地震时程分析中重力荷载的考虑

合集下载

ANSYS地震时程分析

ANSYS地震时程分析

在ANSYS里做地震分析时,需要对结构施加地震惯性荷载,地震惯性力是通过加速度的方式输入进结构的,然后与结构的质量一起形成动力计算时的惯性荷载,下面说一下在ANSYS 里施加地震惯性力的方法。

首先,将三个方向的地震加速度放到一个文本文件里,如accexyz.txt,在这个数据文件里共放三列数据,每列为一个方向的地震加速度值,这里仅给出数据文件中前几行的数据:-0.227109E-02 -0.209046E+00 0.467072E+01-0.413893E-02 -0.168195E+00 0.261523E+01-0.574753E-02 -0.157890E+00 0.809014E-01-0.731227E-02 -0.152996E+00 0.119975E+01-0.876865E-02 -0.138102E+00 0.130902E+01-0.101067E-01 -0.131582E+00 0.143611E+00 .......................然后,再建一个文本文件用来存放三个方向的地震加速度时间点,如time.txt,在这个数据文件里仅一列数据,对应于加速度数据文件里每一行的时间点,这里给出数据文件中前几行数据:0.100000E-010.200000E-010.300000E-010.400000E-010.500000E-010.600000E-01.......................编写如下的命令流文件,并命名为acce.inp*dim,ACCEXYZ,TABLE,2000,3 !01行*vread,ACCEXYZ(1,1),accexyz,txt,,JIK,3,2000 !02行(3e16.6) !03行*vread,ACCEXYZ(1,0),time,txt !04行(e16.6) !05行ACCEXYZ(0,1)=1 !06行ACCEXYZ(0,2)=2 !07行,同上ACCEXYZ(0,3)=3 !08行,同上finish/SOLUANTYPE,transbtime=0.01 !定义计算起始时间etime=15.00 !定义计算结束时间dtime=0.01 !定义计算时间步长*DO,itime,btime,etime,dtimetime,itimeAUTOTS,0NSUBST,1, , ,1KBC,1acel,ACCEXYZ(itime,1),ACCEXYZ(itime,2),ACCEXYZ(itime,3) !施加三个方向的地震加速度SOLVE*ENDDO最后,在命令窗口里输入/input,acce,inp即可对结构进行地震动力分析。

关于近场地震影响的思考

关于近场地震影响的思考

关于近场地震影响的思考经过几年的云南结构人的不懈努力,隔震结构设计在各设计院都已经越来越熟悉。

从研究生毕业到现在笔者也一直在进行隔震结构设计,过程中笔者参与了住房和城乡建设部课题建筑隔震设计施工管理措施研究、省里的地方规程《建筑工程叠层橡胶隔震支座性能要求和检测规范》、《建筑工程叠层橡胶隔震支座施工及验收规范》、《隔震工程专用标识技术规程》等等。

但是在不断的学习和工作中仍然有不少的问题会突然间冒出来,下面这个是我在有一年的云南结构年会做的一个思考,但这么多年来这个问题一直困扰着我,我也在工作中一直不断寻求更加清晰的解决方法来指导自己的设计。

现在贴出来算是抛砖引玉,后面我会再把自己最近的想法做个阐述。

一、近场地震影响问题的提出采用隔震技术能明显提高结构的抗震性能,因此隔震结构在高烈度地区的应用越来越多。

昆明市东川区(设防烈度为9度,0.40g )城区内的很多房地产、学校、医院等工程都采用了隔震技术,而东川区整个城区距离小江断裂带的距离几乎均在10km范围内。

国内外虽然对于近断层地震影响的研究还不够充分,但从震害及相关研究分析表明,其对结构抗震性能的影响不能忽略,尤其是对于长周期结构如隔震结构的影响很大。

我国规范、规程中对如何考虑近场影响的做了如下规定:(1)《建筑抗震设计规范》GB50011-2010第3.10.3 条建筑结构的抗震性能化设计应符合的要求,其中包括对处于发震断裂两侧10km以内的结构,地震动参数应计入近场影响,5km以内宜乘以增大系数 1.5,5km以外宜乘以不小于1.25的增大系数。

(2)《建筑抗震设计规范》GB50011-2010第12.2.2条规定,当处于发震断层10km以内时,输入地震波应考虑近场影响系数,5km以内取1.5,5km以外可取不小于1.25。

条文解释中提到,当隔震结构位于发震断裂主断裂带10km以内时,要求各个设防类别的房屋均应计及地震近场效应。

(3)《建筑抗震设计规范》GB50011-2010附录L.1.3条提到近场系数的概念。

ETABS 分析常见问题解答

ETABS 分析常见问题解答

ETABS分析常见问题解答序号问题名称发布日期1 问:ETABS 中对楼板的处理方法?2006/1/11 15:02:07答:在ETABS中共有四种area/shell单元:deck、plank、slab和wall,前三种均可用于模拟楼板,其中deck用于模拟压型钢板+砼面层,plank用于模拟单向板,仅含membrane性质的slab可用于模拟双向板。

下面分别就这三种单元详细解释:1、deck可以用于模拟压型钢板+后浇混凝土面层楼板,此单元仅有membrane性质且单向传力,在建模时的箭头方向即板的传力方向,如果要改变楼板传力方向的话可以采用改变单元局部坐标轴的方法,其local coordinate system的1轴方向就是楼板传力方向(也即屏幕显示的箭头方向)。

由于ETABS隐含对仅有membrane性质的板自动进行单元细分,此种板不必进行人工细分即可得到正确的传力。

2、plank用于模拟单向板,此单元仅有membrane性质且单向传力,与deck类似在建模时的箭头方向即板的传力方向,修改其传力方向的方法也与deck类似。

同样由于ETABS隐含对仅有membrane性质的板自动进行单元细分,此种板也不必进行人工细分。

3、slab的用途比较广泛,但用于模拟楼板时可以设定仅有membrane性质的section,这种单元双向传力,其荷载传递是按照板的塑性铰线进行划分的,最适宜于模拟双向板。

