成a×10n的形式,其中1≤a<10,指数n 等于原数中左起第一个非零数前零的个数(含小数点前面的零)的相反数.2.比较实数的大小可直接利用法则进行比较,还可以采用作差法、倒数法及估算法,也可借助数轴进行比较.命题点1 实数的概念及其分类(1)(2015·广元)一个数的相反数是3,这个数是( )A.13 B .-13C .3D .-3(2)(2015·绥化)在实数0 、π 、227、 2 、-9中,无理数的个数有( )A .1个B .2个C .3个D .4个一个数的相反数在其前面加上负号即可;初中常见的无理数有三种情形:一是含有根号,但开方开不出来;二是含有π的数;三是人为构造且有一定规律的数,且后面要加上省略号,如0.123 456 789 101 112 13….1.(2015·广州)4个数-3.14,0,1,2中是负数的是()A .-3.14B .0C .1D .2 2.(2015·资阳)-6的绝对值是()A .6B .-6C.16D .-163.(2015·绵阳)±2是4的()A .平方根B .相反数C .绝对值D .算术平方根4.(2015·长沙)下列实数中,为无理数的是()A .0.2B.12C. 2D .-5命题点2 实数的大小比较(2015·成都)比较大小:5-12________58.(填“>”“<”或“=”)两个实数的大小比较,通常按照“负数<零<正数”进行比较.若其中有无理数,则可借助数轴或估算的方法进行比较.1.(2015·呼和浩特)以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是()A .-3 ℃B .15 ℃C .-10 ℃D .-1 ℃ 2.(2015·温州)给出四个数0,3,12,-1,其中最小的是()A .0B. 3C.12D .-13.(2015·苏州)若m =22×(-2),则有() A .0<m <1 B .-1<m <0 C .-2<m <-1 D .-3<m <-24.(2015·达州)在实数-2、0、-1、2、-2中,最小的是________. 命题点3 科学记数法(2015·绵阳)福布斯2015年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以242亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为()A .0.242×1010美元B .0.242×1011美元C .2.42×1010美元D .2.42×1011美元科学记数法的表示形式为a ×10n.其中1≤||a <10,n 为整数.在确定n 的值时,看该数的绝对值是否大于等于1或小于1.当该数的绝对值大于或等于1时,n 为它的整数位数减1;当该数的绝对值小于1时,n 的绝对值为它第一个非零数字前0的个数(含小数点前的1个0).如果数带有万、亿这样的数字单位,应先将其还原,再用科学记数法表示.1.(2015·成都)今年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相.新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的城市,按照远期规划,新机场将新建的4个航站楼的总面积约为126万平方米,用科学计数法表示126万为()A .126×104B .1.26×105C .1.26×106D .1.26×1072.(2015·内江)用科学记数法表示0.000 006 1,结果是()A .6.1×10-5B .6.1×10-6C .0.61×10-5D .61×10-73.(2015·自贡)将2.05×10-3用小数表示为()A .0.000 205B .0.020 5C .0.002 05D .-0.002 05 4.用四舍五入法求近似数:(1)3 054 900(精确到万位)≈________; (2)0.006 52(精确到0.001)≈________. 命题点4 实数的运算(2015·德阳)计算:2-1+tan45°-|2-327|+18÷8. 【解答】解答本题的关键是掌握负整数指数幂a -n=1a n (a≠0)、特殊角的三角函数值、立方根的意义以及二次根式除法的法则.1.(2015·南充)计算3+(-3)的结果是()A .6B .-6C .1D .02.(2015·吉林)若等式0□1=-1成立,则□内的运算符号为()A .+B .-C .×D .÷ 3.(2015·攀枝花)计算:9+|-4|+(-1)0-(12)-1=________.4.(2015·广安)计算:-14+(2-22)0+|-2 015|-4cos60°.1.(2015·黔西南)下列各数是无理数的是()A. 4B .-13C .πD .-12.(2015·六盘水)下列说法正确的是()A.||-2=-2 B .0的倒数是0 C .4的平方根是2 D .-3的相反数是33.(2015·威海)检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数.从轻重的角度看,最接近标准的工件是()A .-2B .-3C .3D .5 4.(2015·东营)|-13|的相反数是()A.13B .-13C .3D .-35.(2015·安徽)与1+5最接近的整数是()A .4B .3C .2D .16.(2015·龙岩)数轴上到原点的距离等于1的点所表示的数是()A .±1B .0C .1D .-17.(2015·成都)实数a 、b 在数轴上对应的点的位置如图所示,计算||a -b 的结果为()A .a +bB .a -bC .b -aD .-a -b8.(2015·德阳)中国的领水面积约为370 000 km 2,将数370 000用科学记数法表示为()A .37×104B .3.7×104C .0.37×104D .3.7×1059.估计5+12介于() A .1.4与1.5之间 B .1.5与1.6之间 C .1.6与1.7之间 D .1.7与1.8之间 10.(2015·乐山)12的倒数是________.11.(2015·巴中)从巴中市交通局获悉,我市2015年前4月在巴陕高速公路完成投资8 400万元,请你将8 400万元用科学记数记表示为________元. 12.(2015·宁波)实数8的立方根是________.13.(2015·南充)计算8-2sin45°的结果是________.14.(2015·厦门)已知(39+813)×(40+913)=a +b ,若a 是整数,1<b <2,则a =________.15.(2015·乐山)计算:⎪⎪⎪⎪⎪⎪-12+8-4cos45°+(-1)2 015.16.(2015·广元)计算:(2 015-π)0+(-13)-1+|3-1|-3tan30°+613.17.(2014·陇南)观察下列各式:13=12, 13+23=32, 13+23+33=62, 13+23+33+43=102, …猜想13+23+33+…+103=________. 18.(2015·莱芜)已知:C 23=3×21×2=3,C 35=5×4×31×2×3=10,C 46=6×5×4×31×2×3×4=15,…,观察上面的计算过程,寻找规律并计算C 610=________.19.(2015·汕尾)若1(2n -1)(2n +1)=a 2n -1+b2n +1,对任意自然数n 都成立,则a =________,b =________;计算:m =11×3+13×5+15×7+…+119×21=________.参考答案考点解读考点1 ①无理数 ②零 ③负分数 ④无限循环考点2 ⑤原点 ⑥正方向 ⑦单位长度 ⑧符号 ⑨两侧 ⑩距离 ○11乘积 ○121a考点3 ○13a ×10n考点4 ○14相反数 ○15负数 ○160 ○170 ○18正的 ○19负的 考点5 ○20大于 ○21小于 ○22小 ○23小于 考点6 ○241 ○251a p ○26乘除 ○27加减 ○28括号内 各个击破例1 (1)D (2)B题组训练 1.A 2.A 3.A 4.C 例2 <题组训练 1.C 2.D 3.C 4.-2 例3 C题组训练 1.C 2.B 3.C 4.(1)305万 (2)0.007 例4 原式=12+1-||2-3+94=12+1-1+32=2. 题组训练 1.D 2.B 3.6 4.原式=-1+1+2 015-4×12=2 013.整合集训1.C 2.D 3.A 4.B 5.B 6.A 7.C 8.D 9.C 10.2 11.8.4×10712.2 13. 2 14.1 61115.原式=12+22-4×22-1=-12.16.原式=1-3+3-1-3+23=23-3.17.552210 12 -121021。
