九年级数学下册《27.1 图形的相似》教学设计 新人教版
人教版数学九年级下册教学设计27.1《图形的相似》
![人教版数学九年级下册教学设计27.1《图形的相似》](https://img.taocdn.com/s3/m/7cf33055bfd5b9f3f90f76c66137ee06eef94e6f.png)
人教版数学九年级下册教学设计27.1《图形的相似》一. 教材分析《图形的相似》是人教版数学九年级下册第27.1节的内容,本节主要让学生理解相似图形的概念,掌握相似图形的性质,以及学会运用相似图形解决实际问题。
教材通过生动的实例和丰富的练习,引导学生探索和发现相似图形的性质,培养学生的观察能力、推理能力和解决问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了平面几何的基本概念和性质,如点、线、面的关系,角度、三角形的性质等。
但是,对于相似图形的概念和性质,学生可能较为陌生,需要通过实例和练习来逐步理解和掌握。
同时,学生可能对于解决实际问题,尤其是涉及到相似图形的实际问题,感到困难,需要教师的引导和帮助。
三. 教学目标1.了解相似图形的概念,掌握相似图形的性质。
2.学会运用相似图形解决实际问题。
3.培养学生的观察能力、推理能力和解决问题的能力。
四. 教学重难点1.相似图形的概念和性质。
2.运用相似图形解决实际问题。
五. 教学方法1.实例教学:通过生动的实例,引导学生观察和发现相似图形的性质。
2.问题驱动:提出实际问题,引导学生运用相似图形进行解决。
3.分组讨论:学生分组讨论,培养学生的合作能力和解决问题的能力。
4.练习巩固:通过丰富的练习,巩固学生对相似图形的理解和掌握。
六. 教学准备1.教学课件:制作精美的教学课件,辅助讲解和展示实例。
2.练习题:准备相关的练习题,巩固学生的学习效果。
3.实物模型:准备一些实物模型,如相似的三角形、矩形等,帮助学生直观地理解相似图形。
七. 教学过程1.导入(5分钟)利用实物模型或图片,引导学生观察和比较相似的图形,引发学生对相似图形的兴趣。
提问:你们发现这些图形有什么共同的特点?学生回答:形状相同,但大小不同。
教师总结:这就是我们今天要学习的相似图形。
2.呈现(10分钟)展示教学课件,讲解相似图形的概念和性质。
通过实例和图形的变换,引导学生发现相似图形的性质,如对应边的比例关系、对应角的相等关系等。
人教版九年级数学下册27.1图形的相似优秀教学案例
![人教版九年级数学下册27.1图形的相似优秀教学案例](https://img.taocdn.com/s3/m/1939c7e8d1d233d4b14e852458fb770bf68a3b5c.png)
(一)情景创设
1.利用生活实例,创设有趣、富有挑战性的教学情境,激发学生的学习兴趣;
2.通过多媒体手段,展示相似图形的变化过程,增强学生的直观感受;
3.设计具有情境性的练习题,让学生在解决问题中体会数学与生活的紧密联系。
在教学过程中,我将注重情景创设,让学生在真实的情境中感受相似图形的意义。例如,通过展示建筑设计图纸、交通工具的图纸等实例,让学生认识到相似图形在实际生活中的应用,从而激发学生的学习兴趣。同时,利用多媒体教学手段,形象直观地展示相似图形的变化过程,帮助学生建立直观的认识,为后续的学习打下基础。
(二)过程与方法
1.通过观察、分析生活中的实例,引导学生发现相似图形的特征,培养学生从实际问题中抽象出数学模型的能力;
2.利用多媒体教学手段,形象直观地展示相似图形的变化过程,提高学生的空间想象能力和抽象思维能力;
3.设计具有梯度的练习题,让学生在实践中巩固相似图形的知识,提高解决问题的能力。
在教学过程中,我将采用情境教学法、启发式教学法和合作学习法等多种教学方法,引导学生主动参与课堂讨论,培养学生独立思考和团队协作的能力。同时,运用多媒体教学手段,为学生提供丰富的视觉、听觉信息,激发学生的学习兴趣,提高学生的学习效果。
5.多元化的评价方式:在教学过程中,注重学生的反思与评价。通过学生之间的互相评价、自我评价等,培养学生的自我监控和评价能力。同时,采用多元化的评价方式,关注学生的综合素质,进行全面评价。这种评价方式能够充分调动学生的积极性和主动性,促进学生的全面发展。
3.问题驱动的教学方法:通过设计具有启发性的问题,引导学生独立思考,发现相似图形的特征。同时,通过问题驱动,让学生在探究中掌握相似图形的性质和判定方法。这种教学方法能够培养学生的自主学习能力,提高学生的问题解决能力。
人教版九年级数学下27.1图形的相似(第1课时)优秀教学案例
![人教版九年级数学下27.1图形的相似(第1课时)优秀教学案例](https://img.taocdn.com/s3/m/c45c37baac51f01dc281e53a580216fc700a53cc.png)
3.小组合作的学习方式:教师将学生分成若干小组,鼓励他们相互讨论、交流,共同探究相似图形的性质。这种小组合作的学习方式能够培养学生的合作精神,提高他们的沟通能力和团队协作能力。
4.教师组织小组汇报、展示等活动,让学生在分享成果的同时,提高自己的表达能力和合作能力。
(四)反思与评价
1.教师引导学生回顾本节课的学习内容,总结相似图形的性质及其应用。
2.教师设计反思性题目,让学生思考自己在学习过程中的优点和不足,明确今后的学习方向。
3.教师组织学生进行自我评价、同伴评价,让学生了解自己的学习状况,提高自我监控能力。
(二)过程与方法
1.采用自主学习、合作交流的教学模式,引导学生主动探究相似图形的性质。
2.利用多媒体课件、实物模型等教学资源,为学生提供丰富的感性材料,增强他们的空间想象力。
3.设计一系列具有层次性的数学题目,让学生在解决实际问题的过程中,逐步掌握相似图形的性质。
4.注重培养学生的问题提出、问题解决、归纳总结的能力,提高他们的逻辑思维能力。
4.教师及时给予反馈,引导学生反思自己的思考过程,及时调整学习策略。
(三)小组合作
1.教师将学生分成若干小组,鼓励他们相互讨论、交流,共同探究相似图形的性质。
2.教师设计具有挑战性的数学题目,让学生在合作交流中,提高自己的数学素养。
3.教师关注每个小组的学习进度,及时给予指导,帮助学生克服学习中的困难。
三、教学策略
(一)情景创设
1.利用多媒体课件展示生活中的实际例子,如建筑物的立面图、电路图等,让学生感受到相似图形在实际应用中的重要性。
人教版九年级数学下册: 27.1《图形的相似》教学设计1
![人教版九年级数学下册: 27.1《图形的相似》教学设计1](https://img.taocdn.com/s3/m/407c98093a3567ec102de2bd960590c69ec3d8dd.png)
人教版九年级数学下册: 27.1《图形的相似》教学设计1一. 教材分析《图形的相似》是人教版九年级数学下册的教学内容,主要介绍了相似图形的概念、性质以及相似三角形的判定和性质。
本节内容是在学生已经掌握了平面几何的基本概念和性质的基础上进行学习的,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于平面几何的基本概念和性质有一定的了解。
但是,对于相似图形的概念和性质的理解还需要加强,同时,学生对于实际应用相似图形解决问题的关键点还不是很清楚。
三. 教学目标1.理解相似图形的概念和性质。
2.掌握相似三角形的判定和性质。
3.能够运用相似图形解决实际问题。
四. 教学重难点1.相似图形的概念和性质的理解。
2.相似三角形的判定和性质的掌握。
3.运用相似图形解决实际问题的能力的培养。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,通过引导学生自主探究、合作交流,提高学生对于相似图形的理解和运用能力。
六. 教学准备1.教学课件。
2.相关练习题。
七. 教学过程1.导入(5分钟)通过展示一些实际生活中的图形,如飞机、汽车、建筑物等,引导学生观察这些图形之间的相似性,从而引出相似图形的概念。
2.呈现(10分钟)利用课件呈现相似图形的定义和性质,引导学生自主学习,理解并掌握相似图形的概念和性质。
3.操练(10分钟)通过一些练习题,让学生运用所学的相似图形的性质进行解题,巩固所学知识。
4.巩固(10分钟)利用一些实际问题,让学生运用相似图形解决实际问题,进一步巩固所学知识。
5.拓展(10分钟)引导学生思考相似图形在实际生活中的应用,如设计、制造、建筑等领域,拓宽学生的视野。
6.小结(5分钟)对本节课的主要内容进行总结,让学生明确所学知识的重点和难点。
7.家庭作业(5分钟)布置一些相关的练习题,让学生课后巩固所学知识。
8.板书(5分钟)板书本节课的主要内容和重点知识点,方便学生复习和记忆。
九年级数学下册人教版27.1图形的相似优秀教学案例
![九年级数学下册人教版27.1图形的相似优秀教学案例](https://img.taocdn.com/s3/m/ac90671a178884868762caaedd3383c4bb4cb4bc.png)
在课堂教学结束后,我会布置一些作业,让学生进一步巩固所学知识。同时,我会提醒学生在完成作业时注意运用相似图形的性质,解决实际问题。作业小结环节有助于学生巩固课堂所学,提高他们的应用能力。
五、案例亮点
1.生活实例导入:通过展示生活中的实例,引导学生关注相似图形在实际中的应用,激发学生的学习兴趣,引出相似图形的概念。这种教学方法使学生能够更好地理解抽象的数学概念,并感受到数学与生活的紧密联系。
三、教学策略
(一)情景创设
在教学过程中,我注重创设贴近学生生活实际的情景,激发学生的学习兴趣。例如,通过展示实际生活中的图片、模型等,引导学生关注相似图形在生活中的应用,从而引出相似图形的概念。同时,我还会设计一些有趣的实践活动,如让学生自己动手绘制、变换图形,使其在实际操作中感受相似图形的性质。
(二)问题导向
4.反思与评价:在教学过程中,我注重引导学生进行反思与评价,使其能够及时发现自己的不足,调整学习方法。这种教学方法有助于学生建立自信,提高学习兴趣,培养良好的学习习惯。
5.多媒体教学手段:我运用动画、图片等多媒体教学手段,形象地展示相似图形的变化过程,帮助学生建立起空间想象能力。这种教学方法使抽象的数学概念更加直观,有助于学生更好地理解和掌握知识点。同时,多媒体教学手段也使课堂更加生动有趣,提高了学生的学习兴趣。
在教学过程中,我以生活实际为出发点,设计了一系列具有针对性和实用性的教学活动,旨在激发学生的学习兴趣,提高学生的动手操作能力和解决问题的能力。同时,我也注重引导学生从直观图形中抽象出相似图形的共同特征,培养学生的高级思维能力。
二、教学目标
