人教版八年级数学第十一章三角形总复习课件 PPT
合集下载
人教版数学八年级上册全套ppt课件(共1200页)
由以上讨论可知,可以围成底边长是4cm的等腰三角形.
例4 如图,D是△ABC 的边AC上一点,AD=BD, 试判断AC 与BC 的大小.
三角形的分类 问题1:观察下列三角形,说一说,按照三角形内角 的大小,三角形可以分为哪几类?
锐角三角形、 直角三角形、 钝角三角形.
问题2:你能找出下列三角形各自的特点吗?
三边均 不相等
有两条 边相等
腰
顶角 底角
三条边 均相等
不等边三角形
等腰三角形
等边三角形
底边
总结归纳
➢三条边各不相等的三角形叫做不等边三角形 ; ➢有两条边相等的三角形叫做等腰三角形; ➢三条边都相等的三角形叫做等边三角形.
物到微小的分子结构,都有什么样的形象? (2)在我们的生活中有没有这样的形象呢?试举例.
讲授新课
三角形的概念
问题1:观察下面三角形的形成过程,说一说什么叫三角形? A
定义:由不在同一条直线上的三条线段
首尾顺次相接所组成的图形叫作三角形.
B
C
问题2:三角形中有几条线段?有几个角?
有三条线段,三个角 边:线段AB,BC,CA是三角形的边. 顶点:点A,B,C是三角形的顶点, 角:∠A,∠B,∠C叫作三角形的内角,简称三角
例3 用一条长为18cm的细绳围成一个等腰三角形. (1)如果腰长是底边长的2倍,那么各边的长是多少? (2)能围成有一边的长是4cm的等腰三角形吗?为什么 ?
解:(1)设底边长为xcm,则腰长为2xcm, x+2x+2x=18. 解得 x=3.6. 所以三边长分别为3.6cm、7.2cm、7.2cm.
三角形的三边关系
在A点的小狗,为了尽快吃到B点的香肠,它 选择A B 路线,而不选择A C B
人教版数学八上第十一章三角形复习课件共34张PPT
2
。
(3,3,1;2,2,3)
1、如图,求△ABC各内角的度数。 A
解:3x + 2x + x = 180
35xx
6x=180
X=30
23xx
B
xx C
∴三角形各内角的度数分别为:30°,60°,90°
2、已知三角形三个内角的度数比为1:3:5, 求解这:三设个三内个角内的角度分数别。为x,3x,5x
B A
小莉的设计方案:先在池塘旁取一个能
直接到达A和B处的点C,连结AC并延长至
D点,使AC=DC,连结BC并延长至E点,
使BC=EC,连结CD,用米尺测出DE的长,
这个长度就等于A,B两点的距离。请你说
明理由。
解: AC=DC
∠ACB=∠DCE
A
B
BC=EC
C
△ACB≌△DCE(SAS)
E
D
AB=DE
则x + 3x + 5x = 180 x=20
∴三角形三个内角分别为:20°,60°,100°
题型考查
1.符合条件∠A+∠B=62°的三角形是( C )
A、锐角三角形 C、钝角三角形
B、直角三角形 D、不能确定
2.在下列长度的四根木棒中,能与4㎝,9㎝ 两根木棒围成三角形的是( C )
A、4㎝ B、5㎝ C、9㎝ D、14㎝ 3.如图,在△ABC中,∠A=70° A
点,∠1=∠2,AE=DE,
试求AB=DC。
AD
12
BEC
简解:∵E是BC的中点, ∴BE=EC。又∴ ∠1=∠2,AE=DE, △ABE≌△DCE(SAS),∴AB=DC 。
3.如图,已知BE⊥AD, CF⊥AD,且BE=CF,请你 判断AD是△ABC的中线还是
(初二数学课件)人教版初中八年级数学上册第11章三角形11.1.1 三角形的边教学课件 (3)
探究新知 遮 阳 棚
探究新知
想一想 四边形没有稳定性,怎样使它稳定呢?
做一做 将四边形木架上再钉一根木条,将它的一对顶点
连接起来,然后再扭动它,这时木架的形状还会改变 吗?