火线100天中考数学一轮复习 第3讲 整式及因式分解-人教版初中九年级全册数学试题

第3讲整式及因式分解整式的相关概念单项式概念由数与字母的①____组成的代数式叫做单项式(单独的一个数或一个②____也是单项式).系数单项式中的③____因数叫做这个单项式的系数.次数单项式中的所有字母的④________叫做这个单项式的次数.多项式概念几个单项式的⑤____叫做多项式.项多项式中的每个单项式叫做多项式的项.次数一个多项式中,⑥________的项的次数叫做这个多项式的次数.整式单项式与⑦______统称为整式.同类项所含字母⑧____并且相同字母的指数也⑨____的项叫做同类项.所有的常数项都是⑩____项.整式的运算整式的加减合并同类项(1)字母和字母的指数不变;(2)⑪____相加减作为新的系数.添(去)括号添(去)括号:括号前面是“+”号,添(去)括号都⑫______符号;括号前面是“-”号,添(去)括号都要⑬____符号.幂的运算同底数幂的乘法a m·a n=⑭__ 注意:a≠0,b≠0,且m、n都为整数. 幂的乘方(a m)n=⑮__积的乘方(ab)n=⑯__同底数幂的除法a m÷a n=⑰____整式的乘法单项式与单项式相乘把它们的⑱____、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的⑲____作为积的一个因式.单项式与多项式相乘用单项式去乘多项式的每一项,再把所得的积⑳____,即m(a+b+c)=○21____________.多项式与多项式相乘先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积○22____,即(m+n)(a+b)=○23______________.整式的除法单项式除以单项式把系数与同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的○24____作为商的一个因式.多项式除以单项式先把这个多项式的每一项分别除以这个单项式,然后把所得的商○25____.乘法公式平方差公式(a+b)(a-b)=○26______ 完全平方公式(a±b)2=○27____________因式分解定义把一个多项式化成几个整式○28____的形式,就是因式分解.方法提公因式法ma+mb+mc=○29__________公式法a2-b2=○30__________a2±2ab+b2=○31________步骤(1)若有公因式,应先○32________;(2)看是否可用○33______;(3)检查各因式能否继续分解 【易错提示】因式分解必须分解到每一个多项式不能再分解为止.1.求代数式的值主要用代入法,代入法分为直接代入法、间接代入法和整体代入法.2.整式的运算时不要盲目入手,先观察式子的结构特征,确定解题思路,结合有效的数学思想:整体代入、降次、数形结合、逆向思维等,使解题更加方便快捷.命题点1 代数式及其求值(2015·某某)若a 2-3b =5,则6b -2a 2+2 015=________.【思路点拨】 把6b -2a 2+2 015变形为2(3b -a 2)+2 015,把a 2-3b =5化为3b -a 2=-5后代入求值.求代数式的值时,常采用以下两种方法:①应用整体代入求值;②把已知的式子化为一个字母用另外的字母表示,代入所求代数式,进行化简求值.1.(2015·某某)当x =1时,代数式4-3x 的值是( )A .1B .2C .3D .42.(2015·某某)为庆祝抗战胜利70周年,我市某楼盘让利于民,决定将原价为a 元/米2的商品房价降价10%销售,降价后的销售价为( )A .a -10%B .a ·10%C .a(1-10%)D .a(1+10%)3.(2014·某某)若a -2b =3,则9-2a +4b 的值为________.4.(2015·某某)如果单项式-xyb +1与12x a -2y 3是同类项,那么(a -b)2 015=________. 命题点2 整式的运算(2015·某某)先化简,再求值:2a(a +2b)-(a +2b)2,其中a =-1,b = 3.【思路点拨】 先利用公式进行整式的乘法运算,再进行整式的加减运算,化简后代入求值.【解答】进行整式的运算时,要先进行整式的乘法运算,再合并同类项,结果应为最简的.代入求值时,要注意整体添加括号.1.(2015·聊城)下列运算正确的是( )A.a2+a3=a5 B.(-a3)2=a6C.ab2·3a2b=3a2b2 D.-2a6÷a2=-2a32.(2015·某某)计算x2·x5=________.3.(2015·某某)计算:a(a2÷a)-a2=________.4.(2015·某某)若x2+x+m=(x-3)(x+n)对x恒成立,则n=________.5.(2015·某某)先化简,再求值:a(a-3)+(1-a)(1+a),其中a=33.命题点3 因式分解(2015·威海)分解因式:-2x2y+12xy-18y=____________.因式分解,首先需观察有无公因式可提,然后再考虑是否可用公式法分解,直到分解到不能再分解为止.1.(2015·某某)将多项式ax2-4ax+4a分解因式,下列结果中正确的是( )A.a(x-2)2 B.a(x+2)2C.a(x-4)2 D.a(x+2)(x-2)2.(2015·某某)因式分解:ab-a=__________.3.(2015·某某)在实数X围内因式分解:x2y-3y=__________________.4.(2015·潍坊)因式分解:ax2-7ax+6a=____________________.1.(2015·某某)单项式2a的系数是( )A.2 B.2a C.1 D.a2.(2015·某某)化简-16(x -0.5)的结果是( )A .-16x -0.5B .16x +0.5C .16x -8D .-16x +83.(2015·某某)若单项式2x 2y a +b 与-13x a -b y 4是同类项,则a ,b 的值分别为( ) A .a =3,b =1 B .a =-3,b =1C .a =3,b =-1D .a =-3,b =-14.(2015·某某)多项式mx 2-m 与多项式x 2-2x +1的公因式是( ) A .x -1 B .x +1 C .x 2-1 D .(x -1)25.(2015·呼和浩特)下列运算,结果正确的是( )A .m 2+m 2=m 4B .(m +1m )2=m 2+1m2 C .(3mn 2)2=6m 2n 4 D .2m 2n ÷m n=2mn 2 6.(2014·某某)下列运算正确的是( )A .a 2+a 3=a 5B .(-2a 2)3=-6a 6C .(2a +1)(2a -1)=2a 2-1D .(2a 3-a 2)÷a 2=2a -17.