浙教版七年级(下)数学期末试卷
浙教版数学七年级下册期末考试试题及答案
浙教版数学七年级下册期末考试试卷一、选择题:(本大题共10个小题,每小题3分,共30分)1.下列方程中,为二元一次方程的是()A .210a +=B .32x y z +=C .9xy =D .325x y -=2.下列运算正确的是()A .236m m m = B .842m m m ÷=C .325m n mn +=D .326()m m =3.分式34x x --无意义的条件是()A .4x =B .4x ≠±C .4x ≠-D .4x >4.下列统计活动中不宜用问卷调查的方式收集数据是()A .七年级同学家中电脑的数量B .星期六早晨同学们起床的时间C .各种手机在使用时所产生的辐射D .学校足球队员的年龄和身高5.下列各项变形式,是因式分解的是()A .2(2)2m m n m mn+=+B .2244(2)a a a -+=-C .211()y y y y -=-D .222438xy x y =⋅6.一组数据共100个,分为6组,第1~4组的频数分别为10,14,16,20,第5组的频率为0.20,则第6组的频数为()A .20B .22C .24D .307.已知12x y =-⎧⎨=⎩是关于x 、y 的二元一次方程组382x ny mx y +=⎧⎨-=⎩的解,则2m n +的值为()A .52-B .1C .7D .118.如图,已知直线//AB CD ,GEB ∠的平分线EF 交CD 于点F ,130∠=︒,则2∠等于()A .135︒B .145︒C .155︒D .165︒9.暑假期间,某科幻小说的销售量急剧上升.某书店分别用600元和800元两次购进该小说,第二次购进的数量比第一次多40套,且两次购书时,每套书的进价相同.若设书店第一次购进该科幻小说x 套,由题意列方程正确的是()A .60080040x x =-B .60080040x x =-C .60080040x x =+D .60080040x x=+10.设m xy =,n x y =+,22p x y =+,22q x y =-,其中20202018x t y t =+⎧⎨=+⎩,①当3n =时,6q =.②当292p =时,214m =.则下列正确的是()A .①正确②错误B .①正确②正确C .①错误②正确D .①错误②错误二.填空题(本大题共8个小题,每小题3分,共24分)11.当x 的值为时,分式4x x +的值为0.12.因式分解:24a a -=.13.对于方程238x y +=,用含x 的代数式表示y ,则可以表示为.14.若等式222(1)3x x a x -+=--成立,则a =.15.已知二元一次方程3510x y -=,请写出它的一个整数解为.16.若方程组213212x y x y -=⎧⎨+=⎩的解也是二元一次方程511x my -=-的一组解,则m 的值等于.17.如图所示,12//l l ,点A ,E ,D 在直线1l 上,点B ,C 在直线2l 上,满足BD 平分ABC ∠,BD CD ⊥,CE 平分DCB ∠,若136BAD ∠=︒,那么AEC ∠=.18.如图,把三张边长相等的小正方形甲、乙、丙纸片按先后顺序放在一个大正方形ABCD 内,丙纸片最后放在最上面.已知小正方形的边长为a ,如果斜线阴影部分的面积之和为b ,空白部分的面积和为4,那么2b a 的值为.三.解答题(共7小题)19.(6分)计算:(1)322(124)(2)x y x x -÷-(2)2(21)(23)(23)x x x --+-20.(6分)解方程或方程组:(1)24342x y x y +=⎧⎨-=⎩(2)33233x x x-=--21.(6分)如图,已知1BDC ∠=∠,23180∠+∠=︒.(1)AD 与EC 平行吗?试说明理由.(2)若DA 平分BDC ∠,CE AE ⊥于点E ,180∠=︒,试求FAB ∠的度数.22.(6分)我区的数学爱好者申请了一项省级课题--《中学学科核心素养理念下渗透数学美育的研究》,为了了解学生对数学美的了解情况,随机抽取部分学生进行问卷调查,按照“理解、了解、不太了解、不知道”四个类型,课题组绘制了如图两幅不完整的统计图,请根据统计图中提供的信息,回答下列问题:(1)本次调查共抽取了多少名学生?并补全条形统计图;(2)在扇形统计图中,“理解”所占扇形的圆心角是多少度?(3)我区七年级大约8000名学生,请估计“理解”和“了解”的共有学生多少名?23.(7分)【阅读材料】我们知道,图形也是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系,而运用代数思想也能巧妙地解决一些图形问题.在一次数学活动课上,张老师准备了若干张如图1所示的甲、乙、丙三种纸片,其中甲种纸片是边长为x 的正方形,乙种纸片是边长为y 的正方形,丙种纸片是长为y ,宽为x 的长方形,并用甲种纸片一张,乙种纸片一张,丙种纸片两张拼成了如图2所示的一个大正方形.【理解应用】(1)观察图2,用两种不同方式表示阴影部分的面积可得到一个等式,请你直接写出这个等式;【拓展升华】(2)利用(1)中的等式解决下列问题.①已知2210a b +=,6a b +=,求ab 的值;②已知(2021)(2019)1c c --=,求22(2021)(2019)c c -+-的值.24.(7分)“脐橙结硕果,香飘引客来”,赣南脐橙以其“外表光洁美观,肉质脆嫩,风味浓甜芳香”的特点饮誉中外.现欲将一批脐橙运往外地销售,若用2辆A型车和1辆B型车载满脐橙一次可运走10吨;用1辆A型车和2辆B型车载满脐橙一次可运走11吨.现有脐橙31吨,计划同时租用A 型车a辆,B型车b辆,一次运完,且恰好每辆车都载满脐橙.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都载满脐橙一次可分别运送多少吨?(2)请你帮该物流公司设计租车方案;(3)若1辆A型车需租金100元/次,1辆B型车需租金120元/次.请选出费用最少的租车方案,并求出最少租车费.25.(8分)已知,如图①,点D,E,F,G是ABCFG AC,∆三边上的点,且//(1)若EDC FGC∠=∠,试判断DE与BC是否平行,并说明理由.(2)如图②,点M、N分别在边AC、BC上,且//∠=︒,CMN AB,连接GM,若60∠=︒,55A∠的度数.∠=∠,求GMN4FGM MGC(3)点M、N分别在射线AC、BC上,且//∠=,MN AB,连接GM.若Aα∠=,ACBβ∠的度数(用含α,β,n的代数式表示)FGM n MGC∠=∠,直接写出GMN参考答案一.选择题(共10小题)1.解:A .是一元一次方程,不是二元一次方程,故本选项不符合题意;B .是三元一次方程,不是二元一次方程,故本选项不符合题意;C .是二元二次方程,不是二元一次方程,故本选项不符合题意;D .是二元一次方程,故本选项符合题意;故选:D .2.解:23235m m m m +== ,因此选项A 不正确;84844m m m m -÷==,因此选项B 不正确;3m 与2n 不是同类项,因此选项C 不正确;32326()m m m ⨯==,因此选项D 正确;故选:D .3.解: 分式34x x --无意义,40x ∴-=,4x ∴=,故选:A .4.解:A .七年级同学家中电脑的数量,利用问卷调查比较直接简单而且比较准确,适合问卷调查,故此选项正确;B .星期六早晨同学们起床的时间,利用问卷调查比较直接简单而且比较准确,适合问卷调查,故此选项正确;C .各种手机在使用时所产生的辐射,利用问卷调查不能准确得到辐射情况,不适合问卷调查,故此选项错误;D .学校足球队员的年龄和身高,利用问卷调查比较直接简单而且比较准确,适合问卷调查,故此选项正确.故选:C .5.解:A .等式从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B .等式从左到右的变形属于因式分解,故本选项符合题意;C .等式的右边不是整式的积的形式,不属于因式分解,故本选项不符合题意;D .等式从左到右的变形不属于因式分解,故本选项不符合题意;故选:B .6.解: 一组数据共100个,第5组的频率为0.20,∴第5组的频数是:1000.2020⨯=,一组数据共100个,分为6组,第1~4组的频数分别为10,14,16,20,∴第6组的频数为:100201014162020-----=.故选:A .7.解:把1x =-,2y =代入方程组,得32822n m -+=⎧⎨--=⎩解得4m =-,112n =,24117m n ∴+=-+=.故选:C .8.解://AB CD ,130GEB ∴∠=∠=︒,EF 为GEB ∠的平分线,1152FEB GEB ∴∠=∠=︒,2180165FEB ∴∠=︒-∠=︒.故选:D .9.解:若设书店第一次购进该科幻小说x 套,由题意列方程正确的是60080040x x =+,故选:C .10.解:当3n =时,即3x y +=,由20202018x t y t =+⎧⎨=+⎩可得,2x y -=,因此,52x =,12y =,22251246444q x y ∴=-==-==,因此①正确;当292p =时,即22292x y +=,又2x y ∴-=,2224x xy y ∴-+=,∴29242xy -=,214m xy ∴==,因此②正确;故选:B .二.填空题(共8小题)11.解:由题意得:40x +=,且0x ≠,解得:4x =-,故答案为:4-.12.解:原式(4)a a =-.故答案为:(4)a a -.13.解:方程238x y +=,解得:823xy -=.故答案为:823xy -=.14.解:22(1)322x x x --=-- ,22222x x a x x ∴-+=--,2a ∴=-.故答案为:2-.15.解:3510x y -=,5310y x -=-,325y x =-,方程的一个整数解是51x y =⎧⎨=-⎩,故答案为:51x y =⎧⎨=-⎩.16.解:根据题意得213212x y x y -=⎧⎨+=⎩①②,∴由①得:21y x =-,代入②用x 表示y 得,32(21)12x x +-=,解得:2x =,代入①得,3y =,∴将2x =,3y =,代入511x my -=-解得,7m =.故答案为:7.17.解:12//l l ,180BAD ABC ∴∠+∠=︒,136BAD ∠=︒ ,44ABC ∴∠=︒,BD 平分ABC ∠,22DBC ∴∠=︒,BD CD ⊥ ,90BDC ∴∠=︒,68BCD ∴∠=︒,CE 平分DCB ∠,34ECB ∴∠=︒,12//l l ,180AEC ECB ∴∠+∠=︒,146AEC ∴∠=︒,故答案为:146︒.18.解:将乙正方形平移至AB 边,如图所示:设AB x =,∴乙的宽()x a =-;甲的宽()x a =-;又 斜线阴影部分的面积之和为b ,2()a x a b ∴-=,空白部分的面积和为4,2()4x a ∴-=,2x a ∴-=,即22a b ⋅=,∴22ba =.三.解答题(共7小题)19.解:(1)原式322(124)431x y x x xy =-÷=-;(2)原式2244149410x x x x =-+-+=-+.20.解:(1)24342x y x y +=⎧⎨-=⎩①②,①2⨯+②得:510x =,解得:2x =,把2x =代入①得:1y =,则方程组的解为21x y =⎧⎨=⎩;(2)分式方程整理得:33233xx x -=---,去分母得:32(3)3x x --=-,去括号得:3263x x -+=-,解得:9x =-,经检验9x =-是分式方程的解.21.(1)AD 与EC 平行,证明:1BDC ∠=∠ ,//AB CD ∴(同位角相等,两直线平行),2ADC ∴∠=∠(两直线平行,内错角相等),23180∠+∠=︒ ,3180ADC ∴∠+∠=︒(等量代换),//AD CE ∴(同旁内角互补,两直线平行);(2)解:1BDC ∠=∠ ,180∠=︒,80BDC ∴∠=︒,DA 平分BDC ∠,1402ADC BDC ∴∠=∠=︒(角平分线定义),240ADC ∴∠=∠=︒(已证),又CE AE ⊥ ,90AEC ∴∠=︒(垂直定义),//AD CE (已证),90FAD AEC ∴∠=∠=︒(两直线平行,同位角相等),2904050FAB FAD ∴∠=∠-∠=︒-︒=︒.22.解:(1)本次调查共抽取学生为:204005%=(名),∴不太了解的学生为:40012016020100---=(名),补全条形统计图如下:(2)“理解”所占扇形的圆心角是:120360108400⨯︒=︒;(3)1208000(40%)5600400⨯+=(名),所以“理解”和“了解”的共有学生5600名.23.解:(1)222()2x y x y xy +=+-.(2)①由题意得:222()()2a b a b ab +-+=,把2210a b +=,6a b +=代入上式得,2610132ab -==.②由题意得:2222(2021)(2019)(20212019)2(2021)(2019)2212c c c c c c -+-=-+----=-⨯=.24.解:(1)设1辆A 型车载满脐橙一次可运送x 吨,1辆B 型车载满脐橙一次可运送y 吨,依题意,得:210211x y x y +=⎧⎨+=⎩,解得:34x y =⎧⎨=⎩.答:1辆A 型车载满脐橙一次可运送3吨,1辆B 型车载满脐橙一次可运送4吨.(2)依题意,得:3431a b +=,a ,b 均为正整数,∴17a b =⎧⎨=⎩或54a b =⎧⎨=⎩或91a b =⎧⎨=⎩.∴一共有3种租车方案,方案一:租A 型车1辆,B 型车7辆;方案二:租A 型车5辆,B 型车4辆;方案三:租A 型车9辆,B 型车1辆.(3)方案一所需租金为10011207940⨯+⨯=(元);方案二所需租金为10051204980⨯+⨯=(元);方案三所需租金为100912011020⨯+⨯=(元).9409801020<< ,∴最省钱的租车方案是方案一,即租A 型车1辆,B 型车7辆,最少租车费为940元.25.解:(1)//DE BC ,理由如下://FG AC ,FGB C ∴∠=∠,180EDC ADE ∠+∠=︒ ,180FGC FGB ∠+∠=︒,EDC FGC ∠=∠,ADE FGB ∴∠=∠,ADE C ∴∠=∠,//DE BC ∴;(2)60A ∠=︒ ,55C ∠=︒,180180605565B A C ∴∠=︒-∠-∠=︒-︒-︒=︒,//FG AC ,55FGB C ∴∠=∠=︒,4FGM MGC ∠=∠ ,555180FGM MGC FGB MGC ∴∠+∠+∠=∠+︒=︒,25MGN ∴∠=︒,//MN AB ,65MNC B ∴∠=∠=︒,MNC MGN GMN ∠=∠+∠,652540GMN MNC MGN ∴∠=∠-∠=︒-︒=︒;(3)①如图②所示:A α∠= ,ACB β∠=,180180B A ACB αβ∴∠=︒-∠-∠=︒--,//FG AC ,FGB C β∴∠=∠=,FGM n MGC ∠=∠ ,(1)180FGM MGC FGB n MGC β∴∠+∠+∠=+∠+=︒,1801MGN n β︒-∴∠=+,//MN AB ,180MNC B αβ∴∠=∠=︒--,MNC MGN GMN ∠=∠+∠,180180(180)11nGMN MNC MGN n n βαββα︒-∴∠=∠-∠=︒---=︒--++.②如图③所示:设MGN x ∠=,则180GMN GMA NMC nx α∠=∠+∠=+︒-,(1)180n x β-+=︒ ,111801x n β︒-∴=-,18018018018011n GMN nx n n n ββααα︒--︒∴∠=+︒-=+︒-⋅=+--.。
浙教版数学七年级下学期期末训练题(含答案)
浙教版数学七年级下学期期末训练题(含答案)一、单选题1.计算:3﹣1=( )A.3B.﹣3C.13D.﹣132.若分式31+x在实数范围内有意义,则实数x的取值范围是( )A.x≠1B.x≠﹣l C.x≥l D.x>﹣1 3.使(x2+3x+p)(x2﹣qx+4)乘积中不含x2与x3项,则p+q的值为( )A.8B.﹣8C.﹣2D.﹣34.下列计算正确的是( )A.(a5)2=a10B.x16÷x4=x4C.2a2+3a2=6a4D.b3⋅b3=2b3 5.下列运算结果正确的是( )A.a3+a3=a6B.a2⋅a3=a6C.(ab4)3=a3b12D.a3÷a=a36.已知方程组a+b=4ab=2,下列说法正确的是( )①a2+b2=12;②(a﹣b)2=8;③1a+1b=2;④b a+ab=6.A.1B.2C.3D.47.某商店根据今年6-10月份的销售额情况,制作了如下统计图。
根据图中信息,可以判断相邻两个月销售额变化最大的是( )A.6月到7月B.7月到8月C.8月到9月D.9月到10月8.如果多项式x2+mx+16能分解为一个二项式的平方的形式,那么m的值为( )A.4B.8C.―8D.±89.下列运算正确的是( )A.x8÷x2=x4B.4+9=4+9C.(―2a2)3=―8a6D.(―1)0―(12)―1=―310.一个长方形的长为(2x+y),宽为(y―2x),则这个长方形的面积为( ).A.2x2―y2B.y2―2x2C.4x2―y2D.y2―4x211.若关于x,y的方程组a1(x+y)―b1(x―y)=c1a2(x+y)―b2(x―y)=c2,解为x=2022y=2023.则关于x,y的方程组a1x+b1y=15c1a2x+b2y=15c2的解是( )A.x=809y=15B.x=4045y=1C.x=2022y=2023D.x=20225y=―2023512.如图1的8张宽为a,长为b(a<b)的小长方形纸片,按如图2的方式不重叠地放在长方形ABCD 内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC 的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足( )A.b=5a B.b=4a C.b=3a D.b=a二、填空题13.为了解某校1000名师生对“新型冠状病毒”的了解情况,从中随机抽取了50名师生进行问卷调查,这项调查中的样本是 .14.若a2―b2=16,a―b=13,则a+b的值为 .15.关于x的方程x+ax―1=2的解为正数,则a的取值范围为 .16.若x+y=5,x-y=1,则x2-y2= .17.分式(a―1)+a(1a―1)的值为 .18.幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方(如图1),将9个数填在3×3(三行三列)的方格中,如果满足每个横行、每个竖列、每条对角线上的三个数字之和都相等,就得到一个广义的三阶幻方.图2的方格中填写了一些数字和字母,若能构成一个广义的三阶幻方,则mn= .19.已知关于x,y的二元一次方程组3x+y=2k,x―2y=k+6有下列说法:①当x与y相等时,解得k=-4;②当x与y互为相反数时,解得k=3;③若4x·8y=32,则k=11;④无论k为何值,x与y的值一定满足关系式x+5y+12=0,其中正确的序号是 20.如图,把五个长为b,宽为a(b>a)的小长方形,按图一和图二两种方式放在一个长比宽大(6―a)的大长方形上,设图一中两块阴影部分的周长和为C1,图2中阴影部分的周长和为C2,则C2―C1的值为 .三、计算题21.解方程组:x―2y=03x―y=522.解方程组:(1)x+4y=7 2x+11y=20(2)2x+(y―x)=1 5x+2(y―x)=523.利用分数指数幂计算:36÷32×63.(结果用根式的形式表示)四、解答题24.如图,已知∠1=∠2,∠A=29°,求∠C的度数.25.化简求值:(a―2a+2+8aa2―4)÷a2+2aa―2,其中a=2022;26.先化简,再求值:[(x+2y)2―(x+y)(x―y)―5y2]÷y;其中|x-12|+(y+2)2=0.答案1.C 2.B 3.A 4.A 5.C 6.D 7.C 8.D 9.C 10.D 11.A 12.A 13.50名师生“新型冠状病毒”的了解情况14.1215.a>﹣2且a≠﹣1 16.5 17.0 18.1 19.①②③④20.1221.解:x―2y=0①3x―y=5②将②×2―①得:5x=10,∴x=2,将x=2代入②得:6―y=5,∴y=1,∴该方程组的解为x=2 y=1.22.(1)解:x+4y=7①2x+11y=20②由①×2得:2x+8y=14③由②-③得:3y=6解之:y=2;把y=2代入①得x+8=7 解之:x=-1 ∴原方程组的解为:x=―1y=2.(2)解:将原方程组转化为:x+y=1①3x+2y=5②由①×2得:2x+2y=2③,由②-③得:x=3,把x=3代入①得3+y=1 解之:y=-2,∴原方程组的解为:x=3y=―2. 23.解:36÷32×63=613÷213×316=313×316=312=3 24.解:如图,∵∠1=∠2又∵∠2=∠3∴∠1=∠3 ∴AB∥CD∴∠A+∠C=180°,又∵∠A=29° ∴∠C=151°答:∠C的度数是151°.25.解:原式=(a―2)2+8a(a+2)(a―2)⋅a―2a(a+2)=(a+2)2(a+2)(a―2)⋅a―2a(a+2)=1a当a=2022时,原式=1202226.解:[(x+2y)2―(x+y)(x―y)―5y2]÷y=(x2+4xy+4y2-x2+y2-5y2)÷y =4xy÷y=4x,|+(y+2)2=0,∵|x-12,y=-2,∴x=12当x=1时,2=2.原式=4×12。
浙教版数学七年级下册期末考试试卷及答案
浙教版数学七年级下册期末考试试题一、选择题(每小题只有一个正确答案,每小题3分,共30分)1.下列实数中,为无理数的是()A.B.C.5 D.π2.下列采用的调查方式中,不合适的是()A.了解永安溪的水质,采用抽样调查B.检测神州十二号飞船的零部件质量,采用抽样调查C.了解我县中学生视力情况,采用抽样调查D.了解某班同学的数学成绩,采用全面调查3.﹣1介于下列哪两个整数之间()A.﹣1与0 B.0与1 C.1与2 D.2与34.已知二元一次方程4x+5y=5,用含x的代数式表示y,则可表示为()A.y=﹣x+1 B.y=﹣x﹣1 C.y=x+1 D.y=x﹣1 5.已知a>b,则下列不等式成立的是()A.a+3>b+4 B.2a<2b C.a﹣1>b﹣1 D.﹣4a>﹣4b 6.如图,直线AB,CD相交于点O,OA平分∠EOC.若∠BOD=42°,则∠EOD的度数为()A.96°B.94°C.104°D.106°7.已知x,y满足方程组,则x+3y的值为()A.3 B.C.5 D.68.小敏妈妈为小敏爸爸购买了一双运动鞋.小敏、哥哥和爸爸都想知道这双鞋的价格,妈妈让他们猜.爸爸说“至少300元.”哥哥说:“至多260元.”小敏说:“至多200元.”妈妈说:“你们三个人都说错了.”则这双鞋的价格x(元)所在的范围是()A.200<x<260 B.260<x<300 C.200≤x≤260D.260≤x≤300 9.在螳螂的示意图中,AB∥DE,∠ABC=126°,∠CDE=70°,则∠BCD=()A.14°B.16°C.18°D.20°10.计算机的某种运算程序如图:已知输入3时输出的运算结果是5,输入4时输出的运算结果是7.若输入的数是x(x≠0)时输出的运算结果为P,输入的数是3x时输出的运算结果为Q,则()A.P:Q=3 B.Q:P=3C.(Q﹣1):(P﹣1)=3 D.(Q+1):(P+1)=3二、填空题(本大题有6小题,每小题3分,共18分)11.9的平方根是.12.如图,三角形ABC中,AC⊥BC,则边AC与边AB的大小关系是,依据是.13.在平面直角坐标系中,若点A(m﹣2,m+3)在第三象限,则m的取值范围是.14.某班用700元钱购买足球和篮球共11个,其中篮球单价为50元/个,足球单价为80元/个,若设购买篮球x个,足球y个,则可列方程组为.15.关于x的不等式组的解集为﹣1<x<2,则a+b的值为.16.如图,在平面直角坐标系中,将正方形①依次平移后得到正方形②,③,④…;相应地,顶点A依次平移得到A1,A2,A3,…,其中A点坐标为(1,0),A1坐标为(0,1),则A20的坐标为.三、解答题(本大题有8小题,17题4分,18~21题每题6分,22~24题每题8分,共52分)17.计算:|﹣|﹣+.18.解不等式<,并把它的解集在数轴上表示出来.19.小明同学解方程组的过程如下:解:①×2,得2x﹣6y=2③③﹣②,得﹣6y﹣y=2﹣7﹣7y=﹣5,y=;把y=代入①,得x﹣3×=1,x=所以这个方程组的解是你认为他的解法是否正确?若正确,请写出每一步的依据;若错误,请写出正确的解题过程.20.如图,在方格纸中,三角形ABC的三个顶点均为格点,当三角形ABC平移后,得到三角形A1B1C1,其中点A与A1(2,﹣2),点B与B1,点C与C1对应.(1)画出三角形A1B1C1,并写出点B1,C1的坐标;(2)F(a,b)是边BC上一点,请写出点F的对应点F1的坐标.21.已知:如图,三角形ABC中,AC⊥BC.F是边AC上的点,连接BF,作EF∥BC且交AB于点E.过点E作DE⊥EF,交BF于点D.求证:∠1+∠2=180°.下面是证明过程,请在横线上填上适当的推理结论或推理依据.证明:∵AC⊥BC(已知),∴∠ACB=90°(垂直的定义).∵EF∥BC(已知),∴∠AFE==90°().∵DE⊥EF(已知),∴∠DEF=90°(垂直的定义).∴∠AFE=∠DEF(等量代换),∴∥().∴∠2=∠EDF().又∵∠EDF+∠1=180°(邻补角互补),∴∠1+∠2=180°(等量代换).22.近年来,随着人们健康睡眠的意识不断提高,社会各界对于初中生的睡眠时间是否充足越发关注,近日某学校从全校1600人中随机抽取了部分同学,调查他们平均每日睡眠时间,将得到的数据整理后绘制了如图所示的不完整的扇形统计图和频数分布直方图:(1)本次接受调查的人数为;(2)补全直方图;(3)教育部《关于进一步加强中小学生睡眠管理工作的通知》文件指出,初中生睡眠时间应达到9小时,试估计该校学生睡眠时间达标人数,并评价该校初中生睡眠时间情况.23.已知:在三角形ABC和三角形DEF中,AB∥DE.(1)如图1,若三角形DEF的顶点F在三角形ABC的边AB上,且DF∥AC.求证:∠A=∠D;(2)如图2,若三角形DEF的顶点F在三角形ABC的内部,∠A=∠D,则DF与AC 有怎样的位置关系?请说明理由.24.某杨梅经销商以每千克40元的价格分三批向果农购进杨梅,均分拣成“特优”和“普通”两类销售,分拣和包装费用为每千克6元.每批杨梅中最差的10%不能销售,为损耗,其余杨梅均能售完.“特优”杨梅售价是每千克110元,“普通”杨梅售价为每千克30元.