高等数学(复旦大学版)第十章-多元函数积分学(一)

合集下载

专升本高等数学(一)-多元函数微积分学(一)_真题(含答案与解析)-交互

专升本高等数学(一)-多元函数微积分学(一)_真题(含答案与解析)-交互

专升本高等数学(一)-多元函数微积分学(一) (总分93, 做题时间90分钟)一、填空题1.求下列函数的定义域..SSS_FILL该题您未回答:х该问题分值: 1答案:x>0,y>0.2.求下列函数的定义域.u=ln(x2-y-1).SSS_FILL该题您未回答:х该问题分值: 1答案:y<x2-13.求下列函数的定义域..SSS_FILL该题您未回答:х该问题分值: 1答案:x≥0,y≥1,x2+1≥y.4.求下列函数的定义域..SSS_FILL该题您未回答:х该问题分值: 1答案:r2<x2+y2≤R2.5.设,则=______.该题您未回答:х该问题分值: 1答案:6.设,则=______.SSS_FILL该题您未回答:х该问题分值: 1答案:-2,先求出f(x,y)=x-7.设,则=______.SSS_FILL该题您未回答:х该问题分值: 1答案:8.设,则=______.SSS_FILL该题您未回答:х该问题分值: 1答案:-e.9.设函数,则=______,=______.SSS_FILL该题您未回答:х该问题分值: 1答案:10.设函数,则=______.该题您未回答:х该问题分值: 1答案:11.函数z=ln(1+x2-y2)的全微分dz=______.SSS_FILL该题您未回答:х该问题分值: 1答案:12.函数z=x2-2xy+y2的全微分=______.SSS_FILL该题您未回答:х该问题分值: 1答案:-2dx+2dy13.=______.SSS_FILL该题您未回答:х该问题分值: 1答案:14.若积分区域D是由x=0,x=1,y=0,y=1围成的矩形区域,则=______ SSS_FILL该题您未回答:х该问题分值: 1答案:15.交换二次积分次序=______.该题您未回答:х该问题分值: 1答案:16.设区域D={(x,y)|x2+y2≤4},则=______.SSS_FILL该题您未回答:х该问题分值: 1答案:π17.平面上一块半径为2的圆形薄板,其密度函数为1,则这块薄板的质量为______.SSS_FILL该题您未回答:х该问题分值: 1答案:4π.二、解答题求下列各函数对x,y的偏导数:SSS_TEXT_QUSTI1.z=e x2+y;该题您未回答:х该问题分值: 1答案:2xe x2+y,e x2+y;SSS_TEXT_QUSTI2.;该题您未回答:х该问题分值: 1答案:;SSS_TEXT_QUSTI3.z=ln(ln x+ln y);该题您未回答:х该问题分值: 1答案:;SSS_TEXT_QUSTI4.;该题您未回答:х该问题分值: 1答案:;SSS_TEXT_QUSTI5.z=sin(x+2y)+2xy;该题您未回答:х该问题分值: 1答案:cos(x+2y)+2y,2cos(x+2y)+2x;SSS_TEXT_QUSTI6.z=(xy)μ(其中μ为非零常数).该题您未回答:х该问题分值: 1答案:μy(xy)μ-1,μx(xy)μ-1.求下列函数的二阶偏导数:SSS_TEXT_QUSTI7.z=sin xy;该题您未回答:х该问题分值: 1答案:.SSS_TEXT_QUSTI8.z=ln(x2+xy+y2).该题您未回答:х该问题分值: 1答案:SSS_TEXT_QUSTI9.设函数z=ln(1-x+y)+x2y,求.该题您未回答:х该问题分值: 1答案:SSS_TEXT_QUSTI10.设z=x2y-xy2,x=ucos v,y=usinv,求.该题您未回答:х该问题分值: 1答案:=(2xy-y2)cos v+(x2-2xy)sin v=3u2sin vcos v(cos v-sin v).同样地,有.SSS_TEXT_QUSTI11.设z=arctan xy,y=e x,求.该题您未回答:х该问题分值: 1答案:.(注意:在本题中,不同于.)SSS_TEXT_QUSTI12.设,x=u-2v,y=2u+v,求.该题您未回答:х该问题分值: 1答案:SSS_TEXT_QUSTI13.设z=(2x+y)(2x+y),求.该题您未回答:х该问题分值: 1答案:SSS_TEXT_QUSTI14.设z=f(x2+y2,e xy),其中f(u,v)有连续偏导数,求.该题您未回答:х该问题分值: 1答案:设z=f(u,v),u=x2+y2,v=e xy,则由复合函数求偏导法则得SSS_TEXT_QUSTI15.设,其中φ有连续偏导数,证明.该题您未回答:х该问题分值: 1答案:因为,其中φ有连续偏导数,令u=xy,所以有,,将之代入即可证得.求下列各式确定的隐函数y=f(x)的导数:SSS_TEXT_QUSTI16.cos y-e x+2xy=0;该题您未回答:х该问题分值: 1答案:SSS_TEXT_QUSTI17..该题您未回答:х该问题分值: 1答案:求下列各式确定的隐函数z=f(x,y)的偏导数:SSS_TEXT_QUSTI18.x2+y2+z2-3xyz=0;该题您未回答:х该问题分值: 1答案:SSS_TEXT_QUSTI19..该题您未回答:х该问题分值: 1答案:SSS_TEXT_QUSTI20.设z=arctan(xy)+2x2+y,求dz.该题您未回答:х该问题分值: 1答案:求下列各函数的全微分dz:SSS_TEXT_QUSTI21.;该题您未回答:х该问题分值: 1答案:SSS_TEXT_QUSTI22.z=ln(3x-2y+3);该题您未回答:х该问题分值: 1答案:;SSS_TEXT_QUSTI23.z=e xy(x2+y2);该题您未回答:х该问题分值: 1答案:令u=xy,v=x2+y2,dz=e xy(x2+y2)[(3x2y+y3)dx+(3y2x+x3)dy];SSS_TEXT_QUSTI24.z=arctan xy;该题您未回答:х该问题分值: 1答案:SSS_TEXT_QUSTI25.z=xe-xy+sin(xy);该题您未回答:х该问题分值: 1答案:dz=[e-xy(1-xy)+ycos(xy)]dx+[-x2e-xy+xcos(xy)]dy;SSS_TEXT_QUSTI26.z=sin(x+y)-x2+y2.该题您未回答:х该问题分值: 1答案:dz=[cos(x+y)-2z]dx+[cos(x+y)+2y]dy.SSS_TEXT_QUSTI27.设,求该题您未回答:х该问题分值: 1答案:SSS_TEXT_QUSTI28.设z=f(2x+3y,e xy),其中f(u,v)有连续偏导数,求dz.该题您未回答:х该问题分值: 1答案:今u=2x+3y,υ=e xy,SSS_TEXT_QUSTI29.设z=z(x,y)是由方程yz+x2+z=0确定,求dz.该题您未回答:х该问题分值: 1答案:设SSS_TEXT_QUSTI30.设z=f(x,y),由方程x2+y2+z2-4z=0确定,求在点(1,-);(,0);(0,)处的全微分.该题您未回答:х该问题分值: 1答案:,(1)当x=1,时,由原方程得z=1或z=3.①当z=1时,②当z=3时,(2)当,y=0时,由原方程得z=1或z=3.①当z=1时,②当z=3时,(3)当x=0,时,由原方程得z=1或z=3.①当z=1时,②当z=3时,SSS_TEXT_QUSTI31.设z=f(x,y)由方程cos2x+cos2y=1+cos2z所确定,求dz.该题您未回答:х该问题分值: 1答案:令F(x,y,z)=cos2x+cos2y-cos2z-1,.求下列函数的极值与极值点.SSS_TEXT_QUSTI32.f(x,y)=4x+2y-x2-y2;该题您未回答:х该问题分值: 1.5答案:极大值点为(2,1),极大值f(2,1)=5;SSS_TEXT_QUSTI33.f(x,y)=e2x(x+y2+2y);该题您未回答:х该问题分值: 1.5答案:极小值点为(,-1),极小值;SSS_TEXT_QUSTI34.f(x,y)=y3-x2+6x-12y+5.该题您未回答:х该问题分值: 1.5答案:极大值点为(3,-2),极大值f(3,-2)=30.求下列条件极值.SSS_TEXT_QUSTI35.做一个体积为V的无盖的圆柱形桶,试问当桶的高和底面半径各是多少时,可使圆桶所用的材料最省.该题您未回答:х该问题分值: 1.5答案:设圆桶的高为h,底面半径为r,则桶的表面积为S=πr2+2πrh,体积V=πr2h,要求所用的材料最省,就是求表面积的最小值,且满足V=πr2h.构造拉格朗日函数F(r,h,λ)=πr2+2πrh+λ(πr2h-V)可解得.SSS_TEXT_QUSTI36.设生产某种产品的数量Q与所用两种原料A,B的数量x,y间有关系式Q=Q(x,y)=0.005x2y,欲用150元购买原料,已知A,B原料的单价分别为1元,2元,问购进两种原料各多少时,可使生产的产品数量最多?该题您未回答:х该问题分值: 1.5答案:设购买两种原料分别为x,y,则问题化为条件极值问题:求Q=0.005x2y在条件x+2y=150下的条件极值.可解得x=100,y=25.SSS_TEXT_QUSTI37.计算二重积分,其中D是由直线y=-1,y=1,x=1及x=2围成的平面区域.该题您未回答:х该问题分值: 1.5答案:3SSS_TEXT_QUSTI38.计算二重积分,其中D是由曲线y=x2及y=x所围成的平面区域.该题您未回答:х该问题分值: 1.5答案:.或.SSS_TEXT_QUSTI39.,其中D是由直线y=x,y=1及y轴所围成的平面区域.该题您未回答:х该问题分值: 1.5答案:.或SSS_TEXT_QUSTI40.,其中D是由直线x=2,y=x及双曲线xy=1所围成的平面区域.该题您未回答:х该问题分值: 1.5答案:SSS_TEXT_QUSTI41.,其中D是由直线y=0,,x=2所围成的平面区域.该题您未回答:х该问题分值: 1.5答案:SSS_TEXT_QUSTI42.,其中D是由直线y=x,y=2x,x=2,x=4所围成的平面区域.该题您未回答:х该问题分值: 1.5答案:SSS_TEXT_QUSTI43.求,其中D是由直线y=x,y轴,y=1所围成的平面区域.该题您未回答:х该问题分值: 1.5答案:说明如果将此题化为先对y积分后对x积分,其计算量较大.SSS_TEXT_QUSTI44.将二重积分化为二次积分,其中D是由直线x+y=1,x-y=1,x=0所围成的平面区域.该题您未回答:х该问题分值: 1.5答案:或交换下列二次积分次序.SSS_TEXT_QUSTI45.该题您未回答:х该问题分值: 1.5答案:SSS_TEXT_QUSTI46.(a>0为常数)该题您未回答:х该问题分值: 1.5答案:SSS_TEXT_QUSTI47.计算二重积分该题您未回答:х该问题分值: 1.5答案:试将下列直角坐标系下的二重积分化为极坐标系下的二重积分SSS_TEXT_QUSTI48.该题您未回答:х该问题分值: 1.5答案:SSS_TEXT_QUSTI49.该题您未回答:х该问题分值: 1.5说明首先根据给定的二次积分先画出积分区域,再将积分区域用极坐标表示出来.(1)的积分区域是半径为R,圆心为(R,0)的x轴上方的半圆,用极坐标表示为0≤θ≤,0≤r≤2Rcosθ;(2)的积分区域是以原点为圆心半径为R 的在第一象限内的圆.计算下列二重积分:SSS_TEXT_QUSTI50.,其中D为x2+y2≤a2,x≥0,y≥0所围成的区域;该题您未回答:х该问题分值: 1.5答案:SSS_TEXT_QUSTI51.,其中D为x2+y2≤1,x≥0所围成的区域;该题您未回答:х该问题分值: 1.5答案:SSS_TEXT_QUSTI52.,其中D为x2+y2≤4,x2+y2≥1,y≤x,y≥0所围成的区域;该题您未回答:х该问题分值: 1.5答案:SSS_TEXT_QUSTI53.,其中D为由x2+y2≤R2,x≥0,y≥0所围成的区域;该题您未回答:х该问题分值: 1.5积分区域D的极坐标表达式为0≤θ≤,0≤r≤R,于是;SSS_TEXT_QUSTI54.,其中D为以x2+y2=2x为边界的上半圆域.该题您未回答:х该问题分值: 1.5答案:SSS_TEXT_QUSTI55.利用重积分求由平面和三个坐标平面所围成的立体的体积(其中a>0,b>0,c>0).该题您未回答:х该问题分值: 1.5答案:由二重积分的几何意义知,,其中积分区域为x轴、y轴以及直线所围成的平面区域,于是SSS_TEXT_QUSTI56.利用二重积分求由曲线y=x2与y2=x所围成的面积.该题您未回答:х该问题分值: 1.5答案:由二重积分的性质3知,其中积分区域为曲线y=x2与y2=x所围成的平面图形,于是.SSS_TEXT_QUSTI57.求由柱面x2+y2=a2,z=0及平面x+y+z=a所围成的立体的体积.该题您未回答:х该问题分值: 1.5答案:由二重积分的几何意义知.其中D:x2+y2≤a2,利用极坐标系可得SSS_TEXT_QUSTI58.设有平面三角形薄片,其边界线可由方程x=0,y=x及y=1表示,薄片上的点(x,y)处的密度ρ(x,y)=x2+y2,求该三角形薄片的质量.该题您未回答:х该问题分值: 1.5答案:SSS_TEXT_QUSTI59.设半径为1的半圆形薄片上各点处的面密度等于该点到圆心的距离,求该薄片的质量.该题您未回答:х该问题分值: 1.5答案:先求密度函数为μ(x,y)=,于是有SSS_TEXT_QUSTI60.设f(x)在[0,1]上连续,证明该题您未回答:х该问题分值: 1.5答案:求证由可知积分区域为曲线y=x2,y=1,y轴所围成的平面区域,交换积分次序得SSS_TEXT_QUSTI61.,其中D为x2+(y-1)2≤1与x+y≤2所围成的区域.(提示:此题应在直角坐标系下求,先对x积分,积分区域要分块.)该题您未回答:х该问题分值: 1.5答案:在直角坐标系下求二重积分,先对x积分.1。