探究新知
帮帮忙
1. 牧民阿其木家用于圈羊的木栅门,由于年久失修 已经变成如图甲,为什么会变形?
2. 为了恢复成原样图乙,而且要保持形状不变,他该 怎么做呢?
A.稳定性总是有益的,而不稳定性总是有害的 B.稳定性有利用价值,而不稳定性没有利用价值 C.稳定性和不稳定性均有利用价值 D.以上说法都不对
课堂检测
基础巩固题
3. 如图,工人师傅砌门时,常用木条EF固定门框ABCD,
使其不变形,这种做法的根据是( D )
A.两点之间线段最短
A
B.三角形两边之和大于第三边
课堂小结
三角形 独有性质
稳定 性
四边形具有不 稳定性
应用
素养目标
2. 了解三角形的稳定性和四边形不稳定性的 应用. 1. 了解三角形的稳定性和四边形的不稳定性.
探究新知 知识点 1 三角形的稳定性
动手做一做
1. 将三根木条用钉子钉成一个三角形木架. 2. 将四根木条用钉子钉成一个四边形木架.
探究新知 请同学们看看:三角形和四边形的模型,扭一扭模
型,它们的形状会改变吗?
具有稳定性 不具有稳定性 不具有稳定性
具有稳定性 不具有稳定性 具有稳定性
探究新知
知识点 2 四边形不稳定性的应用
四边形的不稳定性是我们常常需要克服的, 那么四边形的不稳定性在生活中有没有应用价值呢? 如果有,你能举出实例吗?
探究新知
四边形的不稳定性有广泛的应用
活 动 晾 衣 架
人教版八年级上册数学第十一章三角形全章课件
B
D
A DC
C
锐角三角形的三条高
每人画一个锐角三角形. (1) 你能画出这个三角形的三条高吗? (2) 这三条高之间有怎样的位置关系?
将你的结果与同伴进行交流.
锐角三角形的三条高是
B
在三角形的内部还是外部?
A
F
OE
C D
锐角三角形的三条高交于同一点. 锐角三角形的三条高都在三角形的内部.
直角三角形的三条高
(2)它们所在的直线交于一点吗? D
将你的结果与同伴进行交流.
钝角三角形的三条高不相交于 一点. 钝角三角形的三条高所在直线 交于一点.
O
F
B
C
E
从三角形中的一个顶点向它的对边所在直线作垂线, 顶点和垂足之间的线段 叫做三角形这边的高.
三角形的三条高的特性:
•锐角三角形 •直角三角形 •钝角三角形
E,F为AB上一点,CF⊥AD于H,判断下列说法哪些是正确的,
哪些是错误的. A
①AD是△ABE的角平分线( × )
②BE是△ ABD边AD上的中线( × ) ③BE是△ ABC边AC上的中线( × ) F
12 E G
④CH是△ ACD边AD上的高( √ ) B
H
D
C
三角形的高、中线与角平分线都是线段.
3.(滨州中考)若某三角形的两边长分别为3和4,则下列
长度的线段能作为其第三边的是(
)
A.1
B.5
C.7
D.9
【解析】选B.设第三边为x,则1<x<7.
4.若△ABC的三边为a,b,c,则化简︱a+b-c︱+︱ba-c︱的结果是( ). A. 2a-2b B.2a+2b+2c C. 2a D. 2a-2c
最新人教部编版八年级数学上册《第十一章 三角形【全章】》精品PPT优质课件
2.完成练习册本课时内容。
学习体会 1、本节课你学到了哪些基本知识? 2、本节课你学到了哪些解题方法? 3、还有哪些知识和方法上的问题?
Thank you!
Good Bye!
11.1 与三角形有关的线段
即三角形两边的和大于第三边. B
C
由不等式②③移项可得 BC >AB -AC, BC >AC -AB.由此你能得出什么结论?
A
三角形两边的差小于第三边.
B
C
问题:下列长度的三条线段能否组成三角形?为 什么?(1)3,4,5;(2)5,6,11;(3)5,6,10. 解:(1)能.因为3 + 4>5,3 + 5>4,4 + 5>3,
解:①如果 4 cm 长的边为底边,设腰长为 x cm,则
4 + 2x = 18. 解得 x = 7. ②如果 4 cm 长的边为腰,设底边长为 x cm,则
4×2 + x = 18. 解得 x = 10.