(1)该经销商购进的第一批杨梅为500千克,分拣出“特优”杨梅150千克,则他获得的利润是元;(2)该经销商购进的第二批杨梅为800千克,获利4800元,求其中售出“特优”和“普通”杨梅各多少千克?(3)该经销商希望自己第三批杨梅的销售的利润率不少于35%,他收购杨梅时要确保能分拣出“特优”杨梅占收购总量的百分比至少要达到多少(精确到1%)?(利润=销售收入﹣总成本,利润率=×100%)参考答案一、选择题(本大题有10小题,每小题3分,共30分,请选出各题中一个符合题意的正确选项)1.下列实数中,为无理数的是()A.B.C.5 D.π解:A.是有理数,不是无理数,故本选项不符合题意;B.=3,是有理数,不是无理数,故本选项不符合题意;C.5是有理数,不是无理数,故本选项不符合题意;D.π是无理数,故本选项符合题意;故选:D.2.下列采用的调查方式中,不合适的是()A.了解永安溪的水质,采用抽样调查B.检测神州十二号飞船的零部件质量,采用抽样调查C.了解我县中学生视力情况,采用抽样调查D.了解某班同学的数学成绩,采用全面调查解:A.了解永安溪的水质,无法普查,适合采用抽样调查,此选项不符合题意;B.检测神州十二号飞船的零部件质量,事关安全,需要普查,此选项符合题意;C.了解我县中学生视力情况,工作量大,适合采用抽样调查,此选项不符合题意;D.了解某班同学的数学成绩,工作量不大,而且普查能得到准确数据,适合采用全面调查,此选项不符合题意;故选:B.3.﹣1介于下列哪两个整数之间()A.﹣1与0 B.0与1 C.1与2 D.2与3解:∵4<5<9,∴,∴2<<3,∴1<﹣1<2,故选:C.4.已知二元一次方程4x+5y=5,用含x的代数式表示y,则可表示为()A.y=﹣x+1 B.y=﹣x﹣1 C.y=x+1 D.y=x﹣1 解:∵4x+5y=5,∴5y=5﹣4x.∴y=.∴y=1﹣.即y=.故选:A.5.已知a>b,则下列不等式成立的是()A.a+3>b+4 B.2a<2b C.a﹣1>b﹣1 D.﹣4a>﹣4b 解:A、根据不等式的两边都加上(或减去)同一个数或整式,不等号的方向不变,故本选项不成立;B、∵a>b,∴2a>2b,故本选项不成立;C、∵a>b,∴a﹣1>b﹣1,故本选项成立;D、∵a>b,∴﹣4a<﹣4b,故本选项不成立.故选:C.6.如图,直线AB,CD相交于点O,OA平分∠EOC.若∠BOD=42°,则∠EOD的度数为()A.96°B.94°C.104°D.106°解:∵∠AOC=∠BOD,∠BOD=42°,∴∠AOC=42°,∵OA平分∠EOC,∴∠AOE=∠AOC=42°,∴∠EOD=180°﹣(∠AOE+∠BOD)=180°﹣(42°+42°)=96°.故选:A.7.已知x,y满足方程组,则x+3y的值为()A.3 B.C.5 D.6解:,①﹣②,得x+3y=3.故选:A.8.小敏妈妈为小敏爸爸购买了一双运动鞋.小敏、哥哥和爸爸都想知道这双鞋的价格,妈妈让他们猜.爸爸说“至少300元.”哥哥说:“至多260元.”小敏说:“至多200元.”妈妈说:“你们三个人都说错了.”则这双鞋的价格x(元)所在的范围是()A.200<x<260 B.260<x<300 C.200≤x≤260D.260≤x≤300解:依题意得:,∴260<x<300.故选:B.9.在螳螂的示意图中,AB∥DE,∠ABC=126°,∠CDE=70°,则∠BCD=()A.14°B.16°C.18°D.20°解:如图,延长CD交AB于点M.∵∠CDE+∠EDM=180°,∠CDE=70°,∴∠EDM=180°﹣∠CDE=110°.∵AB∥DE,∴∠AMD=∠EDM=110°.又∵∠ABC=∠BMC+∠BCD,∴∠BCD=∠ABC﹣∠BMC=126°﹣110°=16°.故选:B.10.计算机的某种运算程序如图:已知输入3时输出的运算结果是5,输入4时输出的运算结果是7.若输入的数是x(x≠0)时输出的运算结果为P,输入的数是3x时输出的运算结果为Q,则()A.P:Q=3 B.Q:P=3C.(Q﹣1):(P﹣1)=3 D.(Q+1):(P+1)=3解:∵输入3时输出的运算结果是5,输入4时输出的运算结果是7.∴3a+b=5,4a+b=7,∴a=2,b=﹣1,∴P=2x﹣1,Q=6x﹣1,∴(Q+1):(P+1)=(6x):(2x)=3,故选:D.二、填空题(本大题有6小题,每小题3分,共18分)11.9的平方根是±3.解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.12.如图,三角形ABC中,AC⊥BC,则边AC与边AB的大小关系是AC<AB,依据是垂线段最短.解:∵AC⊥BC,∴边AC与边AB的大小关系是AC<AB,依据为垂线段最短.故答案为:AC<AB,垂线段最短.13.在平面直角坐标系中,若点A(m﹣2,m+3)在第三象限,则m的取值范围是m<﹣3.解:∵A(m﹣2,m+3)在第三象限,∴,解得m<﹣3.故答案为:m<﹣3.14.某班用700元钱购买足球和篮球共11个,其中篮球单价为50元/个,足球单价为80元/个,若设购买篮球x个,足球y个,则可列方程组为.解:设购买篮球x个,购买足球y个,根据题意可列方程组:,故答案为:.15.关于x的不等式组的解集为﹣1<x<2,则a+b的值为5.解:解不等式3x﹣a<2,得:x<,解不等式x+2b>1,得:x>1﹣2b,∵不等式组的解集为﹣1<x<2,∴1﹣2b=﹣1,=2,解得a=4,b=1,∴a+b=5,故答案为:5.16.如图,在平面直角坐标系中,将正方形①依次平移后得到正方形②,③,④…;相应地,顶点A依次平移得到A1,A2,A3,…,其中A点坐标为(1,0),A1坐标为(0,1),则A20的坐标为(﹣19,8).解:观察图形可知:A3(﹣2,1),A6(﹣5.2),A9(﹣8,3),•••,∵﹣5=﹣2﹣3,﹣8=﹣2+2×(﹣3),∴﹣2+6×(﹣3)=﹣19,∴A18(﹣17,6),把A18向左平移2个单位,再向上平移2个单位得到A20,∴A20(﹣19,8).故答案为:(﹣19,8)三、解答题(本大题有8小题,17题4分,18~21题每题6分,22~24题每题8分,共52分)17.计算:|﹣|﹣+.解:原式=﹣3+2=﹣1.18.解不等式<,并把它的解集在数轴上表示出来.解:去分母得:2(x﹣1)<3x+1,去括号得:2x﹣2<3x+1,移项得:2x﹣3x<1+2,合并得:﹣x<3,解得:x>﹣3.19.小明同学解方程组的过程如下:③﹣②,得﹣6y﹣y=2﹣7﹣7y=﹣5,y=;把y=代入①,得x﹣3×=1,x=所以这个方程组的解是你认为他的解法是否正确?若正确,请写出每一步的依据;若错误,请写出正确的解题过程.解:错误;理由如下:①×2,得2x﹣6y=2③,③﹣②,得﹣6y+y=2﹣7,∴﹣5y=﹣5,∴y=1,把y=1代入①得x﹣3×1=1,x=4,∴这个方程组的解为.20.如图,在方格纸中,三角形ABC的三个顶点均为格点,当三角形ABC平移后,得到三角形A1B1C1,其中点A与A1(2,﹣2),点B与B1,点C与C1对应.(1)画出三角形A1B1C1,并写出点B1,C1的坐标;(2)F(a,b)是边BC上一点,请写出点F的对应点F1的坐标.解:(1)如图所示,三角形A1B1C1即为所求;点B1、C1的坐标分别为(3,1),(1,﹣1).(2)点F的对应点F1的坐标为(a+6,b﹣3).21.已知:如图,三角形ABC中,AC⊥BC.F是边AC上的点,连接BF,作EF∥BC且交AB于点E.过点E作DE⊥EF,交BF于点D.求证:∠1+∠2=180°.下面是证明过程,请在横线上填上适当的推理结论或推理依据.证明:∵AC⊥BC(已知),∴∠ACB=90°(垂直的定义).∵EF∥BC(已知),∴∠AFE=∠ACB=90°(两直线平行,同位角相等).∵DE⊥EF(已知),∴∠DEF=90°(垂直的定义).∴∠AFE=∠DEF(等量代换),∴DE∥AC(内错角相等,两直线平行).∴∠2=∠EDF(两直线平行,内错角相等).又∵∠EDF+∠1=180°(邻补角互补),∴∠1+∠2=180°(等量代换).【解答】证明:∵AC⊥BC(已知),∴∠ACB=90°(垂线的定义).∵EF∥BC(已知),∴∠AFE=∠ACB=90°(两直线平行,同位角相等).∵DE⊥EF(已知),∴∠DEF=90°(垂线的定义).∴∠AFE=∠DEF(等量代换).∴DE∥AC(内错角相等,两直线平行).∴∠2=∠EDF(两直线平行,内错角相等).∵∠EDF+∠1=180°(邻补角互补),∴∠1+∠2=180°(等量代换).故答案为:∠ACB;两直线平行,同位角相等;DE;AC;内错角相等,两直线平行;两直线平行,内错角相等,22.近年来,随着人们健康睡眠的意识不断提高,社会各界对于初中生的睡眠时间是否充足越发关注,近日某学校从全校1600人中随机抽取了部分同学,调查他们平均每日睡眠时间,将得到的数据整理后绘制了如图所示的不完整的扇形统计图和频数分布直方图:(1)本次接受调查的人数为100;(2)补全直方图;(3)教育部《关于进一步加强中小学生睡眠管理工作的通知》文件指出,初中生睡眠时间应达到9小时,试估计该校学生睡眠时间达标人数,并评价该校初中生睡眠时间情况.解:(1)27÷27%=100(人);故答案为:100;(2)100﹣27﹣8﹣30=35(人),补全频数分布直方图如下:(3)1600×=480(人),答:估计该校1600名学生中睡眠时间达标人数约为480人,睡眠达标人数占总人数的30%,该校学生睡眠时间不足.23.已知:在三角形ABC和三角形DEF中,AB∥DE.(1)如图1,若三角形DEF的顶点F在三角形ABC的边AB上,且DF∥AC.求证:∠A=∠D;(2)如图2,若三角形DEF的顶点F在三角形ABC的内部,∠A=∠D,则DF与AC 有怎样的位置关系?请说明理由.【解答】证明:(1)如图1,∵AB∥DE,∴∠D=∠BFO.∵DF∥AC,∴∠FOB=∠ACB.又∵∠A+∠B+∠ACB=180°,∠BFO+∠B+∠FOB=180°,∴∠BFO=∠A.∴∠A=∠D.(2)DF∥AC,理由如下:如图2,延长AC交DE于点M.∵AB∥DE,∴∠A=∠AMD.又∵∠A=∠D,∴∠AMD=∠D.∴AM∥DF,即AC∥DF.24.某杨梅经销商以每千克40元的价格分三批向果农购进杨梅,均分拣成“特优”和“普通”两类销售,分拣和包装费用为每千克6元.每批杨梅中最差的10%不能销售,为损耗,其余杨梅均能售完.“特优”杨梅售价是每千克110元,“普通”杨梅售价为每千克30元.(1)该经销商购进的第一批杨梅为500千克,分拣出“特优”杨梅150千克,则他获得的利润是2500元;(2)该经销商购进的第二批杨梅为800千克,获利4800元,求其中售出“特优”和“普通”杨梅各多少千克?(3)该经销商希望自己第三批杨梅的销售的利润率不少于35%,他收购杨梅时要确保能分拣出“特优”杨梅占收购总量的百分比至少要达到多少(精确到1%)?(利润=销售收入﹣总成本,利润率=×100%)解:(1)110×150+(500﹣150﹣500×10%)×30﹣6×500﹣40×500=2500;(2)设售出“特优”杨梅x千克,“普通”杨梅y千克,则解得;答:售出“特优”杨梅250千克,“普通”杨梅470千克.(3)设收购总量为m千克,“特优”杨梅占收购总量的百分比为a,则≥35%,解得a≥43.875%,即a≥44%.答:他收购杨梅时要确保能分拣出“特优”杨梅占收购总量的百分比至少要达到44%.。
【浙教版】七年级数学下期末试卷及答案
一、选择题1.已知关于x 的不等式组5210x x a -≥-⎧⎨->⎩无解,则a 的取值范围是( )A .a <3B .a ≥3C .a >3D .a ≤32.某商品进价为800元,出售时标价为1200元,后来由于该商品积压,准备打折销售,若要保证利润率不低于5%,则最多可打几折( ) A .6B .7C .8D .93.已知方程组512x y ax by +=⎧⎨+=⎩和521613x y bx ay +=⎧⎨+=⎩的解相同,则a 、b 的值分别是( )A .2,3B .3,2C .2,4D .3,4 4.下列四组值中,不是二元一次方程21x y -=的解的是( ) A .11x y =-⎧⎨=-⎩B .00.5x y =⎧⎨=-⎩C .10=⎧⎨=⎩x yD .11x y =⎧⎨=⎩5.若方程组21322x y kx y +=-⎧⎨+=⎩的解满足0x y +=,则k 的值为( )A .1-B .1C .0D .不能确定6.已知21x y =-⎧⎨=⎩是方程25mx y +=的解,则m 的值是( )A .32- B .32C .2-D .27.已知点M (9,﹣5)、N (﹣3,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( ) A .相交、相交 B .平行、平行 C .垂直相交、平行D .平行、垂直相交8.如图,在平面直角坐标系中,若干个半径为3个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P 从原点O 出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒3个单位长度,点在弧线上的速度为每秒π个单位长度,则2020秒时,点P 的坐标是( )A .(2020,0)B .(3030,0)C .( 30303D .(303039.30.31,3π,27-912-38 1.212212221…(每两个1之间依次多一个2)中,无理数的个数为( )A .1B .2C .3D .410.如图,若180A ABC ∠+∠=︒,则下列结论正确的是( )A .12∠=∠B .24∠∠=C .13∠=∠D .23∠∠=11.小圆想用7天的时间背诵若干首诗词,背诵计划如下: ①将诗词分为4组,第n 组有n x 首,1,2,3,4n =;②对于第n 组诗词,第n 天背诵第一遍,第(1)n +天背诵第二遍,第(3)n +天背诵第三遍,三遍后完成背诵,其它天无需背诵,1,2,3,4n =; ③每天最多背诵8首,最少背诵2首,第1天 第2天 第3天 第4天 第5天 第6天 第7天第1组 1x 1x1x第2组 2x2x2x第3组 3x3x3x第4组4x4x4xA .10首B .11首C .12首D .13首 12.若x (x +a )=x 2﹣x ,则不等式ax +3>0的解集是( )A .x >3B .x <3C .x >﹣3D .x <﹣3二、填空题13.一辆货车、一辆客车、一辆小轿车在一条笔直的公路上朝同一方向匀速行驶,在某一时刻,货车在前,小轿车在后,客车在货车与小轿车的正中间,过了20min ,小轿车追上了客车;又过了10min ;小轿车追上了货车;再过了________min 客车追上了货车. 14.设()554325432031x a x a x a x a x a -=++++,则035a a a ++的值为______________ 15.如图,正方形ABCD 的各边分别平行于x 轴或y 轴,蚂蚁甲和蚂蚁乙都由点E (3,0)出发,同时沿正方形ABCD 的边逆时针匀速运动,蚂蚁甲的速度为3个单位长度/秒,蚂蚁乙的速度为1个单位长度/秒,则两只蚂蚁出发后,蚂蚁甲第3次追上蚂蚁乙的坐标是_____.16.下图是利用平面直角坐标系画出的老北京一些地点的示意图,这个坐标系分别以正东和正北方向为x 轴和y 轴的正方向,如果表示右安门的点的坐标为(-2,-3),表示朝阳门的点的坐标为(3,2),那么表示西便门的点的坐标为___________________.17.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)实数m 的值是___________; (2)求|1||1|m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有|2|c d +与4d +互为相反数,求23c d -的平方根.18.下列说法中:(1)不相交的两条直线叫做平行线;(2)经过一点,有且只有一条直线与已知直线平行; (3)垂直于同一条直线的两直线平行; (4)直线//a b ,//b c ,则//a c ;(5)两条直线被第三条直线所截,同位角相等. 其中正确的是________.19.关于x 的不等式组3112x x a+⎧-<⎪⎨⎪<⎩有3个整数解,则a 的取值范围是_____. 20.若关于x 的一元一次不等式组21122x a x x ->⎧⎨->-⎩的解集是21x -<<,则a 的取值是__________.三、解答题21.受疫情影响,口罩价格不断走高.3月20日当天口罩的价格是年初的1.5倍;3月20日当天,王老师购买4盒口罩比年初多花了48元. (1)那么3月20日当天口罩的价格为每盒多少元?(2)3月20日,按照(1)中的口罩价格,某售卖点共卖出1000盒口罩.3月21日,政府决定投入储备口罩并规定其销售价在3月20日的基础上下调0.7%a 出售.该售卖点按规定价出售一批储备口罩和非储备口罩,该售卖点的非储备口罩仍按3月20日的价格出售,3月21日当天的两种口罩总销量比3月20日增加了20%,且储备口罩的销量占总销量的56,两种口罩销售的总金额比3月20日至少提高了1%10a ,求a 的最大值. 22.(1)解不等式()311x x -≥+,并将其解集在数轴上表示出来.(2)若不等式325123x x --<+的最小整数解是关于x 的方程24x ax -=的解,求a 的值.23.元旦期间,甲、乙两个商场开展促销活动,甲商场实行“全场52折”的优惠;乙商场实行“满200元减100元”的优惠(如:某顾客购物320元,他需付款220元,购物420元,他也只需付款220元).(1)张丽想买商场标价都是850元的同一套衣服,她应该选择哪家商场?(2)李明发现在甲、乙商场购买一样标价六百多元的某商品,最后付款额是一样的,请问此商品的标价是多少元?(3)丙商场推出“先打折”,再“满200元减100元”的活动.李明发现在丙商场购买(2)中的商品,虽然标价一样但比在乙商场要多付25元钱,问丙商场先打了多少折后再参加活动?24.如图所示,在平面直角坐标系中,点O 为原点,点()1,2A -,()3,1B -,将AOB 向右平移2个单位,再向上平移3个单位得到111AO B ,点A 的对应点是1A ,点B 的对应点是1B(1)直接写出1O ,1A ,1B 的坐标; (2)在图中画出111AO B ; (3)AOB 的面积=______.25.把下列各数的序号填入相应的括号内①-3,②π,③327-,④-3.14,⑤2,⑥0,⑦227,⑧-1,⑨1.3,⑩1.8080080008…(两个“8”之间依次多一个“0”).整数集合{ …},负分数集合{ …},正有理数集合{ …},无理数集合{ …}.26.如图,已知,AB//CD,EF交AB,CD于G、H,GM、HN分别平分∠AGF,∠EHD.试说明GM//HN.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】首先解不等式,然后根据不等式组无解确定a的范围.【详解】解:521xx a-≥-⎧⎨->⎩①②解不等式①,得3x≤;解不等式②,得x a >; ∵不等式组无解, ∴3a ≥; 故选:B . 【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.2.B解析:B 【分析】利润率不低于5%,即利润要大于或等于800×5%元,设打x 折,则售价是1200x 元.根据利润率不低于5%就可以列出不等式即可. 【详解】 设至多打x 折 则12008008005%10x⨯-≥⨯, 解得7x ≥, 即最多可打7折. 故选:B . 【点睛】本题考查了一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.3.B解析:B 【分析】由于这两个方程组的解相同,所以可以把这两个方程组中的第一个方程联立再组成一个新的方程组,然后求出x 、y 的解,把求出的解代入另外两个方程,得到关于a ,b 的方程组,即可求出a 、b 的值. 【详解】根据题意,得:55216x y x y +=⎧⎨+=⎩,解得:23x y =⎧⎨=⎩,将2x =、3y =代入1213ax by bx ay +=⎧⎨+=⎩,得:23122313a b b a +=⎧⎨+=⎩,解得:32 ab=⎧⎨=⎩,∴a、b的值分别是3、2.故选:B.【点睛】本题主要考查了二元一次方程组的解,理解方程组的解即为能使方程组中两方程都成立的未知数的值是解题的关键.4.D解析:D【分析】将各项中x与y的值代入方程检验即可.【详解】解:x-2y=1,解得:x=2y+1,当y=-1时,x=-1,所以11xy=-⎧⎨=-⎩是方程21x y-=的解,选项A不合题意,当y=-0.5时,x=-1+1=0,所以0.5xy=⎧⎨=-⎩是方程21x y-=的解,选项B不合题意;当y=0时,x=1,所以1xy=⎧⎨=⎩是方程21x y-=的解,选项C不合题意;当y=1时,x=2+1=3,所以11xy=⎧⎨=⎩不是方程21x y-=的解,选项D符合题意;故选:D.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5.B解析:B【分析】方程组中两方程相加得到以k为未知数的方程,解方程即可得答案.【详解】解:①+②,得3(x+y)=3-3k,由x+y=0,得3-3k=0,解得k=1,故选:B.【点睛】本题考查了二元一次方程组的解,利用等式的性质是解题关键.6.A解析:A 【分析】先根据二元一次方程的解的定义可得一个关于m 的一元一次方程,再解方程即可得. 【详解】由题意得:2215m -+⨯=, 解得32m =-, 故选:A . 【点睛】本题考查了二元一次方程的解,掌握理解方程的解的概念是解题关键.7.D解析:D 【分析】根据点M 、N 的坐标可得直线MN 的解析式,由此即可得. 【详解】(9,5),(3,5)M N ---, ∴直线MN 的解析式为5y =-,则直线MN 与x 轴平行,与y 轴垂直相交, 故选:D . 【点睛】本题考查了直线与坐标轴的位置关系,正确求出直线的解析式是解题关键.8.B解析:B 【分析】根据扇形弧长公式求出弧长,分别求出第4秒、第8秒时点P 的坐标,总结规律,根据规律解答. 【详解】 解:扇形的弧长=603180π⨯=π, 由题意得,点P 在每一个扇形半径上运动时间为1秒,在每一条弧上运动时间为1秒, 则第4秒时,点P 的坐标是(6,0), 第8秒时,点P 的坐标是(12,0), ……第4n 秒时,点P 的坐标是(6n ,0), 2020÷4=505,∴2020秒时,点P 的坐标是(3030,0), 故选:B . 【点睛】本题考查规律型-点的坐标,解此类题的关键是找到循环组规律.9.C解析:C 【分析】无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,据此逐一判断即可得. 【详解】解∵3=2=,∴在所列的83π,1.212 212 221…(每两个1之间依次多一个2)这3个, 故选:C . 【点睛】本题主要考查的是无理数的概念,熟练掌握无理数的三种类型是解题的关键.10.C解析:C 【分析】由∠A+∠ABC=180°可得到AD ∥BC ,再根据平行线的性质判断即可得答案. 【详解】∵180A ABC ∠+∠=︒,∴//AD BC (同旁内角互补,两直线平行), ∴13∠=∠(两直线平行,内错角相等). 故选:C . 【点睛】本题考查的是平行线的判定与性质,同旁内角互补,两直线平行;两直线平行内错角相等;熟知平行线的判定定理是解答此题的关键.11.D解析:D 【分析】根据表格及题意可得第2天、第3天、第4天、第5天的背诵最多的诗词,然后根据不等式的关系可进行求解. 【详解】解:由表格及题可得:∵每天最多背诵8首,最少背诵2首, ∴由第2天、第3天、第4天、第5天可得:128x x +≤①,238x x +≤②,1348x x x ++≤③,248x x +≤④,①+②+④-③得:2316x ≤,∴2163x ≤, ∴123416181333x x x x +++≤+=, ∴7天后,小圆背诵的诗词最多为13首; 故选D . 【点睛】本题主要考查一元一次不等式的应用,熟练掌握不等式的性质与求法是解题的关键.12.B解析:B 【分析】直接利用单项式乘多项式得出a 的值,进而解不等式得出答案. 【详解】解:∵x (x +a )=x 2﹣x , ∴x 2+ax =x 2﹣x , ∴a =﹣1,则不等式ax +3>0即为﹣x +3>0的解集是:x <3. 故选:B . 【点睛】此题主要考查了单项式乘多项式以及解不等式,正确得出a 的值是解题关键.二、填空题13.【分析】由于在某一时刻货车在前小轿车在后客车在货车与小轿车的中间所以设在某一时刻客车与货车小轿车的距离均为S 千米小轿车货车客车的速度分别为abc (千米/分)由过了分钟小轿车追上了客车可以列出方程由又 解析:30【分析】由于在某一时刻,货车在前,小轿车在后,客车在货车与小轿车的中间,所以设在某一时刻,客车与货车、小轿车的距离均为S 千米,小轿车、货车、客车的速度分别为a 、b 、c (千米/分),由过了20分钟,小轿车追上了客车可以列出方程()20a c s -=,由又过了10分钟,小轿车追上了货车列出方程()302a b s -=,由再过t 分钟,客车追上了货车列出方程()()30t c b s +-=,联立所有方程求解即可求出t 的值. 【详解】解:设在某一时刻,客车与货车、小轿车的距离均为S 千米,再过t 分钟,客车追上了货车,小轿车、货车、客车的速度分别为a 、b 、c (千米/分),由题意可得:()()()()2030230a c s a b s t c b s -=⎧⎪-=⎨⎪+-=⎩①②③由②×2-①×3 得:60s c b -=④, ④代入③中得:3060t +=, ∴30t =(分).故答案为:30.【点睛】此题主要考查了三元一次方程组的应用,解题的关键是正确理解题意,准确变为题目的数量关系,然后列出方程组解决问题.14.528【分析】分别将x=1和x=-1代入得到两个等式再用①-②整理即可得出的值【详解】解:当x=1时①当x=-1时②①-2得:即故答案为:528【点睛】本题主要考查了代数式求值和加减消元法的应用取x解析:528【分析】分别将x=1和x=-1代入得到两个等式,再用①-②整理即可得出035a a a ++的值.【详解】解: 当x=1时,5432032a a a a a =++++ ①,当x=-1时,543201024a a a a a -=-+-+- ②,①-2得:5301056222a a a =++,即035++=528a a a .故答案为:528.【点睛】本题主要考查了代数式求值和加减消元法的应用.取x 的特殊值代入是解答此题的关键. 15.