(2014·某某)苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需( )A .(a +b)元B .(3a +2b)元C .(2a +3b)元D .5(a +b)元8.(2013·枣庄)图1是一个长为2a ,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积是( )A .2a bB .(a +b)2C .(a -b)2D .a 2-b 29.(2014·某某)计算:a ·a 2=________.10.(2015·株洲)因式分解:x 2(x -2)-16(x -2)=________________.11.(2015·某某)已知a +b =3,a -b =5,则代数式a 2-b 2=________.12.(2014·某某)体育委员小金带了500元钱去买体育用品,已知一个足球x 元,一个篮球y 元.则代数式500-3x -2y 表示的实际意义是____________________.13.(2015·某某)如图所示是一组有规律的图案,第1个图案是由4个基础图形组成,第2个图案是由7个基础图形组成,…,第n(n 是正整数)个图案中的基础图形的个数为________(用含n 的式子表示).14.(2015·某某)化简:(x+1)2-x(x+1).15.(2015·某某)先化简,再求值:(x+y)(x-y)-x(x+y)+2xy,其中x=(3-π)0,y=2.16.(2013·某某)先化简,再求值:(x+y)(x-y)-(4x3y-8xy3)÷2xy,其中x=-1,y=33.17.(2013·)已知x2-4x-1=0,求代数式(2x-3)2-(x+y)(x-y)-y2的值.18.(2014·威海)已知x2-2=y,则x(x-3y)+y(3x-1)-2的值是( ) A.-2 B.0 C.2 D.419.(2014·日照)若3x=4,9y=7,则3x-2y的值为( )A.47B.74C.-3 D.2720.(2015·某某)分解因式(a-b)(a-4b)+ab的结果是__________.21.(2015·某某)请看杨辉三角(图1),并观察下列等式(图2):11 11 2 11 3 3 11 4 6 4 1…图1(a+b)1=a+b(a +b)2=a 2+2ab +b 2(a +b)3=a 3+3a 2b +3ab 2+b 3(a +b)4=a 4+4a 3b +6a 2b 2+4ab 3+b 4…图2根据前面各式的规律,则(a +b)6=________________________________________________________________.22.(2013·义乌)如图1,从边长为a 的正方形纸片中剪去一个边长为b 的小正方形,再沿着线段AB 剪开,把剪成的两X 纸片拼成如图2的等腰梯形.(1)设图1中阴影部分面积为S 1,图2中阴影部分面积为S 2,请直接用含a ,b 的代数式表示S 1、S 2;(2)请写出上述过程所揭示的乘法公式.温馨提示:“整合集训”完成后,可酌情使用P15滚动小专题(一)类型2“整式的运算”进行强化训练!考点解读①乘积 ②字母 ③数字 ④指数的和 ⑤和 ⑥次数最高 ⑦多项式 ⑧相同 ⑨相同 ⑩同类 ⑪系数 ⑫不改变 ⑬改变 ⑭a m +n ⑮a mn ⑯a n b n ⑰a m -n ⑱系数 ⑲指数 ⑳相加 ○21ma +mb +mc ○22相加 ○23ma +mb +na +nb ○24指数 ○25相加 ○26a 2-b 2○27a 2±2ab +b 2○28乘积 ○29m(a +b +c) ○30(a +b)(a -b) ○31(a±b)2○32提公因式 ○33公式法各个击破例1 2 005题组训练 1.A 2.C 例2 原式=2a 2+4ab -(a 2+4ab +4b 2)=2a 2+4ab -a 2-4ab -4b 2=a 2-4b 2.当a =-1,b =3时,原式=(-1)2-4×(3)2=-11.题组训练 1.B 7 3.0 4.4 5.原式=a 2-3a +1-a 2=1-3a.当a =33时,原式=1-3a =1- 3.例3 -2y(x -3)2题组训练 1.A 2.a(b -1) 3.y(x -3)(x +3) 4.a(x -1)(x -6)整合集训2.D3.A4.A5.D6.D7.C8.C 3,2个篮球后剩余的钱 13.3n +114.方法一:原式=(x +1)(x +1-x)=x +1.方法二:原式=x 2+2x +1-x 2-x =x +1.15.原式=x 2-y 2-x 2-xy +2xy =xy -y 2.当x =(3-π)0,y =2时,原式=2-4=-2.16.原式=x 2-y 2-2x 2+4y 2=-x 2+3y 2.当x =-1,y =33时,原式=-(-1)2+3×(33)2=0. 17.原式=4x 2-12x +9-x 2+y 2-y2 =3x 2-12x +9=3(x 2-4x)+9.∵x 2-4x -1=0,∴x 2-4x =1.∴原式=3×1+9=12.19.A 20.(a -2b)26+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 622.(1)S 1=a 2-b 2,S 2=12(2b +2a)(a -b)=(a +b)(a -b).(2)(a +b)(a -b)=a 2-b 2.。
火线100天(四川专版)中考数学复习集训 滚动小专题二 方程(组)、不等式(组)的解法-人教版初中九

方程(组)、不等式(组)的解法类型1 方程(组)的解法1.(2014·滨州)解方程:2-2x +13=1+x 2.2.(2014·某某)解方程:x 2+2x -3=0.3.(2015·某某B 卷)解二元一次方程组:⎩⎪⎨⎪⎧x -2y =1,①x +3y =6.②4.(2015·某某)解方程:1-2x -3=1x -3.5.(2015·某某)解方程:x 2x -3+53x -2=4.6.(2015·黔西南)解方程:2x x -1+11-x =3.7.(2015·某某)解方程组:⎩⎪⎨⎪⎧2x +y =4,①x -y =-1.②8.(2015·某某)解方程:x 2-1=2(x +1).9.(2015·某某)解方程:x 2-2x -3=0.10.(2015·某某)先化简:(2x 2+2x x 2-1-x 2-x x 2-2x +1)÷x x +1,然后解答下列问题: (1)当x =3时,求原代数式的值;(2)原代数式的值能等于-1吗?为什么?类型2 不等式(组)的解法1.(2015·某某)解不等式:x 3>1-x -36.2.(2015·某某)解不等式2(x +1)-1≥3x+2,并把它的解集在数轴上表示出来.3.(2015·某某)解不等式组:⎩⎪⎨⎪⎧x -1>2,①x +2<4x -1.②4.(2014·某某)解不等式组:⎩⎪⎨⎪⎧3x≥x+2,①4x -2<x +4.②5.(2015·某某)解不等式组:⎩⎪⎨⎪⎧5x -3<4x ,①4(x -1)+3≥2x.②6.(2015·某某)解一元一次不等式组⎩⎪⎨⎪⎧1+x>-2,①2x -13≤1,②并把解在数轴上表示出来.7.(2013·某某)解不等式组:⎩⎪⎨⎪⎧x -3(x -2)≤4,①1-2x 4<1-x ,②并把解集在数轴上表示出来.8.(2015·黔东南)解不等式组⎩⎪⎨⎪⎧2(x +2)>3x ,①3x -12≥-2,②并将它的解集在数轴上表示出来.9.(2015·某某)求不等式组⎩⎪⎨⎪⎧2x +1>0,①x>2x -5②的正整数解.10.(2015·某某)已知A =x 2+2x +1x 2-1-x x -1. (1)化简A ;(2)当x 满足不等式组⎩⎪⎨⎪⎧x -1≥0,x -3<0,且x 为整数时,求A 的值.参考答案类型1 方程(组)的解法1.