2019-2020学年安徽省宿州市泗县中考直升数学试题(有标准答案)

合集下载

安徽省宿州市2020年中考数学学业水平测试试题

安徽省宿州市2020年中考数学学业水平测试试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是( )A.12B.13C.14D.162.一、单选题如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°3.如图,点A、B、C是⊙O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF 等于()A.12.5°B.15°C.20°D.22.5°4.下列计算正确的是()A.a4+a5=a9B.(2a2b3)2=4a4b6C.﹣2a(a+3)=﹣2a2+6a D.(2a﹣b)2=4a2﹣b25.如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O为位似中心,相似比为13,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.4 B.5 C.6 D.77.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为14,则原来盒里有白色棋子()A.1颗B.2颗C.3颗D.4颗8.如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=27,CD=1,则BE的长是()A.5 B.6 C.7 D.89.下列各式:①a0=1 ②a2·a3=a5 ③ 2–2= –14④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正确的是( )A.①②③B.①③⑤C.②③④D.②④⑤10.下列计算正确的是()A.2a2﹣a2=1 B.(ab)2=ab2C.a2+a3=a5D.(a2)3=a6二、填空题(本题包括8个小题)11.若A(﹣3,y1),B(﹣2,y2),C(1,y3)三点都在y=1x的图象上,则y l,y2,y3的大小关系是_____.(用“<”号填空)12.如图所示,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△BDE:S四边形DECA的值为_____.13.64的立方根是_______.14.如图,将三角形AOC绕点O顺时针旋转120°得三角形BOD,已知OA=4,OC=1,那么图中阴影部分的面积为_____.(结果保留π)15.函数32xyx=-中,自变量x的取值范围是______16.如图,正五边形ABCDE和正三角形AMN都是⊙O的内接多边形,则∠BOM=_______.17.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=_____.18.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是___.三、解答题(本题包括8个小题)19.(6分)老师布置了一个作业,如下:已知:如图1ABCD的对角线AC的垂直平分线EF交AD于点F,交BC于点E,交AC于点O.求证:四边形AECF是菱形.某同学写出了如图2所示的证明过程,老师说该同学的作业是错误的.请你解答下列问题:能找出该同学错误的原因吗?请你指出来;请你给出本题的正确证明过程.20.(6分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.求证:CD是⊙O的切线;若∠D=30°,BD=2,求图中阴影部分的面积.21.(6分)如图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.以点O为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A′B′C′;△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.22.(8分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?23.(8分)如图,一次函数y=kx+b与反比例函数y=的图象相较于A(2,3),B(﹣3,n)两点.求一次函数与反比例函数的解析式;根据所给条件,请直接写出不等式kx+b>的解集;过点B作BC⊥x轴,垂足为C,求S△ABC.24.(10分)学校为了提高学生跳远科目的成绩,对全校500名九年级学生开展了为期一个月的跳远科目强化训练。