(﹣10)【分析】由图可知正方形的边长为4故正方形的周长为16因为蚂蚁甲和蚂蚁乙的速度分别为3个和1个单位所以用正方形的周长除以(3−1)可得蚂蚁甲第1次追上蚂蚁乙时间从而算出蚂蚁乙所走过的路程则第解析:(﹣1,0).【分析】由图可知,正方形的边长为4,故正方形的周长为16,因为蚂蚁甲和蚂蚁乙的速度分别为3个和1个单位,所以用正方形的周长除以(3−1),可得蚂蚁甲第1次追上蚂蚁乙时间,从而算出蚂蚁乙所走过的路程,则第二次和第三次相遇过程中蚂蚁乙所走过的路程和第一次是相同的,从而结合图形可求得蚂蚁甲第3次追上蚂蚁乙的坐标.【详解】解:由图可知,正方形的边长为4,故正方形的周长为16∴蚂蚁甲第1次追上蚂蚁乙时间:16÷(3﹣1)=8(秒)蚂蚁乙走的路程为:1×8=8,∴此时相遇点的坐标为:(﹣1,0),因为蚂蚁甲和蚂蚁乙的速度比为3:1,∴再经过16秒蚂蚁甲和蚂蚁乙第三次相遇,相遇点坐标为:(﹣1,0),故答案为:(﹣1,0).【点睛】本题考查了物体在平面直角坐标系中运动的规律问题,明确相遇问题的计算公式及多次相遇中物体所走路程的规律是解题的关键.16.(-31)【分析】根据右安门的点的坐标可以确定直角坐标系中原点在正阳门建立直角坐标系即可求解【详解】根据右安门的点的坐标为(−2−3)可以确定直角坐标系中原点在正阳门∴西便门的坐标为(−31)故答案解析:(-3,1)【分析】根据右安门的点的坐标可以确定直角坐标系中原点在正阳门,建立直角坐标系即可求解.【详解】根据右安门的点的坐标为(−2,−3),可以确定直角坐标系中原点在正阳门,∴西便门的坐标为(−3,1),故答案为(−3,1);【点睛】此题考查坐标确定位置,解题关键在于建立直角坐标系.17.(1);(2);(3)【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知再利用绝对值的性质化简绝对值号继而求得答案;(3)根据非负数的性质求出的值再代入进而求其平方根【详解】解:(1)∵解析:(1)2+2;(2)2;(3)4±【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知10m +>、10m -<,再利用绝对值的性质化简绝对值号,继而求得答案;(3)根据非负数的性质求出c 、d 的值,再代入23c d -,进而求其平方根.【详解】解:(1)∵蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示∴点B 表示∴m =.(2)∵m = ∴12130m +=+=>,12110m -=-=< ∴11m m ++-()11m m =+--11m m =+-+2=.(3)∵2c d +∴20c d +=∴2040c d d +=⎧⎨+=⎩∴24c d =⎧⎨=-⎩∴()23223416c d -=⨯-⨯-= ∴4==±,即23c d -的平方根是4±.【点睛】本题考查了实数与数轴、绝对值的性质、相反数的性质、非负数的性质、求一个数的平方根等,熟练掌握相关知识点是解题的关键.18.(4)【分析】根据平行线的定义平行线的性质平行公理的推论解答【详解】(1)在同一平面内不相交的两条直线叫做平行线故该项错误;(2)过直线外一点有且只有一条直线与已知直线平行故该项错误;(3)在同一平 解析:(4)【分析】根据平行线的定义,平行线的性质,平行公理的推论解答.【详解】(1)在同一平面内不相交的两条直线叫做平行线,故该项错误;(2)过直线外一点,有且只有一条直线与已知直线平行,故该项错误;(3)在同一平面内,垂直于同一条直线的两直线平行,故该项错误;(4)直线//a b ,//b c ,则//a c ,故该项正确;(5)两条平行线被第三条直线所截,同位角相等,故该项错误.故选:(4).【点睛】此题考查判断语句,熟记平行线的定义,平行线的性质,平行公理的推论是解题的关键. 19.2﹤a≤3【分析】先解出第一个不等式的解集进而得到不等式组的解集再根据不等式组有3个整数解确定a 的取值范围即可【详解】解:解不等式得:x ﹥﹣1∴原不等式组的解集为:﹣1﹤x ﹤a ∵不等式组有3个整数解解析:2﹤a ≤3【分析】先解出第一个不等式的解集,进而得到不等式组的解集,再根据不等式组有3个整数解确定a 的取值范围即可.【详解】 解:解不等式3112x +-<得:x ﹥﹣1, ∴原不等式组的解集为:﹣1﹤x ﹤a ,∵不等式组有3个整数解,∴2﹤a≤3,故答案为:2﹤a≤3.【点睛】 本题考查了不等式组的整数解,能根据已知不等式组的整数解确定参数a 的取值范围是解答的关键,必要时可借助数轴更直观.20.【分析】表示出不等式组中两不等式的解集根据x 的范围确定出a 的值即可【详解】解不等式得解不等式得∵不等式组的解集为解得:故答案为:【点睛】本题考查了解一元一次不等式组能根据不等式的解集和已知得出关于的 解析:5a =-【分析】表示出不等式组中两不等式的解集,根据x 的范围确定出a 的值即可.【详解】解不等式21x a ->得12a x +>, 解不等式122x x ->-得1x <,∵不等式组的解集为21x -<<,122a +=-, 解得:5a =-.故答案为:5a =-.【点睛】本题考查了解一元一次不等式组,能根据不等式的解集和已知得出关于a 的方程是解此题的关键.三、解答题21.(1)3月20日当天口罩的价格为每盒36元.(2)a 的最大值为25.【分析】(1)可设年初口罩的价格为每盒x 元,则3月20日当天口罩的价格为每盒1.5x 元,根据3月20日当天,王老师购买4盒口罩比年初多花了48元列出方程即可求解; (2)根据两种口罩销售的总金额比3月20日至少提高了1%10a ,列出不等式即可求解. 【详解】解:(1)设年初口罩的价格为每盒x 元,则3月20日当天口罩的价格为每盒1.5x 元,依题意有4 1.5448x x ⨯-=,解得24x = ,1.5 1.52436x =⨯=.∴3月20日当天口罩的价格为每盒36元.(2)1000×(1+20%)=1200(盒), 5120010006⨯==1000(盒), 1200-1000=200(盒),依题意有()13620010003610.7%1000361%10a a ⎛⎫⨯+⨯-≥⨯+⎪⎝⎭, 解得a≤25.故a 的最大值为25.【点睛】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.22.(1)2x ≥,数轴见解析;(2)3【分析】(1)解不等式,然后根据数轴与解集的关系画出数轴即可; (2)首先解出不等式325123x x --<+的解集,从中找到最小整数解,然后代入方程24x ax -=中,得到一个关于a 的方程,解方程即可.【详解】(1)()311x x -≥+ 331x x -≥+313x x -≥+24x ≥2x ≥数轴如下:(2)325123x x --<+ ()()332256x x -<-+394106x x -<-+341069x x -<-++5x -<5x >-∴不等式的最小整数解为-4.∵不等式325123x x --<+的最小整数解是关于x 的方程24x ax -=的解, ∴()2444a ⨯-+=解得3a =.【点睛】本题主要考查不等式与方程的结合,掌握解一元一次不等式的方法是解题的关键. 23.(1)甲;(2)625;(3)丙商场先打了8.8折后再参加活动.【分析】(1)分别计算在甲,乙商场的费用,比较后可得答案;(2)设商品的标价为x 元,判断:600<x <800,再根据最后付款额是一样的列方程,解方程可得答案;(3)先求解同种商品在丙商场付款350元,设丙商场先打y 折,再“满200元减100元”,且设减了n 个100,可得方程625100350,10y n ⨯-= 由n 为正整数,进行讨论并检验,从而得到答案.【详解】解:(1)张丽在甲商场购买所花:85052%442⨯=(元),在乙商场购买所花:8504100450-⨯=(元),由442<450,张丽应该选择甲商场购买.(2)设商品的标价为x 元,由题意可得:600<x <800,则 52%3100,x x =-⨯0.48300,x ∴=625x ∴=答:此商品的标价是625元.(3)由(2)得:625元的商品在乙商场付款6253100325-⨯=元,所以同种商品在丙商场付款325+25=350元,设丙商场先打y 折,再“满200元减100元”,且设减了n 个100,则 625100350,10y n ⨯-= 整理得:5828,y n -=8528,n y ∴=-5288y n -∴= , 又n 为正整数,当5288y -=时,7.2,1,y n ==经检验:7.2625=45010⨯元,此时2n =,不合题意,舍去, 当52816y -=时,8.8,2,y n == 经检验:8.862555010⨯=元,此时2n =,符合题意, 当52824y -=时,10.4,y = 此时不符合题意,故舍去, 综上:丙商场先打了8.8折后再参加活动.【点睛】本题考查的是一元一次方程的应用,二元一次方程的正整数解的应用,分类讨论的数学思想,掌握以上知识是解题的关键.24.(1)()12,3O ;()11,5A ;()15,2B;(2)见解析;(3)2.5. 【分析】(1)直接根据平移的坐标变化规律即可求解;(2)先描点,再连线即可;(3)利用网格图中,根据割补法即可求解.【详解】(1)()12,3O ;()11,5A ;()15,2B; (2)(3)111433141 2.5222AOB S =⨯⨯-⨯⨯-⨯⨯=【点睛】此题主要考查图形的平移、再网格图中求三角形的面积,熟练掌握平移的性质和割补法是解题关键.25.见解析.【分析】先求出立方根,再根据整数、负分数、正有理数、无理数的定义即可得.【详解】3=-,26.证明见解析.【分析】首先根据平行线的性质可得∠BGF=∠DHE,再根据角平分线的性质可证明∠1=∠2,然后根据内错角相等,两直线平行可得HN∥GM.【详解】证明:∵AB∥CD,∴∠AGF=∠DHE,∵GM、HN分别平分∠AGF,∠EHD,∴∠1=12∠AGF,∠2=12∠DHE,∴∠1=∠2,∴GM∥HN.【点睛】此题主要考查了平行线的判定与性质,关键是掌握平行线的判定定理与性质定理.。
浙教版七年级下册数学期末试卷及参考答案
浙教版七年级下册数学期末试卷及参考答案一、填空题1、大于2、1/43、y=(10-3x)/2,x=(10-2y)/34、1x10^-75、x=1/46、4cm²7、x≠1,x=08、60°9、-1/210、x(y-9)11、吊桥、塔吊等12、x=-3,x=213、①、③、④14、B15、C16、C17、5㎝二、选择题14、B15、C16、C17、D18、B二、选择题。
(20分)14.选B。
由题意可知,当x=0时,y=1;当x=1时,y=0;当x=2时,y=-1;当x=3时,y=-2,可得出y=-x+1,故选B。
15.选C。
将y=2x-1代入2x-y=1中,得2x-(2x-1)=1,解得y=-1,故选C。
16.选D。
将y=2x+1代入x-y+1=0中,得x-(2x+1)+1=0,解得x=-2,故选D。
17.选D。
由题意可得,当x=1时,y=2;当x=2时,y=3;当x=3时,y=4,可得出y=x+1,故选D。
18.选D。
解方程组得x=1,y=4,将其代入选项中可得2x+3y=14,故选D。
19.选B。
由题意可得,x+3y=6,3x+5y=12,解得x=3,y=1,代入选项中可得3x+y=12,故选B。
20.选B。
将y=2x-1代入4x+3y=9中,得4x+3(2x-1)=9,解得x=2,代入y=2x-1中,得y=3,故选B。
21.选B。
解方程组得x=2,y=1,代入选项中可得x2+y2=5,故选B。
22.选A。
将y=-2x+1代入x2+y2=5中,得x2+(-2x+1)2=5,化简得5x2-4x-4=0,解得x=-1或x=0.8,代入y=-2x+1中,得y=3或y=-0.6,故选A。
23.选C。
将y=3x-1代入2x-y=1中,得2x-(3x-1)=1,解得x=2,代入y=3x-1中,得y=5,故选C。
三、计算题。
(23分)24.(1)解:将2x+1作为分母,得frac{3x-2}{2x+1}=\frac{2x+4}{2x+1}$$化简,得3x-2=2x+4$$解得x=3,将x=3代入原方程检验,左边=3*3-2=7,右边=2*3+1=7,故x=3是原方程的根。
浙教版七年级下册数学期末试卷
七年级下册数学期末试卷一、选择题(本大题共30分,每小题3分)1.下列各方程中,是二元一次方程的是( )A .y x y x +=-523B .3x +1=2xyC .51x =y 2+1D .x +y =1 2.如图,与∠1是内错角的是( )A .∠3B .∠2C .∠4D .∠53.计算a 6?a 2的结果是( )A .a 12B .a 8C .a 4D .a 34.为了了解温州市2013年中考数学学科各分数段成绩分布情况,从中抽取1500名考生的中考数学成绩进行统计分析.在这个问题中,样本是指( )A .1500B .被抽取的1500名考生C .被抽取的1500名考生的中考数学成绩D .温州市2013年中考数学成绩5..如图所示,从边长为a 的大正方形中挖去一个边长是b 的小正方形,小明将图a 中的阴影部分拼成了一个如图b 所示的长方形,这一过程可以验证( )A .a 2+b 2-2ab =(a -b )2B .a 2+b 2+2ab =(a +b )2C .2a 2-3ab +b 2=(2a -b )(a -b )D .a 2-b 2=(a +b )(a -b )6.小欢为一组数据制作频数分布表,他了解到这组数据的最大值是40,最小值是16,准备分组时取组距为4.为了使数据不落在边界上,他应将这组数据分成( )A .6组B .7组C .8组D .9组7.要使分式)2)(1(2-+-x x x 有意义,x 的取值应该满足( ) A .1-≠x B . 2≠x C . 1-≠x 或 2≠x D .1-≠x 且 2≠x8. 下列分解因式正确的是( )A .-a +a 3=-a (1+a 2)B .2a -4b +2=2(a -2b )C .a 2-4=(a -2)2D .a 2-2a +1=(a -1)29\. 如图1,A 、B 、C 、D 中的哪幅图案可以通过图1平移得到( )10.将如图①的长方形ABCD纸片沿EF折叠得到图②,折叠后DE与BF相交于点P,如果∠BPE=130°,则∠PEF的度数为()A.60° B.65° C.70° D.75°二、填空题(本大题共18分,每小题3分)11.一组数据经整理后分成四组,第一、二、三小组的频率分别为,,,第一小组的频数是5,那么第四小组的频率是,这组数据共有个.12.如图所示,用直尺和三角尺作直线AB,CD,从图中可知,直线AB与直线CD的位置关系为,得到这个结论的理由是 .13. 计算错误!未找到引用源。
浙教版七年级(下)期末数学试卷附答案
浙教版初中数学七年级下册期末试卷一、选择题(本题共10小题,每小题3分,共30分)1.下列现象属于平移的是()A.足球在草地上沿一条直线向前滚动B.钟摆的摆动C.投影仪将图片投影转换到屏幕上D.水平运输带上砖块的运动2.计算(﹣3x3)2的结果正确的是()A.﹣6x5B.9x6C.9x5D.﹣6x63.如图,与∠1是同旁内角的是()A.∠2B.∠3C.∠4D.∠54.下列多项式中,能用公式法分解因式的是()A.a2﹣a B.a2+b2C.﹣a2+9b2D.a2+4ab﹣4b25.下列分式中是最简分式的是()A.B.C.D.6.一组数据的最大值是44,最小值是9,制作频数分布表时取组距为5,为了使数据不落在边界上,应将这组数据分成()A.6组B.7组C.8组D.9组7.方程3x+2y=18的正整数解的个数是()A.1B.2C.3D.48.如图,直线a∥b,点C,D分别在直线b,a上,AC⊥BC,CD平分∠ACB,若∠1=65°,则∠2的度数为()A.65°B.70°C.75°D.80°9.某校举行少先队“一日捐”活动,七、八年级学生各捐款3000元,八年级学生比七年级学生人均多捐2元,“…”,求七年级学生人数?解:设七年级学生有x人,则可得方程=2,题中用“…”表示缺失的条件,根据题意,缺失的条件是()A.七年级学生的人数比八年级学生的人数少20%B.七年级学生的人数比八年级学生的人数多20%C.八年级学生的人数比七年级学生的人数多20%D.八年级学生的人数比七年级学生的人数少20%10.已知(2018+m)(2016+m)=n,则代数式(2018+m)2+(2016+m)2的值为()A.2B.2n C.2n+2D.2n+4二、填空题(本题有6小题,每小题2分,共12分)11.当x=﹣2时,代数式的值是.12.某校为开展“每天运动一小时”活动,对80名学生各自最喜爱的一项体育活动进行调查,制成了如图所示的扇形统计图,则在被调查的学生中,最喜爱打羽毛球的学生人数是人.13.若关于x的多项式x2﹣4mx+16能用完全平方公式进行因式分解,则常数m的值为.14.如图,∠AOB的一边OA为平面镜,∠AOB=α,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是.(用含α的代数式表示)15.若关于x的分式方程=2﹣有增根,则常数a的值是.16.如图,直线MN∥PQ,点A在直线MN与PQ之间,点B在直线MN上,连结AB.∠ABM的平分线BC交PQ于点C,连结AC,过点A作AD⊥PQ交PQ于点D,作AF⊥AB交PQ于点F,AE平分∠DAF交PQ于点E,若∠CAE=45°,∠ACB=∠DAE,则∠ACD的度数是.三、解答题(共8小题,满分58分)17.(6分)因式分解:(1)1﹣x2(2)3x3﹣6x2y+3xy218.(6分)先化简,再求值:x(x﹣1)﹣(x﹣2)2,其中x=﹣119.(6分)(1)解方程组(2)解分式方程:=﹣120.(6分)阅读材料并回答问题:我们可以用平面几何图形的面积来表示一些代数恒等式,如(a+b)(a+2b)=a2+3ab+2b2,就可以用图1的几何图形的面积表示.(1)请写出图2的几何图形的面积所表示的代数恒等式;(2)试画一个几何图形,使它的面积所表示的代数恒等式为(2a+b)(a+2b)=2a2+5ab+2b2.21.(6分)如图,直线a∥b∥c,直线AC与直线a交于点C,与直线b交于点A,过点A作直线AB交直线c于点B,若AP平分∠CAB,且∠1=30°,∠2=70°,求∠3的度数.22.(8分)人工智能(ArtificialIntelligence),英文缩写为AI.它是研究、开发用于模拟、延伸和扩展人的智能的理沦、方法、技术及应用系统的一门新的技术科学.某科学小组抽取了本校50名学生进行问卷调查:您是否了解人工智能(AI)的发展状况?A.非常了解B.了解C.基本了解D.不了解将调查结果制成了如图1所示的条形统计图.(1)回答“基本了解”的学生有名.请补全条形统计图;(请画在答题卷相对应的图上)(2)若该校共有600名学生,则估计该校全体学生中回答“非常了解”和“了解”的一共有多少人?(3)为进一步提高大家对人工智能的认识,科学小组举办了一次关于人工智能的宣传活动,活动结束后按同样的方式抽取了与第一次样本容量相等的学生数进行第二次问卷调查,将调查结果制成了如图2所示的扇形统计图,求前后两次调查中回答“非常了解”的学生人数的增长率.23.(10分)2018年,浙江省开始推广垃圾分类,分类垃圾桶成为我们生活中的必备工具.某环保公司接到A型垃圾桶和B型垃圾桶各1600只的订单,已知一只A型垃圾桶的成本比一只B型垃圾桶的成本多10元,这份订单总成本为176000元.(1)问该份订单中A型垃圾桶和B型垃圾桶的单只成本各是多少元?(2)该公司有甲、乙两个车间,甲车间生产A型垃圾桶,乙车间生产B型垃圾桶,已知乙车间每天生产的垃圾桶数是甲车间每天生产的垃圾桶数的2倍,这样乙车间比甲车间提前2天完成订单任务.问甲乙两个车间每天各生产多少只垃圾桶?24.(10分)如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM平分∠AEF 交CD于点M,且∠FEM=∠FME.(1)判断直线AB与直线CD是否平行,并说明理由;(2)如图2,点G是射线MD上一动点(不与点M,F重合),EH平分∠FEG交CD于点H,过点H作HN⊥EM于点N,设∠EHN=α,∠EGF=β.①当点G在点F的右侧时,若β=50°,求α的度数;②当点G在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.D 2.B 3.A 4.C 5.A 6.C 7 .B 8.B 9.D 10.D 二、填空题(本题有6小题,每小题2分,共12分)11.12.28 13.±2 14.2α.15.5 16.27°三、解答题(共8小题,满分58分)17.解:(1)原式=(1+x)(1﹣x);(2)原式=3x(x2﹣2xy+y2)=3x(x﹣y)2.18.解:原式=x2﹣x﹣x2+4x﹣4=3x﹣4,当x=﹣1时,原式=﹣3﹣4=﹣7.19.解:(1),①×2﹣②得:3x=12,解得:x=4,把x=4代入②得:y=﹣1,则方程组的解为;(2)去分母得:2=﹣x﹣x+1,解得:x=﹣,经检验x=﹣是分式方程的解.20.解:(1)由图可得:(a+b)(3a+b)=3a2+4ab+b2;(2)根据题意得:.21.解:如图,∵a∥b,∠1=30°,∴∠DAC=∠1=30°,∵b∥c,∠2=70°,∴∠DAB=∠2=70°,∴∠CAB=∠CAD+∠DAB=30°+70°=100°,∵AP平分∠CAB,∴∠CAP=∠BAP=∠CAB=50°,∴∠3=∠CAP﹣∠CAD=50°﹣30°=20°.22.解:(1)回答“基本了解”的学生有50﹣(5+15+10)=20人,补全图形如下:(2)估计该校全体学生中回答“非常了解”和“了解”的一共有600×=240人;(3)第二次“非常了解”的人数为50×(1﹣56%﹣12%﹣8%)=12人,则前后两次调查中回答“非常了解”的学生人数的增长率×100%=14%.23.解:(1)设B型垃圾桶的成本为x元/只,则A型垃圾桶的成本为(x+10)元/只,根据题意得:1600x+1600(x+10)=176000,解得:x=50,则x+10=50+10=60,答:该份订单中A型垃圾桶单只成本是60元,B型垃圾桶单只成本是50元,(2)设甲车间每天生产y只垃圾桶,则乙车间每天生产2y只垃圾桶,根据题意得:﹣=2,解得:y=400,经检验:y=400是原方程的解且符合题意,则2y=800,答:甲车间每天生产400只垃圾桶,则乙车间每天生产800只垃圾桶.24.解:(1)∵EM平分∠AEF∴∠AEF=∠FME,又∵∠FEM=∠FME,∴∠AEF=∠FEM,∴AB∥CD;(2)①如图2,∵AB∥CD,β=50°∴∠AEG=130°,又∵EH平分∠FEG,EM平分∠AEF∴∠HEF=∠FEG,∠MEF=∠AEF,∴∠MEH=∠AEG=65°,又∵HN⊥ME,∴Rt△EHN中,∠EHN=90°﹣65°=25°,即α=25°;②分两种情况讨论:如图2,当点G在点F的右侧时,α=.证明:∵AB∥CD,∴∠AEG=180°﹣β,又∵EH平分∠FEG,EM平分∠AEF∴∠HEF=∠FEG,∠MEF=∠AEF,∴∠MEH=∠AEG=(180°﹣β),又∵HN⊥ME,∴Rt△EHN中,∠EHN=90°﹣∠MEH=90°﹣(180°﹣β)=,即α=;如图3,当点G在点F的左侧时,α=90°﹣.证明:∵AB∥CD,∴∠AEG=∠EGF=β,又∵EH平分∠FEG,EM平分∠AEF∴∠HEF=∠FEG,∠MEF=∠AEF,∴∠MEH=∠MEF﹣∠HEF=(∠AEF﹣∠FEG)=∠AEG=β,又∵HN⊥ME,∴Rt△EHN中,∠EHN=90°﹣∠MEH,即α=90°﹣.。
浙教版七年级下册数学期末测试卷及含答案
浙教版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列命题正确的是( )A.在同一平面内,可以把半径相等的两个圆中的一个看成是由另一个平移得到的.B.两个全等的图形之间必有平移关系.C.三角形经过旋转,对应线段平行且相等.D.将一个封闭图形旋转,旋转中心只能在图形内部.2、当分式的值为0时,字母x的取值应为()A.﹣1B.1C.﹣2D.23、如图所示,AD⊥BC,DE∥AB,则∠ADE与∠B的关系是()A.相等B.互补C.互余D.不能确定4、在矩形ABCD中(AB<BC),四边形ABFE为正方形,G,H分别是DE,CF的中点,将矩形DGHC移至FB右侧得到矩形FBKL,延长GH与KL交于点M,以K为圆心,KM为半径作圆弧与BH交于点P,古代印度利用这个方法,可以得到与矩形ABCD面积相等的正方形的边长。
若矩形ABCD的面积为16,HP:PF=1:4,则CH的值为( )A. B.1 C. D.25、下列是分式方程的是()A. +1=0B. =0C.D.6x 2+4x+1=06、为保护生态环境,某县响应国家“退耕还林”号召,将某一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各多少平方千米.设改变后耕地面积x平方千米,林地地面积y平方千米,根据题意,列出如下四个方程组,其中正确的是()A. B. C. D.7、下列运算正确的是()A.a 2•a 3=a 6B.(﹣2ab 3)2=﹣4a 2b 6C.(﹣a 2)3=﹣a6 D.2a+3b=5ab8、下列运算正确的是()A.(a3)2=a6B.a2•a4=a8C.a6÷a2=a3D.3a2-a2=39、如图,可以判定AD//BC的是( )A. B. C. D.10、已知:a+b=m,ab=-4, 化简(a-2)(b-2)的结果是A. -2 mB. 2 mC. 2 m-8D.611、太阳内部高温核聚变反应释放的辐射能功率为3.8×1023千瓦,到达地球的仅占20亿分之一,到达地球的辐射能功率为()千瓦.(用科学记数法表示,保留2个有效数字)A.1.9×10 14B.2×10 14C.76×10 15D.7.6×10 1412、下列计算中正确的是( )A.a 6÷a 2=a 3B.(a 4)2=a6C.3a 2-a 2=2D.a 2·a 3=a 513、一元一次方程组的解的情况是()A. B. C. D.14、下列关于x的方程中,是分式方程的是( ).A. B. C. D.3x-2y=115、为了保护生态环境,某地将一部分耕地改为林地,改变后,林地的面积和耕地的面积和共有180万公顷,耕地面积是林地面积的25%,已知改变后耕地面积为x万公顷,林地面积为y公顷,以下关于x、y的四个方程组,其中符合题意的是()A. B. C. D.二、填空题(共10题,共计30分)16、一个长、宽分别为m、n的长方形的周长为14,面积为8,则m2n+mn2的值为________.17、因式分解:=________.18、如图AB∥CD,AB与DE交于点F,∠B=40°,∠D=70°,则∠E=________.19、已知方程x m-3+y2-n=6是二元一次方程,则m-n=________20、分解因式:m2+2m=________.21、计算:x(x﹣2)=________22、如图,在一块边长为a的正方形花圃中,两纵两横的4条宽度为的人行道把花圃分成9块,下面是四个计算花圃内种花土地总面积的代数式:① ;② ;③ ;④ .其中正确的有________.23、化简:= ________ 。