去分母,得12-2(2x +1)=3(1+x).去括号,得12-4x -2=3+3x.移项、合并同类项,得-7x =-7.解得x =1.2.∵a=1,b =2,c =-3,b 2-4ac =22-4×1×(-3)=16>0,∴x =-2±162=-2±42. ∴x 1=1,x 2=-3.3.②-①,得y =1.将y =1代入①得x =3.∴原方程组的解为⎩⎪⎨⎪⎧x =3,y =1.,,,x =6是原方程的根.,得x(3x -2)+5(2x -3)=4(2x -3)(3x -2).化简,得7x 21=1,x 2=137. 经检验,x 1=1,x 2=137都是原方程的根. ,得2x -1=3(x -1).去括号、移项,得-x =-2.系数化为1,得x =2.经检验,x =2是原分式方程的根.7.①+②,得3x =3,即x =1.把x =1代入①,⎩⎪⎨⎪⎧x =1,y =2. ,得(x +1)[(x -1)-2]=0.即(x +1)(x -3)=0.因此x +1=0或x -3=0.所以x 1=-1,x 2=3.9.∵a=1,b =-2,c =-3,Δ=b 2-4ac =(-2)2-4×1×(-3)=16,∴x =2±162×1=2±42. ∴x 1=-1,x 2=3. 10.(1)原式=x +1x -1.当x =3时,原式=3+13-1=2. (2)如果x +1x -1=-1,那么x +1=-(x -1),解得x =0. 当x =0时,除式x x +1=0,原式无意义, 故原代数式的值不能等于-1.类型2 不等式(组)的解法1.去分母,得2x >6-x +3.移项,得2x +x >6+3.合并同类项,数化为1,得x >3.,得2x +2-1≥3x+2.合并同类项,得-x≥1.系数化为1,得x≤-1.这个不等式的解集在数轴上表示为:3.解不等式①,得x >3,解不等式②,,不等式组的解集为x >3.4.解不等式①,得x≥1.解不等式②,得x <2.所以不等式组的解集是1≤x<2.5.解不等式①,得x<3,解不等式②,得x≥12,因此,不等式组的解是12≤x<3. 6.由①得x >-3,由②得x≤2,∴不等式组的解集为-3<x≤2.解集在数轴上表示如下:7.解不等式①,得x≥1.解不等式②,得x<32. ∴此不等式组的解集是1≤x<32. 不等式组的解集在数轴上表示为:8.解不等式①,得x<4,解不等式②,得x≥-1,所以,原不等式组的解集为-1≤x<4.不等式组的解集在数轴上表示为: 9.解不等式①,得x>-12,解不等式②,得x<5,则不等式组的解集为-12<x<5. ∴此不等式组的正整数解为1,2,3,4.10.(1)化简A =1x -1. (2)解⎩⎪⎨⎪⎧x -1≥0,x -3<0得1≤x<3, ∵x 为整数,∴x =1或x =2.①当x =1时,A =1x -1无意义. ②当x =2时,A =1x -1=12-1=1.。
火线100天(四川专版)中考数学复习集训 滚动小专题三 方程(组)、不等式(组)的实际应用-人教版初

方程(组)、不等式(组)的实际应用1.(2015·某某)为有效开展阳光体育活动,云洱中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?2.(2015·某某)利用一面墙(墙的长度不限),另三边用58 m长的篱笆围成一个面积为200 m2的矩形场地.求矩形的长和宽.3.,超过1.5千米的部分按每千米另收费.小X说:“我乘出租车从市政府到某某汽车站走了千米,付车费10.5元.”小李说:“我乘出租车从市政府到某某汽车站走了千米,元.”问:(1)出租车的起步价是多少元?超过千米后每千米收费多少元?,应付车费多少元?4.(2014·某某)某校为美化校园,计划对面积为1 800 m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2;,,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?5.(2015·某某)某工厂计划在规定时间内生产24 000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24 000个零件的生产任务,求原计划安排的工人人数.6.(2015·某某)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每X降价80元,这样按原定票价需花费6 000元购买的门票X数,现在只花费了4 800元.(1)求每X门票原定的票价;(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.7.(2014·某某)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元;(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?8.(2015·德阳)大华服装厂生产一件秋冬季外套需面料,里料,已知面料的单价比里料的单价的2倍还多10元,一件外套的布料成本为76元.(1)求面料和里料的单价;(2)该款外套9月份投放市场的批发价为150元/件,出现购销两旺态势,10月份进入批发淡季,厂方决定采取打折促销.已知生产一件外套需人工等固定费用14元,为确保每件外套的利润不低于30元.①设10月份厂方的打折数为m,求m的最小值;(利润=销售价-布料成本-固定费用)②进入11月份以后,销售情况出现好转,厂方决定对VIP客户在10月份最低折扣价的基础上实施更大的优惠,对普通客户在10月份最低折扣价的基础上实施价格上浮.已知对VIP客户的降价率和对普通客户的提价率相等,结果一个VIP客户用9 120元批发外套的件数和一个普通客户用10 080元批发外套的件数相同,求VIP客户享受的降价率.参考答案1.设胜了x 场,那么负了(8-x)场,根据题意,得2x +1×(8-x)=13,解得x =5,8-5=3(场).答:九年级一班胜、负场数分别是5和3.,则与墙平行的一边为(58-2x)米,根据题意,1=25,x 2=4.∴另一边长为8米或50米.答:当矩形的长为25米时,宽8米,当矩形边长为50米时宽为4米.3.(1)设出租车的起步价是x 元,超过1.5千米后每千米收费y 元.依题意,得 解得,超过后每千米收费2元.(2)4.5+(5.5-1.5)×2=12.5(元).答:小X 乘出租车从市政府到某某南站(高铁站)走了,应付车费12.5元.4.(1)设乙工程队每天能完成绿化的面积是x m 2,根据题意,得400x -4002x=4,解得x =50. 经检验,x =50是原方程的解.则甲工程队每天能完成绿化的面积是50×2=100(m 2). 答:甲、乙两工程队每天能完成绿化的面积分别是100 m 2、50 m 2.(2)设应安排甲队工作x 天,根据题意,得0.4x +1 800-100x 50×≤8,解得x≥10. 答:至少应安排甲队工作10天.5.(1)设原计划每天生产零件x 个,由题意得24 000x =24 000+300x +30,解得x =2 400. 经检验,x =2 400是原方程的根,且符合题意.∴规定的天数为24 000÷2 400=10(天).答:原计划每天生产零件2 400个,规定的天数是10天.(2)设原计划安排的工人人数为y 人,根据题意,得[5×20×(1+20%)·2 400y+2 400]×(10-2)=24 000,解得y =480. 经检验,y =480是原方程的根,且符合题意.答:原计划安排的工人人数为480人.6.(1)设每X 门票原定的票价x 元.由题意得6 000x =4 800x -80,解得x =400. 经检验,x =400是原方程的解.答:每X 门票原定的票价400元.(2)设平均每次降价的百分率为y.