与一次函数有关的面积问题(公开课)

合集下载

一次函数面积问题专题(含答案解析)

一次函数面积问题专题(含答案解析)

一次函數面積問題1、如图,一次函数的图像与X轴交于点B (- 6 , 0),交正比例函数的图像于点A,点A的横坐标为-4,△ ABC的面积为15,求直线OA的解析式。

2、直线y=x+3的图像与X轴、y轴分别交于A B两点,直线a经过原点与线段AB 交于。

,把厶ABO勺面积分为2:1的两部分,求直线a的函数解析式。

3、直线PA是一次函数y=x+n的图像,直线PB是一次函数y=-2x+m (m>n>0的图像,(1) 用m n表示A、B、P的坐标(2) 四边形PQoB勺面积是',AB=2求点P的坐标4、A AOB的顶点0( 0, 0) A (2, 1)、B (10, 1),直线CDL X 轴且△ AOB面积二等分,若D (m, 0),求m的值5、点B在直线y=-x+1上,且点B在第四象限,点A(2, 0)、0(0, 0),A ABo 的面积为2,求点B的坐标。

6直线y=- x+1与X轴y轴分别交点A B,以线段AB为直角边在第一象限内作等腰直角△ ABC N BAC=90 ,点P( a,])在第二象限,△ ABP勺面积与△ ABC7、如图,已知两直线y=0.5x+2.5和y=-x+1分别与X轴交于A、B两点,这两直线的交点为P(1)求点P的坐标(2)求厶PAB的面积8、已知直线y=ax+b (b>0)与y轴交于点N,与X轴交于点A且与直线y=kx交于点M (2, 3),如图它们与y轴围成的厶MoN勺面积为5,求(1)这两条直线的函数关系式(2)它们与X轴围成的三角形面积9、已知两条直线y=2x-3和y=5-x(1)求出它们的交点A的坐标(2)求出这两条直线与X轴围成的三角形的面积10、已知直线y=x+3的图像与X轴、y轴交于A B两点,直线I经过原点,与线段AB 交于点。

,把厶AoB的面积分为2:1的两部分,求直线I的解析式。

11、已知直线y=2x+3与直线y=-2x-1与y轴分别交于点A B(1)求两直线交点C的坐标(2)求厶ABe的面积(3)在直线BC上能否找到点P,使得△ APC的面积為6,求出点P的坐标,12、已知直线y=-x+2与X轴、y轴分别交于点A和点B,另一直线y=kx+b(k≠ 0)经过点C(1,0),且把△ AOB分为两部分,(1)若厶AOB被分成的两部分面积相等,求k和b的值(2)若厶AOB被分成的两部分面积为1:5,求k和b的值13、直线y=- x+3交X, y坐标轴分别为点A B,交直线y=2x-1于点P,直线-Iy=2x-1交X, y坐标轴分别为C。

一次函数有关的面积问题

一次函数有关的面积问题

《一次函数相关的面积问题》教学设计一、教学目标1.知识与技能:通过本节学习,巩固一次函数的图象与性质,能利用解析式求组合图形的面积,能利用面积求点的坐标或直线的解析式。

2、数学思考:通过对已知图形面积求值及解析式问题的探究,使学生理解一次函数图象特征与解析式的联系规律,体会分类思想、数形结合思想,化归思想和方程思想.3、问题解决:根据题中图形与坐标轴的交点求三角形的面积,会根据面积求点坐标或函数解析式。

4、情感态度:培养学生主动探究,合作交流的意识,激发学生学习数学的热情,体验学数学的乐趣.二、教学重点、难点重点:根据函数解析式求三角形或四边形的面积,会根据面积求点的坐标或一次函数的解析式。

难点:①不规则图形面积的计算;②根据面积求点的坐标三、教学方法与手段的选择由于本节课重在通过学习总结解决问题的方法,故而本节课以“启发探究式”为主线开展教学活动,解决问题以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。

四、教学流程一、复习引入:1、一次函数24y x =-+与x 轴的交点A 的坐标是 与y 轴的交点B 的坐标是 ________。

2、已知一次函数的图像与x 轴、y 轴的交于(-2,0)、(0,4)点,则这个函数的解析式为_____________。

3、直线24y x =-+与直线21y x =+的交点坐标是______。

二、中考题型示例题型一、利用解析式求面积 例1:如图1,已知直线l :24y x =-+,求此一次函数的图象 与两坐标轴所围成的三角形的面积。

小结:类型1是求直线与两坐标轴所围成三角形面积(规则图形--变式1:如图2,已知直线l :24y x =-+,点(1,2)C 在直线l 上,(1) 求OC 所在直线的解析式;(2) 求直线l 和直线OC 与x 轴所围成的图形面积。

小结:类型2是求两直线与坐标轴所成三角形面积(规则图形--公式法变式2:如图3,已知直线l :24y x =-+与x 轴、y 轴分别交于点B 将变式1中的直线OC 向上平移1个单位长度得到直线PA ,点Q 是直线与y 轴的交点,求四边形PQOB 的面积。

一次函数与面积问题

一次函数与面积问题

一次函数常与三角形或四边形的面积相结合进行考查,两种类型的题目比较常见:(1)由函数图像求面积;(2)由面积求点坐标。

遇到第一种类型题目时,找准三角形的底和高是解题的关键,特别是遇到钝角三角形。

如果无法直接求解,可以利用割补法、铅锤法等方法进行转化。

遇到第二种类型题目时,要特别注意,很容易出错,不要忘记使用绝对值。

01类型一:由函数图像求图形面积例题1:如图,直线l1:y=-3x+3与x轴交于点A,直线l2经过点B(4,0),C(3,-1.5),并与直线l2交于点D.(1)求直线l2的函数解析式;(2)求△ABD的面积.分析:求l2的函数解析式,利用待定系数法,已知点B(4,0)、点C (3,-1.5),代入解析式中求出K、b得值即可得到一次函数解析式。

求△ABD的面积,三角形有一边在x轴上,求三角形的面积可直接利用三角形的面积公式,选择x轴上的线段AB为底,那么点D纵坐标的绝对值即为三角形的高,因此需要求出点B坐标。

点B是两直线的交点,联立方程组即可求得点B坐标。

本题主要是有函数图像求得三角形的面积,属于基础题。

02类型二:由面积求点坐标例题2:如图,在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2).(1)求直线AC的表达式;(2)求△OAC的面积;(3)动点M在线段OA和射线AC上运动,是否存在点M,使△OMC 的面积是△OAC的面积的14?若存在,求出此时点M的坐标;若不存在,请说明理由.分析:(1)由点C和点A的坐标,利用待定系数法即可求得函数的解析式;(2)求△AOC的面积,由题可知该三角形可选OC作为底,点A的横坐标的绝对值即为该三角形的高,点A与点C坐标已知,可通过三角形的面积公式直接求出。

(3)当△OMC的面积是△OAC的面积的1/4时,根据面积公式即可求得M的横坐标的绝对值,然后代入解析式即可求得M的坐标.由面积求点坐标时,一定要注意绝对值的使用,注意分情况进行讨论。