安徽省宿州市2019-2020学年中考数学考前模拟卷(5)含解析

安徽省宿州市2019-2020学年中考数学考前模拟卷(5)含解析

安徽省宿州市2019-2020学年中考数学考前模拟卷(5)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃2.如图,在Rt△ABC中,∠ACB=90°,AC=23,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将»BD绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为()A.2233π-B.2233π-C.233π-D.233π-3.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=1004.若⊙O的半径为5cm,OA=4cm,则点A与⊙O的位置关系是()A.点A在⊙O内B.点A在⊙O上C.点A在⊙O外D.内含5.如图,实数﹣3、x、3、y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是()A.点M B.点N C.点P D.点Q6.郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是()A.13B.14C.15D.167.若代数式11xx+-有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x≠0D.x≥0且x≠18.定义:若点P(a,b)在函数y=的图象上,将以a为二次项系数,b为一次项系数构造的二次函数y=ax2+bx称为函数y=的一个“派生函数”.例如:点(2,)在函数y=的图象上,则函数y=2x2+称为函数y=的一个“派生函数”.现给出以下两个命题:(1)存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧(2)函数y=的所有“派生函数”的图象都经过同一点,下列判断正确的是()A.命题(1)与命题(2)都是真命题B.命题(1)与命题(2)都是假命题C.命题(1)是假命题,命题(2)是真命题D.命题(1)是真命题,命题(2)是假命题9.下列计算正确的是()A.2a2﹣a2=1 B.(ab)2=ab2C.a2+a3=a5D.(a2)3=a610.超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=9011.如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为()A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm12.如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6米,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是()A .91032π⎛⎫-⎪⎝⎭米2 B .932π⎛⎫- ⎪⎝⎭米2 C .9632π⎛⎫- ⎪⎝⎭米2 D .()693π-米2 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.14.如图,长方形内有两个相邻的正方形,面积分别为3和9,那么阴影部分的面积为_____.15.一个正n 边形的中心角等于18°,那么n =_____. 16.因式分解:x 2﹣3x+(x ﹣3)=_____. 17.计算:(π﹣3)0+(﹣13)﹣1=_____. 18.函数3y x =+的定义域是________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A ,B 两种型号的学习用品共1000件,已知A 型学习用品的单价为20元,B 型学习用品的单价为30元.若购买这批学习用品用了26000元,则购买A ,B 两种学习用品各多少件?若购买这批学习用品的钱不超过28000元,则最多购买B 型学习用品多少件? 20.(6分)先化简,再求值:2121111a a a a -⎛⎫-÷⎪+-+⎝⎭,其中31a = 21.(6分)定义:对于给定的二次函数y=a (x ﹣h )2+k (a≠0),其伴生一次函数为y=a (x ﹣h )+k ,例如:二次函数y=2(x+1)2﹣3的伴生一次函数为y=2(x+1)﹣3,即y=2x ﹣1. (1)已知二次函数y=(x ﹣1)2﹣4,则其伴生一次函数的表达式为_____; (2)试说明二次函数y=(x ﹣1)2﹣4的顶点在其伴生一次函数的图象上;(3)如图,二次函数y=m(x﹣1)2﹣4m(m≠0)的伴生一次函数的图象与x轴、y轴分别交于点B、A,且两函数图象的交点的横坐标分别为1和2,在∠AOB内部的二次函数y=m(x﹣1)2﹣4m的图象上有一动点P,过点P作x轴的平行线与其伴生一次函数的图象交于点Q,设点P的横坐标为n,直接写出线段PQ的长为32时n的值.22.(8分)某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,并建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P与t之间存在如图所示的函数关系,其图象是函数P=1204t+(0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q=28,01244,1224t tt t+<≤⎧⎨-+<≤⎩(1)当8<t≤24时,求P关于t的函数解析式;(2)设第t个月销售该原料药的月毛利润为w(单位:万元)①求w关于t的函数解析式;②该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.23.(8分)先化简,再求值:22222+ba b a b aa ab b a b a-+÷--+-,其中,a、b满足2428a ba b-=-⎧⎨+=⎩.24.(10分)如图,在平面直角坐标系xOy中,直线y=kx+m与双曲线y=﹣2x相交于点A(m,2).(1)求直线y=kx+m的表达式;(2)直线y=kx+m与双曲线y=﹣2x的另一个交点为B,点P为x轴上一点,若AB=BP,直接写出P点坐标.25.(10分)如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE 于F,设PA=x.(1)求证:△PFA∽△ABE;(2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件:.26.(12分)为了了解初一年级学生每学期参加综合实践活动的情况,某区教育行政部门随机抽样调查了部分初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了统计图①和图②,请根据图中提供的信息,回答下列问题:(I)本次随机抽样调查的学生人数为,图①中的m的值为;(II)求本次抽样调查获取的样本数据的众数、中位数和平均数;(III)若该区初一年级共有学生2500人,请估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生人数.27.(12分)△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的14时,求线段EF的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】试题分析:由题意知,“-”代表零下,因此-3℃表示气温为零下3℃.故选B.考点:负数的意义2.B【解析】【分析】阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可.【详解】解:由旋转可知AD=BD,∵∠ACB=90°3∴CD=BD,∵CB=CD,∴△BCD是等边三角形,∴∠BCD=∠CBD=60°,∴,∴阴影部分的面积×2÷2−2602360π⨯23π.故选:B. 【点睛】本题考查了旋转的性质与扇形面积的计算,解题的关键是熟练的掌握旋转的性质与扇形面积的计算. 3.A 【解析】 【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x ,根据“从80吨增加到100吨”,即可得出方程. 【详解】由题意知,蔬菜产量的年平均增长率为x ,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x )吨, 2018年蔬菜产量为80(1+x )(1+x )吨,预计2018年蔬菜产量达到100吨, 即: 80(1+x )2=100, 故选A . 【点睛】本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程. 4.A 【解析】 【分析】直接利用点与圆的位置关系进而得出答案. 【详解】解:∵⊙O 的半径为5cm ,OA=4cm ,∴点A 与⊙O 的位置关系是:点A 在⊙O 内. 故选A . 【点睛】此题主要考查了点与圆的位置关系,正确①点P 在圆外⇔d >r ,②点P 在圆上⇔d=r ,③点P 在圆内⇔d <r 是解题关键. 5.D∵实数-3,x ,3,y 在数轴上的对应点分别为M 、N 、P 、Q , ∴原点在点M 与N 之间,∴这四个数中绝对值最大的数对应的点是点Q . 故选D . 6.C 【解析】 【分析】列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得. 【详解】 解:列表得:∴一共有25种等可能的情况,恰好选择从同一个口进出的有5种情况, ∴恰好选择从同一个口进出的概率为525=15, 故选C . 【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比. 7.D 【解析】试题分析:∵代数式11x +- ∴10{x x -≠≥,解得x≥0且x≠1.考点:二次根式,分式有意义的条件.8.C【解析】试题分析:(1)根据二次函数y=ax2+bx的性质a、b同号对称轴在y轴左侧,a、b异号对称轴在y轴右侧即可判断.(2)根据“派生函数”y=ax2+bx,x=0时,y=0,经过原点,不能得出结论.(1)∵P(a,b)在y=上,∴a和b同号,所以对称轴在y轴左侧,∴存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧是假命题.(2)∵函数y=的所有“派生函数”为y=ax2+bx,∴x=0时,y=0,∴所有“派生函数”为y=ax2+bx经过原点,∴函数y=的所有“派生函数”,的图象都进过同一点,是真命题.考点:(1)命题与定理;(2)新定义型9.D【解析】【分析】根据合并同类项法则判断A、C;根据积的乘方法则判断B;根据幂的乘方法判断D,由此即可得答案. 【详解】A、2a2﹣a2=a2,故A错误;B、(ab)2=a2b2,故B错误;C、a2与a3不是同类项,不能合并,故C错误;D、(a2)3=a6,故D正确,故选D.【点睛】本题考查幂的乘方与积的乘方,合并同类项,熟练掌握各运算的运算性质和运算法则是解题的关键.10.A【解析】试题分析:设某种书包原价每个x元,根据题意列出方程解答即可.设某种书包原价每个x元,可得:0.8x﹣10=90考点:由实际问题抽象出一元一次方程.11.B【解析】【分析】由已知可证△ABO∽CDO,故CD OCAB OA=,即1.813AB=.【详解】由已知可得,△ABO∽CDO,所以,CD OC AB OA=,所以,1.813 AB=,所以,AB=5.4故选B【点睛】本题考核知识点:相似三角形. 解题关键点:熟记相似三角形的判定和性质. 12.C【解析】【详解】连接OD,∵弧AB的半径OA长是6米,C是OA的中点,∴OC=12OA=12×6=1.∵∠AOB=90°,CD∥OB,∴CD⊥OA.在Rt△OCD中,∵OD=6,OC=1,∴2222CD OD OC6333=-=-=.又∵CD333sin DOCOD62∠===,∴∠DOC=60°.∴2606193336336022DOCAODS S Sππ∆⋅⋅=-=-⨯⨯=-阴影扇形(米2).故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.50°【解析】【分析】先根据平行线的性质得出∠DEF的度数,再根据翻折变换的性质得出∠D′EF的度数,根据平角的定义即可得出结论.【详解】∵AD∥BC,∠EFB=65°,∴∠DEF=65°,又∵∠DEF=∠D′EF,∴∠D′EF=65°,∴∠AED′=50°.【点睛】本题考查翻折变换(折叠问题)和平行线的性质,解题的关键是掌握翻折变换(折叠问题)和平行线的性质.14.【解析】【分析】设两个正方形的边长是x、y(x<y),得出方程x2=1,y2=9,求出x y=1,代入阴影部分的面积是(y﹣x)x求出即可.【详解】设两个正方形的边长是x、y(x<y),则x2=1,y2=9,x=y=1,则阴影部分的面积是(y﹣x)x=(1=1.故答案为1.【点睛】本题考查了二次根式的应用,主要考查学生的计算能力.15.20【解析】【分析】由正n边形的中心角为18°,可得方程18n=360,解方程即可求得答案.【详解】∵正n边形的中心角为18°,∴18n=360,∴n=20.故答案为20.【点睛】本题考查的知识点是正多边形和圆,解题的关键是熟练的掌握正多边形和圆.16.(x-3)(x+1);【解析】根据因式分解的概念和步骤,可先把原式化简,然后用十字相乘分解,即原式=x2﹣3x+x﹣3=x 2﹣2x ﹣3=(x ﹣3)(x+1);或先把前两项提公因式,然后再把x-3看做整体提公因式:原式=x (x ﹣3)+(x ﹣3)=(x ﹣3)(x+1).故答案为(x ﹣3)(x+1).点睛:此题主要考查了因式分解,关键是明确因式分解是把一个多项式化为几个因式积的形式.再利用因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解),进行分解因式即可. 17.-1【解析】【分析】先计算0指数幂和负指数幂,再相减.【详解】(π﹣3)0+(﹣13)﹣1, =1﹣3,=﹣1,故答案是:﹣1.【点睛】考查了0指数幂和负指数幂,解题关键是运用任意数的0次幂为1,a -1=1a . 18.x≥-1【解析】分析:根据二次根式的性质,被开方数大于或等于0,可以求出x 的范围.详解:根据题意得:x+1≥0,解得:x≥﹣1.故答案为x≥﹣1.点睛:考查了函数的定义域,函数的定义域一般从三个方面考虑:(1)当函数表达式是整式时,定义域可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(1)当函数表达式是二次根式时,被开方数非负.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)购买A 型学习用品400件,B 型学习用品600件.(2)最多购买B 型学习用品1件【解析】【分析】(1)设购买A 型学习用品x 件,B 型学习用品y 件,就有x+y=1000,20x+30y=26000,由这两个方程构成方程组求出其解就可以得出结论.(2)设最多可以购买B 型产品a 件,则A 型产品(1000﹣a )件,根据这批学习用品的钱不超过210元建立不等式求出其解即可.【详解】解:(1)设购买A 型学习用品x 件,B 型学习用品y 件,由题意,得x y 100020x 30y 26000+=⎧⎨+=⎩,解得:x 400y 600=⎧⎨=⎩. 答:购买A 型学习用品400件,B 型学习用品600件.(2)设最多可以购买B 型产品a 件,则A 型产品(1000﹣a )件,由题意,得20(1000﹣a )+30a≤210,解得:a ≤1.答:最多购买B 型学习用品1件20.11a - 【解析】【分析】先对小括号部分通分,同时把除化为乘,再根据分式的基本性质约分,最后代入求值.【详解】解:原式=1(2)(1)(1)(1)a a a a a ---⨯++-=11a -把1a =代入得:原式=3. 【点睛】本题考查分式的化简求值,计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.21.y=x ﹣5【解析】分析:(1)根据定义,直接变形得到伴生一次函数的解析式;(2)求出顶点,代入伴生函数解析式即可求解;(3)根据题意得到伴生函数解析式,根据P 点的坐标,坐标表示出纵坐标,然后通过PQ 与x 轴的平行关系,求得Q 点的坐标,由PQ 的长列方程求解即可.详解:(1)∵二次函数y=(x ﹣1)2﹣4,∴其伴生一次函数的表达式为y=(x ﹣1)﹣4=x ﹣5,故答案为y=x ﹣5;(2)∵二次函数y=(x ﹣1)2﹣4,∴顶点坐标为(1,﹣4),∵二次函数y=(x ﹣1)2﹣4,∴其伴生一次函数的表达式为y=x ﹣5,∴当x=1时,y=1﹣5=﹣4,∴(1,﹣4)在直线y=x ﹣5上,即:二次函数y=(x ﹣1)2﹣4的顶点在其伴生一次函数的图象上;(3)∵二次函数y=m (x ﹣1)2﹣4m ,∴其伴生一次函数为y=m (x ﹣1)﹣4m=mx ﹣5m ,∵P 点的横坐标为n ,(n >2),∴P 的纵坐标为m (n ﹣1)2﹣4m ,即:P (n ,m (n ﹣1)2﹣4m ),∵PQ ∥x 轴,∴Q ((n ﹣1)2+1,m (n ﹣1)2﹣4m ),∴PQ=(n ﹣1)2+1﹣n ,∵线段PQ 的长为32, ∴(n ﹣1)2+1﹣n=32, ∴n=32±. 点睛:此题主要考查了新定义下的函数关系式,关键是理解新定义的特点构造伴生函数解析式. 22.(1)P=t+2;(2)①当0<t≤8时,w=240;当8<t≤12时,w=2t 2+12t+16;当12<t≤24时,w=﹣t 2+42t+88;②此范围所对应的月销售量P 的最小值为12吨,最大值为19吨.【解析】分析:(1)设8<t≤24时,P=kt+b ,将A (8,10)、B (24,26)代入求解可得P=t+2;(2)①分0<t≤8、8<t≤12和12<t≤24三种情况,根据月毛利润=月销量×每吨的毛利润可得函数解析式;②求出8<t≤12和12<t≤24时,月毛利润w 在满足336≤w≤513条件下t 的取值范围,再根据一次函数的性质可得P 的最大值与最小值,二者综合可得答案.详解:(1)设8<t≤24时,P=kt+b ,将A (8,10)、B (24,26)代入,得:8102426k b k b +⎧⎨+⎩==, 解得:12k b ⎧⎨⎩==, ∴P=t+2;(2)①当0<t≤8时,w=(2t+8)×1204t+=240;当8<t≤12时,w=(2t+8)(t+2)=2t2+12t+16;当12<t≤24时,w=(-t+44)(t+2)=-t2+42t+88;②当8<t≤12时,w=2t2+12t+16=2(t+3)2-2,∴8<t≤12时,w随t的增大而增大,当2(t+3)2-2=336时,解题t=10或t=-16(舍),当t=12时,w取得最大值,最大值为448,此时月销量P=t+2在t=10时取得最小值12,在t=12时取得最大值14;当12<t≤24时,w=-t2+42t+88=-(t-21)2+529,当t=12时,w取得最小值448,由-(t-21)2+529=513得t=17或t=25,∴当12<t≤17时,448<w≤513,此时P=t+2的最小值为14,最大值为19;综上,此范围所对应的月销售量P的最小值为12吨,最大值为19吨.点睛:本题主要考查二次函数的应用,掌握待定系数法求函数解析式及根据相等关系列出分段函数的解析式是解题的前提,利用二次函数的性质求得336≤w≤513所对应的t的取值范围是解题的关键.23.3 5【解析】【分析】先根据分式混合运算顺序和运算法则化简原式,再解方程组求得a、b的值,继而代入计算可得.【详解】原式=()2()•()a b a b a b aa b a b a b+----++,=a b aa b a b +-++,=ba b +,解方程组2428a ba b--⎧⎨+⎩==得23ab⎧⎨⎩==,所以原式=33=2+35.【点睛】本题主要考查分式的化简求值和解二元一次方程组,解题的关键是熟练掌握分式混合运算顺序和运算法则.24.(1)m =﹣1;y =﹣3x ﹣1;(2)P 1(5,0),P 2(113-,0). 【解析】【分析】 (1)将A 代入反比例函数中求出m 的值,即可求出直线解析式,(2)联立方程组求出B 的坐标,理由过两点之间距离公式求出AB 的长,求出P 点坐标,表示出BP 长即可解题.【详解】解:(1)∵点A (m ,2)在双曲线2y x=-上, ∴m =﹣1,∴A (﹣1,2),直线y =kx ﹣1,∵点A (﹣1,2)在直线y =kx ﹣1上,∴y =﹣3x ﹣1. (2)312y x y x =--⎧⎪⎨=-⎪⎩ ,解得12x y =-⎧⎨=⎩或233x y ⎧=⎪⎨⎪=-⎩, ∴B (23,﹣3), ∴ABP (n ,0), 则有(n ﹣23)2+32=2509, 解得n =5或113-, ∴P 1(5,0),P 2(113-,0). 【点睛】本题考查了一次函数和反比例函数的交点问题,中等难度,联立方程组,会用两点之间距离公式是解题关键. 25.(1)证明见解析;(2)3或256.(3)65x =或0<1x < 【解析】【分析】(1)根据矩形的性质,结合已知条件可以证明两个角对应相等,从而证明三角形相似;(2)由于对应关系不确定,所以应针对不同的对应关系分情况考虑:当PEF EAB ∠=∠ 时,则得到四边形ABEP 为矩形,从而求得x 的值;当PEF AEB ∠=∠时,再结合(1)中的结论,得到等腰APE V .再根据等腰三角形的三线合一得到F 是AE 的中点,运用勾股定理和相似三角形的性质进行求解. (3)此题首先应针对点P 的位置分为两种大情况:①D e 与AE 相切,② D e 与线段AE 只有一个公共点,不一定必须相切,只要保证和线段AE 只有一个公共点即可.故求得相切时的情况和相交,但其中一个交点在线段AE 外的情况即是x 的取值范围.【详解】(1)证明:∵矩形ABCD ,∴AD ∥BC.90.ABE ∴∠=o ∴∠PAF=∠AEB.又∵PF ⊥AE ,90.PFA ABE ∴∠=∠=o ∴△PFA ∽△ABE.(2)情况1,当△EFP ∽△ABE ,且∠PEF=∠EAB 时,则有PE ∥AB∴四边形ABEP 为矩形,∴PA=EB=3,即x=3.情况2,当△PFE ∽△ABE ,且∠PEF=∠AEB 时,∵∠PAF=∠AEB ,∴∠PEF=∠PAF.∴PE=PA.∵PF ⊥AE ,∴点F 为AE 的中点,5AE ===Q ,15.22EF AE ∴== ,PE EF AE EB =Q 即5253PE =, 25.6PE ∴= ∴满足条件的x 的值为3或25.6(3) 65x =或0 1.x << 【点睛】两组角对应相等,两三角形相似.26.(I )150、14;(II )众数为3天、中位数为4天,平均数为3.5天;(III )700人【解析】【分析】(I)根据1天的人数及其百分比可得总人数,总人数减去其它天数的人数即可得m的值;(II)根据众数、中位数和平均数的定义计算可得;(III)用总人数乘以样本中5天、6天的百分比之和可得.【详解】解:(I)本次随机抽样调查的学生人数为18÷12%=150人,m=100﹣(12+10+18+22+24)=14,故答案为150、14;(II)众数为3天、中位数为第75、76个数据的平均数,即平均数为4+42=4天,平均数为118+221+363+334+275+156150⨯⨯⨯⨯⨯⨯=3.5天;(III)估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生有2500×(18%+10%)=700人.【点睛】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.27.(1)△ABD,△ACD,△DCE(2)△BDF∽△CED∽△DEF,证明见解析;(3)4.【解析】【分析】(1)根据等腰三角形的性质以及相似三角形的判定得出△ADE∽△ABD∽△ACD∽△DCE,同理可得:△ADE∽△ACD.△ADE∽△DCE.(2)利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性质得出BD DF=CE ED,从而得出△BDF∽△CED∽△DEF.(3)利用△DEF的面积等于△ABC的面积的14,求出DH的长,从而利用S△DEF的值求出EF即可【详解】解:(1)图(1)中与△ADE相似的有△ABD,△ACD,△DCE.(2)△BDF∽△CED∽△DEF,证明如下:∵∠B+∠BDF+∠BFD=30°,∠EDF+∠BDF+∠CDE=30°,又∵∠EDF=∠B,∴∠BFD=∠CDE.∵AB=AC,∴∠B=∠C.∴△BDF∽△CED.∴BD DF=CE ED.∵BD=CD,∴CD DF=CE ED,即CD CE=DF ED.又∵∠C=∠EDF,∴△CED∽△DEF.∴△BDF∽△CED∽△DEF.(3)连接AD,过D点作DG⊥EF,DH⊥BF,垂足分别为G,H.∵AB=AC,D是BC的中点,∴AD⊥BC,BD=12BC=1.在Rt△ABD中,AD2=AB2﹣BD2,即AD2=102﹣3,∴AD=2.∴S△ABC=12•BC•AD=12×3×2=42,S△DEF=14S△ABC=14×42=3.又∵12•AD•BD=12•AB•DH,∴AD BD8624 DHAB105⋅⨯===.∵△BDF∽△DEF,∴∠DFB=∠EFD.∵DH⊥BF,DG⊥EF,∴∠DHF=∠DGF.又∵DF=DF,∴△DHF≌△DGF(AAS).∴DH=DG=245.∵S△DEF=12·EF·DG=12·EF·245=3,∴EF=4.【点睛】本题考查了和相似有关的综合性题目,用到的知识点有三角形相似的判定和性质、等腰三角形的性质以及勾股定理的运用,灵活运用相似三角形的判定定理和性质定理是解题的关键,解答时,要仔细观察图形、选择合适的判定方法,注意数形结合思想的运用.。