(一)知识与技能
1.学生能够理解相似图形的概念,掌握相似比、对应角、对应边等基本性质。
新人教版数学九年级下册第二十七章 图形的相似教案
![新人教版数学九年级下册第二十七章 图形的相似教案](https://img.taocdn.com/s3/m/dde78d1525c52cc58ad6be13.png)
新人教版数学九年级下册第二十七章图形的相似教案27.1图形的相似(第1课时)【教学任务分析】【教学环节安排】请同学们看黑板正上方的五星红旗,和下图的两个画面,感受它们的形状、大小的关系.(还可以再举几个例子)题自主探究合作交流问题 1.五星红旗上的大五角星与小五角星他们的形状、大小有什么关系?问题2.什么是相似图形?【教师点评】在实际生活中,我们见到过许多大小不一但形状相同的图形,我们把这种形状相同的图形叫做相似图形.问题3.请同学们举出一些相似的几何图形的例子.观察课本上的相似图片,学生通过观察图片,感受形状相同,大小不同的含义,并得到相似定义.同学们思考、讨论、交换意见给出实例教师赞扬举例子比较好的同学.教师出示以下图片让学生感受生活中和数学中的相似尝试应用例1如图27.1—1,下面右边的四个图形中,与左边的图形相似的是()【分析】图A是把图拉长了,而图D是把图压扁了,因此它们与左图都不相似;图B是正六边形,与左图的正五边形的边数不同,故图B与左图也不相似;而图C是将左图绕正五边形的中心旋转180º后,再按一定比例缩小得到的,因此图C与左图相似.练习:1.下列说法正确的是()A.小明上幼儿园时的照片和初中毕业时的照片相似.教师出示题目.学生观察并回答教师规范解答明确图形相似与它们的位置没关系教师出示练习题组学生尝试练习师巡视,个别指导.B.商店新买来的一副三角板是相似的.C.所有的课本都是相似的.D.国旗的五角星都是相似的.2.下列说法中,错误的是()A.放大镜下看到的图象与原图象的形状相同B.哈哈镜中人像与真人的形状是相同的C.显微镜下看到的图象与原图象的形状相同D.放大一万倍的物体与它本身的形状是相同的3. 图27.1—2中的相似图形有几组?()A.一组B.二组C.三组D.四组成果展示1.有条件的可利用多媒体,在几何画板上学生自己操作电脑,同时画出几个相似图形,且具有个性的图画,充分展示学生的个性特点,培养学生的的审美情趣2.通过本节课的学习,你有哪些收获?通过所看、所知、所想概括出相似图形的定义、判断相似图形以及相似多边形的性质特征等概念.师引导学生动手能力训练,培养学生的基本技能.师引导学生进行展示交流学生对本节课内容进行归纳总结.补偿提高1.如图27.1—3中,相似图形共有几组?()A.5组B.6组C.7组D.8组2.在平面坐标系中,一个图形各点的横坐标、纵坐标都乘以或除以同一个非零数,得到一组新的对应用点,则连接所得到点的图形与原图形形状()A.能够互相重合B.形状相同,大小也一定相同C.形状不一样D.形状相同,大小不一定相同3. 例尺是1:8000000的“中国政区”地图上,量得福州与上海之间的距离时7.5cm,那么福教师出示题目.第1题、第2题由学生独立完成.教师巡视,个别辅导.师生共同评析.存在的共性问题共同讨论解决.第3题鼓励学生独立思考后解决.感觉有困难的学生可以寻求同学的帮助,然后完成.小组交流内.配套课时练习1.我们把形状的图形叫做相似图形.2.下列图形相似的是( )A.两个圆B. 两个矩形C. 两个等腰梯形D. 两个菱形3.下列是图形相似的有( )两辆轿车两个五角星两只足球建筑物的设计图纸与建筑物A.1个 B.2个 C.3个 D.4个4.下列每组图中的两个图形是相似图形的是()A B C D5.举出相似图形的例子 (至少两个)6.在方格纸中平移图形,使A平移到A’处,画出放大一倍的图形.7.下列说法正确的是( )A.人们从平面镜及哈哈镜里看到的不同镜像相似.B.人们从平面镜里看到的像与人的关系是相似图形,但不是全等图形.C.拍照时,镜头的取景与照片上的画面是相似的D.放幻灯片时投在屏幕上的画面与幻灯片上的图形是全等的8.选出与下面左图相似的图()9.请将右面的直角三角形放大三倍.10.请指出下列图形中哪几对是相似图形,并说明理由.正方形圆长方形正六边形菱形11.如图,AD⊥BC于D,CE⊥AB于E,交AD于F,图中相似三角形的对数是()A.3 B.4 C.5 D.612.已知图中的每个正方形的边长都是1个单位,在图中画出一个与格点三角形DEF相似但不全等的格点三角形.参考答案:1、相同;2、A;3、B;4、A;5、略6、画图略;7、C;8、B;9、画图略10、正方形、圆、正六边形11、D;12、画图略27.1图形的相似(第2课时)【教学任务分析】【教学环节安排】条线段满足dcb a ,则有ad=bc . 自 主 探 究 合 作 交 流如图27.1—4的左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形.问题 1. 对于图中两个相似的四边形,它们的对应角,对应边的比是否相等. 【结论】: (1)相似多边形的特征:相似多边形的对应角相等,对应边的比相等. 反之,如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似. (2)相似比:相似多边形对应边的比称为相似比. 问题2:相似比为1时,相似的两个图形有什么关系?【结论】:相似比为1时,相似的两个图形全等,因此全等形是一种特殊的相似形.教师出示问题,学生作图,并观察思考下面的问题教师巡视指导学生作图,并了解学生在作图中是不是出现全等的情况 学生小组讨论,得出结论.师生共同总结探究结论 教师板演尝 试 应例1下列说法正确的是( ) A .所有的平行四边形都相似 B .所有的矩形都相似 C .所有的菱形都相似 D .所有的正方形都相似【分析】:A 中平行四边形各角不一定对应相等,因此所有的平行四边形不一定都相似,故A 错;B 中矩形虽然各角都相等,但是各对应边的比不一定相等,因此所有的矩形不一定都相似,故B 错;C 中菱形虽然各对应边的比相等,但是各角不一定对应相等,因此所有的菱形不一定都相似,故C 也错;D 中任两个正方形的各角都相等,且各边都对应成比例,因此所有的正方形都相似.例2如图27.1—5,四边形ABCD 和EFGH 相似,教师出示题目。
人教版九年级数学下册第二十七章《相似》27.1图形的相似(教案)
![人教版九年级数学下册第二十七章《相似》27.1图形的相似(教案)](https://img.taocdn.com/s3/m/25532854591b6bd97f192279168884868662b846.png)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相似图形的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对相似图形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在小组讨论环节,学生们对于相似在实际生活中的应用提出了很多有趣的想法,这说明他们在思考问题时能够联系实际,这是我很乐意看到的。但同时,我也发现有些学生在讨论中不够主动,可能是因为他们对知识点的掌握不够自信。在未来的教学中,我需要更多地鼓励这些学生,帮助他们建立信心。
我还注意到,在教学难点解析部分,尽管我尽量用简单明了的语言和丰富的例子来解释,但仍有学生表现出了一定的困惑。这告诉我,可能需要寻找更多的教学策略来突破这些难点,比如通过分组辅导或者设置课后小灶课程,为学生提供更多的个别指导。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《相似》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体形状相似的情况?”比如,放大镜下的图形和原图形。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索相似图形的奥秘。
4.培养学生的数学建模素养,通过相似知识的应用,构建数学模型,解决实际情境中的几何问题。
5.培养学生的创新意识和团队合作精神,在探索相似图形的活动中,鼓励学生提出新思路,与他人合作交流,共同解决问题。
三、教学难点与重点
1.教学重点
-理解并掌握相似图形的定义及其性质,特别是相似三角形的判定方法(AA、SSS、SAS)。
九年级数学下册27_1图形的相似教案1新版新人教版
![九年级数学下册27_1图形的相似教案1新版新人教版](https://img.taocdn.com/s3/m/36f225feaf45b307e971977c.png)
图形的相似课题图形的相似授课类型新授课标依据通过具体实例认识图形的相似。
了解相似多边形和相似比。
教学目标知识与技能认识图形的相似。
了解相似多边形和相似比。
过程与方法观察生活中的形状形同的图形,学生初步认识理解相似形的概念,在此基础上理解相似形的特征,进一步掌握相似形的识别方法,发展学生的归纳,类比、反思、交流、的能力,提高数学思维水平.情感态度与价值观培养观察能力,激发学生的探究的兴趣和欲望,并进行美育渗透.教学重点难点教学重点理解并掌握两个图形相似的概念及特征.教学难点理解相似形的特征,掌握识别相似图形的方法,能运用相似多边形的特征进行相关的计算.教学师生活动设计意图过程设计一、情境引入欣赏图片,说说你的想法。
引出本章,及本节课题二、探究新知(一)相似图形1.类比上面几幅图片,再举一些其它例子.2.这些图片有什么共同特征?学生根据生活经验举例,进一步理解相似,教师组织学生以小组形式进行讨论,探究这些图片的共同特征。
3.从平面镜和哈哈镜里看到的不同镜像,它们相似吗?4.已学习过的几何图形中有没有相似的?自己设计一些相似图形,在与同学交流一下.5.完成课本25页练习.(二)相似多边形1.观察正△ABC和正△'''CBA中,它们的对应角有什么关系?对应边呢?2.能否说任意两个正三角形都相似?3.阅读课本26页中的方框旁注,比例线段的特点是什么?4.观察上面正六边形,有没有类似的结论?其它正多边形呢?5.测量课本26页上方相似的四边形的对应角和对应边,是否相等?,6.已知两个正多形相似,可以得到什么结论?结论反过来成立吗?7.相似比指的是相似多边形边的比值吗?8.相似比为1的两个图形有什么关系?教师设计问题,学生思考分析,理解相似多边形概念。
三、应用新知课本26页例题简析:两个图形有什么关系?对应角有哪几对?对应边呢?教师给出问题,让学生尝试独立解决,小组交流讨论,教师巡视,适当点拨,引导学生解决,并选一名学生到黑板板演.四、课堂训练课本27页练习学生独立完成,教师巡视,学生回答问题并说明原因,师生达成一培养学生的观察能力,体验数学与生活的密切关系.初步感知相似多边形及其的特征,为后续学习做铺垫。