浙教版七年级下册期末数学试卷(含答案)
浙教版七年级下册期末数学试卷(含答案) 七年级下册期末数学试卷一、选择题(每小题3分,共30分)1.下列各图案中,是由一个基本图形通过平移得到的是()。
A。
B。
C。
D。
2.已知空气的单位体积质量为1.24×10^-3克/厘米^3,1.24×10^-3用小数表示为()。
A。
0.B。
0.0124C。
-0.D。
0.3.下列四个多项式中,能因式分解的是()。
A。
a^2+1B。
a^2-6a+9C。
x^2+5yD。
x^2-5y4.若3x=4,9y=7,则3x-2y的值为()。
A。
4/7B。
7/4C。
-3D。
2/75.下列统计中,适合用“全面调查”的是()。
A。
某厂生产的电灯使用寿命B。
全国初中生的视力情况C。
某校七年级学生的身高情况D。
“XXX”产品的合格率6.下列分式中不管x取何值,一定有意义的是()。
A。
x^2/xB。
(x-1)/(x^2-1)C。
(x+3)/(x^2+1)D。
(x-1)/(x+1)7.能使分式(4x+7)/(2x-3)的值为整数的整数x有()个。
A。
2B。
3C。
4D。
无解8.2^2018-2^2019的值是()。
A。
1/2B。
-1/2C。
-2^2018D。
-29.如图所示,把一根铁丝折成图示形状后,AB∥DE,则∠BCD等于()。
A。
∠D+∠BB。
∠B-∠DC。
180°+∠D-∠BD。
180°+∠B-∠D10.XXX在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图(1);XXX看见了,说:“我也来试一试.”结果XXX七拼八凑,拼成了XXX(2)那样的正方形,中间还留下了一个洞,恰好是边长为3mm的小正方形,则每个小长方形的面积为()。
A。
120mm^2B。
135mm^2C。
108mm^2D。
96mm^2二、填空题(每小题3分,共24分)11.当x=1时,分式x^2-1/(x+3)(x-1)的值是 0.12.当x^2+kx+25是一个完全平方式,则k的值是 -10.13.若关于x的方程ax^3/(x-1)^2+1无解,则a的值是 0.14.已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是5,10,6,7,第五组的频率是0.2,故第六组的频数是 2.15.3x+2y=20的正整数解有 5 组。
浙教版七年级下册数学期末测试卷及含答案
浙教版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列代数运算正确的是()A.(x 3)2=x 5B.(2x)2=2x 2C.(x+1)2=x 2+1D.x 3•x 2=x 52、已知多项式x2+kx+ 是一个完全平方式,则k的值为()A.±1B.﹣1C.1D.3、下列各式计算正确的是()A. (x﹣y)2=x2﹣y2B. x3﹣x=x2C. (x2)3=x5D. x5÷x4=x4、下列运算正确的是()A. B. C. D.5、下列各式变形中,正确的是()A.x 2•x 3=x 6B.(x﹣1)(﹣1﹣x)=1﹣x 2C.(x 2﹣)÷x=x﹣1 D.6、如图,AB∥CD,点E在CB的延长线上,若∠ABE=60°,则∠ECD的度数为()A.120°B.100°C.60°D.20°7、对50个数据整理所得的频率分布表中,各组的频数之和与频率之和分别为()A.50,1B.50,50C.1,50D.1,18、要使式子成为一个完全平方式,则需添上( )A. B. C. D.9、如图所示BC//DE,∠1=108°,∠AED=75°,则∠A的大小是()A.60°B.33°C.30°D.23°10、已知分式(m,n为常数)满足下列表格中的信息:则下列结论中错误的是()x的取值﹣1 1 p q分式的值无意义1 0 ﹣1A.m=1B.n=8C.p=D.q=﹣111、下来运算中正确的是()A. B.()2= C. D.12、如图,在△ABC中,∠C=30°,∠ABC=100°,将△ABC绕点A顺时针旋转至△ADE(点B与点D对应),连结BD,当BD平分∠ABC时,∠BAE的大小为( )A.130°B.135°C.140°D.145°13、下列计算结果为a5的是()A.a 2+a 3B.a 2·a 3C.(a 3)2D.14、方程组的解满足方程x+y﹣a=0,那么a的值是()A.5B.-5C.3D.-315、为了解全州近5万名考生的数学成绩,教研部门从中抽取800名考生的数学成绩进行统计分析,下列说法正确的是()A.5万名考生是总体B.800名考生是总体的一个样本C.每位考生的数学成绩是个体D.800名考生是样本容量二、填空题(共10题,共计30分)16、若m- =3,则m2+ =________.17、若(x-1)x+1=1,则x=________.18、小明从市环境监测网随机查阅了若干天的空气质量数据作为样本进行统计,分别绘制了如图的条形统计图和扇形统计图,根据图中提供的信息,可知扇形统计图中表示空气质量为轻度污染的扇形的圆心角度数为________;19、如图,AB CD,AD平分∠BAE,∠D=25°,则∠AEC的度数为________.20、计算:________.21、当=________时,分式的值为0;22、用换元法解方程时,如果设,那么原方程可化为关于y的整式方程是________.23、如图,在平行四边形ABCD中,AC=12,BD=8,AD=a,那么a的取值范围是________。
浙教版数学七年级下册期末考试试题带答案
浙教版数学七年级下册期末考试试卷一、选择题(每小题3分,共30分) 1.若分式1xx -有意义,则实数x 的取值范围是( ) A .=1x B . 1x ≠ C .=0x D .0x ≠2.新冠病毒的直径最小大约为0.00000008米,这个数用科学记数法表示为( ) A .8810-⨯ B .7810-⨯ C .98010-⨯ D .70.810-⨯ 3.下列运算正确的是( )A .236a a a ⋅=B .235()a a =C .236(2)8a a =D .263+a a a = 4.下列调查中,适宜采用普查方式的是( ) A .了解一批圆珠笔的寿命 B .了解全国七年级学生身高的现状 C .了解市民对“垃圾分类知识”的知晓程度 D .检查一枚用于发射卫星的运载火箭的各零部件 5.下列各式从左到右的变形是因式分解的是( ) A .6933(23)x y x y ++=+ B .221(1)x x -=- C .22()()x y x y x y +-=- D .2222(1)(1)x x x -=-+6.若21x y =⎧⎨=-⎩是关于x 、y 的二元一次方程50ax by +-=的一组解,则22a b --的值为()A .3-B .3C .7-D .7 7.关于x ,y 的二元一次方程2312x y +=的非负整数解有( )组. A .0 B .1 C .2 D .3 8.下列图形中,周长最长的是( )A .B .C .D .9.甲、乙两人分别从距目的地6千米和10千米的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前20分钟到达目的地,求甲、乙的速度.若设甲的速度为3x 千米/时,乙的速度为4x 千米/时.则所列方程是( ) A .6102034x x += B .6102034x x =+C .620103604x x += D .610203460x x =+10.将大小不同的两个正方形按图1,图2的方式摆放.若图1中阴影部分的面积是20,图2中阴影部分的面积是14,则大正方形的边长是( )A .6B .7C .8D .9 二、填空题(每小题3分,共24分) 11.计算:01(1)2---= .12.有50个数据,把它们分成五组,第一、二、三、四、五组的数据个数分别是3,7,14、x 、6,则第四组的频率为 .13.一个长方形,它的面积为2693a ab a -+,已知这个长方形的长为3a ,则宽为 . 14.如图,点B 、C 在直线AD 上,70ABE ∠=︒,BF 平分DBE ∠,//CG BF ,则DCG ∠= .15.若长方形的长为x ,宽为y ,周长为16,面积为15,则22x y xy +的值为 .16.若关于x 的分式方程3222x m mx x++=--有增根,则m 的值为 . 17.已知2214a a +=,则1+a a的值是 . 18.两块不同的三角板按如图所示摆放,两个直角顶点C 重合,60A ∠=︒,45D ∠=︒.接着保持三角板ABC 不动,将三角板CDE 绕着点C 旋转,但保证点D 在直线AC 的上方,若三角板CDE 有一条边与斜边AB 平行,则ACD ∠= .三、解答题(共46分) 19.因式分解:3 (1) 16m m- 22(2)44.x xy y -+-20.先化简,再求值:2(1)()(3)(3),2, 1. x y x y x y x y ++-+==其中221(2),0,1,2111x x x x x x --÷+--从中选一个合适的数作为的值代入求值.21.解下列方程(组)328(1)1x y x y +=⎧⎨-=⎩13(2)122x x x x -++=--22. 学校七年级学生即将参加期末的体育考试,为了了解同学们考试项目之一“长跑”的准备情况,某学校随机抽取了若干学生,并测试了他们的长跑成绩(男子1000米,女子800米),统计结果如下:被调查学生长跑成绩情况条形和扇形统计图(1)补全条形统计图,并算出扇形统计图中“不合格”所对的圆心角度数;(2)若该校初2020届共有1500名学生,请你估计该校学生长跑达到良好以上的人数.23.如图,//∠=︒,130∠=︒.EFB∠=︒,20EF AB,70DCBCBF(1)直线CD与AB平行吗?为什么?(2)若68∠的度数.∠=︒,求ACBCEF24.学习整式乘法时,老师拿出三种型号卡片,如图1.(1)选取1张A 型卡片,6张C 型卡片,则应取 张B 型卡片才能用它们拼成一个新的正方形,新的正方形的边长是 (请用含a ,b 的代数式表示);(2)选取4张C 型卡片在纸上按图2的方式拼图,并剪出中间正方形作为第四种D 型卡片,由此可验证的等量关系为 ;(3)选取1张D 型卡片,3张C 型卡片按图3的方式不重叠地放在长方形MNPQ 框架内,已知MQ 的长度为10,MN 的长度可以变化,若图中两阴影部分(长方形)的周长差为10,求此时C 型卡片的面积.参考答案与试题解析一、选择题(每小题3分,共30分) 1.若分式1xx -有意义,则实数x 的取值范围是( ) A .=1x B . 1x ≠ C .=0x D .0x ≠【考点】分式有意义的条件 【解答】解:分式1xx -有意义, 10x ∴-≠,∴实数x 的取值范围是1x ≠,故选:B .2.新冠病毒的直径最小大约为0.00000008米,这个数用科学记数法表示为( ) A .8810-⨯B .7810-⨯C .98010-⨯D .70.810-⨯【考点】1J :科学记数法-表示较小的数 【解答】解:80.00000008810-=⨯; 故选:A .3.下列运算正确的是( ) A .236a a a ⋅=B .235()a a =C .236(2)8a a =D .263+a a a =【考点】同底数幂的除法;幂的乘方与积的乘方;同底数幂的乘法 【解答】解:A 、235a a a ⋅=,故本选项不合题意;B 、236()a a =,故本选项不合题意;C 、236(2)8a a =,故本选项符合题意;D 、263+a a a ≠,故本选项不合题意.故选:C .4.下列调查中,适宜采用普查方式的是( ) A .了解一批圆珠笔的寿命 B .了解全国七年级学生身高的现状 C .了解市民对“垃圾分类知识”的知晓程度 D .检查一枚用于发射卫星的运载火箭的各零部件 【考点】2V :全面调查与抽样调查【解答】解:A .了解一批圆珠笔的寿命,适合抽样调查;B .了解全国七年级学生身高的现状,适合抽样调查;C .了解市民对“垃圾分类知识”的知晓程度,适合抽样调查;D .检查一枚用于发射卫星的运载火箭的各零部件,适合全面调查;故选:D .5.下列各式从左到右的变形是因式分解的是( ) A .6933(23)x y x y ++=+B .221(1)x x -=-C .22()()x y x y x y +-=-D .2222(1)(1)x x x -=-+【考点】因式分解的意义【解答】解:A 、6933(231)x y x y ++=++,因式分解错误,故本选项不符合题意;B 、21(1)(1)x x x -=-+,因式分解错误,故本选项不符合题意;C 、是整式的乘法,不是因式分解,故本选项不符合题意;D 、是正确的因式分解,故本选项符合题意;故选:D .6.若21x y =⎧⎨=-⎩是关于x 、y 的二元一次方程50ax by +-=的一组解,则22a b --的值为() A .3-B .3C .7-D .7【考点】92:二元一次方程的解【解答】解:把21x y =⎧⎨=-⎩代入方程得:250a b --=,即25a b -=,则原式523=-=, 故选:B .7.关于x ,y 的二元一次方程2312x y +=的非负整数解有( )组. A .0B .1C .2D .3【考点】92:二元一次方程的解【解答】解:当0x =时,方程变形为312y =,解得4y =; 当3x =时,方程变形为6312y +=,解得2y =; 当6x =时,方程变形为12312y +=,解得0y =;∴关于x ,y 的二元一次方程2312x y +=的非负整数解有3组:04x y =⎧⎨=⎩、32x y =⎧⎨=⎩和60x y =⎧⎨=⎩.故选:D .8.下列图形中,周长最长的是( )A .B .C .D .【考点】1Q :生活中的平移现象【解答】解:A 、由图形可得其周长为:12cm ,B 、由图形可得其周长大于12cm ,C 、由图形可得其周长为:12cm ,D 、由图形可得其周长为:12cm ,故最长的是B . 故选:B .9.甲、乙两人分别从距目的地6千米和10千米的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前20分钟到达目的地,求甲、乙的速度.若设甲的速度为3x 千米/时,乙的速度为4x 千米/时.则所列方程是( ) A .6102034x x +=B .6102034x x =+C .620103604x x+=D .610203460x x =+【考点】6B :由实际问题抽象出分式方程【解答】解:设甲的速度为3x 千米/时,则乙的速度为4x 千米/时, 根据题意得:620103604x x+=. 故选:C .10.将大小不同的两个正方形按图1,图2的方式摆放.若图1中阴影部分的面积是20,图2中阴影部分的面积是14,则大正方形的边长是( )A .6B .7C .8D .9【考点】4A :单项式乘多项式【解答】解:设大正方形的边长为a ,小正方形的边长为b ,根据题意可得:11()2022ab b a b +-=,1142ab =, 解得:7a =. 故选:B .二、填空题(每小题3分,共24分) 11.计算:01(1)2---= .【考点】负整数指数幂;实数的运算;零指数幂 【解答】 故答案为:12. 12.有50个数据,把它们分成五组,第一、二、三、四、五组的数据个数分别是3,7,14、x 、6,则第四组的频率为 .【考点】6V :频数与频率 【解答】解:根据题意,得第四组数据的个数50(37146)20x =-+++=, 故第四组的频率为20500.4÷=. 故答案为:0.4.13.一个长方形,它的面积为2693a ab a -+,已知这个长方形的长为3a ,则宽为 . 【考点】4H :整式的除法【解答】解:根据题意,宽为2(693)3231a ab a a a b -+÷=-+, 故答案为:231a b -+.14.如图,点B 、C 在直线AD 上,70ABE ∠=︒,BF 平分DBE ∠,//CG BF ,则DCG ∠= .【考点】JA :平行线的性质 【解答】解:如图所示:180ABE EBD ∠+∠=︒,70ABE ∠=︒, 180********EBD ABE ∴∠=︒-∠=︒-︒=︒,又BF 平分DBE ∠,111105522DBF EBD ∴∠=∠=⨯︒=︒,又//CG BF , DCG DBF ∴∠=∠, 55DCG ∴∠=︒,故答案为:55︒.15.若长方形的长为x ,宽为y ,周长为16,面积为15,则22x y xy +的值为 . 【考点】53:因式分解-提公因式法【解答】解:由题意得:8x y +=,15xy =, 则原式()120xy x y =+=, 故答案为:12016.若关于x 的分式方程3222x m mx x++=--有增根,则m 的值为 . 【考点】分式方程的增根【解答】解:方程两边同时乘以2x -,得 32(2)x m m x +-=-,解得:42x m =-, 分式方程有增根, 2x ∴=, 422m ∴-=, 1m ∴=,故答案为:1. 17.已知2214a a +=,则1+a a的值是 .【考点】一元一次方程的解【解答】故答案为:.18.两块不同的三角板按如图所示摆放,两个直角顶点C重合,60∠=︒.接D∠=︒,45A着保持三角板ABC不动,将三角板CDE绕着点C旋转,但保证点D在直线AC的上方,若三角板CDE有一条边与斜边AB平行,则ACD∠=.【考点】平行线的判定与性质【解答】解:如图,//CD AB,30∠=∠=︒,BCD B∠=∠+∠=︒+︒=︒;9030120ACD ACB BCD如图2,//DE AB时,延长EC交AB于F,则45AFC E∠=∠=︒,在ACF∠=︒-∠-∠,ACF A AFC∆中,180=︒-︒-︒=︒,180604575则90907515∠=︒-∠=︒-︒=︒.BCF ACF∴∠=︒-∠=︒-︒=︒;ACD BCF180********如图3,//CD AB 时,30ACD ∠=︒,故答案为:30︒或120︒或165︒.三、解答题(共46分)19.因式分解:3 (1) 16m m - 22(2)44.x xy y -+-【考点】因式分解【解答】解:2(1)(4)(4);(2)(2)m m m x y =+-=--原式原式20.先化简,再求值:2(1)()(3)(3),2, 1. x y x y x y x y ++-+==其中221(2),0,1,2111 xx x x x x --÷+--从中选一个合适的数作为的值代入求值.【考点】化简求值【解答】解:22222222(429228.2, 1 , 2)2221181x xy y x y x xy y x y =+++-=+-===⨯+⨯⨯-⨯=将代入得原式原式.(22)2(1)1(1)(1)=112=120 , 2; 2 , 3x x x x x x x x x x x x x -=-⋅-++---+++====当原式当式原式原21.解下列方程(组)328(1)1x y x y +=⎧⎨-=⎩13(2)122x x x x -++=-- 【考点】解二元一次方程组;解分式方程【解答】解:2(1)1x y =⎧⎨=⎩(2)0x = 22. 学校七年级学生即将参加期末的体育考试,为了了解同学们考试项目之一“长跑”的准备情况,某学校随机抽取了若干学生,并测试了他们的长跑成绩(男子1000米,女子800米),统计结果如下:被调查学生长跑成绩情况条形和扇形统计图(1)补全条形统计图,并算出扇形统计图中“不合格”所对的圆心角度数;(2)若该校初2020届共有1500名学生,请你估计该校学生长跑达到良好以上的人数.【考点】5V :用样本估计总体;VC :条形统计图;VB :扇形统计图【解答】解:(1)抽取的总人数有:(4530)25%300+÷=(人),良好的人数有30050%150⨯=(人),良好的男生有1507080-=(人),合格的人数有30020%60⨯=(人),合格的女生有604020-=(人),补图如下:(2)根据题意得:⨯+=(人),1500(50%25%)1125答:估计该校学生长跑达到良好以上的人数有1125人.23.如图,//∠=︒,130∠=︒.EFBCBFEF AB,70DCB∠=︒,20(1)直线CD与AB平行吗?为什么?(2)若68∠的度数.∠=︒,求ACBCEF【考点】平行线的判定与性质【解答】解:(1)平行,理由如下:∠=︒,EFBEF AB,130//∴∠=︒-︒=︒,18013050ABF20∠=︒,CBFCBA ABF CBF∴∠=∠+∠=︒,70DCB∠=︒,70∴∠=∠,CBA DCB∴.//CD AB(2)//∠=︒,EF AB,68CEF∴∠=︒,68A由(1)知,//CD AB,ACD A∴∠+∠=︒,180∴∠=︒-∠=︒-︒=︒,ACD A180********又70∠=︒,DCB1127042∴∠=∠-∠=︒-︒=︒.ACB ACD DCB∴∠的度数为42︒.ACB24.学习整式乘法时,老师拿出三种型号卡片,如图1.(1)选取1张A型卡片,6张C型卡片,则应取张B型卡片才能用它们拼成一个新的正方形,新的正方形的边长是(请用含a,b的代数式表示);(2)选取4张C型卡片在纸上按图2的方式拼图,并剪出中间正方形作为第四种D型卡片,由此可验证的等量关系为;(3)选取1张D型卡片,3张C型卡片按图3的方式不重叠地放在长方形MNPQ框架内,已知MQ的长度为10,MN的长度可以变化,若图中两阴影部分(长方形)的周长差为10,求此时C型卡片的面积.【考点】4D:完全平方公式的几何背景【解答】解:(1)A型卡片的面积为2a,B型卡片的面积为2b,C型卡片的面积为ab,题中已经选择1张A型卡片,6张C型卡片,面积之和为26+,a ab由完全平方公式的几何背景可知一个正方形的面积可以表达成一个完全平方公式,可以很轻易得知22269(3)a ab b a b ++=+,故应取9张B 型卡片才能用它们拼成一个新的正方形,新的正方形的边长是3a b + 故答案为:9;3a b +(2)选取4张C 型卡片在纸上按图2的方式拼图,可以得到一个边长为()a b +的正方形, 剪出中间正方形作为第四种D 型卡片,可知D 型卡片的面积为一个边长为()a b +的正方形的面积减去4张C 型卡片的面积,即:2()4a b ab +-,由图可得D 型卡片是一个边长为()a b -的正方形,由正方形的面积为边长的平方可知:22()()4a b a b ab -=+-故答案为:22()()4a b a b ab -=+-(3)设MN 长为m ,则()122,23C m C m a b ==-+∵MQ 的长度为10,∵310a b b -+=,即210a b +=①.∵两长方形周长之差为10,∵1221-10-10C C C C ==或(1)当12-10C C =,有2310a b -=(),即35a b -=②,∵和∵组成方程组210, 35,a b a b +=⎧⎨-=⎩ 解得8,1a b =⎧⎨=⎩此时C 型卡片面积为8ab =; (2)当12-10C C =-,有2310a b -=-(),即35a b -=-③,∵和∵组成方程组210, 35,a b a b +=⎧⎨-=-⎩ 解得4,3a b =⎧⎨=⎩此时C 型卡片面积为12ab =; 综上可得,C 型卡片的面积为8或12.。
浙教版七年级数学下学期期末测试试题
CBADE浙教版七年级数学下学期期末测试试题及答案一、细心选一选(本题共10小题,每小题3分,共30分) 1、下列运算正确的是( )A 、532a a a =+ B 、532a a a =⋅ C 、()532a a = D 、5210a a a =÷2、如图,在△ABC 中,AD ⊥BC 于D 点,BD=CD ,若BC=6, AD=5,则图中阴影部分的面积为( ) A 、30 B 、15 C 、7.5 D 、63、一个正方形的边长增加4cm ,它的面积就增加56cm 2,这个正方形的边长是( ) A 、5cm B 、6cm C 、8cm D 、10cm4、已知某种植物花粉的直径为0.00035米,用科学记数法表示该种花粉的直径是( ) A 、3.5×104米 B 、3.5×104-米 C 、3.5×105-米 D 、3.5×106-米5、以下三组两个图形之间的变换分别属于( )A 、平移、旋转、旋转B 、平移、轴对称、轴对称C 、平移、轴对称、旋转D 、平移、旋转、轴对称6、若分式242--x x 的值为零,则x 的取值范围是( )A 、x=0B 、x=2C 、x= -2D 、x=±2 7、从1、2、3、4四个数中任意取两个求和,其结果最有可能是( ) A 、3 B 、4 C 、5 D 、68、下列叙述: ①任意一个三角形的三条高至少有一条在此三角形内部;②以c b a ,, 为边,且c b a >+可以构成一个三角形;③一个三角形内角之比为3:2:1,此三角形为直角三角形;④两个角和其中一角的对边对应相等的两个三角形全等;⑤两条边和其中一边的对角对应相等的两个三角形全等;⑥三个角对应相等的两个三角形全等,其中正确的有( )A 、① ③ ⑤B 、② ④ ⑥C 、① ③ ④D 、① ② ③ ④9、某工厂接到加工720件衣服的订单,预算每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x 件,则可得方程( ) A 、54872048720=-+x B 、x +=+48720548720C 、572048720=-xD 、54872048720=+-x10、如上图,△ABC 中,点D 是BC 上的一点,点E 是AD 上的一点,若BD:CD=2:3 ,DE:AE=1:4 ,△ABC 的面积是8,则△DEC 的面积为( )A 、2524B 、1C 、23D 、32DBCA二、耐心填一填(本题共10小题,每小题3分,共30分) 11、计算:()_____322=÷-b ab , ()=-⨯--203)31( 。
【浙教版】七年级数学下期末试卷(含答案)