安徽省宿州市2019-2020学年中考数学第一次调研试卷含解析

安徽省宿州市2019-2020学年中考数学第一次调研试卷含解析

安徽省宿州市2019-2020学年中考数学第一次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列计算正确的是().A.(x+y)2=x2+y2B.(-12xy2)3=-16x3y6C.x6÷x3=x2D.2(2)=22.如图1,点E为矩形ABCD的边AD上一点,点P从点B出发沿BE→ED→DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22时,y=110﹣1t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤当△BPQ与△BEA相似时,t=14.1.其中正确结论的序号是()A.①④⑤B.①②④C.①③④D.①③⑤3.在下列条件中,能够判定一个四边形是平行四边形的是( )A.一组对边平行,另一组对边相等B.一组对边相等,一组对角相等C.一组对边平行,一条对角线平分另一条对角线D.一组对边相等,一条对角线平分另一条对角线4.如图,四边形ABCD是边长为1的正方形,动点E、F分别从点C,D出发,以相同速度分别沿CB,DC运动(点E到达C时,两点同时停止运动).连接AE,BF交于点P,过点P分别作PM∥CD,PN∥BC,则线段MN的长度的最小值为()A.5B.512-C.12D.15.下列调查中适宜采用抽样方式的是()A.了解某班每个学生家庭用电数量B.调查你所在学校数学教师的年龄状况C.调查神舟飞船各零件的质量D.调查一批显像管的使用寿命6.对于非零的两个实数a、b,规定11a bb a⊗=-,若1(1)1x⊗+=,则x的值为()A.32B.13C.12D.12-7.若a与5互为倒数,则a=()A.15B.5 C.-5 D.15-8.在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是()A.众数是90 B.中位数是90 C.平均数是90 D.极差是159.如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B. C.D.10.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为()A .4B ..5C .6D .811.一副直角三角板如图放置,其中C DFE 90∠=∠=o ,45A ∠=︒,60E ∠=︒,点F 在CB 的延长线上若//DE CF ,则BDF ∠等于( )A .35°B .25°C .30°D .15°12.下列叙述,错误的是( )A .对角线互相垂直且相等的平行四边形是正方形B .对角线互相垂直平分的四边形是菱形C .对角线互相平分的四边形是平行四边形D .对角线相等的四边形是矩形二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在函数y =中,自变量x 的取值范围是_____.14.因式分解:32a ab -=_______________.15.在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是_____.16.如图,一艘轮船自西向东航行,航行到A 处测得小岛C 位于北偏东60°方向上,继续向东航行10海里到达点B 处,测得小岛C 在轮船的北偏东15°方向上,此时轮船与小岛C 的距离为_________海里.(结果保留根号)17.如图,平行线AB 、CD 被直线EF 所截,若∠2=130°,则∠1=_____.18.标号分别为1,2,3,4,……,n 的n 张标签(除标号外其它完全相同),任摸一张,若摸得奇数号标签的概率大于0.5,则n 可以是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知AB 是⊙O 的直径,BC ⊥AB ,连结OC ,弦AD ∥OC ,直线CD 交BA 的延长线于点E .(1)求证:直线CD是⊙O的切线;(2)若DE=2BC,AD=5,求OC的值.20.(6分)请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n(n>10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)21.(6分)如图,AD是△ABC的中线,CF⊥AD于点F,BE⊥AD,交AD的延长线于点E,求证:AF+AE=2AD.22.(8分)如图,在平行四边形ABCD中,AB<BC.利用尺规作图,在AD边上确定点E,使点E到边AB,BC的距离相等(不写作法,保留作图痕迹);若BC=8,CD=5,则CE= .23.(8分)某水果店购进甲乙两种水果,销售过程中发现甲种水果比乙种水果销售量大,店主决定将乙种水果降价1元促销,降价后30元可购买乙种水果的斤数是原来购买乙种水果斤数的1.5倍.(1)求降价后乙种水果的售价是多少元/斤?(2)根据销售情况,水果店用不多于900元的资金再次购进两种水果共500斤,甲种水果进价为2元/斤,乙种水果进价为1.5元/斤,问至少购进乙种水果多少斤?24.(10分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.25.(10分)先化简,再求值1xx-÷(x﹣21xx-),其中x=76.26.(12分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?27.(12分)在下列的网格图中.每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中作出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)中的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】分析:根据完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义计算,判断即可.详解:(x+y)2=x2+2xy+y2,A错误;(-12xy2)3=-18x3y6,B错误;x6÷x3=x3,C错误;()22-4=2,D正确;故选D.点睛:本题考查的是完全平方公式、积的乘方、同底数幂的除法以及算术平方根的计算,掌握完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义是解题的关键.2.D【解析】【分析】根据题意,得到P、Q分别同时到达D、C可判断①②,分段讨论PQ位置后可以判断③,再由等腰三角形的分类讨论方法确定④,根据两个点的相对位置判断点P在DC上时,存在△BPQ与△BEA相似的可能性,分类讨论计算即可.【详解】解:由图象可知,点Q到达C时,点P到E则BE=BC=10,ED=4则AE=10﹣4=6t=10时,△BPQ 的面积等于111040,22BC DC DC ⋅=⨯⋅= ∴AB=DC=8 故124,2ABE S AB AE =⋅=V 故②错误当14<t <22时,()1110221105,22y BC PC x t =⋅=⨯⨯-=- 故③正确;分别以A 、B 为圆心,AB 为半径画圆,将两圆交点连接即为AB 垂直平分线则⊙A 、⊙B 及AB 垂直平分线与点P 运行路径的交点是P ,满足△ABP 是等腰三角形此时,满足条件的点有4个,故④错误.∵△BEA 为直角三角形∴只有点P 在DC 边上时,有△BPQ 与△BEA 相似由已知,PQ=22﹣t ∴当AB PQ AE BC=或AB BC AE PQ =时,△BPQ 与△BEA 相似 分别将数值代入822610t -=或810622t=-, 解得t=13214(舍去)或t=14.1 故⑤正确故选:D .【点睛】本题是动点问题的函数图象探究题,考查了三角形相似判定、等腰三角形判定,应用了分类讨论和数形结合的数学思想.3.C【解析】A 、错误.这个四边形有可能是等腰梯形.B 、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.C 、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形.D 、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.故选C .4.B分析:由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可.详解:由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,在Rt△QDC中,=,∴CP=QC-,故选B.点睛:本题主要考查的是圆的相关知识和勾股定理,属于中等难度的题型.解决这个问题的关键是根据圆的知识得出点P的运动轨迹.5.D【解析】【分析】根据全面调查与抽样调查的特点对各选项进行判断.【详解】解:了解某班每个学生家庭用电数量可采用全面调查;调查你所在学校数学教师的年龄状况可采用全面调查;调查神舟飞船各零件的质量要采用全面调查;而调查一批显像管的使用寿命要采用抽样调查.故选:D.【点睛】本题考查了全面调查与抽样调查:全面调查与抽样调查的优缺点:全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.6.D【解析】试题分析:因为规定11a bb a⊗=-,所以11(1)111xx⊗+=-=+,所以x=12-,经检验x=12-是分式方程的解,故选D.考点:1.新运算;2.分式方程.7.A【解析】分析:当两数的积为1时,则这两个数互为倒数,根据定义即可得出答案.详解:根据题意可得:5a=1,解得:a=15,故选A.点睛:本题主要考查的是倒数的定义,属于基础题型.理解倒数的定义是解题的关键.8.C【解析】由统计图中提供的数据,根据众数、中位数、平均数、极差的定义分别列出算式,求出答案:【详解】解:∵90出现了5次,出现的次数最多,∴众数是90;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;∵平均数是(80×1+85×2+90×5+95×2)÷10=89;极差是:95﹣80=1.∴错误的是C.故选C.9.A【解析】【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看第一层是三个小正方形,第二层中间有一个小正方形,故选:A.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.10.C【解析】【详解】解:∵AD∥BE∥CF,根据平行线分线段成比例定理可得AB DEBC EF=,即123EF =,解得EF=6,故选C.11.D【解析】【分析】直接利用三角板的特点,结合平行线的性质得出∠BDE=45°,进而得出答案.【详解】解:由题意可得:∠EDF=30°,∠ABC=45°,∵DE∥CB,∴∠BDE=∠ABC=45°,∴∠BDF=45°-30°=15°.故选D.【点睛】此题主要考查了平行线的性质,根据平行线的性质得出∠BDE的度数是解题关键.12.D【解析】【分析】根据正方形的判定、平行四边形的判定、菱形的判定和矩形的判定定理对选项逐一进行分析,即可判断出答案.【详解】A. 对角线互相垂直且相等的平行四边形是正方形,正确,不符合题意;B. 对角线互相垂直平分的四边形是菱形,正确,不符合题意;C. 对角线互相平分的四边形是平行四边形,正确,不符合题意;D. 对角线相等的平行四边形是矩形,故D选项错误,符合题意,故选D.【点睛】本题考查了正方形的判定、平行四边形的判定、菱形的判定和矩形的判定等,熟练掌握相关判定定理是解答此类问题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x≥4【解析】试题分析:二次根式有意义的条件:二次根号下的数为非负数,二次根式才有意义.由题意得,.考点:二次根式有意义的条件点评:本题属于基础应用题,只需学生熟练掌握二次根式有意义的条件,即可完成.14.a(a+b)(a-b).【解析】分析:本题考查的是提公因式法和利用平方差公式分解因式.解析:原式= a(a+b)(a-b).故答案为a(a+b)(a-b).15.2 5【解析】【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.。