九年级数学下册27.1图形的相似教案(新版)新人教版
![九年级数学下册27.1图形的相似教案(新版)新人教版](https://img.taocdn.com/s3/m/fe24fda13c1ec5da51e27020.png)
九年级数学下册27.1图形的相似教案(新版)新人教版第27章相似27.1 图形的相似一、教学目标1.核心素养通过图形相似的学习,初步形成基本的几何直观、运算能力、推理能力.2.学习目标(1)理解并掌握两个图形相似的概念.(2)了解成比例线段的概念,会确定线段的比.(3)了解比例尺的概念.(4)记住相似多边形的性质,会辨别两个多边形是否相似,并会运用其性质进行相关的计算.3.学习重点相似图形的概念和与成比例线段的概念;相似多边形的性质与识别.4.学习难点线段成比例的意义;运用相似多边形的性质进行相关的计算.二、教学设计(一)课前设计1.预习任务任务1.阅读教材P24-25,思考:什么是相似图形?你能正确判断两个图形是否相似吗?任务2.阅读教材P26—P28,思考:什么是相似多边形?什么是相似比?相似多边形有怎样的性质?什么是成比例线段?2.预习自测(1)下列各组图形相似的是( )答案:B解析:略(2)下列各组数中成比例的是( )A. 2,3,4,1B. 3,5,13,9C. 6,8,9,10D. 10,20,20,40答案:D解析:略(3)如图,四边形EFGH 相似于四边形ABCD,则∠A=______度,∠C=______度,∠H=_____度,x=_____,y=_____,z=_____。
答案:70 120 60 40 45 75解析:∵四边形ABCD 和EFGH 相似,所以它们的对应角相等, 由此可得∠A=∠E=70°,∠C=∠G=120°,∠H=∠D=60°.∵四边形ABCD 和EFGH 相似,所以它们的对应边成比例, 由此可得5203018010===z y x , 解得x=40,y=45,z=75.(二)课堂设计1.知识回顾1.全等形的概念:能够完全重合的两个图形叫做全等形。
2.全等多边形的性质:全等多边形的对应角相等,对应边相等。
3.比的意义:两个数相除又叫做两个数的比。
人教版九年级数学下册: 27.1《图形的相似》教学设计4
![人教版九年级数学下册: 27.1《图形的相似》教学设计4](https://img.taocdn.com/s3/m/6bd0ec10b207e87101f69e3143323968001cf417.png)
人教版九年级数学下册: 27.1《图形的相似》教学设计4一. 教材分析《图形的相似》是人教版九年级数学下册第27.1节的内容,本节课主要让学生了解相似图形的概念,掌握相似图形的性质,并会运用相似图形解决一些实际问题。
通过本节课的学习,学生能够进一步理解图形的变换,提高解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的图形认知能力,对图形的变换有一定的了解。
但是,对于相似图形的概念和性质,学生可能还比较陌生。
因此,在教学过程中,教师需要引导学生从实际问题中抽象出相似图形的概念,并通过大量的例子让学生理解和掌握相似图形的性质。
三. 教学目标1.了解相似图形的概念,掌握相似图形的性质。
2.能够运用相似图形解决一些实际问题。
3.提高学生的抽象思维能力和解决问题的能力。
四. 教学重难点1.相似图形的概念和性质。
2.运用相似图形解决实际问题。
五. 教学方法1.情境教学法:通过实际问题引导学生抽象出相似图形的概念。
2.例题教学法:通过大量的例子让学生理解和掌握相似图形的性质。
3.问题解决法:让学生在解决实际问题的过程中运用相似图形,提高解决问题的能力。
六. 教学准备1.教学课件:制作课件,展示相似图形的概念和性质。
2.例题:准备一些典型的例题,让学生理解和掌握相似图形的性质。
3.练习题:准备一些练习题,巩固学生对相似图形的理解和掌握。
七. 教学过程1.导入(5分钟)通过一个实际问题引入相似图形的概念,例如:“有两幅相似的画,一幅画的长是8cm,宽是6cm,另一幅画的长是10cm,宽是7cm,请问这两幅画的面积是否相等?为什么?”引导学生思考和讨论,引出相似图形的概念。
2.呈现(10分钟)呈现相似图形的性质,如:相似图形的对应边成比例,对应角相等。
通过具体的图形和例子让学生理解和掌握这些性质。
3.操练(10分钟)让学生分组进行练习,运用相似图形的性质解决一些实际问题。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)让学生独立完成一些练习题,巩固对相似图形的理解和掌握。
九年级数学下册27_1图形的相似第1课时教案新版新人教版
![九年级数学下册27_1图形的相似第1课时教案新版新人教版](https://img.taocdn.com/s3/m/4fa862b7011ca300a7c3907c.png)
图形的相似(一)一、教学目标1.明白得并把握两个图形相似的概念.2.了解成比例线段的概念,会确信线段的比二、重点、难点1.重点:相似图形的概念与成比例线段的概念.2.难点:成比例线段概念.3.难点的冲破方式(1)关于相似图形的概念,可用大量的实例引入,但要注意教材中“把形状相同的图形说成是相似图形”,只是对相似图形概念的一个描述,不是概念;还要强调:①相似形必然要形状相同,与它的位置、颜色、大小无关(其大小可能一样,也有可能不一样,当形状与大小都一样时,两个图形确实是全等形,因此全等形是一种特殊的相似形);②相似形不单单指平面图形,也包括立体图形的情形,如飞机和飞机模型也是相似形;③两个图形相似,其中一个图形能够看做有另一个图形放大或缩小取得的,而把一个图形的部份拉长或加宽取得的图形和原图形不是相似图形.(2)关于成比例线段:①咱们是在学生小学学过数的比,及比例的大体性质等知识的基础上来学习成比例线段的;②两条线段的比与所采纳的长度单位没有关系,在计算时要注意统一单位;③线段的比是一个没有单位的正数;④四条线段a,b,c,d 成比例,记作或a:b=c:d;⑤若四条线段知足,则有ad=bc(为利于尔后的学习,可适当补充:反之,若四条线段知足ad=bc,则有,或其它七种表达形式).三、例题的用意本节课的三道例题都是补充的题目,例1是一道判定图形相似的选择题,通过讲解要使学生明确:(1)相似形必然要形状相同,与它的位置、颜色、大小无关;(2)两个图形相似,其中一个图形能够看做有另一个图形放大或缩小取得的,而把一个图形的部份拉长或加宽取得的图形和原图形不是相似图形;(3)在识别相似图形时,不要以位置为准,要“形状相同”;例2通过别离采纳m、cm、mm三种不同的长度单位,求得的的值相等,使学生明确:两条线段的比与所采纳的长度单位无关,但求比时两条线段的长度单位必需一致;例3是求线段的比的题,要使学生对照例尺有进一步的熟悉:比例尺= ,而求图上距离与实际距离的比确实是求两条线段的比.四、课堂引入1.(1)请同窗们看黑板正上方的五星红旗,五星红旗上的大五角星与小五角星他们的形状、大小有什么关系?再如下图的两个画面,他们的形状、大小有什么关系.(还能够再举几个例子)(2)教材P36引入.(3)相似图形概念:把形状相同的图形说成是相似图形.(强调:见前面)(4)让学生再举几个相似图形的例子.(5)讲解例1.2.问题:若是把老师手中的教鞭与铅笔,别离看成是两条线段AB和CD,那么这两条线段的长度比是多少?归纳:两条线段的比,确实是两条线段长度的比.3.成比例线段:关于四条线段a,b,c,d,若是其中两条线段的比与另两条线段的比相等,如(即ad=bc),咱们就说这四条线段是成比例线段,简称比例线段.【注意】(1)两条线段的比与所采纳的长度单位没有关系,在计算时要注意统一单位;(2)线段的比是一个没有单位的正数;(3)四条线段a,b,c,d成比例,记作或a:b=c:d;(4)若四条线段知足,则有ad=bc.五、例题讲解例1(补充:选择题)如图,下面右边的四个图形中,与左侧的图形相似的是()分析:因为图A是把图拉长了,而图D是把图压扁了,因此它们与左图都不相似;图B是正六边形,与左图的正五边形的边数不同,故图B与左图也不相似;而图C是将左图绕正五边形的中心旋转180o后,再按必然比例缩小取得的,因此图C与左图相似,故此题应选C.例2(补充)一张桌面的长a=,宽b=,那么长与宽的比是多少?(1)若是a=125cm,b=75cm,那么长与宽的比是多少?(2)若是a=1250mm,b=750mm,那么长与宽的比是多少?解:略.()小结:上面别离采纳m、cm、mm三种不同的长度单位,求得的的值是相等的,因此说,两条线段的比与所采纳的长度单位无关,但求比时两条线段的长度单位必需一致.例3(补充)已知:一张地图的比例尺是1:,量得北京到上海的图上距离大约为,求北京到上海的实际距离大约是多少km?分析:依照比例尺= ,可求出北京到上海的实际距离.解:略答:北京到上海的实际距离大约是1120 km.六、课堂练习1.教材P37的观看.2.下列说法正确的是()A.小明上幼儿园时的照片和初中毕业时的照片相似.B.商店新买来的一副三角板是相似的.C.所有的讲义都是相似的.D.国旗的五角星都是相似的.3.如图,请测量出右图中两个形似的长方形的长和宽,(1)(小)长是_______cm,宽是_______cm;(大)长是_______cm,宽是_______cm;(2)(小);(大).(3)你由上述的计算,能取得什么结论吗?(答:相似的长方形的宽与长之比相等)4.在比例尺是1:8000000的“中国政区”地图上,量得福州与上海之间的距离时,那么福州与上海之间的实际距离是多少?5.AB两地的实际距离为2500m,在一张平面图上的距离是5cm,那么这张平面地图的比例尺是多少?七、课后练习。
人教版数学九年级下册27.1《图形的相似》教学设计
![人教版数学九年级下册27.1《图形的相似》教学设计](https://img.taocdn.com/s3/m/5322a1aefbb069dc5022aaea998fcc22bcd143f0.png)
人教版数学九年级下册27.1《图形的相似》教学设计一. 教材分析人教版数学九年级下册第27.1节《图形的相似》是整个初中数学的重要内容,也是九年级数学的重点和难点。
本节内容主要介绍了相似图形的概念、性质和判定方法,以及相似图形的应用。
通过本节的学习,学生能够理解相似图形的概念,掌握相似图形的性质和判定方法,并能运用相似图形解决实际问题。
二. 学情分析九年级的学生已经具备了一定的几何基础知识,对图形的性质和判定方法有一定的了解。