高等数学 -重 积 分

高等数学 -重 积 分

4
求曲边梯形面积的解题步骤 :
1) 大化小. 在区间 [a , b] 中任意插入 n –1 个分点
用直线 x xi 将曲边梯形分成 n 个小曲边梯形;
2) 常代变. 在第i 个窄曲边梯形上任取 i [xi1 , xi ]
窄曲边梯形面积

y
Ai f (i )xi (xi xi xi1 )

n
因此面积元素 也常
记作 dxdy, 二重积分记作
引例1中曲顶柱体体积:
13
关于二重积分定义的几点说明:
1、二重积分的值与D域的分法及 k 上 k , k
的取法无关。
2、二重积分是个极限值,是个数值。其大小只与
f x, y 及D有关而与积分变量的记号无关。
3、d 对应和式中的 i , 对D的分割是任意的,若用
(x y)2 (x y)3
D (x y)2 d D (x y)3 d
21
2. 设D 是第二象限的一个有界闭域 , 且 0 < y <1, 则
I1 yx3 d ,
D
的大小顺序为 ( D )
( A) I1 I2 I3;
I3
y
1 2
x
3
d
D
(B) I2 I1 I3 ;
(C) I3 I2 I1 ; (D) I3 I1 I2 .
平行于坐标轴的直线段来划分D ,那么除了靠边的一些
小区域外,绝大部分的小区域都是矩形的,由于
i 0, 靠边的小区域不作计较。
14
二重积分的几何意义
(1)z f (x, y) 0
zz f ( x, y)
V f ( x, y)d
D
(2)z f (x, y) 0

多元函数积分定义

多元函数积分定义

第一节 多元函数积分的概念与性质 1. 物体质量的计算
设有一质量非均匀分布的物体, 设有一质量非均匀分布的物体,其密度 是点M的函数 是点 的函数 µ = f (M ). 已知,怎样求物体的质量呢? 如果函数 f 已知,怎样求物体的质量呢?
在定积分中, 在定积分中,一根线密度为
µ = f ( M ) = f ( x)
性质5 估值性 估值性) 性质 (估值性)
mG ≤ ∫ f ( P ) dg ≤ MG
G
这个性质可以由m ≤ f ( P ) ≤ M 利用性质3 和性质4 推出.
b a
定积分 m(b − a) ≤ ∫ f ( x)dx ≤ M(b − a) 二重积分: 二重积分: m⋅σ ≤ ∫∫ f ( x, y)dσ ≤ M ⋅σ
i i
∆σ i
二重积分的几何意义
当被积函数 f ( x , y ) ≥ 0时, 二重积分是曲面 z = f ( x, y)为顶,
z z = f ( x, y)
V D y
其投影D为底曲顶柱体的体积. 其投影 为底曲顶柱体的体积. 为底曲顶柱体的体积 o f ( x, y)dσ = V ∫∫
D
当被积函数 f ( x , y ) ≤ 0时, 二重积分是曲顶柱体的体积的负值. 二重积分是曲顶柱体的体积的负值.
D

z
∫∫ f ( x , y )dσ = lim ∑ f (ξ i ,ηi )∆σ i λ →0 i =1
D
n
z = f ( x, y)
曲顶柱体
o
x
D任意划分为 个子域∆σi 任意划分为n个子域 任意划分为 (ξi ,ηi ) ∆σ i y 点 ( ξ i , η i ) ∈ ∆ σ i

(完整版)《高等数学》课程教学大纲

(完整版)《高等数学》课程教学大纲

《高等数学》课程教学大纲授课专业:通信工程专业学时:136学时学分:8学分开课学期:第1、第2学期适用对象:通信工程专业学生一、课程性质与任务本课程是理、工类专业的专业基础课,通过本课程的学习,要使学生掌握微积分学的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。

要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生的熟练运算能力和综合运用所学知识去分析解决问题的能力。

二、课程教学的基本要求通过本课程的学习,学生基本了解微积分学的基础理论;充分理解微积分学的背景思想及数学思想。

掌握微积分学的基本方法、手段、技巧,并具备一定的分析论证能力和较强的运算能力。

能较熟练地应用微积分学的思想方法解决应用问题。

三、课程教学内容高等数学(上)第一章函数、极限与连续(10学时)第二章导数和微分(12学时)第三章微分中值定理与导数的应用(12学时)第四章函数的积分(16学时)第五章定积分的应用(8学时)第六章无穷级数(10学时)高等数学(下)第七章向量与空间解析几何(6学时)第八章多元函数微分学(14学时)第九章多元函数微分学的应用(10学时)第十章多元函数积分学(I)(16学时)第十一章多元函数积分学(II)(10学时)第十二章常微分方程(12学时)四、教学重点、难点重点:极限的概念与性质;函数连续性的概念与性质;闭区间上连续函数的性质;微分中值定理与应用;用导数研究函数的性质;不定积分、定积分的计算;微积分学基本定理;正项级数敛散性的判定;幂级数的收敛定理;二元函数全微分的概念及性质;计算多元复合函数的偏导数与微分;隐函数定理及应用;重积分、曲线积分与曲面积分的计算;曲线积分与路径的无关性。

难点:极限的概念与理论;微分中值定理的应用;一元函数的泰勒定理;二元函数的极限;计算多元复合函数的偏导数与微分;对坐标的曲面积分的概念及计算;高斯公式;斯托克斯公式。

高等数学笔记(含数一内容)

高等数学笔记(含数一内容)

隐函数求导
参数方程确定的函数求导
分段函数求导
先讨论关键点是否连续,确定连续后再判断函数各个部分是否可导。
求函数高阶导
一般使用数学归纳法解决。
微分
可微
定义:设y=f(x) (x∈D),x₀∈D。若∆y=A∆x+৹(∆x),则称f(x)在x=x₀处可微。
性质
可微一定可导,可导一定可微(充要条件)
若∆y=A∆x+৹(∆x),则A=f'(x₀),即dy∣₍x=x₀₎=f'(x₀)dx
二阶线性微分方程解的结构 齐+齐=齐 齐 + 非齐 = 非齐 非齐 + 非齐 = 齐 (拆解性质)对于方程**,若f(x)=f1(x)+f2(x)(即可拆成两部分),则分别构造两个二阶非齐次线性微分方程,且φ1(x),φ2(x)分别为它们的特解,则 有原方程特解为:
y=φ1(x)+φ2(x) (系数和的特点)设φ1(x),φ2(x),...,φn(x),为方程**的解,则通解的组合形式为y=k1φ1(x)+k2φ2(x)+...+knφn(x) 若y为方程*的通解,则k1+k2+...+kn=0(系数和为0) 若y为方程**的通解,则k1+k2+...+kn=1(系数和为1) (二阶常系数线性微分方程通解形式推导定理)
函数f(x)∈ c【a,b】的性质(函数在区间内恒连续)
性质1:∃最大值 M 和最小值 m (最值); 性质2:∃M₀>0,使得∣f(x)∣≤M₀(有界);
性质3: ∀η ∈【m,M】,∃ξ∈【a,b】,使得f(ξ)=η(介值定理);
性质4:若 f(a)*f(b)<0,则∃c∈(a,b),使得f(c)=0(零点定理)。 连续函数的运算