北师大版八年级数学上册4.3一次函数图象与面积问题优秀教学案例

北师大版八年级数学上册4.3一次函数图象与面积问题优秀教学案例
(四)反思与评价
1.引导学生对自己在学习过程中的思考、方法、结果进行反思,培养学生自我评价的能力。
2.组织学生进行小组内、小组间的评价,让学生在评价中相互学习、共同进步。
3.教师要关注学生的学习过程,从多维度、多角度评价学生的学习成果,给予肯定和鼓励。
4.引导学生将所学知识与实际生活相结合,进行拓展应用,提高学生的数学素养。
2.讲解一次函数图象与面积问题的解决方法,如利用图象交点、解析几何方法等。
3.通过例题演示,让学生跟随教师一起解决一次函数图象与面积问题,活中的应用价值。
(三)学生小组讨论
1.设计具有探究性、挑战性的问题,让学生在小组内进行讨论交流。
针对这一问题,我设计了本节课的教学案例,旨在通过引导学生观察、思考、探究,使他们在解决实际问题的过程中,体会一次函数图象与面积问题的联系,提高解决问题的能力。教学案例围绕一个实际问题展开,让学生在解决问题的过程中,自然而然地涉及到一次函数图象与面积问题的知识点。通过案例的引导,使学生能够将所学知识与实际问题紧密结合,提高他们的数学应用能力。
2.鼓励每个小组成员积极发表自己的观点,共同探讨问题的解法。
3.教师在讨论过程中,关注每个小组的学习进展,及时给予指导和鼓励。
(四)总结归纳
1.让学生用自己的语言总结一次函数图象与面积问题的解法及注意事项。
2.教师对学生的总结进行点评,纠正错误,完善归纳。
3.引导学生将所学知识进行整合,形成体系,提高学生的数学素养。
4.教师在问题导向过程中,要善于启发、点拨,引导学生发现规律,归纳总结。
(三)小组合作
1.合理划分学习小组,培养学生团队合作、互助学习的意识。
2.设计具有探究性、挑战性的学习任务,激发学生合作学习的动力。

与一次函数有关的面积问题

与一次函数有关的面积问题

知识拓展
拓展一 如图,点E(1 ,3) ,点F( 3 ,1) ,在直线 y=-2x+4上,求△EO2F的面积(2多种方法).
B
E (1 ,3) 2 F ( 3 ,1)
A2
B
H
K
G
H
L
G
A
知识拓展
拓展二 点Q在y轴上,且△QPB与△CPB 面积相等,求点Q的坐标.
分类讨论
知识拓展
拓展三 如图,直线y 2x 4 与x轴、y轴分
2.已知直线y=kx+2与两坐标轴围成的三角形面 积是2,求k的值.
3.已知点P是一次函数y=-x+2的图象上一点,如 果图象与x轴交于A点,且△OAP的面积等于3, 求P点的坐标.
课后巩固
4.如图(4),已知直线经过点 A(2,0)与点B(0,1),
如果在坐标平面内有一点 P(t, 1) . (1)求△BPA的面积S与t的函数2关系. (2) 当△BPA的面积为3时,求t的值.
别交于点A、B,点T是直线AB上的一个动点,
连结CT.设T点横坐标为t. (1)求△CAT的面积S与t的 函数关系式.
(t,-2t+4)
T
(2)当点T运动到什么位置
时△CAT的面积为6.
-1
-1
P(1,2)
2 2
课堂小结
谈一谈这节课的收获!
课后巩固
1.直线y=x和直线y=-x+2与y轴围成的面积是 .
武义县实验中学 周 东
知识回顾
y B(0,4)
(1)点M(a,b)到x轴的 距离为 b ,到y轴的距
P
离为 a .
(1,2)
(2)一次函数y=kx+b与

一次函数中的面积问题公开课获奖课件百校联赛一等奖课件

一次函数中的面积问题公开课获奖课件百校联赛一等奖课件
注意:用坐标值表达线段长时要加上绝对值符号,以防漏解
2、如图,一次函数旳图像交x轴于点B(6,0),交正百分比函数旳图像于点A,且点A 旳横坐标为-4,S△AOB =15,求一次函数和正 百分比函数旳解析式.
y
A x
BO
1、如图,已知直线y=-x+2与x轴,y轴分别相 交于A、B两点,另一直线y=kx+b经过B和点 C,将△AOB面积提成相等旳两部分,求k和 b旳值.
16
旳面积为3 ,求y=kx+4旳y 解析式。
A B
oD
Cx
背景变式
1、如图,已知直线y=-x+2与x轴,y轴分别相 交于A、B两点,另一直线y=kx+b经过B和点 C,将△AOB面积提成相等旳两部分,求k和 b旳值.
2、如图,已知直线y=-x+2与x轴、y轴分别交 于点A和点B,另已知直线y=kx+b(k≠0)经 过点C(1,0),且把△AOB提成两部分.
若△AOB被提成旳两部分面积比为1:5, 求k和b旳值.
3、已知一次函数y=2x+6与两坐标轴围成旳三 角形面积被一正百分比函数提成面积旳比为1: 2旳两部分,求这个正百分比函数旳解析式.
如图:正方形ABCD边长为4,将此正方形置于坐标系 中点A旳坐标为(1,0)。
48 (1)过点C旳直线 y 3 x 3 与X轴交与E, 求S四边形AECD (2)若直线l经过点E且将正方形
形状变式
如图所示:直线y=kx+b经过点B(0,3 )与点C(-
2
1,3),且与x轴交与点A,经过点E(-2,0)旳 直线
与OC平行,而且与直线y=kx+b交与点D,
(1)求BC所在直线旳函数解析式;

与一次函数有关的面积问题

与一次函数有关的面积问题

与一次函数有关的面积问题作者:梁雄来源:《新课程学习·下》2014年第03期将一次函数与面积综合在一起进行考查,是目前的一类热点题型,充分体现了数形结合与分类讨论的思想。

下面针对一次函数解析式与面积互求的两个类型举例介绍。

类型一:利用一次函数解析式求面积例1:如图1,已知直线y=kx+b经过点A(0,6),且平行于直线y=-2x。

(1)求该函数的解析式;(2)如果这条直线经过点P(m,2),求m的值;(3)求直线y=kx+b和直线OP与坐标轴所围成的图形的面积。

解析:(1)因为所求的直线与已知直线y=-2x平行,又因为该直线经过点A(0,6),易求该函数的解析式:y=-2x+6;(2)因为直线y=-2x+6经过点P(m,2),所以m=2;(3)由直线y=-2x+6可以求出C(3,0)与坐标轴围成的图形有两种可能:一种是与x轴围成的△OPC,则S△OCP= OC·yp= ×3×2=3;另一种是与y轴围成的△OPA,则S△OCA= OA·xp= ×6×2=6。

例2.如图2,直线y=-x+4与x轴,y轴分别交于点A和点B,另一条直线l经过点C(2,0),且把△AOB分成两部分。

(1)若△AOB被分成面积相等的两部分,求直线l的表达式;(2)若△AOB被分成的两部分面积比为1∶7,求直线l的表达式;解析:(1)由直线y=-x+4可得A(4,0),B(0,4),当直线l把△AOB分成面积相等的两部分时,易求直线l的解析式为:y=-2x+4。

(2)当直线l把△AOB分成的两部分面积比为1∶7时,要分两种情况:设当直线l的斜率k>0时,直线l将与AB相交于D点,如图3,由题意知:S△CDA=S△AOB因为S△AOB= AO·BO=8,所以S△CDA=1,又因为AC=3,所以S△CDA的AC边上的高为1,即D点的纵坐标为1,代入直线AB 解析式中知此点坐标为(3,1)则直线l的解析式为:y=x-2设当直线l的斜率k如图3,由面积关系可得交点E坐标为(0,1),同理可求出直线l的解析式为:y=-2x+1。

专题07 一次函数中的面积问题精讲(解析版)

专题07 一次函数中的面积问题精讲(解析版)