由题意得400(1-y)2=324,解得y 1,y 2=1.9(不合题意,舍去) 答:平均每次降价10%.7.(1)每辆A 型车和B 型车的售价分别是x 万元、y 万元.则⎩⎪⎨⎪⎧x +3y =96,2x +y =62.解得⎩⎪⎨⎪⎧x =18,y =26. 答:每辆A 型车的售价为18万元,每辆B 型车的售价为26万元.(2)设购买A 型车a 辆,则购买B 型车(6-a)辆,则依题意得⎩⎪⎨⎪⎧18a +26(6-a )≥130,18a +26(6-a )≤140.解得2≤a≤134. ∵a 是正整数,∴a =2或a =3.∴共有两种方案:方案一:购买2辆A 型车和4辆B 型车;方案二:购买3辆A 型车和3辆B 型车.8.(1)设里料的单价为x 元/米,面料的单价为(2x +10)元/米.根据题意得0.8x +1.2(2x +10)=76.解得x =20.2x +10=2×20+10=50. 答:面料的单价为50元/米,里料的单价为20元/米.(2)①设打折数为m.根据题意得150×m 10-76-14≥30.解得m≥8. ∴m 的最小值为8.②150×0.8=120(元).9 120120×(1-x )=10 080120×(1+x ),解得x =0.05. 经检验x =0.05是原方程的解.答:VIP 客户享受的降价率为5%.。
【火线100天】(四川专版)中考数学总复习第7讲分式方程

第7讲 分式方程分式方程及解法分式方程的应用列分式方程解应用题的步骤跟一次方程(组)的应用题不一样的是:要检验⑤________次,既要检验求出来的解是否为原方程的根,又要检验是否⑥________.分式方程无解有可能是两种情况:一是去分母后的整式方程无解;二是整式方程有解,但整式方程的解使最简公分母为0,分式方程也无解.命题点1 分式方程的解法(2015·绵阳)解方程:32x +2=1-1x +1. 【思路点拨】 先确定最简公分母2(x +1),方程两边同乘以最简公分母,把分式方程转化为整式方程求解,最后要检验.【解答】解分式方程的基本思想是把分式方程转化为整式方程.解题过程中需注意两点:一是两边同乘以公分母去分母时,不要漏乘不含分母的项;二是必需检验.1.(2015·自贡)方程x 2-1x +1=0的解是() A .1或-1B .-1C .0D .1 2.(2015·攀枝花)分式方程1x -1=3x +1的根为x =________. 3.(2014·南充)分式方程1x -1+2x 2-1=0的解是________. 4.(2014·乐山)解方程:x x -1-3x=1.命题点2 分式方程的应用(2015·成都)某商家预测一种应季衬衫能畅销市场,就用13 200元购进了一批这种衬衫,面市后果然供不应求,商家又用28 800元够进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.该商家购进的第一批衬衫是多少件?【思路点拨】 可设该商家购进的第一批衬衫是x 件,则购进第二批这种衬衫是2x 件,根据第二批这种衬衫单价贵了10元,也就是“第二批这种衬衫单价-第一批这种衬衫单价=10”,列出分式方程求解.【解答】列分式方程解应用题的关键是分析题意,弄清楚已知量与未知量之间的关系,从而得到相等关系,进而引进未知数,列出方程解决问题.构建分式方程解实际问题一定要注意检验,找出符合实际情况的答案.1.(2015·遂宁)遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩平均产量x 万千克,则改良后平均每亩产量为1.5x 万千克,根据题意列方程为()A.36x -36+91.5x =20 B.36x -361.5x =20 C.36+91.5x -36x =20 D.36x +36+91.5x=20 2.(2013·乐山)甲、乙两人同时分别从A ,B 两地沿同一条公路骑自行车到C 地.已知A ,C 两地间的距离为110千米,B ,C 两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C 地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x 千米/时.由题意列出方程,其中正确的是()A.110x +2=100x B.110x =100x +2 C.110x -2=100x D.110x =100x -23.(2015·宜宾)列方程或方程组解应用题:近年来,我国逐步完善养老金保险制度甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险会0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元.1.(2015·常德)分式方程2x -2+3x 2-x=1的解为() A .x =1B .x =2C .x =13D .x =02.(2015·岳阳)岳阳市某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x 元,则下列所列方程正确的是()A.200x =350x -3 B.200x =350x +3 C.200x +3=350x D.10x =350x -33.(2015·乌鲁木齐)九年级学生去距学校10 km 的博物馆参观,一部分学生骑自行车先走,过了20 min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h ,则所列方程正确的是()A.10x =102x -13 B.10x =102x -20 C.x 10=102x +13 D.10x =102x+20 4.(2015·巴中)分式方程3x +2=2x的解为x =________. 5.(2015·常德)若分式x 2-4x +2的值为0,则x =________. 6.(2014·巴中)若分式方程x x -1-m 1-x=2有增根,则这个增根是________. 7.解下列分式方程:(1)(2015·广安)1-x x -2=x 2x -4-1;(2)(2015·龙岩)x -3+6x -x 2x +3=0.8.如图,点A 、B 在数轴上,它们所对应的数分别是-3和1-x 2-x,且点A 、B 到原点的距离相等,求x 的值.9.(2015·嘉兴)小明解方程1x -x -2x=1的过程如图.请指出他解答过程中的错误,并写出正确的解答过程.解:方程两边同乘x 得1-(x -2)=1……①去括号,得1-x -2=1……②合并同类项,得-x -1=1……③移项得-x =2……④解得x =-2……⑤∴原方程的解为x =-2……⑥10.(2015·大连)甲、乙两人制作某种机械零件.已知甲每小时比乙多做3个,甲做96个所用时间与乙做84个所用时间相等,求甲、乙两人每小时各做多少个零件.11.(2015·安顺)“母亲节”前夕,某商店根据市场调查,用3 000元购进第一批盒装花,上市后很快售完,接着又用5 000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元.12.(2015·北京)为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市民使用.到2013年底,全市已有公租自行车25 000辆,租赁点600个,预计到2015年底,全市将有公租自行车50 000辆,并且平均每个租赁点的公租自行车数量是2013年底平均每个租赁点的公租自行车数量的1.2倍.预计到2015年底,全市将有租赁点多少个?13.(2014·自贡)学校新到一批理、化、生实验器材需要整理,若实验管理员李老师一人单独整理需要40分钟完成.现在李老师与工人王师傅共同整理20分钟后,李老师因事外出,王师傅再单独整理了20分钟才完成任务.