高数(同济第六版)下册多元函数的积分学及其应用知识点

高数(同济第六版)下册多元函数的积分学及其应用知识点

第十章多元函数的积分学及其应用一、二重积分1.二重积分的概念�定义:设(,)f x y 是有界闭区域D 上的有界函数,“分割、近似、求和、取极限”:01(,)lim (,)n i iii D f x y d f λσξησ→==∆∑∫∫其中:D 为积分区域,(,)f x y 称为被积函数,d σ为面积元素。

�几何意义:当(,)0f x y ≥,(,)D f x y d σ∫∫表示以区域D 为底、以曲面(,)z f x y =为顶的曲顶柱体的体积。

�非均匀平面薄片的质量:(,)DM x y d µσ=∫∫。

2.二重积分的性质�性质1(线性性质).),(),()],(),([∫∫∫∫∫∫±=±DD D d y x g d y x f d y x g y x f σβσασβα�性质2(区域具有可加性)如果闭区域D 可被曲线分为两个没有公共内点的闭子区域1D 和2D ,则.),(),(),(21∫∫∫∫∫∫+=D D Dd y x f d y x f d y x f σσσ�性质3如果在闭区域D 上,σ,1),(=y x f 为D 的面积,则.1σσσ==⋅∫∫∫∫DD d d 几何意义:以D 为底、高为1的平顶柱体的体积在数值上等于柱体的底面积。

�性质4(单调性)如果在闭区域D 上,有),,(),(y x g y x f ≤则.),(),(∫∫∫∫≤DD d y x g d y x f σσ推论1.|),(|),(∫∫∫∫≤DD d y x f d y x f σσ推论2设m M ,分别是),(y x f 在闭区域D 上的最大值和最小值,σ为D 的面积,则.),(σσσM d y x f m D≤≤∫∫这个不等式称为二重积分的估值不等式。

�性质5(积分中值定理)如果函数(,)f x y D 上连续,σ是D 的面积,那么在D 上至少存在一点(,)ξη,使得(,)(,)Df x y d f σξησ=⋅∫∫。

多元函数积分学课件

多元函数积分学课件

解析
首先将二重积分拆分为两个定积 分,然后分别进行计算。
答案
$frac{4}{9}$
答案
$-frac{1}{6}$
解析
同样拆分二重积分,然后进行计 算。
例题2
计算$int_{0}^{1}int_{0}^{y}(x y)dxdy$
三重积分习题与解析
例题1
计算 $int_{0}^{1}int_{0}^{1}int_{0}^{x}xydzdxdy $
传导问题。
在几何中的应用
曲面面积和体积计算
积分可以用来计算曲面的面积和三维物体的体积,这在几何学中 非常重要。
曲线积分
在几何学中,曲线积分被用来计算曲线长度、面积和线段上的变化 量。
参数曲线和曲面
参数曲线和曲面可以用积分表示,这有助于研究几何对象的形状和 性质。
在工程中的应用
流体动力学
在航空航天、船舶和车辆设计中 ,积分被用来计算流体动力学效 应,如压力分布、速度场和流线 。
多元函数积分学课件
目 录
• 多元函数积分学概述 • 多元函数积分的计算方法 • 多元函数积分的几何意义 • 多元函数积分的性质与定理 • 多元函数积分的应用 • 多元函数积分习题与解析
01
多元函数积分学概述
定义与性质
定义
多元函数积分学是研究多元函数的积 分及其性质的一门学科,其基础概念 包括二重积分、三重积分、曲线积分 和曲面积分等。
计算步骤
首先确定积分区域,然后选择合适的 积分次序,最后根据定积分的计算公 式进行计算。
曲线上的第一类曲线积分计算
定义
第一类曲线积分是计算曲线上的函数值 与其对应的参数的乘积的积分,即求曲 线上的一个物理量(如质量、热量等) 的分布情况。

(完整版)《高等数学》课程教学大纲

(完整版)《高等数学》课程教学大纲

《高等数学》课程教学大纲授课专业:通信工程专业学时:136学时学分:8学分开课学期:第1、第2学期适用对象:通信工程专业学生一、课程性质与任务本课程是理、工类专业的专业基础课,通过本课程的学习,要使学生掌握微积分学的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。

要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生的熟练运算能力和综合运用所学知识去分析解决问题的能力。

二、课程教学的基本要求通过本课程的学习,学生基本了解微积分学的基础理论;充分理解微积分学的背景思想及数学思想。

掌握微积分学的基本方法、手段、技巧,并具备一定的分析论证能力和较强的运算能力。

能较熟练地应用微积分学的思想方法解决应用问题。

三、课程教学内容高等数学(上)第一章函数、极限与连续(10学时)第二章导数和微分(12学时)第三章微分中值定理与导数的应用(12学时)第四章函数的积分(16学时)第五章定积分的应用(8学时)第六章无穷级数(10学时)高等数学(下)第七章向量与空间解析几何(6学时)第八章多元函数微分学(14学时)第九章多元函数微分学的应用(10学时)第十章多元函数积分学(I)(16学时)第十一章多元函数积分学(II)(10学时)第十二章常微分方程(12学时)四、教学重点、难点重点:极限的概念与性质;函数连续性的概念与性质;闭区间上连续函数的性质;微分中值定理与应用;用导数研究函数的性质;不定积分、定积分的计算;微积分学基本定理;正项级数敛散性的判定;幂级数的收敛定理;二元函数全微分的概念及性质;计算多元复合函数的偏导数与微分;隐函数定理及应用;重积分、曲线积分与曲面积分的计算;曲线积分与路径的无关性。

难点:极限的概念与理论;微分中值定理的应用;一元函数的泰勒定理;二元函数的极限;计算多元复合函数的偏导数与微分;对坐标的曲面积分的概念及计算;高斯公式;斯托克斯公式。

高等数学a教材复旦

高等数学a教材复旦

高等数学a教材复旦高等数学A教材——复旦版高等数学是大学数学中的一门重要课程,它是对高中数学的深入拓展与延伸。

复旦大学作为中国顶尖的综合性大学之一,其高等数学A教材在教学界享有很高的声誉和影响力。

本文将对复旦大学的高等数学A教材进行全面的介绍和分析,以便帮助读者更好地理解这门课程。

第一章:函数与极限高等数学A教材的第一章主要介绍函数与极限的概念和性质。

在这一章中,学生将学习如何使用极限来描述函数的性质,包括函数的连续性、可导性以及导数的应用等内容。

教材中的例题和习题设计合理,可以帮助学生更好地掌握函数与极限的基本概念。

第二章:导数与微分第二章主要介绍导数与微分的概念和性质。

在这一章中,学生将学习如何求解函数的导数,以及如何应用导数来解决实际问题。

教材中对导数的定义和计算方法进行了详细的讲解,并提供了大量的例题和习题供学生练习。

通过这一章的学习,学生能够更加深入地理解导数的意义和应用。

第三章:微分中值定理与导数的应用第三章主要介绍微分中值定理和导数的应用。

在这一章中,学生将学习如何使用微分中值定理来证明函数的性质,以及如何应用导数来解决最值、曲线的凸凹性等问题。

教材中的例题和习题涵盖了各种不同类型的问题,能够帮助学生培养解决实际问题的能力。

第四章:不定积分第四章主要介绍不定积分的概念和性质。

在这一章中,学生将学习如何求解函数的不定积分,并了解不定积分的基本性质和运算法则。

教材中通过清晰的推导和丰富的例题,帮助学生掌握不定积分的计算方法和技巧。

第五章:定积分与其应用第五章主要介绍定积分的概念和性质,以及定积分在几何、物理等领域中的应用。

教材中通过具体的实例和图形,直观地说明定积分的几何意义和物理意义。

同时,教材还介绍了定积分的计算方法和性质,帮助学生更好地掌握定积分的应用技巧。

第六章:多元函数微分学第六章主要介绍多元函数微分学的相关内容,包括多元函数的偏导数、全微分、方向导数等。

教材通过丰富的例题和习题,引导学生熟悉多元函数的微分运算,理解多元函数的性质和特点。

高等数学第十章重积分PPT课件

高等数学第十章重积分PPT课件

总结词
矩形区域上的重积分计算是重积分中最基础的一种计算方 法。
详细描述
在矩形区域上,可以将积分区域划分为若干个小矩形,然后对每个小矩形进行 积分,最后将所有小矩形的积分结果相加即可得到整个矩形区域的积分值。
公式
$int_{a}^{b}int_{c}^{d}f(x,y)dxdy$
圆形区域上的重积分计算
公式
根据具体情况而定,一般需要通过微分几何和拓扑学知识 进行推导和计算。
03
重积分的应用
重积分在几何学中的应用
80%
计算立体体积
通过重积分可以计算三维空间中 物体的体积,如旋转体、曲面和 不规则体的体积。
100%
计算表面积
重积分可以用来计算封闭曲面或 复杂曲面的表面积,如球面、椭 球面和抛物面等。
化简积分表达式
在计算过程中,尽量化简积分 表达式,以减少计算量。
避免重积分的常见错误
上下限错误
确保上下限的确定是正确的,特别是对于复杂区 域。
公式应用不当
使用不合适的公式可能导致计算错误或无法得出 结果。
积分次序错误
选择错误的积分次序可能导致计算结果不正确。
计算失误
在计算过程中,可能会因为疏忽或笔误导致结果 不准确。
求解流体动力学问 题
重积分在流体动力学中有重要应 用,如计算流体压力、速度和密 度等。
重积分济活动中 涉及到的成本和收益,如生产成 本、销售收入和利润等。
预测经济趋势
通过重积分可以建立经济模型, 预测未来经济趋势和市场变化, 为决策提供依据。
优化资源配置
二重积分的定义
二重积分是计算平面区域上的面积的数学工具,其值等于二元函数在平面区域上的所有点的函数值与该点处面积微元 相乘后累加的总和。