专题07 一次函数中的面积问题精讲一、平面直角坐标系中面积的几种求法面积问题是中考的一个重点知识点,考查方式灵活多样,很多题目有创新性,能很好考查学生的灵活运用知识的能力.我们除了要熟知常见图形的面积公式外,在平面直角坐标系中还要懂得以下几种面积的方法: 方法一、割补法割补方法不仅仅只有一种,要灵活使用.方法二、铅垂高、水平宽法=21=2ABC ABC S CD OAS CE OB⨯⨯⨯⨯△△ 二、典型例题选讲题1. 如图1-1所示,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1,0)、(4,0).将△ABC 沿x 轴向右平移,当点C 落在直线y =2x ﹣6上时,线段BC 扫过的面积为( )图1-1A .4B .8C .16D .12 【答案】C .【解析】如图1-2所示.图1-2设C 点移动到直线y =2x ﹣6上的点为C ’. ∵点A 、B 的坐标分别为(1,0)、(4,0), ∴AB =3.∵∠CAB =90°,BC =5,∴在Rt △ABC 中,由勾股定理得:AC =4. ∴A ′C ′=4.∵点C ′在直线y =2x -6上, ∴2x -6=4,解得 x =5.即OA ′=5, ∴CC ′=5-1=4.∴四边形BB ’C ’C 是平行四边形,面积 =4×4=16. 即线段BC 扫过的面积为16,故答案为:C .题2. 已知一次函数2y x a =+与y x b =-+的图象都经过A (2-,0),且与y 轴分别交于B 、C 两点,则△ABC 的面积为 ( ).A . 4B . 5C . 6D . 7 【答案】C .【解析】因为y =2x +a 与y =-x +b 的图象都经过A (-2,0), 所以0=2×(-2)+a , 解得:a =4, 又因为0=2+b 解得:b =-2y =2x +4、y =-x -2与y 轴分别交于B 、C 两点 ∴B (0.4),C (0,-2),三角形ABC 的面积=2×6÷2=6. 故答案为:C .题3. (河北中考)如图3-1所示,在平面直角坐标系xOy 中,A (0,5),直线x =-5与x 轴交于点D ,直线y =-38x -398与x 轴及直线x =-5分别交于点C ,E .点B ,E 关于x 轴对称,连接AB . (1)求点C ,E 的坐标及直线AB 的解析式; (2)若S =S △CDE +S 四边形ABDO ,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将△CDE 沿x 轴翻折到△CDB 的位置,而△CDB 与四边形ABDO 拼接后可看成△AOC ,这样求S 便转化为直接求△AOC 的面积,如此不更快捷吗?”但大家经反复验算,发现S △AOC ≠S ,请通过计算解释他的想法错在哪里.图3-1【答案】见解析【解析】解:(1)y =-38x -398,令y =0,有0=-38x -398,解得:x =-13,即C (-13,0).令x =-5,则有y =-38×(-5)-398=-3,即E (-5,-3).∵点B ,E 关于x 轴对称, ∵B (-5,3). ∵A (0,5),∵设直线AB 的解析式为y =kx +5, ∵-5k +5=3, ∵k =25,∵直线AB 的解析式为y =25x +5.(2)由(1)知E (-5,-3), ∵DE =3. ∵C (-13,0),∵CD =-5-(-13)=8, ∵S ∵CDE =12CD ·DE =12.由题意知OA =5,OD =5,BD =3, ∵S 四边形ABDO =12(BD +OA )·OD =20,∵S =S ∵CDE +S 四边形ABDO =12+20=32.(3)由(2)知S =32,在∵AOC 中,OA =5,OC =13, ∵S ∵AOC =12OA ·OC =652=32.5,∵S ≠S ∵AOC .理由:由(1)知直线AB 的解析式为y =25x +5,令y =0,则0=25x +5,∵x =-252≠-13,∵点C 不在直线AB 上,即点A ,B ,C 不在同一条直线上, ∵S ∵AOC ≠S .题4. 已知一次函数的图象过点(0,3),且与两坐标轴所围成的三角形面积为3, 则其表达式为( ) A . y =1.5x +3B . y =-1.5x +3C . y =1.5x +3或y =-1.5x +3D . y =1.5x -3或y =-1.5x -3【答案】C .【解析】解:设该一次函数与x 轴的交点坐标为(a ,0), 由题意得:1332a ⨯⨯=, 解得:a =±2, 当a =2时,设直线解析式为y =kx +3,将(2,0)代入,求得k =-1.5; 同理求得,当a =-2时,k =1.5.所以函数解析式为:y =1.5x +3或y =-1.5x +3,故答案为C .题5. 如图5-1所示,已知一次函数y =kx +b 的图象经过A (-2,-1),B (1,3)两点,并且交x 轴于点C ,交y 轴于点D .图5-1(1)求该一次函数的解析式;(2)求∵AOB 的面积. 【答案】见解析.【解析】解:(1)把A (-2,-1),B (1,3)代入y =kx +b ,得:⎩⎪⎨⎪⎧-2k +b =-1,k +b =3. 解得⎩⎨⎧k =43,b =53.∵一次函数的解析式为y =43x +53.(2)把x =0代入y =43x +53,得y =53,∵D 点坐标为(0,53).∵S ∵AOB =S ∵AOD +S ∵BOD =12×53×2+12×53×1=52.题6. 已知,一次函数y kx b =+的图像与正比例函数13y x =交于点A ,并与y 轴交于点(0,4)B -,△AOB 的面积为6,则kb = 【答案】203-或4. 【解析】解:因为一次函数y kx b =+的图像与y 轴交于点(0,4)B -, ∴b =-4,OB =4, 设A 点横坐标为a , 因为△AOB 的面积为6, 所以162a OB ⨯⨯=, 即a =3或-3,点A 的坐标为(3,1)或(-3,-1) 将A 点坐标代入4y kx =-,得: k =53或-1 所以kb = 203-或4. 故答案为:203-或4.题7. 如图7-1所示,点G ,D ,C 在直线a 上,点E ,F ,A ,B 在直线b 上,若a ∥b ,Rt △GEF 从如图所示的位置出发,沿直线b 向右匀速运动,直到EG 与BC 重合.运动过程中△GEF 与矩形ABCD 重合部分的面积(S )随时间(t )变化的图象大致是( )图7-1A B C D【解析】根据题意可得:①F、A重合之前没有重叠面积;②F、A重叠之后,重叠部分面积逐渐增大,且增加的速度越来越快;③△EFG完全进入且F与B重合之前,重叠部分的面积是三角形的面积,不变,④F与B重合之后,重叠部分的面积逐渐减小,减小的速度越来越慢,直至最后重叠部分的面积为0.综上所述,只有B选项图形符合.故答案为:B.题8. 如图8-1所示,已知直线y=2x+3与直线y=-2x-1.(1)求两直线交点C的坐标;(2)求∵ABC的面积.(3)在直线BC上能否找到点P,使得S∵APC=6,若能,请求出点P的坐标,若不能请说明理由。

一次函数面积问题专题(含答案解析)

一次函数面积问题专题(含答案解析)

一次函數面積問題1、如图,一次函数的图像与*轴交于点B〔-6,0〕,交正比例函数的图像于点A,点A的横坐标为-4,△ABC的面积为15,求直线OA的解析式。

2、直线y=*+3的图像与*轴、y轴分别交于A、B两点,直线a经过原点与线段AB交于C,把△ABO的面积分为2:1的两局部,求直线a的函数解析式。

3、直线PA是一次函数y=*+n的图像,直线PB是一次函数y=-2*+m〔m>n>0〕的图像,〔1〕用m、n表示A、B、P的坐标〔2〕四边形PQOB的面积是,AB=2,求点P的坐标4、△AOB的顶点O〔0,0〕、A〔2,1〕、B〔10,1〕,直线CD⊥*轴且△AOB面积二等分,假设D〔m,0〕,求m的值5、点B在直线y=-*+1上,且点B在第四象限,点A〔2,0〕、O〔0,0〕,△ABO的面积为2,求点B的坐标。