因为4 + 4<10,不符合三角形两边的和大于第 三边,所以不能围成腰长为 4 的等腰三角形.
基础巩固
随堂演练
1.下列说法:①等边三角形是等腰三角形;②
三角形按边分类可分为等腰三角形、等边三角形、
不等边三角形;③三角形的两边之差大于第三边;
④三角形按角分类应分为锐角三角形、直角三角
形、钝角三角形. 其中正确的有( B )
A.1个
B.2个
C.3个
D.4个
2.已知三角形的一边长为 5 cm,另一 边长为 3 cm .则第三边的长 x 的取值范围是 __2_c_m__<__x_<__8_c_m___.
拓展延伸 3.等腰三角形的周长为 20 厘米. (1)若已知腰长是底长的 2 倍,求各边的长; (2)若已知一边长为 6 厘米,求其他两边的长.
学习体会 1、本节课你学到了哪些基本知识? 2、本节课你学到了哪些解题方法? 3、还有哪些知识和方法上的问题?
Thank you!
Good Bye!
11.1 与三角形有关的线段
即三角形两边的和大于第三边. B
C
由不等式②③移项可得 BC >AB -AC, BC >AC -AB.由此你能得出什么结论?
A
三角形两边的差小于第三边.
B
C
问题:下列长度的三条线段能否组成三角形?为 什么?(1)3,4,5;(2)5,6,11;(3)5,6,10. 解:(1)能.因为3 + 4>5,3 + 5>4,4 + 5>3,
解:①如果 4 cm 长的边为底边,设腰长为 x cm,则
4 + 2x = 18. 解得 x = 7. ②如果 4 cm 长的边为腰,设底边长为 x cm,则
4×2 + x = 18. 解得 x = 10.
因为4 + 4<10,不符合三角形两边的和大于第 三边,所以不能围成腰长为 4 的等腰三角形.
基础巩固
随堂演练
1.下列说法:①等边三角形是等腰三角形;②
三角形按边分类可分为等腰三角形、等边三角形、
不等边三角形;③三角形的两边之差大于第三边;
④三角形按角分类应分为锐角三角形、直角三角
形、钝角三角形. 其中正确的有( B )
A.1个
B.2个
C.3个
D.4个
2.已知三角形的一边长为 5 cm,另一 边长为 3 cm .则第三边的长 x 的取值范围是 __2_c_m__<__x_<__8_c_m___.
拓展延伸 3.等腰三角形的周长为 20 厘米. (1)若已知腰长是底长的 2 倍,求各边的长; (2)若已知一边长为 6 厘米,求其他两边的长.
(初二数学课件)人教版初中八年级数学上册第11章三角形11.2.2 三角形的外角教学课件
∴∠ADB=180°–∠B–∠BAD =180°–36°–34°
B
DC
=110°.
巩固练习
11.1 与三角形有关的线段/
4. 如图,AD,BE,CF 是△ABC 的三条角平分线,则:
∠1 = ∠2 ;
1
∠3 = 2 ∠ABC ;
∠ACB = 2∠4.
A
1
2
12 E F
3
B
3
D
44
C
探究新知
三角形的 重要线段
解得x=4.
探究新知
11.1 与三角形有关的线段/
知识点 2 三角形中线的概念
我们学习了三角形的高,我们已经知道了三 角形的面积公式,你能经过三角形的一个顶点画 一条线段,将这个三角形分为面积相等的两个三 角形吗?
探究新知
11.1 与三角形有关的线段/
三角形的中线的定义
在三角形中,连接一个顶点与它对边的中点的线段叫做 三角形的中线.
巩固练习
11.1 与三角形有关的线段/
2.如图,(1)写出以AE为高的三角形;(2)当BC=8,AE=3, AB=6时,求AB边上的高的长度.
解:(1)△ABE,△ABD,△ABC,
△AED,△AEC,△ADC.