ETABS对于这种楼板可以自动细分单元,因此不必进行人工细分。

4、plate或shell类型的slab,ETABS对于这类板不能进行自动细分,为获得正确的楼板荷载传递,可选定要细分的板,选择命令Assign>shell/area>Area object mesh options,在Area object Auto Mesh Options窗口中选择Auto Mesh Object into Structural Elements > Further Subdivide Auto Mesh with Maximum Element Size of,填入单元最大尺寸(一般可接受默认值)。

时程分析法中有关地震波选取的几个注意问题

时程分析法中有关地震波选取的几个注意问题

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
( 上接第 (2 页)
65# J&.G#1 -*:&()*+’ (* K#(#1.)+8()*+ *, ?*1)<*+(8: L#81)+= 48M8/)(; *, -)+=:# N):#
左右另外从随机过程观点来看最大加速度作为一个随机量增加持时相当于增加取样方差不变的情况下最大加速度会加大从而产生较大的破坏地震动持时对结构反应的影响同时存在于非线性体系的最大反应和能量损耗积累这两种反应之中现代建筑抗震设计中采用最大反应强度或变形和积累的非线性能量损耗指标作为设计依据提出结构的双重破坏标准使过去一直被忽略或无法加以考虑的持续时间得到重视统计证明地震波持续时间与地震的强度震中距及场地土类别有一定的关系地面运动预测结构地震反应最难或最不确定的因素就是如何合理确定地面运动的过程地震地面运动通常用三个平动加速度分量来表示任何线性体系对于这三个分量的反应可以通过分别计算每个分量反应然后叠加得到于是标准的分析问题就转化为计算由于单个平动分量所引起的反应更一般的情况下当地震波通过基础传播时支座除了平动运动外还有转动运动因此地震输入的全面考虑原则上应包括平动和三个支座转动分量但是由于目前难以测定地面转动分量的大小和特性这种作用只有根据平动分量推测的量级分析对旋转运动做出假定来估计确定由地震引起结构中的有效力时最后应考虑的一个因素是在结构基底处的地面运动可以受结构自身运动的影响即在结构基底处产生的运动可能与无结构情况下观察到的自由场地的运动不同若柔软建筑物在坚固的基岩上则土与结构相互作用的影响甚小结构传给土壤的能量很少自由场地的运动可以作为基底位移的一个适合的度量
?@ A#+7;&8+B,CD@ E)+75&8F

高层抗震设计重要名词解释

高层抗震设计重要名词解释

1.地震可分为诱发地震和天然地震2.震源:地球内部断层错动并引起周围介质振动的部位。

震中:震源正上方的地面位置。

震中距:地面某处至震中的水平距离。

3.地震动三要素:最大振幅、频谱、持续时间。

4.天然地震包括构造地震与火山地震5.地震波的传播速度:纵波最快、横波次之、面波最慢;所以,在地震发生的中心地区人的感觉是,先上下颠簸,后左右摇晃。

6.面波主要有瑞雷波和乐夫波两种形式。

瑞雷波产生的运动形式是使地面晃动的主要原因7.地震动:由地震波传播所引发的地面振动,称为地震动。

8.地震震级:是表示地震大小的一种度量。

9.地震烈度:是指某一区域内的地表和各类建筑物遭受一次地震影响的平均强弱程度。

10.震中烈度:震中区的地震烈度成为震中烈度。

11.基本烈度:是指一个地区在一定时期内在一般场地条件下按一定概率可能遭遇到的最大地震烈度。

12.地震区划:依据地质构造资料、历史地震规律、地震观测资料,采用地震危险性分析的方法,可以计算给出每一地区在未来一定时限内关于某一烈度的超越概率,从而,可以将国土划分为不同基本烈度所覆盖的区域。

这一工作称为地震区划。

13.地震的破坏作用主要表现为三种形式:地表破坏、建筑物的破坏、次生灾害。

14.建筑抗震设计的基本准则:“小震不坏,中震可修,大震不倒”。

15.抗震设计的总体要求:注意场地选择;把握建筑体型;利用结构延性;设置多道防线;注意非结构因素。

16.场地:是指建筑物所在地,其范围大体相当于厂区、居民点和自然村的范围。

历史震害资料表明,建筑物震害除与地震类型、结构类型登有关外,还与其下卧层的构成、覆盖层厚度密切相关。

17.覆盖层厚度:原意是指从地表面至地下基岩面的距离,在这里指地下基岩或剪切波速大于500m/s的坚硬土层至地表面的距离,称为覆盖层厚度。

18.结构地震反应:由地震动引起的结构内力、变形、位移及结构运动速度与加速度等统称为结构地震反应。

地震作用:由于地震动而引起结构内力、变形等反应的因素。

混凝土建筑结构第三章作业答案

混凝土建筑结构第三章作业答案

第三章思考题3.1 房屋结构设计时应考虑那些荷载或作用?P52,P56答:主要考虑竖向荷载(自重、楼屋面活荷载等)和水平作用(风荷载和地震作用等)。

3.2 房屋建筑结构的竖向荷载如何取值?进行竖向荷载作用下的内力计算时,是否要考虑活荷载的不利布置?P52答:对永久荷载,采用标准值作为代表值;对可变荷载应根据设计要求采用标准值、组合值、频遇值或准永久值作为代表值;对偶然和在应按建筑结构使用的特点确定其代表值。

一般情况下可不考虑活荷载的最不利布置,但如果楼面活荷载大于4kN/2m 时,其不利分布对梁弯矩的影响会比较明显,应予考虑。

3.3 结构承受的风荷载与哪些因素有关?P56答:由k z s z 0=w βμμω,可知结构承受的风荷载与基本风压、风荷载体型系数、风压高度变化系数和高度z 处的风振系数有关。