6、直线y=-*+1与*轴y轴分别交点A、B,以线段AB为直角边在第一象限内作等腰直角△ABC, BAC=90°,点P〔a,〕在第二象限,△ABP的面积与△ABC 面积相等,求a的值.7、如图,两直线y=0.5*+2.5和y=-*+1分别与*轴交于A、B两点,这两直线的交点为P〔1〕求点P的坐标〔2〕求△PAB的面积8、直线y=a*+b〔b>0〕与y轴交于点N,与*轴交于点A且与直线y=k*交于点M 〔2,3〕,如图它们与y轴围成的△MON的面积为5,求〔1〕这两条直线的函数关系式〔2〕它们与*轴围成的三角形面积9、两条直线y=2*-3和y=5-*〔1〕求出它们的交点A的坐标〔2〕求出这两条直线与*轴围成的三角形的面积10、直线y=*+3的图像与*轴、y轴交于A、B两点,直线l经过原点,与线段AB 交于点C,把△AOB的面积分为2:1的两局部,求直线l的解析式。

11、直线y=2*+3与直线y=-2*-1与y轴分别交于点A、B〔1〕求两直线交点C的坐标〔2〕求△ABC的面积〔3〕在直线BC上能否找到点P,使得△APC的面积為6,求出点P的坐标,假设不能请说明理由。

《一次函数相关的面积问题》说课稿

《一次函数相关的面积问题》说课稿

《一次函数相关的面积问题》说课稿一、教材分析1、地位与作用:一次函数是八年级上册第14章的内容,本次授课是在学习新知识之后进行的系统复习。

一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,函数是初中数学中的一个重点,一次函数在中考中占有重要的地位,主要考察一次函数关系式的确定、图像和性质的分析以及实际应用等。

将一次函数的图象与面积综合在一起的问题,是考查学生综合素质和能力的热点题型,已成为中考命题的焦点,它充分体现了数学解题中的数形结合思想和整体转化思想,分类讨论思想,和方程思想。

此部分内容是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。

2、课时安排:教材中一次函数涉及到面积问题的练习很少,无论是例题还是习题都没有归类,不利于学生系统地掌握解决问题的方法,我设计时把它分为一次函数图象及性质、求一次函数解析式的常见类型,一次函数相关的面积问题3课时,本节是第3课时。

3.学情及学法分析对九年级学生来说,在学习了一次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的性质,能用简单的待定系数法求函数解析式,会求简单图形的面积,但是近年来坐标系下不规则三角形(四边形)面积一类问题频频出现,成为中考命题的高频热点.这类问题涉及知识面广,往往与相似、函数、方程等知识融为一体,考查学生在探索图形变化过程中的变与不变、化归与转化、数形结合、分类讨论等思想方法的灵活运用。

解决这类问题的关键是要把相关线段的长与恰当的点的坐标联系起来,灵活地将待求图形的面积进行分割,即选择一条恰当的直线,将三角形(四边形)分割成若干个便于计算面积的三角形,学生若对这类问题的实质把握不清,常常感到束手无策,本文以近几年中考题为例,归纳其类型与解法,目的是进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。

专题51 一次函数的平行、垂直、面积问题(解析版)

专题51 一次函数的平行、垂直、面积问题(解析版)