(2)设AB边上的高为x,
∵S△ABC=
1
2 BC·AE=
1
2AB·x
∴BC·AE=AB·x,8×3=6x
3条高,锐角三角 形:形内;钝角 三角形:形外; 直角三角形:直 角顶点
∵ AD是△ABC的BC上
的中线. ∴ BD=CD= 12BC.
3条,交点叫作三 角形的重心.形内
∵AD是△ABC的∠BAC
的平分线 ∴ ∠1=∠2= 12∠BAC
人教版八年级数学上册 第11章 第2节 与三角形有关的角 课件(共50张PPT)
三角形的外角和是360°
理论研讨 ∠1+∠2 +∠3 = ?
从哪些途径探究这个结果
A 1
3 B
C 2
三角形的外角和360° 方法1 方法2
A 1
B 2
解: ∠1+ ∠BAC=180°
∠2+ ∠ABC=180°
3 ∠3+ ∠ACB=180°
C
三个式子相加得到
∠1+ ∠2+ ∠3+ ∠BAC+ ∠ABC+∠ACB=540°
证法一 三角形的内角和等于1800.
延长BC到D, 在△ABC的外部,以CA为一边,
CE为另一边作∠1=∠A,
于是CE∥BA (内错角相等,两直线平行).
∴∠B=∠2
(两直线平行,同位角相等). A
∵∠1+∠2+∠ACB=180°
∴∠A+∠B+∠ACB=180°
B
E
12
CD
证法二 三角形的内角和等于1800.
例题讲解2 已知△ABC中,∠ABC=∠C=2∠A ,
A
BD是AC边上的高,求∠DBC的度数。
解:设∠A=x0,则∠ABC=∠C=2x0
∴x+2x+2x=180(三角形内角和定理)
解得x=36 ∴∠C=2×360=720
D 在△BDC中,∵∠BDC=900
?
(三角形高的定义)
B
C
∴∠DBC=1800-900-720(三角形内角和定理)
A B
E
解:过C作CE平行于AB
2
1 ∴ ∠1= ∠B
C D (两直线平行,同位角相等)
∠2= ∠A
(两直线平行,内错角相等)
∴∠ACD= ∠1+ ∠2= ∠A+ ∠B
理论研讨 ∠1+∠2 +∠3 = ?
从哪些途径探究这个结果
A 1
3 B
C 2
三角形的外角和360° 方法1 方法2
A 1
B 2
解: ∠1+ ∠BAC=180°
∠2+ ∠ABC=180°
3 ∠3+ ∠ACB=180°
C
三个式子相加得到
∠1+ ∠2+ ∠3+ ∠BAC+ ∠ABC+∠ACB=540°
证法一 三角形的内角和等于1800.
延长BC到D, 在△ABC的外部,以CA为一边,
CE为另一边作∠1=∠A,
于是CE∥BA (内错角相等,两直线平行).
∴∠B=∠2
(两直线平行,同位角相等). A
∵∠1+∠2+∠ACB=180°
∴∠A+∠B+∠ACB=180°
B
E
12
CD
证法二 三角形的内角和等于1800.
例题讲解2 已知△ABC中,∠ABC=∠C=2∠A ,
A
BD是AC边上的高,求∠DBC的度数。
解:设∠A=x0,则∠ABC=∠C=2x0
∴x+2x+2x=180(三角形内角和定理)
解得x=36 ∴∠C=2×360=720
D 在△BDC中,∵∠BDC=900
?
(三角形高的定义)
B
C
∴∠DBC=1800-900-720(三角形内角和定理)
A B
E
解:过C作CE平行于AB
2
1 ∴ ∠1= ∠B
C D (两直线平行,同位角相等)
∠2= ∠A
(两直线平行,内错角相等)
∴∠ACD= ∠1+ ∠2= ∠A+ ∠B
人教版数学八年级上册第十一章三角形教学课件
第三根木棒的长度可以是:12cm,14cm, 16cm, 18cm, 20cm ,22cm, 24cm ,26cm
练习3 3.张老师想制作一个三角形木架,现有两根 长度为19cm和9cm的木棒,如果要求第三 根木棒的长度是奇数,我有几种选法?第 三根的长度可以是多少?