其中,基本风压与地区有关;风压高度系数与高度有关、也与地貌及周围环境有关;风荷载体形系数与建筑物的体型与尺寸有关、也与周围环境和地面粗糙度有关;风振系数与地面类别、结构阻尼比和地面尺寸有关。

3.4 房屋结构风荷载计算时,基本风压、结构体型系数和高度变化系数应分别如何取值?(P56)答:基本风压系以当地比较空旷平坦地面上离地10m 高统计所得的50年一遇10min 平均最大风速0v (m/s )为标准,按200/1600w v =确定的风压值。

按《荷规》附录E 中附表E.5给出的50年重现期的风压采用,但不得小于0.3kN/2m 。

结构体形系数取值如下: 1) 圆形平面建筑取0.8.2)0.8 1.2/s μ=+3) 高宽比H/B 不大于4的矩形、方形、十字形平面建筑取1.3. 4) 下列建筑取1.4:(A ) V 型、Y 型、弧形、双十字形、井字形平面建筑; (B ) L 型、槽型和高宽比H/B 大于4的十字形平面建筑;(C ) 高宽比H/B 大于4,长宽比L/B 不大于1.5的矩形、鼓型平面建筑 5) 在需要更细致进行风荷载计算的情况下,风荷载体形系数可按《高规》附录B 采用,或由风洞试验确定。

【精品结构设计知识】何时考虑竖向地震作用?如何考虑?

【精品结构设计知识】何时考虑竖向地震作用?如何考虑?

我们只分享有价值的知识点,本文由李雪梅老师精心收编,大家可以下载学习!此行文字可以删除。

【精品结构设计知识】何时考虑竖向地震作用?如何考虑?
何时考虑竖向地震作用?如何考虑?
按《混凝土高规》第3.3.2条规定,9度抗震设计以及8度设计时的大跨度、长悬臂结构应考虑竖向地震作用,包括第10.2.6条的转换构件以及第10.5.2条的连体结构的连接体[2]。

9度抗震设计时,整体结构的竖向地震作用可按《混凝土高规》第3.3.14条的方法计算;8、9度时,大跨度、长悬臂结构构件的竖向地震作用可按《混凝土高规》第3.3.15条的规定近似考虑,对于8度0.3g的情况,竖向地震作用标准值可取结构或结构构件重力荷载代表值的15%.当然,有条件时或设计需要时,采用竖向加速度反映谱方法或动力时程分析方法计算结构竖向地震作用时更合适的方法。

无论采用何种方法计算竖向地震作用,均应按《混凝土高规》第5.6.3条的规定进行地震作用效应的组合,即把竖向地震作用效应作为一个组合工况考虑。

结语:借用拿破仑的一句名言:播下一个行动,你将收获一种习惯;播下一种习惯,你将收获一种性格;播下一种性格,你将收获一种命运。

事实表明,习惯左右了成败,习惯改变人的一生。

在现实生活中,大多数的人,对学习很难做到学而不厌,学习不是一朝一夕的事,需要坚持。

希望大家坚持到底,现在需要沉淀下来,相信将来会有更多更大的发展前景。

SAP2000常见问题

SAP2000常见问题

SAP2000常见问题1,荷载工况(loadcae):是对各种荷载类型的定义(define),然后通过指定(aign)建立模型中空间分布的力、位移或其他作用(例如:温度)。

这仅仅是建立了作用,荷载工况本身不在结构上产生响应。

2,分析工况(analyicae):是定义荷载作用方式(静力或动力)、结构的响应方式(线性或非线性)、分析方法(模态分析法或直接积分法)。

分析工况中包含荷载工况,分析工况可以对应一个荷载工况,也,可以是荷载的组合(多点风荷载、多维地震动)。

运行分析工况才能得到结构关于荷载的响应。

1.时程分析时用EI波,原始记录的波一般是以重力加速度g为单位,它的峰值为0.341g,也就是0.341某9.8m/2.而你ap的单位用的是N/mm/,也就是你的单位与原始波的单位相差1000某9.8个单位,那么你的系数要输入9800。

如果你ap的单位为N/m/,那么你的系数取9.8即可。

2.规程中的8度罕遇要求是400g,这个g是单位gal的缩写字母,它的单位是cm/2。

实际上就是0.4个重力加速度。

即400gal=0.4g,考虑第1点,那么你的系数应该取1000某9.8某(0.4/0.341)=11495.6。

3.定义时程函数时,单位无所谓,只要你的系数对应好就可以。

注:ap输入的地震函数本身是没有单位的,它的单位随着你ap的右下角的单位走的。

所以才需要将这个单位和原始波单位对应。

1,将索得抗弯刚度设为极小值。

2,需作索的非线性分析,在作索得非线性分析需要打开大变形得选项。

3,加载需要分步加载,先加载预应力,再加载其它荷载。

4,在v9版本里面,可以直接用应变来直接模拟预应力,不用降温也可以。

算出来得结果跟手算得结果基本是一致得,所以用ap2000来分析索是完全实用得,也是准确的。

扭转与振型耦联基本概念解释看来大家误解了结构扭转和振型耦联的意思,结构扭转是结构的固有属性,如果是三维结构分析软件,都会考虑扭转效应的,如Rz,完全对称规则的结构(即质心和刚心重合,也有扭转振型,只不过振型是完全解耦的),如果作用的荷载不通过质心,一样可以造成结构扭转效应。

高层建筑结构设计思考题答案-(2)

高层建筑结构设计思考题答案-(2)

第二章2.1钢筋混凝土房屋建筑和钢结构房屋建筑各有哪些抗侧力结构体系?钢筋混凝土房屋建筑和钢结构房屋建筑各有哪些抗侧力结构体系?每种结构体系举1~2例。

答:钢筋混凝土房屋建筑的抗侧力结构体系有:框架结构(如主体18层、局部22层的北京长城饭店);框架剪力墙结构(如26层的上海宾馆);剪力墙结构(包括全部落地剪力墙和部分框支剪力墙);筒体结构[如芝加哥Dewitt-Chestnut公寓大厦(框筒),芝加哥John Hancock大厦(桁架筒),北京中国国际贸易大厦(筒中筒)];框架核心筒结构(如广州中信大厦);板柱-剪力墙结构。