模型介绍方法点拨☑知识点1两直线平行如图,直线b∥a,那么k b =k a ,若已知k a 及C 的坐标即可求出直线b 的解析式.☑知识点2两直线垂直如图,直线c⊥a,那么k c *k a =-1,若已知k a 及C 或B 的坐标即可求出直线c 的解析式.(针对这一性质,初中不要求掌握,一般用全等、相似的方法求解)例题精讲考点一:一次函数平行问题【例1】.一次函数y=kx+b与y=3x+1平行,且经过点(﹣3,4),则这个函数的表达式为y=3x+13.解:∵一次函数y=kx+b与y=3x+1平行,∴k=3,把(﹣3,4)代入y=3x+b得﹣9+b=4,解得b=13,∴所求一次函数解析式为y=3x+13.故答案为y=3x+13.变式训练【变1-1】.一条直线平行于直线y=2x﹣1,且与两坐标轴围成的三角形面积是4,则直线的解析式是()A.y=2x+4B.y=2x﹣4C.y=2x±4D.y=x+2解:∵所求直线与直线y=2x﹣1平行∴可设所求直线的解析式为y=2x+b令x=0可得直线在y轴的截距为b令y=0可得直线在x轴的截距为由题意可知:b××=4∴b=±4,故选:C.【变1-2】.一个一次函数图象与直线y=x+平行,与x轴、y轴的交点分别为A、B,并且过点(﹣1,﹣20),则在线段AB上(包括端点A、B),横、纵坐标都是整数的点有4个.解:因为一次函数的图象与直线y=x+平行,所以所求直线的斜率为,又因为所求直线过点(﹣1,﹣20),所以所求直线为5x﹣4y﹣75=0,所以此直线与x轴、y轴的交点分别为A(15,0)、B(0,﹣),设在直线AB上并且横、纵坐标都是整数的点的横坐标是x=﹣1+4N,纵坐标是y=﹣20+5N,(N是整数).因为在线段AB上这样的点应满足0≤x=﹣1+4N≤15,且﹣<y=﹣20+5N≤0,解得:≤N≤4,所以N=1,2,3,4,故答案为:4.考点二:一次函数垂直问题【例2】.已知直线y=kx+b经过点A(3,8),并与直线y=2x﹣3垂直,则k=﹣;b=.解:∵已知直线y=kx+b与直线y=2x﹣3垂直,则k=﹣,∴y=x+b,将A(3,8)代入,8=+b,解得b=,故答案为﹣,.变式训练【变2-1】.如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于点A、B,直线CD与y轴交于点C(0,﹣8),与直线AB交于点D,若△AOB∽△CDB,则点D的坐标为(,).解:∵△AOB∽△CDB,∴∠CDB=∠AOB=90°,设直线CD的解析式为:y=2x+b,∵点C的坐标为(0,﹣8),∴b=﹣8,,解得,,则点D的坐标为:(,),故答案为:(,).【变2-2】.直线y=kx+b与抛物线y=x2交于A(x1,y1),B(x2,y2)两点,当OA⊥OB时,直线AB恒过一个定点,该定点坐标为(0,4).[提示:直线l1:y=k1x+b1与直线l2:y=k2x+b2互相垂直,则k1•k2=﹣1]解:∵直线y=kx+b与抛物线y=x2交于A(x1,y1)、B(x2,y2)两点,∴kx+b=x2,化简,得x2﹣4kx﹣4b=0,∴x1+x2=4k,x1x2=﹣4b,又∵OA⊥OB,∴×=====﹣1,解得,b=4,即直线y=kx+4,故直线恒过顶点(0,4),故答案为:(0,4).考点三:一次函数的面积问题【例3】.已知一次函数y=mx+2的图象与两坐标轴围成的三角形的面积为1,则常数m=±2.解:令x=0,则y=2,令y=0,则x=﹣,∵一次函数y=mx+2的图象与两坐标轴围成的三角形的面积为1,∴×2×|﹣|=1,解得m=±2.故答案为:±2.变式训练【变3-1】.已知直线y=(n为正整数)与坐标轴围成的三角形的面积为S n.则S1+S2+S3+…+S2020的值为()A.B.C.D.解:令x=0,则y=,令y=0,则=0,解得x=,所以,S n=••=(﹣),所以,S1+S2+S3+…+S2020=(+﹣+﹣+…+﹣)=(﹣)=.故选:B.【变3-2】.如图,正比例函数y=﹣3x的图象与一次函数y=kx+b的图象交于点P(m,3),一次函数图象经过点B(1,1),与y轴的交点为D,与x轴的交点为C.(1)求一次函数表达式;(2)求△COP的面积.解:(1)∵正比例函数y=﹣3x的图象过点P(m,3),∴3=﹣3m,解得:m=﹣1,∴P(﹣1,3),∵一次函数y=kx+b的图象过点P(﹣1,3),B(1,1),∴,解得:,∴一次函数表达式为y=﹣x+2;(2)由(1)知,一次函数表达式为y=﹣x+2,令y=0,﹣x+2=0,解得:x=2,∴C(2,0),∴OC=2,∴=3.1.两直线y1=k1x+b1与y2=k2x+b2相交于y轴,则()A.k1≠k2,b1≠b2B.k1≠k2,b1=b2C.k1=k2,b1≠b2D.k1=k2,b1=b2解:两直线y1=k1x+b1与y2=k2x+b2相交于y轴,则两直线与y轴的交点是同一点,在直线y1=k1x+b1中,令x=0,解得y=b1,与y轴的交点是(0,b1),同理直线y2=k2x+b2与y轴的交点是(0,b2),则b1=b2,若k1=k2,则两直线重合,因而k1≠k2.故选:B.2.若直线x+3y+1=0与ax+y+1=0互相垂直,则实数a的值为()A.﹣3B.﹣C.D.3解:直线x+3y+1=0的斜率为:﹣,直线ax+y+1的斜率为:﹣a,∵两直线垂直,∴﹣×(﹣a)=﹣1,∴a=﹣3,故选:A.3.已知一次函数y=x+2与y=﹣2+x,下面说法正确的是()A.两直线交于点(1,0)B.两直线之间的距离为4个单位C.两直线与x轴的夹角都是30°D.两条已知直线与直线y=x都平行解:根据一次函数的性质,一次函数y=x+2与y=﹣2+x,分别与y轴相交于(0,2)和(0,﹣2)两点,因为x的系数,都为1,因此直线的方向是一样的,都与直线y=x平行.故选:D.4.如图,直线l1过原点,直线l2解析式为y=﹣x+2,且直线l1和l2互相垂直,那么直线l1解析式为()A.y=x B.y=x C.y=x D.y=x解:∵一次函数经过原点,∴设所求的一次函数为y=kx,∵一次函数的图象与直线y=﹣x+2垂直,∴k=,则直线l1解析式为y=x,故选:D.5.已知直线y=mx﹣1上有一点B(1,n),它到原点的距离是,则此直线与两坐标轴围成的三角形的面积为()A.B.或C.或D.或解:∵点B(1,n)到原点的距离是,∴n2+1=10,即n=±3.则B(1,±3),代入一次函数解析式得y=4x﹣1或y=﹣2x﹣1.(1)y=4x﹣1与两坐标轴围成的三角形的面积为:××1=;(2)y=﹣2x﹣1与两坐标轴围成的三角形的面积为:××1=.故选:C.6.如图,一次函数y=kx+b的图象与正比例函数y=2x的图象平行且经过点A(1,﹣2),则kb=﹣8.解:∵一次函数y=kx+b的图象与正比例函数y=2x的图象平行,∴k=2,∴y=2x+b,把点A(1,﹣2)代入y=2x+b得2+b=﹣2,解得b=﹣4,∴kb=2×(﹣4)=﹣8.故答案为﹣8.7.若平行于直线y=﹣2x的某直线y=kx+b与两坐标轴所围成的三角形面积为5,则b=.解:直线y=kx+b与直线y=﹣2x平行,因而k=﹣2,直线y=﹣2x+b与x轴的交点坐标是,与y轴的交点坐标是(0,b),∴||•|b|=5,即=5,解得:b=±2.8.如图,直线y=﹣x+2与x,y轴交于A、B两点,以AB为边在第一象限作矩形ABCD,矩形的对称中心为点M,若双曲线y=(x>0)恰好过点C、M,则k=.解:∵y=﹣x+2,∴x=0时,y=2;y=0时,﹣x+2=0,解得x=4,∴A(4,0),B(0,2).∵四边形ABCD是矩形,∴∠ABC=90°.设直线BC的解析式为y=2x+b,将B(0,2)代入得,b=2,∴直线BC的解析式为y=2x+2,设C(a,2a+2),∵矩形ABCD的对称中心为点M,∴M为AC的中点,∴M(,a+1).∵双曲线y=(x>0)过点C、M,∴a(2a+2)=(a+1),解得a1=,a2=﹣1(不合题意舍去),∴k=a(2a+2)=(2×+2)=.故答案为.9.在平面直角坐标系xOy中,已知直线AB与x轴交于点A(2,0),与y轴交于点B(0,1).(1)求直线AB的解析式;=2,求点C的坐标.(2)若x轴上有一点C,且S△ABC解:(1)设直线AB的解析式为y=kx+b(k≠0),将点A(2,0),B(0,1)代入,可得,解得,∴直线AB的解析式为y=﹣x+1;(2)∵x轴上有一点C,设点C(x,0),∴AC=|2﹣x|,=2,∵S△ABC∴×|2﹣x|×1=2,∴x=﹣2或x=6,∴C(﹣2,0)或C(6,0).10.如图,直线l1:y=x﹣3与x轴交于点A,与y轴交于点B,直线l2:y=kx+b与x轴交于点C(0.5,0),与y轴交于点D(0,2),直线l1,l2交于点E.(1)求直线l2的函数表达式.(2)试说明CD=CE.(3)若P为直线l1上一点,当∠POB=∠BDE时,求点P的坐标.解:(1)将C(0.5,0).D(0,2)代入y=kx+b得,,解得,∴直线l2的函数解析式为y=﹣4x+2;(2)当﹣4x+2=x﹣3时,∴x=1,∴E(1,﹣2),过点E作EF⊥x轴于F,∴EF=OD=2,∵∠ODC=∠CEF,∠DCO=∠ECF,∴△DOC≌△EFC(AAS),∴CD=CE;(3)∵∠POB=∠BDE,∴点P在l1上有两个位置,当点P在点B上方时,如图,∴OP∥DE,∴直线OP的函数解析式为y=﹣4x,∴﹣4x=x﹣3,∴x=,当x=时,y=﹣,∴P(,﹣),当点P在点B的下方时,设点P关于y轴的对称点为Q,连接OQ交l1为点P',∴Q(﹣),则直线OQ的函数解析式为y4,∴直线OQ与l1的交点为P'(﹣1,﹣4),综上所述:P(,﹣)或(﹣1,﹣4).11.如图,在平面直角坐标系中,将一块等腰直角三角板△ABC放在第三象限,斜靠在两坐标轴上,点C坐标为(0,﹣4),直角顶点B坐标为(﹣1,0),一次函数y=kx+b的图象经过点A、C交x轴于点D.(1)求点A的坐标;(2)求直线AC与坐标轴围成的三角形的面积.解:(1)作AE⊥x轴,垂足为E.∵∠AEB=90°,∴∠ABE+∠CBO=90°.在Rt△AEB中,∵∠ABE+∠EAB=90°,∴∠CBO=∠EAB,在△AEB和△BOC中,,∴△AEB≌△BOC(AAS).∴AE=BO=1,BE=OC=4,∴OE=OB+BE=1+4=5,∴A(﹣5,﹣1).(2)把A(﹣5,﹣1),C(0,﹣4)代入y=kx+b,得,解得,函数解析式为:y=﹣x﹣4,当y=0时,x=﹣,D(﹣,0).S△COD=××4=.12.如图,直线l1:y=x+3分别与直线l2:y=kx+b(k≠0)、直线l3:y=k1x+b1(k1≠0)交于A、B两点,直线l1交y轴于点E,直线l2与x轴和y轴分别交于C、D两点,已知点A的纵坐标为,B的横坐标为1,l2∥l3,OD=1,连BD.(1)求直线l3的解析式;(2)求△ABD的面积.