《试卷3份集锦》安徽省宿州市2020中考数学学业水平测试试题

《试卷3份集锦》安徽省宿州市2020中考数学学业水平测试试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,△ABC 中AB 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0),以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A′B′C′,且△A′B′C′与△ABC 的位似比为2:1.设点B 的对应点B′的横坐标是a ,则点B 的横坐标是( )A .12a -B .1(1)2a -+ C .1(1)2a -- D .1(3)2a -+ 2.如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=︒,在C 点测得60BCD ∠=︒,又测得50AC =米,则小岛B 到公路l 的距离为( )米.A .25B .253C .10033D .25253+3.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元. A .140B .120C .160D .1004.如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是( )A .①②③④B .②①③④C .③②①④D .④②①③5.一次函数y 1=kx+1﹣2k (k≠0)的图象记作G 1,一次函数y 2=2x+3(﹣1<x <2)的图象记作G 2,对于这两个图象,有以下几种说法:①当G 1与G 2有公共点时,y 1随x 增大而减小; ②当G 1与G 2没有公共点时,y 1随x 增大而增大; ③当k =2时,G 1与G 2平行,且平行线之间的距离为.下列选项中,描述准确的是( ) A .①②正确,③错误B .①③正确,②错误C.②③正确,①错误D.①②③都正确6.如图,E为平行四边形ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则平行四边形ABCD 的面积为()A.30 B.27 C.14 D.327.下列计算正确的是()A.(a+2)(a﹣2)=a2﹣2 B.(a+1)(a﹣2)=a2+a﹣2C.(a+b)2=a2+b2D.(a﹣b)2=a2﹣2ab+b28.如图,矩形ABCD中,E为DC的中点,AD:AB=3:2,CP:BP=1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O.下列结论:①EP平分∠CEB;②2BF=PB•EF;③PF•EF=22AD;④EF•EP=4AO•PO.其中正确的是()A.①②③B.①②④C.①③④D.③④9.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.10.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是( )A.12B.13C.14D.16二、填空题(本题包括8个小题)11.如图,平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与y2=23x(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则DEAB=______.12.如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CB延长线于点F,则EF的长为__________.13.假期里小菲和小琳结伴去超市买水果,三次购买的草莓价格和数量如下表:价格/(元/kg)12 10 8 合计/kg小菲购买的数量/kg 2 2 2 6小琳购买的数量/kg 1 2 3 6从平均价格看,谁买得比较划算?()A.一样划算B.小菲划算C.小琳划算D.无法比较14.如图,是由一些大小相同的小正方体搭成的几何体分别从正面看和从上面看得到的平面图形,则搭成该几何体的小正方体最多是_______个.15.若分式的值为零,则x的值为________.16.化简:2222-2-2+1-121x x xx x x x-÷-+=_____.17.分解因式a3﹣6a2+9a=_________________.18.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是__________________________.三、解答题(本题包括8个小题)19.(6分)工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm 2时,裁掉的正方形边长多大?20.(6分)已知关于x 的一元二次方程(a+c )x 2+2bx+(a ﹣c )=0,其中a 、b 、c 分别为△ABC 三边的长.如果x=﹣1是方程的根,试判断△ABC 的形状,并说明理由;如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由;如果△ABC 是等边三角形,试求这个一元二次方程的根. 21.(6分)观察下列等式:第1个等式:1111a 11323==⨯-⨯(); 第2个等式:21111a 35235==⨯-⨯(); 第3个等式:31111a 57257==⨯-⨯(); 第4个等式:41111a 79279==⨯-⨯(); …请解答下列问题:按以上规律列出第5个等式:a 5= = ;用含有n 的代数式表示第n 个等式:a n = = (n 为正整数);求a 1+a 2+a 3+a 4+…+a 100的值.22.(8分)如图,在△ABC 中,点D 是AB 边的中点,点E 是CD 边的中点,过点C 作CF ∥AB 交AE 的延长线于点F,连接BF.求证:DB=CF ;(2)如果AC=BC,试判断四边形BDCF 的形状,并证明你的结论.23.(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A 处测得灯塔P 在北偏东60°方向上,继续航行1小时到达B 处,此时测得灯塔P 在北偏东30°方向上.求∠APB 的度数;已知在灯塔P 的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?.24.(10分)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y (万件)与售价x(元/件)之间满足函数关系式y=﹣x+1.求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;该产品第一年的利润为20万元,那么该产品第一年的售价是多少?第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.25.(10分)如图,AB是⊙O的直径,点E是AD上的一点,∠DBC=∠BED.求证:BC是⊙O的切线;已知AD=3,CD=2,求BC的长.26.(12分)如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.求足球开始飞出到第一次落地时,该抛物线的表达式.足球第一)运动员乙要抢到第二个落点D,他应再向前跑多少米?次落地点C距守门员多少米?(取437参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】【分析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B 的横坐标为x ,则B 、C 间的横坐标的长度为﹣1﹣x ,B′、C 间的横坐标的长度为a+1, ∵△ABC 放大到原来的2倍得到△A′B′C , ∴2(﹣1﹣x )=a+1, 解得x =﹣12(a+3), 故选:D . 【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键. 2.B 【解析】 【详解】解:过点B 作BE ⊥AD 于E .设BE=x .∵∠BCD=60°,tan ∠BCE BECE=, 33CE x ∴=, 在直角△ABE 中,3x ,AC=50米,33503x x -=, 解得253x =即小岛B 到公路l 的距离为253 故选B. 3.B 【解析】 【分析】设商品进价为x 元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可. 【详解】解:设商品的进价为x元,售价为每件0.8×200元,由题意得0.8×200=x+40解得:x=120答:商品进价为120元.故选:B.【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.4.B【解析】【分析】根据常见几何体的展开图即可得.【详解】由展开图可知第一个图形是②正方体的展开图,第2个图形是①圆柱体的展开图,第3个图形是③三棱柱的展开图,第4个图形是④四棱锥的展开图,故选B【点睛】本题考查的是几何体,熟练掌握几何体的展开面是解题的关键.5.D【解析】【分析】画图,找出G2的临界点,以及G1的临界直线,分析出G1过定点,根据k的正负与函数增减变化的关系,结合函数图象逐个选项分析即可解答.【详解】解:一次函数y2=2x+3(﹣1<x<2)的函数值随x的增大而增大,如图所示,N(﹣1,2),Q(2,7)为G2的两个临界点,易知一次函数y1=kx+1﹣2k(k≠0)的图象过定点M(2,1),直线MN与直线MQ为G1与G2有公共点的两条临界直线,从而当G1与G2有公共点时,y1随x增大而减小;故①正确;当G1与G2没有公共点时,分三种情况:一是直线MN,但此时k=0,不符合要求;二是直线MQ,但此时k不存在,与一次函数定义不符,故MQ不符合题意;三是当k>0时,此时y1随x增大而增大,符合题意,故②正确;当k=2时,G1与G2平行正确,过点M作MP⊥NQ,则MN=3,由y2=2x+3,且MN∥x轴,可知,tan∠PNM =2,∴PM=2PN,由勾股定理得:PN2+PM2=MN2∴(2PN)2+(PN)2=9,∴PN=,∴PM=.故③正确.综上,故选:D.【点睛】本题是一次函数中两条直线相交或平行的综合问题,需要数形结合,结合一次函数的性质逐条分析解答,难度较大.6.A【解析】∵四边形ABCD是平行四边形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴22 BEF BEFCDF AEDS SBE BES CD S AE∆∆∆∆⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴44925 BEF BEFCDF AEDS SS S∆∆∆∆==,,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四边形ABFD=S△AED-S△BEF=25-4=21,∴S平行四边形ABCD=S△CDF+S四边形ABFD=9+21=30,故选A.【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键.7.D【解析】A、原式=a2﹣4,不符合题意;B、原式=a2﹣a﹣2,不符合题意;C、原式=a2+b2+2ab,不符合题意;D、原式=a2﹣2ab+b2,符合题意,故选D8.B【解析】【分析】由条件设,AB=2x,就可以表示出,x,用三角函数值可以求出∠EBC的度数和∠CEP的度数,则∠CEP=∠BEP,运用勾股定理及三角函数值就可以求出就可以求出BF、EF的值,从而可以求出结论.【详解】解:设,AB=2x∵四边形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴BC=3x,CD=2x ∵CP:BP=1:2∴CP=33x,BP=233x∵E为DC的中点,∴CE=12CD=x,∴tan∠CEP=PCEC =3,tan∠EBC=ECBC=3∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正确;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴BE BP EF BF∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴2BF=PB·EF,故②正确∵∠F=30°,∴PF=2PB=43x,过点E作EG⊥AF于G,∴∠EGF=90°,∴3∴PF·EF=x·232AD2=2×x)2=6x2,∴PF·EF≠2AD2,故③错误.在Rt△ECP中,∵∠CEP=30°,∴x∵tan∠PAB=PB=AB∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,,∴4AO·2又EF·2∴EF·EP=4AO·PO.故④正确.故选,B【点睛】本题考查了矩形的性质的运用,相似三角形的判定及性质的运用,特殊角的正切值的运用,勾股定理的运用及直角三角形的性质的运用,解答时根据比例关系设出未知数表示出线段的长度是关键.9.C【解析】分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.详解:从左边看竖直叠放2个正方形.故选:C.点睛:此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.10.D【解析】【分析】根据题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,再根据概率公式即可得出答案. 【详解】解:根据题意画图如下:共有12种等情况数,抽到的书签正好是相对应的书名和作者姓名的有2种情况,则抽到的书签正好是相对应的书名和作者姓名的概率是212=16; 故选D .【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.二、填空题(本题包括8个小题)11.33【解析】【分析】首先设点B 的横坐标,由点B 在抛物线y 1=x 2(x≥0)上,得出点B 的坐标,再由平行,得出A 和C 的坐标,然后由CD 平行于y 轴,得出D 的坐标,再由DE ∥AC ,得出E 的坐标,即可得出DE 和AB ,进而得解.【详解】设点B 的横坐标为a ,则()2,B a a∵平行于x 轴的直线AC∴()()220,,3,A a C a a 又∵CD 平行于y 轴∴)23,3D a a 又∵DE ∥AC∴()23,3E a a∴()DE a AB a=-=33,∴DE=3﹣3AB【点睛】此题主要考查抛物线中的坐标求解,关键是利用平行的性质.12.6【解析】【分析】利用正方形的性质和勾股定理可得AC的长,由角平分线的性质和平行线的性质可得∠CAE=∠E,易得CE=CA,由FA⊥AE,可得∠FAC=∠F,易得CF=AC,可得EF的长.【详解】解:∵四边形ABCD为正方形,且边长为3,∴2∵AE平分∠CAD,∴∠CAE=∠DAE,∵AD∥CE,∴∠DAE=∠E,∴∠CAE=∠E,∴2,∵FA⊥AE,∴∠FAC+∠CAE=90°,∠F+∠E=90°,∴∠FAC=∠F,∴2,∴22213.C【解析】试题分析:根据题意分别求出两人的平均价格,然后进行比较.小菲:(24+20+16)÷6=10;小琳:(12+20+24)÷6≈1.3,则小琳划算.考点:平均数的计算.14.7【解析】【分析】首先利用从上面看而得出的俯视图得出该几何体的第一层是由几个小正方体组成,然后进一步根据其从正面看得出的主视图得知其第二层最多可以放几个小正方体,然后进一步计算即可得出答案.【详解】根据俯视图可得出第一层由5个小正方体组成;再结合主视图,该正方体第二层最多可放2个小正方体,+=,∴527∴最多是7个,故答案为:7.【点睛】本题主要考查了三视图的运用,熟练掌握三视图的特性是解题关键. 15.1【解析】试题分析:根据题意,得|x|-1=0,且x-1≠0,解得x=-1.考点:分式的值为零的条件.16.1 x【解析】【分析】先算除法,再算减法,注意把分式的分子分母分解因式【详解】原式=2 22(11(11)(2)x xx x x x x---⨯++--))(=212(1)1(1)(1)x x xx x x x x-----=+++=1 x【点睛】此题考查分式的混合运算,掌握运算法则是解题关键17.a(a﹣3)1.【解析】a3﹣6a1+9a=a(a1﹣6a+9)=a(a﹣3)1.故答案为a(a﹣3)1.18.50(1﹣x)2=1.【解析】由题意可得,50(1−x)²=1,故答案为50(1−x)²=1.三、解答题(本题包括8个小题)19.