高中数学_球与多面体的切接问题教学设计学情分析教材分析课后反思

合集下载

简单多面体的外接球问题新教材教案

简单多面体的外接球问题新教材教案

教学设计课题:简单多面体的外接球问题学校:姓名:教案教学过程(师生活动)设计意图知识梳理4.三角形外接圆的圆心与半径直角三角形等边三角形一般三角形正弦定理:数学来源于生活,培养从数学的角度看待问题,用数学的思维方法思考问题,用数学的方法解决问题的数学素养.通过展示模型让学生直观感受多面体的外接球,激发学生的学习兴趣,使学生产生探索欲望.让学生回顾已学的知识,有利于本节课的顺利进行,从学生已有的认知水平出发,引发学生积极思考,相互交流.1.球的体积公式:343V Rπ=2.球的表面积公式:24S Rπ=3.球的截面圆圆心与球心dO'O历年涉及真题2016Ⅱ文4 2017Ⅰ文162017Ⅲ文9 理8 2018Ⅲ文12 理102020Ⅰ文12 理10 2020Ⅱ文11 理10重心圆心:半径:高的OACBOCBA圆心:斜边的中点半径:斜边的一半R——外接圆半径ABC球的半径圆的半径两心距RCcBbAa2sinsinsin===''OOO截面圆⊥知识梳理例题讲解5.长方体的外接球6.正方体的外接球二、割补法通过视频探究演示,体会求长方体外接球半径的方法,并再此方法的基础上归纳求外接球半径的公式.培养学生空间问题平面化、几何问题代数化的能力,深刻体会化归的数学思想.利用类比的数学方法快速得到正方体外接球的半径计算公式.以高考真题开篇,充分调动学生的积极性,提高重视程度.长方体外接球的直径等于长方体的体对角线.正方体外接球的直径等于正方体的体对角线.A BCDD1C1B1A1O1.(2017Ⅱ文15)长方体的长,宽,高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为__________.球表面积外接球半径长宽高长方体体对角线分析:解:设外接球半径为,表面积为R S2222cbaR++=ππ144144214141232222=⨯===++=SRR,aaaaR⋅=++=32222自主探究归纳方法探究一割补长方体和正方体师:小组合作,试一试能在长方体和正方体中割补出哪些简单的多面体.生:小组活动后展示成果.师:将小组成果画下来.引导学生探究可以补成长方体和正方体的类型,动态演示割补过程,将问题简单化.各小组进行模型操作,理解补体法,培养动手操作能力与合作交流能力.教师通过引导,鼓励学生自主探索、动手实践、合作交流,使学生的学习过程成为在教师引导下的“再创造”过程.通过图形动态演示与动手操作模型,发展几何直观和空间想象能力,培养学生的数学直观想象素养.注重分析的过程,理清解题思路,强调计算方法.2.已知三棱锥的三条侧棱两两互相垂直,且则此三棱锥的外接球的体积为__________ .ABCP-,,,257===PCPBPA527ACBP分析墙角型三棱锥墙角型补成长方体长方体外接球半径3.已知三棱锥中则该三棱锥外接球的半径为__________ .BCDA-,,,52513======CDABBCADBDACABCDabc三式相加⎪⎩⎪⎨⎧=+=+=+202513222222bacbca⎪⎩⎪⎨⎧===?222cba()582222=++cba归纳方法加强练习师:不能借助长方体和正方体解题的题型,一般通过确定球心构造直角三角形来解决外接球问题.探究二外接球的球心师:请一位同学发表自己的看法.培养学生观察与归纳的能力,帮助学生进一步巩固知识,并能运用构造直角三角形解决问题.通过图形动态演示,归纳解题方法,明确构造直角三角形关键在于定两心:底面外接圆圆心和外接球的球心.学以致用,强调具体问题具体分析,考虑问题要全面.CBAA'B'C'底面是一般三角形的直三棱柱它的外接球球心在哪?外接球的半径怎么求?4.已知正三棱锥的底面外接圆半径为1,侧棱长为3,则该正三棱锥外接球半径为_________.BCDA-1O13AOBCDRd-=22()12222=--RR课堂小结数学方法:①类比②数形结合③化归通过反思进行小结归纳,培养概括能力.帮助学生总结经验教训,巩固知识技能,提高认知水平.布置作业学生独立完成例题解题过程,巩固今天的内容.板书设计简单多面体的外接球问题长方体:割补法:多面体外接球墙角型双垂直正四面体对棱相等构造直角三角形:定两心(圆心,球心)2.完成课后练习.1. 完成今天所有题目的解答过程;1.长方体:3.割补法:①墙角型②双垂直③正四面体④对棱相等4.构造法:直角三角形2.正方体:定两心(圆心,球心)正方体:球的半径圆的半径两心距球的半径圆的半径两心距2222aaaR++=a⋅=32222cbaR++=2222cbaR++=2222aaaR++=a⋅=3。

多面体与球的“切接”问题

多面体与球的“切接”问题

第六天 多面体与球的“切接”问题圆锥的切接问题:棱锥的切接问题(棱柱的切接问题(注意,正方体、长方体、双垂四面体、相对棱相等的三棱锥、底面为钝角、锐角、直角三角形的三棱柱)一、正方体与球的“切接”设正方体的棱长为a ,求(1)内切球半径;(2)外接球半径;(3)与棱相切的球半径。

(1)截面图为正方形EFGH 的内切圆,得2a R =; (2)与正方体各棱相切的球:球与正方体的各棱相切,切点为各棱的中点,如图4作截面图,圆O 为正方形EFGH 的外接圆,易得a R 22=。

(3)正方体的外接球:正方体的八个顶点都在球面上,如图5,以对角面1AA 作截面图得,圆O 为矩形C C AA 11的外接圆,易得a O A R 231==。

变式:在球面上有四个点P 、A 、B 、C .如果PA 、PB 、PC 两两互相垂直,且a PC PB PA ===,求这个球的表面积是______.二、球与长方体的外接,(长方体的体对角线即球的直径)注:利用:()22222c b a r ++= 变式:三、正(直)棱柱与球的组合问题正棱柱的外接球,其球心定在上下底面中心连线的中点处,由球心、底面中心及底面一顶点构成的直角三角形便可得球半径例:已知底面边长为a 正三棱柱111C B A ABC -的六个顶点在球1O 上,又知球2O 与此正三棱柱的5个面都相切,求球1O 与球2O 的体积之比与表面积之比。

图3 图4 图5分析:先画出过球心的截面图,再来探求半径之间的关系。

解:如图6,由题意得两球心1O 、2O 是重合的,过正三棱柱的一条侧棱1AA 和它们的球心作截面,设正三棱柱底面边长为a ,则a R 632=,正三棱柱的高为a R h 3322==,由O D A Rt 11∆中,得 22222221125633333a a a R a R =⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+⎪⎪⎭⎫ ⎝⎛=,a R 1251=∴ 1:5::222121==∴R R S S ,1:55:21=V V 四、 棱锥的内切、外接球问题例1:正四面体的外接球和内切球的半径是多少?分析:运用正四面体的二心合一性质,作出截面图,通过点、线、面关系解之。

多面体与球切、接的问题(讲)

多面体与球切、接的问题(讲)

纵观近几年高考对于组合体的考查,与球相关的外接与内切问题是高考命题的热点之一.高考命题小题综合化倾向尤为明显,要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识学生掌握较为薄弱、认识较为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理. 下面结合近几年高考题对球与几何体的切接问题作深入的探究,以便更好地把握高考命题的趋势和高考的命题思路,力争在这部分内容不失分.从近几年全国高考命题来看,这部分内容以选择题、填空题为主,大题很少见.首先明确定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。