但是,对于相似图形的概念和性质,以及如何运用相似图形解决实际问题,学生可能还存在一定的困难。
因此,在教学过程中,需要注重引导学生从实际问题中抽象出相似图形的概念,并通过大量的练习,使学生能够熟练掌握相似图形的性质和判定方法。
三. 教学目标1.了解相似图形的概念,掌握相似图形的性质和判定方法。
2.能够运用相似图形解决实际问题。
3.培养学生的抽象思维能力和解决问题的能力。
四. 教学重难点1.相似图形的概念和性质。
2.相似图形的判定方法。
3.相似图形的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中抽象出相似图形的概念。
2.通过大量的练习,使学生能够熟练掌握相似图形的性质和判定方法。
3.采用小组合作的学习方式,让学生在合作中思考,在思考中合作。
六. 教学准备1.准备相关的教学PPT和教学素材。
2.准备一些实际的例子,用于引导学生从实际问题中抽象出相似图形的概念。
3.准备一些练习题,用于巩固学生的学习成果。
七. 教学过程1.导入(5分钟)通过展示一些实际的例子,让学生观察并思考:这些图形有什么共同的特点?引导学生从实际问题中抽象出相似图形的概念。
2.呈现(10分钟)介绍相似图形的定义、性质和判定方法。
通过PPT和教材,详细解释相似图形的概念,以及相似图形的性质和判定方法。
3.操练(10分钟)让学生通过练习题,运用相似图形的性质和判定方法,解决实际问题。
教师可以设置一些难度不同的练习题,让学生根据自己的能力选择相应的题目。
2024九年级数学下册第27章相似27.1图形的相似(相似多边形)教学设计(新版)新人教版
![2024九年级数学下册第27章相似27.1图形的相似(相似多边形)教学设计(新版)新人教版](https://img.taocdn.com/s3/m/8a439a75e3bd960590c69ec3d5bbfd0a7856d559.png)
③艺术性和趣味性:
-使用彩色的粉笔或标记笔,突出重点内容,使板书更加生动和吸引人。
-在板书中加入一些有趣的图形或图案,如用相似多边形设计的建筑图案或艺术作品,增加视觉趣味性。
-结合实际案例,展示相似多边形在生活中的应用,如建筑设计、艺术创作等,激发学生的学习兴趣和主动性。
二、新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解相似多边形的基本概念。相似多边形指的是形状相同但大小不一定相同的多边形。它是几何图形中非常重要的一个概念,广泛应用于日常生活和各类工程设计中。
2.案例分析:接下来,我们来看一个具体的案例。通过分析实际生活中的相似多边形应用,如地图比例尺、建筑图案等,了解相似多边形如何帮助我们解决问题。
-利用课余时间,小组合作开展小研究,探讨相似多边形在某一特定领域(如艺术、工程、计算机图形学等)的应用;
-结合所学知识,设计并解决一些综合性问题,如相似多边形在几何证明中的应用、相似变换的实际操作等;
-阅读课外书籍,了解相似多边形在数学发展史上的地位和作用,体会数学文化的丰富内涵;
-参加学校或社区组织的数学俱乐部或竞赛,与其他同学交流相似多边形的相关知识,提高自己的数学素养。
-在教室墙壁上张贴与相似多边形相关的挂图,营造良好的学习氛围;
-准备白板、投影仪等教学设备,方便教师展示教学内容和学生的作品。
此外,教师还需准备以下教学资源:
5.教学评价工具:
-制定本节课的学习评价表,包括课堂表现、作业完成情况、小组讨论参与度等方面;
-准备课堂提问和课后作业,用于检测学生对相似多边形知识的掌握程度。
4.提高学生的数据分析能力,通过实例分析,让学生掌握相似多边形在图形变换中的应用,培养解决综合问题的能力。
九年级数学下册 271 图形的相似教案1 (新版)新人教版 教案
![九年级数学下册 271 图形的相似教案1 (新版)新人教版 教案](https://img.taocdn.com/s3/m/e34daa5bbf23482fb4daa58da0116c175f0e1ec7.png)
图形的相似教学目标:知识与技能:从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念.过程与方法:在相似图形的探究过程中,让学生运用“观察—比较—猜想”分析问题.情感、态度价值观:在探究相似图形的过程中,培养学生与他人交流、合作的意识和品质.教学重点:认识图形的相似.教学难点:理解相似图形概念.教学方法:启发式、合作、探究式教学过程一. 创设情境活动1观察图片,体会相似图形同学们,请观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗? (课本图27.1-1)( 课本图27.1-2)师生活动: 教师出示图片,提出问题;学生观察,小组讨论;师生共同交流.得到相似图形的概念.教师活动:什么是相似图形?学生活动:共同交流,得到相似图形的概念.学生归纳总结:(教师板书)形状相同的图形叫做相似图形在活动中,教师应重点关注:学生用数学的语言归纳相似图形的概念;活动2思考:如图27.1-3是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?学生活动:学生观察思考,小组讨论回答;二.通过练习巩固相似图形的概念活动3练习问题:1.如图,从放大镜里看到的三角尺和原来的三角尺相似吗?2.如图,图形a~f中,哪些是与图形(1)或(2)相似的?教师活动:教师出示图片,提出问题;学生活动:学生看书观察,小组讨论后回答问题.教师活动:在活动中,教师应重点关注:在练习中检验学生对相似图形的几何直觉.三.小结(1)谈谈本节课你有哪些收获(2)练习1、下列说法正确的是()A.小明上幼儿园时的照片和初中毕业时的照片相似.B.商店新买来的一副三角板是相似的.C.所有的课本都是相似的.D.国旗的五角星都是相似的.2、填空题1、形状的图形叫相似形;两个图形相似,其中一个图形可以看作由另一个图形的或而得到的。
板书设计图形相似1.布置作业:课后反思:。
九年级数学下册27.1图形的相似教案新版新人教版
![九年级数学下册27.1图形的相似教案新版新人教版](https://img.taocdn.com/s3/m/6ac2d6ada8956bec0875e32e.png)
第二十七章相似本章主要学习图形的相似.首先,教材中从生活实例入手,得到相似图形的概念,进一步得到相似多边形,研究了相似多边形的定义和有关性质,为研究相似三角形做了铺垫.其次,从相似多边形引入相似三角形,反映了知识间的一种联系,同时也揭示了相似三角形所要研究的本质就是两个三角形边、角之间的关系.本部分内容的学习,应突出一种对应关系,即找两个相似三角形的对应边和对应角,关键是先找到其对应顶点.相似三角形的性质及其判定定理是否能正确地运用也是本节课的一个重点.教材中首先让学生选择合适的方法进行探索和归纳,然后运用相似三角形的性质,通过计算给出证明,并推导得到相似三角形的周长的比、面积的比与相似比的关系.最后,教材中介绍了图形的位似.位似的两个图形具有一种特殊的位置关系,这种关系是通过位似中心来联系的,位似中心的位置决定了两个位似图形的位置,其关键是抓住对应点的连线都经过位似中心;而相似图形只研究它们的形状和大小,与这两个图形的位置无关.本节的位似只要求学生理解位似图形,利用位似将一个图形放大或缩小.1.能够判断线段是否成比例,理解并掌握比例的几个性质以及平行线分线段成比例定理.2.通过具体实例认识图形的相似,探索相似图形的性质,知道相似多边形的对应角相等、对应边成比例.3.了解两个相似三角形的概念,探索两个三角形相似的条件、相似三角形对应高的比、对应中线的比、对应角平分线的比、周长的比、面积的比与相似比的关系.4.了解图形的位似,能够利用位似将一个图形放大或缩小.5.通过典型实例观察并认识现实生活中物体的相似,利用图形的相似解决一些实际问题.本章教学约需11课时,具体分配如下:27.1 图形的相似2课时27.2 相似三角形7课时27.3 位似2课时27.1 图形的相似第1课时图形的相似(1)知识与技能从生活中形状相同的图形的实例中认识成比例的线段,理解成比例线段的概念.过程与方法在成比例线段的探究过程中,让学生运用“观察—比较—猜想”的方法分析问题.情感、态度与价值观在探究成比例线段的过程中,培养学生与他人交流、合作的意识.重点认识成比例的线段.难点理解成比例线段的概念.一、问题引入活动1.观察图片,体会形状相同的图形.(多媒体出示)师:同学们,请观察下列几幅图片,你能发现什么?你能对观察到的图片特点进行归纳吗?生:这些图形的形状相同,而大小不同. 二、新课教授活动2.思考:如图是人们从平面镜及哈哈镜里看到的不同镜像,它们的形状相同吗?生:形状不同.师:我们把形状相同,大小不同的图形叫做相似图形.形状相同而大小不同的两个平面图形,较大的图形可以看成是由较小的图形“放大”得到的,较小的图形可以看成是由较大的图形“缩小”得到的.在这个过程中,两个图形上的相应线段也被“放大”或“缩小”,因此,对于形状相同而大小不同的两个图形,我们可以用相应线段长度的比来描述它们的大小关系.如果选用同一个长度单位量得两条线段AB ,CD 的长度分别是m ,n ,那么这两条线段的比就是它们长度的比,即AB ∶CD =m ∶n 或写成AB CD =m n .其中,线段AB 、CD 分别叫做这个线段比的前项和后项.如果把mn表示成比值k ,那么ABCD=k 或AB =k ·CD ,两条线段的比实际上就是两个数的比.活动3.如果把老师手中的教鞭与铅笔分别看成是两条线段AB 和CD ,那么这两条线段的长度比是多少? 师生活动.1.两条线段的比,就是两条线段长度的比.2.成比例线段:对于四条线段a ,b ,c ,d ,如果其中两条线段的比与另外两条线段的比相等,如a b =cd(即ad =bc),我们就说这四条线段是成比例线段,简称比例线段.注意:(1)两条线段的比与所采用的长度单位没有关系,但在计算时要注意统一单位; (2)线段的比是一个没有单位的正数;(3)四条线段a ,b ,c ,d 成比例,记作:a b =cd或a ∶b =c ∶d ;(4)若四条线段满足a b =cd,则有ad =bc ;(5)如果ad =bc(a ,b ,c ,d 都不等于0),那么a b =cd.三、例题讲解例1 如图,下面右边的四个图形中,与左边的图形形状相同的是( )解:C例2 一张桌面长a =1.25 m ,宽b =0.75 m ,那么长与宽的比是多少? (1)如果a =125 cm ,b =75 cm ,那么长与宽的比是多少? (2)如果a =1 250 mm ,b =750 mm ,那么长与宽的比是多少?