裁掉的正方形的边长为2dm,底面积为12dm2. 【解析】试题分析:设裁掉的正方形的边长为xdm,则制作无盖的长方体容器的长为(10-2x)dm,宽为(6-2x)dm,根据长方体底面面积为12dm2列出方程,解方程即可求得裁掉的正方形边长.试题解析:设裁掉的正方形的边长为xdm,由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm,底面积为12dm2.20.(1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1.【解析】试题分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC的形状;(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.试题解析:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.考点:一元二次方程的应用.21.(1)11119112911⨯-⨯,()(2)()()11112n12n+122n12n+1⨯--⨯-,()(3)100201【解析】【分析】(1)(2)观察知,找等号后面的式子规律是关键:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为:序号的2倍减1和序号的2倍加1.(3)运用变化规律计算【详解】解:(1)a 5=1111=9112911⨯-⨯(); (2)a n =()()1111=2n 12n+122n 12n+1⨯--⨯-();(3)a 1+a 2+a 3+a 4+…+a 10011111111111=1++++232352572199201⨯-⨯-⨯-⋅⋅⋅⨯-()()()() 11111111111200100=1++++=1==23355719920122012201201⎛⎫⎛⎫⨯---⋅⋅⋅-⨯-⨯ ⎪ ⎪⎝⎭⎝⎭. 22. (1)证明见解析;(2)四边形BDCF 是矩形,理由见解析.【解析】(1)证明:∵CF ∥AB ,∴∠DAE =∠CFE .又∵DE =CE ,∠AED =∠FEC ,∴△ADE ≌△FCE ,∴AD =CF .∵AD =DB ,∴DB =CF .(2)四边形BDCF 是矩形.证明:由(1)知DB =CF ,又DB ∥CF ,∴四边形BDCF 为平行四边形.∵AC =BC ,AD =DB ,∴CD ⊥AB .∴四边形BDCF 是矩形.23.(1)30°;(2)海监船继续向正东方向航行是安全的.【解析】【分析】(1)根据直角的性质和三角形的内角和求解;(2)过点P 作PH ⊥AB 于点H ,根据解直角三角形,求出点P 到AB 的距离,然后比较即可.【详解】解:(1)在△APB 中,∠PAB=30°,∠ABP=120°∴∠APB=180°-30°-120°=30°(2)过点P 作PH ⊥AB 于点H在Rt△APH中,∠PAH=30°,3PH3在Rt△BPH中,∠PBH=30°,∴23PH=50解得325,因此不会进入暗礁区,继续航行仍然安全.考点:解直角三角形24.(1)W1=﹣x2+32x﹣2;(2)该产品第一年的售价是16元;(3)该公司第二年的利润W2至少为18万元.【解析】【分析】(1)根据总利润=每件利润×销售量﹣投资成本,列出式子即可;(2)构建方程即可解决问题;(3)根据题意求出自变量的取值范围,再根据二次函数,利用而学会设的性质即可解决问题.【详解】(1)W1=(x﹣6)(﹣x+1)﹣80=﹣x2+32x﹣2.(2)由题意:20=﹣x2+32x﹣2.解得:x=16,答:该产品第一年的售价是16元.(3)由题意:7≤x≤16,W2=(x﹣5)(﹣x+1)﹣20=﹣x2+31x﹣150,∵7≤x≤16,∴x=7时,W2有最小值,最小值=18(万元),答:该公司第二年的利润W2至少为18万元.【点睛】本题考查二次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,学会构建方程或函数解决问题.25.(1)证明见解析(2)BC= 【解析】 【分析】 (1)AB 是⊙O 的直径,得∠ADB=90°,从而得出∠BAD=∠DBC ,即∠ABC=90°,即可证明BC 是⊙O 的切线;(2)可证明△ABC ∽△BDC ,则BC CD CA BC =,即可得出BC=10. 【详解】(1)∵AB 是⊙O 的切直径,∴∠ADB=90°,又∵∠BAD=∠BED ,∠BED=∠DBC ,∴∠BAD=∠DBC ,∴∠BAD+∠ABD=∠DBC+∠ABD=90°,∴∠ABC=90°,∴BC 是⊙O 的切线;(2)解:∵∠BAD=∠DBC ,∠C=∠C ,∴△ABC ∽△BDC ,∴BC CD CA BC=,即BC 2=AC•CD=(AD+CD )•CD=10, ∴BC=10.考点:1.切线的判定;2.相似三角形的判定和性质.26.(1)21(6)412y x =--+.(或21112y x x =-++)(2)足球第一次落地距守门员约13米.(3)他应再向前跑17米.【解析】【分析】(1)依题意代入x 的值可得抛物线的表达式.(2)令y=0可求出x 的两个值,再按实际情况筛选.(3)本题有多种解法.如图可得第二次足球弹出后的距离为CD ,相当于将抛物线AEMFC 向下平移了2个单位可得解得x 的值即可知道CD 、BD .【详解】解:(1)如图,设第一次落地时,抛物线的表达式为2(6)4y a x =-+. 由已知:当0x =时1y =.即1136412a a =+∴=-,. ∴表达式为21(6)412y x =--+.(或21112y x x =-++)(2)令210(6)4012y x =--+=,. 212(6)48436134360x x x ∴-==≈=-<.,(舍去). ∴足球第一次落地距守门员约13米.(3)解法一:如图,第二次足球弹出后的距离为CD根据题意:CD EF =(即相当于将抛物线AEMFC 向下平移了2个单位) 212(6)412x ∴=--+解得12626626x x =-=+,. 124610CD x x ∴=-=≈.1361017BD ∴=-+=(米). 答:他应再向前跑17米.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,CH┴AF与点H,那么CH的长是()A.223B.5C.322D.3552.若分式11xx-+的值为零,则x的值是( )A.1 B.1-C.1±D.23.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM的长为()A.2 B.23C.3D.434.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②3b+2c<0;③4a+c <2b;④m(am+b)+b<a(m≠﹣1),其中结论正确的个数是()A.1 B.2 C.3 D.45.函数y=ax2与y=﹣ax+b的图象可能是()A.B.C.D.6.如图所示,ABC△的顶点是正方形网格的格点,则sin A的值为()A.12B.55C.255D.10107.如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是()A.AC=AB B.∠C=12∠BOD C.∠C=∠B D.∠A=∠B0D8.如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为()A.6 B.12 C.18 D.249.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°10.若分式242xx-+的值为0,则x的值为()A.-2 B.0 C.2 D.±2 二、填空题(本题包括8个小题)11.已知|x|=3,y2=16,xy<0,则x﹣y=_____.12.圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_______.13.一个扇形的弧长是83π,它的面积是163π,这个扇形的圆心角度数是_____.14.已知a、b为两个连续的整数,且28a b<<,则+a b=________.15.图①是一个三角形,分别连接这个三角形的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.按上面的方法继续下去,第n 个图形中有_____个三角形(用含字母n 的代数式表示).16.如图,在边长相同的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 与CD 相交于点P ,则tan ∠APD 的值为______.17.在平面直角坐标系中,将点A (﹣3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是_____.18.一元二次方程x 2=3x 的解是:________.三、解答题(本题包括8个小题)19.(6分)新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:降价8%,另外每套房赠送a 元装修基金;降价10%,没有其他赠送.请写出售价y(元/米2)与楼层x(1≤x≤23,x 取整数)之间的函数表达式;老王要购买第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算.20.(6分)已知.化简;如果、是方程的两个根,求的值. 21.(6分)为改善生态环境,防止水土流失,某村计划在荒坡上种1000棵树.由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,原计划每天种多少棵树?22.(8分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.若前四局双方战成2:2,那么甲队最终获胜的概率是__________;现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?23.(8分)如图,在△ABC 中,AB=AC ,点D ,E 在BC 边上,AD AE =.求证:BD CE =.24.(10分)如图,点D 为⊙O 上一点,点C 在直径BA 的延长线上,且∠CDA=∠CBD .判断直线CD 和⊙O 的位置关系,并说明理由.过点B 作⊙O 的切线BE 交直线CD 于点E ,若AC=2,⊙O 的半径是3,求BE的长.25.(10分)九(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:m=,n=;扇形统计图中机器人项目所对应扇形的圆心角度数为°;从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.26.(12分)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D.求证:BE=CF ;当四边形ACDE为菱形时,求BD的长.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】【分析】连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF ,最后由直角三角形面积的两种表示法即可求得CH 的长.【详解】如图,连接AC 、CF ,∵正方形ABCD 和正方形CEFG 中,BC=1,CE=3,∴2 ,2,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,2222(2)(32)25AC CF +=+=∵CH ⊥AF , ∴1122AC CF AF CH ⋅=⋅, 112222522CH =⨯, ∴35. 故选D.【点睛】本题考查了正方形的性质、勾股定理及直角三角形的面积,熟记各性质并作辅助线构造出直角三角形是解题的关键.2.A【解析】试题解析:∵分式11x x -+的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选A .3.B【解析】分析:连接OC 、OB ,证出△BOC 是等边三角形,根据锐角三角函数的定义求解即可.详解:如图所示,连接OC、OB∵多边形ABCDEF是正六边形,∴∠BOC=60°,∵OC=OB,∴△BOC是等边三角形,∴∠OBM=60°,∴OM=OBsin∠OBM=4×3=23.故选B.点睛:考查的是正六边形的性质、等边三角形的判定与性质、三角函数;熟练掌握正六边形的性质,由三角函数求出OM是解决问题的关键.4.C【解析】【分析】试题解析:∵图象与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴b2﹣4ac>0,∴4ac﹣b2<0,①正确;∵﹣=﹣1,∴b=2a,∵a+b+c<0,∴b+b+c<0,3b+2c<0,∴②是正确;∵当x=﹣2时,y>0,∴4a﹣2b+c>0,∴4a+c >2b ,③错误;∵由图象可知x=﹣1时该二次函数取得最大值,∴a ﹣b+c >am 2+bm+c (m≠﹣1).∴m (am+b )<a ﹣b .故④正确∴正确的有①②④三个,故选C .考点:二次函数图象与系数的关系.【详解】请在此输入详解!5.B【解析】A 选项中,由图可知:在2y ax =,0a >;在y ax b =-+,0a ->,∴0a <,所以A 错误;B 选项中,由图可知:在2y ax =,0a >;在y ax b =-+,0a -<,∴0a >,所以B 正确;C 选项中,由图可知:在2y ax =,0a <;在y ax b =-+,0a -<,∴0a >,所以C 错误;D 选项中,由图可知:在2y ax =,0a <;在y ax b =-+,0a -<,∴0a >,所以D 错误.故选B .点睛:在函数2y ax =与y ax b =-+中,相同的系数是“a ”,因此只需根据“抛物线”的开口方向和“直线”的变化趋势确定出两个解析式中“a ”的符号,看两者的符号是否一致即可判断它们在同一坐标系中的图象情况,而这与“b”的取值无关.6.B【解析】【分析】连接CD ,求出CD ⊥AB ,根据勾股定理求出AC ,在Rt △ADC 中,根据锐角三角函数定义求出即可.【详解】解:连接CD (如图所示),设小正方形的边长为1,∵,∠DBC=∠DCB=45°,∴CD AB ⊥,在Rt △ADC 中,AC =,CD =,则sin5CD A AC ===.故选B.【点睛】本题考查了勾股定理,锐角三角形函数的定义,等腰三角形的性质,直角三角形的判定的应用,关键是构造直角三角形.7.B【解析】【分析】先利用垂径定理得到弧AD=弧BD,然后根据圆周角定理得到∠C=12∠BOD,从而可对各选项进行判断.【详解】解:∵直径CD⊥弦AB,∴弧AD =弧BD,∴∠C=12∠BOD.故选B.【点睛】本题考查了垂径定理和圆周角定理,垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.B【解析】∵四边形ABCD是平行四边形,∴DC=AB,AD=BC,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,∴▱ABCD的周长=2×6=12,故选B.9.D【解析】【分析】根据两直线平行,内错角相等计算即可.【详解】因为m∥n,所以∠2=∠1+30°,所以∠2=30°+20°=50°,故选D.【点睛】本题主要考查平行线的性质,清楚两直线平行,内错角相等是解答本题的关键. 10.C【解析】由题意可知:24020xx=⎧-⎨+≠⎩,解得:x=2,故选C.二、填空题(本题包括8个小题)11.±3【解析】分析:本题是绝对值、平方根和有理数减法的综合试题,同时本题还渗透了分类讨论的数学思想.详解:因为|x|=1,所以x=±1.因为y2=16,所以y=±2.又因为xy<0,所以x、y异号,当x=1时,y=-2,所以x-y=3;当x=-1时,y=2,所以x-y=-3.故答案为:±3.点睛:本题是一道综合试题,本题中有分类的数学思想,求解时要注意分类讨论.12.15π【解析】试题分析:利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.圆锥的侧面积=12•2π•3•5=15π.故答案为15π.考点:圆锥的计算.13.120°【解析】【分析】设扇形的半径为r,圆心角为n°.利用扇形面积公式求出r,再利用弧长公式求出圆心角即可.【详解】设扇形的半径为r,圆心角为n°.由题意:1816··233rππ=,∴r=4,∴2416 3603 nππ=。