(1)王师傅单独整理这批实验器材需要多少分钟完成?(2)学校要求王师傅的工作时间不能超过30分钟,要完成整理这批器材,李老师至少要工作多少分钟?14.(2015·营口)若关于x 的分式方程2x -3+x +m 3-x=2有增根,则m 的值是() A .m =-1B .m =0C .m =3D .m =0或m =3 15.(2015·齐齐哈尔)关于x 的分式方程5x =a x -2有解,则字母a 的取值范围是() A .a =5或a =0B .a ≠0C .a ≠5D .a ≠5且a≠016.(2015·淄博)若关于x 的方程2x -2+x +m 2-x =2的解为正数,则m 的取值范围是() A .m <6 B .m >6C .m <6且m≠0D .m >6且m≠817.(2015·东营)若分式方程x -a x +1=a 无解,则a 的值为________. 18.(原创)阅读下列材料:方程1x +1-1x =1x -2-1x -3的解为x =1; 方程1x -1x -1=1x -3-1x -4的解为x =2; 方程1x -1-1x -2=1x -4-1x -5的解为x =3; …(1)请你观察上述方程与解的特征,写出能反映上述方程一般规律的方程,并猜想这个方程的解;(2)利用(1)中所得的结论,写出一个解为x=2 015的分式方程.19.(2015·宁波)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A、B两种花木共6 600棵,若A花木数量是B花木数量的2倍少600棵.(1)A、B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?参考答案考点解读考点1 ①未知数 ②整式 ③最简公分母 ④不为0考点2 ⑤两 ⑥符合题意各个击破例1 方程两边同乘以2(x +1),去分母,得3=2x +2-2,移项、合并同类项,得-2x =-3.系数化为1,得x =32. 经检验,x =32是分式方程的解. 题组训练 1.D 2.2 3.x =-34.去分母,得x 2-3x +3=x 2-x.移项、合并同类项,得-2x =-3.解得x =1.5.经检验,x =1.5是分式方程的解.例2 设该商家购进的第一批衬衫是x 件,则第二批衬衫是2x 件,由题意可得28 8002x -13 200x=10,解得x =120.经 检验,x =120是原方程的根.答:商家购进的第一批衬衫是120件.题组训练 1.A 2.A3.设乙每年缴纳x 万元,可得15x +0.2=10x ,解得x =0.4.则x +0.2=0.6. 答:甲、乙两人计划每年分别缴纳养老保险金0.6万元、0.4万元.整合集训基础过关1.A 2.B 3.C 4.4 5.2 6.x =17.(1)化为整式方程得2-2x =x -2x +4,解得x =-2.把x =-2代入原分式方程中,等式两边相等. ∴x=-2是原分式方程的解.(2)原方程化为(x -3)(x +3)+6x -x 2=0.∴x 2-9+6x -x 2=0.解得x =32. 经检验,x =32是原分式方程的解.∴原方程的解是x =32. 8.依题意可得1-x 2-x =3,解得x =52.经检验,x =52是原方程的解. ∴x 的值为52. 9.小明的解法有三处错误:步骤①去分母错误;步骤②去括号错误;步骤⑥之前缺少“检验”步骤. 正确的解答过程如下:去分母,得1-(x -2)=x.去括号,得1-x +2=x.移项,得-x -x =-1-2.合并同类项,得-2x =-3.两边同除以-2,得x =32.经 检验,x =32是原方程的解. ∴原方程的解是x =32. 10.乙每小时做x 个零件,则甲每小时做(x +3)个零件,由题意得96x +3=84x ,解得x =21. 经检验,x =21是方程的解,x +3=24.答:甲、乙两人每小时各做24和21个零件.11.设第一批盒装花的进价是x 元/盒,则2×3 000x =5 000x -5,解得x =30. 经检验,x =30是原方程的根.答:第一批盒装花每盒的进价是30元.12.设2015年全市租赁点有x 个.根据题意,得50 000x =1.2×25 000600,解得x =1 000. 经检验,x =1 000是原方程的解,且符合实际情况.答:预计到2015年底,全市将有租赁点1 000个.13.(1)设王师傅单独整理这批实验器材需要x 分钟完成,则(140+1x )×20+20x=1.解得x =80. 经检验,得x =80是原分式方程的解,且符合题意.答:王师傅单独整理这批实验器材需要80分钟完成.(2)设李老师要工作m 分钟,则m 40+3080≥1.解得m≥25. 答:李老师至少要工作25分钟.能力提升14.A 15.D 16.C 17.±111 18.(1)1x -n -1x -(n +1)=1x -(n +3)-1x -(n +4),其解为x =n +2. (2)因为n +2=2 015,所以n =2 013,其对应方程为1x -2 013-1x -2 014=1x -2 016-1x -2 017. 19.(1)设B 种花木的数量是x 棵,则A 种花木的数量是(2x -600)棵.根据题意,得x +(2x -600)=6 600,解得x =2 400.2x -600=4 200.答:A 种花木的数量是4 200棵,B 种花木的数量是2 400棵.(2)设安排y 人种植A 种花木,则安排(26-y)人种植B 种花木.根据题意,得4 20060y = 2 40040(26-y ),解得y =14. 经检验,y =14是原方程的根,且符合题意.26-y =12.答:安排14人种植A 种花木,安排12人种植B 种花木,才能确保同时完成各自的任务.。
新火线100天中考数学复习滚动小专题(三)(含答案解析)

滚动小专题(三) 一次函数与反比例函数的综合运用本专题是对一次函数与反比例函数的综合问题进行复习与深化,这类综合题考查的知识点多,能力要求强.试题呈现形式活泼多样,既有一次函数、反比例函数与代数的综合又有与空间几何的综合.解决这类问题首先要理清头绪,挖掘题目中的已知条件和隐含条件,根据实际问题情境或图象列出相应关系式,从而建立函数模型.例 (2014·成都)如图,一次函数y=kx+5(k 为常数,且k ≠0)的图象与反比例函数y=-8x的图象交于A(-2,b),B 两点. (1)求一次函数的表达式;(2)若将直线AB 向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求m 的值.【思路点拨】(1)将点A 坐标代入反比例函数解析式得b ,将A 坐标代入一次函数解析式得k ;(2)联立两函数解析式,得一元二次方程,有一个公共解则Δ=0,即可求出m 的值. 【解答】(1)∵A(-2,b)在y=-8x上, ∴-2b=-8,b=4.∴A(-2,4). ∵A(-2,4)在y=kx+5上, ∴k =12, ∴一次函数为y =12x +5. (2)向下平移m 个单位长度后,直线为y=12x+5-m ,由题意,得 15.82y y x m x=-=+⎧⎪⎨⎪-⎪⎪⎩,整理得12x 2+(5-m)x+8=0, ∵平移后直线与双曲线有且只有一个公共点, ∴Δ=(5-m)2-4×12×8=0,解得m =1或9. 方法归纳:解决一次函数和反比例函数的问题常常从反比例函数突破,求两函数的交点问题通常联立成方程组,转化为方程解决.若两函数图象有两个交点,则对应的一元二次方程的Δ>0;若两函数图象有1个交点,则对应的一元二次方程的Δ=0;若两函数图象没有交点,则对应的一元二次方程的Δ<0.1.(2014·菏泽)如图,在平面直角坐标系xOy中,已知一次函数y=kx+b的图象经过点A(1,0),与反比例函数y=mx(x>0)的图象相交于点B(2,1).