一、选择题1.下列事件中,是必然事件的为( )A.3天内会下雨B.打开电视机,正在播放广告C.367人中至少有2人公历生日相同D.抛掷1个均匀的骰子,出现4点向上2.一个不透明的袋中有若干个红球,为了估计袋中红球的个数,小林在袋中放入10个与红球形状大小完全相同的白球,每次摇匀后随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复试验后发现,摸到红球的频率稳定在,则袋中的红球个数约为( )A.6 B.16 C.22 D.243.从只装有4个红球的袋中随机摸出一球,若摸到白球的概率是P1,摸到红球的概率是P2,则()A.P1=1,P2=1B.P1=0,P2=1C.P1=0,P2=1 4D.P1=P2=1 44.下列说法中错误的是()A.成轴对称的两个图形的对应点连线的垂直平分线是它们的对称轴B.关于某条直线对称的两个图形全等C.全等的三角形一定关于某条直线对称D.若两个图形沿某条直线对折后能够完全重合,我们称两个图形成轴对称5.如图,将长方形纸片进行折叠,ED,EF为折痕,A与A'、B与B'、C与C'重合,若25AED∠=︒,则CFE∠的度数为()A.130°B.115°C.65°D.50°6.小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),∠AOB的度数为()A.60°B.45°C.22.5°D.30°7.如图,AB 和CD 相交于点O ,A C ∠=∠,则下列结论中不正确的是( ).A .B D ∠=∠B .1A D ∠=∠+∠C .2D ∠>∠D .C D ∠=∠ 8.如图,已知∠ABC =∠DEF ,AB =DE ,添加以下条件,不能判定△ABC ≌△DEF 的是( )A .∠A =∠DB .∠ACB =∠DFEC .AC =DFD .BE =CF 9.如图,在ABC 和DEF 中,,B DEF AB DE ∠=∠=,添加下列一个条件后,仍然不能证明ABC DEF ≌,这个条件是( )A .A D ∠=∠B .BC EF = C .ACB F ∠=∠D .AC DF = 10.某校八年级同学到距学校6千米的郊外秋游,一部分同学步行,另一部分同学骑自行车,沿相同路线前往,如图,L 1L 2分别表示步行和骑车的同学前往目的地所走的路程y (千米)与所用时间x (分钟)之间的函数关系,则以下判断错误..的是( )A .骑车的同学比步行的同学晚出发30分钟B .骑车的同学和步行的同学同时到达目的地C .骑车的同学从出发到追上步行的同学用了20分钟D .步行的速度是6千米/小时.11.下列说法中:①40°35′=2455′;②如果∠A+∠B =180°,那么∠A 与∠B 互为余角;③经过两点有一条直线,并且只有一条直线;④在同一平面内,不重合的两条直线不是平行就是相交.正确的个数为( ).A .1个B .2个C .3个D .4个12.下列运算:①236a a a ⋅=;②()236a a =;③55a a a ÷=;④333()ab a b =.其中结果正确的有( )A .1个B .2个C .3个D .4个二、填空题13.将一个表面涂满红色的正方体的每条棱五等份,此正方体分割成若干个小正方体,从中任取一个小正方体,各面均无色的概率为_____.14.香洲区某所中学下午安排三节课,分别是数学、体育、物理,把数学课安排在第一节课的概率为____.15.将长方形ABCD 纸片按如图所示方式折叠,使得50A EB ''︒∠=,其中EF ,EG 为折痕,则AEF ∠+BEG ∠=____________度.16.如图,在Rt △ABC 中,∠C =90°,D 为BC 上一点,连接AD ,过D 点作DE ⊥AB ,且DE =DC .若AB =5,AC =3,则EB =____.17.将一张长方形纸条折成如图所示的图形,如果∠1=64°,那么∠2=_______.18.某公司销售部门发现,该公司的销售收入随销售量的变化而变化,其中自变量是__________,因变量是__________.19.如图,直线EF 、CD 相交于点O ,OA ⊥OB ,OC 平分∠AOF ,若∠AOE=40°,则∠BOD=______.20.若9a b +=,14ab =,则a b -=______.三、解答题21.“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:(1)求这次抽查的家长总人数;(2)请补全条形统计图和扇形统计图;(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率是多少?22.如图,在平面直角坐标系中有一个ABC ,顶点()1,3A -,()2,0B ,()3,1C --. (1)画出ABC 关于y 轴的对称图形111A B C △(不写画法);(2)点C 关于x 轴对称的点的坐标为__________,点B 关于y 轴对称的点的坐标为__________;(3)若网格上每个小正方形的边长为1,求111A B C △的面积?23.已知△ABC 和△ADE 均为等腰三角形,且∠BAC =∠DAE ,AB =AC ,AD =AE .(1)如图1,点E 在BC 上,求证:BC =BD+BE ;(2)如图2,点E 在CB 的延长线上,(1)的结论是否成立?若成立,给出证明;若不成立,写出成立的式子并证明.(3)如图3,点E 在BC 的延长线上,直接写出线段BC 、CD 、CE 三者之间的关系.24.某机动车出发前油箱内有油42L.行驶若干小时后,途中在加油站加油若干升.油箱中余油量Q(L)与行驶时间t(h)之间的关系如图所示,根据图象回答问题.(1)机动车行驶几小时后加油?(2)中途加油________L ;(3)如果加油站距目的地还有240km ,车速为40km/h ,要到达目的地,油箱中的油是否够用?并说明原因.25.如图,已知三角形ABC 和射线EM ,用直尺和圆规按下列步骤作图(保留作图痕迹,不写作法):(1)在射线EM 的上方,作NEM B ∠=∠;(2)在射线EN 上作线段DE ,在射线EM 上作线段EF ,使得DE AB =,EF BC =;(3)连接DF ,观察并猜想:DF 与AC 的数量关系是DF ______AC ,填(“>”、“<”或“=”)26.已知多项式()()2214A x x y =+--. (1)化简多项式A ;(2)若21y x =-,求A 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据随机事件与必然事件的定义逐一进行判断即可.【详解】A.3天内会下雨是随机事件,故该选项不符合题意,B.打开电视机,正在播放广告是随机事件,故该选项不符合题意,C.367人中至少有2人公历生日相同是必然事件,故该选项符合题意,D.抛掷1个均匀的骰子,出现4点向上是随机事件,故该选项不符合题意,故选C.【点睛】本题考查了随机事件与必然事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件;在一定条件下,必然会发生的事件称为必然事件,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.2.A解析:A【解析】【分析】根据口袋中有10个白球,利用红色小球在总数中所占比例得出与实验比例应该相等求出即可.【详解】解:设袋中的红球的个数为x,根据题意,得:解得:x=6,经检验:x=6是原分式方程的解,∴袋中红球的个数为6,故选:A.【点睛】本题考查用样本估计总体,根据已知得出小球在总数中所占比例得出与实验比例应该相等是解题关键.3.B解析:B【详解】解:由题意可知:摸到红球是必然发生的事件,摸到白球是不可能发生的事件,所以P 1=0,P 2=1故选B .【点睛】本题考查概率的意义及计算,掌握概念是关键,此题难度不大.4.C解析:C【分析】根据轴对称的性质和定义,对选项进行一一分析,选择正确答案.【详解】A 、成轴对称的两个图形的对应点连线的垂直平分线是它们的对称轴,符合轴对称的定义,故正确;B 、关于某条直线对称的两个图形全等,符合轴对称的定义,故正确;C 、全等的三角形一定关于某条直线对称,由于位置关系不确定,不一定关于某条直线对称,故错误;D 、若两个图形沿某条直线对折后能够完全重合,我们称两个图形成轴对称,符合轴对称的定义,故正确.故选:C .【点睛】本题考查了轴对称图形的定义,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.5.B解析:B【分析】根据折叠的性质和平角的定义,即可得到结论.【详解】解:根据翻折的性质可知,∠AED=∠A′ED ,∠BEF=∠FEB′,又∵∠AED+∠A′ED+∠BFE+∠FEB′=180°,∴∠AED+∠BEF=90°,又∠AED=25°,∴∠BEF=65°.∴=18065=115CFE ∠︒-︒︒.故选:B.【点睛】此题考查了角的计算,根据翻折变换的性质,得出三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE ,∠DBC=∠DBC′是解题的关键.6.B解析:B【分析】根据轴对称的性质,即可求出∠AOB 的度数.【详解】∵折叠纸飞机的过程,对折了3次,∴180°÷2÷2÷2=22.5°,∴机翼展开在同一平面时,∠AOB=22.5°×2=45°,故选B.【点睛】本题主要考查轴对称的性质,理解通过折叠,把原来的角平分,是解题的关键.7.D解析:D【分析】利用三角形的外角性质,对顶角相等逐一判断即可.【详解】∵∠1=∠2,∠A=∠C,∠1=∠A+∠D,∠2=∠B+∠C,∴∠B=∠D,∴选项A、B正确;∵∠2=∠A+∠D,∠>∠,∴2D∴选项C正确;∠=∠没有条件说明C D故选:D.【点睛】本题考查了对顶角的性质,三角形外角的性质,熟练掌握并运用两条性质是解题的关键. 8.C解析:C【分析】根据全等三角形的判定方法一一判断即可;【详解】A、根据ASA,可以推出△ABC≌△DEF,本选项不符合题意.B、根据AAS,可以推出△ABC≌△DEF,本选项不符合题意.C、SSA,不能判定三角形全等,本选项符合题意.D、根据SAS,可以推出△ABC≌△DEF,本选项不符合题意.故选:C.【点睛】本题考查了全等三角形的判定,解题的关键是熟练掌握全等三角形的判定方法;9.D解析:D【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【详解】解:∵∠B=∠DEF ,AB=DE ,∴添加∠A=∠D ,利用ASA 可得△ABC ≌△DEF ;添加BC=EF ,利用SAS 可得△ABC ≌△DEF ;添加∠ACB=∠F ,利用AAS 可得△ABC ≌△DEF ;添加AC DF =,不符合任何一个全等判定定理,不能证明△ABC ≌△DEF ;故选:D .【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS 、ASA 、SAS 、AAS 和HL 是解题的关键.10.B解析:B【解析】A. 由图知,骑车的同学比步行的同学晚出发30分钟,故A 正确;B. 由图知,骑车的同学比步行的同学先到达目的地,故B 不正确;C. 由图知, 骑车的同学从出发到追上步行的同学用了20分钟,故C 正确;D. 由图知,步行的速度是6千米/小时,故D 正确;故选B11.B解析:B【分析】根据角的性质计算,可得到①不正确;根据补角和余角的定义,可得到②不正确;根据直线的性质分析,可得③和④正确,从而得到答案.【详解】()40354060352435'''︒=⨯+=,故①不正确;如果∠A+∠B =180°,那么∠A 与∠B 互为补角,故②不正确;③、④正确;故选:B .【点睛】本题考查了角、直线的知识;解题的关键是熟练掌握角的计算、余角和补角、直线的性质,从而完成求解.12.B解析:B【分析】按照幂的运算法则直接判断即可.【详解】解:①235a a a ⋅=,原式错误;②()236a a =,原式正确;③551a a ÷=,原式错误;④333()ab a b =,原式正确;故选:B .【点睛】本题考查了幂的运算,熟记幂的运算法则,注意它们之间的区别是解题关键.二、填空题13.【解析】【分析】将正方体每条棱五等份可分割成53=125个小正方体无色的小正方体的个数为33=27;除以所有正方体的个数即可【详解】解:将正方体每条棱五等份可分割成53=125个小正方体其中从中任取 解析:27125 【解析】【分析】将正方体每条棱五等份可分割成53=125个小正方体,无色的小正方体的个数为33=27;除以所有正方体的个数即可.【详解】解:将正方体每条棱五等份可分割成53=125个小正方体,其中从中任取一个小正方体,各面均无色的小正方体有33=27个,所以从中任取一个小正方体,各面均无色的概率为27125, 故答案为:27125. 【点睛】本题主要考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=所求情况数与总情况数之比. 14.【解析】试题分析:根据随机事件概率大小的求法找准两点:①符合条件的情况数目②全部情况的总数二者的比值就是其发生的概率的大小解:把数学课安排在第一节课的概率为故答案为考点:概率公式解析:【解析】试题分析:根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.解:把数学课安排在第一节课的概率为,故答案为考点:概率公式.15.65【解析】【分析】根据翻折的定义可以得到各角之间的关系从而可以得到∠AEF+∠BEG 的度数从而可以解答本题【详解】解:由题意可得∠AEA=2∠AEF ∠BEB=2∠BEG ∴(∠AEA+∠BEB )∵∠解析:65【解析】【分析】根据翻折的定义可以得到各角之间的关系,从而可以得到∠AEF+∠BEG 的度数,从而可以解答本题.【详解】解:由题意可得,∠A’EA=2∠AEF,∠BEB’=2∠BEG.∴AEF ∠+BEG ∠=12(∠A’EA+∠BEB’). ∵∠A’EA+∠BEB’+∠A’EB’=180°,50A EB ''︒∠=∴∠A ’EA+∠BEB’=130°,∴AEF ∠+BEG ∠=12⨯130°=65°. 故答案为65.【点睛】本题考查翻折变换、矩形的性质,解题的关键是明确题意,找出所求问题需要的条件. 16.2【分析】先证明△AED ≌△ACD 得到AE=AC=3最后根据线段的和差即可解答【详解】解:∵∠C=90°DE ⊥AB ∴△AED 和△ACD 都是直角三角形在Rt △AED 和Rt △ACD 中DE=DCAD=AD解析:2【分析】先证明△AED ≌△ACD 得到AE=AC=3,最后根据线段的和差即可解答.【详解】解:∵∠C =90°,DE ⊥AB ,∴△AED 和△ACD 都是直角三角形,在Rt △AED 和Rt △ACD 中,DE=DC,AD=AD ,∴△AED ≌△ACD (HL ),∴AE=AC=3,∴BE=AB-AC=5-3=2.故填:2.【点睛】本题主要考查了全等三角形的判定与性质,掌握运用HL 证明三角形全等是解答本题的关键.17.58°【分析】由折叠可得∠2=∠CAB依据∠1=64°即可得到∠2=(180°-64°)=58°【详解】由折叠可得∠2=∠CAB又∵∠1=64°∴∠2=(180°-62°)=58°故答案为58°【点解析:58°.【分析】由折叠可得,∠2=∠CAB,依据∠1=64°,即可得到∠2=12(180°-64°)=58°.【详解】由折叠可得,∠2=∠CAB,又∵∠1=64°,∴∠2=12(180°-62°)=58°,故答案为58°.【点睛】本题考查了折叠性质,平行线性质的应用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.18.销售量销售收入【解析】分析:函数关系式中某特定的数会随另一个(或另几个)会变动的数的变动而变动就称为因变量会变动的数为自变量详解:根据题意知公司的销售收入随销售量的变化而变化所以销售量是自变量收入数解析:销售量销售收入【解析】分析:函数关系式中,某特定的数会随另一个(或另几个)会变动的数的变动而变动,就称为因变量,会变动的数为自变量.详解:根据题意知,公司的销售收入随销售量的变化而变化,所以销售量是自变量,收入数为因变量.故答案为(1). 销售量 (2). 销售收入.点睛:本题考查的是对函数定义中自变量和因变量的判定和对定义的理解,解题的关键是弄清自变量和因变量含义.19.【分析】先根据互补角的定义可得再根据角平分线的定义可得然后根据垂直的定义可得最后根据角的和差即可得【详解】平分故答案为:【点睛】本题考查了互补角的定义角平分线的定义垂直的定义等知识点掌握理解各定义是解析:20【分析】先根据互补角的定义可得140AOF ∠=︒,再根据角平分线的定义可得70AOC ∠=︒,然后根据垂直的定义可得90AOB ∠=︒,最后根据角的和差即可得.【详解】40AOE ∠=︒,180140AOF AOE ∴∠=︒-∠=︒, OC 平分AOF ∠,1702AOC AOF ∴∠=∠=︒, OA OB ⊥,90AOB ∠=︒∴,18020BOD AOB AOC ∴∠=︒-∠-∠=︒,故答案为:20︒.【点睛】本题考查了互补角的定义、角平分线的定义、垂直的定义等知识点,掌握理解各定义是解题关键.20.【分析】由完全平方式得(a+b )=(a-b )+4ab 变形为(a-b )=(a+b )-4ab 把a+b=9ab=18代入计算即可求得【详解】由完全平方式得(a-b )=(a+b )-4ab 当a+b=9ab=1解析:5±【分析】由完全平方式得(a +b )2=(a -b )2+4ab 变形为(a -b )2=(a +b )2-4ab ,把a +b =9,ab =18代入计算即可求得.【详解】由完全平方式得(a -b )2=(a +b )2-4ab .当a +b =9,ab =14时,(a -b )2=81-4×14=81-56=25,∴a -b.故答案为:±5.【点睛】本题主要考查完全平方公式的熟练掌握情况,利用完全平方公式整理成已知条件的形式是解题的关键,再代入求值即可.三、解答题21.(1)100;(2)见解析;(3)25【分析】(1)根据条形图知道无所谓的人数有20人,从扇形图知道无所谓的占20%,从而可求出解;(2)家长的总人数减去赞成的人数和无所谓的人数求出反对的人数,再算出各部分的百分比画出扇形统计图和条形统计图;(3)学生恰好抽到持“无所谓”态度的概率是,是无所谓的学生数除以抽查的学生人数.【详解】解:(1)20÷20%=100,这次抽查的家长总人数为100;(2)条形统计图:100-10-20=70, 扇形统计图:赞成:10100×100%=10%,反对:70100×100%=70%;(3)80508070++=25, ∴恰好抽到持“无所谓”态度的概率是25. 【点睛】 本题考查了条形统计图和扇形统计图,条形统计图考查每组里面具体的人数,扇形统计图考查部分占整体的百分比,以及概率概念的考查等.22.(1)见解析;(2)()3,1-,()2,0-;(3)9【分析】(1)关于y 轴对称,则纵坐标不变,横坐标变成相反数,先确定三个顶点的对称点,再一次连接即可;(2)关于x 轴对称则横坐标不变,纵坐标变为相反数;关于y 轴对称,则纵坐标不变,横坐标变成相反数;(3)利用网格,所求面积=三角形所在的长方形的面积-多余的三角形面积,计算即可.【详解】解:(1)如解图所示,111A B C △即为所求;(2)点C 关于x 轴对称的点的坐标为()3,1-,点B 关于y 轴对称的点的坐标为()2,0-;(3)111A B C △的面积为:111452433159222⨯-⨯⨯-⨯⨯-⨯⨯=. 【点睛】本题考查的主要是轴对称变换以及三角形面积求法,根据题意求出对应点的位置是解题关键.23.(1)见解析;(2)(1)的结论不成立,成立的结论是BC =BD ﹣BE ,证明见解析;(3)BC=CD-CE【分析】(1)证得∠DAB=∠EAC ,证明△DAB ≌△EAC (SAS ),由全等三角形的性质得出BD=CE ,则可得出结论;(2)证明△DAB ≌△EAC (SAS ),得出BD=CE ,则成立的结论是BC=BD-BE ;(3)证明△DAC ≌△EAB (SAS ),得出BE=CD ,则成立的结论是BC=BD-BE .【详解】解:(1)证明:∵∠BAC =DAE ,∴∠BAC ﹣∠BAE =∠DAE ﹣∠BAE ,即∠DAB =∠EAC ,又∵AB =AC ,AD =AE ,∴△DAB ≌△EAC (SAS ),∴BD =CE ,∴BC =BE+CE =BD+BE ;(2)解:(1)的结论不成立,成立的结论是BC =BD ﹣BE证明:∵∠BAC =∠DAE ,∴∠BAC+∠EAB =∠DAE+∠EAB ,即∠DAB =∠EAC ,又∵AB =AC ,AD =AE ,∴△DAB ≌△EAC (SAS ),∴BD =CE ,∴BC =CE ﹣BE =BD ﹣BE(3)∵∠BAC=∠DAE,∴∠BAC+∠EAC=∠DAE+∠EAC,即∠BAE=∠DAC,又∵AB=AC,AD=AE,∴△BAE≌△CAD(SAS),∴BE=CD,∴BC=CD﹣CE【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键.24.(1)5小时(2)24(3)油箱中的油刚好够用.【解析】试题分析:(1)根据图象可得,5小时时,机动车内的油从12升变为了36升,故5小时后加油;(2)用36-12即可;(3)首先计算出耗油量,再根据路程和速度计算出行驶240km的时间,然后用时间乘以耗油量可得所消耗的油,和油箱里的油量进行比较即可.试题(1)根据图象可直接得到:机动车行驶5小时后加油;(2)36−12=24(L);(3)够用,耗油量:(42−12)÷5=6(km/L),240÷40=6(小时), 6×6=36(L),故够用.25.(1)见解析;(2)见解析;(3)=【分析】(1)根据作一个角等于已知角的尺规作图即可解答(2)根据作一条线段等于已知线段的尺规作图即可解答△≌△,即可得到答案(3)结合图形易证ABC EDF【详解】(1)如图所示:作法:①以点B为圆心任意长为半径画圆弧,交AB,BC于点G,H②再以点E为圆心以①中的半径画圆弧,交EM于点P③再以点P为圆心GH长为半径画圆弧,与②所画的圆弧交于点N,连接EN即可(2)如图所示:作法:①用圆规取BC 的长度,以点E 为圆心BC 长为半径画弧,交EM 于点F ,则EF=BC ②用圆规取AB 的长度,以点E 为圆心AB 长为半径画弧,交EN 的延长线于点D ,则DE=AB(3)根据EF=BC ,DE=AB ,B NEM ∠=∠可证ABC EDF △≌△,则DF=AC【点睛】本题考查了尺规作图,解题关键是熟练掌握作一个角等于已知角的尺规作图方法,以及作一条线段等于已知线段的尺规作图方法.26.(1)214x y ++;(2)3【分析】(1)整式的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号就先算小括号里面的;(2)由21y x =-变形可得x+2y=1,然后整体代入求值即可.【详解】解:(1)A=(x+1)2﹣(x 2﹣4y )=x 2+2x+1﹣x 2+4y=2x+1+4y ;(2)∵ 2y=1-x∴x+2y=1,由(1)得:A=2x+1+4y=2(x+2y )+1∴A=2×1+1=3.【点睛】本题考查整式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.。
浙教版七年级(下)期末数学试卷及答案(共9份)