高等数学复旦大学教材

高等数学复旦大学教材

高等数学复旦大学教材在复旦大学的高等数学教材中,学生将接触到一系列精彩而深奥的数学概念和方法。

这本教材旨在提供一种全面且系统的学习方式,帮助学生建立扎实的数学基础,并为他们未来的学习和研究打下坚实的基础。

第一章:函数与极限在第一章中,学生将深入研究函数的概念以及函数的极限。

他们将学习如何计算和理解函数的极限,并探索函数的性质和特点。

通过学习这些内容,学生将对函数与极限有一个全面而深入的了解,并为后续章节的学习打下基础。

第二章:一元函数微积分在第二章中,学生将学习一元函数微积分的基本概念和方法。

他们将掌握求导和积分的技巧,并学会运用它们解决实际问题。

通过学习微积分,学生将能够更好地理解函数的性质和变化规律,并能够运用微积分解决实际问题。

第三章:一元函数的应用第三章将介绍一元函数在实际问题中的应用。

学生将学习如何运用微积分的概念和方法解决实际问题,如求曲线长度、曲率等。

通过学习这些应用,学生将能够将抽象的数学概念与实际问题相结合,提高解决问题的能力。

第四章:多元函数及其极限在第四章中,学生将学习多元函数的概念和性质,并深入研究多元函数的极限。

他们将学习如何计算多元函数的极限,并探索多元函数极限的性质和应用。

通过学习多元函数及其极限,学生将对多元函数的性质和变化规律有更深入的理解。

第五章:多元函数微分学第五章将介绍多元函数的导数和微分学的基本概念和方法。

学生将学习如何计算多元函数的偏导数,并学会运用它们解决实际问题。

通过学习多元函数微分学,学生将能够更好地理解多元函数的性质和变化规律,并能够应用微分学解决实际问题。

第六章:多元函数的应用第六章将介绍多元函数在实际问题中的应用。

学生将学习如何运用多元函数的概念和方法解决实际问题,如最优化问题、曲面面积和体积等。

通过学习这些应用,学生将能够将抽象的数学概念与实际问题相结合,提高解决问题的能力。

通过学习复旦大学的高等数学教材,学生将获得扎实的数学基础,培养良好的数学思维和解决问题的能力。

(完整版)高等数学教案各章的教学目的、重点、难点

(完整版)高等数学教案各章的教学目的、重点、难点

第一章函数与极限教学目的:1、理解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式.2、了解函数的奇偶性、单调性、周期性和有界性。

3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4、掌握基本初等函数的性质及其图形。

5、理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系。

6、掌握极限的性质及四则运算法则。

7、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

8、理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。

9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

10、了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

教学重点:1、复合函数及分段函数的概念;2、基本初等函数的性质及其图形;3、极限的概念极限的性质及四则运算法则;4、两个重要极限;5、无穷小及无穷小的比较;6、函数连续性及初等函数的连续性;7、区间上连续函数的性质.教学难点:1、分段函数的建立与性质;2、左极限与右极限概念及应用;3、极限存在的两个准则的应用;4、间断点及其分类;闭区间上连续函数性质的应用.第二章导数与微分教学目的:1、理解导数和微分的概念与微分的关系和导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的的关系。

2、熟练掌握导数的四则运算法则和复合函数的求导法则,熟练掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。

3、了解高阶导数的概念,会求某些简单函数的n阶导数。

4、会求分段函数的导数。

5、会求隐函数和由参数方程确定的函数的一阶、二阶导数,会求反函数的导数。

教学重点:1、导数和微分的概念与微分的关系;2、导数的四则运算法则和复合函数的求导法则;3、基本初等函数的导数公式;4、高阶导数;6、隐函数和由参数方程确定的函数的导数。

高等数学教材 复旦大学

高等数学教材  复旦大学

高等数学教材复旦大学高等数学作为复旦大学理工科学生的基础课程之一,对于学生的数学素养和理解力有着重要的培养作用。

复旦大学的高等数学教材旨在让学生系统掌握高等数学的基本概念、原理和方法,并能够应用到实际问题中。

本文将从教材的内容架构、教学方法和学习效果等方面,对复旦大学的高等数学教材进行介绍和分析。

一、教材的内容架构复旦大学的高等数学教材内容丰富、系统全面。

教材根据高等数学的不同分支,分为多个章节,涵盖了微积分、数列、级数、多元函数、偏导数、微分方程等内容。

每个章节都以提供数学的基本概念和原理为主线,通过一定数量的例题和习题来加深学生的理解和应用能力。

教材的内容编排紧凑,层次清晰。

每个章节在开始部分都有一个章节概要,概述了该章节的主要内容和学习目标。

接下来,教材按照逻辑顺序,结合数学理论和实例,依次介绍各个概念、原理和方法。

同时,教材注重理论和实际问题的结合,通过一些实例和案例来帮助学生将所学的数学知识应用到实际生活和科学研究中。

二、教学方法复旦大学的高等数学教学注重培养学生的数学思维和解题能力。

在教学过程中,教师采用多种教学方法,包括讲授、演示、讨论、实例分析等。

教师注重启发式教学,引导学生主动思考和独立解决问题,培养学生的创造性思维和解决实际问题的能力。

教师还鼓励学生参与小组讨论和互动交流。

通过小组合作和讨论,学生可以彼此启发和补充知识,培养团队合作能力和沟通能力。

此外,教师还鼓励学生使用相关数学软件和工具,以提高解题效率和准确性。

三、学习效果复旦大学的高等数学教材和教学方法取得了较好的学习效果。

通过对学生的学习成绩和数学素养的综合评估,可以看出学生在高等数学方面的知识掌握和解题能力明显提升。

教材内容的系统性和针对性有助于学生的知识积累和理论建构,而教学方法的多样化和互动性则激发了学生的学习兴趣和动力。

此外,通过与其他高校的教材进行比较,复旦大学的高等数学教材在难度和深度上处于较高水平。

这为学生进一步学习数学的专业知识和从事科学研究奠定了坚实基础。

2021考研数学大纲-多元函数积分学-考点和常考题型

2021考研数学大纲-多元函数积分学-考点和常考题型

2021考研数学大纲"多元函数积分学"考点和常考题型在研究生入学考试中,高等数学是数一、数二、数三考试的公共内容。

数一、数三均占56%(总分150分),考察4个选择题(每题4分,共16分)、4个填空题(每题4分,共16分)、5个解答题(总分50分)。

数二不考概率论,高数占78%,考察6个选择题(每题4分,共24分)、4个填空题(每题5分,共20分)、7个解答题(总分72分)。

由高数所占比例易知,高数是考研数学的重头戏,因此一直流传着“得高数者得数学。

”高等数学包含函数、极限与连续、一元函数微分学、一元函数积分学、多元函数微分学、多元函数积分学、常微分方程和无穷级数等六个模块,在梳理分析函数、极限与连续、一元函数微分学、一元函数积分学、多元函数微分学的基础上,继续梳理多元函数积分学,希望对学员有所帮助。

多元函数积分学,数一、数二、数三区别比较大,数二、数三只要求掌握二重积分,数一学员要求掌握二重积分、三重积分、曲线积分和曲面积分。

我们分开介绍。

一、2021考研高等数学大纲“多元函数积分学”(数一考生)1、考试内容(1)二重积分与三重积分的概念、性质、计算和应用;(2)两类曲线积分的概念、性质及计算;(3)两类曲线积分的关系;(4)格林(Green)公式;(5)平面曲线积分与路径无关的条件;(6)二元函数全微分的原函数;(7)两类曲面积分的概念、性质及计算;(8)两类曲面积分的关系;(9)高斯(Gauss)公式;(10)斯托克斯(Stokes)公式;(11)散度、旋度的概念及计算 ;(12)曲线积分和曲面积分的应用2、考试要求(1)理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理;(2)掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标);(3)理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系;(4)掌握计算两类曲线积分的方法;(5)掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数;(6)了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分;(7)了解散度与旋度的概念,并会计算;(8)会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、、形心、转动惯量、引力、功及流量等).3、常考题型(1)二重积分的定义与基本性质;(2)改变积分次序;(3)直角坐标系、极坐标系下计算二重积分;(4)二重积分的相关证明;(5)直角坐标系、柱坐标、球坐标系计算三重积分;(6)两类曲线积分的关系与计算;(7)格林公式;(8)两类曲面积分的关系与计算;(9)高斯公式;(10)斯托克斯公式二、2021考研高等数学大纲“多元函数积分学”(数二、数三考生)1、考试内容二重积分的概念.基本性质和计算无界区域上简单的反常二重积分2、考试要求(1)了解二重积分的概念与基本性质;(2)掌握二重积分的计算方法(直角坐标.极坐标);(3)了解无界区域上较简单的反常二重积分并会计算.3、常考题型(1)二重积分的定义与基本性质;(2)改变积分次序;(3)计算二重积分(直角坐标系和极坐标系);(4)二重积分的证明以上是老师针对多元函数积分学这一模块,围绕大纲考点、常考题型进行的梳理分析,希望考生对这部分内容要熟练掌握。

《多元函数积分学》课件

《多元函数积分学》课件

物理应用
重积分在物理中有广泛的应用,如计 算物体的质量、质心、转动惯量等物 理量,还可以用来解决流体动力学、 弹性力学等领域的问题。
数值分析应用
重积分在数值分析中有重要的应用, 如数值积分、数值微分等计算方法的 实现都需要用到重积分的知识。
04 曲线积分与曲面积分
曲线积分的概念与性质
总结词
理解曲线积分的定义和计算方法,掌握其在几何和物理问题中的应用。
总结词
掌握多元函数的可积性和积分的基本性 质是理解多元函数积分学的重要环节。
VS
详细描述
可积性的判定条件和积分的基本性质(如 线性性质、可加性、不等式性质等)是多 元函数积分学中的核心知识点,对于理解 和应用积分具有重要意义。
多元函数积分的计算方法
总结词
掌握多元函数积分的计算方法是学习多元函数积分学的关键。
《多元函数积分学》ppt课件
• 多元函数积分学概述 • 多元函数积分的基本概念 • 重积分 • 曲线积分与曲面积分 • 多元函数积分学的应用
01 多元函数积分学概述
多元函数积分学的定义
定义
多元函数积分学是研究多元函数 的积分、微分和微积分基本定理 的一门学科。
多元函数
一个数学函数,其中自变量不止 一个,即函数的输入和输出都是 向量或更高维度的几何对象。
计算多维工程结构的热传导和流 体流动
在工程中,很多问题需要考虑多维工程结构的热传导和 流体流动,如热力管道、流体机械等。多元函数积分学 可以用来计算这些结构的热传导和流体流动。
THANKS 感谢观看
积分
对一个函数在某个区域上的所有 点的值进行加权求和,权值由该 点的坐标决定。
多元函数积分学的重要性
解决实际问题