钢结构房屋建筑的抗侧力体系有:框架结构(如北京的长富宫);框架-支撑(抗震墙板)结构(如京广中心主楼);筒体结构[芝加哥西尔斯大厦(束筒)];巨型结构(如香港中银大厦)。

2.2框架结构、剪力墙结构和框架----剪力墙结构在侧向力作用下的水平位移曲线各有什么特点?答:(1)框架结构在侧向力作用下,其侧移由两部分组成:梁和柱的弯曲变形产生的侧移,侧移曲线呈剪切型,自下而上层间位移减小;柱的轴向变形产生的侧移,侧移曲线为弯曲型,自下而上层间位移增大。

第一部分是主要的,所以框架在侧向力作用下的水平位移曲线以剪切型为主。

(2)剪力墙结构在侧向力作用下,其水平位移曲线呈弯曲型,即层间位移由下至上逐渐增大。

(3)框架-剪力墙在侧向力作用下,其水平位移曲线呈弯剪型, 层间位移上下趋于均匀。

2.3框架结构和框筒结构的结构构件平面布置有什么区别?答:(1)框架结构是平面结构,主要由与水平力方向平行的框架抵抗层剪力及倾覆力矩,必须在两个正交的主轴方向设置框架,以抵抗各个方向的侧向力。

抗震设计的框架结构不宜采用单跨框架。

框筒结是由密柱深梁组成的空间结构,沿四周布置的框架都参与抵抗水平力,框筒结构的四榀框架位于建筑物的周边,形成抗侧、抗扭刚度及承载力都很大的外筒。

2.5中心支撑钢框架和偏心支撑钢框架的支撑斜杆是如何布置的?偏心支撑钢框架有哪些类型?为什么偏心支撑钢框架的抗震性能比中心支撑框架好?答:中心支撑框架的支撑斜杆的轴线交汇于框架梁柱轴线的交点。

时程分析中地震波输入位置的讨论

时程分析中地震波输入位置的讨论

时程分析中地震波输入位置的讨论摘要:时程分析法通过直接动力分析可得到结构相应随时间的变化关系,能真实地反应结构地震相应随时间变化的全过程,是抗震分析的一种重要方法[1]。

目前有限元软件可以实现结构的时程分析,但是在不同的软件中,其实现方式不同,主要区别在地震波的输入位置不同。

本文通过有限元软件ABAQUS采用不同的地震波输入位置对同一结构进行时程分析分析,对比结构相同位置的时程位移曲线,结果表明结构在采用不同地震波输入位置的时程分析中,结构的地震响应基本一致。

关键词:时程分析、有限元软件、钢筋混凝土剪力墙Abstract: The time history analysis method to analyze the available structure through direct power to the relationship between the corresponding changes over time, truly reflect the structure of earthquake corresponding to the whole process of change over time, is an important method of seismic analysis [1]. Finite element software can be time-history analysis of the structure, but in different software in different ways, the main difference between the different positions in the seismic wave input. In this paper the finite element software ABAQUS using different seismic wave input location on the same structure, process analysis analysis, contrast structure the same location of when the process displacement curve, the results show that the structure using different seismic waves enter the position time history analysis, the seismic response basically the same.Keywords: time history analysis, finite element software, reinforced concrete shear walls一、引言在时程分析等动力学问题中,地震力以加速度形式从基础固定处输入。

高层建筑地震时程分析

高层建筑地震时程分析

时程分析概述高层结构的有限元网格模型如下所示,网格总数为25596,节点总数为32793。

其中梁单元采用Beam188单元类型,壳单元采用shell181单元类型。

时程分析计算在Ansys中完成。

时程分析过程中约束高层建筑的底部,模拟地基约束,不考虑土壤弹性等因素。

所以计算过程中均考虑了重力加速度,取值为9.8m/s^2。

图4-2 有限元网格模型材料部分,模型中的框架柱、外环梁、内框架柱梁、次梁等梁结构均采用C40混凝土,两边的对称剪力墙采用C30混凝土,中间部分采用C40混凝土,均假设为线弹性,不考虑混凝土的塑性行为,材料的参数如下表所示。

表1 材料参数表弹性模量(Pa) 泊松比密度(kg/m^3) C40 3.25E+10 0.2 2700.0C30 3.00E+10 0.2 2700.0三种地震波的计算结果如下所示Elcentro波计算结果一、最大位移反应对于该地震波共进行四次分析,分别是X向地震波输入、Y向地震波输入、Z向地震波输入、三向地震波输入。

四种情况时候,均考虑了重力加速度。

四种情况下高层建筑每层的最大合位移如下图所示。

图4-3 不同楼层的位移变化情况从图4-3可见,随着楼层增高,不论是何种加载方式,最大位移均呈增大趋势。

其中三向加载和Y向加载的位移变化情况基本接近,由分析可以,三向加载的最大位移并不等于X、Y、Z分向加载最大位移的和,但是整体要大于任意一方向的加载情况。

是因为载荷是矢量载荷,所以和位移不能简单的相加。

三个分方向加载情况中,Y向加载下的位移最大,其次为X方向,Z向为竖直方向,其位移随着楼层增加,每层的最大位移略有增加但是趋势平缓,与其他两个方向相比,此时Z向的位移可以认为基本不变。

由此也可见,对于高层建筑结构,在三向地震波中,最危险的为水平方向,因为地震也主要是剪力破坏。

在竖直方向破坏很小。

其中在水平方向,Y方向的位移响应要比X方向大,因为Y方向为高层建筑的短向,X方向为高层建筑的长向,模型中的Shell单元可以看作是混凝土剪力墙,短向的整体刚度要小于长向。