定义2:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.1 球与柱体的切接规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题.1.1 球与正方体如图所示,正方体1111ABCD A B C D -,设正方体的棱长为a ,,,,E F H G 为棱的中点,O 为球的球心.常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFGH 和其内切圆,则2a OJ r ==;二是与正方体各棱相切的球,截面图为正方形EFGH 和其外接圆,则22GO R ==;三是球为正方体的外接球,截面图为长方形11ACA C 和其外接圆,则132AO R '==.通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题.(1)正方体的内切球,如图1. 位置关系:正方体的六个面都与一个球都相切,正方体中心与球心重合;数据关系:设正方体的棱长为a ,球的半径为r ,这时有2r a =.(2)正方体的外接球,如图2. 位置关系:正方体的八个顶点在同一个球面上;正方体中心与球心重合;数据关系:设正方体的棱长为a ,球的半径为r ,这时有23r a =.(3)正方体的棱切球,如图3. 位置关系:正方体的十二条棱与球面相切,正方体中心与球心重合; 数据关系:设正方体的棱长为a ,球的半径为r ,这时有22r a =.例 1 棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为( )A .22B .1C .212+D .2思路分析:由题意推出,球为正方体的外接球.平面11AA DD 截面所得圆面的半径12,22AD R ==得知直线EF 被球O 截得的线段就是球的截面圆的直径.1.2 球与长方体例 2自半径为R 的球面上一点M ,引球的三条两两垂直的弦MC MB MA ,,,求222MC MB MA ++的值.思路分析:此题欲计算所求值,应首先把它们放在一个封闭的图形内进行计算,所以应引导学生构造熟悉的几何体并与球有密切的关系,便于将球的条件与之相联.例 3(全国卷I高考题)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为().A. 16πB. 20πC. 24πD. 32π思路分析:正四棱柱也是长方体.由长方体的体积16及高4可以求出长方体的底面边长为2,可得长方体的长、宽、高分别为2,2,4,长方体内接于球,它的体对角线正好为球的直径.2 球与锥体的切接规则的锥体,如正四面体、正棱锥、特殊的一些棱锥等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱锥的棱和高产生联系,然后考查几何体的体积或者表面积等相关问题.2.1正四面体与球的切接问题(1)正四面体的内切球,如图4. 位置关系:正四面体的四个面都与一个球相切,正四面体的中心与球心重合;数据关系:设正四面体的棱长为a,高为h;球的半径为R,这时有643R h==;(可以利用体积桥证明)(2) 正四面体的外接球,如图5. 位置关系:正四面体的四个顶点都在一个球面上,正四面体的中心与球心重合; 数据关系:设正四面体的棱长为a ,高为h ;球的半径为R ,这时有436R h a ==;(可用正四面体高h 减去内切球的半径得到)(3) 正四面体的棱切球,如图6. 位置关系:正四面体的六条棱与球面相切,正四面体的中心与球心重合;数据关系:设正四面体的棱长为a ,高为h ;球的半径为R ,这时有6432,.3R h a h ===例 4设正四面体中,第一个球是它的内切球,第二个球是它的外接球,求这两个球的表面积之比及体积之比.思路分析:此题求解的第一个关键是搞清两个球的半径与正四面体的关系,第二个关键是两个球的半径之间的关系,依靠体积分割的方法来解决的.2.2其它棱锥与球的切接问题球与正棱锥的组合,常见的有两类,一是球为三棱锥的外接球,此时三棱锥的各个顶点在球面上,根据截面图的特点,可以构造直角三角形进行求解.二是球为正棱锥的内切球,例如正三棱锥的内切球,球与正三棱锥四个面相切,球心到四个面的距离相等,都为球半径R .这样求球的半径可转化为球球心到三棱锥面的距离,故可采用等体积法解决,即四个小三棱锥的体积和为正三棱锥的体积.球与一些特殊的棱锥进行组合,一定要抓住棱锥的几何性质,可综合利用截面法、补形法等进行求解.例如,四个面都是直角三角形的三棱锥,可利用直角三角形斜边中点几何特征,巧定球心位置.例5正三棱锥的高为1,底面边长为62,正三棱锥内有一个球与其四个面相切.求球的表面积与体积.思路分析:此题求解的关键是搞清球的半径与正三棱锥的高及底面边长的关系,由等体积法可得:ABC O PBC O PAC O PAB O ABC P V V V V V -----+++=,得到2633232-=+=R .例6(福建高考题)若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是 .思路分析:此题用一般解法,需要作出棱锥的高,然后再设出球心,利用直角三角形计算球的半径.而作为填空题,我们更想使用较为便捷的方法.三条侧棱两两垂直,使我们很快联想到长方体的一个角,马上构造长方体,由侧棱长均相等,所以可构造正方体模型.点评:此题突出构造法的使用,以及渗透利用分割补形的方法解决立体几何中计算问题,这是解决几何体与球切接问题常用的方法.例7【2012年新课标高考卷】已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC 是球O 的直径,且2SC =;则此棱锥的体积为( ) A. 26 B. 36 C. 23 D. 22思路分析:ABC ∆的外接圆是球面的一个小圆,由已知可得其半径,从而得到点O 到面ABC 的距离.由SC 为球O 的直径⇒点S 到面ABC 的距离即可求得棱锥的体积.3 球与球相切问题对于球与球的相切组合成复杂的几何体问题,要根据丰富的空间想象力,通过准确确定各个小球的球心的位置,或者巧借截面图等方法,将空间问题转化平面问题求解.例8已知有半径分别为2、3的球各两个,且这四个球彼此相外切,现有一个球与此四个球都相外切,则此球的半径为 .思路分析:结合图形,分析四个球的球心A、B、C、D的位置,知AD=AC=BD=BC=5,AB=6,CD=4.设AB中点为E、CD中点为F,连结EF.在△ABF中可得BF=21,在△EBF中可得EF=23. 由于对称性可得第五个球的球心O在EF上,连结OA、OD.设第五个球的半径为r,根据OE+OF=EF 建立r的方程.例9把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离.思路分析:关键在于能根据要求构造出相应的几何体,由于四个球半径相等,故四个球一定组成正四面体的四个顶点且正四面体的棱长为两球半径之和2.4球与几何体的各条棱相切问题球与几何体的各条棱相切问题,关键要抓住棱与球相切的几何性质,达到明确球心的位置为目的,然后通过构造直角三角形进行转换和求解.如与正四面体各棱都相切的球的半径为相对棱的一半:24r'=.例10 把一个皮球放入如图10所示的由8根长均为20 cm的铁丝接成的四棱锥形骨架内,使皮球的表面与8根铁丝都有接触点,则皮球的半径为()A.3cm B.10 cmC .102cmD .30cm思路分析:根据题意球心O 在图中AP 上,过O 作BP 的垂线ON 垂足为N ,ON=R ,OM=R ,由各个棱都为20,得到AM=10,BP=20,BM=10,AB=102,设BPA α∠=,在Rt ∆BPM 中,由222BP BM PM =+,得103PM =.在Rt ∆PAM 中, 由222PM AM AP =+,得102PA =.在Rt ∆ABP 中得, 1022sin 202AB BP α===,在Rt ∆ONP 中得, sin ON R OP OPα==,从而22R OP =,2OP R =.在Rt ∆OAM 中, 由222OM AO AM =+,建立方程22(1022)100R R =-+即可得解.5球与旋转体切接问题首先画出球及其它旋转体的公共轴截面,然后寻找几何体与几何体几何元素之间的关系.例11求球与它的外切圆柱、外切等边圆锥的体积之比.思路分析:首先画出球及它的外切圆柱、等边圆锥,它们公共的轴截面,然后寻找几何体与几何体之间元素的关系.例12在棱长为1的正方体内有两个球相外切且又分别与正方体内切.(1)求两球半径之和;(2)球的半径为多少时,两球体积之和最小.思路分析:此题的关键在于作截面,一个球在正方体内,学生一般知道作对角面,而两个球的球心连线也应在正方体的体对角线上,故仍需作正方体的对角面,得如图的截面图,在图中,观察R与r和棱长间的关系即可.综合上面的五种类型,解决与球的外切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作;把一个多面体的几个顶点放在球面上即为球的内接问题.解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径.发挥好空间想象力,借助于数形结合进行转化,问题即可得解.如果是一些特殊的几何体,如正方体、正四面体等可以借助结论直接求解,此时结论的记忆必须准确.高考题往往与三视图相结合,题目的难易不一,在复习中切忌好高骛远,应重视各种题型的备考演练,重视高考信息的搜集,不断充实题目的类型,升华解题的境界.。

球与多面体的切、接问题

球与多面体的切、接问题
评注 当 a取最 大时 ,问题 本质 是球 间空 隙 内做一 球 0,使 球 0与 四球都 相 切 ,再 作球 0 的内接正 方体 ,设 球 0
的半径为 ,则 :÷咔 一1:华二 一l,所以 :牟二 n: ‘ 一l,


所 以 。=√2一 ,所以 。的最大值为 一 .