解:(1)在y=x+3中,令y=,则x=﹣,∴A(﹣,),∵OD=1,∴D(0,﹣1),把点A,D的坐标代入l2:y=kx+b,可得,解得,∴l2:y=﹣x﹣1,在y=x+3中,令x=1,则y=4,∴B(1,4),∵l2∥l3,∴k1=﹣,把B(1,4)代入y=﹣x+b1可得,4=﹣+b1,∴b1=,∴直线l3的解析式为y=﹣x+;(2)在y=x+3中,令x=0,则y=3,∴E(0,3),∴DE=3+1=4,=DE(|x A|+|x B|)=(+1)=5.∴S△ABD13.如图,一次函数y=x﹣2的图象与x轴交于点A,与反比例函数y=(x>0)的图象交于点B,且点B的纵坐标为1.(1)求反比例函数y=(x>0)的表达式;(2)过点A作x轴的垂线交反比例函数y=(x>0)的图象于点C,平移直线y=x ﹣2得到过点C的直线l,l的函数表达式为y=mx+n,结合函数的图象,求>mx+n对应x的取值范围.解:(1)∵点B在一次函数y=x﹣2的图象上,且B的纵坐标为1,∴1=,∴x=6,∴B(6,1),∵反比例函数y=(x>0)的图象过点B,∴,∴k=6,∴反比例函数的表达式为(x>0);(2)∵一次函数y=x﹣2的图象与x轴交于点A,∴令y=0得,,∴x=4,∴A(4,0),∵CA⊥x轴,∴点C的横坐标为4,结合函数图象可知,要求>mx+n,即反比例函数y=的图象在一次函数y=mx+n的图象的上方,∴0<x<4.14.已知抛物线y=ax2﹣a(a>0).(1)求抛物线与x轴的交点坐标;(2)设C为抛物线上的一定点,抛物线和x轴交点为E、F,直线l:y=kx+2k+3与抛物线交于点A、B(点B与点C不重合),与y轴交于点P,直线BD垂直于直线y=﹣a,垂足为D,且△CEF为等腰直角三角形.①求点C的坐标和抛物线的解析式;②证明:对于每一个给定的实数k,都有DP∥AC.解:(1)在y=ax2﹣a中,令y=0,得ax2﹣a=0,∵a>0,∴x2﹣1=0,解得:x=﹣1或x=1,∴抛物线与x轴的交点坐标为(﹣1,0)和(1,0);(2)①∵y=ax2﹣a,∴E(﹣1,0),F(1,0),∵△CEF为等腰直角三角形,∴CE=CF,∠ECF=90°,∠CEF=∠CFE=45°,∵∠EOC=∠FOC=90°,OE=OF=1,∴OC=OE=1,∴C(0,﹣1),将C(0,﹣1)代入y=ax2﹣a中,则﹣a=﹣1,∴a=1,∴抛物线的解析式为y=x2﹣1;②由题意得:,解得:或,∴A(﹣2,3),B(k+2,k2+4k+3),且k+2≠0,∵直线BD垂直于直线y=﹣1,垂足为D,∴D(k+2,﹣1),在y=kx+2k+3中,令x=0,得y=2k+3,∴P(0,2k+3),设直线AC解析式为y=mx+n,则,解得:,∴直线AC解析式为y=﹣2x﹣1,设直线DP的解析式为y=m′x+n′,则,解得:,∴直线DP的解析式为y=﹣2x+2k+3,∴AC∥DP.15.定义:已知直线l:y=kx+b(k≠0),则k叫直线l的斜率.性质:直线l1:y=k1x+b1.l2:y=k2x+b2(两直线斜率存在且均不为0),若直线l1⊥l2,则k1k2=﹣1(1)应用:若直线y=2x+1与y=kx﹣1互相垂直,求斜率k的值;(2)探究:一直线过点A(2,3),且与直线y=﹣x+3互相垂直,求该直线的解析式.解:(1)∵直线y=2x+1与y=kx﹣1互相垂直,∴2•k=﹣1,∴k=﹣;(2)设该直线的解析式为y=kx+b,∵直线y=kx+b与直线y=﹣x+3互相垂直,∴﹣k=﹣1,解得k=3,把A(2,3)代入y=3x+b得6+b=3,解得b=﹣3,∴该直线的解析式为y=3x﹣3.16.在平面几何中,我们学过两条直线垂直的定义,下面就两个一次函数的图象所确定的两条直线,给出它们垂直的定义:设一次函数y=k1x+b(k1≠0)的图象为直线l1,一次函数y=k2x+b2(k≠0)的图象为直线l2,若k1•k2=﹣1,我们就称直线l1与直线l2互相垂直,如直线y=3x﹣1与直线y=﹣x+1,因为3×(﹣)=﹣1,所以相互垂直.根据以上定义内容,解答下面的问题:(1)求过点P(1,2)且与已知直线y=0.5x﹣2垂直的直线l的函数表达式,并在如图所示的坐标系中画出直线l的图象.(2)求(1)问中的两条直线与y轴所围的三角形的面积;(3)已知点A(0,2),点B,C分别是(1)问中直线l和x轴上的动点,求出△ABC 周长的最小值.解:(1)设直线l的函数表达式为y=kx+b,∵直线l与直线y=0.5x﹣2垂直,∴k=﹣2,∵直线l过点P(1,2),∴﹣2×1+b=2,∴b=4.∴直线l的函数表达式为y=﹣2x+4;直线l的图象如图;(2)解方程组得,,∵直线y=0.5x﹣2与y轴的交点为(0,﹣2),直线l的函数表达式为y=﹣2x+4与y轴的交点为(0,4),∴两条直线与y轴所围的三角形的面积=×6×=;(3)∵点A(0,2)关于x轴的对称点为E(0,﹣2),关于直线l的对称点D(,),连接DE交直线l于B,交x轴于C,则此时,△ABC周长的值最小,△ABC周长的最小值=DE==.17.如图,在平面直角坐标系中,反比例函数的图象经过点A(﹣4,3),将点A向右平移2个单位长度,再向上平移a个单位长度得到点B,点B恰好落在该函数的图象上,过A,B两点的直线与y轴交于点C.(1)求k的值及点C的坐标;(2)在y轴上有一点D(0,4),连接AD,BD,求△ABD的面积.解:(1)设反比例函数表达式为,把A(﹣4,3)代入得,3=,解得k=﹣4×3=﹣12.∴反比例函数的表达式为.∵将点A向右平移2个单位长度,再向上平移a个单位长度得到点B,∴点B的坐标为(﹣2,y).当x=﹣2时,.∴点B的坐标为(﹣2,6).设直线AB的函数表达式为y=kx+b.由题意,得,解得.∴.∵当x=0时,y=9,∴点C的坐标为(0,9).(2)由(1)知CD=OC﹣OD=9﹣4=5.∴|x A|﹣=.18.如图在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的函数关系式;(2)求△OAB的面积;(3)是否存在点M,使△OMC的面积与△OAB的面积相等?若存在求出此时点M的坐标;若不存在,说明理由.解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:.则直线的解析式是:y=﹣x+6;(2)∵y=﹣x+6,当y=0时,x=6,∴B(0,6),∴OB=6,∴△OAB的面积=×6×2=6;(3)存在点M,使△OMC的面积与△OAB的面积相等,理由如下:如图所示:设OA的解析式是y=mx,则42,解得:m=.则直线OA的解析式是:y=x,∵点C(0,6),∴OC=6,∴OB=OC=6,∵△OMC的面积与△OAB的面积相等,∴M到y轴的距离=点A的纵坐标2,∴点M的横坐标为2或﹣2;当M的横坐标为2时,在y=x中,当x=2时,y=1,则M的坐标是(2,1);在y=﹣x+6中,当x=2则y=4,则M的坐标是(2,4).则M的坐标为(2,1)或(2,4).当M的横坐标为﹣2时,在y=﹣x+6中,当x=﹣2时,y=8,则M的坐标是(﹣2,8).综上所述:点M的坐标为(2,1)或(2,4)或(﹣2,8).19.如图1,平面直角坐标系中,直线y=x﹣2与x轴、y轴分别交于点A,B,直线y=﹣x+b经过点A,并与y轴交于点C.(1)求A,B两点的坐标及b的值;(2)如图2,动点P从原点O出发,以每秒1个单位长度的速度沿x轴正方向运动.过点P作x轴的垂线,分别交直线AC,AB于点D,E.设点P运动的时间为t.点D的坐标为(t,﹣t+4).点E的坐标为(t,t﹣2);(均用含t的式子表示)(3)在(2)的条件下,当点P在线段OA上时,探究是否存在某一时刻,使DE=OB?若存在,求出此时△ADE的面积;若不存在说明理由.解:(1)令y=0,则x=4,∴点A的坐标为(4,0),令x=0,则y=﹣2,∴点B的坐标为(0,﹣2),将A(4,0)代入y=﹣x+b,得0=﹣4+b,解得b=4;(2)由(1)知,直线AC的表达式为y=﹣x+4,∵点P(t,0),∵PD⊥x轴,∴D(t,﹣t+4),E(t,t﹣2),故答案为(t,﹣t+4),(t,t﹣2);(3)存在t,使DE=OB,理由如下:∵点P在线段OA上,∴0≤t≤4,由(2)知D(t,﹣t+4),E(t,t﹣2),∴DE=﹣t+4﹣(t﹣2)=﹣t+6,∵B(0,﹣2),∴OB=2,∵DE=OB,∴﹣t+6=2,解得:t=,∴AP=4﹣t=4﹣=,=DE•AP=×2×=.∴S△ADE20.如图,已知一次函数y1=kx+b的图象与函数y2=(x>0)的图象交于A(6,﹣),B(,n)两点,与y轴交于点C.将直线AB沿y轴向上平移t个单位长度得到直线DE,DE与y轴交于点F.(1)求y1与y2的解析式;(2)观察图象,直接写出y1<y2时x的取值范围;(3)连接AD,CD,若△ACD的面积为6,则t的值为2.解:(1)将点A(6,﹣)代入y2=中,∴y2=,∵B(,n)在y2=中,可得n=﹣6,∴B(,﹣6),将点A、B代入y1=kx+b,∴,解得,∴y1=x﹣;(2)∵一次函数与反比例函数交点为A(6,﹣),B(,﹣6),∴<x<6时,y1<y2;(3)在y1=x﹣中,令x=0,则y=﹣,∴C(0,﹣),∵直线AB沿y轴向上平移t个单位长度,∴直线DE的解析式为y=x﹣+t,∴F点坐标为(0,﹣+t),过点F作GF⊥AB于点G,连接AF,直线AB与x轴交点为(,0),与y轴交点C(0,﹣),∴∠OCA=45°,∴FG=CG,∵FC=t,∴FG=t,∵A(6,﹣),C(0,﹣),∵AB∥DF,=S△ACF,∴S△ACD∴×6×t=6,∴t=2,故答案为:2.21.如图,抛物线y=ax2+bx与直线l交于点A(1,5)、B(6,0),点C是l上方的抛物线上的一动点,过C作CD⊥x轴于点D,交直线l于点E.连接AC、BC.(1)求抛物线的解析式;(2)设点C的横坐标为n,△的面积为S,求出S的最大值;(3)在抛物线上是否存在点P,使得△PAB是直角三角形,且始终满足AB边为直角边?若存在,求出所有符合条件的P的坐标;若不存在,简要说明理由.解:(1)∵抛物线y=ax2+bx与直线l交于点A(1,5)、B(6,0),∴,解得,∴抛物线的解析式为y=﹣x2+6x;(2)易求直线l的解析式为y=﹣x+6.由题意,知C(n,﹣n2+6n),E(n,﹣n+6),∴EC=(﹣n2+6n)﹣(﹣n+6),即EC=﹣n2+7n﹣6.过A作AF⊥CD于F,则AF=n﹣1,DB=6﹣n,+S△BCE∴S=S△ACE=×EC×(n﹣1)+×EC×(6﹣n)=×EC×5=(﹣n2+7n﹣6),即S=﹣n2+n﹣15,配方得S=﹣(n﹣)2+.∵﹣<0,=;∴S有最大值,当n=时,S最大值(3)在抛物线上存在点P,能够使得△PAB是直角三角形,且始终满足AB边为直角边.分两种情况:①当∠PBA=90°时,∵∠ABO=45°,∴过点B且垂直于AB y=x﹣6,解方程组,得,,∵B(6,0),∴P1(﹣1,﹣7);②当∠PAB=90°时,∵过点A且垂直于AB的直线解析式为y=x+4,解方程组,得,,∵A(1,5),∴P2(4,8).综上所述,符合条件的P点坐标为P1(﹣1,﹣7),P2(4,8).。