泗县中考数学试题及答案

泗县中考数学试题及答案

泗县中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2B. √2C. 0.5D. 0.33333...2. 一个等腰三角形的两边长分别为3和5,那么第三边的长度是多少?A. 2B. 3C. 5D. 83. 以下哪个函数是一次函数?A. y = x^2B. y = 3x + 2C. y = 1/xD. y = x^34. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 105. 一个圆的半径是4,那么它的面积是多少?A. 16πB. 64πC. 32πD. 8π6. 以下哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 菱形D. 任意三角形7. 一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5或-5D. 08. 以下哪个选项是不等式?A. 2x + 3 = 7B. 2x + 3 > 7C. 2x + 3 ≤ 7D. 2x + 39. 一个长方体的长、宽、高分别是2、3、4,那么它的体积是多少?A. 24B. 12C. 6D. 810. 以下哪个选项是等式?A. 2x + 3 > 5B. 2x + 3 = 5C. 2x + 3 ≤ 5D. 2x + 3二、填空题(每题3分,共30分)1. 一个数的平方根是3,那么这个数是______。

2. 一个数的立方根是2,那么这个数是______。

3. 一个数的倒数是1/4,那么这个数是______。

4. 一个数的绝对值是7,那么这个数可能是______或______。

5. 一个三角形的内角和是______度。

6. 一个圆的周长是2πr,那么它的直径是______。

7. 一个等差数列的首项是2,公差是3,那么第5项是______。

8. 一个等比数列的首项是3,公比是2,那么第3项是______。

9. 一个函数y = 2x + 1的图象与x轴的交点是______。

10. 一个函数y = x^2 - 4x + 4的顶点坐标是______。

安徽省宿州市2019-2020学年中考数学学业水平测试试题

安徽省宿州市2019-2020学年中考数学学业水平测试试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是()A.有两个不相等实数根B.有两个相等实数根C.有且只有一个实数根D.没有实数根2.对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( ) A.∠α=60°,∠α的补角∠β=120°,∠β>∠αB.∠α=90°,∠α的补角∠β=90°,∠β=∠αC.∠α=100°,∠α的补角∠β=80°,∠β<∠αD.两个角互为邻补角3.估计19273⨯-的运算结果应在哪个两个连续自然数之间()A.﹣2和﹣1 B.﹣3和﹣2 C.﹣4和﹣3 D.﹣5和﹣44.如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,33),∠ABO =30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为()A.(3233) B.(233) C.3332) D.(32,3335.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=1.那么在计算6×7时,左、右手伸出的手指数应该分别为()A.1,2 B.1,3C.4,2 D.4,36.若点A(a,b),B(1a,c)都在反比例函数y=1x的图象上,且﹣1<c<0,则一次函数y=(b﹣c)x+ac的大致图象是()A.B.C.D.7.图1~图4是四个基本作图的痕迹,关于四条弧①、②、③、④有四种说法:弧①是以O为圆心,任意长为半径所画的弧;弧②是以P为圆心,任意长为半径所画的弧;弧③是以A为圆心,任意长为半径所画的弧;弧④是以P为圆心,任意长为半径所画的弧;其中正确说法的个数为()A.4 B.3 C.2 D.18.如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF的长度为()A.2 B.23C.3D.229.如图,一个斜边长为10cm的红色三角形纸片,一个斜边长为6cm的蓝色三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形,则红、蓝两张纸片的面积之和是()A.60cm2B.50cm2C.40cm2D.30cm210.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-二、填空题(本题包括8个小题)11.分解因式:4m 2﹣16n 2=_____.12.用一个半径为10cm 半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为 . 13.如图,在矩形ABCD 中,AB=4,BC=6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF,则CF 的长度为_____14.若m+1m =3,则m 2+21m=_____. 15.不等式组20262x x ->⎧⎨->⎩①②的解是________.16.A .如果一个正多边形的一个外角是45°,那么这个正多边形对角线的条数一共有_____条.B .用计算器计算:7•tan63°27′≈_____(精确到0.01).17.若点(),2P m -与点()3,Q n 关于原点对称,则2018()m n +=______.18.如图所示,三角形ABC 的面积为1cm 1.AP 垂直∠B 的平分线BP 于P .则与三角形PBC 的面积相等的长方形是( )A .B .C .D .三、解答题(本题包括8个小题)19.(6分)先化简,再求值:2221()4244a a a a a a -÷--++,其中a 是方程a 2+a ﹣6=0的解. 20.(6分)在一个不透明的布袋里装有4个标有1、2、3、4的小球,它们的形状、大小完全相同,李强从布袋中随机取出一个小球,记下数字为x ,王芳在剩下的3个小球中随机取出一个小球,记下数字为y ,这样确定了点M 的坐标()x,y()1画树状图列表,写出点M 所有可能的坐标;()2求点()M x,y 在函数y x 1=+的图象上的概率.21.(6分)先化简,再求值:222x x 11x x x 2x 1-⎛⎫-÷ ⎪+++⎝⎭,其中x 的值从不等式组1214x x -⎧⎨-<⎩的整数解中选取.22.(8分)如图,有长为14m 的篱笆,现一面利用墙(墙的最大可用长度a 为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB 为xm ,面积为Sm 1.求S 与x 的函数关系式及x 值的取值范围;要围成面积为45m 1的花圃,AB 的长是多少米?当AB 的长是多少米时,围成的花圃的面积最大?23.(8分)学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A :特别好,B :好,C :一般,D :较差)后,再将调查结果绘制成两幅不完整的统计图(如图1,2).请根据统计图解答下列问题:本次调查中,王老师一共调查了名学生;将条形统计图补充完整;为了共同进步,王老师从被调查的A 类和D 类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.24.(10分)海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.25.(10分)如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(3,1)在反比例函数k yx =的图象上.求反比例函数kyx=的表达式;在x轴的负半轴上存在一点P,使得S△AOP=12S△AOB,求点P的坐标;若将△BOA绕点B按逆时针方向旋转60°得到△BDE,直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由.26.(12分)如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.试判断PD与⊙O的位置关系,并说明理由;若点C是弧AB的中点,已知AB=4,求CE•CP的值.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.A【解析】【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x 2+x ﹣3=0有两个不相等的实数根.【详解】∵a=1,b=1,c=﹣3,∴△=b 2﹣4ac=12﹣4×(1)×(﹣3)=13>0,∴方程x 2+x ﹣3=0有两个不相等的实数根,故选A .【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.2.C【解析】熟记反证法的步骤,然后进行判断即可.解答:解:举反例应该是证明原命题不正确,即要举出不符合叙述的情况;A 、∠α的补角∠β>∠α,符合假命题的结论,故A 错误;B 、∠α的补角∠β=∠α,符合假命题的结论,故B 错误;C 、∠α的补角∠β<∠α,与假命题结论相反,故C 正确;D 、由于无法说明两角具体的大小关系,故D 错误.故选C .3.C【解析】﹣,然后根据二次根式的估算,由3<4可知﹣4和﹣3之间.故选C .点睛:此题主要考查了二次根式的化简和估算,关键是根据二次根式的性质化简计算,再二次根式的估算方法求解.4.A【解析】解:∵四边形AOBC 是矩形,∠ABO=10°,点B 的坐标为(0,),∴AC=OB=,∠CAB=10°,∴BC=AC•tan10°=.∵将△ABC 沿AB 所在直线对折后,点C 落在点D 处,∴∠BAD=10°,AD=.过点D 作DM ⊥x 轴于点M ,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=12,∴AM=33×cos10°=92,∴MO=92﹣1=32,∴点D 的坐标为(32,332).故选A .5.A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,30+4×3=42,故选A .点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.6.D【解析】【分析】将(),A a b ,1,B c a ⎛⎫ ⎪⎝⎭代入1y x =,得1a b ⨯=,11c a⨯=,然后分析b c -与ac 的正负,即可得到()y b c x ac =-+的大致图象.【详解】将(),A a b ,1,B c a⎛⎫ ⎪⎝⎭代入1y x =,得1a b ⨯=,11c a ⨯=, 即1b a=,a c =. ∴2111c b c c c a c c--=-=-=. ∵10c -<<,∴201c <<,∴210c ->.即21c -与c 异号.∴0b c -<.又∵0ac >,故选D .【点睛】本题考查了反比例函数图像上点的坐标特征,一次函数的图像与性质,得出b c -与ac 的正负是解答本题的关键.7.C【解析】【分析】根据基本作图的方法即可得到结论.【详解】解:(1)弧①是以O 为圆心,任意长为半径所画的弧,正确;(2)弧②是以P 为圆心,大于点P 到直线的距离为半径所画的弧,错误;(3)弧③是以A 为圆心,大于12AB 的长为半径所画的弧,错误; (4)弧④是以P 为圆心,任意长为半径所画的弧,正确.故选C .【点睛】此题主要考查了基本作图,解决问题的关键是掌握基本作图的方法.8.B【解析】本题考查的圆与直线的位置关系中的相切.连接OC,EC 所以∠EOC=2∠D=60°,所以△ECO 为等边三角形.又因为弦EF ∥AB 所以OC 垂直EF 故∠OEF=30°所以.9.D【解析】【分析】标注字母,根据两直线平行,同位角相等可得∠B=∠AED ,然后求出△ADE 和△EFB 相似,根据相似三角形对应边成比例求出53DE BF =,即53EF BF =,设BF=3a ,表示出EF=5a ,再表示出BC 、AC ,利用勾股定理列出方程求出a 的值,再根据红、蓝两张纸片的面积之和等于大三角形的面积减去正方形的面积计算即可得解.【详解】解:如图,∵正方形的边DE ∥CF ,∴∠B=∠AED ,∵∠ADE=∠EFB=90°,∴△ADE ∽△EFB , ∴10563DE AE BF BE ===,∴53EF BF , 设BF=3a ,则EF=5a ,∴BC=3a+5a=8a ,AC=8a×53=403a , 在Rt △ABC 中,AC 1+BC 1=AB 1,即(403a )1+(8a )1=(10+6)1, 解得a 1=1817, 红、蓝两张纸片的面积之和=12×403a×8a-(5a )1, =1603a 1-15a 1, =853a 1, =853×1817, =30cm 1.故选D .【点睛】本题考查根据相似三角形的性质求出直角三角形的两直角边,利用红、蓝两张纸片的面积之和等于大三角形的面积减去正方形的面积求解是关键.10.D【解析】分析:详解:如图,∵AB ⊥CD,CE ⊥AD,∴∠1=∠2,又∵∠3=∠4,∴180°-∠1-∠4=180°-∠2-∠3,即∠A=∠C.∵BF ⊥AD,∴∠CED=∠BFD=90°,∵AB=CD,∴△ABF ≌△CDE,∴AF=CE=a,ED=BF=b, 又∵EF=c,∴AD=a+b-c.故选:D.点睛:本题主要考查全等三角形的判定与性质,证明△ABF ≌△CDE 是关键.二、填空题(本题包括8个小题)11.4(m+2n )(m ﹣2n ).【解析】【分析】原式提取4后,利用平方差公式分解即可.【详解】 解:原式=4(224m n - )()()422m n m n =+-.故答案为()()422m n m n +-【点睛】本题考查提公因式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法.12.5【解析】试题分析:根据图形可知圆锥的侧面展开图的弧长为2π×10÷2=10π(cm ),因此圆锥的底面半径为10π÷2π=5(cm ),因此圆锥的高为:=5(cm ).考点:圆锥的计算13.185【解析】【分析】分析题意,如图所示,连接BF,由翻折变换可知,BF ⊥AE,BE=EF,由点E 是BC 的中点可知BE=3,根据勾股定理即可求得AE ;根据三角形的面积公式1122AB BE AE BH ⨯⨯=⨯⨯可求得BH,进而可得到BF 的长度;结合题意可知FE=BE=EC,进而可得∠BFC=90°,至此,在Rt △BFC 中,利用勾股定理求出CF 的长度即可【详解】如图,连接BF.∵△AEF 是由△ABE 沿AE 折叠得到的, ∴BF ⊥AE,BE=EF.∵BC=6,点E 为BC 的中点,∴BE=EC=EF=3根据勾股定理有AE 2=AB 2+BE 2代入数据求得AE=5根据三角形的面积公式1122AB BE AE BH ⨯⨯=⨯⨯得BH=125即可得BF=245由FE=BE=EC,可得∠BFC=90°再由勾股定理有BC 2-BF 2=CF 2代入数据求得CF=185 故答案为185【点睛】 此题考查矩形的性质和折叠问题,解题关键在于利用好折叠的性质14.7【解析】分析:把已知等式两边平方,利用完全平方公式化简,即可求出答案.详解:把m+1m =3两边平方得:(m+1m )2=m 2+21m +2=9, 则m 2+21m =7, 故答案为:7点睛:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.分别解出不等式组中的每一个不等式,然后根据同大取大得出不等式组的解集.【详解】由①得:x>2;由②得:x>4;∴此不等式组的解集为x>4;故答案为x>4.【点睛】考查了解一元一次不等式组,一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.16.20 5.1【解析】【分析】A、先根据多边形外角和为360°且各外角相等求得边数,再根据多边形对角线条数的计算公式计算可得;B、利用计算器计算可得.【详解】A、根据题意,此正多边形的边数为360°÷45°=8,则这个正多边形对角线的条数一共有8(83)2⨯-=20,故答案为20;B,故答案为5.1.【点睛】本题主要考查计算器-三角函数,解题的关键是掌握多边形的内角与外角、对角线计算公式及计算器的使用.17.1【解析】∵点P(m,﹣2)与点Q(3,n)关于原点对称,∴m=﹣3,n=2,则(m+n)2018=(﹣3+2)2018=1,故答案为1.过P 点作PE ⊥BP ,垂足为P ,交BC 于E ,根据AP 垂直∠B 的平分线BP 于P ,即可求出△ABP ≌△BEP ,又知△APC 和△CPE 等底同高,可以证明两三角形面积相等,即可证明三角形PBC 的面积.【详解】解:过P 点作PE ⊥BP ,垂足为P ,交BC 于E ,∵AP 垂直∠B 的平分线BP 于P ,∠ABP=∠EBP ,又知BP=BP ,∠APB=∠BPE=90°,∴△ABP ≌△BEP ,∴AP=PE ,∵△APC 和△CPE 等底同高,∴S △APC =S △PCE ,∴三角形PBC 的面积=12三角形ABC 的面积=12cm 1, 选项中只有B 的长方形面积为12cm 1, 故选B .三、解答题(本题包括8个小题)19.13. 【解析】【分析】先计算括号里面的,再利用除法化简原式,【详解】22214244a a a a a a ⎛⎫-÷ ⎪--++⎝⎭, =()()()()222222a a a a a a -++⋅+- ,=2222a a a a a--+⋅- ,=222a a a a-+⋅-, =2a a +, 由a 2+a ﹣6=0,得a=﹣3或a=2,∵a ﹣2≠0,∴a≠2,∴a=﹣3,当a=﹣3时,原式=32133-+=-. 