03
(二)球与一般正棱 锥
所以外接球的体积 :÷霄f ) :
例 3 已知 各 顶 点 都 在 一 个球 面 上 的 正 四 棱 柱 高 为 4,
体 积 为 l6,则 这 个 球 的表 面 积 为 ( ).
A.16百
B.20xr
C.24ax
D.32-rr
评注 正 四棱柱也 是长方体.由长方 体的体 积 l6及高
√6

2.正 四面体 的外 接球 ,即正 四面体 的 四个 顶点 都在 一 个球面上 ,则正四面体的中心与球心重合 ;设外接 球 的半 径
为R,则 =丢 :孚。;(也可以把棱长为。的正四面体看
成由棱长为半 。的正方体切割得到,所以可以把棱长为 a
变式 l 若棱 长为 a的正 四面体 内有 四个半径 都是 1 的实心小球 中,求 a的最小值.
解 题 技 巧 与 方 法


·.-l, ●

毒 赫



· ..
Sl+S2=4ax(r +r;)≥3叮r(2一
),故选 A.
二 、球 与 锥体 的切 、接
规则 的锥体 ,如正 四面体 、正 棱锥 、特 殊 的一些 棱锥 等
能够和球进行充 分 的组 合 ,以外接 和 内切两种 形式 进行 结

教学设计——球的接切问题公开课教案教学设计课件

教学设计——球的接切问题公开课教案教学设计课件

正方体、正四面体与球的接切问题探究教材分析《课程标准》指出:几何学是研究现实世界中物体的形状、大小与位置关系的数学学科。

人们通常采用直观感知、操作确认、思辨论证、度量计算等方法认识和探究几何图形及其性质。

三维空间是人类生存的现实空间,认识空间图形,培养和发展学生的空间想象能力、推理论证能力、运用图形语言进行交流的能力以及几何直观能力,是高中阶段数学必修系列课程的基本要求。

一、教学目标1、通过研究正方体的顶点、棱、面与球相切,体会球的直径的求法。

从而解决此类问题中球的体积、表面积问题,让学生体会到探究的快乐及知识间的联系。

(体现核心素养中的直观想象、逻辑推理、数学运算等素养)2、通过寻找正四面体与正方体的联系,探究球与正四面体的顶点、棱、面相切时球的直径的求法,从而解决与之相关问题时球的体积、表面积问题。

二、教学重难点重点:正方体、正四面体的顶点、棱、面分别与球相切问题难点:正四面体内切球、外接球半径与棱长的关系三、教学过程(一)回顾旧知球的定义:半圆以它的直径为旋转轴,旋转所成的曲面叫做球面。

球面所围成的几何体叫做球体。

球心到球面的距离叫做球的半径。

正四面体的定义:每条棱长都相等的三棱锥叫做正四面体。

正四面体可在正方体中连接特定的四个顶点得到。

(二)引出新知正方体与球正方体与球的接切一共有三种情况,第一种,正方体的面与球相切,此时该球为正方体的内切球;第二种,正方体的棱与球相切;第三种,正方体的顶点与球相切,此时该球为正方体设正方体的棱长为a,则(1)正方体的内切球当正方体的面与球的表面相切时,轴截面如下图所示:o,即球的直径等于正方体的棱长。

此时2R a(2)正方体的棱与球相切当正方体的棱与球的表面相切时,轴截面如下图所示:此时2R=2a,即球的直径等于正方体的面对角线长。

(3)正方体的外接球当正方体的顶点与球的表面相切时,轴截面如下图所示:此时2R=3a,即球的直径等于正方体的体对角线长。

正四面体与正方体正四面体可以在正方体中连接正方体的几个顶点得到,只要保证所得到的棱长均相等即可。

专题一 球的切、接问题

专题一  球的切、接问题

乌鲁木齐市第一中学2019届高三二轮复习资料专题一球的“切”、“接”综合问题编写:李国华【基础知识,基本方法】“切”“接”问题的处理规律1.“切”的处理解决与球的内切问题主要是指球内切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面来作,“球心截面法”是解决“切”“接”问题的根本大法。

2.“接”的处理把一个多面体的几个顶点放在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.一、与球有关的外接、内切问题解法流程二、与球有关的切、接问题中常见的组合:类型一:正方体与球:①正方体的内切球:截面图为正方形EFHG 的内切圆,如图所示.设正方体的棱长为a ,则|OJ |=r =a 2(r 为内切球半径).②与正方体各棱相切的球:截面图为正方形EFHG的外接圆,则|GO |=R =22a .③正方体的外接球:截面图为正方形ACC 1A 1的外接圆,则|A 1O |=R ′=32a .类型二:正四面体与球:如图,设正四面体的棱长为a ,内切球的半径为r ,外接球的半径为R ,取AB 的中点为D ,连接CD ,SE 为正四面体的高,在截面三角形SDC 内作一个与边SD 和DC 相切,圆心在高SE 上的圆.因为正四面体本身的对称性,内切球和外接球的球心同为O .此时,CO =OS =R ,OE =r ,SE =23a ,CE =33a ,则有R +r =23a ,R 2-r 2=|CE |2=a 23,解得R =64a ,r =612a .该正四面体外切球的半径也可以用“补形法”求解:该正四面体棱切球的半径求法:地球仪的经线圈、纬线圈正四面体(设棱长为a )的性质:①全面积23S a =;②体积3212V a =;③外接球半径64R a =;④内切球半径612r a =;⑤正四面体内任一点到各面距离之和为定值63h a =.由于正四面体本身的对称性可知,内切球和外接球的两个球心是重合的,为正四面体高的四等分点.类型三:直角四面体(三条侧棱互相垂直的三棱锥)的外接球:①如果三棱锥的三条侧棱互相垂直并且相等,则可以补形为一个正方体,正方体的外接球的球心就是三棱锥的外接球的球心.即三棱锥A 1­AB 1D 1的外接球的球心和正方体ABCD ­A 1B 1C 1D 1的外接球的球心重合.如图,设AA 1=a ,则R =32a .②如果三棱锥的三条侧棱互相垂直但不相等,则可以补形为一个长方体,长方体的外接球的球心就是三棱锥的外接球的球心.R 2=a 2+b 2+c 24=l 24(l 为长方体的体对角线长).类型四:双垂四面体的外接球半径问题四面体A—BCD中:若AB⊥平面BCD,CD⊥平面ACB,则称该四面体为双垂四面体(图4),设AB =a,BC=b,CD=c,其外接球的半径为r.如果把该双垂四面体补成一个长方体,那么该双垂四面体的外接球也是长方体的外接球,于是类型五:对棱相等的四面体外接球问题对棱相等模型(补形为长方体):三棱锥(即四面体)中,已知三组对棱分别相等,例1:四面体ABCD 中,541AB CD BC AD ====,,BD=AC=34,求该四面体的(1)外接球的半径(由于每组对棱相等,补形成长方体求解)、(2)体积(3)内切球半径(选做)三、几类常见几何体外接球问题(一)构造直棱柱求解类型六、直棱柱的外接球与该棱柱外接圆柱体有相同的外接球;(圆柱体轴截面矩形的外接圆是大圆,该矩形的对角线(外接圆直径)是球的直径)例2、在四面体S ABC -中,ABC SA 平面⊥,,1,2,120====∠︒AB AC SA BAC 则该四面体的外接球的表面积为()π11.A π7.B π310.C π340.D【课堂练习1】已知EAB ∆所在的平面与矩形ABCD 所在的平面互相垂直,︒=∠===60,2,3AEB AD EB EA ,则多面体ABCD E -的外接球的表面积为.(二)锥体背景的模型类型七、切瓜模型(两个大小圆面互相垂直且交于小圆直径——正弦定理求大圆直径是通法)1.如图4-1,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且P 的射影是ABC ∆的外心⇔三棱锥ABC P -的三条侧棱相等⇔三棱ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的顶点.解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高);第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R ;事实上,ACP ∆的外接圆就是大圆,直接用正弦定理也可求解出R .也可用下面两种方法求解:法一:如图4-4,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径)第一步:易知球心O 必是PAC ∆的外心,即PAC ∆的外接圆是大圆,先求出小圆的直径r AC 2=;第二步:在PAC ∆中,可根据正弦定理R Cc B b A a 2sin sin sin ===,求出R .法二:三棱锥的两个侧面互相垂直,已知两个相互垂直的面的外接圆半径的长及其公共棱的长度的情形:已知三棱锥A BCD -中,面ABD ⊥面BCD ,且ABD ∆,BCD ∆的外接圆半径分别记为12,r r ,公共棱BD a =,则该三棱锥的外接球半径满足:()()()222212222R r r a =+-【课堂练习2】(1)三棱锥ABC P -中,平面⊥PAC 平面ABC ,△PAC 边长为2的正三角形,BC AB ⊥,则三棱锥ABC P -外接球的半径为.(2)三棱锥ABC P -中,平面⊥PAC 平面ABC ,2=AC ,3==PC PA ,BC AB ⊥,则三棱锥ABC P -外接球的半径为.(3)在三棱锥ABC P -中,3===PC PB PA ,侧棱PA 与底面ABC 所成的角为 60,则该三棱锥外接球的体积为()A.π B.3πC.4πD.43π(4)表面积为π60的球面上有四点C B A S 、、、且ABC ∆是等边三角形,球心O 到平面ABC 的距离为3,若ABC SAB 面⊥,则棱锥ABC S -体积的最大值为.(三)二面角背景的模型类型八、两直角三角形拼接在一起(斜边相同,也可看作矩形沿对角线折起所得三棱锥)模型如图, 90=∠=∠ACB APB ,求三棱锥ABC P -外接球半径。