解:a b =53小结:上面分别采用m ,cm ,mm 三种不同的长度单位,求得的ab的值是相等的,所以说,两条线段的比与所采用的长度单位无关,但求比时两条线段的长度单位必须一致.四、课堂小结1.图形相似的定义:形状相同的图形叫做相似图形.2.成比例线段:对于四条线段a ,b ,c ,d ,如果其中两条线段的比与另外两条线段的比相等,如a b =cd(即ad =bc),我们就说这四条线段是成比例线段,简称比例线段.本节课在学习过程中应该注意从生活中形状相同的图形的实例中认识相似图形以及成比例的线段,理解成比例线段的概念.在相似图形的探究过程中,让学生运用“观察——比较——猜想”的方法分析问题,让学生经历探究过程.以学生的自主探究为主线,让学生经历实验操作、探究发现、证明论证获得知识.教师只在关键处进行点拨,不足处进行补充.鼓励学生大胆猜测、大胆验证,让学生在研究过程中渗透数学思想,有意识地培养学生的解题能力.第2课时 图形的相似(2)知识与技能知道相似图形的两个特征:对应边成比例,对应角相等.掌握判断两个多边形是否相似的方法——“如果两个多边形满足对应角相等、对应边的比相等,那么这两个多边形相似”.过程与方法经历从生活中的事物中抽象出几何图形的过程,体会由特殊到一般的思想方法,感受图形世界的丰富多彩.情感、态度与价值观在探索中培养学生与他人交流、合作的意识和品质.重点知道相似图形的对应角相等、对应边的比相等. 难点能运用相似图形的性质解决问题.一、问题引入1.若线段a =6 cm ,b =4 cm ,c =3.6 cm ,d =2.4 cm ,那么线段a ,b ,c ,d 会成比例吗? 2.两张相似的地图中的对应线段有什么关系?(都成比例) 二、探究新知1.观察图片,体会相似图形的性质.(1)下图(1)中的△A 1B 1C 1是由正△ABC 放大后得到的,观察这两个图形,它们的对应角有什么关系?对应边又有什么关系呢?(2)对于图(2)中两个形状相同、大小不同的正六边形,是否也能得到类似的结论?学生细心观察,认真思考,小组讨论后回答问题,最后得出:它们的对应角相等,对应边的比相等.∠A=∠A1,∠B=∠B1,∠C=∠C1.AB A1B1=BCB1C1=ACA1C1.师:上图中的△ABC,△A1B1C1是形状相同的三角形,其中∠A与∠A1,∠B与∠B1,∠C与∠C1分别相等,称为对应角,AB与A1B1,BC与B1C1,AC与A1C1的比都相等,称为对应边,各角相等、各边成比例的两个多边形叫做相似多边形.2.探究.如图(1)中是两个相似三角形,它们的对应角有什么关系?对应边的比是否相等?对于图(2)中两个相似四边形,它们的对应角、对应边是否也有同样的结论?师生总结:相似多边形的对应角相等,对应边的比相等.(1)如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似.(2)相似多边形的对应边的比称为相似比.三、例题讲解例如图,四边形ABCD和四边形EFGH相似,求∠α和∠β的大小以及EH的长度x.学生通过运用相似多边形的性质正确解答出∠α和∠β的大小以及EH的长度x.解:四边形ABCD和四边形EFGH相似,它们的对应角相等.由此可得∠α=∠C=83°,∠A=∠E=118°,在四边形ABCD中,∠β=360°-(78°+83°+118°) =81°.四边形ABCD和四边形EFGH相似,它们的对应边成比例.由此可得EH AD =EFAB,即x21=2418.解得x=28 cm.四、巩固练习1.在比例尺为1∶10 000 000的地图上,量得甲、乙两地的距离是30 cm,求两地的实际距离.答案 3 000 km2.如图所示的两个直角三角形相似吗?为什么?答案相似,因为它们的对应角相等,对应边的比相等.3.如图所示的两个五边形相似,求未知边a,b,c,d的长度.答案 a =3,b =92,c =4,d =6.五、课堂小结1.相似多边形的定义:如果两个多边形的对应角相等、对应边的比相等,那么这两个多边形相似. 2.相似多边形的性质:相似多边形的对应角相等,对应边的比相等.本节课在前一节课学习的基础上,进一步加深对相似图形的认识.在相似图形的探究过程中,继续让学生运用“观察——比较——猜想”的方法分析问题,让学生经历探究过程.以学生自主探究为主线,让学生经历实验操作、探究发现、证明论证获得知识.教师只在关键处进行点拨,不足处进行补充.鼓励学生大胆猜测、大胆验证.让学生在研究过程中渗透数学思想,有意识地培养学生的解题能力.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.如图是二次函数2y ax bx c =++的图象,有下面四个结论:0abc >①;0a b c ②-+>;230a b +>③;40c b ->④,其中正确的结论是( )A .①②B .①②③C . ①③④D . ①②④【答案】D【解析】根据抛物线开口方向得到a 0>,根据对称轴02bx a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >;1x =-时,由图像可知此时0y >,所以0a b c -+>;由对称轴123b x a =-=,可得230a b +=;当2x =时,由图像可知此时0y >,即420a b c ++>,将23a b =-代入可得40c b ->.【详解】①根据抛物线开口方向得到0a >,根据对称轴02bx a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >,故①正确.②1x =-时,由图像可知此时0y >,即0a b c -+>,故②正确. ③由对称轴123b x a =-=,可得230a b +=,所以230a b +>错误,故③错误; ④当2x =时,由图像可知此时0y >,即420a b c ++>,将③中230a b +=变形为23a b =-,代入可得40c b ->,故④正确.故答案选D. 【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。
2019版九年级数学下册第二十七章相似27.1图形的相似教案(新版)新人教版
![2019版九年级数学下册第二十七章相似27.1图形的相似教案(新版)新人教版](https://img.taocdn.com/s3/m/09a2174b2a160b4e767f5acfa1c7aa00b42a9d55.png)
第二十七章相像27.1图形的相像【教课目的】知识技术目标:1. 使学生理解并掌握两个图形相像的观点.2.掌握相像多边形的特色 .3. 会依据相像多边形的特色辨别两个多边形能否相像, 并会运用其性质进行有关的计算.过程性目标 :在研究相像多边形特色的过程中, 进一步发展学生的概括、类比、反省、沟通的能力, 提升数学思想水平.感情态度目标:1.联合本课教课特色 , 培育学生察看能力 , 向学生进行美育浸透 .2.激发学生研究、发现数学识题的兴趣和欲念.【要点难点】要点 : 理解并掌握相像多边形的特色.难点 : 运用相像多边形的特色进行有关的计算.【教课过程】一、创建情境教师挂上大小不同样的两张中国国旗及两张大小不同的长城图片, 供同学察看 , 提出问题 :这几组图片有什么同样的地方呢?我们一同来看看这几组图片 , 这些图片大小固然不同样 , 可是形状同样 . 我们把这些形状同样的图形叫做相像图形 .教师出示问题, 教师增补校订 .学生察看思虑, 试试回答以下问题 .二、研究概括问题研究一什么是相像图形?●活动 1师生互动,研究新知察看与思虑 : 请察看下边几组图片: 你能发现它们有什么特色吗?想想 : 你能再举出一些相像的图形的例子吗?学生举例研究与思虑 : 什么是相像图形?指引学生概括 .进而得出 : 拥有同样形状的图形叫相像形.( 出示课题——图形的相像)●活动 2应用练习1.思虑教科书第 25 页思虑取的问题 , 哈哈镜里看到的不同镜像它们相像吗?解 : ∵哈哈镜改变了形状 , ∴它们不相像.2.如图 , 图形 (a) ~ (f) 中 , 哪些是与图形 (1) 或 (2) 相像的 ?解 : 与 (1) 相像的是 :(d);与(2)相像的是:(e).3.如图 , 从放大镜里看到的三角尺和本来的三角尺相像吗?解 : 它们形状同样, 所以是相像的 .问题研究二什么是成比率线段?●活动 1如图,设小方格的边长为1, 四边形 ABCD与四边形EFGH的极点都在格点上, 那么 AB,AD,EF,EH 的长度分别是多少?分别计算,,,的值.解 : 如图 , 由图可知 AM=2,DM=6,∴AD====2.同理可得EH=.又∵ AB=8,EF=4,∴==2,==2,==,=.●活动 2例题解说 , 成比率线段的应用例 1: 已知 a=2,b=4.1,c=4,d=8.2,下边选项正确的选项是()A.d,b,a,c成比率B.a,d,b,c成比率C.a,c,b,d成比率D.a,d,c,b成比率解 : 选 C. 由 a∶c=2∶4=1∶2,b ∶d=4.1 ∶8.2=1 ∶2,∴a∶c=b∶d.点拨 : 四条线段成比率是有次序性的.例 2: 以下各组中的四条线段成比率的是()A.a=,b=3,c=2,d=B.a=4,b=6,c=5,d=10C.a=2,b=,c=2,d=D.a=2,b=3,c=4,d=1解 : 选 C. 由 a∶b=2∶,c ∶d=2∶=2∶,∴a∶b=c∶d, 线段 a,b,c,d 是成比率线段 .问题研究三什么是相像多边形?相像多边形有如何的性质?●活动 1从特别图形下手, 合作研究思虑图中的两个相像的正三角形和两个相像的正六边形的对应边和对应角的关系.∵正△ ABC与正△ A1B1C1相像 ,∴∠ A=∠ A1=60°, ∠ B=∠ B1=60°, ∠ C=∠ C1=60°.设△ ABC的边长为a, △ A1B1C1的边长为b,∴= ,= ,=.让学生独立思虑并分组沟通议论, 而后请学生有条理说明.概括 : 特别三角形的对应角相等, 对应边成比率.●活动 2由特别到一般进行研究研究 : 如图中的两个相像三角形和相像四边形, 它们的对应角和对应边有什么关系?利用量角器 , 直尺胸怀角及边长 . 教师先演示胸怀白板功能正确丈量三角形的角与边的度数及长度, 而后请学生登台胸怀. 学生感觉比较新鲜 . 而且经过电子 , 进一步考证相像三角形的对应角相等 , 对应边的比相等这个性质 , 及相像比这个观点.概括 : 相像多边形的性质: 相像多边形的对应角相等, 对应边成比率.三、新知应用例 : 如图 , 四边形 ABCD和 EFGH相像 , 求∠α和∠β的大小 ,EH 的长度 x.解 : 由于四边形 ABCD和 EFGH相像 , 所以它们的对应角相等 ,由此可得∠α =∠C=83°, ∠ A=∠E=118°.