大学教材高等数学上答案

大学教材高等数学上答案

大学教材高等数学上答案第一章:极限与连续性1.1 极限的概念与性质1.2 无穷大与无穷小1.3 极限存在准则1.4 极限运算法则1.5 两个重要极限1.6 函数连续性第二章:导数与微分2.1 导数的概念2.2 导数的基本公式2.3 常见函数的导数2.4 高阶导数2.5 隐函数与参数方程2.6 微分与微分近似第三章:微分中值定理与导数的应用3.1 罗尔定理与拉格朗日中值定理3.2 导数的应用3.3 泰勒公式与多项式逼近3.4 曲线凹凸性与拐点3.5 最值与最优化问题第四章:不定积分4.1 不定积分的概念与性质4.2 基本积分公式与常见积分4.3 积分方法与换元积分法4.4 分部积分法与三角函数积分4.5 有理函数的积分4.6 径向函数的积分第五章:定积分5.1 定积分的概念与性质5.2 牛顿-莱布尼茨公式5.3 定积分的计算5.4 反常积分5.5 曲线的弧长与曲面的面积第六章:定积分的应用6.1 几何应用6.2 物理应用6.3 概率统计应用6.4 空间曲线的长度6.5 平面曲线的面积6.6 周期函数的平均值与均值公式第七章:常微分方程7.1 基本概念与术语7.2 可分离变量方程7.3 一阶线性微分方程7.4 高阶常系数线性微分方程7.5 非齐次线性微分方程7.6 二阶常系数线性微分方程7.7 模拟与改进第八章:多元函数微分学8.1 多元函数的极限与连续性8.2 偏导数与全微分8.3 隐函数与逆函数8.4 方向导数与梯度8.5 高阶导数与泰勒展开8.6 多元函数的极值与条件极值第九章:多元函数积分学9.1 二重积分的概念与性质9.2 二重积分的计算9.3 二重积分的应用9.4 三重积分的概念与性质9.5 三重积分的计算9.6 三重积分的应用第十章:曲线积分与曲面积分10.1 第一类曲线积分10.2 第二类曲线积分10.3 基本的曲线积分计算10.4 曲线积分的应用10.5 第一类曲面积分10.6 第二类曲面积分10.7 张量计算第十一章:向量场与无散场11.1 向量场11.2 梯度场与势函数11.3 散度与无散场11.4 协变导数与无旋场第十二章:级数12.1 数项级数的概念与性质12.2 正项级数的审敛法12.3 一般级数12.4 幂级数与函数展开12.5 函数与级数之间的转换本文是关于大学教材高等数学上的答案整理,按照教材的章节顺序进行内容概述,考虑到篇幅限制,只给出了每一章的主要内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章 多元函数积分学(Ⅰ)一元函数积分学中,曾经用和式的极限来定义一元函数()f x 在区间[a,b]上的定积分,并且已经建立了定积分理论,本章我们将推广到多元函数,建立多元函数积分学理论。