多面体与球的切接问题

多面体与球的切接问题

(2013 哈九中三模) 已知矩形 ABCD 的面积为 8, 典例2: 当矩形周长最小时, 沿对角线 AC 把 ACD 折起, 则三棱锥 D-ABC 的外接球的表面积等于( )
A.4
B.8
C.16
D.24
变题:
1.(2013 期末理)四面体 ABCD 的四个顶点在同一个球面 上,AB=BC=CD=DA=3,AC= 2 3 ,BD= 6 则该球的表面积为 ( )
反馈训练2:
4.三棱锥 S-ABC 中,SAB SAC ,AB=AC,SA=SB=2,侧棱 AS
60 与底面 ABC 所成的角为 ,经过 S,A,B,C 四点的球的球心
在三棱锥内,求这个球的体积
【设计意图:巩固棱锥外接球半径的求法】
小结2 求棱锥外接球半径的方法: (1)补形法(适用特殊棱锥) (2)射影定理法(适用于侧棱相等即球心落 在高线上的的棱锥) (3)勾股定理法 (通法) 关键是找球心,画出截面图,构造与R有关 的直角三角形。
多面体与球的切接问题
基本知识回顾:
一、 球体的体积与表面积
二、球与多面体的接、切
4 3 ① V球 R 3

S球面 4 R
2
外接球球心到各顶点的距离相等 (R) 定义 1:若一个多面体的各顶点都在一个球的球面上, 则称这个多面体是这个球的内接多面体, 这个球是这个 多面体的外接球 。
(r) 定义内切球球心到各面的距离相等 2:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体, 这个球是这个多面体的内切球 。
反馈训练2:
2. 某几何体的三视图如图所示,若该几何体各顶点都在一 球面上,则这个球的表面积为___________

人教A版高中数学必修二高三专题复习《多面体的外接球问题》教学设计

人教A版高中数学必修二高三专题复习《多面体的外接球问题》教学设计

高三专题复习—多面体的外接球问题【教学分析】有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.【考情分析】近年来高考题常把球与其它几何体相结合,对内切、外接问题进行考查.多以选择题、填空题的形式出现,难度不大,但设问方式多种多样,对空间想象能力的要求较高.【教学目标】知识与技能:学生掌握多面体外接球半径的常用方法,进而解决多面体的外接球的问题。

过程与方法:培养空间想象能力和感性认识,体会转化的数学思想方法。

教学重点:多面体外接球的半径的求法教学难点:利用空间想象能力分析图形,明确接点及球心的位置,求出多面体的外接球半径。

【教学过程】知识回顾:性质1:用一个平面去截球,截面是圆面; 用一个平面去截球面, 截线是圆。

性质2:球心和截面圆心的连线垂直于截面球心到截面的距离与球的半径R 及截面的半径的关系:新授课:一、直接法——构造直角三角形例1 求棱长为1的正四面体外接球的体积。

小结:本例是直接构造直角三角形,运用公式222R r d =+来求球的半径的,该公式是求球的半径的常用公式.秒杀公式1:222h r R h+=. 限制条件:各顶点都在球面上,顶点到底面的距离为h ,且顶点在底面的射影为底面外接圆圆心.典型222r d R +=例子为:正三棱锥,正四棱锥。

秒杀训练1.正四棱锥S ABCD-的底面边长和各侧棱长,点S A B C D、、、、都在同一球面上,则此球的体积为 .二、补形法——构造长(正)方体引例:一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为 .例 2.已知球O的面上四点ABCD,DA⊥平面ABC,,AB BC DA AB BC⊥===O的体积等于小结:本例可先补成长(正)方体,再运用“长(正)方体对角线的长等于其外接球的直径”这一性质来求解.训练1(2012辽宁,16)已知正三棱锥P ABC-,点,,,P A B C的球面上,若,,PA PB PC两两互相垂直,则球心到截面ABC的距离为 .小结:一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有:2R =训练2:(2013.辽宁理,10)已知直三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若13,4,,12AB AC AB AC AA ==⊥=,则球O 的半径为( )13.2A B C D训练3:已知直三棱柱111ABC A B C -的各个顶点都在同一球面上,若012,120,AB AC AA BAC ===∠=则此球的表面积为训练4:已知在三棱锥A BCD -中,,AD ABC ⊥面120,BAC ︒∠= 2,AB AD AC ===则该棱锥的外接球半径为秒杀公式2:=R 限制条件:各顶点都在球面上,且有条棱垂直于底面,且垂点是顶点。

多面体与球的接切问题讲解

多面体与球的接切问题讲解

AB 平面BCD ,BC 8D=DCA,,若3 12A=CBA, 6

求外接球的体积
考点 2 构造法
(3)出现线面垂直、线线垂直可以构造
变式 4(2014 邯郸质检)已知三角形 PAD 所 在 平 面 与 矩 形 ABCD 所 在 平 面 互 相 垂 直 , PA=PD=AB=2,∠APD=90°,若 P、A、B、C、D 都在同一球面上,则此球的表面积等于_________
上,若该正方体的表面积为 24 ,则该球的体积为
.
(2)已知各顶点都在一个球面上的正四棱柱高为 4,体
积为 16,则这个球的表面积为( ).
A. 16
B. 20
C. 24
D. 32
考点 2 构造法
(1)“墙角”问题 例 2、若三棱锥的三条侧棱两两垂直,且
侧棱长均为 3 ,则其外接球的表面积
DAB=600 ,E 为 AB 的中点,将 ADE与 BEC分布
沿 ED 、 EC 向上折起,使 A、B 重合于点 P ,则 三棱锥 P-DCE 的外接球的体积为( ).
A. 4 3 27
B.
6 2
C.
6
8
D.
6 24
考点 2 构造法
(3)出现线面垂直、线线垂直可以构造
例 4、已知点 A、B、C、D 在同一个球面上,
C都在半径为 3 的球面上,若PA,PB,PC两两互相垂
直,则球心到截面ABC的距离为________. 解法1:PA a AB 2a, AH 6 a, 3
PH 3 a OH 3 a R
3
3
R2

3
2
3
a R

高中数学必修二《简单多面体外接球问题》教学设计

高中数学必修二《简单多面体外接球问题》教学设计

教 学 设 计课题:简单几何体的外接球问题 一.教学分析:球是高考出题的热点之一,在近几年的高考题中都有出现。

球经常和其它空间几何体相结合出题,以选择题或填空题的形式出现。

二.学情分析:学生在必修二初,对立体几何不是很熟悉,加上线面位置关系没上,所以本节课只解决几类特殊的几何体外接球问题。

有一部分学生已经能解决长方体的外接球问题。

三.预设目标:知识与技能:学生学会用构造法解决空间几何体的外接球问题。

过程与方法:学生建立空间感,体会转化的数学思想方法。

情感、态度、价值观:完善学生知识体系,增进学生对数学的信心和兴趣。

四.教学重点及难点: 重点:学会转化的思想方法。

难点:构造法的要点;球心位置的确定五、学法分析高中的学生已经具备一定的动手能力,虽然空间想象能力不够完善,将班级的空间几何体的实物模型提前一天分给各个学习小组,加上辅助线,合作,构造自己需要的模型。

因此,在教学中,安排学生以小组为单位讨论交流,对什么样的三棱锥可以构造成长方体一目了然。

从中体现出学生活跃的思维、浓厚的兴趣、 强烈的参与意识和自主探究能力.六 .教学准备: 几何体实物模型 , 微课, 预习讲义教法过程:(一)复习球的性质1. 球心和截面圆心的连线垂直于截面2.球心到截面的距离d 与球的半径R 及截面圆的半径r 的关系:222d r R +=3.外接球的定义:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体, 这个球是这个几何体的外接球。

4.正方体,长方体的外接球问题A正方体外接球的直径等于正方体的体对角线。

设长方体的长、宽、高分别为a、b、c,长方体外接球的直径等于长方体体对角线教学设想:通过这4个问题的设置,强化外接圆的性质,为确定圆心具体位置做铺垫。

知道正方体,长方体两个特殊的几何体外接球问题,将解决一系列问题。

(二)两招搞定简单多面体外接球问题外接球的问题:简单多面体外接球问题是立体几何中的难点和重要的考点,此类问题实质是解决球的半径尺或确定球心0的位置问题,其中球心的确定是关键.1.构造正方体或长方体长方体或正方体的外接球的球心是在其体对角线的中点处.以下是常见的、基本的几何体补成正方体或长方体的途径与方法.途径1:正四面体、三条侧棱两两垂直的正三棱锥、四个面都是是直角三角形的三棱锥都分别可构造正方体.途径2:同一个顶点上的三条棱两两垂直的四面体、相对的棱相等的三棱锥都分别可构造长方体和正方体.途径3:若已知棱锥含有线面垂直关系,则可将棱锥补成长方体或正方体.途径4:若三棱锥的三个侧面两两垂直,则可将三棱锥补成长方体或正方体.教学设想:通过几个特殊问题的设置,让学生理解并应用球的性质,确定球心位置,计算求出球的半径。

多面体与球的切接问题(解析版)

多面体与球的切接问题(解析版)