有8种选法。
第三根木棒的长度可以是:11cm,13cm, 15cm ,17cm 19cm ,21cm, 23cm ,25cm
解:三角形像框第三边的取值范围是: ∵两边之差<第三边<两边之和
即10-3 < x < 10+3(7 < x < 13)
符合条件的数是12 ∴第三根木条应取12cm
小结 三角形:由不在同一直线上的三条线段首尾
顺次相接所组成的图形. A
c
b
B
a
三角形有基本要素
边 (AB、BC、CA)
基本要素 角 (∠A、∠B、∠C)
三角形中线的特点 ①任何三角形有三条中线,并且都在三角 形的内部,交与一点。
②三角形的中线是一条线段。
③三角形的任意一条中线把这个三角形分 成了两个面积相等的三角形。
三角形的表示法
A 我的姓是“△” 我的名字是:三个顶点 字母“A、B、C”
B
记法
C 三角形符号“△”,
如:上图的三角形记作:△ABC (或△BCA或 △CBA 等)
注意:表示三角形时,字母没有先后顺序,但通 常按逆时针来排列.
练习一 1.图中共有 5 个三角形,它们分别 是 :△_A_B_E_, _△_A_B_C_,_△_B_C_E_,_△__B_C_D__,△_C__D_E_ D A
重点:三角形的高、中线和角平分线的定义。
练习3 3.张老师想制作一个三角形木架,现有两根 长度为19cm和9cm的木棒,如果要求第三 根木棒的长度是奇数,我有几种选法?第 三根的长度可以是多少?
有8种选法。
第三根木棒的长度可以是:11cm,13cm, 15cm ,17cm 19cm ,21cm, 23cm ,25cm
解:三角形像框第三边的取值范围是: ∵两边之差<第三边<两边之和
即10-3 < x < 10+3(7 < x < 13)
符合条件的数是12 ∴第三根木条应取12cm
小结 三角形:由不在同一直线上的三条线段首尾
顺次相接所组成的图形. A
c
b
B
a
三角形有基本要素
边 (AB、BC、CA)
基本要素 角 (∠A、∠B、∠C)
三角形中线的特点 ①任何三角形有三条中线,并且都在三角 形的内部,交与一点。
②三角形的中线是一条线段。
③三角形的任意一条中线把这个三角形分 成了两个面积相等的三角形。
三角形的表示法
A 我的姓是“△” 我的名字是:三个顶点 字母“A、B、C”
B
记法
C 三角形符号“△”,
如:上图的三角形记作:△ABC (或△BCA或 △CBA 等)
注意:表示三角形时,字母没有先后顺序,但通 常按逆时针来排列.
练习一 1.图中共有 5 个三角形,它们分别 是 :△_A_B_E_, _△_A_B_C_,_△_B_C_E_,_△__B_C_D__,△_C__D_E_ D A
重点:三角形的高、中线和角平分线的定义。
(初二数学课件)人教版初中八年级数学上册第11章三角形11.2.2三角形的内角教学课件
解:∠C=180°×2–(40°+40°+150°)
=130°.
巩固练习
11.2 与三角形有关的角/
3.如图,在△ABC中,∠B=46°,∠C=54°,AD平分
∠BAC,交BC于点D,DE∥AB,交AC于点E,则
∠ADE的大小是( C )
A.45°
B.54°
C.40°
D.50°
探究新知
11.2 与三角形有关的角/
1
∴∠ACE= 2 ×90°=45°,
∴∠DCE=∠ACD–∠ACE=60°–45°=15°.
巩固练习
11.2 与三角形有关的角/
5.完成下列各题.
①在△ABC中,∠A=35°,∠ B=43 °,则∠ C= 102°
.
②在△ABC中,∠A :∠B:∠C=1:2:3,则△ABC是
_________三角形
探究新知
11.2 与三角形有关的角/
变 式 题 如图,CD是∠ACB的平分线,DE∥BC,∠A=50°,
∠B=70°,求∠EDC,∠BDC的度数.
解:∵∠A=50°,∠B=70°,
∴∠ACB=180°–∠A–∠B=60°.