第一节 二重积分教学目的:1、熟悉二重积分的概念;2、了解二重积分的性质和几何意义,知道二重积分的中值定理;3、掌握二重积分的(直角坐标、极坐标)计算方法;4、能根据积分区域和被积函数正确选择积分顺序 教学重点:1、二重积分的性质和几何意义;2、二重积分在直角坐标系下的计算 教学难点:1、二重积分的计算;2、二重积分计算中的定限问题 教学内容:一、二重积分的概念 1. 曲顶柱体的体积设有一立体, 它的底是xOy 面上的闭区域D , 它的侧面是以D 的边界曲线为准线而母线平行于z 轴的柱面, 它的顶是曲面z =f (x , y ), 这里f (x , y )≥0且在D 上连续. 这种立体叫做曲顶柱体. 现在我们来讨论如何计算曲顶柱体的体积.首先, 用一组曲线网把D 分成n 个小区域∆σ 1, ∆σ 2, ⋅ ⋅ ⋅ , ∆σ n .分别以这些小闭区域的边界曲线为准线, 作母线平行于z 轴的柱面, 这些柱面把原来的曲顶柱体分为n 个细曲顶柱体. 在每个∆σ i 中任取一点(ξ i , ηi ),以f (ξ i , η i )为高而底为∆σ i 的平顶柱体的体积为f (ξ i , η i ) ∆σi (i =1, 2, ⋅ ⋅ ⋅ , n ).这个平顶柱体体积之和i i i ni f V σηξ∆≈=∑),(1.可以认为是整个曲顶柱体体积的近似值. 为求得曲顶柱体体积的精确值, 将分割加密, 只需取极限, 即i i i ni f V σηξλ∆==→∑),(lim 10.其中λ是个小区域的直径中的最大值.2. 平面薄片的质量.设有一平面薄片占有xOy 面上的闭区域D , 它在点(x , y )处的面密度为ρ(x , y ), 这里ρ(x , y )>0且在D 上连续. 现在要计算该薄片的质量M .用一组曲线网把D 分成n 个小区域∆σ 1, ∆σ 2, ⋅ ⋅ ⋅ , ∆σ n . 把各小块的质量近似地看作均匀薄片的质量:ρ(ξ i , η i )∆σ i . 各小块质量的和作为平面薄片的质量的近似值:i i i ni M σηξρ∆≈=∑),(1.将分割加细, 取极限, 得到平面薄片的质量i i i ni M σηξρλ∆==→∑),(lim 10.其中λ是个小区域的直径中的最大值.定义 设f (x , y )是有界闭区域D 上的有界函数. 将闭区域D 任意分成n 个小闭区域∆σ 1, ∆σ 2, ⋅ ⋅ ⋅ , ∆σ n .其中∆σ i 表示第i 个小区域, 也表示它的面积. 在每个∆σ i 上任取一点(ξ i , ηi ), 作和i i i ni f σηξ∆=∑),(1.如果当各小闭区域的直径中的最大值λ趋于零时, 这和的极限总存在, 则称此极限为函数f (x , y )在闭区域D 上的二重积分, 记作σd y x f D⎰⎰),(, 即i i i ni Df d y x f σηξσλ∆==→∑⎰⎰),(lim ),(10. f (x , y )被积函数, f (x , y )d σ被积表达式, d σ面积元素, x , y 积分变量, D 积分区域, 积分和. 直角坐标系中的面积元素:如果在直角坐标系中用平行于坐标轴的直线网来划分D , 那么除了包含边界点的一些小闭区域外, 其余的小闭区域都是矩形闭区域. 设矩形闭区域∆σi 的边长为∆x i 和∆y i , 则∆σi =∆x i ∆y i , 因此在直角坐标系中, 有时也把面积元素d σ 记作dxdy , 而把二重积分记作dxdy y x f D⎰⎰),(其中dxdy 叫做直角坐标系中的面积元素.二重积分的存在性: 当f (x , y )在闭区域D 上连续时, 积分和的极限是存在的, 也就是说函数f (x , y )在D 上的二重积分必定存在. 我们总假定函数f (x , y )在闭区域D 上连续, 所以f (x , y )在D 上的二重积分都是存在的.二重积分的几何意义: 如果f (x , y )≥0, 被积函数f (x , y )可解释为曲顶柱体的在点(x , y )处的竖坐标, 所以二重积分的几何意义就是柱体的体积. 如果f (x , y )是负的, 柱体就在xOy 面的下方, 二重积分的绝对值仍等于柱体的体积, 但二重积分的值是负的.二、二重积分的性质性质1σσd y x f k d y x kf DD⎰⎰⎰⎰=),(),(.性质2 设c 1、c 2为常数, 则σσσd y x g c d y x f c d y x g c y x f c DDD⎰⎰⎰⎰⎰⎰+=+),(),()],(),([2121.性质3 如果闭区域D 被有限条曲线分为有限个部分闭区域, 则在D 上的二重积分等于在各部分闭区域上的二重积分的和. 例如D 分为两个闭区域D 1与D 2, 则σσσd y x f d y x f d y x f D D D⎰⎰⎰⎰⎰⎰+=21),(),(),(.性质4σσσ==⋅⎰⎰⎰⎰DDd d 1(σ为D 的面积).性质5 如果在D 上, f (x , y )≤g (x , y ), 则有不等式σσd y x g d y x f DD⎰⎰⎰⎰≤),(),(.性质6 σσd y x f d y x f DD⎰⎰⎰⎰≤|),(||),(|.性质7(二重积分的中值定理) 设函数f (x , y )在闭区域D 上连续, σ 为D 的面积, 则在D 上至少存在一点(ξ, η)使得σηξσ),(),(f d y x f D=⎰⎰.三、 二重积分的计算法X --型区域: D : ϕ1(x )≤y ≤ϕ2(x ), a ≤x ≤b . Y --型区域: D : ψ1(x )≤y ≤ψ2(x ), c ≤y ≤d . 混合型区域:设f (x , y )≥0, D ={(x , y )| ϕ1(x )≤y ≤ϕ2(x ), a ≤x ≤b }. 此时二重积分σd y x f D⎰⎰),(在几何上表示以曲面z =f (x , y )为顶, 以区域D 为底的曲顶柱体的体积.对于x 0∈[a , b ], 曲顶柱体在x =x 0的截面面积为以区间[ϕ1(x 0), ϕ2(x 0)]为底、以曲线z =f (x 0, y )为曲边的曲边梯形, 所以这截面的面积为⎰=)()(000201),()(x x dy y x f x A ϕϕ.根据平行截面面积为已知的立体体积的方法, 得曲顶柱体体积为⎰=badx x A V )(dx dy y x f b a x x ⎰⎰=]),([)()(21ϕϕ.即 V =dx dy y x f d y x f b a x x D⎰⎰⎰⎰=]),([),()()(21ϕϕσ.可记为⎰⎰⎰⎰=bax x Ddy y x f dx d y x f )()(21),(),(ϕϕσ.类似地, 如果区域D 为Y --型区域:D : ψ1(x )≤y ≤ψ2(x ), c ≤y ≤d ,则有⎰⎰⎰⎰=dc y y Ddx y x f dy d y x f )()(21),(),(ψψσ.例1:计算σd xy D⎰⎰, 其中D 是由直线y =1、x =2及y =x 所围成的闭区域.解:画出区域D .方法一 可把D 看成是X --型区域: 1≤x ≤2, 1≤y ≤x . 于是⎰⎰⎰⎰=211][xDdx xydy d xy σ⎰⎰-=⋅=2132112)(21]2[dx x x dx y x x 89]24[212124=-=x x .注: 积分还可以写成⎰⎰⎰⎰⎰⎰==211211xx Dydy xdx xydy dx d xy σ.方法二 也可把D 看成是Y --型区域: 1≤y ≤2, y ≤x ≤2 . 于是⎰⎰⎰⎰=212][y Ddy xydx d xy σ⎰⎰-=⋅=2132122)22(]2[dy y y dy x y y 89]8[2142=-=y y . 例2:计算σd y x yD⎰⎰-+221, 其中D 是由直线y =1、x =-1及y =x 所围成的闭区域.解:画出区域D , 可把D 看成是X --型区域: -1≤x ≤1, x ≤y ≤1. 于是⎰⎰⎰⎰-+=-+-122112211xDdy y x y dx d y x y σ⎰⎰----=-+-=1131112322)1|(|31])1[(31dx x dx y x x21)1(32103=--=⎰dx x .也可D 看成是Y --型区域:-1≤y ≤1, -1≤x <y . 于是⎰⎰⎰⎰---+=-+111222211yDdx y x ydy d y x y σ.例3:计算σd xy D⎰⎰, 其中D 是由直线y =x -2及抛物线y 2=x 所围成的闭区域. 解:积分区域可以表示为D =D 1+D 2, 其中x y x x D ≤≤-≤≤ ,10 :1; x y x D ≤≤≤≤2 ,41 :2. 于是⎰⎰⎰⎰⎰⎰--+=41210xx xxDxydy dx xydy dx d xy σ.积分区域也可以表示为D : -1≤y ≤2, y 2≤x ≤y +2. 于是⎰⎰⎰⎰-+=2122y yDxydx dy d xy σ⎰-+=21222]2[dy y x y y ⎰--+=2152])2([21dy y y y 855]62344[21216234=-++=-y y y y .讨论积分次序的选择.例4:求两个底圆半径都等于ρ的直交圆柱面所围成的立体的体积.解:设这两个圆柱面的方程分别为x 2+y 2=ρ 2及x 2+z 2=ρ 2. 利用立体关于坐标平面的对称性, 只要算出它在第一卦限部分的体积V 1, 然后再乘以8就行了.第一卦限部分是以D ={(x , y )| 0≤y ≤22x R -, 0≤x ≤ρ}为底, 以22x R z -=顶的曲顶柱体. 于是σd x R V D⎰⎰-=228⎰⎰--=R x R dy x R dx 022228⎰--=Rx Rdx y x R 002222][83022316)(8R dx x R R=-=⎰.四、二重积分的换元法 1.利用极坐标计算二重积分有些二重积分, 积分区域D 的边界曲线用极坐标方程来表示比较方便, 且被积函数用极坐标变量ρ 、θ 表达比较简单. 这时我们就可以考虑利用极坐标来计算二重积分σd y x f D⎰⎰),(. 按二重积分的定义i ni i i Df d y x f σηξσλ∆=∑⎰⎰=→1),(lim ),(. 下面我们来研究这个和的极限在极坐标系中的形式.以从极点O 出发的一族射线及以极点为中心的一族同心圆构成的网将区域D 分为n 个小闭区域, 小闭区域的面积为:i i i i i i θρθρρσ∆⋅⋅-∆⋅∆+=∆2221)(21i i i i θρρρ∆⋅∆∆+=)2(21 i i i i i θρρρρ∆⋅∆⋅∆++=2)(i i i θρρ∆∆=,其中i ρ表示相邻两圆弧的半径的平均值.在∆σi 内取点) , (i i θρ, 设其直角坐标为(ξ i , η i ), 则有 i i i θρξcos =, i i i θρηsin =.于是 i i ni i i i i i i n i i i f f θρρθρθρσηξλλ∆∆=∆∑∑=→=→11)sin ,cos (lim ),(lim , 即θρρθρθρσd d f d y x f DD)s i n ,c o s (),(⎰⎰⎰⎰=. 若积分区域D 可表示为 ϕ 1(θ)≤ρ≤ϕ 2(θ), α≤θ≤β, 则ρρθρθρθθρρθρθρθϕθϕβαd f d d d f D⎰⎰⎰⎰=)()(21)sin ,cos ()sin ,cos (.讨论:如何确定积分限?ρρθρθρθθρρθρθρθϕβαd f d d d f D⎰⎰⎰⎰=)(0)sin ,cos ()sin ,cos (.ρρθρθρθθρρθρθρθϕπd f d d d f D⎰⎰⎰⎰=)(020)sin ,cos ()sin ,cos (.例5:计算⎰⎰--Dy xdxdy e 22, 其中D 是由中心在原点、半径为a 的圆周所围成的闭区域.解:在极坐标系中, 闭区域D 可表示为0≤ρ≤a , 0≤θ ≤2π . 于是⎰⎰⎰⎰---=DDy x d d edxdy eθρρρ222θθρρπρπρd e d d eaa02020]21[ ][22⎰⎰⎰---==)1()1(212220a a e d e ---=-=⎰πθπ.注: 此处积分⎰⎰--Dy xdxdy e 22也常写成⎰⎰≤+--22222a y x y xdxdy e .利用)1(222222a a y x y xe dxdy e -≤+---=⎰⎰π计算广义积分dx e x 2-+∞⎰:设 D 1={(x , y )|x 2+y 2≤R 2, x ≥0, y ≥0}, D 2={(x , y )|x 2+y 2≤2R 2, x ≥0, y ≥0}, S ={(x , y )|0≤x ≤R , 0≤y ≤R }. 显然D 1⊂S ⊂D 2. 由于022>--y x e , 从则在这些闭区域上的二重积分之间有不等式⎰⎰⎰⎰⎰⎰------<<22222122D y xSy xD y xdxdy e dxdy e dxdy e .