多面体与球的切接问题一.方法综述多面体与球接、切问题的求解方法:(1)涉及球与棱柱、棱锥的相切、接问题时,一般先过球心及多面体中的特殊点(如接、切点或线)作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程组求解.(2)若球面上四点,,,P A B C 构成的三条线段,,PA PB PC 两两互相垂直,且,,,PA a PB b PC c ===一般把有关元素“补形”成为一个球内接长方体,根据22224R a b c =++求解.下面通过例题说明应对这类问题的方法与技巧.二.解题策略类型一 球与柱体的切接问题【例1】【2020·河南濮阳期末】已知长方体1111ABCD A B C D −的表面积为208,118AB BC AA ++=,则该长方体的外接球的表面积为( ) A .116π B .106πC .56πD .53π【答案】A【解析】依题意,118AB BC AA ++=,11104AB BC BC AA AB AA ⋅+⋅+⋅=,所以()()222211112AB BC AA AB BC AA AB BC BC AA AB AA ++=++−⋅+⋅+⋅=116,故外接球半径r ==24116S r ππ==,故选A.【例2】【2020·全国高三专题练习】已知正四棱柱1111ABCD A B C D −的每个顶点都在球O 的球面上,若球O 的表面积为12π,则该四棱柱的侧面积的最大值为________.【答案】【解析】设球O 的半径为R ,则2412R ππ=,解得R =,设正四棱柱的底面边长a ,高为h ,则正四棱柱的体对角线为球O 2R ==22212a h +=,由基本不等式可得22212a h +=≥ah ≤222a h =,即h ==. 故该正四棱柱的侧面积为4ah ,其最大值为324122⨯=. 【例3】【河南省2018年高考一模】已知三棱柱的底面是正三角形,侧棱底面ABC ,若有一半径为2的球与三棱柱的各条棱均相切,则的长度为______.【答案】【解析】由题意,的外接圆即为球的大圆 设底面外接圆圆心,从而正三角形边长为设圆心,由题意在球面上,为中点,则在中,,,则则 故答案为【指点迷津】1.如图1所示,正方体1111D C B A ABCD −,设正方体的棱长为a ,G H F E ,,,为棱的中点,O 为球的球心. 常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFHG 和其内切圆,则2ar OJ ==; 二是与正方体各棱相切的球,截面图为正方形EFHG 和其外接圆,则a R OG 22==; 三是球为正方体的外接球,截面图为长方形11A ACC 和其外接圆,则23'1a R O A ==.通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题 .2.长方体各顶点可在一个球面上,故长方体存在外切球.但是不一定存在内切球.设长方体的棱长为,,,a b c 其体对角线为l .当球为长方体的外接球时,截面图为长方体的对角面和其外接圆,和正方体的外接球的道理是一样的,故球的半径222.22l a b c R ++==3.球与一般的正棱柱的组合体,常以外接形态居多.下面以正三棱柱为例,介绍本类题目的解法——构造直角三角形法.设正三棱柱111C B A ABC −的高为h ,底面边长为a ,如图2所示,D 和1D 分别为上下底面的中心.根据几何体的特点,球心必落在高1DD 的中点O ,a AD R AO h OD 33,,2===,借助直角三角形AOD 的勾股定理,可求22332⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=a h R .【举一反三】1.【2020湖北省荆州市荆州中学模拟】在直三棱柱中,,,,,则其外接球与内切球的表面积之比为A .B .C .D .【答案】A【解析】将直三棱柱扩充为长方体,其体对角线长为,外接球的半径为,内切球的半径为,则其外接球与内切球的表面积之比为,故选2.【2020·陕西省铜川期末】已知正四棱柱1111ABCD A B C D −的每个顶点都在球的O 球面上,若球O 的表面积为12π,则该四棱柱的侧面积的最大值为( ) A .122 B .182C .16D .18【答案】A【解析】设球O 的半径为R ,则2412R ππ=,得3R =,设正四棱柱的底面边长为x ,高为h ,则正四棱柱的体对角线即为球O 222223x h R +==22212x h +=,由基本不等式可得2212222x h xh =+≥,32xh ∴≤2h x =时,等号成立,因此,该四棱柱的侧面积为4432122xh ≤⨯=,故选A. 类型二 球与锥体的切接问题【例4】【2020·四川绵阳期末】已知三棱锥P-ABC 中,PA=4,3BC=6,PA ⊥面ABC ,则此三棱锥的外接球的表面积为( ) A .16π B .32πC .64πD .128π【答案】C【解析】∵底面ABC 中,2AB AC ==,6BC =,∴1cos 2BAC ∠=−,∴3sin 2BAC ∠=,∴ABC 的外接圆半径1 323r ==PA ⊥面ABC ,∴三棱锥外接球的半径(22222232162PA R r ⎛⎫=+=+= ⎪⎝⎭,所以三棱锥P ABC −外接球的表面积2464S R ππ==,故选C . 【例5】【2020·江西九江一中月考】已知三棱锥A BCD −中,5AB CD ==,2==AC BD ,3AD BC ==,若该三棱锥的四个顶点在同一个球面上,则此球的体积为( )A .32π B .24πC .6πD .6π【答案】C【解析】作出三棱锥A BCD −的外接长方体AEBF GDHC −,如下图所示,设DG x =,DH y =,DE z =,则2223AD x z =+=,2224DB y z =+=,2225DC x y =+=,上述三个等式相加得()222222234512AD BD CD x y z ++=++=++=,所以该长方体的体对角线长为2226x y z ++=,则其外接球的半径为62R =,因此此球的体积为346632ππ⎛⎫⨯= ⎪ ⎪⎝⎭,故选C.【例6】【2020云南师大附中月考】四边形ABDC 是菱形,60BAC ∠=,3AB =,沿对角线BC 翻折后,二面角A BC D −−的余弦值为13−,则三棱锥D ABC −的外接球的体积为( ) A .5π B .6πC .7πD .22π【答案】B【解析】如下图所示,取BC 的中点为M ,设球心O 在平面ABC 内的射影为1O ,在平面BCD 内的射影为2O ,则二面角A BC D −−的平面角为AMD ∠,3AB =,所以32DM =,2213DO DM ==,212O M =,设2AMD θ∠=,则21cos 22cos 13θθ=−=−,21cos 3θ∴=,则22sin 3θ=,2tan 2θ∴=,tan 2θ∴=,222tan 2OO O M θ∴=⋅=,球O 的半径222262R DO OO =+=,所求外接球的体积为246632V ππ⎛⎫=⋅= ⎪ ⎪⎝⎭,故选B. 【指点迷津】 1.球与正四面体正四面体作为一个规则的几何体,它既存在外接球,也存在内切球,并且两心合一,利用这点可顺利解决球的半径与正四面体的棱长关系.如图4,设正四面体ABC S −的棱长为a ,内切球半径为r ,外接球的半径为R ,取AB 的中点为D ,E 为S 在底面的射影,连接SE SD CD ,,为正四面体的高.在截面三角形SDC ,作一个与边SD 和DC 相切,圆心在高SE 上的圆,即为内切球的截面.因为正四面体本身的对称性可知,外接球和内切球的球心同为O .此时,,33,32,,a CE a SE r OE R OS CO =====则有2222233a R r a R r CE +=−=,=,解得:66,.412R a r a ==这个解法是通过利用两心合一的思路,建立含有两个球的半径的等量关系进行求解.同时我们可以发现,球心O 为正四面体高的四等分点.如果我们牢记这些数量关系,可为解题带来极大的方便.2 .球与三条侧棱互相垂直的三棱锥球与三条侧棱互相垂直的三棱锥组合问题,主要是体现在球为三棱锥的外接球.解决的基本方法是补形法,即把三棱柱补形成正方体或者长方体.常见两种形式:一是三棱锥的三条棱互相垂直且相等,则可以补形为一个正方体,它的外接球的球心就是三棱锥的外接球的球心.如图5,三棱锥111D AB A −的外接球的球心和正方体1111D C B A ABCD −的外接球的球心重合,设a AA =1,则a R 23=. 二是如果三棱锥的三条侧棱互相垂直且不相等,则可以补形为一个长方体,它的外接球的球心就是三棱锥的外接球的球心,4422222l c b a R =++=(l 为长方体的体对角线长).3 .球与正棱锥球与正棱锥的组合,常见的有两类,一是球为三棱锥的外接球,此时三棱锥的各个顶点在球面上,根据截面图的特点,可以构造直角三角形进行求解.二是球为正棱锥的内切球,例如正三棱锥的内切球,球与正三棱锥四个面相切,球心到四个面的距离相等,都为球半径R .这样求球的半径可转化为球球心到三棱锥面的距离,故可采用等体积法解决,即四个小三棱锥的体积和为正三棱锥的体积. 4.球与特殊的棱锥球与一些特殊的棱锥进行组合,一定要抓住棱锥的几何性质,可综合利用截面法、补形法、等进行求解. 【举一反三】1.已知正四面体A -BCD 的棱长为12,则其内切球的表面积为( ) A .12π B .16π C .20π D .24π【答案】D【解析】法一:如图,作BF ⊥CD 于F ,AE ⊥BF 于E ,由A -BCD 为正四面体可知AE ⊥平面BCD ,设O 为正四面体A -BCD 的内切球的球心,则OE 为内切球的半径,连接OB .因为正四面体的棱长为12,所以BF =AF =63,BE =43, 所以AE =122-(43)2=4 6.又OB 2-OE 2=BE 2,即(46-OE )2-OE 2=(43)2, 所以OE =6,则其内切球的半径是 6. 所以内切球的表面积为4π×(6)2=24π.法二:因为正四面体的棱长为12,其内切球半径为正四面体高的14,所以r =14×63×12=6,故其内切球的表面积为24π.2.