浙教版七年级(下)期末数学试卷一.选择题(本题有10小题,每小题3分,共30分)1.(3分)下列方程中,是二元一次方程的是()A.4x=B.3x﹣2y=4z C.6xy+9=0 D.+4y=62.(3分)某校为了解七年级12个班级学生(每班4名)吃零食的情况,下列做法中,比较合理的是()A.了解每一名学生吃零食情况B.了解每一名女生吃零食情况C.了解每一名男生吃零食情况D.每班各抽取6男6女,了解他们吃零食情况3.(3分)下列各式中,能用平方差公式计算的是()A.(3x+5y)(5y﹣3x)B.(m﹣n)(n﹣m)C.(p+q)(﹣p﹣q)D.(2a+3b)(3a﹣2b)4.(3分)下列运算正确的是()A.(﹣2a3)2=4a5B.(a﹣b)2=a2﹣b2C.=2a+1 D.5.(3分)如图所示,在下列四组条件中,能判定AB∥CD的是()A.∠1=∠2 B.∠ABD=∠BDCC.∠3=∠4 D.∠BAD+∠ABC=180°6.(3分)如果把分式中的x,y都扩大3倍,那么分式的值()A.缩小3倍B.不变C.扩大3倍D.扩大9倍7.(3分)如图,有正方形A类、B类和长方形C类卡片各若干张,如果要拼一个宽为(a+2b)、长为(2a+b)的大长方形,则需要C类卡片()A.6张B.5张C.4张D.3张8.(3分)把线段AB沿水平方向平移5cm,平移后的像为线段CD,则线段AB与线段CD之间的距离是()A.等于5cm B.小于5cmC.小于或等于5cm D.大于或等于5cm9.(3分)下列说法正确的是()A.两条直线被第三条直线所截,同位角相等B.垂直于同一条直线的两条直线互相平行C.经过一点,有且只有一条直线与已知直线平行D.在同一平面内,三条直线只有两个交点,则三条直线中必有两条直线互相平行10.(3分)若方程组的解是,则方程组的解是()A.B.C.D.二.填空题(本题有6小题,每小题4分,共24分)11.(4分)使分式有意义的x的取值范围是.12.(4分)已知某组数据的频数为56,频率为0.7,则样本容量为.13.(4分)设a=192×616,b=6462﹣302,c=10542﹣7462,将数a,b,c按从小到大的顺序排列,结果是.14.(4分)已知∠A与∠B的两边分别平行,其中∠A的度数为(3x+15)°,∠B的度数为(115﹣2x)°,则∠B=度.15.(4分)若a﹣b=﹣4,(a+b)2=9,则ab=.16.(4分)某商店经销一种旅游纪念品,4月的营业额为2000元.为扩大销售量,5月份该商店对这种纪念品打9折销售,结果销售量增加20件,营业额增加700元.若4月份销售这种纪念品获利1000元,5月份销售这种纪念品获利元.三.解答题(本题有7小题,共66分)17.(8分)解下列方程(组):(1)(2)18.(8分)计算:(1)(2a+5b)(2a﹣5b)﹣(4a+b)2;(2)(4c3d2﹣6c2d2)÷(﹣3c3d).19.(12分)因式分解:(1)x3﹣4x(2)(2x+y)2﹣6(2x+y)+9(3)4xy2﹣4x2y﹣y320.(10分)农历五月初五是我国传统佳节“端午节”民间历来有吃“粽子”的习俗,某区食品厂为了解市民对去年销售量较好的栗子粽、豆沙粽、红枣粽、蛋黄棕、大肉棕(以下分别用A,B,C,D,E表示)这五种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查结果绘制成如下两幅不完整统计图.根据以上统计图解答问题:(1)本次被调查的市民有多少人,请补全条形统计图;(2)扇形统计图中大肉粽对应的圆心角是度;(3)若该区有居民约40万人,估计其中喜爱大肉粽的有多少人?21.(8分)(1)计算:(﹣)•,并求当x=﹣3时原式的值;(2)已知+=2,求代数式的值.22.(10分)如图,D是BC上一点,DE∥AB,交AC于点E,DF∥AC,交AB点F.(1)直接写出图中与∠BAC构成的同旁内角.(2)找出图中与∠BAC相等的角,并说明理由.(3)若∠BDE+∠CDF=234°,求∠BAC的度数.23.(10分)为节约用水,某市居民生活用水按阶梯式计算,水价分为三个阶梯,价格表如下表所示:(注:居民生活用水水价=供水价格+污水处理费)某市自来水销售价格表(1)当居民月用水量在18立方米及以下时,水价是元/立方米;(2)小明家2月份用水量为20立方米,付水费59.90元.4月份用水量为33立方米,付水费132.75元.求a,b的值;(3)小明家5月份交水费112.65元,试求小明家该月的用水量.参考答案一.选择题(本题有10小题,每小题3分,共30分)1.A2.D 3.A4.D5.B6.C7.B8.C9.D10.D 二.填空题(本题有6小题,每小题4分,共24分)11.x≠3 12.80 13.a<b<c14.75或15 15.16.1200三.解答题(本题有7小题,共66分)17.解:(1),①×3+②得:10a=14,解得:a=1.4,把a=1.4代入①得:b=0.2,则方程组的解为;(2)去分母得:x﹣2x+6=3,解得:x=3,经检验x=3是增根,分式方程无解.18.解:(1)原式=4a2﹣25b2﹣16a2﹣8ab﹣b2=﹣12a2﹣8ab﹣26b2;(2)原式=﹣d+.19.解:(1)原式=x(x2﹣4)=x(x+2)(x﹣2);(2)原式=(2x+y﹣3)2;(3)原式=﹣y(4x2﹣4xy+y2)=﹣y(2x﹣y)2.20.解:(1)本次被调查的市民:50÷25%=200(人),B的人数:200﹣40﹣10﹣50﹣70=30(人),补图如下:答:本次被调查的市民有200人.(2)扇形统计图中大肉粽对应的圆心角,故答案为126;(3)估计其中喜爱大肉粽的人数:(万人)答:估计其中喜爱大肉粽的有14万人.21.解:(1)原式=•==2x+8,当x=﹣3时,原式=2×(﹣3)+8=2(2)由已知+=2得x+y=2xy,原式====.22.解:(1)∠BAC的同旁内角有:∠AFD,∠AED,∠C,∠B;(2)∠BAC相等的角有:∠BFD,∠DEC,∠FDE,∵DE∥AB,∴∠BAC=∠DEC,∠BFD=∠FDE,∵DF∥AC,∴∠BAC=∠BFD,∴∠BAC=∠DEC=∠BFD=∠FDE.(3)∵∠BDE+∠CDF=234°,∴∠BDE+∠EDC+∠EDF=234°,即180°+∠EDF=234°,∴∠EDF=54°,∴∠BAC=54°.23.解:(1)1.90+1.00=2.90(元).故答案为:2.90.(2)18×2.90+2(a+1)=59.9,所以a=2.85,18×2.90+7(a+1)+8(b+1)=132.75,解得:b=5.7,(3)设小明家该月的用水量为x立方米,可得:18×2.90+7×3.85+6.7(x﹣25)=112.65,解得:x=30,答:小明家该月的用水量为30立方米.浙教版七年级(下)期末数学试卷一、细心选一选(本题有10小题,每小题3分,共30分)1.(3分)如图,直线m,n被直线l所截,则∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠52.(3分)可乐中含有大量的咖啡因,世界卫生组织建议青少年每天咖啡因的摄入量不能超过0.000085kg.则0.000085这个数字可用科学记数法表示为()A.8.5×10﹣5B.85×10﹣6C.8.5×10﹣6D.0.85×10﹣43.(3分)要使分式有意义,则x的取值应满足()A.x=﹣1 B.x=1 C.x≠1 D.x≠﹣14.(3分)下列选项中,运算正确的是()A.a2•a4=a8B.(a2)3=a5C.a6÷a3=a2D.(ab)3=a3b35.(3分)分式与的最简公分母是()A.ab B.2a2b2C.a2b2D.2a3b36.(3分)陈老师对56名同学的跳绳成绩进行了统计,跳绳个数140个以上的有28名同学,则跳绳个数140个以上的频率为()A.0.4 B.0.2 C.0.5 D.27.(3分)下列各式从左到右的变形中,为因式分解的是()A.x(a﹣b)=ax﹣bxB.x2﹣1+y2=(x﹣1)(x+1)+y2C.y2﹣1=(y+1)(y﹣1)D.a2+6a+10=(a+3)2+18.(3分)小明家1至6月份的用水量统计如图所示,则5月份的用水量比4月份增加的百分率为()A.25% B.20% C.50% D.33%9.(3分)若x+y=2z,且x≠y≠z,则的值为()A.1 B.2 C.0 D.不能确定10.(3分)如图,已知直线EC∥BD,直线CD分别与EC,BD相交于C,D两点.在同一平面内,把一块含30°角的直角三角尺ABD(∠ADB=30°,∠ABD=90°)按如图所示位置摆放,且AD平分∠BAC,则∠ECA=()A.15°B.2 C.25 D.30°二、精心填一填(本题有6小题,每小題3分,共18分)11.(3分)在二元一次方程y=6﹣2x中,当x=2时,y的值是.12.(3分)计算:(21a3﹣7a2)÷7a=.13.(3分)如果整式x2+10x+m恰好是一个整式的平方,则m的值是.14.(3分)如图,将一块长方形纸条折成如图的形状,若已知∠1=110°,则∠2=°.15.(3分)《九章算术》是中国古代的一本重要数学著作,其中有一道方程的应用题:“五只雀、六只燕,共重16两,雀重燕轻.互换其中一只,恰好一样重,问每只雀、燕的重量各为多少?”解:设雀每只x两,燕每只y两,则可列出方程组为.16.(3分)如图,用如图①中的a张长方形和b张正方形纸板作侧面和底面,做成如图②的竖式和横式两种无盖纸盒,若295<a+b<305,用完这些纸板做竖式纸盒比横式纸盒多30个,则a=,b=.三、专心练一练(本题有4小题,共28分)17.(8分)计算下列各题:(1)(3.14﹣π)0+(﹣1)2019+3﹣2(2)(m+1)2﹣m(m+3)﹣318.(8分)解下列方程(组):(1)(2)19.(6分)如图,已知∠B=∠D,∠E=∠F,判断BC与AD的位置关系,并说明理由.20.(6分)小明同学以“你最喜欢的运动项目“为主题对家附近的公园里参加运动的群众进行了随机调查(每名被调查者只能选一个项目,且被调查者都进行了选择),下面是小明根据调查结果列出的统计表和绘制的扇形统计图.男、女被调查者所选项目人数统计表根据以上信息回答下列问题:(1)m=,n=.(2)扇形统计图中“广场舞“项目所对应扇形的圆心角度数为°;(3)若平均每天来该公园运动的人数有3600人,请你估计这3600人中最喜欢的运动项目是“跑步“的约有多少人?四、耐心做做(本题有3小题,共24分)21.(7分)某工厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,则每天应多做多少件?22.(8分)如图,一个长方形中剪下两个大小相同的正方形(有关线段的长如图所示),留下一个“T”型的图形(阴影部分)(1)用含x,y的代数式表示“T”型图形的面积并化简.(2)若y=3x=21米,“T”型区域铺上价格为每平方米20元的草坪,请计算草坪的造价.23.(9分)某校七年级为了表彰“数学素养水平测试”中表现优秀的同学,准备用480元钱购进笔记本作为奖品.若A种笔记本买20本,B本笔记本买30本,则钱还缺40元;若A种笔记本买30本,B 种笔记本买20本,则钱恰好用完.(1)求A,B两种笔记本的单价;(2)由于实际需要,需要增加购买单价为6元的C种笔记本若干本.若购买A,B,C三种笔记本共60本,钱恰好全部用完,任意两种笔记本之间的数量相差小于15本,则C种笔记本购买了本.(直接写出答案)参考答案一、细心选一选(本题有10小题,每小题3分,共30分)1.B 2.A 3.C 4.D 5.B 6.C 7.C 8.B 9.A 10.D二、精心填一填(本题有6小题,每小題3分,共18分)11.2 12.3a2﹣a 13.25 14.55 15.16.225,75.三、专心练一练(本题有4小题,共28分)17.(1)原式=1+(﹣1)+=.(2)原式=m2+2m+1﹣m2﹣3m﹣3=﹣m﹣2.18.解:(1),把②代入①得:2y﹣3y+3=1,解得:y=2,把y=2代入②得:x=1,则方程组的解为;(2)去分母得:x﹣1﹣2(x+1)=7,去括号得:x﹣1﹣2x﹣2=7,解得:x=﹣10,经检验x=﹣10是分式方程的解.19.解:BC∥AD,理由:∵∠E=∠F,∴BE∥FD,∴∠B=∠BCF,又∵∠B=∠D,∴∠BCF=∠D,∴BC∥AD.20.解:(1)总人数是:4÷10%=40(人),∵健步走占30%,∴健步走的人数是:40×30%=12(人),∴m=12﹣4=8,∴n=40﹣16﹣12﹣4﹣5=3,故答案为:8,3;(2)扇形统计图中“广场舞“项目所对应扇形的圆心角度数为×360°=144°,故答案为:144;(3)根据题意得:3600×=720(人),答:这3600人中最喜欢的运动项目是“跑步“的约有720人.四、耐心做做(本题有3小题,共24分)21.解:设每天应多做x件,则依题意得:=5,解之得:x=24.经检验x=24是方程的根,答:每天应多做24件.22.解:(1)(2x+y)(x+2y)﹣2y2=2x2+4xy+xy+2y2﹣2y2=2x2+5xy;(2)∵y=3x=21,∴x=7,2x2+5xy=2×49+5×7×21=833(平方米)20×833=16660(元)答:草坪的造价为16660元.23.解:(1)设A种笔记本的单价为x元,B种笔记本的单价为y元,依题意,得:,解得:.答:A种笔记本的单价为8元,B种笔记本的单价为12元.(2)设购买A种笔记本m本,B种笔记本n本,则购买C种笔记本(60﹣m﹣n)本,依题意,得:8m+12n+6(60﹣m﹣n)=480,∴m+3n=60,∴购买C种笔记本2n本.∵m,n均为正整数,且|m﹣n|<15,n<15,∴或或,∴2n=24,26,28.故答案为:24,26,28.浙教版七年级(下)期末数学试卷一、选择题(本题有10小题,每小题3分,共30分.请选出一个符合题意的正确选项不选、多选、错选,均不给分)1.下列方程属于二元一次方程的是()A.4x﹣8=y B.x2+y=0 C.x+=1 D.4x+y≠22.下列计算正确的是()A.a3×a3=2a3B.s3÷s=s2C.(m4)2=m6D.(﹣x2)3=x63.绿水青山就是金山银山.为了创造良好的生态生活环境,某省2017年建设城镇污水配套管网3100000米,数字3100000科学记数法可以表示为()A.3.1×105B.31×105C.0.31×107D.3.1×1064.如图,将三角形的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10°B.15°C.20°D.25°5.某中学就周一早上学生到校的方式问题,对七年级的所有学生进行了一次调查,并将调查结果制作成了如图表格,则步行到校的学生频率为()A.0.2 B.0.3 C.0.4 D.0.56.下列调查,适合用普查方式的是()A.了解义乌市居民年人均收入B.了解义乌市民对“低头族”的看法C.了解义乌市初中生体育中考的成绩D.了解某一天离开义乌市的人口流量7.若a、b、c是正数,下列各式,从左到右的变形不能用如图验证的是()A .(b +c )2=b 2+2bc +c 2B .a (b +c )=ab +acC .(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2acD .a 2+2ab =a (a +2b )8.已知x +y =3,xy =2,则下列结论中①(x ﹣y )2=1,②x 2+y 2=5,③x 2﹣y 2=3,④,正确的个数是( ) A .1B .2C .3D .49.对于两个不相等的实数a 、b ,我们规定符号Min {a ,b }表示a 、b 中的较小的值,如Min {2,4}=2,按照这个规定,方程Min {, }=﹣1的解为( ) A .1B .﹣1C .1或﹣1D .﹣1或﹣210.如图一是一个解环游戏,一条链子由14个铁圈连在一起,要使这14个铁圈环环都脱离,例如图二只需要解开一个圈即可环环都脱离.要解开图一的链子至少要解开几个圈呢?( )A .5个B .6个C .7个D .8个二、填空题(本题有6小题,每小题3分,共18分) 11.分解因式:9x 2﹣4y 2= .12.某班墙上布置的“学习园地”是一个长方形区域,它的面积为3a 2+9ab ﹣6a ,已知这个长方形“学习园地”的长为3a ,则宽为13.如图△ABC 中,AB =BC =AC =5,将△ABC 沿边BC 向右平移4个单位得到△A 'B 'C ′,则四边形AA ′C 'B 的周长为14.明代数学读本《直接算法统宗》里有一道算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意即:100个和尚分100个馒头,如果大和尚一人分3个,小和尚3人分一个,正好分完.则大和尚有人,小和尚有人.15.分式方程无解,则m的值为16.利用如图1的二维码可以进行身份识别,某校模仿二维码建立了一个七年级学生身份识别系统,图2是七年级某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20+1.如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20+1=6表示该生为6班学生.则该系统最多能识别七年级的班级数是个.三、解答题(本题有8小题,共52分.其中第17、18、19、20、21、22题每小题6分,第23、24题每小题6分)17.(6分)计算:(1)2a2b•(﹣3b2c)÷(4ab3)(2)(﹣1)2018﹣()0+()﹣218.(6分)解下列方程或方程组(1)(2)19.(6分)先化简,再求值,其中a=2019,b=201820.(6分)某校为加强学生的安全意识,每周通过安全教育APP软件,向家长和学生推送安全教育作业.在最近一期的防溺水安全知识竞赛中,从中抽取了部分学生成绩进行统计.绘制了图中两幅不完整的统计图.请回答如下问题:(1)m=,a=(2)补全频数直方图;(3)该校共有1600名学生.若认定成绩在60分及以下(含60分)的学生安全意识不强,有待进一步加强安全教育,请估计该校安全意识不强的学生约有多少人?21.(6分)如图1,对于直线MN同侧的两个点A,B,若直线MN上的点P满足∠APM=∠BPN,则称点P为A,B在直线MN上的反射点.已知如图2,MN∥HG,AP∥BQ,点P为A,B在直线MN上的反射点,判断点B是否为P,Q在直线HG上的反射点,如果是请证明,如果不是,请说明理由.22.(6分)甲、乙两种糖果,售价分别为20元/千克和25元/千克,根据市场调查发现,将两种糖果按一定的比例混合后销售,取得了较好的销售效果.现只将糖果售价作如下调整:甲种糖果的售价上涨10%,乙种糖果的售价下降20%.若混合后糖果的售价恰好保持不变,求甲、乙两种糖果的混合比例应为多少.23.(8分)【提出问题】(1)如图1,已知AB∥CD,证明:∠1+∠EPF+∠2=360°;【类比探究】(2)如图2,已知AB∥CD,设从E点出发的(n﹣1)条折线形成的n个角分别为∠1,∠2……∠n,探索∠1+∠2+∠3+……+∠n的度数可能在1700°至2000°之间吗?若有可能请求出n 的值,若不可能请说明理由.【拓展延伸】(3)如图3,已知AB∥CD,∠AE1E2的角平分线E1O与∠CE n E n的角平分线E n O交﹣1于点O,若∠E1OE n=m°.求∠2+∠3+∠4+…+∠(n﹣1)的度数.(用含m、n的代数式表示)24.(8分)某市为创建生态文明建设城市,对公路旁的绿化带进行全面改造.现有甲、乙两个工程队,甲队单独完成这项工程,刚好如期完成,每施工一天,需付工程款1.5万元;乙工程队单独完成这项工程要比规定工期多用a天,乙工程队每施工一天需付工程款1万元.若先由甲、乙两队一起合作b天,剩下的工程由乙队单独做,也正好如期完工(1)当a=6,b=4时,求工程预定工期的天数.(2)若a﹣b=2.a是偶数①求甲队、乙队单独完成工期的天数(用含a的代数式表示)②工程领导小组有三种施工方案:方案一:甲队单独完成这项工程;方案二:乙队单独完成这项工程;方案三:先由甲、乙两队一起合作b天,剩下的工程由乙队单独做.为了节省工程款,同时又能如期完工,请你选择一种方案,并说明理由.参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分.请选出一个符合题意的正确选项不选、多选、错选,均不给分)1.A 2.B 3.D 4.D 5.A 6.C 7.D 8.B 9.C 10.C二、填空题(本题有6小题,每小题3分,共18分)11.(3x+2y)(3x﹣2y).12.a+3b﹣2.13.23 14.25;75.15.或1 16.16.三、解答题(本题有8小题,共52分.其中第17、18、19、20、21、22题每小题6分,第23、24题每小题6分)17.解:(1)原式=﹣6a2b3c÷(4ab3)=﹣ac;(2)原式=1﹣1+25=25.18.解:(1)①×2得:4x﹣6y=14③②﹣③得:11y=﹣11y=﹣1将y=﹣1代入①得:x=2∴方程组的解为(2)x+3=5xx=经检验:x=是原方程的解19.解:当a=2019,b=2018时,原式=÷=•==120.解:(1)∵被调查的总人数为30÷15%=200,∴m=200×25%=50,B组人数为200×10%=20,则C组的人数为200﹣(30+20+50+60)=40,∴a=360×=72,故答案为:50、72;(2)补全频数直方图如下:(3)估计该校安全意识不强的学生约有1600×15%=240人.21.解:点B是P,Q在直线HG上的反射点,理由:∵点P为A,B在直线MN上的反射点,∴∠APM=∠BPQ,又∵HG∥MN,∴∠APM=∠BAP,∠BPQ=∠PBA,∴∠PAB=∠PBA,又∵AP∥BQ,∴∠PAB=∠QBG,∴∠PBA=∠QBG,∴点B是P,Q在直线HG上的反射点.22.解:设将x千克甲种糖果和y千克乙种糖果混合,混合后糖果的售价恰好保持不变,根据题意得:20x+25y=20×(1+10%)x+25×(1﹣20%)y,整理得:2x=5y,∴x:y=5:2.答:甲、乙两种糖果的混合比例应为5:2.23.解:(1)如图所示,过P作PG∥AB,则∠1+∠GPE=180°,∵AB∥CD,∴PG∥CD,∴∠2+∠FPG=180°,∴∠1+∠GPE+∠GPF+∠2=360°,即∠1+∠EPF+∠2=360°;(2)可能在1700°至2000°之间.如图过G作GH∥AB,…,过P作PQ∥AB,∵AB∥CD,∴AB∥GH∥…∥PQ∥CD,∴∠1+∠EGH=180°,…,∠QPF+∠n=180°,(有(n﹣1)对同旁内角)∴∠1+∠2+…∠n﹣1+∠n=180°(n﹣1),当1700°<180°(n﹣1)<2000°时,n=11,12,∴n的值为11或12;(3)如图所示,过O作OP∥AB,∵AB∥CD,∴OP∥CD,∴∠AE1O=∠POE1,∠CE n O=∠POE n,∴∠AE1O+∠CE n O=∠POE1+∠POE n=∠E1OE n=m°,的角平分线E n O交于点O,又∵∠AE1E2的角平分线E1O与∠CE n E n﹣1=2(∠AE1O+∠CE n O)=2m°,∴∠AE1E2+∠CE n E n﹣1由(2)可得,∠AE1E2+∠2+…+∠(n﹣1)+∠CE n E n=180°(n﹣1),﹣1∴∠2+∠3+∠4+…+∠(n﹣1)=180°(n﹣1)﹣2m°.24.解:(1)设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+6)天.依题意,得(+)×4+×(x﹣4)=1,解得:x=12,经检验:x=12是原分式方程的解.答:工程预定工期的天数是12天;(2)①∵a﹣b=2,∴b=a﹣2,设甲队单独完成此项工程需y天,则乙队单独完成此项工程需(y+a)天,由题意得,+=1,解得:y=,经检验:y=是原分式方程的解,∴y+a=,答:甲队、乙队单独完成工期的天数分别为天,天;②方案一需付工程款:×a2﹣a,方案三需付工程款:1.5b+a2=×(a﹣2)+a2,∵:×a2﹣a﹣(a﹣3+a2)=(a﹣3)2﹣<0,故此时方案一比较合算.浙教版七年级(下)期末数学试卷一、单选题(共10题,共30分)1.(3分)(x2y)3的结果是()A.x5y3B.x6y C.3x2y D.x6y32.(3分)如图,若∠A=∠D,则AB∥CD,判断依据是()A.两直线平行,同位角相等B.两直线平行,内错角相等C.同位角相等,两直线平行D.内错角相等,两直线平行3.(3分)下面式子从左边到右边的变形是因式分解的是()A.x2﹣x﹣2=x(x﹣1)﹣2 B.(a+b)(a﹣b)=a2﹣b2C.x2﹣4=(x+2)(x﹣2)D.x﹣1=x(1﹣)4.(3分)若(x﹣3)(x+5)是x2+px+q的因式,则p为()A.﹣15 B.﹣2 C.8 D.25.(3分)如图,在网格中,每个小方格的边长均为1个单位,将图形E平移到另一个位置后能与图形F 组合成一个正方形,下面平移步骤正确的是()A.先把图形E向右平移4个单位,再向上平移3个单位B.先把图形E向右平移5个单位,再向上平移2个单位C.先把图形E向右平移5个单位,再向上平移3个单位D.先把图形E向右平移6个单位,再向上平移2个单位6.(3分)计算:(12x3﹣8x2+16x)÷(﹣4x)的结果是()A.﹣3x2+2x﹣4 B.﹣3x2﹣2x+4 C.﹣3x2+2x+4 D.3x2﹣2x+47.(3分)某中学向西部山区一中学某班捐了若干本图书.如果该班每位同学分47本,那么还差3本;如果每位同学分45本,那么又多出43本,则该班共有学生()名.A.20 B.21 C.22 D.238.(3分)根据2010~2014年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是()A.2012~2014年杭州市每年GDP增长率相同B.2014年杭州市的GDP比2010年翻一番C.2010年杭州市的GDP未达到5400亿元D.2010~2014年杭州市的GDP逐年增长9.(3分)A、B两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A地出发到B地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x千米/小时,则所列方程是()A.﹣=30 B.﹣=C.﹣=D.+=3010.(3分)已知关于x,y的方程组,则下列结论中正确的个数有()①当a=10时,方程组的解是;②当x,y的值互为相反数时,a=20;③不存在一个实数a使得x=y;④若3x﹣3a=35,则a=5.A.1个B.2个C.3个D.4个二、填空题(共10题,共30分)11.(3分)如图,若l1∥l2,∠1=x°,则∠2=°.12.(3分)计算:(﹣2a2)2=;2x2•(﹣3x3)=.13.(3分)禽流感病毒直径约为0.00000205cm,用科学记数法表示为cm.14.(3分)因式分解:x3﹣xy2=.15.(3分)在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为.16.(3分)计算÷(1﹣)的结果是.17.(3分)已知是方程组的解,则3a﹣b=.18.(3分)若方程有增根,则m的值为.19.(3分)在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x+y)=18,(x﹣y)=0,(x2+y2)=162=162,于是就可以把“180162”作为一个六位数的密码,对于多项式9x3﹣xy2,取x=10,y=10时,用上述方法产生的密码是(写出一个即可).20.(3分)某水果店销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.(用含t的代数式表示.)三、解答题(共6题,共40分)21.解方程(组):(1)(2).22.如图,AB∥CD,∠A=60°,∠C=∠E,求∠E.23.在大课间活动中,同学们积极参加体育锻炼,小龙在全校随机抽取一部分同学就“我最喜爱的体育项目”进行了一次抽样调查,下面是他通过收集的数据绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)小龙共抽取名学生;(2)补全条形统计图;(3)在扇形统计图中,“其他”部分对应的圆心角的度数是;(4)若全校共2100名学生,请你估算“立定跳远”部分的学生人数.24.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?25.某校七年级400名学生到郊外参加植树活动,已知用2辆小客车和1辆大客车每次可运送学生85人,用3辆小客车和2辆大客车每次可运送学生150人.(1)每辆小客车和每辆大客车各能坐多少名学生?(2)若计划租小客车m辆,大客车n辆,一次送完,且恰好每辆车都坐满:①请你设计出所有的租车方案;②若小客车每辆租金300元,大客车每辆租金500元,请选出最省线的租车方案,并求出最少租金.26.【阅读与思考】整式乘法与因式分解是方向相反的变形.如何把二次三项式ax2+bx+c进行因式分解呢?我们已经知道,(a1x+c1)(a2x+c2)=a1a2x2+a1c2x+a2c1x+c1c2=a+(a1c2+a2c1)x+c1c2.反过来,就得到:a1a2x2+(a1c2+a2c1)x+c1c2=(a1x+c1)(a2x+c2).我们发现,二次项的系数a分解成a1a2,常数项c分解成c1c2,并且把a1,a2,c1,c2,如图①所示摆放,按对角线交叉相乘再相加,就得到a1c2+a2c1,如果a1c2+a2c1的值正好等于ax2+bx+c的一次项系数b,那么ax2+bx+c就可以分解为(a1x+c1)(a2x+c2),其中a1,c1位于图的上一行,a2,c2位于下一行.像这种借助画十字交叉图分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做“十字相乘法”.例如,将式子x2﹣x﹣6分解因式的具体步骤为:首先把二次项的系数1分解为两个因数的积,即1=1×1,把常数项﹣6也分解为两个因数的积,即﹣6=2×(﹣3);然后把1,1,2,﹣3按图②所示的摆放,按对角线交叉相乘再相加的方法,得到1×(﹣3)+1×2=﹣1,恰好等于一次项的系数﹣1,于是x2﹣x﹣6就可以分解为(x+2)(x﹣3).请同学们认真观察和思考,尝试在图③的虚线方框内填入适当的数,并用“十字相乘法”分解因式:x2+x﹣6=.【理解与应用】请你仔细体会上述方法并尝试对下面两个二次三项式进行分解因式:(1)2x2+5x﹣7;(2)6x2﹣7xy+2y2=.