∵CD是∠ACB的平分线,
1
2
∴∠BCD= ∠ACB=30°.
∵DE∥BC,
∴∠ACB=180°–54°–48°=78°,
∵CD平分∠ACB交AB于点D,
∴∠DCB= × 78°=39°,
∵DE∥BC,
∴∠CDE=∠DCB=39°.
课堂检测
11.2 与三角形有关的角/
基 础 巩 固 题
1.求出下列各图中的x值.
70
40
x
x°
x=70
=130°.
巩固练习
11.2 与三角形有关的角/
3.如图,在△ABC中,∠B=46°,∠C=54°,AD平分
∠BAC,交BC于点D,DE∥AB,交AC于点E,则
∠ADE的大小是( C )
A.45°
B.54°
C.40°
D.50°
探究新知
11.2 与三角形有关的角/
1
∴∠ACE= 2 ×90°=45°,
∴∠DCE=∠ACD–∠ACE=60°–45°=15°.
巩固练习
11.2 与三角形有关的角/
5.完成下列各题.
①在△ABC中,∠A=35°,∠ B=43 °,则∠ C= 102°
.
②在△ABC中,∠A :∠B:∠C=1:2:3,则△ABC是
_________三角形
探究新知
11.2 与三角形有关的角/
变 式 题 如图,CD是∠ACB的平分线,DE∥BC,∠A=50°,
∠B=70°,求∠EDC,∠BDC的度数.
解:∵∠A=50°,∠B=70°,
∴∠ACB=180°–∠A–∠B=60°.
∵CD是∠ACB的平分线,
1
2
∴∠BCD= ∠ACB=30°.
∵DE∥BC,
∴∠ACB=180°–54°–48°=78°,
∵CD平分∠ACB交AB于点D,
∴∠DCB= × 78°=39°,
∵DE∥BC,
∴∠CDE=∠DCB=39°.
课堂检测
11.2 与三角形有关的角/
基 础 巩 固 题
1.求出下列各图中的x值.
70
40
x
x°
x=70
人教版八年级上册数学第十一章《三角形》复习课件
;
C
EDF
B
(2)∠BAD=
=
;
(3)∠AFB=
=90°;
(4)SΔABC=
.
知识点三:三角形中的线段
变式练习:
1.在ΔABC中,CD是中线,已知BC-AC=5cm, ΔDBC的周长为25cm,求ΔADC的周长.
A
D
B
C
知识点三:三角形中的线段
变式练习:
1.在ΔABC中,CD是中线,已知BC-AC=5cm,
知识点一:三角形的三边关系
变式练习: 1.若三角形三边长为2,4,m,则m的值不可以是(D) A.3 B.4 C.5 D.6 2.若等腰三角形的两边长是3cm和5cm,则它的周长是( C ) A.11cm B.13cm C.11cm或13cm D.无法确定 3.若等腰三角形的两边长是3cm和6cm,则它的周长是( B ) A.12cm B.15cm C.12cm或15cm D.无法确定 4.若三角形的两边长是3cm和6cm,若第三边为奇数,则它的周长 可能是( C ) A.12cm B.13cm C. 14cm D.15cm
如图1,∠BAD=∠CAD,则线段AD是△ABC的一条角 平分线.
在三角形中,连接一个顶点与它的对边中点的线段叫作 三角形的中线.
如图2,BE=EC,则线段AE是△ABC的BC边上的中线.