【2020·天津中学月考】在三棱锥P ABC −中,PA ⊥平面ABC ,且ABC ∆为等边三角形,2AP AB ==,则三棱锥P ABC −的外接球的表面积为( ) A .272π B .283π C .263π D .252π 【答案】B【解析】ABC ∆的外接圆半径为232sin3AB r π==PA ⊥底面ABC ,所以,三棱锥P ABC −的外接球半径为222223211233PA R r ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭,因此三棱锥P ABC −的外接球的表面积为2221284433R πππ⎛⎫=⨯= ⎪ ⎪⎝⎭,故选B. 3.【2020·安徽省六安一中月考】已知四棱锥P ABCD −中,底面四边形ABCD 为等腰梯形,且//AB CD ,12AB CD =,PA PB AD ==,43PA AD CD +==若平面PAB ⊥平面ABCD ,则四棱锥P ABCD −外接球的表面积为_____________.【答案】52π【解析】因为四边形ABCD 为等腰梯形,//AB CD ,故AD BC =;因为PA PB =,12AB CD =, PA PB AD ==,43PA AD CD +==,23PA PB AB AD BC =====,故3ADC π∠=,取CD 的中点G ,则G是等腰梯形ABCD 外接圆圆心,设四棱锥P ABCD −外接球的球心为O ,所以O 在平面ABCD 的射影为G ,作PF AB ⊥于F ,则F 为AB 中点,3PF =,因为平面PAB ⊥平面ABCD ,平面PAB ⋂平面ABCD AB =,所以PF ⊥平面ABCD ,而FG ⊂平面ABCD ,所以PF FG ⊥,由PF OG ,可得在平面PAGF 中,作OE PF ⊥,则OG EF d ==,3OE FG ==,由22OP OC =,可得2222OE PE OG GC +=+,即()()2229323d d +−=+,解得1d =,所以9413R =+=,所以四棱锥P ABCD −外接球的表面积为()241352ππ⨯=.三.强化训练1.【2020·黑龙江哈尔滨三中月考】已知三棱锥O ABC −中,A ,B ,C 三点在以O 为球心的球面上,若2AB BC ==,120ABC ∠=︒,且三棱锥O ABC −3O 的表面积为( )A .323πB .16πC .52πD .64π【答案】C【解析】由题意2AB BC ==,ABC 1120=||||sin 32ABC S AB BC ABC ∆∠=︒∠=,1333O ABC ABC V S h h −∆==∴=,又ABC ∆的外接圆的半径222sin 2sin 30oAB r C ===,因此球O 的半径222313R =+=,球的表面积:2452S R ππ==,故选C2.【2020·河北邯郸一中月考】圆锥SD (其中S 为顶点,D 为底面圆心)的侧面积与底面积的比是2:1,则圆锥SD 与它外接球(即顶点在球面上且底面圆周也在球面上)的体积比为( ) A .9:32 B .8:27C .9:22D .9:28【答案】A【解析】设圆锥底面圆的半径为r,圆锥母线长为l ,则侧面积为πrl ,侧面积与底面积的比为2πrl 2lr rπ==,则母线l=2r,圆锥的高为h=223l r r −=,则圆锥的体积为2313πh 33r r π=,设外接球的球心为O,半径为R,截面图如图,则OB=OS=R,OD=h-R=3r R −,BD=r ,在直角三角形BOD 中,由勾股定理得222OB OD BD =+,即()2223R r r R=+−,展开整理得R=2,3r 所以外接球的体积为33344832333393r R r πππ=⨯=,故所求体积比为33393323293rr ππ=,故选A3.【2020·四川泸县四中月考】三棱锥D ABC −的四个顶点都在球O 的球面上,ABC ∆是边长为3的正三角形.若球O 的表面积为16π,则三棱锥D ABC −体积的最大值为( ) A 93B 33C .23D .33【答案】A【解析】由题意得ABC ∆的面积为19333234sin π⨯⨯⨯=,又设ABC ∆的外心为1O , 则1233332AO =⨯=,由2416R ππ=,得2R =,∵1OO ⊥面ABC ,∴11OO =. ∴球心O 在棱锥内部时,棱锥的体积最大,此时三棱锥D ABC −高的最大值为123+=,∴三棱锥D ABC −体积最大值为193933344⨯⨯=,故选A.4.【2020·广东深圳中学期末】在三棱锥P ABC −中, 25PA PB PC === 23AB AC BC ===,则三棱锥P ABC −外接球的体积是( ) A .36π B .125π6C .32π3D .50π【答案】B【解析】由题意,易知三棱锥P ABC −是正三棱锥,取O '为ABC 外接圆的圆心,连结PO ',则PO '⊥平面ABC ,设O 为三棱锥P ABC −外接球的球心.因为23AB AC BC ===,所以31223O A '==,因为25PA PB PC ===224PO PA O A ''=−=,设三棱锥P ABC −外接球的半径为R ,则()2244R R −+=,解得52R =,故三棱锥P ABC −外接球的体积是34125ππ36R =,故选B.5.【2020·甘肃省甘南期末】已知圆柱的上底面圆周经过正三棱锥P ABC −的三条侧棱的中点,下底面圆心为此三棱锥底面中心O .若三棱锥P ABC −的高为该圆柱外接球半径的2倍,则该三棱锥的外接球与圆柱外接球的半径之比为( ) A .7:4 B .2:1C .3:1D .5:3【答案】A【解析】正三棱锥P ABC −的底面边长为2a ,高为h ,如图所示,则圆柱的高为2h,底面圆半径为332sin3a aπ=,设圆柱的外接球半径为R ,则22163h a R =+,222242216343h a h a h R ==+=+,解得43h a =,此时,23R a =,设正三棱锥P ABC −的外接球的半径为r ,则球心到底面距离为h r −,22332sin 3aOA a π==,由勾股定理得()222233r h r a ⎛⎫=−+ ⎪ ⎪⎝⎭,解得76r a =,故74r R =,故选A.6.【2020·全国高三专题练习】在正方体1111ABCD A B C D −中,E 为棱11A B 上一点,且2AB =,若二面角11B BC E −−为45︒,则四面体11BB C E 的外接球的表面积为( )A .172π B .12π C .9πD .10π【答案】D【解析】连接11B C 交1BC 于O ,则11B O BC ⊥,易知111A B BC ⊥,则1BC ⊥平面1B OE ,所以1BC EO ⊥,从而1B OE ∠为二面角11B BC E −−的平面角,则145B OE ︒∠=.因为2AB =,所以112B E B O ==,故四面体11BB C E 的外接球的表面积为22444102ππ⎛⎫++= ⎪ ⎪⎝⎭,故选D .7.【2020·湖南株洲一中月考】SC 是球O 的直径,A 、B 是该球面上两点,3AB =30ASC BSC ∠=∠=,棱锥S ABC −3O 的表面积为( )A .4πB .8πC .16πD .32π【答案】C【解析】如下图所示,由于SC 为球O 的直径,所以903,0SAC SBC ASC BSC ︒︒∠=∠=∠=∠=,所以12CB CA SC ==,设球O 的半径为R ,连接,OA OB 则OA OB OC AC CB R =====,取AB 的中点D ,连接,OD CD ,又3AB =则234OD CD R ==−S ABC −的高为2h ,又三棱锥O ABC −的高为△ODC 的边DC 上的高,所以三棱锥O ABC −的高为h ,故13S ABC V −=×12 ×3 ×234R − 23h ⨯=2334h R −= ,在△ODC 中有12 234h R − = 2133244R R ⨯− ,故32 =12 R ·23344R −解得2R =,故球O 的表面积为2416R ππ=,故选C.8.【2020·河南南阳中学月考】平行四边形ABCD 中,△ABD 是腰长为2的等腰直角三角形,90ABD ∠=︒,现将△ABD 沿BD 折起,使二面角A BD C −−大小为23π,若,,,A B C D 四点在同一球面上,则该球的表面积为_____. 【答案】20π【解析】由题意,取AD,BC 的中点分别为12,O O ,过1O 作面ABD 的垂线与过2O 作面BCD 的垂线,两垂线交点O 即为所求外接球的球心,取BD 中点E ,连结12,O E O E ,则12O EO ∠即为二面角A BD C −−的平面角,又由121O E O E ==,连接OE ,在Rt △1O OE 中,则13O O =,在Rt △1O OA 中,12O A =,得5OA =,即球半径为5R OA ==,所以球面积为24S R =π= 20π.9.【2020河北石家庄一中月考】一个圆锥的母线长为2,圆锥的母线与底面的夹角为4π,则圆锥的内切球的表面积为 【答案】24(22)π【解析】作出圆锥截面图如图,母线长为2,圆锥的母线与底面的夹角为4π,∴2设内切球的半径为r ,则利用轴截面,根据等面积可得11222(2222)22r ⨯=⨯++,22r ∴=,∴该圆锥内切球的表面积为224(22)4(22)ππ⨯−=.10.【2020关系北海一中期中】已知正方形ABCD 的边长为22,将ABC ∆沿对角线AC 折起,使平面ABC ⊥平面ACD ,得到如图所示的三棱锥B ACD −,若O 为AC 边的中点,M ,N 分别为DC ,BO 上的动点(不包括端点),且BN CM =,设BN x =,则三棱锥N AMC −的体积取得最大值时,三棱锥N ADC −的内切球的半径为 .【答案】262 【解析】因为正方形ABCD 的边长为24AC =,又平面ABC ⊥平面ACD ,O 为AC 边的中点 BO AC ∴⊥,所以BO ⊥平面ACD ,∴三棱锥N AMC −的体积111()sin 332AMC y f x S NO AC CM ACM NO∆===⨯∠211224(2)2)3223x x x x =⨯⨯⨯−=−+ 2221)x =−+ 即为开口向下,对称轴为1的抛物线.1BN ∴=时,三棱锥N AMC −的体积取得最大值.此时,22215AN DN CN ===+ 122362ADN CDN S S ∆∆==⨯=. 11()33N ADC ADC ADC AND NDC ANC V S NO S S S S r −∆∆∆∆∆=⨯⨯=+++,解得2263r =−。