SAP2000一些应该注意的技巧,当你出错的时候,看看他

SAP2000一些应该注意的技巧,当你出错的时候,看看他

1、sap2000反应谱分析里有一个scale放大系数是怎么回事?应该怎么输入?答:(1)scale不仅调峰值,整个加速度时程都会乘以这个系数。

marry11(2)新的抗震规范,规定了不同地震烈度下,多遇和罕遇地震对应的地震加速度时程曲线的最大值,如8度地区对应的设计基本地震加速度为0.16g。

marry11(3)scale就是个放大系数,让最后得到的数值为程序需要,比如在反应谱分析中,如果输入的地震系数,那么scale就是g(要注意单位,如果采用m,就输入9.8,如果是mm,就输入9800),如果反应谱直接输入了谱加速度,那么scale就是1。

在时程分析中也同理。

Xfjiang说明:在“定义”-“反应谱函数”中选择chinese2002添加反应谱函数时,在此界面中的“加速度”栏中的各个数值代表不同时间的地震影响系数,而地震反应谱。

(4)楼上说得对,但是输入1时也要注意单位,因为sap本身要求这个地方输的不是简单的放大系数,而是与单位有关的一个加速度,因此要注意单位。

Ngmxf(5)我个人觉得是这样,这个系数有2个作用:一个是进行地震方向组合;还可以用来修正反应谱曲线中的数值,因为大多数人都是按照规范中的地震影响系数曲线公式去得到反应谱曲线的,这个曲线纵坐标是地震影响系数。

所以可以在反应谱分析选项中用这个scale factor去调整,即把scale factor设为重力加速度,单位一定要搞清楚。

sap的原意应该是进行地震方向组合用的。

如果当时在输反应谱曲线时就把纵坐标变为影响系数乘以重力加速度的话那第二个作用就不存在了。

Z625(6)g就是那个scale,还是同意这个,Scale还是取决于单位,比如国内通常取用9.8,因为大家用的都是m、N、s。

当用英制的时候就要注意单位的变换了,用Kip, ft,时scale是32.2。

用lb, in时,scale取386。

其实就是为了使用不同单位时的统一。

地震作用计算

地震作用计算

地震作用计算一、确定计算前提:烈度:甲类建筑按安评报告且应高于本地设防烈度,乙、丙类按本地设防烈度。

(高层适用)方向:两个主轴方向+斜交抗侧力构件方向(斜交角度大于15度)双向地震:质量刚度明显不对称(1)从平面形状上判别:平面为L 形,T形等属于平面不规则的结构为明显不对称的结构,位移比无论为何值,均应考虑双向地震作用(2)位移比大于1.2(或1.3,尚无定论)的结构属平面不规则中的扭转不规则,无论平面形状对称与否,均应考虑双向地震作用。

(3)从竖向形状上判别:大地盘结构为明显的质量及刚度竖向不对称应考虑双向地震作用(4)竖向质量和刚度明显不对称的结构,如上下刚度差别较大,或上下的质量差别较大的结构应考虑双向地震作用。

竖向地震:7度半(高层)、8度、9度的大跨度和长悬臂结构,9度时的高层考虑。

8、9度时的隔震结构偶然偏心:(高层、单向地震考虑,多层不考虑,双向地震不考虑)二、选择计算方法:底部剪力法、振型分解反应谱发、时程分析法。

三、计算重力荷载代表值:采用半层集中法,屋面活荷载和软钩吊车荷载不计入,书库、档案馆等活载组合系数取0.8楼顶计算: 楼板+下半层墙体重力+活荷载×0+雪荷载×0.5+积灰荷载×0.5每层计算:楼板+上下半墙重量+等效均布活载×0.5(书库、档案活载×0.8)+实际情况的楼活载×1.0四、计算水平地震作用效应:地震效应Fi计算楼层剪力计算考虑扭转耦联作用边榀构件地震效应放大(采用扭转耦联振型分解法的除外)考虑地基与结构相互作用地震效应折减薄弱层放大系数1.25剪重比调整0.2V0调整(框剪)筒体结构调整。

框支柱调整(部分框支剪力墙)地震作用标准值五、计算竖向地震作用效应:(1)9度高层:Geq=0.75Ge (水平地震计算时,Geq=0.85Ge)ɑvmax=0.65ɑmax地震效应按各构件所承受的重力荷载代表值分配,并宜乘以1.5的放大系数。

结构地震反应的分析方法与理论

结构地震反应的分析方法与理论

结构地震反应的分析方法与理论随着人们对地震和结构动力特性认识程度的加深,结构的抗震理论大体可以划分为静力分析、反应谱分析和动力分析三个阶段。

2.2.1静力分析理论水平静力抗震理论[25]始创于意大利,发展于日本。

该理论认为:结构所受的地震作作用可以简化为作用于结构的等效水平静力,其大小等于结构重力荷载乘以地震系数,即: /F G g kG =α= (2.1)静力理论认为结构是刚性的,故结构上任何一点的振动加速度均等于地震动加速度,结构上各部位单位质量所受到的地震作用是相等的。

它忽略了结构的变形特征,没有考虑结构的动力特性,与实际情况相差较远。

随着工程抗震研究的发展,对地震认识的深入,此法已经淘汰。

2.2.2反应谱理论上世纪40年代以后,由于计算机技术的应用,在取得了较多的强震记录的基础上,产生了反应谱理论。

反应谱分析方法[25][26]是一种将模态分析的结果与一个已知的谱联系起来计算模型的作用效应的分析技术。

反应谱是指单自由度体系最大地震反应与结构体系自振周期的关系曲线。

为了便于计算,《抗震规范》采用相对于重力加速度的单质点绝对最大加速度,即/a S g 与体系自振周期T 之间的关系作为设计用反应谱,并将/a S g 用α表示,称为地震影响系数,如图2-5所示。