因为20)(22222⎰⎰⎰⎰⎰-----=⋅=Rx Ry Rx Sy xdx e dy e dx e dxdy e ,又应用上面已得的结果有)1(42122R D y xe dxdy e ----=⎰⎰π,)1(422222R D y xe dxdy e ----=⎰⎰π,于是上面的不等式可写成)1(4)()1(4222220R R x R e dx e e ----<<-⎰ππ.令R →+∞, 上式两端趋于同一极限4π, 从而220 π=-∞+⎰dx e x .例6:求球体x 2+y 2+z 2≤4a 2被圆柱面x 2+y 2=2ax 所截得的(含在圆柱面内的部分)立体的体积. 解:由对称性, 立体体积为第一卦限部分的四倍.⎰⎰--=Ddxdy y x a V 22244,其中D 为半圆周22x ax y -=及x 轴所围成的闭区域. 在极坐标系中D 可表示为 0≤ρ≤2a cos θ , 20πθ≤≤.于是 ⎰⎰⎰⎰-=-=20cos 2022224444πθρρρθθρρρa Dd a d d d a V)322(332)sin 1(33222032-=-=⎰πθθπa d a .小结:1、二重积分的定义、几何意义;2、二重积分的计算(直角坐标,极坐标)3、二重积分的转化作业:习题10-12 (1) (3)、 6 (1)(5)、 8 (1) (4)、9(1)、 10(2)、 11(1)(3)第三节 三重积分教学目的:1、熟悉三重积分的概念;2、了解三重积分的性质;3、掌握三重积分在直角坐标系下的计算方法;4、掌握三重积分在柱面坐标系、球面坐标系下的计算方法 教学重点:1、三重积分的概念和计算;2、三重积分在柱面坐标系下的计算 教学难点:1、三重积分的计算;2、三重积分在球面坐标系下的计算 教学内容:一、三重积分的概念定义 设f (x , y , z )是空间有界闭区域Ω上的有界函数. 将Ω任意分成n 个小闭区域∆v 1, ∆v 2, ⋅ ⋅ ⋅ , ∆v n其中∆v i 表示第i 个小闭区域, 也表示它的体积. 在每个∆v i 上任取一点(ξi , ηi , ζi ), 作乘积f (ξ i , η i , ζ i )∆v i (i =1, 2, ⋅ ⋅ ⋅, n )并作和i i i i ni v f ∆=∑),,(1ζηξ. 如果当各小闭区域的直径中的最大值λ趋于零时, 这和的极限总存在,则称此极限为函数f (x , y , z )在闭区域Ω上的三重积分, 记作dv z y x f ⎰⎰⎰Ω),,(. 即i i i i ni v f dv z y x f ∆==→Ω∑⎰⎰⎰),,(lim ),,(10ζηξλ. 三重积分中的有关术语:⎰⎰⎰Ω——积分号, f (x , y , z )——被积函数, f (x , y , z )dv ——被积表达式, dv体积元素, x , y , z ——积分变量, Ω——积分区域.在直角坐标系中, 如果用平行于坐标面的平面来划分Ω, 则∆v i =∆x i ∆y i ∆z i , 因此也把体积元素记为dv =dxdydz , 三重积分记作⎰⎰⎰⎰⎰⎰ΩΩ=dxdydz z y x f dv z y x f ),,(),,(.当函数f (x , y , z )在闭区域Ω上连续时, 极限i i i i ni v f ∆=→∑),,(lim 10ζηξλ是存在的, 因此f (x , y , z )在Ω上的三重积分是存在的, 以后也总假定f (x , y , z )在闭区域Ω上是连续的.三重积分的性质: 与二重积分类似.比如dv z y x g c dv z y x f c dv z y x g c z y x f c ⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ±=±),,(),,()],,(),,([2121;dv z y x f dv z y x f dv z y x f ⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ+Ω+=2121),,(),,(),,(;V dv =⎰⎰⎰Ω, 其中V 为区域Ω的体积.二、三重积分的计算1. 利用直角坐标计算三重积分三重积分的计算: 三重积分也可化为三次积分来计算. 设空间闭区域Ω可表为z 1(x , y )≤z ≤z 2(x , y ), y 1(x )≤y ≤y 2(x ), a ≤x ≤b ,则σd dz z y x f dv z y x f Dy x z y x z ⎰⎰⎰⎰⎰⎰=Ω]),,([),,(),(),(21⎰⎰⎰=ba x y x y y x z y x z dy dz z y x f dx)()(),(),(2121]),,([ ⎰⎰⎰=ba y x z y x z x y x y dz z y x f dy dx ),(),()()(2121),,(,即⎰⎰⎰⎰⎰⎰=Ωbay x z y x z x y x y dz z y x f dy dx dv z y x f ),(),()()(2121),,(),,(.其中D : y 1(x )≤ y ≤ y 2(x ), a ≤x ≤b . 它是闭区域Ω在xOy 面上的投影区域. 提示:设空间闭区域Ω可表为z 1(x , y )≤z ≤z 2(x , y ), y 1(x )≤y ≤y 2(x ), a ≤x ≤b ,计算⎰⎰⎰Ωdv z y x f ),,(.基本思想:对于平面区域D : y 1(x )≤y ≤y 2(x ), a ≤x ≤b 内任意一点(x , y ), 将f (x , y , z )只看作z 的函数, 在区间[z 1(x , y ), z 2(x , y )]上对z 积分, 得到一个二元函数F (x , y ),⎰=),(),(21),,(),(y x z y x z dz z y x f y x F ,然后计算F (x , y )在闭区域D 上的二重积分, 这就完成了f (x , y , z )在空间闭区域Ω上的三重积分.⎰⎰⎰⎰⎰=Dy x z y x z Dd dz z y x f d y x F σσ]),,([),(),(),(21⎰⎰⎰=bax y x y y x z y x z dy dz z y x f dx )()(),(),(2121]),,([,则σd dz z y x f dv z y x f Dy x z y x z ⎰⎰⎰⎰⎰⎰=Ω]),,([),,(),(),(21⎰⎰⎰=ba x y x y y x z y x z dy dz z y x f dx)()(),(),(2121]),,([⎰⎰⎰=ba y x z y x z x y x y dz z y x f dy dx ),(),()()(2121),,(.即⎰⎰⎰⎰⎰⎰=Ωba y x z y x z x y x y dz z y x f dy dx dv z y x f ),(),()()(2121),,(),,(.其中D : y 1(x )≤ y ≤ y 2(x ), a ≤x ≤b . 它是闭区域Ω在xOy 面上的投影区域. 例1:计算三重积分dxdydz x ⎰⎰⎰Ω, 其中Ω为三个坐标面及平面x +2y +z =1所围成的闭区域.解:作图, 区域Ω可表示为: 0≤z ≤1-x -2y , )1(210x y -≤≤, 0≤x ≤1. 于是⎰⎰⎰⎰⎰⎰---Ω=10210210x y x xdz dy dx dxdydz x ⎰⎰---=1210)21(xdy y x xdx ⎰=+-=1032481)2(41dx x x x . 讨论: 其它类型区域呢?有时, 我们计算一个三重积分也可以化为先计算一个二重积分、再计算一个定积分. 设空间闭区域Ω={(x , y , z )|(x , y )∈D z , c 1≤ z ≤c 2}, 其中D z 是竖坐标为z 的平面截空间闭区域Ω所得到的一个平面闭区域, 则有⎰⎰⎰⎰⎰⎰=ΩzD c c dxdy z y x f dz dv z y x f ),,(),,(21.例2:计算三重积分dxdydz z ⎰⎰⎰Ω2, 其中Ω是由椭球面1222222=++c z b y a x 所围成的空间闭区域.解:空间区域Ω可表为:2222221c z b y a x -≤+, -c ≤ z ≤c .于是 ⎰⎰⎰⎰⎰⎰-Ω=c c D zdxdy dz z dxdydz z 22 3222154)1(abc dz z c z ab c cππ=-=⎰-. 练习:1. 将三重积分dxdydz z y x f I ⎰⎰⎰Ω=),,(化为三次积分, 其中(1)Ω是由曲面z =1-x 2-y 2, z =0所围成的闭区域.(2)Ω是双曲抛物面xy =z 及平面x +y -1=0, z =0所围成的闭区域. (3)其中Ω是由曲面z =x 2+2y 2及z =2-x 2所围成的闭区域. 2. 将三重积分dxdydz z y x f I ⎰⎰⎰Ω=),,(化为先进行二重积分再进行定积分的形式, 其中Ω由曲面z =1-x 2-y 2,z =0所围成的闭区域.三、三重积分的换元法 1. 柱面坐标变换设M (x , y , z )为空间内一点, 并设点M 在xOy 面上的投影P 的极坐标为P (ρ, θ ), 则这样的三个数ρ、θ 、z 就叫做点M 的柱面坐标, 这里规定ρ、θ 、z 的变化范围为: 0≤ρ<+∞, 0≤θ ≤2π , -∞<z <+∞. 坐标面ρ=ρ0, θ =θ 0, z =z 0的意义: 点M 的直角坐标与柱面坐标的关系:x =ρcos θ, y =ρsin θ, z =z . ⎪⎩⎪⎨⎧===zz y x θρθρsin cos柱面坐标系中的体积元素: dv =ρd ρd θdz . 简单来说, dxdy =ρd ρd θ , dxdydz =dxdy ⋅dz =ρd ρd θ dz . 柱面坐标系中的三重积分:⎰⎰⎰⎰⎰⎰ΩΩ=dz d d z f dxdydz z y x f θρρθρθρ),sin ,cos (),,(.例3:利用柱面坐标计算三重积分⎰⎰⎰Ωzdxdydz , 其中Ω是由曲面z =x 2+y 2与平面z =4所围成的闭区域.解:闭区域Ω可表示为: ρ2≤z ≤4, 0≤ρ≤2, 0≤θ≤2π. 于是⎰⎰⎰⎰⎰⎰ΩΩ=dz d d z zdxdydz θρρ⎰⎰⎰=πρρρθ202042zdz d d ⎰⎰-=πρρρθ20204)16(21d dπρρπ364]618[2212062=-⋅=.2. 球面坐标变换设M (x , y , z )为空间内一点, 则点M 也可用这样三个有次序的数r 、ϕ、θ 来确定, 其中r 为原点O 与点M 间的距离, ϕ为→OM 与z 轴正向所夹的角, θ为从正z 轴来看自x 轴按逆时针方向转到有向线段→OP 的角, 这里P 为点M 在xOy 面上的投影, 这样的三个数r 、ϕ 、θ 叫做点M 的球面坐标, 这里r 、ϕ、θ 的变化范围为0≤r <+∞, 0≤ϕ<π, 0≤θ ≤2π.点M 的直角坐标与球面坐标的关系:x =r sin ϕcos θ, y =r sin ϕsin θ, z =r cos ϕ . ⎪⎩⎪⎨⎧===ϕθϕθϕcos sin sin cos sin r z r y r x球面坐标系中的体积元素: dv =r 2sin ϕdrd ϕd θ . 球面坐标系中的三重积分:θϕϕϕθϕθϕd d r dr r r r f dv z y x f sin )cos ,sin sin ,cos sin (),,(2⎰⎰⎰⎰⎰⎰ΩΩ=. 例4:求半径为a 的球面与半顶角α为的内接锥面所围成的立体的体积. 解:该立体所占区域Ω可表示为: 0≤r ≤2a cos ϕ, 0≤ϕ≤α, 0≤θ≤2π. 于是所求立体的体积为 ⎰⎰⎰⎰⎰⎰ΩΩ==θϕϕd drd rdxdydz V sin 2⎰⎰⎰=παϕϕϕθ20cos 202sin a dr r d d⎰⎰=αϕϕϕπ0cos 202sin 2a dr r d⎰=αϕϕϕπ033s i n c o s 316d a )c o s 1(3443a a -=π. 提示: 球面的方程为x 2+y 2+(z -a )2=a 2, 即x 2+y 2+z 2=2az . 在球面坐标下此球面的方程为r 2=2ar cos ϕ, 即r =2a cos ϕ. 小结:1、三重积分的定义;2、三重积分的计算(化三重积分为三次积分);3、三重积分换元法(柱面坐标,球面坐标)作业:习题10-32 (1)(3)(5)、 4(1)(2)、5(1)(2)、 6(2)(4)第四节 重积分的应用教学目的:1、理解空间曲面的面积;2、掌握空间曲面面积的计算 教学重点:空间曲面面积的计算 教学难点:空间曲面面积的计算 教学内容:有许多求总量的问题可以用定积分的元素法来处理. 这种元素法也可推广到二重积分的应用中. 如果所要计算的某个量U 对于闭区域D 具有可加性(就是说, 当闭区域D 分成许多小闭区域时, 所求量U 相应地分成许多部分量, 且U 等于部分量之和), 并且在闭区域D 内任取一个直径很小的闭区域d σ时, 相应的部分量可近似地表示为f (x , y )d σ 的形式, 其中(x , y )在d σ内, 则称f (x , y )d σ 为所求量U 的元素, 记为dU , 以它为被积表达式, 在闭区域D 上积分: ⎰⎰=Dd y x f U σ),(,这就是所求量的积分表达式. 