高中数学 简单多面体与球的切接问题探究教案

高中数学 简单多面体与球的切接问题探究教案

简单多面体与球的切接问题探究(第一课时)一、教学目标:1、从找特殊简单多面体(正方体、长方体、正棱柱、直三棱柱、正棱锥等)的外接球球心推广到一般的外接球球心的确定,让学生经历直观感知、分析、演算等过程,获得并掌握研究一般多面体外接球球心找法的方法,从而体验特殊到一般的认知过程。

(体现核心素养中的直观想象、逻辑推理、数学运算等素养)2、运用正方体(长方体)外接球的模型解决相关几何体的外接球问题。

(体现核心素养中的数学建模、直观想象等素养)3、从正方体和正四面体两个特殊内切球半径的求法,掌握分割法的思想方法。

(体现核心素养中的直观想象、逻辑推理、数学抽象等素养)二、教学重难点:教学重点:会找简单多面体外接球的球心,会求简单多面体外接球与内切球的半径。

教学难点:接切关系的典型处理技巧。

三、教学过程:引入:一个棱长为6的正四面体纸盒内放一个正方体,若正方体可以在纸盒内任意转动,则正方体体积的最大值为.探究一、简单多面体的外接球1、正方体的外接球例1(1)(2017天津试题)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.(借助正方体的外接球结论解决(2)(3))(2)已知正三棱锥A-BCD的侧棱长为1,且三条侧棱两两垂直,则这个三棱锥的外接球的表面积为.结论1:三条侧棱两两垂直的正三棱锥外接球问题可以转化成正方体外接球问题。

(3)棱长为a的正四面体的外接球的表面积为.结论2:正四面体的外接球问题可以转化成正方体的外接球问题。

自主探究1:长方体的外接球的球心在哪呢?自主探究2:类比刚才构造正方体的思路,哪些类型题可以构造长方体来解答?(一个顶点出发的三条侧棱两两垂直的四面体;对棱相等的四面体)(4)一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长为1,顶点都在同一个球面上,则该球的半径为.自主探究3:正棱柱的外接球的球心在哪呢?自主探究4:直三棱柱的外接球的球心在哪呢?自主探究5:正棱锥的外接球的球心在哪呢?(5)沿矩形ABCD的对角线AC折起,形成空间四边形ABCD,使得二面角B-AC-D为120°,若AB=2,BC=1,则此时四面体ABCD的外接球的体积为.变式:沿四边形形ABCD的对角线AC折起,形成空间四边形ABCD,使得二面角B-AC-D 为120°,若该几何体有外接球,你能找出外接球的球心吗?(从特殊到一般,让学生掌握一般几何体外接球的找法)探究二 简单多面体的内切球正方体的内切球正四面体内切球(分割法求内切球的半径)(6)点D C B A ,,,在同一个球的球面上,22,2===AC BC AB 若四面体ABCD 体积的最大值为34,则该球的表面积为.例2如图,已知球O 是棱长为1的正方体D C B A ABCD ''''-的内切球,(1)内切球的体积为;(2)平面D AC '截球O 的截面面积为.。

球的内切与外接问题讲课

球的内切与外接问题讲课

例 、正三棱锥的高为 1,底面边长为 2 6 内有一个球与四个面都相切,求棱锥的全
面积和球的表面积。
A
设球的半径为 r;则 VA- BCD =
VO-ABC + VO- ABD + VO-ACD + VO-BCD
O•
DVABC D1 3
3
2
2
6 1
4
2
3
B
1
3 r S全 32 23r
V多面体 13S全 Cr内 切r球 62 S 球 85 26
A
O C
P
B
四面体与球的“接切”问题
典型:正四面体ABCD的棱长为a;求其 内切球半径r与外接球半径R.
思考:若正四面体变成正三棱锥;方法 是否有变化?
1、内切球球心到多面体各面的距离均相等;外接球 球心到多面体各顶点的距离均相等 2、正多面体的内切球和外接球的球心重合 3、正棱锥的内切球和外接球球心都在高线上;但不 重合 4、基本方法:构造三角形利用相似比和勾股定理 5、体积分割是求内切球半径的通用做法
【解析】 如图所示,AB=BC=CD=
DA=SA=SB=SC=SD= 2,
O 为球心,球的半径为 R,
SO⊥平面 ABCD 于 M 点,
∵四边形 ABCD 为正方形,
∴BD⊥AC,DM=AM

2 2·
2=1,SM
= SA2-AM2= 2-1=1,
在 Rt△AOM 中 AO2=OM2+AM2,即
R2=1+(R-1)2,解得 R=1,

一、复习 球体的体积与表面积

V球
4
3
R3
二、球与多面体的接、切
② S球面4R2

高中数学_球与多面体的切接问题教学设计学情分析教材分析课后反思

高中数学_球与多面体的切接问题教学设计学情分析教材分析课后反思

球与多面体切接问题教学设计《课程标准》指出:几何学是研究现实世界中物体的形状、大小与位置关系的数学学科.人们通常采用直观感知、操作确认、思辨论证、度量计算等方法认识和探索几何图形及其性质.三维空间是人类生存的现实空间,认识空间图形,培养和发展学生的空间想像能力、推理论证能力、运用图形语言进行交流的能力以及几何直观能力,是高中阶段数学必修系列课程的基本要求.教学目标核心素养1.掌握长方体、正方体与球的切接问题2.掌握正四面体与球切接问题三种方法,能运用三种方法解决类似问题1直观想象能直观感受空间正多面体与球内切与外接的位置2数学抽象能由实物抽象出数学平面的直观图,并能具体画出某一截面的情况;能抽象出正方体切截出正四面体的方法。

3逻辑推理能由平面二维的等面积推理到三维等体积4数学计算能通过在截面找到球心位置计算推演出球心精确的位置重点:长方体、正方体、正四面体与球的切接问题难点:正四面体内切球、外接球半径与棱长的关系一复习引入:球的基本性质:性质1:用一个平面去截球,截面是圆______________--截面过球心,半径等于球半径;_______--截面不过球心. 性质2:球心和截面圆心的连线_________于截面性质3: 球心到截面的距离d与球的半径R及截面的半径r , 有下面的关系_________二新课探究1长方体与球探究:长方体的(体)对角线等于球________一般的长方体有内切球吗?设长方体长宽高分别为a,b,c则球的直径为_________练习12正方体与球通过视频学习,以动画的形式,让学生更直观的想象正方体的外接球,棱切球,内切球的情况,加深印象,更容易理解。

探究:棱长为a的正方体的内切球直径为_______棱切球直径为_________外接球直径为_________内切球,棱切球,外接球半径之比_________练习23正四面体与球探究:求棱长为 a 的正四面体 P– ABC 的外接球的半径_____内切球的半径______活动一:法一(截面法)通过建立勾股关系,在RT△OAD中求解外接球半径通过三角形相似,建立数学等量关系,求解内切球半径小组活动:通过小组讨论,运用学过的球的性质,建立几何关系,通过推理运算,得出外接球及内切球半径。