知识点三:三角形中的线段
例1.如图,在ΔABC中,AE是中线,AD是角
A
平分线,AF是高。填空:
(1)BE=
=
《三角形》复习用课件
知识点一:三角形的三边关系
三角形的任意两边之和大于第三边; 三角形的任意两边之差小于第三边;
知识点一:三角形的三边关系
人教版初中数学2011课标版八年级上册第十一章与三角形的边有关的线段(共29张PPT)
一、能否构成三角形
1.下列三条线段,能构成三角形的是 ( ) A、1cm,2cm,3 cm B、2cm,3cm ,4cm C、6cm,8cm ,15cm D、12cm,3cm,8cm
给出三角形的两条边,判断第三条边长度的 方法:
第三条边大于给出的两边长度之差,小于给出的两 边长度之和。
若给出的两边长度分别为a b,第三边长度为c, 则第三边长度为:a-b<c<a+b
___1_5_或___17__或__1_9。 2
2.一个三角形有两条边相等三角形的一边长3, 另一边长5,那么该三角形的周长是( ) A.8 B.11 C.13 D.11或13
3.若一个三角形有两边长为5和2,第三 边长为奇数,则此三角形的周长为____。
4.三角形ABC中,三边均为整数,周长为11, 且有一边为4,则这个三角形可能最长边是 ()
解得X=3.6 所以三边长分别为3.6厘米,7.2厘米,7.2 厘米。
解:因为长为4厘米的边可能是腰,也可能是底 边,所以需要分情况讨论。
(1)如果4厘米长为底边,设腰长为X厘米, 则4+2X=18,解得X=7.
(2)如果4厘米长为腰,设底边长为X厘米, 则2X4+X=18,解得X=10.
因为4+4<10,出现两边和小于第三边的情 况,所以不能围成腰长为4厘米的等腰三角形。
第十一章 三角形
11.1.1三角形的边
一、情景导入
生活中有许多使用 三角形的实例你能列举 出来并从图中找出三角 形吗?
二、探究新知
自学教材P2——P3 1.完成导学案预习导学 2.完成自学反馈部分
哪个是三角形? 什么是三角形?
例 说出图中有多少个三角 形,用符号“△”表示,并指 出每一个三角形的三条边.
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解: 由三角形两边之和大于第三边,
两边之差小于第三边得:
8-3<a<8+3,
∴ 5 <a<11
又∵第三边长为奇数,
∴ 第三条边长为 7、9。
7、等腰三角形一边的长是5 cm,另一边的 长是8cm,求它的周长
解:当腰长为5cm时,它的周长为: 5+5+8=18(cm) 当腰长为8cm时,它的周长为: 8+8+5=21(cm)
14.镶嵌
正三、四 、六边形 可以镶嵌
正方形
正三角形
正六边形
14.镶嵌
正三角形和正方形
60°×3+90°×2=360°
14.镶嵌
正三角形和正六边形
60°×4 + 120°=360° 60°×2+120°×2=360°
1.在△ABC中, (1)∠B=100°,∠A=∠C,则∠C= 4;0° (2)2∠A=∠B+∠C,则∠A= 6。0°
∴这个三角形的周长为18cm或21cm
8、五边形的五个内角度数之比为2︰3︰4︰5︰6,
求这个五边形的最大的内角和它的外角的度数.
解:设每一份为x°,则这五个角的度数分别为2x°, 3x°,4x°,5x°,6x°.
2x+3x+4x+5x+6x=(5-2)180 x=27 °
6 ×27=162 , 180-162=18 答:这个五边形的最大内角为162°,它的外角为18°.
A
2.如图,∠__A_D_B_是△ACD外角,
∠ADB= 115°,∠CAD= 80°,则
∠C = 35.°
BD
C
3、下列条件中能组成三角形的是( C ) A.5cm, 13cm, 7cm B.3cm, 5cm, 9cm C.14cm, 9cm, 6cm D.5cm, 6cm, 11cm
4、三角形的两边为7cm和5cm,则第三边
2
内角和 2×1800
外角和
3600
2
3 n-3
3 4 n-2
3×1800 4×1800 (n-2)×1800
3600
3600
3600
14.镶嵌
形状大小相同的任意三角形可镶嵌成一个平面
1
4
形状大小相同的 任意四边形可镶 嵌成一个平面
3
2
2
4
3
1
2
3
1
4
4
3
1
2
镶嵌的条件:拼接在同一个顶点处的各个 多边形的内角之和等于360°
12. 三角形的分类
(1) 按角分
锐角三角形
(2) 按边分
三角形 钝角三角形 直角三角形
三角形
不等边三角形
腰和底不等的等腰三角形
等腰三角形
等边三角形
大家学习辛苦了,还是要坚持
继续保持安静
13. n边形内角和、外角和、对角线
四边形
五边形
六边形
n 边形
图
形
过一个顶
1 点的对角
线条数
分成的三 角形个数
8. 三角形木架的形状不会改变,而四边形木架的形
状会改变.这就是说,三角形具有稳定性,而四边形没 有稳定性。
9. 三角形内角和定理
三角形的内角和等于1800 直角三角形的两个锐角互余。
A
B
C
10. 三角形外角和定理
三角形的外角和等于3600
A A
B
C
B
C
11.三角形的外角与内角的关系
三角形的一个外角等于与它不相邻的两个内角的和. 三角形的一个外角大于与它不相邻的任何一个内角.