(1)求m的值和一次函数的解析式;(2)结合图象直接写出:当x>0时,不等式kx+b>mx的解集.2.(2014·广州)已知一次函数y=kx-6的图象与反比例函数y=-2kx的图象交于A、B两点,点A的横坐标为2.(1)求k的值和点A的坐标;(2)判断点B的象限,并说明理由.3.(2014·白银)如图,在直角坐标系xOy中,直线y=mx与双曲线y=nx相交于A(-1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.(1)求m、n的值;(2)求直线AC的解析式.4.(2014·宜宾)如图,一次函数y=-x+2的图象与反比例函数y=-3x的图象交于A、B两点,与x轴交于D点,且C、D两点关于y轴对称.(1)求A、B两点的坐标;(2)求△ABC的面积.5.(2014·甘孜)如图,在△AOB中,∠ABO=90°,OB=4,AB=8,反比例函数y=kx在第一象限内的图象分别交OA,AB于点C和点D,且△BOD的面积S△BOD=4.(1)求反比例函数解析式;(2)求点C的坐标.6.(2014·资阳)如图,一次函数y=kx+b(k≠0)的图象过点P(-32,0),且与反比例函数y=mx(m≠0)的图象相交于点A(-2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?参考答案1.(1)把点B(2,1)代入y=mx,得m=1×2=2.∵一次函数y=kx+b的图象经过点A(1,0),B(2,1),∴0,12.k bk b=+⎧⎨=+⎩解得1,1.kb=⎧⎨=-⎩∴一次函数的解析式为y=x-1.(2)x>2.2.(1)当x=2时,y=kx-6=2k-6,y=-2kx=-k.由题意,得2k-6=-k.解得k=2. 故一次函数解析式为y=2x-6,反比例函数解析式为y=-4 x .∴A(2,-2).(2)B 点在第四象限,理由如下:一次函数y=2x-6经过第一、三、四象限,反比例函数经过第二、四象限, 因此它们的交点都是在第四象限. 3.(1)∵直线y=mx 与双曲线y=nx相交于A(-1,a)、B 两点, ∴B 点横坐标为1,即C(1,0). ∵△AOC 的面积为1,∴A(-1,2). 将A(-1,2)代入y=mx ,y=nx可得 m=-2,n=-2.(2)设直线AC 的解析式为y=kx+b , ∵y=kx+b 经过点A(-1,2)、C(1,0), ∴20.k b k b -+=⎧⎨+=⎩,解得11.k b =-⎧⎨=⎩,∴直线AC 的解析式为y=-x+1.4.(1)根据题意得23y x y x =-+⎧⎪⎨=-⎪⎩解方程组得1,3x y =-⎧⎨=⎩或3,1.x y =⎧⎨=-⎩∴A(-1,3),B(3,-1).(2)把y=0代入y=-x+2得-x+2=0,解得x=2, ∴D(2,0).∵C 、D 两点关于y 轴对称, ∴C(-2,0),∴S △ABC =S △ACD +S △BCD =12×(2+2)×3+12×(2+2)×1=8. 5.(1)由S △BOD =4,得k =8. ∴反比例函数解析式为y=8x. (2)∵OB =4,AB =8,∠ABO =90°, ∴A 点坐标为(4,8).设直线AO 的解析式为y =kx ,则4k =8,解得k =2. 即直线AO 的解析式为y =2x.联立方程组:82.y x y x ⎧=⎪⎨⎪=⎩,解得1124x y =⎧⎨=⎩,或2224.x y =-⎧⎨=-⎩,(舍去)∴点C 的坐标为(2,4).6.(1)∵函数y=kx+b 图象过点P(-32,0)和点A(-2,1), ∴30,22 1.k b k b ⎧-+=⎪⎨⎪-+=⎩解得2,3.k b =-⎧⎨=-⎩∴一次函数的解析式为y=-2x-3.又反比例函数的图象过点A(-2,1), ∴2m-=1,即m=-2. 故反比例函数的解析式为y=-2x. (2)联立23,2y x y x =--⎧⎪⎨=-⎪⎩解得1121x y =-⎧⎨=⎩,或221,24.x y ⎧=⎪⎨⎪=-⎩ ∴B(12,-4). 由图可知,当-2<x <0或x >12时,一次函数的函数值小于反比例函数的函数值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多结论判断题在四川中考中,多结论判断题一般位于选择题或填空题的最后一个,综合性很强,难度很大,且考查频率较高,属于拉分题,复习时要注意这类题型的练习.类型1 代数结论判断题(2014·南充)二次函数y =ax 2+bx +c(a≠0)图象如图,下列结论:①abc >0;②2a +b =0;③当m≠1时,a +b >am 2+bm ;④a -b +c >0;⑤若ax 21+bx 1=ax 22+bx 2,且x 1≠x 2,x 1+x 2=2.其中正确的有( )A .①②③B .②④C .②⑤D .②③⑤【解答】 ∵抛物线开口向下,∴a <0.∵抛物线对称轴为x =-b 2a =1, ∴b =-2a >0,即2a +b =0,故②正确;∵抛物线与y 轴的交点在x 轴上方,∴c >0.∴abc <0,故①错误;∵抛物线对称轴为x =1,∴函数的最大值为a +b +c.∴当m≠1时,a +b +c >am 2+bm +c ,即a +b >am 2+bm ,故③正确;∵抛物线与x 轴的一个交点在(3,0)的左侧,而对称轴为x =1,∴抛物线与x 轴的另一个交点在(-1,0)的右侧.∴当x =-1时,y <0,∴a -b +c <0,故④错误;∵ax 21+bx 1=ax 22+bx 2,∴ax 21+bx 1-ax 22-bx 2=0,∴a(x 1+x 2)(x 1-x 2)+b(x 1-x 2)=0.∴(x 1-x 2)[a(x 1+x 2)+b]=0.又x 1≠x 2,∴a(x 1+x 2)+b =0,即x 1+x 2=-b a. ∵b =-2a ,∴x 1+x 2=2,故⑤正确.故选D.本题考查了二次函数图象与系数的关系:二次函数y =ax 2+bx +c(a≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线开口向上;当a <0时,抛物线开口向下;一次项系数b 和二次项系数a 共同决定对称轴的位置,当a 与b 同号时(即ab >0),对称轴在y 轴左边;当a 与b 异号时(即ab <0),对称轴在y 轴右边;常数项c 决定抛物线与y 轴交点.抛物线与y 轴交于(0,c);抛物线与x 轴交点个数由Δ决定,Δ=b 2-4ac >0时,抛物线与x 轴有2个交点;Δ=b 2-4ac =0时,抛物线与x 轴有1个交点;Δ=b 2-4ac <0时,抛物线与x 轴没有交点.1.(2015·南充)关于x 的一元二次方程x 2+2mx +2n =0有两个整数根且乘积为正,关于y 的一元二次方程y 2+2ny+2m =0同样也有两个整数根且乘积为正.给出三个结论:①这两个方程的根都是负根;②(m -1)2+(n -1)2≥2;③-1≤2m-2n≤1.其中正确结论的个数是( )A .0个B .1个C .2个D .3个2.(2013·自贡)已知关于x 的方程x 2-(a +b)x +ab -1=0,x 1、x 2是此方程的两个实数根,现给出三个结论:①x 1≠x 2;②x 1x 2<ab ;③x 21+x 22<a 2+b 2.则正确结论的序号是________.(填上你认为正确结论的所有序号)3.(2013·绵阳)二次函数y =ax 2+bx +c 的图象如图所示,给出下列结论:①2a +b >0;②b >a >c ;③若-1<m<n <1,则m +n <-b a;④3|a|+|c|<2|b|.其中正确的结论是________(写出你认为正确结论的所有序号).4.