浅谈多面体与球的“切”、“接”问题

浅谈多面体与球的“切”、“接”问题

浅谈多面体与球的“切”、“接”问题
王凯
【期刊名称】《新高考:高三英语》
【年(卷),期】2010(000)0Z1
【摘要】由于多面体与球的组合体问题最能考查同学们的空间想象能力和逻辑思维能力,而成为近几年高考的热点问题之一,同学们往往找不准过球心和多面体一条棱的轴截面,而导致所构造的球的半径与多面体的要素不在同一个平面内,导致错误百出.下面把高中常见的正多面体与球"切""接"问题的求法归纳如下,然后通过例子展示更一般问题的求法.
【总页数】3页(P64-66)
【作者】王凯
【作者单位】
【正文语种】中文
【中图分类】O123.2
【相关文献】
1.浅谈新课程高考与球有关的切、接问题 [J], 陈念红;
2.数学核心素养空间想象能力的培养——多面体与球的切接问题 [J], 肖华明;
3.浅谈多面体与球的"切"、"接"问题 [J], 王凯
4.数学核心素养空间想象能力的培养——多面体与球的切接问题 [J], 肖华明
5.球与多面体的切、接问题 [J], 周建平
因版权原因,仅展示原文概要,查看原文内容请购买。

高考中球与多面体的切接问题

高考中球与多面体的切接问题

高考中球与多面体的切接问题
发表时间:2011-11-15T14:20:31.683Z 来源:《学习方法报(语数教研周刊)》2011年11期作者:赵迎华[导读] 高考中球与多面体的切接问题
高考中,球与多面体的切接问题除了上述五类外,还有球与长方体、正四棱柱、正三棱锥、正四棱锥等的切接问题,处理时,直观图不好画,空间位置关系比较复杂。

一般采取以下方法:第一,降维转换的方法。

用平面化的策略,作一个既过球心又包含其它几何体基本量的“特征截面”,通过对截面图形的分析,获取相应的数量关系。

同时重视基本几何体(如长方体、正方体、正四面体、正三棱锥、球等)的概念和性质,善于推导和归纳,丰富学生空间模型的认知结构,使学生形成稳固的概念表征,从而达到熟练应用,融会贯通。

第二,割补思想的应用。

如将内切球球心与多面体各个顶点相连,就可以将多面体分割成几个以内切球半径为高的小棱锥;将正四面体、正四棱柱,双垂四面体、直角四面角补成长方体、正方体,则它们具有共同的切、接球。

将柱体补成锥体,往往有利于求体积;将锥体补成柱体,便于发现隐含的条件关系。

第三,渗透类比的思维方法。

空间中很多几何体的概念和性质可以由平面图形类比得到,如:长方形、正方形与长方体、正方体的类比,三角形的内切圆、外接圆与四面体的内切球、外接球类比,四点共圆与多点共球类比等。

通过类比,用处理平面几何图形的思路方法,去思考空间图形的问题,在类比中,获得灵感,找到思路方法,从而提高解题能力。

总之,结论性的知识,基本几何体的概念性质是解决球的切、接问题的前提,转化方法、割补思想、类比思维是解决球的切、接问题的关键。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

球与多面体切接问题教学设计
《课程标准》指出:几何学是研究现实世界中物体的形状、大小与位置关系的数学学科.人们通常采用直观感知、操作确认、思辨论证、度量计算等方法认识和探索几何图形及其性质.三维空间是人类生存的现实空间,认识空间图形,培养和发展学生的空间想像能力、推理论证能力、运用图形语言进行交流的能力以及几何直观能力,是高中阶段数学必修系列课程的基本要求.
教学目标核心素养
1.掌握长方体、正方体与球的切接问题
2.掌握正四面体与球切接问题三种方法,能运用三种方法解决类似问题1直观想象能直观感受空间正多面体与球内切与外接的位置
2数学抽象能由实物抽象出数学平面的直观图,并能具体画出某一截面的情况;能抽象出正方体切截出正四面体的方法。

3逻辑推理能由平面二维的等面积推理到三维等体积
4数学计算能通过在截面找到球心位置计算推演出球心精确的位置
重点:长方体、正方体、正四面体与球的切接问题难点:正四面体内切球、外接球半径与棱长的关系
一复习引入:
球的基本性质:
性质1:用一个平面去截球,截面是圆_______
_______--截面过球心,半径等于球半径;_______--截面不过球心. 性质2:球心和截面圆心的连线_________于截面
性质3: 球心到截面的距离d与球的半径R及截面
的半径r , 有下面的关系_________
二新课探究
1长方体与球
探究:长方体的(体)对角线等于球________
一般的长方体有内切球吗?
设长方体长宽高分别为a,b,c则球的直径为_________
练习1
2正方体与球
通过视频学习,以动画的形式,让学生更直观的想象正方体的外接球,棱切球,内切球的情况,加深印象,更容易理解。

探究:棱长为a的正方体的内切球直径为_______
棱切球直径为_________外接球直径为_________
内切球,棱切球,外接球半径之比_________
练习2
3正四面体与球
探究:求棱长为 a 的正四面体 P– ABC 的外接球的半径_____内切球的半径______
活动一:法一(截面法)
通过建立勾股关系,在RT△OAD中求解外接球半径
通过三角形相似,建立数学等量关系,求解内切球半

小组活动:通过小组讨论,运用学过的球的性质,建立几何关系,通
过推理运算,得出外接球及内切球半径。

并验证直观想象的外接内切
球心重合。

活动二:法二(等体积法)
教师引导,类比平面内,三角形的等面积法得到空间等体积法求得正四面体体积与内切球半径的关系。

活动三:法三(补形法)
教师引导,对几何模型进行观察,发现正方体中的正四面体。

从而寻
求到正四面体外接球与正方体外接球的关系。

从而借助正方体外接球
求得正四面体外接球的半径。

4课后拓展活动:
适用于补形法的三棱锥
三.课后反思
本节课我学哪些问题没有解决?
学情分析
高一上学期学生一直学习的是函数内容,刚刚接触立体几何,在前面几节中,学生已经充分认识了空间几何体中简单多面体以及旋转体的结构特征,会画并会看空间几何体的直观图,会计算几何体的表面积体积相关基本量,已初步建立了空间观念。

在平面几何的基础上,通过观察生活中的实际物体能直观的感受出一些空间的平行垂直关系。

已经具备了学习球与多面体的切接问题的基本能力。

在此基础上,我们来学习球与多面体的切接问题,进一步培养直观想象,数学抽象的基本核心素养。

球与多面体切接问题效果分析
本节课是对已有知识进行归纳、融合过程,注意培养学生空间观念。

通过对实物的观察分析,主要探讨了长方体、正方体、正四面体的外接球,内切球问题,采用了教师引导、小组讨论的形式,类比推理,直观想象从各方面对数学核心素养进行了训练提高。

通过课堂观察,小组讨论效果良好。

体现了教师主导,学生主体的课堂地位。

课堂导学案完成效果良好。

通过课后追加练习,学生掌握当堂知识效果良好。

初步达到了本节课的教学目标。

球与多面体的切接问题教材分析
《课程标准》指出:几何学是研究现实世界中物体的形状、大小与位置关系的数学学科.人们通常采用直观感知、操作确认、思辨论证、度量计算等方法认识和探索几何图形及其性质.三维空间是人类生存的现实空间,认识空间图形,培养和发展学生的空间想像能力、推理论证能力、运用图形语言进行交流的能力以及几何直观能力,是高中阶段数学必修系列课程的基本要求.
本节内容是人教A版《必修二》第一章《空间几何体》内容拓展总结的一节内容。

需要第一章内容充分掌握的基础下承上启下,是初步接触几何体间具体关系的一节内容。

通过直观想象,感受几何体特征,为后面的几何证明打下了基础。

其中涉及到的教学内容,数学思想方法,都是非常关键的内容。

球与多面体的切接问题学习任务
知识要求能力要求
建立空间想象能力,探索空间图形性质
1球的基本性质应用
2球与简单几何体的切接结构
一复习引入:
球的基本性质:
性质1:用一个平面去截球,截面是圆_______
_______--截面过球心,半径等于球半径;_______--截面不过球心.
性质2: 球心和截面圆心的连线_________于截面
性质3: 球心到截面的距离d与球的半径R及截面
的半径r , 有下面的关系_________
二新课探究
1长方体与球
探究:长方体的(体)对角线等于球________
一般的长方体有内切球吗?
a b c
设长方体的长、宽、高分别为、、,则球的直径为_________
练习1
2正方体与球
探究:棱长为a的正方体的内切球直径为_______ 棱切球直径为_________外接球直径为_________
内切球,棱切球,外接球半径之比_________
练习2
3正四面体与球
探究:求棱长为a 的正四面体P– ABC 的外接球的半径_____内切球的半径______
法一(截面法)
法二(等体积法)
法三(补形法)
4适用于补形法的三棱锥。

相关文档
最新文档