在四边形 ABCD中 , ∠β =360° - (78 °+83°+118°)=81 °.由于四边形 ABCD和 EFGH相像 , 所以它们的对应边成比率 ,由此可得=,即=.解得 x=28.360°求角的度数; 利用相像多边形的对应边成比点拨 : 利用相像多边形的对应角相等和四边形内角和等于例求边长 .四、检测反应1. 以下各线段的长度成比率的是( C )A.1 cm,2.5 cm,3 cm,4 cmB.2 cm,4 cm,6 cm,8 cmC.3 cm,6 cm,9 cm,18 cmD.3 cm,5 cm,8 cm,15 cm2.以下图形必定是相像图形的是( B )A. 两个平行四边形B. 两个正三角形C. 两个矩形D. 两个菱形3.若四边形 ABCD∽四边形A′B′C′D′, 且 AB∶A′B′=2∶5, 已知 BC=14,则 B′C′的长是 ( B )A.28B.35C.50D.70分析 : 由相像多边形的对应边成比率, 得=, 有= , ∴B′C′=35.4.Rt△ ABC的两条直角边分别5 cm,12 cm,与它相像的Rt △A′B′C′的斜边为39 cm,那么Rt △A′B′C′为的周长为( A )A.90 cmB.80 cmC.60 cmD.30 cm分析 : 由 Rt△ ABC的两条直角边分别为 5 cm、 12 cm, 可得其斜边为 13 cm, 又知与它相像的 Rt△A′B′C′的斜边为 39 cm, 可得 Rt △ ABC与 Rt △A′B′C′的相像比为 13∶39=1∶3, 依据相像多边形的性质“相像多边形对应边成比率”可得Rt△A′B′C′的两条直角边分别为15 cm、 36 cm, 所以 Rt△A′B′C′的周长为 :15+36+39=90 cm.五、讲堂小结指引学生梳理本节所学知识, 获取稳固和发展.1. 相像图形的定义——同样形状的图形;2.判断两个图形能否相像 ;3.相像多边形的性质特色 : 对应角相等 , 对应边成比率 ;4.利用相像放大或减小图形 ;5.能用相像的性质解决实质问题 .六、板书设计课题 :27.1图形的相像(一) 图形展现( 四) 由相像图形的性质引出新观点( 经过多媒体展现师生采集的图片) 1.相像多边形( 二 ) 相像图形观点 2.相像比1.重申边角的对应关系 3.成比率线段2.辨析相像和全等的关系( 五) 稳固应用( 三 ) 相像图形性质的研究( 六) 简单的相像作图。
人教初中数学九年级下册《27-1 图形的相似》(教学设计)
![人教初中数学九年级下册《27-1 图形的相似》(教学设计)](https://img.taocdn.com/s3/m/05af2f630a4c2e3f5727a5e9856a561253d32157.png)
人教初中数学九年级下册《27-1 图形的相似》(教学设计)一. 教材分析人教初中数学九年级下册《27-1 图形的相似》是整个九年级下册数学知识的重点和难点,同时也是学生对几何知识的一个深入理解和运用。
本节课主要通过探究图形的相似性质和判定方法,培养学生的逻辑思维能力和空间想象能力。
教材中通过丰富的例题和练习题,使学生能够熟练掌握相似图形的性质和判定方法,并能够应用于实际问题中。
二. 学情分析学生在学习本节课之前,已经掌握了相似图形的初步知识,对图形的相似性质和判定方法有一定的了解。
但学生在应用相似知识解决实际问题时,还存在一定的困难。
因此,在教学过程中,教师需要引导学生通过观察、操作、思考、交流等活动,进一步理解和掌握相似图形的性质和判定方法,提高学生的解决问题的能力。
三. 教学目标1.知识与技能目标:使学生掌握相似图形的性质和判定方法,能够运用相似知识解决实际问题。
2.过程与方法目标:通过观察、操作、思考、交流等数学活动,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观目标:让学生在探究相似图形的性质和判定方法的过程中,体验数学的趣味性和应用性,增强学生对数学的兴趣和信心。
四. 教学重难点1.教学重点:相似图形的性质和判定方法。
2.教学难点:相似图形的性质和判定方法在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活中的实际问题,激发学生的学习兴趣,引导学生主动探究相似图形的性质和判定方法。
2.动手操作法:让学生通过动手画图、折纸等活动,直观地感受相似图形的性质,提高学生的空间想象能力。
3.小组合作法:引导学生分组讨论、交流,培养学生的团队协作能力和表达能力。
4.引导发现法:教师引导学生发现问题、解决问题,培养学生的逻辑思维能力。
六. 教学准备1.教具准备:黑板、粉笔、多媒体设备、几何画板等。
2.学具准备:笔记本、尺子、圆规、剪刀、彩笔等。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实际问题,如房屋设计、电路布局等,引导学生观察其中的图形,并提出问题:“这些图形有什么共同的特点?”让学生思考相似图形的性质和判定方法。
人教版九年级数学下册 27-1-1 相似图形 教案
![人教版九年级数学下册 27-1-1 相似图形 教案](https://img.taocdn.com/s3/m/5943ccd277a20029bd64783e0912a21614797f93.png)
第二十七章相似27.1图形的相似第1课时相似图形一、教学目标1.通过观察图形,思考和分析,认识相似的图形.2.理解并掌握相似图形的概念,并会判断两个图形是否相似.二、教学重难点重点:观察图形,能辨认相似图形.难点:理解并掌握相似图形的概念,并会判断两个图形是否相似.三、教学过程【新课导入】预习导入:阅读教材P24~25页内容,完成以下几个问题:1.形状,大小完全相同的图形是__________图形.2.形状___________的图形是相似图形.3.两个图形相似,其中一个图形可以看作由另一个图形_____________得到的.4._____________是相似的一种特殊情况.5.从放大镜里看到的三角板和原来的三角板________6.哈哈镜中人的形象和本人__________【新知探究】(一)相似图形的判定:1.下列各组图形相似的是( B )A B C D2.下列各组图中哪些图形是相似图形( C )A BC D3.下列图形中,不是相似图形的是( C )CB D4.将图①的箭头放大到原来的2倍,得到的图形是( B )(二)总结:判定相似图形的三点注意:①相似图形一定要形状相同,与它的位置,颜色,大小无关。
②相似图形不仅仅指平面图形,也包括立体图形。
③两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到的。
【课堂小结】1.相似图形:把形状相同的图形叫做相似图形.2.两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到的.3.全等是相似的一种特殊情况.4.相似图形可以是立体图形,与颜色位置无关.【课堂训练】1.下列描述中的图形相似的有( C )①放大镜下的图片与原来的图片;②幻灯机中的底片与投影在屏幕上的画面;③天空中两朵白云的照片;④卫星上拍摄的长城照片与相机拍摄的长城照片.A.4组B.3组C.2组D.1组2.下列判断正确的是( B )A.不全等的三角形一定不是相似三角形B.不相似的三角形一定不是全等三角形C.相似三角形一定不是全等三角形① A B D CD.全等三角形不一定是相似三角形3.下列图形中,不一定相似的是( D )A.任意两个等腰直角三角形B.任意两个等边三角形C.任意两个正方形D.任意两个菱形4.下列四组图形中一定相似的是( D )A.正方形与矩形B.正方形与菱形C.菱形与菱形D.正五边形与正五边形5.下列各组图形中,必定相似的是( D )A.两个等腰三角形B.各有一个角是40°的两个等腰三角形C.两条边之比都是2∶3的两个直角三角形D.有一个角是100°的两个等腰三角形。
九年级数学下册第二十七章相似27.1图形的相似教案新版新人教版
![九年级数学下册第二十七章相似27.1图形的相似教案新版新人教版](https://img.taocdn.com/s3/m/3b80353cfd0a79563c1e72ce.png)
第二十七章相似1.通过具体实例认识图形的相似.2.了解相似多边形和相似比的含义,探索相似多边形的性质.3.了解三角形相似的概念,探索相似三角形的性质.4.掌握平行线分线段成比例定理.5.理解并掌握相似三角形的判定定理,并能应用判定定理解决问题.6.探索相似三角形的性质定理,能应用相似三角形的性质进行有关计算.7.了解图形的位似,能够利用图形的位似将一个图形放大或缩小.8.了解在同一坐标系中位似变换后图形的坐标变化.将一个多边形的顶点坐标扩大或缩小相同倍数时对应的图形与原图形是位似的.9.会利用图形的相似解决一些简单实际问题.1.结合相似图形性质和判定方法的探索与证明,进一步培养学生的合情推理能力,发展学生逻辑思维能力和推理论证的表达能力.2.经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展学生的探究、交流能力.培养学生用联系和转化的观点看待周围的事物,增强探索问题的信心和热情.前面学习了图形的全等和全等三角形的有关知识,也研究了几何图形的全等变换,“全等”和“相似”都是图形之间的一种变换,全等图形是相似比为1的相似图形,所以本章相似形的学习,以全等形和全等变换为基础,是全等三角形在边上的推广,比全等形更具有一般性,是前面学习图形全等的拓展和发展.本章内容是对三角形知识的进一步认识,是通过许多生活中的具体实例来研究相似图形的.在全等三角形的基础上,总结出相似三角形的判定方法和性质,使学过的知识得到巩固和提高.在学习过程中,按照研究对象的“一般→特殊→特殊位置关系”的顺序展开研究.首先,教科书从现实世界中形状相同的物体谈起,然后把研究对象确定为形状相同的图形——相似图形,举例说明了放大、缩小两种操作与相似图形之间的关系.接着教科书把研究对象缩小为特殊的相似图形——相似多边形,由相似多边形的定义推出了相似多边形的性质.对于相似多边形的判定,教科书以三角形为载体进行研究,此外,还研究了相似三角形的其他性质和应用.最后,教科书研究了一种具有特殊位置关系的相似图形——位似图形.本章的知识不仅将在后面学习“锐角三角函数”和“投影与视图”时得到应用,而且对于建筑设计、测量、绘图等实际工作也具有重要价值.在本章中,相似三角形的判定和性质是本章的重点内容,相似三角形的判定定理的证明是本章的难点内容.此外,综合应用相似三角形的判定和性质以及学生前面学过的平行线、全等三角形、平行四边形等知识解决问题(包括实际问题)也是本章的一个难点.