八年级数学一次函数中的面积问题课件

八年级数学一次函数中的面积问题课件

x
O
B(1,1)
(1)
B
(2)
2. 如图(2),△ABC的面积为
.
课堂拓展
已知点P(x,y)是第二象限内直线y=x+6上
的一个动点,点A的坐标为(-4,0),在点P
运动的过程中, △OPA的面积为S.
(1)试写出S与x的函数关系式, 并写出x的取值范围.
y
y=x+6
(△2O)PA当的点面P积运为动8到. 什么位置时PP,PPPP
已知如图:直线y=x+2与直线y=-2x+5交于点A.
直y=x线+2y分=-2别x+交5分x轴别、交yx轴轴于、点y轴E、于D点. B、Cy,直线
(1)求△ACE的面积.
y=x+2
(2)求四边形ADOB的面积.
C
A
D
E O Bx
y=-2x+5
如何求平面直角坐标系中的 图形的面积?
1.如果三角形有一边在坐标轴上(或平 行于坐标轴),直接用面积公式求面积.
2.如果三角形任何一边都不在坐标轴上, 也不平行于坐标轴,则需转化为几个有边 在坐标轴上的三角形面积之和(或差).
3.四边形面积常转化为若干个三角形 面积之和(或差).
即学即练
1.已知:如图(1),在平面直角坐标系中,
A(-1,3)、B(3,-2),则△AOB的面积