(2013·德阳)已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,有下列5个结论:①abc <0;②b <a +c ;③4a +2b +c >0;④2c <3b ;⑤a +b <m(am +b)(m≠1的实数),其中正确结论的序号有________.类型2 几何结论判断题(2015·攀枝花)如图,在菱形ABCD 中,AB =BD ,点E 、F 分别是AB 、AD 上任意的点(不与端点重合),且AE =DF ,连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H.给出如下几个结论:①△AED ≌△DFB ;②S 四边形BCDG =32CG 2;③若AF =2DF ,则BG =6GF ;④CG 与BD 一定不垂直;⑤∠BGE 的大小为定值.其中正确的结论个数为( )A .4B .3C .2D .1【解答】 ①∵ABCD 为菱形,∴AB =AD.∵AB =BD ,∴△ABD 为等边三角形.∴∠A =∠BDF =60°.又∵AE =DF ,AD =BD ,∴△AED ≌△DFB.故本选项正确;②∵∠BGE =∠BDG +∠DBF =∠BDG +∠GDF =60°=∠BCD ,即∠BGD +∠BCD =180°,∴点B 、C 、D 、G 四点共圆.∴∠BGC =∠BDC =60°,∠DGC =∠DBC =60°.∴∠BGC =∠DGC =60°,过点C 作CM ⊥GB 于M ,CN ⊥GD 于N(如图1),则△CBM ≌△CDN(AAS),∴S 四边形BCDG =S 四边形CMGN ,S 四边形CMGN =2S △CMG .∵∠CGM =60°,∴GM =12CG ,CM =32CG ,∴S 四边形CMGN =2S △CMG =2×12×12CG ×32CG =34CG 2,故本选项错误; ③过点F 作FP ∥AE 于P 点(如图2),∵AF =2FD ,∴FP ∶AE =DF ∶DA =1∶3.∵AE =DF ,AB =AD ,∴BE =2AE.∴FP ∶BE =FP ∶12AE =1∶6.∵FP ∥AE ,∴PE ∥BE ,∴FG ∶BG =FP ∶BE =1∶6,即BG =6GF ,故本选项正确; ④当点E ,F 分别是AB ,AD 中点时(如图3),由(1)知,△ABD ,△BDC 为等边三角形,∵点E ,F 分别是AB ,AD 中点,∴∠BDE =∠DBG=30°.∴DG =BG.在△GDC 与△GBC 中,∵DG =BG ,CG =CG ,CD =CB ,∴△GDC ≌△GBC ,∴∠DCG =∠BCG,∴CH ⊥BD ,即CG⊥BD,故本选项错误;⑤∵∠BGE =∠BDG+∠DBF=∠BDG+∠GDF=60°,为定值,故本选项正确;综上所述,正确的结论有①③⑤,共3个,故选B.图1 图2 图31.(2015·绥化)如图,ABCD 的对角线AC 、BD 交于点O ,AE 平分∠BAD 交BC 于点E ,且∠ADC=60°,AB =12BC ,连接OE.下列结论:①∠CAD=30°,②S ABCD =AB·AC,③OB =AB ,④OE =14BC ,成立的个数有( )A .1个B .2个C .3个D .4个2.(2015·达州)如图,AB 为半圆O 的直径,AD 、BC 分别切⊙O 于A 、B 两点,CD 切⊙O 于点E ,连接OD 、OC ,下列结论:①∠DOC=90°,②AD +BC =CD ,③S △AOD ∶S △BOC =AD 2∶AO 2,④OD ∶OC =DE∶EC,⑤OD 2=DE·CD,正确的有( )A .2个B .3个C .4个D .5个3.(2015·湖州)如图,AC 是矩形ABCD 的对角线,⊙O 是△ABC 的内切圆,现将矩形ABC D 按如图所示的方式折叠,使点D 与点O 重合,折痕为FG ,点F ,G 分别在AD ,BC 上,连接OG ,DG ,若OG⊥DG,且⊙O 的半径长为1,则下列结论不成立的是( )A .CD +DF =4B .CD -DF =23-3C .BC +AB =23+4D .BC -AB =24.(2014·攀枝花)如图,正方形ABCD 的边CD 与正方形CGFE 的边CE 重合,O 是EG 的中点,∠EGC 的平分线GH 过点D ,交BE 于H ,连接OH 、FH ,EG 与FH 交于M ,对于下面四个结论:①GH ⊥BE ;②HO 12BG ;③点H 不在正方形CGFE 的外接圆上;④△GBE∽△GMF. 其中正确的结论有( )A .1个B .2个C .3个D .4个5.(2013·南充)如图1,点E 为矩形ABCD 边AD 上一点,点P ,点Q 同时从点B 出发,点P 沿BE→ED→DC 运动到点C 停止,点Q 沿BC 运动到点C 停止,它们运动的速度都是1 cm/s ,设P ,Q 出发t 秒时,△BPQ 的面积为y cm 2,已知y 与t 的函数关系的图形如图2(曲线OM 为抛物线的一部分),则下列结论:①AD=BE =5 cm ;②当0<t≤5时,y =25t 2;③直线NH 的解析式为y =-52t +27;④若△ABE 与△QBP 相似,则t =294秒.其中正确的结论个数为( )A .4B .3C .2D .16.(2013·广元)以如图1(以O 为圆心,半径为1的半圆)作为“基本图形”,分别经历如下变换能得到图2的有________(只填序号).①只要向右平移1个单位;②先以直线AB 为对称轴进行翻折,再向右平移1个单位;③先绕着点O 旋转180°,再向右平移一个单位;④绕着OB 的中点旋转180°即可.7.(2015·南充)如图,正方形ABCD 边长为1,以AB 为直径作半圆,点P 是CD 中点,BP 与半圆交于点Q ,连接DQ.给出如下结论:①DQ=1;②PQ BQ =32;③S △PDQ =18;④cos ∠ADQ =35.其中正确结论是________.(填写序号)8.(2015·广元)如图,在⊙O 中,AB 是直径,点D 是⊙O 上一点,点C 是AD ︵的中点,CE ⊥AB 于点E ,过点D 的切线交EC 的延长线于点G.连接AD ,分别交C E ,CB 于点P ,Q ,连接AC.关于下列结论:①∠BAD =∠ABC;②GP=GD ;③点P 是△ACQ 的外心.其中正确的是________(只需填写序号).9.(2013·攀枝花)如图,分别以直角△ABC 的斜边AB ,直角边AC 为边向△ABC 外作等边△ABD 和等边△ACE,F 为AB 的中点,DE 与AB 交于点G ,EF 与AC 交于点H ,∠ACB =90°,∠BAC=30°.给出如下结论:①EF ⊥AC ;②四边形ADFE 为菱形;③AD=4AG ;④FH=14BD.其中正确结论的为________(请将所有正确的序号都填上).10.(2015·宜宾)如图,在正方形ABC'D 中,△BPC 是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F ,连接BD 、DP ,BD 与CF 相交于点H.给出下列结论:①△ABE ≌△DCF ;②FP PH =35;③DP 2=PH·PB;④S △BPD S 正方形ABCD =3-14. 其中正确的是________(写出所有正确结论的序号).11.(2014·德阳)在四边形ABCD 中,AD ∥BC ,∠ABC =90°,AB =BC ,E 为AB 边上一点,∠BCE =15°,且AE =AD.连接DE 交对角线AC 于H ,连接BH.下列结论正确的是________.(填序号)①AC⊥DE;②BE HE =12;③CD=2DH ;④S △BEH S △BEC =DH AC.参考答案类型1 代数结论判断题1.D 2.①② 3.①③④ 4.①③④类型2 几何结论判断题1.C 2.D 3.A 4.C 5.B 6.②③④7.①②④ 8.②③ 9.①③④ 10.①③④ 11.①③④。