单自由度弹体系水平地震反应微分方程为:()()()()0mx t cx t kx t mx t ++=- (2.2)由上式得:()()()()0m x t x t k x t c x t-+=+⎡⎤⎣⎦ (2.3) 上式等号右边的阻尼力项()cx t 相对于弹性恢复力项()kx t 来说是一个可以略去的微量,故:()()()0m x t x t kx t -+=⎡⎤⎣⎦ (2.4)由反应谱理论,水平地震作用为:/a a F mS S gG G ===α (2.5)/a S g α= (2.6)α——地震影响系数;a S ——质点的绝对最大加速度;图2-5 地震影响系数α曲线Fig.2-5 seismic influence coefficient α vurves上升阶段 ()max 0.45 5.5T α=+α (00.1T ≤≤) (2.7) 水平阶段 α=max α (0.1g T T <≤) (2.8)曲线下降段 max g T T γ2⎛⎫α=ηα ⎪⎝⎭(5g g T T T <≤) (2.9) 直线下降段 ()max 0.25g T T γ21⎡⎤α=η-η-α⎣⎦ (5 6.0g T T <≤) max α——地震影响系数最大值;g T ——场地特征周期。

李国强《建筑结构抗震设计》课后习题答案

李国强《建筑结构抗震设计》课后习题答案

第1章绪论1、震级和烈度有什么区别和联系?震级是表示地震大小的一种度量,只跟地震释放能量的多少有关,而烈度则表示某一区域的地表和建筑物受一次地震影响的平均强烈的程度。

烈度不仅跟震级有关,同时还跟震源深度、距离震中的远近以及地震波通过的介质条件等多种因素有关。

一次地震只有一个震级,但不同的地点有不同的烈度。

2.如何考虑不同类型建筑的抗震设防?规范将建筑物按其用途分为四类:甲类(特殊设防类)、乙类(重点设防类)、丙类(标准设防类)、丁类(适度设防类)。

1 )标准设防类,应按本地区抗震设防烈度确定其抗震措施和地震作用,达到在遭遇高于当地抗震设防烈度的预估罕遇地震影响时不致倒塌或发生危及生命安全的严重破坏的抗震设防目标。

2 )重点设防类,应按高于本地区抗震设防烈度一度的要求加强其抗震措施;但抗震设防烈度为9度时应按比9度更高的要求采取抗震措施;地基基础的抗震措施,应符合有关规定。

同时,应按本地区抗震设防烈度确定其地震作用。

3 )特殊设防类,应按高于本地区抗震设防烈度提高一度的要求加强其抗震措施;但抗震设防烈度为9度时应按比9度更高的要求采取抗震措施。

同时,应按批准的地震安全性评价的结果且高于本地区抗震设防烈度的要求确定其地震作用。

4 )适度设防类,允许比本地区抗震设防烈度的要求适当降低其抗震措施,但抗震设防烈度为6度时不应降低。

一般情况下,仍应按本地区抗震设防烈度确定其地震作用。

3.怎样理解小震、中震与大震?小震就是发生机会较多的地震,50年年限,被超越概率为%;中震,10%;大震是罕遇的地震,2%。

4、概念设计、抗震计算、构造措施三者之间的关系?建筑抗震设计包括三个层次:概念设计、抗震计算、构造措施。

概念设计在总体上把握抗震设计的基本原则;抗震计算为建筑抗震设计提供定量手段;构造措施则可以在保证结构整体性、加强局部薄弱环节等意义上保证抗震计算结果的有效性。

他们是一个不可割裂的整体。

5.试讨论结构延性与结构抗震的内在联系。

工程力学中的荷载分析如何进行?

工程力学中的荷载分析如何进行?