【探究与拓展】对于形如ax2+bxy+cy2+dx+ey+f的关于x,y的二元二次多项式也可以用“十字相乘法”来分解,如图④,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k),请你认真阅读上述材料并尝试挑战下列问题:(1)分解因式3x2+5xy﹣2y2+x+9y﹣4=.(2)若关于x,y的二元二次式x2+7xy﹣18y2﹣5x+my﹣24可以分解成两个一次因式的积,求m的值.(3)已知x,y为整数,且满足x2+3xy+2y2+2x+3y=﹣1,请写出一组符合题意的x,y的值.参考答案与试题解析一、单选题(共10题,共30分)1.D 2.D 3.C 4.D 5.D 6.A 7.D 8.D 9.B 10.D 二、填空题(共10题,共30分)11.(180﹣x)°12.4a4;﹣6x5 13.2.05×10﹣6 14.x(x﹣y)(x+y)15.56 16..17.5 18.219.当x=10,y=10时,密码可以是104020或102040等等都可以,答案不唯一.20.30﹣.三、解答题(共6题,共40分)21.解:(1),由①×2,得4x﹣10y=24③,由③﹣②,并化简,得y=﹣2,把y=﹣2代入①,并化简,得x=1,则方程组的解为;(2)原式两边同时乘以3﹣x,得1﹣6+2x=x﹣2,解得:x=3,经检验:x=3是增根,舍去,∴原方程无解.22.解:∵AB∥CD,∠A=60°,∴∠DOE=∠A=60°,又∵∠C=∠E,∠DOE=∠C+∠E,∴∠E=∠DOE=30°.23.解:(1)15÷30%=50人故答案为:50(2)踢毽子的人数:50×18%=9人,其它的人数为:50﹣15﹣9﹣16=10人,补全统计图如图:(3)其他”部分对应的圆心角的度数是:360°×=72°(4)2100×(1﹣30%﹣18%﹣20%)=672人答:估算“立定跳远”部分的学生人数672人.24.解:(1)设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进1.5x件,依题意有+30=,解得x=40,经检验,x=40是原方程组的解,且符合题意,1.5x=60.答:甲种款型的T恤衫购进60件,乙种款型的T恤衫购进40件;(2)=160,160﹣30=130(元),130×60%×60+160×60%×(40÷2)﹣160×[1﹣(1+60%)×0.5]×(40÷2)=4680+1920﹣640=5960(元)答:售完这批T恤衫商店共获利5960元.25.解:(1)设每辆小客车能坐x名学生,每辆大客车能坐y名学生,根据题意得,解得:.答:每辆小客车能坐20人,每辆大客车能坐45人;(2)①由题意得:20m+45n=400,∴n=,∵m、n为非负整数,∴或或,∴租车方案有三种:方案一:小客车20辆、大客车0辆,方案二:小客车11辆,大客车4辆,方案三:小客车2辆,大客车8辆;②方案一租金:300×20=6000(元),方案二租金:300×11+500×4=5300(元),方案三租金:300×2+500×8=4600(元),∴方案三租金最少,最少租金为4600元.26.解:【阅读与思考】分解因式:x2+x﹣6=(x+3)(x﹣2);故答案为:(x+3)(x﹣2);【理解与应用】(1)2x2+5x﹣7=(x﹣1)(2x+7);(2)6x2﹣7xy+2y2=(x﹣1)(2x+7);故答案为:(1)(x﹣1)(2x+7);(2)(x﹣1)(2x+7);【探究与拓展】(1)分解因式3x2+5xy﹣2y2+x+9y﹣4=(x+2y﹣1)(3x﹣y+4);故答案为:(x+2y﹣1)(3x﹣y+4)(2)∵关于x,y的二元二次式x2+7xy﹣18y2﹣5x+my﹣24可以分解成两个一次因式的积,∴存在其中1×1=1,9×(﹣2)=﹣18,(﹣8)×3=﹣24;而7=1×(﹣2)+1×9,﹣5=1×(﹣8)+1×3,∴m=27+16=43或m=﹣72﹣6=﹣78,故m的值为43或﹣78;(3)x,y为整数,且满足x2+3xy+2y2+2x+3y=﹣1,可以是x=﹣1,y=0(答案不唯一).浙教版七年级(下)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)下列各图案中,是由一个基本图形通过平移得到的是()A.B.C.D.2.(3分)已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.001243.(3分)下列四个多项式中,能因式分解的是()A.a2+1 B.a2﹣6a+9 C.x2+5y D.x2﹣5y4.(3分)若3x=4,9y=7,则3x﹣2y的值为()A.B.C.﹣3 D.5.(3分)下列统计中,适合用“全面调查”的是()A.某厂生产的电灯使用寿命B.全国初中生的视力情况C.某校七年级学生的身高情况D.“娃哈哈”产品的合格率6.(3分)下列分式中不管x取何值,一定有意义的是()A.B.C.D.7.(3分)能使分式值为整数的整数x有()个.A..1 B.2 C.3 D..48.(3分)22018﹣22019的值是()A.B.﹣C.﹣22018D.﹣29.(3分)如图所示,把一根铁丝折成图示形状后,AB∥DE,则∠BCD等于()。
浙教版七年级下册数学期末考试(答案)
浙教版七年级下册数学期末考试一 选择1下列运算正确的是( ) A . 2x x x += B .623x x x ÷=C .34x x x ⋅=D . 235(2)6x x =2. 化简111x x --可得( ) A .21x x - B . 21x x --C .221x x x+- D .221x x x--3. 下列计算正确的是( )A .a 3a 2=a 6B .a 2+a 4=2a 2C .(a 3)2=a 6D .(3a )2=a 64. 数据5,7,8,8,9的众数是【 】 A .5 B .7 C .8 D .9、5如图是七年级(1)班参加课外兴趣小组人数的扇形统计图,则表示唱歌兴趣小组人数的扇形的圆心角度数是【 】A .36°B .72°C .108°D .180°6.计算)3(623m m -÷的结果是( )(A )m 3- (B )m 2- (C )m 2 (D )m 37.分式方程1321=-x 的解为( )(A )2=x (B )1=x (C )1-=x (D )2-=x8方程组的解是( )A 、B 、C 、D 、,9. 如图,已知D 、E 在△ABC 的边上,DE ∥BC ,∠B = 60°,∠AED = 40°, 则∠A 的度数为【 】A .100°B .90°C .80°D .70°10.将一副三角板按如图所示摆放,图中∠α的度数是( )A .75°B .90°C .105°D .120° 1 C 2 B 3 C 4 C 5 B 6 B 7 C 8 D 9 C 10 C 二 。
填空1.数据8、8、6、5、4、1、7的中位数数是_________2当7=x 时,代数式)1)(3()1)(52(+--++x x x x 的值为__________3. 请写出一个二元一次方程组 ,使它的解是⎩⎨⎧x =2,y =-1.4. 数据9.30,9.05,9.10,9.40,9.20,9.10的众数是___________;中位数是_______________ 5已知分式ax x x +--532,当2=x 时,分式无意义,则=a _______;当6<x 时,使分式无意义的x 的值共有_______个6. 分解因式:3a a -= 。
浙教版七年级下册数学期末试卷(含答案)
浙教版七年级下册数学期末试卷一.选择题(共12小题)1.在下列图形中,∠1与∠2是同位角的是()A.B.C.D.2.已知分式有意义,则x的取值应满足()A.x可取任何实数B.x≠1C.x≥1D.﹣2<x<13.若x|2m﹣3|+(m﹣2)y=6是关于x、y的二元一次方程,则m的值是()A.1B.任何数C.2D.1或24.已知关于x的分式方程+=0有增根,则m=()A.0B.﹣4C.2或1D.0或﹣45.若x2+2(2p﹣3)x+4是完全平方式,则p的值等于()A.B.2C.2或1D.或6.计算:85×,正确结果是()A.B.1C.2D.47.统计七年级部分同学的跳高测试成绩,得到如下频数分布直方图(每组含前一个边界值,不含后一个边界值),其中规定成绩在1.29m及以上的为优秀,由此得到的信息错误的是()A.参加测试的总人数为54人B.组距为0.10mC.该测试优秀率为60%D.组中值为1.14m的组的边界值分别为1.09m与1.19m8.小欢为一组数据制作频数分布表,他了解到这组数据的最大值是40,最小值是16,准备分组时取组距为4.为了使数据不落在边界上,他应将这组数据分成()A.6组B.7组C.8组D.9组9.分式﹣可变形为()A.﹣B.C.﹣D.10.二元一次方程2x+3y=18的正整数解共有多少组()A.1B.2C.3D.411.已知a1=x﹣1(x≠1且x≠2),a2=,a3=,…,a n=,则a2015等于()A.B.x+1C.x﹣1D.12.如图,已知AB∥CD∥EF,则x、y、z三者之间的关系是()A.x+y+z=180°B.x+y﹣z=180°C.y﹣x﹣z=0°D.y﹣x﹣2z=0°二.填空题(共6小题)13.关于x的代数式(3﹣ax)(x2+2x﹣1)的展开式中不含x2项,则a=.14.已知正实数a,b满足a﹣b=4,ab=21,则a2+b2=,+=.15.使是自然数的非负整数n的值为.16.若关于x、y的二元一次方程组的解是,那么关于x、y的二元一次方程组的解是x=,y=.17.如图,把一张矩形纸片ABCD沿EF折叠后,点C、D分别落在点C′、D′的位置上,EC′交AD于点G.已知∠EFG=55°,那么∠BEG=度.18.一个自然数若能表示为两个自然数的平方差,则这个自然数称为“智慧数”.比如:22﹣12=3,则3就是智慧数;22﹣02=4,则4就是智慧数.(1)从0开始第7个智慧数是;(2)不大于200的智慧数共有.三.解答题(共5小题)19.(1)计算:(﹣2a3)÷a﹣(﹣2a)2(2)计算:(﹣2x﹣1)2﹣4(x﹣1)(x+2)20.(1)化简求值:÷﹣1,并选择一个自己喜欢的数代入求值;(2)解方程:﹣=0.21.已知直线AB∥CD.(1)如图1,直接写出∠ABE,∠CDE和∠BED之间的数量关系是.(2)如图2,BF,DF分别平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.(3)如图3,点E在直线BD的右侧,BF,DF仍平分∠ABE,∠CDE,请直接写出∠BFD和∠BED的数量关系.22.我县某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是170cm×40cm的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A型与B型两种板材.如图1所示,(单位:cm)(1)列出方程(组),求出图甲中a与b的值.(2)在试生产阶段,若将30张标准板材用裁法一裁剪,4张标准板材用裁法二裁剪,再将得到的A型与B型板材做侧面和底面,做成图2的竖式与横式两种无盖礼品盒.①两种裁法共产生A型板材张,B型板材张;②设做成的竖式无盖礼品盒x个,横式无盖礼品盒的y个,根据题意完成表格:礼品盒板材竖式无盖(个)横式无盖(个)x yA型(张)4x3yB型(张)x③做成的竖式和横式两种无盖礼品盒总数最多是个;此时,横式无盖礼品盒可以做个.(在横线上直接写出答案,无需书写过程)23.将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°:(1)①若∠DCE=45°,则∠ACB的度数为;②若∠ACB=140°,求∠DCE的度数;(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.(3)当∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE角度所有可能的值(不必说明理由),若不存在,请说明理由.参考答案与试题解析一.选择题(共12小题)1.【分析】同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角.【解答】解:根据同位角的定义可知答案是C.故选:C.2.【分析】根据分式有意义,分母不等于0解答.【解答】解:∵x对任意实数值,x2+2≥2,∴x的取值应满足x可取任何实数.故选:A.3.【分析】根据二元一次方程的定义列式进行计算即可得解.【解答】解:根据题意得,|2m﹣3|=1且m﹣2≠0,所以,2m﹣3=1或2m﹣3=﹣1且m≠2,解得m=2或m=1且m≠2,所以m=1.故选:A.4.【分析】分式方程去分母转化为整式方程,由分式方程有增根,求出x的值,代入整式方程即可求出m的值.【解答】解:去分母得:2(x+2)+mx=0,由分式方程有增根,得到(x+2)(x﹣2)=0,即x=2或x=﹣2,把x=2代入整式方程得:m=﹣4,把x=﹣2代入整式方程得:m=0(舍去),故选:B.5.【分析】利用完全平方公式的结构特征判断即可确定出p的值.【解答】解:∵x2+2(2p﹣3)x+4是完全平方式,∴2p﹣3=±2,解得:p=或,故选:D.6.【分析】根据幂的乘方,即可解答.【解答】解:85×=.故选:B.7.【分析】根据条形统计图即可得到每一组的人数,根据每组的组中值即可确定组距,据此即可作出判断.【解答】解:A、参加测试的总人数为8+13+20+13=54(人),则选项正确;B、组距是1.24﹣1.14=0.10m,则选项正确;C、第2组中的无法确定是否为优秀,则优秀率无法确定,则选项错误;D、组中值为1.14m的组的边界值分别为1.09m与1.19m正确.故选:C.8.【分析】根据极差与组距的关系可知这组数据的组数.【解答】解:∵这组数据的最大值是40,最小值是16,分组时取组距为4.∴极差=40﹣16=24.∵24÷4=6,又∵数据不落在边界上,∴这组数据的组数=6+1=7组.故选:B.9.【分析】先提取﹣1,再根据分式的符号变化规律得出即可.【解答】解:﹣=﹣=,故选:D.10.【分析】把x看作已知数表示出y,即可确定出方程的正整数解.【解答】解:方程2x+3y=18,解得:y=,当x=3时,y=2;x=6,y=2,则方程的正整数解有2组,故选:B.11.【分析】按照规定的运算方法,计算得出数值,进一步找出数字循环的规律,利用规律找出答案即可.【解答】解:∵a1=x﹣1,a2=,a3==,a4==x﹣1,…∴x﹣1,,循环出现,∵2015÷3=671…2,∴a2015的值与a2的值相同,∴a2015=,故选:D.12.【分析】根据平行线的性质可得∠CEF=180°﹣y,x=z+∠CEF,利用等量代换可得x =z+180°﹣y,再变形即可.【解答】解:∵CD∥EF,∴∠C+∠CEF=180°,∴∠CEF=180°﹣y,∵AB∥CD,∴x=z+∠CEF,∴x=z+180°﹣y,∴x+y﹣z=180°,故选:B.二.填空题(共6小题)13.【分析】原式利用多项式乘以多项式法则计算,合并后根据展开式中不含x2项,求出a 的值即可.【解答】解:(3﹣ax)(x2+2x﹣1)=(3﹣2a)x2+(a+6)x﹣3﹣ax3,由展开式中不含x2项,得到3﹣2a=0,解得:a=,故答案为:.14.【分析】先根据a﹣b=4得出(a﹣b)2及a+b的值,代入代数式进行计算即可.【解答】解:∵a﹣b=4,ab=21,∴(a﹣b)2=a2+b2﹣2ab=16,∴a2+b2=16+2ab=16+42=58,∵a,b是正实数,∴a+b====10,∴+==.故答案为:58,.15.【分析】首先把变形为,然后利用分式的加减法则变为+,然后约分化简,再利用32的因数即可求解.【解答】解:∵==+=n﹣4+,要使是自然数,那么n+4是32的约数,即n+4=1、2、4、8、16,32,∴n=﹣3、﹣2、0、4、12,28,又n为非负整数,∴n=0、4、12,28.故答案为:0,4,12,28.16.【分析】本题先代入解求出得,再将其代入二元一次方程组得到,解出即可.【解答】解:∵二元一次方程组的解是,∴有,解得;将代入二元一次方程组,得,解得.17.【分析】由矩形的性质可知AD∥BC,可得∠CEF=∠EFG=55°,由折叠的性质可知∠GEF=∠CEF,再由邻补角的性质求∠BEG.【解答】解:∵AD∥BC,∴∠CEF=∠EFG=55°,由折叠的性质,得∠GEF=∠CEF=55°,∴∠BEG=180°﹣∠GEF﹣∠CEF=70°.故答案为:70.18.【分析】(1)根据智慧数的定义得出智慧数的分布规律,进而得出答案;(2)根据(1)中规律可得.【解答】解:(1)首先应该先找到智慧数的分布规律.①∵02﹣02=0,∴0是智慧,②因为2n+1=(n+1)2﹣n2,所以所有的奇数都是智慧数,③因为(n+2)2﹣n2=4(n+1),所以所有4的倍数也都是智慧数,而被4除余2的偶数,都不是智慧数.由此可知,最小的智慧数是0,第2个智慧数是1,其次为3,4,从5起,依次是5,7,8;9,11,12;13,15,16;17,19,20…即按2个奇数,一个4的倍数,三个一组地依次排列下去.∴从0开始第7个智慧数是:8;故答案为:8;(2)∵200÷4=50,∴不大于200的智慧数共有:50×3+1=151.故答案为:151.三.解答题(共5小题)19.【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式利用完全平方公式,以及多项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=﹣2a2﹣4a2=﹣6a2;(2)原式=4x2+4x+1﹣4(x2+x﹣2)=4x2+4x+1﹣4x2﹣4x+8=9.20.【分析】(1)原式第一项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算,得到最简结果,把a=0代入计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=•﹣1=﹣1==,当a=0时,原式=﹣;(2)去分母得:x+1+2(x﹣1)=0,即x+1+2x﹣2=0,解得:x=,经检验x=是分式方程的解.21.【分析】(1)首先作EF∥AB,根据直线AB∥CD,可得EF∥CD,所以∠ABE=∠1,∠CDE=∠2,据此推得∠ABE+∠CDE=∠BED即可.(2)首先根据BF,DF分别平分∠ABE,∠CDE,推得∠ABF+∠CDF=(∠ABE+∠CDE);然后由(1),可得∠BFD=∠ABF+∠CDF,∠BED=∠ABE+∠CDE,据此推得∠BFD=∠BED.(3)首先过点E作EG∥CD,再根据AB∥CD,EG∥CD,推得AB∥CD∥EG,所以∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,据此推得∠ABE+∠CDE+∠BED=360°;然后根据∠BFD=∠ABF+∠CDF,以及BF,DF分别平分∠ABE,∠CDE,推得2∠BFD+∠BED=360°即可.【解答】解:(1)∠ABE+∠CDE=∠BED.理由:如图1,作EF∥AB,∵直线AB∥CD,∴EF∥CD,∴∠ABE=∠1,∠CDE=∠2,∴∠ABE+∠CDE=∠1+∠2=∠BED,即∠ABE+∠CDE=∠BED.故答案为:∠ABE+∠CDE=∠BED.(2)∠BFD=∠BED.理由:如图2,∵BF,DF分别平分∠ABE,∠CDE,∴∠ABF=∠ABE,∠CDF=∠CDE,∴∠ABF+∠CDF=∠ABE+∠CDE=(∠ABE+∠CDE),由(1),可得∠BFD=∠ABF+∠CDF=(∠ABE+∠CDE)∠BED=∠ABE+∠CDE,∴∠BFD=∠BED.(3)2∠BFD+∠BED=360°.理由:如图3,过点E作EG∥CD,,∵AB∥CD,EG∥CD,∴AB∥CD∥EG,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠CDE+∠BED=360°,由(1)知,∠BFD=∠ABF+∠CDF,又∵BF,DF分别平分∠ABE,∠CDE,∴∠ABF=∠ABE,∠CDF=∠CDE,∴∠BFD=(∠ABE+∠CDE),∴2∠BFD+∠BED=360°.故答案为:2∠BFD+∠BED=360°.22.【分析】(1)由图示列出关于a、b的二元一次方程组求解.(2)根据已知和图示计算出两种裁法共产生A型板材和B型板材的张数,同样由图示完成表格,并完成计算.【解答】解:(1)由题意得:,解得:,答:图甲中a与b的值分别为:60、40.(2)①由图示裁法一产生A型板材为:2×30=60,裁法二产生A型板材为:1×4=4,所以两种裁法共产生A型板材为60+4=64(张),由图示裁法一产生B型板材为:1×30=30,裁法二产生A型板材为,2×4=8,所以两种裁法共产生B型板材为30+8=38(张),故答案为:64,38.②由已知和图示得:横式无盖礼品盒的y个,每个礼品盒用2张B型板材,所以用B型板材2y张.礼品盒板材竖式无盖(个)横式无盖(个)x yA型(张)4x3yB型(张)x2y③由上表可知横式无盖款式共5y个面,用A型3y张,则B型需要2y张.则做两款盒子共需要A型(4x+3y)张,B型(x+2y)张.则4x+3y≤64①;x+2y≤38②.两式相加得5x+5y≤102.则x+y≤20.4.所以最多做20个.当x=0,y=20时,x+2y=40,不符合题意;当x=1,y=19时,x+2y=39,不符合题意;当x=2,y=18时,4x+3y=62,x+2y=38,符合题意;当x=3,y=17时,4x+3y=63,x+2y=37,符合题意;当x=4,y=16时,4x+3y=64,x+2y=36,符合题意;当x=5,y=15时,4x+3y=65,x+2y=35,不符合题意;x>5时,4x+3y>65,都不符合题意,∴y可取16,17,18,∴横式无盖礼品盒可以做16或17或18个,故答案为:16或17或18.23.【分析】(1)①根据∠DCE和∠ACD的度数,求得∠ACE的度数,再根据∠BCE求得∠ACB的度数;②根据∠BCE和∠ACB的度数,求得∠ACE的度数,再根据∠ACD求得∠DCE的度数;(2)根据∠ACE=90°﹣∠DCE以及∠ACB=∠ACE+90°,进行计算即可得出结论;(3)分五种情况进行讨论:当CB∥AD时,当EB∥AC时,当CE∥AD时,当EB∥CD 时,当BE∥AD时,分别求得∠ACE角度.【解答】(1)①∵∠DCE=45°,∠ACD=90°∴∠ACE=45°∵∠BCE=90°∴∠ACB=90°+45°=135°故答案为:135°;②∵∠ACB=140°,∠ECB=90°∴∠ACE=140°﹣90°=50°∴∠DCE=90°﹣∠ACE=90°﹣50°=40°;(2)猜想:∠ACB+∠DCE=180°理由如下:∵∠ACE=90°﹣∠DCE又∵∠ACB=∠ACE+90°∴∠ACB=90°﹣∠DCE+90°=180°﹣∠DCE 即∠ACB+∠DCE=180°;(3)30°、45°、120°、135°、165°.理由:当CB∥AD时,∠ACE=30°;当EB∥AC时,∠ACE=45°;当CE∥AD时,∠ACE=120°;当EB∥CD时,∠ACE=135°;当BE∥AD时,∠ACE=165°.。
【浙教版】七年级数学下期末试题附答案