.y
A
C
A(3,6)
C(7,4)
PP
Ox
A
课堂小结:
谈谈作业你: 的收获! 1、优化设计54页第11题 2、优化设计64页第9题 3、整理课堂拓展问题
P
MO(H1,0) B
F y=-x-2

人教版八年级下册19.2.3一次函数与三角形的面积(教案)

人教版八年级下册19.2.3一次函数与三角形的面积(教案)
-实际问题的解决:学会将实际问题转化为数学模型,利用一次函数求解三角形面积。
举例:在求解一个三角形面积的问题时,首先要根据已知条件列出一次函数表达式,然后运用面积公式进行计算。如,给定三角形的一边长为x,这边上的高为kx+b,要求解该三角形的面积。
2.教学难点
-理解一次函数与三角形底边、高的关系:学生需要理解一次函数在三角形中的应用,如何表示底边与高的关系。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一次函数与三角形面积的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这一知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
人教版八年级下册19.2.3一次函数与三角形的面积(教案)
一、教学内容
人教版八年级下册19.2.3一次函数与三角形的面积:
1.理解一次函数与三角形面积的关系;
2.掌握利用一次函数求解三角形面积的方法;
3.应用一次函数与三角形面积的关系解决实际问题。
具体内容包括:
-利用一次函数表示三角形底边与高的关系;
-函数值与实际意义的对应:在应用一次函数求解三角形面积时,学生需要明白函数值在几何图形中代表的实际意义。
-实际问题的转化:将实际问题抽象成数学模型,特别是涉及一次函数与三角形面积结合的问题。
举例1:在三角形面积问题中,学生可能会对一次函数的斜率k和截距b在几何图形中代表的意义感到困惑。教师需要通过具体实例解释,如斜率k表示高的变化率,截距b表示高在y轴上的起点。

一次函数之面积问题(讲义及答案)

一次函数之面积问题(讲义及答案)

一次函数之面积问题(讲义)➢知识点睛1.坐标系中处理面积问题,要寻找并利用横平竖直的线,通常有以下三种思路:①公式法(规则图形);②割补法(分割求和、补形作差);③转化法(例:同底等高).2.坐标系中面积问题的处理方法举例①割补法——铅垂法求面积:B()2APB B AS PM x x=⋅⋅-△②转化法——借助平行线转化:l1l2如图,满足S△ABP=S△ABC的点P都在直线l1,l2上.➢精讲精练1.如图,在平面直角坐标系中,已知A(2,3),B(4,2),则△AOB的面积为___________.2.如图,点A,B在直线74y kx=+上,点A的坐标为(-1,3),点B的横坐标为3,则△AOB的面积为___________.3.如图,直线y=-x+4与x轴、y轴分别交于点A,B,点P的坐标为(-2,2),则S△PAB=___________.4.如图,一次函数y=kx+5的图象经过点A(1,4),点B是一次函数y=kx+5的图象与正比例函数23y x的图象的交点,则△AOB的面积为___________.5.如图,直线l1:y=x+1与x轴、y轴分别交于点A,B,直线l2:y=kx-2与x轴、y轴分别交于点C,D,直线l1,l2相交于点P.若S△APD=92,则k的值为__________.6.如图,在平面直角坐标系中,已知A(2,4),B(6,6),C(8,2),则四边形OABC的面积为___________.7.如图,在平面直角坐标系中,已知点A(2,1),点B(8,4),点C(m,2m-3)在直线AB上方,若△ABC的面积为9,则m的值为________.8.如图,直线l1:y=x与直线l2:y=-2x+3相交于点A,点B在直线l1上,且横坐标为4.C为l2上的一个动点,且在点A的左侧,若△ABC的面积为18,则点C的坐标为__________.9.如图,直线112y x=-+与x轴、y轴分别交于点A,B,点C的坐标为(1,2),点P为坐标轴上一点,若S△ABP =S△ABC,则点P的坐标为__________.10.如图,在平面直角坐标系中,一次函数y=2x+4的图象与x轴、y轴分别交于点A,B,过点A的直线交y轴正半轴于点M,且点M为线段OB的中点.(1)求直线AM的函数解析式;(2)若点P是直线AM上一点,使得S△ABP =S△AOB,请直接写出点P的坐标.【参考答案】1. 42.7 23.84.55.5 26.247. 48.(-3,9)9.(0,52),(5,0),(-1,0),(0,12-)10.(1)直线AM的函数解析式为y=x+2;(2)P1(2,4),P2(-6,-4)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

K>0 或 K<0 数形结合
B
0
C
实用文档
A
4
x
变式训练 2:
已知直线y=2x+4与直线y=-x+1
求两直线与x轴所围成的三角形的面积.
实用文档
能力提升:
看看谁最强
1
如图,已知: 直线y= - 2 x+2分别交
两坐标轴于A、B两点,M是线段AB上一个动
点,设M的横坐标为x,△OMB的面积为S.
(1)写出S与x的函数关系式;
3)设△OBC中位于直线 l 左侧部分的面积
为S,求S与x之间的函数关系式
实用文档
y
y=x
CC F
0P
B
x
y=-2x+6
实用文档
1,点到两坐标轴的距离 2,求两直线的交点坐标 3,一次函数图象性质 4,点、图形关于直线对称 转化思想、数形结合思想、分类讨论思想
实用文档
自我检测
一次函数的图象交x 轴于点A(-6,0),
专题学习
与一次函数有关的面积问题
实用文档
y
知识储备
A(-3,2)3 N 2
M
0
F
D
x
P (x ,y)
实用文档
2.一次函数 y=kx+b (k,b 为常数,且k≠0) 的图像与x轴、y轴交点坐标.
y
与x轴交点坐标: A:( b ,0)
B
k
与y轴交点坐标: B:(0,b)
0A
x
实用文档
3. 已知:直线 y= 2x+1与直线 y=-x+4
(2)若△OMB的面积为8,求点M的坐标;
y
若 M在直线AB上 l A(0,2)
M
转化思想
(4,0)
O 实用文档
H
Bx
挑战自我
高手是你吗?
如图:直线OC、BC的函数关系式分别为
y=x和y=-2x+6,动点P(x,0)在线段OB上移动
y
1)求点C的坐标;
C y=x
2)若点A(0,1) 当点P运动到什么位置,
B
0 y=-2x+6
x
AP+CP最小;
实用文档Biblioteka yy=xCC A(0,1)
D 0P
B
x
y=-2x+6
实用文档
挑战自我
高手是你吗?
如图:直线OC、BC的函数关系式分别为 y=x和y=-2x+6,动点P(x,0)在线段OB上移动
过点P作直线 l 与x轴垂直.
1)求点C的坐标; 2)若A点坐标为(0,1),当点P运动到 么位置时,AP+CP最小;
与 y轴交于B,若△AOB的面积为12,且 y
随 x的增大而减少,求一次函数的解析式.
实用文档
自我检测
2、直线 yx2 与 x轴,y轴分别交于点A
和点B.另一直线 ykxb经过点C(1,0)
且把△AOB分成两部分面积相等,求 k、b
的值.
实用文档
相交于点 A,求交点A的坐标.
方法1(方程组): 方法2(方程):
y 2x 1
2x+1=-x+4
y x 4
A(1,3)
实用文档
牛刀小试
比比谁最快
求:直线y=2x+4与两坐标轴所围成面积
S=4
B(0,4)
A(-2,0)
实用文档
变式训练1:
1.已知直线y=kx+b与x轴交于点(4,0) , 函数图象与坐标轴所围成的三角形的面积 是8,求直线的解析式. y
相关文档
最新文档