工程力学中的荷载分析如何进行?在工程力学领域,荷载分析是一项至关重要的任务。

它就像是建筑大厦的基石,只有对荷载进行准确而全面的分析,才能确保工程结构的安全性、稳定性和可靠性。

那么,究竟如何进行工程力学中的荷载分析呢?让我们一起来深入探讨。

荷载,简单来说,就是作用在结构上的力或者其他因素。

这些荷载可能来自于重力、风、地震、温度变化、人群活动等等。

荷载分析的第一步,就是要明确有哪些荷载会作用在我们所研究的结构上。

重力荷载是最常见也是最基本的一种。

它包括结构自身的重量以及结构上所承载的物体的重量。

计算重力荷载时,需要准确地知道结构材料的密度和各个部分的尺寸。

例如,对于一根钢梁,我们需要知道它的长度、截面形状和尺寸,以及钢材的密度,才能计算出它所承受的重力。

风荷载是另一个重要的因素,特别是对于高层建筑、桥梁等结构。

风的作用会在结构表面产生压力和吸力。

风荷载的大小取决于风速、风向、结构的形状和周围环境等因素。

为了确定风荷载,工程师通常会参考相关的风荷载规范,并通过风洞试验或者数值模拟来获取准确的数据。

地震荷载对于位于地震活跃区域的结构来说是不可忽视的。

地震会产生地面运动,从而对结构施加水平和竖向的力。

地震荷载的分析需要考虑地震的强度、频谱特性、结构的自振周期以及阻尼等因素。

通常会采用反应谱分析或者时程分析等方法来评估结构在地震作用下的响应。

除了上述这些常见的荷载,还有温度荷载。

当结构所处的环境温度发生变化时,由于材料的热胀冷缩,会在结构内部产生应力。

例如,在桥梁中,温度的变化可能导致桥面板的伸缩,如果这种伸缩受到约束,就会产生温度应力。

在确定了各种可能的荷载之后,接下来就是对这些荷载进行分类和组合。

荷载可以分为永久荷载(如结构自重)、可变荷载(如风荷载、人群荷载)和偶然荷载(如地震荷载)。

在进行结构设计时,需要根据不同的情况对这些荷载进行组合,以考虑最不利的荷载工况。

对于荷载的分布和传递,也是荷载分析中的关键环节。

地震作用计算——地震反应分析

地震作用计算——地震反应分析
喜欢看那本《青年文摘》,很仔细地找 到叫青 春风铃 和成长 笔记的 页码, 那 里会有许多关于青春期的故事,梳理 一下会 冲动的 心情。 那些故 事的情 愫,总 是 写满了青春的多情。在青春的岁月里 ,总会 有猝不 及防的 伤害, 入侵易 碎的心 灵 ,正像所说的那么明媚。也许,这才 是真正 的青春 格调。 读一则 故事, 邂逅一 段
体系的自由振动由体系初位移和初速度引起,而体系的强迫振动由地
面运动引起。若体系无初速度和初位移,则体系地震反应中的自由振动项
为零。即使体系有初位移和初速度,由于体系有阻尼,由x1(t)式子可知, 体系的自由振动项也会很快衰减,一般可不考虑。因此,可仅取体系强迫
振动项,即x2(t),计算单自由度体系的地震位移反应。
4.2.2 振动微分方程及解答
各种阻尼状态下单自由度体系的自由振动
0 0 1 1 1
4.2.2 振动微分方程及解答 2. 非齐次微分方程的特解——杜哈曼积分(强迫振动)
x(t) 2 x(t) 2 x(t) xg (t)
利用数值积分的思路进行求解: 1、将地震的地面加速度分成有限个脉冲 2、讨论在单一脉冲作用后结构的响应 3、单一脉冲作用后结构的响应为自由振动,解的形式已知 (只是初速度不同)。 4、在所有脉冲作用下结构的响应为每一自由振动的叠加 (积分)
相当于地震产生的作
单质点弹性体系在地 震作用下的微分方程
用于结构上的强迫力
x(t)
c m
x(t)
k m
x(t)
xg
(t)
x(t) 2 x(t) 2 x(t) xg (t)
2
x(t) 2 2
c km
k m
x(t)
k m
x(t) xg (t)

时程分析时地震波的选取及地震波的反应谱化

时程分析时地震波的选取及地震波的反应谱化

时程分析时地震波的选取及地震波的反应谱化摘要:目前我国规范要求结构计算中地震作用的计算方法一般为振型分解反应谱法。

时程分析法作为补充计算方法,在不规则、重要或较高建筑中采用。

进行时程分析时,首先面临正确选择输入的地震加速度时程曲线的问题。

时程曲线的选择是否满足规范的要求,则需要首先将时程曲线进行单自由度反应计算,得到其反应谱曲线,并按规范要求和规范反应谱进行对比和取舍。

本文通过介绍常用的数值计算方法及计算步骤,实现将地震加速度时程曲线计算转化成反应谱曲线,从而为特定工程在时程分析时地震波的选取提供帮助。

关键词:时程分析,地震波,反应谱,动力计算1 地震反应分析方法的发展过程结构的地震反应取决于地震动和结构特性。

因此,地震反应分析的水平也是随着人们对这两个方面认识的深入而提高的。

结构地震反应分析的发展可以分为静力法、反应谱法、动力分析法这三个阶段。

在动力分析法阶段中又可分为弹性和非弹性(或非线性)两个阶段。

[1]目前,在我国和其他许多国家的抗震设计规范中,广泛采用反应谱法确定地震作用,其中以加速度反应谱应用得最多。

反应谱是指:单自由度弹性体系在给定的地震作用下,某个最大反应量(如加速度、速度、位移等)与体系自振周期的关系曲线。

反应谱理论是指:结构物可以简化为多自由度体系,多自由度体系的地震反应可以按振型分解为多个单自由度体系反应的组合,每个单自由度体系的最大反应可以从反应谱求得。

其优点是物理概念清晰,计算方法较为简单,参数易于确定。

反应谱理论包括如下三个基本假定:1、结构物的地震反应是弹性的,可以采用叠加原理来进行振型组合;2、现有反应谱假定结构的所有支座处地震动完全相同;3、结构物最不利的地震反应为其最大地震反应,而与其他动力反应参数,如最大值附近的次数、概率、持时等无关。

[1]时程分析法是对结构物的运动微分方程直接进行逐步积分求解的一种动力分析方法。

由于此法是对运动方程直接求解,又称直接动力分析法。

如何应用理论力学分析地震荷载?

如何应用理论力学分析地震荷载?

如何应用理论力学分析地震荷载?地震是一种极其复杂且破坏力巨大的自然现象,给人类社会带来了严重的威胁。

为了更好地理解和应对地震的影响,我们可以应用理论力学的知识来分析地震荷载。

首先,让我们了解一下什么是地震荷载。

地震荷载是指由于地震引起的地面运动对建筑物、结构物等产生的作用力。

这些作用力包括水平方向的惯性力、竖向的压力以及可能的扭转力等。

在理论力学中,我们通常将地震荷载视为一种动态荷载,其特点是作用时间短、强度大且具有随机性。

理论力学中的牛顿运动定律是分析地震荷载的基础。

根据牛顿第二定律,物体所受的合力等于其质量乘以加速度。

在地震情况下,建筑物或结构的质量是固定的,而地震引起的地面加速度则是不断变化的。

通过测量或模拟地震时的地面加速度时程曲线,我们可以计算出作用在结构上的惯性力。

为了更准确地分析地震荷载,我们需要考虑结构的振动特性。

结构在地震作用下会发生振动,其振动频率、振型等特性对地震响应有着重要影响。

在理论力学中,我们可以通过建立结构的动力学方程来描述其振动行为。

例如,对于一个简单的单自由度系统(如一个质点通过弹簧和阻尼器连接在固定点上),其动力学方程可以表示为:$m\ddot{x} + c\dot{x} + kx = m\ddot{x}_g$其中,$m$ 是质量,$\ddot{x}$是加速度,$\dot{x}$是速度,$x$ 是位移,$c$ 是阻尼系数,$k$ 是刚度系数,$\ddot{x}_g$ 是地面加速度。