【点睛】本题考查了分式的化简求值及一元二次方程的解,解题的关键是熟练掌握分式的混合运算.20.()1见解析;()124. 【解析】【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)找出点(x ,y)在函数y=x+1的图象上的情况,利用概率公式即可求得答案.【详解】 ()1画树状图得:共有12种等可能的结果()1,2、()1,3、()1,4、()2,1、()2,3、()2,4、()3,1、()3,2、()3,4、()4,1、()4,2、()4,3;()2在所有12种等可能结果中,在函数y x 1=+的图象上的有()1,2、()2,3、()3,4这3种结果, ∴点()M x,y 在函数y x 1=+的图象上的概率为31124=. 【点睛】 本题考查的是用列表法或树状图法求概率,一次函数图象上点的坐标特征.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.21.-2.【解析】试题分析:先算括号里面的,再算除法,解不等式组,求出x 的取值范围,选出合适的x 的值代入求值即可.试题解析:原式=()()()()22x+1x-1x x x+1x+1-÷ =x x+1x+1x-1-⨯=x x-1- 解1{214x x -≤-<得-1≤x<52, ∴不等式组的整数解为-1,0,1,2若分式有意义,只能取x=2,∴原式=-221-=-2 【点睛】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.22.(1)S=﹣3x 1+14x ,143≤x< 8;(1) 5m ;(3)46.67m 1 【解析】【分析】(1)设花圃宽AB 为xm ,则长为(14-3x ),利用长方形的面积公式,可求出S 与x 关系式,根据墙的最大长度求出x 的取值范围;(1)根据(1)所求的关系式把S=2代入即可求出x ,即AB ;(3)根据二次函数的性质及x 的取值范围求出即可.【详解】解:(1)根据题意,得S =x (14﹣3x ),即所求的函数解析式为:S =﹣3x 1+14x ,又∵0<14﹣3x≤10, ∴1483x ≤<; (1)根据题意,设花圃宽AB 为xm ,则长为(14-3x ),∴﹣3x 1+14x =2.整理,得x 1﹣8x+15=0,解得x =3或5,当x =3时,长=14﹣9=15>10不成立,当x =5时,长=14﹣15=9<10成立,∴AB 长为5m ;(3)S =14x ﹣3x 1=﹣3(x ﹣4)1+48∵墙的最大可用长度为10m ,0≤14﹣3x≤10,∴1483x <, ∵对称轴x =4,开口向下, ∴当x =143m ,有最大面积的花圃. 【点睛】 二次函数在实际生活中的应用是本题的考点,根据题目给出的条件,找出合适的等量关系,列出方程是解题的关键.23.(1)20;(2)作图见试题解析;(3)12. 【解析】【分析】(1)由A 类的学生数以及所占的百分比即可求得答案;(2)先求出C 类的女生数、D 类的男生数,继而可补全条形统计图;(3)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案.【详解】(1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);故答案为20;(2)∵C 类女生:20×25%﹣2=3(名);D 类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);如图:(3)列表如下:A 类中的两名男生分别记为A 1和A 2,男A 1 男A 2 女A男D 男A 1男D 男A 2男D 女A 男D 女D 男A 1女D 男A 2女D 女A 女D共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:3162=. 24.有触礁危险,理由见解析.【解析】试题分析:过点P 作PD ⊥AC 于D ,在Rt △PBD 和Rt △PAD 中,根据三角函数AD ,BD 就可以用PD 表示出来,根据AB=12海里,就得到一个关于PD 的方程,求得PD .从而可以判断如果渔船不改变航线继续向东航行,有没有触礁危险.试题解析:有触礁危险.理由:过点P 作PD ⊥AC 于D .设PD 为x ,在Rt △PBD 中,∠PBD=90°-45°=45°.∴BD=PD=x .在Rt △PAD 中,∵∠PAD=90°-60°=30°∴AD=330x x tan =︒∵AD=AB+BD∴3∴=63+131-() ∵63)<18∴渔船不改变航线继续向东航行,有触礁危险.【点睛】本题主要考查解直角三角形在实际问题中的应用,构造直角三角形是解题的前提和关键. 25.(1)3y =(2)P (23-0);(3)E (3-1),在.【解析】【分析】(1)将点A 1)代入k y x=,利用待定系数法即可求出反比例函数的表达式;(2)先由射影定理求出BC=3,那么B ,﹣3),计算求出S △AOB =12S △AOP =12S △AOB P 的坐标为(m ,0),列出方程求解即可;(3)先解△OAB ,得出∠ABO=30°,再根据旋转的性质求出E 1),即可求解.【详解】(1)∵点A 1)在反比例函数k y x =的图象上, ∴∴反比例函数的表达式为y x=;(2)∵A 1),AB ⊥x 轴于点C ,∴AC=1,由射影定理得2OC =AC•BC ,可得BC=3,B ,﹣3),S △AOB =12×4= ∴S△AOP =12S △AOB 设点P 的坐标为(m ,0), ∴12, ∴|m|=∵P 是x 轴的负半轴上的点,∴m=﹣∴点P 的坐标为(-0);(3)点E 在该反比例函数的图象上,理由如下:∵OA ⊥OB ,OA=2,OB=AB=4,∴sin ∠ABO=OA AB =24=12, ∴∠ABO=30°,∵将△BOA 绕点B 按逆时针方向旋转60°得到△BDE ,∴△BOA≌△BDE,∠OBD=60°,∴BO=BD=23,OA=DE=2,∠BOA=∠BDE=90°,∠ABD=30°+60°=90°,而BD﹣OC=3,BC﹣DE=1,-,﹣1),∴E(3∵3-×(﹣1)=3,∴点E在该反比例函数的图象上.考点:待定系数法求反比例函数解析式;反比例函数系数k的几何意义;坐标与图形变化-旋转.26.(1)PD是⊙O的切线.证明见解析.(2)1.【解析】试题分析:(1)连结OP,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD和∠D的度数,进而可得∠OPD=90°,从而证明PD是⊙O的切线;(2)连结BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC长,再证明△CAE∽△CPA,进而可得,然后可得CE•CP的值.试题解析:(1)如图,PD是⊙O的切线.证明如下:连结OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切线.(2)连结BC,∵AB是⊙O的直径,∴∠ACB=90°,又∵C为弧AB的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP•CE=CA2=()2=1.考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.夏新同学上午卖废品收入13元,记为+13元,下午买旧书支出9元,记为()元.A.+4 B.﹣9 C.﹣4 D.+92.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则∠NOF的度数为()A.50°B.60°C.70°D.80°3.如图,小明从A处出发沿北偏西30°方向行走至B处,又沿南偏西50°方向行走至C处,此时再沿与出发时一致的方向行走至D处,则∠BCD的度数为()A.100°B.80°C.50°D.20°4.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.11910813x yy x x y=⎧⎨+-+=⎩()()B.108 91311y x x y x y+=+⎧⎨+=⎩C.91181013x yx y y x ()()=⎧⎨+-+=⎩D.91110813 x yy x x y=⎧⎨+-+=⎩()()5.如图,在△ABC中,DE∥BC交AB于D,交AC于E,错误的结论是().A.AD AEDB EC=B.AB ACAD AE=C.AC ECAB DB=D.AD DEDB BC=6.如图,△ABC的面积为8cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为()A.2cm2B.3cm2C.4cm2D.5cm27.如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A.1处B.2处C.3处D.4处8.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A.0.7米B.1.5米C.2.2米D.2.4米9.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为()A.16 B.14 C.12 D.1010.用铝片做听装饮料瓶,现有100张铝片,每张铝片可制瓶身16个或制瓶底45个,一个瓶身和两个瓶底可配成一套,设用x张铝片制作瓶身,则可列方程()A .1645(100)x x =-B .1645(50)x x =-C .21645(100)x x ⨯=-D .16245(100)x x =⨯- 二、填空题(本题包括8个小题)11.计算:21m m ++112m m++=______. 12.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB 是一个任意角,在边OA ,OB 上分别取OM=ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合.过角尺顶点C 的射线OC 即是∠AOB 的平分线.做法中用到全等三角形判定的依据是______.13.计算:|﹣3|+(﹣1)2= .14.因式分解:a 2b +2ab +b = .15.如图,在△ABC 中,∠C =∠ABC ,BE ⊥AC ,垂足为点E ,△BDE 是等边三角形,若AD =4,则线段BE 的长为______.16.已知点P (1,2)关于x 轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为 .17.如图,正五边形ABCDE 和正三角形AMN 都是⊙O 的内接多边形,则∠BOM =_______.18.二次函数y=(a-1)x 2-x+a 2-1 的图象经过原点,则a 的值为______.三、解答题(本题包括8个小题)19.(6分)实践:如图△ABC 是直角三角形,∠ACB =90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)作∠BAC 的平分线,交BC 于点O.以O 为圆心,OC 为半径作圆.综合运用:在你所作的图中,AB与⊙O的位置关系是_____ .(直接写出答案)若AC=5,BC=12,求⊙O 的半径.20.(6分)已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF∥CE,且交BC于点F.求证:△ABF≌△CDE;如图,若∠1=65°,求∠B的大小.21.(6分)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数.如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN2,ND2,DH2之间的数量关系,并说明理由.在图①中,若EG=4,GF=6,求正方形ABCD的边长.22.(8分)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.求证:DP是⊙O的切线;若⊙O的半径为3cm,求图中阴影部分的面积.23.(8分)边长为6的等边△ABC 中,点D ,E 分别在AC ,BC 边上,DE∥AB,EC =3如图1,将△DEC 沿射线EC 方向平移,得到△D′E′C′,边D′E′与AC 的交点为M ,边C′D′与∠ACC′的角平分线交于点N.当CC′多大时,四边形MCND′为菱形?并说明理由.如图2,将△DEC 绕点C 旋转∠α(0°<α<360°),得到△D ′E′C ,连接AD′,BE′.边D′E′的中点为P.①在旋转过程中,AD′和BE′有怎样的数量关系?并说明理由;②连接AP ,当AP 最大时,求AD′的值.(结果保留根号)24.(10分)如图,在平面直角坐标系中,抛物线y =x 2+mx +n 经过点A(3,0)、B(0,-3),点P 是直线AB 上的动点,过点P 作x 轴的垂线交抛物线于点M ,设点P 的横坐标为t .分别求出直线AB 和这条抛物线的解析式.若点P 在第四象限,连接AM 、BM ,当线段PM 最长时,求△ABM 的面积.是否存在这样的点P ,使得以点P 、M 、B 、O 为顶点的四边形为平行四边形?若存在,请直接写出点P 的横坐标;若不存在,请说明理由.25.(10分)在矩形ABCD 中,点E 在BC 上,AE AD =,DF ⊥AE ,垂足为F .求证.DF AB =若30FDC ∠=︒,且4AB =,求AD .26.(12分)如图,△ABC 内接于⊙O ,过点C 作BC 的垂线交⊙O 于D ,点E 在BC 的延长线上,且∠DEC =∠BAC .求证:DE 是⊙O 的切线;若AC ∥DE ,当AB =8,CE =2时,求⊙O 直径的长.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.B【解析】【分析】收入和支出是两个相反的概念,故两个数字分别为正数和负数.【详解】收入13元记为+13元,那么支出9元记作-9元【点睛】本题主要考查了正负数的运用,熟练掌握正负数的概念是本题的关键.2.C【解析】【详解】解:∵OM=60海里,ON=80海里,MN=100海里,∴OM2+ON2=MN2,∴∠MON=90°,∵∠EOM=20°,∴∠NOF=180°﹣20°﹣90°=70°.故选C.【点睛】本题考查直角三角形的判定,掌握方位角的定义及勾股定理逆定理是本题的解题关键.3.B【解析】解:如图所示:由题意可得:∠1=30°,∠3=50°,则∠2=30°,故由DC ∥AB ,则∠4=30°+50°=80°.故选B .点睛:此题主要考查了方向角的定义,正确把握定义得出∠3的度数是解题关键.4.D【解析】【分析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.【详解】设每枚黄金重x 两,每枚白银重y 两,由题意得:91110813x y y x x y =⎧⎨+-+=⎩()(), 故选:D .【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系. 5.D【解析】【分析】 根据平行线分线段成比例定理及相似三角形的判定与性质进行分析可得出结论.【详解】由DE ∥BC ,可得△ADE ∽△ABC ,并可得: AD AE DB EC =,AB AC AD AE =,AC EC AB DB=,故A ,B ,C 正确;D 错误; 故选D .【点睛】考点:1.平行线分线段成比例;2.相似三角形的判定与性质.6.C【解析】【分析】延长AP 交BC 于E ,根据AP 垂直∠B 的平分线BP 于P ,即可求出△ABP ≌△BEP ,又知△APC 和△CPE 等底同高,可以证明两三角形面积相等,即可求得△PBC的面积.【详解】延长AP交BC于E.∵AP垂直∠B的平分线BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°.在△APB和△EPB中,∵,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC 和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCE S△ABC=4cm1.故选C.【点睛】本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出S△PBC=S△PBE+S△PCE S△ABC.7.D【解析】【分析】到三条相互交叉的公路距离相等的地点应是三条角平分线的交点.把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求.【详解】满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处.如图所示,故选D.【点睛】本题考查了角平分线的性质;这是一道生活联系实际的问题,解答此类题目时最直接的判断就是三角形的角平分线,很容易漏掉外角平分线,解答时一定要注意,不要漏解.8.C【解析】【分析】在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.【点睛】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.9.B【解析】【分析】根据切线长定理进行求解即可.【详解】∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴AF=AD=2,BD=BE,CE=CF,∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周长=2+2+5+5=14,故选B.【点睛】本题考查了三角形的内切圆以及切线长定理,熟练掌握切线长定理是解题的关键.10.C【解析】【分析】。