为了降低学生在推理论证方面的难度,本章加强了证明思路的引导,或者用分析法分析出由条件到结论必需的转化,或者提示了证明的关键环节;为了降低学生在解决实际问题中的难度,本章专门设置了相似三角形应用举例,从不同角度为解决实际问题作出示范.【重点】1.相似三角形的判定与性质及应用判定和性质解决问题.2.位似图形的性质及画法.【难点】1.相似三角形的判定定理的证明.2.位似变换的坐标表示.1.初中数学从《全等三角形》开始,已经进入了推理证明阶段,本章的学习在已有的基础上继续进行必要的推理证明,本章的证明所涉及的问题不仅包含相似的知识,也有很多是和三角形、全等、平行、勾股定理、平面直角坐标系等知识融合在一起的,例如相似三角形的判定定理的证明中利用了全等三角形作为“桥梁”,性质的证明借助了代数运算,因此推理论证的难度提高了.教学时应注意帮助学生复习已有的知识,做到以新带旧、新旧结合;也要注意以具体问题为载体,加强证明思路的引导,帮助学生确定证明的关键环节,指导学生写出完整的证明过程.同时注意根据教学内容及时安排相应的训练,让学生能够逐步达到独立分析、完成证明.2.学生通过前面对三角形、四边形、圆等几何图形的学习,对于研究几何图形的基本问题、思路和方法已经形成了一定的认识.本章教学中要充分利用学生已有的研究几何图形的经验,用研究几何图形的基本套路贯穿全章的教学.例如,在教授本章之前,可以让学生类比对全等三角形研究的主要内容,提出对形状相同、大小不同的三角形应研究的主要问题和方法,构建本章内容的基本线索,使他们对将学习的内容做到心中有数.因此本章在教学相似三角形的性质之前,可以先让学生自己发现性质,再给出证明.3.相似是生活中常见的现象,日常生活中存在着相似的例子,相似图形的性质在实际生活中有着广泛的应用,能直接应用相似三角形的判定和性质的实例很多,教材中融入了许多实际背景问题,所以在教学中要注重数学与实际生活的联系,每个课时都让学生体会数学来源于生活,又应用到生活中去.27.1 图形的相似2课时27.2 相似三角形27.2.1相似三角形的判定(3课时)27.2.2相似三角形的性质(1课时)27.2.3相似三角形应用举例(2课时)6课时 27.3位似2课时 单元概括整合 1课时27.1 图形的相似1.在具体生活实例中认识相似图形,理解和掌握两个图形相似的概念.2.理解相似图形的特征,掌握相似图形的识别方法.3.了解成比例线段的含义,会判断是不是成比例线段.4.理解相似多边形的概念、性质及判定,并能计算和相似多边形有关的角度和线段的长.1.通过观察实际生活中的图形,辨析相似图形,让学生体会数学与实际生活密切联系,激发学生学习的兴趣.2.通过观察、测量、辨析、归纳等数学活动,经历相似多边形的概念的形成过程,体会由特殊到一般的数学思想方法.3.通过应用成比例线段定义及相似多边形的性质进行有关计算,体会方程思想在几何中的应用,渗透数形结合思想.1.通过观察识别相似图形,渗透生活和数学中美的教育.2.经历相似多边形的概念的形成过程,培养学生的观察、推理能力,激发学生探究、发现数学问题的兴趣.3.在探索相似多边形的性质的过程中,培养学生与他人交流、合作的意识和品质.4.在观察、操作、推理的探究过程中,体验数学活动充满探索性和创造性.【重点】1.理解并掌握相似图形、相似多边形的概念及特征.2.能利用成比例线段的概念及相似多边形的性质进行有关计算.【难点】1.理解相似图形的特征,掌握识别相似图形的方法.2.探索相似多边形的性质中的“对应”关系.第课时1.通过具体实例认识相似图形,理解和掌握两个图形相似的概念.2.理解相似图形的性质定理,掌握相似图形的判定定理.1.通过观察实际生活中的图形,辨析相似图形,让学生体会数学与实际生活密切联系,激发学生学习兴趣.2.通过观察、测量、辨析、归纳等数学活动,经历相似图形的概念的形成过程,培养学生的观察能力及归纳总结能力.1.通过观察识别相似图形,渗透生活和数学中美的教育.2.通过小组合作交流,培养学生共同探究的合作意识.3.通过识别生活中的相似图形,激发学生探究、发现数学问题的兴趣.【重点】理解并掌握相似图形的概念及特征.【难点】理解相似图形的特征,掌握识别相似图形的方法.导入一:欣赏图片.【课件1展示】(1)汽车和它的模型(2)大小不同的两个足球(3)大小不同的两张照片【引导语】上面各组图片的共同之处是什么?这些图形涉及的就是我们这章要学习的相似形问题.导入二:请同学们看黑板正上方的五星红旗,五星红旗上的大五角星与小五角星它们的形状、大小有什么关系?导入三:【复习提问】1.什么是全等形?全等形的形状和大小有什么关系?(能够完全重合的图形是全等形,全等形的形状相同、大小相等)2.判断下列图形是不是全等形?如何判断?(下列两幅图片均是全等形.判断依据:形状相同、大小相等)[设计意图]通过欣赏生活中的图片,让学生体会数学来源于生活,激发学生学习的兴趣,感受数学中的美.在欣赏国旗上的五角星时,对学生进行爱国主义思想教育.同时通过复习全等形的概念及全等形的判定,为本节课相似形的学习做铺垫.一、认识相似图形思路一【思考1】以上展示的图片之间有什么特点?它们的形状和大小有怎样的关系?【师生活动】学生观察思考,教师引导点拨它们形状相同、大小不等.共同归纳本节课学习重点——相似形的概念.【结论】形状相同的图形叫做相似图形.【思考2】全等形一定是相似图形吗?相似图形一定全等吗?它们之间有什么关系? 【师生活动】学生通过观察导入中图片,独立思考后小组交流,教师对学生的回答进行点评,归纳全等形与相似形之间的关系.【结论】全等图形是相似图形的一种特殊情况.全等图形一定相似,相似图形不一定全等.【思考3】你能举出现实生活中一些相似图形的例子吗?【师生活动】学生积极回答,通过生活中相似图形的实例巩固相似图形的概念,教师对思维活跃、积极参与的学生给予鼓励.思路二教师引导学生思考回答下列问题.(1)全等形的形状和大小之间有什么关系?(全等形的形状相同、大小相等)(2)观察上述图片,它们的形状和大小之间有什么关系?(形状相同、大小不等)(3)你能给出相似图形的定义吗?(形状相同的图形叫做相似形)(4)全等图形一定相似吗?相似图形一定全等吗?(全等图形一定相似,相似图形不一定全等)(5)归纳全等图形和相似图形之间的关系.(全等图形是相似图形的特例)(6)你能举出现实生活中一些相似图形的例子吗?【师生活动】学生在教师设置的问题下积极思考回答,教师及时点拨和引导,最后课件展示探究结论.【结论】形状相同的图形叫做相似图形.全等图形是相似图形的一种特殊情况.[设计意图]让学生亲自观察实际生活中的图形,在教师问题的引导下,进行分析、探究,根据图形特点归纳出相似形的概念,培养学生的观察能力,激发学生的求知欲望,经历相似形概念的形成过程,体会数学与生活息息相关.二、相似图形的特征【课件2展示】观察下列每组图形,是不是相似图形?【思考】(1)两个相似的平面图形之间有什么关系?(2)两个相似图形的主要特征是什么?(3)如何判定两个图形是相似图形?(4)相似图形的大小是不是一定相等?(5)相似图形是否可以看作其中一个图形是由另一个图形放大或缩小得到的?【师生活动】学生观察独立思考,小组合作交流,展示小组成果,教师点评,共同归纳相似图形的特征.【结论】相似图形的特征是:形状相同.两个图形的形状相同,则两个图形就是相似图形.相似图形的大小不一定相等,其中一个图形可以看作是由另一个图形放大或缩小得到的. [设计意图]让学生通过观察思考、合作交流,共同归纳出相似形的特征,培养学生的观察能力、归纳总结能力及合作交流的能力,激发学生学习的兴趣,加深学生对相似图形的概念的理解和掌握.三、例题讲解如图是一个女孩从平面镜和哈哈镜里看到的自己的形象,这些镜中的形象相似吗?【思考】(1)在平面镜中的像与物体的形状 ,大小,则从平面镜里看到的自己的形象与女孩相似图形(填“是”或“不是”).(2)哈哈镜里看到的形象,有的被“压扁”了,有的被“拉长”了,所以哈哈镜中的像与物体的形状 ,大小,则从哈哈镜里看到的自己的形象与女孩相似图形(填“是”或“不是”).〔解析〕女孩从平面镜中看到的自己的形象是相似的;女孩从哈哈镜里看到的自己的形象不是相似的.〔答案〕(1)相同相等是(2)不同不相等不是【师生活动】学生独立思考回答,教师点评.观察下列图形,哪些是相似图形?第一组:第二组:【师生活动】教师引导、点拨、分析.要找出图中的相似图形,只要仔细观察每个图形的特征,通过图形变化后是否具备“形状相同”这一特征.学生观察后回答即可.解:第一组图,图1,2,5是相似图形.第二组的相似图形分别是:(1)和(8);(2)和(6);(3)和(7).[设计意图]通过经历对例题的探究过程,加深学生对相似形的基本特征的理解,达到巩固知识的目的,培养学生分析问题、解决问题的能力.[知识拓展]所谓“形状相同”,就是与图形的大小、位置无关,与摆放角度、摆放方向也无关.有些图形之间虽然只有很小的形状差异,但也不能认为是“形状相同”.1.相似图形的定义:形状相同的图形叫做相似图形.2.相似图形与全等形之间的关系.3.相似图形的特征:形状相同.1.下列四个命题:①所有的直角三角形都相似;②所有的等腰三角形都相似;③所有的正方形都相似;④所有的菱形都相似.其中正确的有()A.2个B.3个C.4个D.1个2.下列图形是相似图形的是()A.①②③B.②③④C.①③④D.①②④3.下列图形不是相似图形的是()A.同一张底片冲洗出来的两张大小不同的照片B.用放大镜将一个细小物体的图案放大过程中原有图案和放大图案C.某人的侧身照片和正面照片D.大小不同的两张中国地图4.如图,用放大镜将图形放大,应该属于()A.相似变换B.平移变换C.对称变换D.旋转变换【答案与解析】1.D 解析:所有的正方形的形状相同,所以③正确;直角三角形、等腰三角形、菱形的形状和内角有关,角度不同,图形的形状就不同,所以所有的直角三角形、所有的等腰三角形、所有的菱形不一定相似.故选D.2.A解析:观察图形可得①②③中图形的形状相同.故选A.3.C解析:某人的侧面照片和正面照片形状不相同,不是相似图形.故选C.4.A 解析:相似图形的形状相同,其中一个图形可以看作是由另一个图形放大或缩小得到的.所以用放大镜放大图形属于相似变换.故选A.第1课时1.认识相似图形2.相似图形的特征3.例题讲解例1例2一、教材作业二、课后作业【基础巩固】1.下列图形,相似的一组图形是()2.下列属性,是相似图形的本质属性的是()A.大小不同B.大小相同C.形状相同D.形状不同3.下列图形,不是相似图形的有()A.0组B.1组C.2组D.3组4.下列四组图形,一定相似的是()A.正方形和矩形B.正方形和菱形C.菱形与菱形D.正五边形与正五边形5.如图是小华拍摄的足球的照片,下列说法不正确的是()A.