9、小明在计算某个多边形的内角和时,由于粗心他 漏掉一个内角,求得内角和1680° ,你能否求得他 漏掉的内角和多边形内角和的正确结果吗?
解:设他漏掉的内角为x°,多边形的边数为n,则有:
(n-2)×180=1680+x
所以
n 11 60 x 180
n为正整数,0< x < 180,
所以
60 x 1
B
C
ED
12.如图,在△ABC中,AD⊥BC于点D, AE是 ∠BAC的角平分线, DF⊥AE于点F,∠B=38°, ∠C=74°,求∠ADF的度数?
A
F
B
C ED
13.如图△ABC中AD是高,AE、BF是角平分线,
它们相交于点O,∠A= 50°,∠C = 70°
A
求∠DAC,∠AOB
解∵AD是△ABC的高,∠C = 70°
人教版八年级数学第十一章三角形总复习课 件
三角形知识结构图
三角形有 关的线段
三
三角形
角
形
有关的角
三角形的分类
多边形与镶嵌
三角形的边
高线 中线 角平分线 三角形内角和 三角形外角和 内角与外角关系
知识要点 1. 三角形的三边关系:
(1) 三角形两边的和大于第三边 (2) 三角形两边的差小于第三边
2. 判断三条已知线段a、b、c能否 组成三角形.
x的范围是 _2_cm__<_x_<_1_2_c_m___ .
5.如图,AD是BC边上高,
BE是 △ABD的角平分线,
∠1=30°,∠2=40°,
B
则∠C=__60_°, ∠BED= 65°.
A 21
E
DC
6.已知两条线段的长分别是3cm、8cm , 要想拼成一个三角形,且第三条线段a的 长为奇数,问第三条线段应取多少长?
当a最长,且有b+c>a时,就可构成三角形.
3. 确定三角形第三边的取值范围:
两边之差<第三边<两边之和.
4. 三角形的主要线段
从三角形的一个顶点向它的对边所在直线作垂线,
顶点和垂足之间的线段叫做三角形的高线.
三角形一个角的平分线与它的对边相交,这个角
的顶点与交点之间的线段叫做三角形的角平分线。
连结三角形一个顶点与它对边中点 的线段叫做三角
形的中线。
A
A
A
D
B
C
B
D
C
B
D
C
5. 三角形的三条高线(或高线所在直线)交于一点.
锐角三角形三条高线交于三角形内部一点;
直角三角形三条高线交于直角顶点; 钝角三角形三条高线所在直线交于三角形外部一点.
A
A
F
A
E
D
F
B
D CCB B来自CDE6.三角形的三条中线交于三角形内部一点.
7. 三角形的三条角平分线交于三角形内部一点.
∴ ∠DAC =180°-90°-70°=20°
∵ ∠BAC =50°
B
∴ ∠ABC =180°-50°-70°=60°
∵ AE 和BF是角平分线
∴ ∠BAO =25°, ∠ABO =30°
∴ ∠AOB =180°-25°-30°=125°
OF C
ED
180
所以 n=12
解得x=120,
多边形的内角和为(12-2)× 180°= 1800°.
10、如图∠B=∠C,DE⊥BC于E,EF⊥AB于F,
∠ADE=140°,求∠FED的度数
A
F
D
C
B
E
11.如图,在△ABC中,AD⊥BC于点D, AE是 ∠BAC的角平分线,∠∠B=C3-6∠°B=,∠20C°=6,6°, A 你求能∠D发A现E的∠度DA数E与?∠B、∠C的关系吗?