通过求解这个方程,我们可以得到结构在地震作用下的位移、速度和加速度响应。

对于更复杂的多自由度系统,我们可以采用模态分析的方法,将其转化为多个单自由度系统的组合来进行分析。

在应用理论力学分析地震荷载时,还需要考虑材料的力学性能。

材料在地震作用下可能会发生屈服、断裂等现象,这会影响结构的整体性能。

因此,我们需要了解材料的应力应变关系,以及在动态荷载下的力学行为。

另外,结构的几何形状和边界条件也对地震响应有着重要影响。

建筑结构抗震设计课后习题答案

建筑结构抗震设计课后习题答案

建筑结构抗震设计课后习题答案2.1 场地分类场地分类是建筑抗震设计中的重要环节。

根据场地的地质构造、地貌特征和地震烈度等因素,将场地分为四类:Ⅰ类、Ⅱ类、Ⅲ类和Ⅳ类。

Ⅰ类场地是指地质条件最好的场地,Ⅳ类场地则是指地质条件最差的场地。

建筑抗震设计需要根据场地分类确定相应的抗震设防烈度和抗震措施。

2.2 地基基础设计地基基础是建筑物的重要承载部分,对建筑物的抗震性能有着重要的影响。

地基基础设计需要考虑场地分类、地基土层性质、地震烈度等因素。

在设计中,需要采用加固加筋、加宽加厚等措施来提高地基基础的抗震性能。

2.3 地基加固地基加固是指对地基土层进行加固处理,以提高建筑物的抗震性能。

地基加固的方法有很多种,如灌注桩、钢筋混凝土桩、土钉墙等。

在进行地基加固时,需要根据场地分类、地基土层性质、地震烈度等因素选择合适的加固方法。

2.4 地震波传播特性地震波传播特性是指地震波在地球内部传播时的特性。

地震波的传播速度、传播方向和传播路径等因素对建筑物的抗震性能有着重要的影响。

在建筑抗震设计中,需要根据地震波传播特性确定相应的抗震设防烈度和抗震措施。

2.5 地震动力学分析地震动力学分析是建筑抗震设计中的重要环节。

通过对建筑物的结构特性、地震波传播特性等因素进行分析,可以得出建筑物在地震作用下的反应。

在分析中,需要考虑建筑物的结构形式、材料特性、结构参数等因素,以确定相应的抗震措施。

设计反应谱:是根据规范规定的地震动参数和结构特性计算得出的,用于结构抗震设计的反应谱。

地震反应谱和设计反应谱的关系:设计反应谱是根据规范规定的地震动参数和结构特性计算得出的,而地震反应谱是根据实测地震动数据和结构特性计算得出的。

设计反应谱是用于结构的抗震设计,而地震反应谱则是用于结构地震响应分析。

两者都是描述结构在地震作用下的反应情况,但是计算方法和应用场合不同。

设计反应谱是根据已发生地震地面运动记录计算得到的,而工程结构抗震设计需要考虑将来发生地震对结构造成的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ANSYS地震时程分析中如何考虑重力作用
在用ANSYS做结构的地震时程分析时,结构施加地震波的初始状态往往是一种不受任何外力的自由状态,这与现实的结构地震情况是不一致的,别的荷载不说,重力荷载在地震时程分析的初始时就存在,在地震响应的整个过程中也起作用。

重力荷载在地震反应分析中应该如何施加,我做了如下探讨:
第一种方式,参照小木虫论坛上介绍的一个思路,先在一个极短的时间内关闭时间积分效应,施加重力加速度,然后再打开时间积分效应,进行正常的地震时程分析。

具体命令如下
/solu
antype, trans
timint, off !关闭积分效应
time, 1e-5
acel,,9.8,
nsubst, 2
kbc, 1
lswrite, 1
solve
timint, on !接着打开积分效应
NSUBST,5
*do,t,1,50,1
time,0.02*t
acel,0*9.8*H1(t),0,0*9.8*H2(t)
kbc,0
outres,all,none
outres,nsol,all
allsel,all
solve
*enddo
为了避免地震加速度的干扰,我把输入的两个水平向地震加速度都设置为0,计算了1秒时间,计算得到的结构顶点竖向位移见图1,图1中在初始的1e-5秒的时间内施加重力荷载后,结构有一个向下2mm的位移;重新打开时间积分效应后,结构在没有重力加速度的情况下发生回弹,最后位移稳定在0。

第二种方式,直接在施加的加速度荷载上把重力加速度9.8m/s2,同样把水平方向加速度乘0,避免其干扰,命令如下:
/solu
antype, trans
timint, on !接着打开积分效应
NSUBST,5
*do,t,1,50,1
time,0.02*t
acel,0*9.8*H1(t),9.8,0*9.8*H2(t)
kbc,0
outres,all,none
outres,nsol,all
allsel,all
solve
*enddo
计算得到顶点的竖向位移结果见图2,施加重力荷载后,结构上下振动,最后位移稳定在-2mm 左右。

图1第一种考虑重力荷载的方式
图2 第二种考虑重力荷载方式
最后综合以上两种方式,我意识到真正正确的施加方式应该是二者的结合,在初始极短的一个时间段内,关闭时间积分效应施加重力加速度,然后打开时间积分效应,继续施加重力加速度(如果要考虑竖直向的地震加速度,在9.8的基础上增减即可),命令如下:
/solu
antype, trans
timint, off !关闭积分效应
time, 1e-5
acel,,9.8,
nsubst, 2
kbc, 1
lswrite, 1
solve
timint, on !接着打开积分效应
NSUBST,5
*do,t,1,50,1
time,0.02*t
acel,0*9.8*H1(t),9.8,0*9.8*H2(t)
kbc,0
outres,all,none
outres,nsol,all
allsel,all
solve
*enddo
我用以上命令计算同一个模型,得到的计算结果见图3,图3中结构顶部的竖向位移一直保持在-2mm,这正是我们想要看到的重力荷载作用的结果。

图三正确的施加方式
注:命令中X,Z方向为结构水平方向,Y方向为竖直方向。

欢迎交流,我的邮箱w_tao13614@。

相关文档
最新文档