足球上所有“黑片”形状相同B.足球上所有“白片”形状相同C.足球上“黑片”“白片”形状相同D.足球上“黑片”“白片”形状不相同6.放大镜下的图形和原来的图形相似图形.哈哈镜中的图形和原来的图形相似图形(填“是”或“不是”).7.下列各组图形:①两个平行四边形;②两个圆;③两个矩形;④有一个内角是80°的两个等腰三角形;⑤两个正六边形;⑥有一个内角是100°的两个等腰三角形.其中一定是相似图形的是.8.如图,各组图形中相似的是.(只填序号)9.在实际生活和数学学习中,我们常会看到许多形状相同的图形,下图中,形状相同的图形有哪几组?10.如何将图中的图形ABCDE放大,使新图形的各顶点仍在格点上?【能力提升】11.用一个10倍的放大镜看一个15°的角,看到的角的度数是.12.在实际生活和数学学习中,我们常会看到许多形状相同的图形,在下图中,形状相同的图形有哪些?【拓展探究】13.用相似图形设计美丽的图案.生活中有许多形状相同的图形,我们可以用相似图形设计出各种各样的美丽图案.例如:已知如图(1)是由相似的直角三角形拼成的一个商标图案,请你参照此图案用相似图形设计出几个你喜欢的图案,并联系实际为你的设计取一个合适的名字. (下面举两例供参考,如图(2))【答案与解析】1.D解析:观察各图形,只有D中两个图形形状相同,大小不相等.故选D.2.C解析:相似图形的形状相同,但大小不一定相同,所以形状相同是相似图形的本质属性.故选C.3.B解析:(1)中形状相同,但大小不同,符合相似形的定义;(2)中形状相同,但大小不同,符合相似形的定义;(3)中形状不相同,不符合相似形的定义;(4)中形状相同,符合相似形的定义.故不是相似图形的有1组.故选B.4.D解析:正方形和矩形的形状不一定相同,所以不一定相似;正方形和菱形的对应角不一定相等,所以不一定相似;菱形与菱形对应角不一定相等,所以不一定相似;正五边形与正五边形的形状相同,所以两个图形相似.故选D.5.C解析:“黑片”是正五边形,“白片”是正六边形,两个图形的形状不相同.故选C.6.是不是解析:放大镜下的图形与原来的图形形状相同,大小不相等,所以是相似图形;哈哈镜中的图形与原来的图形形状不同,大小也不相等,所以不相似.7.②⑤⑥解析:两个平行四边形的角不一定相等,所以不一定相似;两个矩形的边不确定,所以不一定相似;80°的内角可能是顶角也可能是底角,所以形状不一定相同;两个圆、两个正六边形、一个内角是100°的两个等腰三角形的形状相同,所以图形相似.故填②⑤⑥.8.②③解析:观察图形可得:②③的形状相同,大小不相等.故填②③.9.解:(1)中的左边图形是圆,右边图形是椭圆,形状不同;(2)中的左边是正六边形,右边不是正六边形,形状不同;(3)中的两个图形形状相同;(4)中的左边是长方形,右边的是正方形,形状不同;(5)中的两个图形形状相同;(6)中的左边是圆形脸,右边是椭圆形脸,形状不同,故(3),(5)组中的图形形状相同,(1),(2),(4),(6)组中的图形形状不同.10.如图.11.15°解析:用放大镜看后的图形与原图形形状相同,大小不相等,角放大后度数不变.故填15°.12.解:(1)和(3),(2)和(13),(4)和(11),(5)和(10),(6)(7)(8)和(9).13.解:答案不唯一,如图.本节课通过对生活中形状相同的图形的观察和欣赏导入新课,让学生体会数学来源于生活,激发学生学习的兴趣,同时感受数学和生活中的美,再让学生观察、思考、分析、探究,然后归纳结论,得出相似图形的特征,相似图形只与形状有关,与图形大小、位置无关,培养了学生观察事物的能力,提高了学生分析问题与归纳的能力,例题的探究让学生体会把实际问题转化为数学问题,获得成功的体验,在探究知识的形成过程中,学生积极参与,思维活跃,尤其在举生活中相似图形的实例时,学生发言积极,课堂气氛活跃,让课堂教学达到高潮.本节课比较简单,通过观察图形,形状相同的图形是相似图形,所以学生学习起来比较简单,所以学生在课堂上非常活跃,发言积极,虽然有些学生发言不够准确,但可以看出大家情绪高涨、积极思考的状态.但是在简单课时的教学中,忽略了学生能力的培养和知识的拓展,如在探究图形相似的特征后,可以让学生在网格图中画相似图形,培养学生动手操作能力.本节课的重点是通过欣赏图形,观察图形的特征,归纳总结相似图形的概念和特征,并能总结全等图形与相似图形之间的关系,由于课时内容较少,学生易于掌握,在教学时用多媒体多展示一些相似图形的图片,可以用一些图形不同的角度和方向的图片,培养学生的观察能力,同时在课堂上注重培养学生自主学习的能力,教师起到引导作用即可,让学生多参与、思考、归纳,通过小组合作交流,达到掌握知识的目的.(1)相似图形是现实生活中广泛存在的现象,本章是在研究了图形的全等及图形的一些变换后,进一步研究的一种变换——相似,本课时重点掌握相似图形的概念,可用大量的实例引入,让学生体会数学与实际生活之间的联系,通过学生观察、思考,得出相似图形的概念,但要注意教材中“形状相同的图形是相似图形”,只是对相似图形的概念的一个描述,不是定义,还要强调:相似图形一定形状相同,与它的位置、颜色、大小无关;相似图形不仅仅指平面图形,也包括立体图形;两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.在教学中,要通过大量实例让学生观察、思考、归纳、辨析,从而理解和掌握相似图形的概念.(2)本节课内容比较简单,易理解掌握,所以在教学设计中注重培养学生的自主探究、合作交流能力,教师要大胆放手,学生通过自主学习,探索知识的形成过程,从而真正成为课堂的主人,享受成功的快乐.同时在课堂上注重培养学生的能力,如通过辨析图形是否为相似图形,探索相似图形的特征时,注重培养学生观察、分析问题、解决问题的能力.如图,下列图形,与左边的图形相似的是()〔解析〕因为图A是把图拉长了,而图D是把图压扁了,因此它们与左图都不相似;图B是正六边形,与左图的正五边形的边数不同,故图B与左图也不相似;而图C是将左图绕正五边形的中心旋转180°后,再按一定比例缩小得到的,因此图C与左图相似.故选C.如图,下列四组图形,两个图形相似的有()A.1组B.2组C.3组D.4组〔解析〕观察图形可得,四组图形的形状都分别相同,只是大小不同,所以四组图形都是相似图形.故选D.第课时1.了解成比例线段的概念,会判断已知线段是否成比例.2.理解相似多边形的概念、性质及判定.3.能根据相似多边形的有关概念和性质进行判断及有关计算.1.通过观察、测量、辨析、归纳等数学活动,经历相似多边形的概念的形成过程,体会由特殊到一般的数学思想方法.2.通过应用成比例线段的定义及相似多边形的性质进行有关计算,体会方程思想在几何中的应用,渗透数形结合思想.1.经历相似多边形的概念的形成过程,培养学生的观察、推理能力,激发学生探究及发现数学问题的兴趣.2.在探索相似多边形的性质的过程中,培养学生与他人交流、合作的意识和品质.在观察、操作、推理的探究过程中,体验数学活动充满探索性和创造性.【重点】1.理解并掌握相似多边形的概念及性质.2.能利用成比例线段的概念及相似多边形的性质进行有关计算.【难点】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[活动3]
(1)思考图中的两个相似的正三角形和两个相似的正六边形的对应边和对应角的关系.
(2)什么叫成比例线段?
学生看书观察后回答.
在活动1和2中教师应重点关注:
(1)学生用数学的语言归纳相似图形的概念;
(2)在练习中检验学生对相似图形的几何直觉.
学生归纳总结:
形状相同的图形叫做相似图形
学生思考后回答:
它们的对应角相等,对应边的比相等.
.
在活动3中教师应重点关注:
(1)学生参与活动的热情及语言归纳数学结论的能力;
(2)学生对正三角形和正六边形的图形的认识是否到位;
(3)对新概念——成比例线段的理解和掌握.
[活动4]
探究:
如图中的两个相似三角形和相似四边形,它们的对应角和对应边有什么关系?
学生通过例题运用相似多边形的性质,正确解答出角 的大小和EH的长度 .
[活动5]
教材40页练习
1.在比例尺为1﹕10 000 000的地图上,量得甲、乙两地的距离是30 cm ,求两地的实际距离.
2.如图所示的两个直角三角形相似吗?为什么?
3.如图所示的两个五边形相似,求未知边 、 、 、 的长度.
27.1图形的相似
教学任务分析
教
学
目
标
知识技能
1.通过具体实例认识图形的相似.
2 .探索相似图形的性质, 知道相似图形的对应角相等,对 应边成比例,面积的比等于相似比的平方.
数学思考
1.通过认识图形的相似,经历探索相似图形的性质的探究过程.
2思想,并体会由特殊到一般的思想方法.
在活动5中教师应重点关注:
(1)学生参与活动的热情及语言归纳数学结论的能力;
(2)学生对于相似多边形的性质的掌握情况.
[活动6]问题
(1)谈谈本节课你有哪些收获.
(2)布置作业:教村第40页,第1~7题.
活动2通过练习得出相似图形的概念
活动3引出成比例线段的概念,思考探索相似图形的性质
活动4合作交流,验证猜想
活动5得到性质,综合运用
活动6归纳小结,布置作业.
从图形的直观感觉建立图形相似的几何直觉.
通过对两个正三角形和两个正六边形的对应 边和对应角的观察,探索相似图形的性质.
了解成比例线段的概念.
在网格中验证任意相似多边形的对应边和对应角的关系.
学生猜想,为了验证自己的猜想,可以鼓励学生用刻度尺和 量角器量一量.
学生归纳总结:
(1)相似多边形的对应角相等,对应边成比例;
(2)如果两个多边形的对应角相等,对应边成比例,那么这两个多边形相似;
(3)相似多边形的对应边的比称为相似比;当相似比为1时,两个多边形全等.
[活动5]
教材39页例
如图,四边形ABCD和EFGH相似,求角 的大小,EH的长度 .
解决问题
通过相似图形的性质的研究,体会数形结合法和从特殊到一般等数学思想方法在问题解决中的作用,并能运用相似图形的性质解决问题.
情感态度
在探索相似图形的性质过程中,培养学生与他人交流、合作的意识和品质.
重点
相似图形的性质
难点
相似图形的性质
教学流程安排
活动流程图
活动内容和目的
活动1观察图片,体会相似图形
探究得到性质,通过例题运用 相似多边形的性质.
由学生小结本节内容.
教学过程设计
问题与情境
师生行为
[活动1]
同学们,请观察下列几 幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗?
教师出示图片,提出问题;学生观察,小组讨论;师生共同交流.
得到相似图形的概念.
[活动2]练习:
1.如图,从放大镜里看到的三角尺和原来的三角尺相似吗?