一、空间曲面的面积设曲面S 由方程 z =f (x , y )给出, D 为曲面S 在xOy 面上的投影区域, 函数f (x , y )在D 上具有连续偏导数f x (x , y )和f y (x , y ). 现求曲面的面积A .在区域D 内任取一点P (x , y ), 并在区域D 内取一包含点P (x , y )的小闭区域d σ, 其面积也记为d σ. 在曲面S 上点M (x , y , f (x , y ))处做曲面S 的切平面T , 再做以小区域d σ的边界曲线为准线、母线平行于z 轴的柱面. 将含于柱面内的小块切平面的面积作为含于柱面内的小块曲面面积的近似值, 记为dA . 又设切平面T 的法向量与z 轴所成的角为γ , 则σγσd y x f y x f d dA y x ),(),(1cos 22++==,这就是曲面S 的面积元素. 于是曲面S 的面积为σd y x f y x f A y x D),(),(122++=⎰⎰,或 d x d yyz x z A D22)()(1∂∂+∂∂+=⎰⎰. 讨论: 若曲面方程为x =g (y , z )或y =h (z , x ), 则曲面的面积如何求?dydz zx y x A yzD ⎰⎰∂∂+∂∂+=22)()(1,或 dzdx xy z y A zxD ⎰⎰∂∂+∂∂+=22)()(1. 其中D yz 是曲面在yOz 面上的投影区域,D zx 是曲面在zOx 面上的投影区域. 例1 求半径为a 的球的表面积.解:取上半球面方程为222z x y a =+?,由zx?=¶zy ?=¶ 所以2222222022,224x y a x y a a A a d a pqp +?+?====蝌蝌蝌二、平面薄片的重心设有一平面薄片, 占有xOy 面上的闭区域D , 在点P (x , y )处的面密度为ρ(x , y ), 假定μ(x , y )在D 上连续. 现在要求该薄片的质心坐标.在闭区域D 上任取一点P (x , y ), 及包含点P (x , y )的一直径很小的闭区域d σ(其面积也记为d σ), 则平面薄片对x 轴和对y 轴的力矩(仅考虑大小)元素分别为dM x =y μ(x , y )d σ, dM y =x μ(x , y )d σ.平面薄片对x 轴和对y 轴的力矩分别为⎰⎰=Dx d y x y M σμ),(, ⎰⎰=Dy d y x x M σμ),(.设平面薄片的质心坐标为) ,(y x , 平面薄片的质量为M , 则有y M M x =⋅, x M M y =⋅.于是⎰⎰⎰⎰==DDy d y x d y x x M M x σμσμ),(),(, ⎰⎰⎰⎰==DD x d y x d y x y M My σμσμ),(),(. 在闭区域D 上任取包含点P (x , y )小的闭区域d σ(其面积也记为d σ), 则平面薄片对x 轴和对y 轴的力矩元素分别为dM x =y μ(x , y )d σ, dM y =x μ(x , y )d σ.平面薄片对x 轴和对y 轴的力矩分别为⎰⎰=Dx d y x y M σμ),(, ⎰⎰=Dy d y x x M σμ),(.设平面薄片的质心坐标为) ,(y x , 平面薄片的质量为M , 则有y M M x =⋅, x M M y =⋅.于是⎰⎰⎰⎰==DDyd y x d y x x MM x σμσμ),(),(, ⎰⎰⎰⎰==DDxd y x d y x y MM y σμσμ),(),(.讨论: 如果平面薄片是均匀的, 即面密度是常数, 则平面薄片的质心(称为形心)如何求? 求平面图形的形心公式为⎰⎰⎰⎰=DDd xd x σσ, ⎰⎰⎰⎰=DDd yd y σσ.例2 求位于两圆ρ=2sin θ 和ρ=4sin θ 之间的均匀薄片的质心.解 因为闭区域D 对称于y 轴, 所以质心) ,(y x C 必位于y 轴上, 于是0=x . 因为⎰⎰⎰⎰=DDd d yd θρθρσsin 2πρρθθθθπ7sin sin 4sin 220==⎰⎰d d ,πππσ31222=⋅-⋅=⎰⎰d D,所以3737===⎰⎰⎰⎰ππσσDD d yd y . 所求形心是)37 ,0(C .三、转动惯量设有一平面薄片, 占有xOy 面上的闭区域D , 在点P (x , y )处的面密度为μ(x , y ), 假定ρ(x , y )在D 上连续. 现在要求该薄片对于x 轴的转动惯量和y 轴的转动惯量.在闭区域D 上任取一点P (x , y ), 及包含点P (x , y )的一直径很小的闭区域d σ(其面积也记为d σ), 则平面薄片对于x 轴的转动惯量和y 轴的转动惯量的元素分别为dI x =y 2μ(x , y )d σ , dI y =x 2μ(x , y )d σ .整片平面薄片对于x 轴的转动惯量和y 轴的转动惯量分别为σμd y x y I Dx ),(2⎰⎰=, σμd y x x I Dy ),(2⎰⎰=.例3 求半径为a 的均匀半圆薄片(面密度为常量μ)对于其直径边的转动惯量. 解 取坐标系如图, 则薄片所占闭区域D 可表示为D ={(x , y )| x 2+y 2≤a 2, y ≥0}而所求转动惯量即半圆薄片对于x 轴的转动惯量I x ,⎰⎰⎰⎰⋅==DDx d d d y I θρρθρμσμ222sin⎰⎰⎰⋅==ππθθμρρθθμ0240032s i n 4 s i n d a d d a2441241Ma a =⋅=πμ, 其中μπ221a M =为半圆薄片的质量. 类似地, 占有空间有界闭区域Ω、在点(x , y , z )处的密度为ρ(x , y , z )的物体对于x 、y 、z 轴的转动惯量为⎰⎰⎰Ω+=dv z y x z y I x ),,()(22ρ,⎰⎰⎰Ω+=dv z y x x z I y ),,()(22ρ,⎰⎰⎰Ω+=dv z y x y x I z ),,()(22ρ.四、引力我们讨论空间一物体对于物体外一点P 0(x 0, y 0, z 0)处的单位质量的质点的引力问题.设物体占有空间有界闭区域Ω, 它在点(x , y , z )处的密度为ρ(x , y , z ), 并假定ρ(x , y , z )在Ω上连续. 在物体内任取一点(x , y , z )及包含该点的一直径很小的闭区域dv (其体积也记为dv ). 把这一小块物体的质量ρdv 近似地看作集中在点(x , y , z )处. 这一小块物体对位于P 0(x 0, y 0, z 0)处的单位质量的质点的引力近似地为),,(z y x dF dF dF d =F )))(,,(,))(,,(,))(,,((303030dv r z z z y x Gdv r y y z y x Gdv r x x z y x G---=ρρρ,其中dF x 、dF y 、dF z 为引力元素d F 在三个坐标轴上的分量, 202020)()()(z z y y x x r -+-+-=, G 为引力常数. 将dF x 、dF y 、dF z 在Ω上分别积分, 即可得F x 、F y 、F z , 从而得F =(F x 、F y 、F z ). 小结:1、曲面面积;2、平面薄片重心、转动惯量、引力作业:习题10-4 2、3、4第五节 对弧长的曲线积分教学目的:1、掌握对弧长的曲线积分的概念及性质;2、掌握对弧长的曲线积分的计算方法;3、会求曲线积分所对应的弧长 教学重点:概念和计算方法 教学难点:曲线积分弧长的计算 教学内容:一、对弧长的曲线积分的概念 曲线形构件的质量:设一曲线形构件所占的位置在xOy 面内的一段曲线弧L 上, 已知曲线形构件在点(x , y )处的线密度为μ(x , y ). 求曲线形构件的质量. 把曲线分成n 小段, ∆s 1, ∆s 2, ⋅ ⋅ ⋅, ∆s n (∆s i 也表示弧长);任取(ξi , ηi )∈∆s i , 得第i小段质量的近似值μ(ξi , ηi )∆s i ;整个物质曲线的质量近似为i i i ni s M ∆≈=∑),(1ηξμ; 令λ=max{∆s 1, ∆s 2, ⋅ ⋅ ⋅,∆s n }→0, 则整个物质曲线的质量为i i i ni s M ∆==→∑),(lim 10ηξμλ.这种和的极限在研究其它问题时也会遇到.定义 设L 为xOy 面内的一条光滑曲线弧, 函数f (x , y )在L 上有界. 在L 上任意插入一点列M 1, M 2, ⋅ ⋅ ⋅, M n -1把L 分在n 个小段. 设第i 个小段的长度为∆s i , 又(ξi , ηi )为第i 个小段上任意取定的一点, 作乘积f (ξi ,ηi )∆s i , (i =1, 2,⋅ ⋅ ⋅, n ), 并作和i i i ni s f ∆=∑),(1ηξ, 如果当各小弧段的长度的最大值λ→0, 这和的极限总存在,则称此极限为函数f (x , y )在曲线弧L 上对弧长的曲线积分或第一类曲线积分, 记作ds y x f L ),(⎰, 即i i i ni L s f ds y x f ∆==→∑⎰),(lim ),(10ηξλ. 其中f (x , y )叫做被积函数, L 叫做积分弧段.设函数f (x , y )定义在可求长度的曲线L 上, 并且有界. 将L 任意分成n 个弧段: ∆s 1, ∆s 2, ⋅ ⋅ ⋅, ∆s n , 并用∆s i 表示第i 段的弧长; 在每一弧段∆s i 上任取一点(ξi , ηi ), 作和i i i ni s f ∆=∑),(1ηξ;令λ=max{∆s 1, ∆s 2, ⋅ ⋅ ⋅, ∆s n },如果当λ→0时, 这和的极限总存在, 则称此极限为函数f (x , y )在曲线弧L 上对弧长的曲线积分或第一类曲线积分, 记作ds y x f L ),(⎰, 即i i i ni L s f ds y x f ∆==→∑⎰),(lim ),(10ηξλ. 其中f (x , y )叫做被积函数, L 叫做积分弧段.定义 设函数f (x,y )在分段光滑曲线L 上有定义,A ,B 是的端点,依次用分点A=M 0,M 1,....,M n-1,M n =B 把L 分成n 个小弧段01121,,,n n M M M M M M -每小段的弧长记为,在上任取一点,若时,和式的极限存在,则称函数在曲线L 上积分,且称该极限值为函数沿曲线L 对弧长的曲线积分,记作(,)Lf x y ds ò,即1(,)lim (,).ni i i Li f x y ds f s l x h ®==D åò由定义可知,曲线弧的质量M 等于线密度(,)x y r 沿曲线L 对弧长的曲线积分,即(,).LM x y ds r =ò特别地,当(,)1x y r º时,.LM ds s ==ò二、对弧长的曲线积分的性质设(,)f x y ,(,)g x y 在L 上可积,则有以下性质: (1)(,)(,);LLkf x y ds kf x y ds =蝌(2)[(,)(,)](,)(,);LLLf x yg x y dsf x y dsg x y ds ??蝌?(3)如果曲线L 由12,,,n L L L L 几部分组成,则在弧L 上的积分等于在各部分上积分之和,即12(,)(,)(,)(,).nLL L L f x y ds f x y ds f x y ds f x y ds =+++蝌蝌L三、对弧长的曲线积分的计算法定理 设曲线L 由参数方程(),()()x x t y y t ta b ==#表示,(),()x t y t 在[,]a b 上有一阶连续导数,且22'()'()0x t y t +?(即曲线L 是光滑的简单曲线),函数(,)f x y 在曲线上连续,则(,)((),(.Lf x y ds f x t y t b a=蝌若曲线L 由方程()()y y x a x b =#给出,()y x 在[,]a b 上有一阶连续导数,且(,)f x y 在曲线L上连续,则(,)(,(.b Laf x y ds f x y x =蝌类似的,若曲线L 由方程()()x x y c y d =#给出,()x y 在[,]c d 上有一阶连续导数,且(,)f x y 在曲线L 上连续,则(,)((),.d Lcf x y ds f x y y =蝌例1、计算曲线积分L I xyds =⎰,L 是圆()2220x y a a +=>在第一象限中的部分.解:由圆的参数方程cos ,sin ,02x a t y a t t π==≤≤可得 'sin 'cos t t x a t y a t ==-,ds adt ===按公式,得20cos sin LI xyds a t a t adt π==⋅⋅⎰⎰32sin 22a tdt π=⎰32a =例2、计算曲线积分⎰曲线L 是抛物线214y x =自点(0,0)到点(2,1)的一段弧.解:因为ds ==而x 的变化区间是[0,2],由公式得2322200122(1)|1).2343Lx ==+=- 例3、求LI yds =⎰其中L:y 2=4x 从(1,2)到(1,-2)一段。

相关文档
最新文档