一、选择题1.下列事件发生的概率为0的是()A.射击运动员只射击1次,就命中靶心B.任取一个实数x,都有|x|≥0C.画一个三角形,使其三边的长分别为8cm,6cm,2cmD.抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为6 2.下列事件中,能用列举法求得事件发生的概率的是()A.投一枚图钉,“钉尖朝上”B.一名篮球运动员在罚球线上投篮,“投中”C.把一粒种子种在花盆中,“发芽”D.同时抛掷两枚质地均匀的骰子,“两个骰子的点数相同”3.下列事件是必然事件的是().A.购买一张彩票中奖B.通常加热到100℃时,水沸腾C.明天一定是晴天D.任意一个三角形,其内角和是360°4.下列每个网格中均有两个图形,其中一个图形可以由另一个进行轴对称变换得到的是()A.B.C.D.5.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在D′处,则重叠部分AFC的面积是()A.8 B.10 C.20 D.326.如图,点P是直线l外一个定点,点A为直线l上一个定点,点P关于直线l的对称点记为P1,将直线l绕点A顺时针旋转30°得到直线l′,此时点P2与点P关于直线l′对称,则∠P1AP2等于()A.30°B.45°C.60°D.75°7.如图,在△ABC中,已知点D,E,F分别为边AC,BD,CE的中点,且阴影部分图形面积等于4平方厘米,则△ABC的面积为()平方厘米A.8 B.12 C.16 D.188.如图,已知∠ABC=∠DEF,AB=DE,添加以下条件,不能判定△ABC≌△DEF的是()A.∠A=∠D B.∠ACB=∠DFE C.AC=DF D.BE=CF9.如图,AE∥DF,AE=DF.添加下列的一个选项后.仍然不能证明△ACE≌△DBF的是()A.AB=CD B.EC=BF C.∠E=∠F D.EC∥BF10.在弹性限度内,弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体的质量x(kg)之间的关系如下表,下列说法不正确的是()x/kg012345y/cm2020.52121.52222.5A.x与y都是变量,且x是自变量,y是x的函数B.弹簧不挂重物时的长度为0 cmC.物体质量每增加1 kg,弹簧长度y增加0.5 cmD.所挂物体质量为7 kg时,弹簧长度为23.5 cm11.下列说法正确的是()A.锐角的补角一定是钝角B.一个角的补角一定大于这个角C .锐角和钝角一定互补D .两个锐角一定互为余角 12.下列运算正确的是( ) A .428a a a ⋅= B .()23624a a =C .6233()()ab ab a b ÷=D .22()()a b a b a b +-=+二、填空题13.从一副扑克牌中级抽取一张,①抽到王牌;②抽到Q ;③抽到梅花.上述事件,概率最大的是_____.14.一袋中装有5个红球、4个白球和3个黄球,每个球除颜色外都相同.从中任意摸出一个球,则:P (摸到红球)=______,P (摸到白球)=_______.15.如图,∠AOB =30°,点M 、N 分别在边OA 、OB 上,且OM =2,ON =6,点P 、Q 分别在边OB 、OA 上,则MP +PQ +QN 的最小值是_____.16.如图,四边形ABCD 中,∠A=100°,∠C=70°,将△BMN 沿MN 翻折,得到△FMN ,若MF ∥AD ,FN ∥DC ,则∠D=________.17.如果三角形的两边长为1和5,第三边长为整数,那么三角形的周长为_____. 18.某兴趣小组从学校出发骑车去植物园参观,先经过一段上坡路后到达途中一处景点,停车10分钟进行参观,然后又经一段下坡路到达植物园,行程情况如图,若他们上、下坡路速度不变,则这个兴趣小组的同学按原路返回所用的时间为________分钟.(途中不停留)19.如图,AD //BC ,点P 是射线BC 上一动点,且不与点B 重合.AM AN 、分别平分BAP DAP ∠∠、,B α∠=,BAM β∠=,在点P 运动的过程中,当BAN BMA ∠=∠时,122αβ+=______.20.观察等式:232222+=-;23422222++=-;2345222222+++=-;…已知按一定规律排列的一组数:1002,1012,1022,…,1992,2002,若1002S =,用含S 的式子表示这组数据的和是__________.三、解答题21.有一个小正方体,正方体的每个面分别标有1,2,3,4,5,6这六个数字.现在有甲、乙两位同学做游戏,游戏规则是:任意掷出正方体后,如果朝上的数字是6,甲是胜利者;如果朝上的数字不是6,乙是胜利者.你认为这个游戏规则对甲、乙双方公平吗?为什么?如果不公平,你打算怎样修改才能使游戏规则对甲、乙双方公平? 22.在平面直角坐标系网格中,格点A 的位置如图所示:(1)若点B 坐标为(2,3),请你画出△AOB ;(2)若△AOB 与△A′O′B′关于y 轴对称,请你画出△A′O′B'; (3)请直接写出线段AB 的长度.23.如图,已知:AD =AB ,AE =AC ,AD ⊥AB ,AE ⊥AC .猜想线段CD 与BE 之间的数量关系与位置关系,并证明你的猜想.24.中国联通在某地的某套餐的月租金为59元,超出套餐部分国内拨打0.36元/分钟(不足1分钟按1分钟时间收费).下表是超出套餐部分国内拨打的收费标准: 时间/分 1 2 3 4 5 … 电话费/元0.360.721.081.441.8…(1)这个表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用x 表示超出套餐部分的拨打时间,y 表示超出套餐部分的电话费,那么y 与x 的关系式是什么?(3)由于业务多,小明的爸爸上个月拨打电话的时间超出套餐部分25分钟,他需付多少电话费?(4)某用户某月国内拨打电话的费用超出套餐部分的是54元,那么他该月拨打电话的时间超出套餐部分几分钟?25.已知:如图,BD 平分ABC ∠,BE 将ABC ∠分为2:3两部分,12DBE ∠=︒,求ABC ∠的度数和ABE ∠的补角的度数.26.阅读下列各式:222333444(),(),()a b a b a b a b a b a b ⋅=⋅=⋅=回答下列三个问题:①验证:100122⎛⎫⨯= ⎪⎝⎭_________,100100122⎛⎫⨯= ⎪⎝⎭___________;②通过上述验证,归纳得出:()n a b ⋅=_________;()n a b c ⋅⋅=________; ③请应用上述性质计算:201920182017(0.125)24-⨯⨯【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【详解】A. 射击运动员只射击1次,就命中靶心是随机事件,故此选项错误;B. 任取一个实数x ,都有|x|≥0,是必然事件,故此选项错误;C. 画一个三角形,使其三边的长分别为8cm ,6cm ,2cm ,是不可能事件,故此选项正确;D. 抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为6是随机事件,故此选项错误. 故选C .2.D解析:D 【分析】利用列举法求概率的意义分析得出答案.【详解】解:A、投一枚图钉,“针尖朝上”,无法利用列举法求概率,故此选项错误;B、一名篮球运动员在罚球线上投篮,“投中”,无法利用列举法求概率,故此选项错误;C、把一粒种子种在花盆中,“发芽”,无法利用列举法求概率,故此选项错误;D、同时掷两枚质地均匀的骰子,“两个骰子的点数相同“,可以利用列举法求概率,故此选项正确.故选:D.【点睛】此题主要考查了概率的意义,正确理解列举法求概率的意义是解题关键.3.B解析:B【分析】根据随机事件的分类,对各个选项逐个分析,即可得到答案.【详解】购买一张彩票中奖,是不确定事件,故选项A错误;通常加热到100℃时,水沸腾,是必然事件,故选项B正确;明天一定是晴天,是不确定事件,故选项C错误;任意一个三角形,其内角和是360°,是不可能事件,故选项D错误;故选:B.【点睛】本题考查了随机事件的知识;解题的关键是熟练掌握随机事件的分类,从而完成求解.4.B解析:B【分析】根据轴对称的性质求解.【详解】观察选项可知,A中的两个图形可以通过平移,旋转得到,C中可以通过平移得到,D中可以通过放大或缩小得到,只有B可以通过对称得到.故选B.【点睛】本题考查了轴对称的性质,了解轴对称的性质及定义是解题的关键.5.B解析:B【分析】解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.【详解】解:重叠部分△AFC的面积是矩形ABCD的面积减去△FBC与△AFD’的面积再除以2,矩形的面积是32,∵AB∥CD,∴∠ACD=∠CAB,∵△ACD′由△ACD翻折而成,∴∠ACD=∠ACD′,∴∠ACD′=∠CAB,∴AF=CF,∵BF=AB﹣AF=8﹣AF,∴CF2=BF2+BC2∴AF2=(8﹣AF)2+42∴AF=5,BF=3∴S△AFC=S△ABC﹣S△BFC=10.故选:B.【点睛】本题通过折叠变换考查学生的逻辑思维能力,解题关键是熟练掌握图形折叠的性质.6.C解析:C【分析】根据轴对称的性质得到∠P1AD=∠PAD,∠PAC=∠P1AC,根据平角的定义得到∠DAC=150°,于是得到结论.【详解】如图,∵点P关于直线l的对称点记为P1,点P2与点P关于直线l′对称,∴∠P1AD=∠PAD,∠PAC=∠P1AC,∵∠BAC=30°,∴∠DAC=150°,∴∠DAP1+P2AC=150°,∠DAP1+∠P2AB=150°﹣30°=120°,∴∠P 1AP 2=180°﹣120°=60°, 故选:C . 【点睛】本题考查了轴对称的性质,熟练掌握轴对称的性质是解题的关键.7.C解析:C 【分析】根据三角形的中线将三角形分成面积相等的两个三角形进行解答即可. 【详解】解:∵F 是EC 的中点, ∴142AEF AFC AEC S S S ∆∆∆===, ∴8AEC S ∆=, ∵ E 是BD 的中点 ,∴ABE AED S S ∆∆=,BEC ECD S S ∆∆=, ∵8AED ECD AEC S S S ∆∆∆+==, ∴8ABE BEC AEC S S S ∆∆∆+==,∴228=16ABC ABE BEC AEC AEC S S S S S ∆∆∆∆∆=++==⨯, 故选:C . 【点睛】本题考查了三角形的中线与三角形的面积关系,熟练掌握三角形的中线将三角形分成面积相等的两个三角形是解答的关键.8.C解析:C 【分析】根据全等三角形的判定方法一一判断即可; 【详解】A 、根据ASA ,可以推出△ABC ≌△DEF ,本选项不符合题意.B 、根据AAS ,可以推出△ABC ≌△DEF ,本选项不符合题意. C 、SSA ,不能判定三角形全等,本选项符合题意.D 、根据SAS ,可以推出△ABC ≌△DEF ,本选项不符合题意. 故选:C . 【点睛】本题考查了全等三角形的判定,解题的关键是熟练掌握全等三角形的判定方法;9.B解析:B 【分析】结合题目条件,依据三角形全等的判定定理逐一判断即可.【详解】 ∵AE ∥DF ,∴∠A =∠D ,A 、根据SAS ,可以推出△ACE ≌△DBF ,本选项不符合题意.B 、SSA 不能判定三角形全等,本选项符合题意.C 、根据ASA ,可以推出△ACE ≌△DBF ,本选项不符合题意.D 、根据AAS ,可以推出△ACE ≌△DBF ,本选项不符合题意. 故选:B . 【点睛】本题考查了三角形全等的判定,熟记三角形全等的判定定理是解题的关键.10.B解析:B 【解析】 【分析】根据自变量、因变量的含义,以及弹簧的长度与所挂物体质量之间的关系逐一判断即可. 【详解】x 与y 都是变量且存在一一对应关系,所以 y 是x 的函数,且x 是自变量,A 选项不符合题意;弹簧不挂重物时长度为20cm ,B 选项符合题意;20.5-20=0.5,21-20.5=0.5,21.5-21=0.5,22-21.5=0.5,22.5-22=0.5,所以物体质量每增加1 kg ,弹簧长度y 增加0.5 cm ,C 选项不符合题意;()22.50.57523.5+⨯-=,当所挂物体质量为7 kg 时,弹簧长度为23.5 cm ,D 选项不符合题意;正确答案选B. 【点睛】本题考察自变量因变量的定义及函数的实际应用问题.11.A解析:A 【分析】根据余角和补角的概念判断. 【详解】解:A 、锐角的补角一定是钝角,本选项说法正确;B 、一个角的补角一定大于这个角,本选项说法错误,例如:120°的补角是60°,而60°<120°;C 、锐角和钝角一定互补,本选项说法错误,例如20°+120°=140°,20°与120°不互补;D 、两个锐角一定互为余角,本选项说法错误,30°与30°不是互为余角; 故选:A . 【点睛】此题考查余角和补角的概念,熟记概念是解题的关键.12.B解析:B 【分析】根据同底数幂相乘法则、积的乘方法则、同底数幂除法法则、平方差公式依次计算判断. 【详解】A 、426a a a ⋅=,故该项错误;B 、()23624a a =,故该项正确;C 、4624()()ab ab a b ÷=,故该项错误;D 、22()()a b a b a b +-=-,故该项错误; 故选:B . 【点睛】此题考查整式的计算法则,正确掌握整式的同底数幂相乘法则、积的乘方法则、同底数幂除法法则、平方差公式是解题的关键.二、填空题13.③抽到梅花【解析】【分析】根据概率公式先求出各自的概率再进行比较即可得出答案【详解】∵一副扑克牌有54张王牌有2张抽到王牌的可能性是;Q 牌有4张抽到Q 牌的可能性是;梅花有13张抽到梅花牌的可能性是;解析:③抽到梅花. 【解析】 【分析】根据概率公式先求出各自的概率,再进行比较,即可得出答案. 【详解】∵一副扑克牌有54张,王牌有2张,抽到王牌的可能性是21=5427; Q 牌有4张,抽到Q 牌的可能性是42=5427; 梅花有13张,抽到梅花牌的可能性是1354; ∴概率最大的是抽到梅花; 故答案为:③抽到梅花. 【点睛】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.14.【解析】∵有5个红球4个白球和3个黄球∴总球数是:5+4+3=12(个)∴P(摸到红球)=;P(摸到白球)==;故答案为:解析:51213【解析】∵有5个红球、4个白球和3个黄球,∴总球数是:5+4+3=12(个),∴P(摸到红球)= 512;P(摸到白球)=412=13;故答案为:512,13.15.2【解析】【分析】作M关于OB的对称点M′作N关于OA的对称点N′连接M′N′即为MP+PQ+QN的最小值;证出△ONN′为等边三角形△OMM′为等边三角形得出∠N′OM′=90°由勾股定理求出M′解析:210【解析】【分析】作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值;证出△ONN′为等边三角形,△OMM′为等边三角形,得出∠N′OM′=90°,由勾股定理求出M′N′即可.【详解】作M关于OB的对称点M′,作N关于OA的对称点N′,如图所示:连接M′N′,即为MP+PQ+QN的最小值.根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°,∴在Rt△M′ON′中,22062=21故答案为:10.【点睛】本题考查了轴对称--最短路径问题,根据轴对称的定义,找到相等的线段,得到等边三角形是解题的关键.16.【解析】【分析】首先根据MF ∥ADFN ∥DC 可得由于△FMN 是△BMN 沿MN 翻折得到的所以可得故可得的度数进而可得∠D 的度数【详解】解:MF ∥ADFN ∥DC △FMN 是△BMN 沿MN 翻折得到的故答案为解析:95︒【解析】【分析】首先根据MF ∥AD ,FN ∥DC ,可得100,70BMF BNF ︒︒∠=∠=,由于△FMN 是△BMN 沿MN 翻折得到的,所以可得,BMN FMN BNM FNM ∠=∠∠=∠,故可得MFN ∠ 的度数,进而可得∠D 的度数.【详解】 解: MF ∥AD ,FN ∥DC100,70,BMF BNF D MFN ︒︒∴∠=∠=∠=∠△FMN 是△BMN 沿MN 翻折得到的∴ ,BMN FMN BNM FNM ∠=∠∠=∠100701809522MFN ︒︒︒︒∴∠=--= 95D ︒∴∠=故答案为95︒【点睛】本题主要考查折叠图形的性质,关键在于折叠后的图形的性质与原图形全等.17.【分析】先根据三角形的三边关系定理求得第三边的取值范围;再根据第三边是整数确定三角形的周长【详解】解:设第三边为a 根据三角形的三边关系得:5﹣1<a <5+1即4<a <6∵a 为整数∴a 的值为5则三角形解析:【分析】先根据三角形的三边关系定理求得第三边的取值范围;再根据第三边是整数确定三角形的周长.【详解】解:设第三边为a ,根据三角形的三边关系,得:5﹣1<a <5+1,即4<a <6,∵a 为整数,∴a 的值为5,则三角形的周长为1+5+5=11.故答案为:11.【点睛】本题考查了三角形的三边关系:三角形两边之和大于第三边,两边之差小于第三边. 18.【解析】试题分析:去植物园上坡路120×25=3000(米)下坡路180×(45-35)=1800(米)返回时的上坡路是1800米下坡路是3000米返回时的时间是=(分钟)故答案为点睛:本题考查了函 解析:953【解析】试题分析:去植物园上坡路120×25=3000(米),下坡路180×(45-35)=1800(米),返回时的上坡路是1800米,下坡路是3000米, 返回时的时间是18003000120180+=953(分钟), 故答案为953. 点睛:本题考查了函数图象,从函数图象获得上坡的时间、速度,下坡的时间、速度是解题关键,注意去时的上坡路是返回时的下坡路,去时的下坡路是返回时的上坡路. 19.【分析】根据平行线的性质可得∠BMA=∠DAM ∠B+∠BAD=180°由角平分线的定义可得∠DAM=∠BAN 进一步可得从而可得结论【详解】解:∵AD//BC ∴∠BMA=∠DAM ∠B+∠BAD=180解析:90︒【分析】根据平行线的性质可得∠BMA=∠DAM ,∠B+∠BAD=180°,由角平分线的定义可得∠DAM=∠BAN ,进一步可得4180αβ+=︒,从而可得结论.【详解】解:∵AD//BC∴∠BMA=∠DAM ,∠B+∠BAD=180°∵AM 平分∠BAP ,∴∠BAM=∠MAP=12∠BAP , ∵AN 平分∠DAP ,∴∠DAN=∠NAP=12∠DAP , ∵∠BAN=∠BMA∴∠DAM=∠BAN∵∠BAM BAN MAN =∠-∠,∠DAN DAM MAN =∠-∠∴∠BAM DAN =∠∴∠14BAM BAD =∠ ∵B α∠=,BAM β∠= ∴∠14BAM BAD β=∠=∴∠4BAD β=∴4180αβ+=︒ ∴12902αβ+=︒ 故答案为:90°.【点睛】 此题主要考查了角平分线的定义和平行线的性质,熟练掌握相关性质是解答此题的关键. 20.【分析】根据已知条件和2100=S 将按一定规律排列的一组数:210021012102…21992200求和即可用含S 的式子表示这组数据的和【详解】解:∵2100=S ∴2100+2101+2102+…解析:22S S -【分析】根据已知条件和2100=S ,将按一定规律排列的一组数:2100,2101,2102,…,2199,2200,求和,即可用含S 的式子表示这组数据的和.【详解】解:∵2100=S ,∴2100+2101+2102+…+2199+2200=S+2S+22S+…+299S+2100S=S (1+2+22+…+299+2100)=S (1+2100-2+2100)=S (2S-1)=2S 2-S .故答案为:2S 2-S .【点睛】本题考查了规律型-数字的变化类、列代数式,解决本题的关键是观察数字的变化寻找规律.三、解答题21.(1)这个游戏不公平.(2)游戏规则修改见解析(答案不唯一)【解析】试题分析:分别求出甲胜利的概率和乙胜利的概率,比较大小看判断游戏是否公平,游戏规则修改只要是两人获胜的概率相等即可.试题(1)这个游戏不公平.因为正方体的每个面分别标有1,2,3,4,5,6这六个数字,其中数字6只有1个,也就是甲胜利的概率是16;不是6的数字有5个,也就是说乙胜利的概率是56,双方的胜利的机会不是均等的,所以说这个游戏不公平.(2)可以把游戏规则改为:任意掷出正方体后,如果朝上的数字是奇数(1,3,5),甲是胜利者;如果朝上的数字是偶数(2,4,6),乙是胜利者,按这样的游戏规则游戏是公平的.(答案不唯一)考点:简单事件的概率.22.(1)见解析;(2)见解析;(3)AB=2.【分析】(1)根据点A、O、B的坐标,顺次连接即可得△AOB;(2)根据关于y轴对称的点的坐标特征可得出A′、B′、O′的坐标,顺次连接A′、O′、B′即可得△A′O′B';(3)利用勾股定理求出AB的长即可.【详解】(1)如图所示,△AOB即为所求;(2)∵△AOB与△A′O′B′关于y轴对称,∴A′(-3,2),B′(-2,3),O′(0,0),如图所示,△A′O′B'即为所求;(3)AB222.11【点睛】本题考查了作图-轴对称变换,熟练掌握关于y轴对称的点的坐标特征是解题关键.23.CD=BE,CD⊥BE,证明见解析【分析】证明△ACD≌△AEB,根据全等三角形的性质得到CD=BE,∠ADC=∠ABE,根据三角形内角和定理得出∠BFD=∠BAD=90°,证明结论.【详解】解:猜想:CD=BE,CD⊥BE,理由如下:∵AD⊥AB,AE⊥AC,∴∠DAB=∠EAC=90°.∴∠DAB+∠BAC=∠EAC+∠BAC,即∠CAD=∠EAB,在△ACD和△AEB中,AD AB CAD EAB AC AE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△AEB (SAS ),∴CD =BE ,∠ADC =∠ABE ,∵∠AGD =∠FGB ,∴∠BFD =∠BAD =90°,即CD ⊥BE .【点睛】本题考查的是三角形全等的判定和性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键.24.(1)国内拨打时间与电话费之间的关系,打电话时间是自变量、电话费是因变量;(2)y=0.36x ;(3)195元;(4)150分钟.【分析】(1)根据图表可以知道:电话费随时间的变化而变化,因而打电话时间是自变量、电话费是因变量;(2)费用=单价×时间,即可写出解析式;(3)把x=25代入解析式即可求得;(4)在解析式中令y=54即可求得x 的值.【详解】解:(1)国内拨打时间与电话费之间的关系,打电话时间是自变量、电话费是因变量; (2)由题意可得:y=0.36x ;(3)当x=25时,y=0.36×25=9(元),即如果打电话超出25分钟,需付186+9=195(元)的电话费;(4)当y=54时,x=540.36=150(分钟). 答:小明的爸爸打电话超出150分钟.【点睛】 本题考查了列函数解析式以及求函数值.列表法能具体地反映自变量与函数的数值对应关系,在实际生活中应用非常广泛;解析式法准确地反映了函数与自变量之间的对应规律,根据它可以由自变量的取值求出相应的函数值,反之亦然;图象法直观地反映函数值随自变量的变化而变化的规律.25.ABC ∠的度数为120︒,ABE ∠的补角的度数为132︒.【分析】由角平分线的定义,则∠CBD=∠DBA ,根据BE 分∠ABC 分2:3两部分这一关系列出方程求解.【详解】解:∵BD 平分ABC ∠∴∠CBD=∠DBA由题意,设∠ABE=2x ︒,则∠CBE=3x ︒,∴∠ABC=5x ︒,∠CBD=∠DBA=52x ︒ ∵12DBE ∠=︒ ∴12ABD ABE ∠-∠=︒,52122x x -=,解得:24x = ∴∠ABE=2×24=48︒;∠ABC=5×24=120︒∴ABE ∠的补角的度数为18048132︒-︒=︒ 答:ABC ∠的度数为120︒,ABE ∠的补角的度数为132︒.【点睛】本题考查一元一次方程的应用及角的运算和补角的定义,正确理解题意,运用方程思想解题是关键.26.①1,1;②n n a b ,n n n a b c ;③-132. 【分析】 ①把问题分别转化为1001和100100100122⨯处理即可; ②将猜到规律推广到n 次方和三个因数情形即可;③把2019(-0.125)和20182分别变形为20172(-0.125)(-0.125)⨯和20172⨯2就可逆用上述规律计算即可.【详解】①∵1001001212⎛⎫⨯= ⎪⎝⎭=1, ∴100122⎛⎫⨯= ⎪⎝⎭1; ∵100100122⎛⎫⨯= ⎪⎝⎭1001001001212⨯=, ∴100100122⎛⎫⨯= ⎪⎝⎭1,故依次填1,1;②∵100122⎛⎫⨯= ⎪⎝⎭1,100100122⎛⎫⨯= ⎪⎝⎭1, ∴100122⎛⎫⨯= ⎪⎝⎭100100122⎛⎫⨯ ⎪⎝⎭, 由此可得:()n a b ⋅=n n a b ;()n a b c ⋅⋅=n n n a b c ;故依次填n n a b ,n n n a b c ;③ ∵2019(-0.125)=20172(-0.125)(-0.125)⨯,201822017=2⨯2,∴201920182017(0.125)24-⨯⨯=20172(-0.125)(-0.125)⨯20172⨯⨯2×20174=20172(-0.12524)(-0.125)2⨯⨯⨯⨯ =1-32. 【点睛】本题考查了规律的验证,猜想和应用,熟练逆用同底数幂的乘法公式和发现的规律是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
京翰教育网 / 七年级(下)数学期末试卷
一、你能选得又快又准吗?(本题共10小题,每小题3分,共计30分)
1. 计算:a 5·a 2的结果正确的是 …………………………………………………( )
A. a 7
B. a 10
C. a 25
D. 2a 7
2. 下面有4个汽车标志图案,其中是轴对称图形的是 ………………………( )
A. ②③④
B. ①③④
C. ①②③
D. ①②④
3. 下列事件是不确定事件的是………………………………………………………( )
A. 火车开到月球上
B. 在图形的旋转变换中,面积不会改变
C. 掷一枚硬币,停止后正面朝上
D. 抛出的石子会下落
5. 在ΔABC 中,∠A=55º,∠C=42º,则∠B 的度数为………………………………( )
A. 42º
B. 55º
C. 83º
D. 97º
6. 有两根木棒长分别为10㎝和18㎝,要钉成一个三角形木架,则下列四根木棒
应选取……………………………………………………………………… ( )
A. 8㎝
B. 12㎝
C. 30㎝
D. 40㎝
7. 用直尺和圆规作一个角等于已知角的示意图如下,
则说明∠A′O′B′=∠AOB 的依据是…………( )
A .SSS
B .SAS
C .
.AAS
依次观察左边三个图形,并判断照此规律从左向右第四个图形是………………………………………………………………………………………( )
A .9. 如图,△ABC 中,DE 是边A
B 的垂直平分线,AB =6, B
C =8,AC=5,则△ADC 的周长是………………………………( )
A .14 B. 13 C. 11 D. 9
10.下列从左到右的变形,是因式分解的是( )
A 、2(a —b )=2a —b
B 、m 2—1=(m+1)(m —1)
C 、x 2—2x+1=x (x —2)+1
D 、a (a —b )(b+1)=(a 2—ab )(b+1)
二、你一定能填对!(本题共10小题,每小题3分,共计30分)
① ② ③ ④ B ′
C ′
D ′O ′A ′O D C B A
京翰教育网 / A
B C E F O
A B C D E F
11. 请指出图中从图1到图2的变换是 变换。
12. 当分式中______________________时,分式的值为零.
13.分解因式:(a-2)2-(b-3)2= .
14. 如图,点E 、C 在BF 上,AB=DE ,∠ABC=∠DEF,请你补
充一个条件______ ______,使△ABC≌△DEF . 15. 在一个布袋里装有3个红球、2个黄球、1个白球,它们除了颜色外都相同。
从中任意摸出一个球,摸到黄球的概率为 .
16.小红驾驶着摩托车行驶在公路上,他从反光镜中看到后面一辆汽车的车牌为“”,根据有关数学知识,此汽车的牌照为_____________.
17. 如图AE=AF ,AB=AC ,CE 与BF 交于点O ,已知∠EOB=60o , ∠B=45o ,则∠A=________. 18.已知分式2
3-+x x 有意义,则x 的取值范围是 . 19.若m nx x ++2能分解成)5)(2(-+x x ,则m = ,n = .
20.
三、你来做一做,千万别出错哟! (共计40分)
21. (本题4分)计算:
(1)532)2(y y y
⋅+- (2)[(m+3n)2-(m-3n)2]÷(-3mn)
(3)2021)13(3-⎪⎭
⎫ ⎝⎛+--- (4)()20022003221-⨯⎪⎭⎫ ⎝⎛-
22.解方程 (1)052=-x x (2)
4
3423=-+x x
23. 如图,已知:A 、F 、C 、D 四点在一条直线上,AF=CD ,∠D=∠A ,且AB=DE .
请将下面说明△ABC ≌△DEF 的过程和理由补充完整.
D
C
E
F
京翰教育网 / 解:∵AF=CD ( )
∴AF+FC=CD+______,即AC=DF
在△ABC 和△DEF 中
∴△ABC ≌△DEF ( )
24.(本题6分) 有两个可以自由转动的均匀转盘A 、B ,分别被分成4等份、3等份,并在每份内均标有数字,如图所示. 小颖和小刚同学用这两个转盘做游戏,游戏规则如下: ① 分别转动转盘A 与B ; 转盘A 转盘B ②两个转盘停止后,将两个指针所指扇形内的数字相加.
③ 如果和为0,小颖获胜;否则小刚获胜.
(1) 用列表法(或树状图)求小颖获胜的概率;
(2) 你认为这个游戏对双方公平吗? 请说明理由.
25. 三角形的三边长为()()
xcm cm x cm x x ,7,3222---,求:
①三角形的周长,
②当x=2.5和2时,三角形都存在吗?若存在,求出三角形的周长,
若不存在,请说出理由。
(5分)。