安徽省宿州市泗县2019届中考直升数学试题(有答案)

安徽省宿州市泗县2019届中考直升数学试题(有答案)

2019年安徽省宿州市泗县中考直升数学试卷一、选择题.1.计算﹣3+(﹣1)的结果是()A.2 B.﹣2 C.4 D.﹣42.下列运算正确的是()A.(a2)5=a7B.a2•a4=a6C.3a2b﹣3ab2=0 D.()2=3.2019年初,一列CRH5型高速车组进行了“300000公里正线运营考核”标志着中国高速快车从“中国制造”到“中国创造”的飞跃,将300000用科学记数法表示为()A.3×106B.3×105C.0.3×106D.30×1044.如图,在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是()A.8 B.10 C.12 D.145.如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为()A.105°B.110°C.115°D.120°6.某市举行创建文明城市志愿活动,我校初二(1)班、初二(2)班、初二(3)各班均有2名同学志愿者报名参加,现从6名同学中随机选一名志愿者,则被选中的同学恰好是初二(3)班同学的概率是()A.B.C.D.7.化简﹣的结果是()A.B.C.D.8.如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD.若∠A=30°,⊙O的半径为2,则图中阴影部分的面积为()A.﹣B.﹣2C.π﹣D.﹣9.若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解是()A.x1=0 x2=4 B.x1=1 x2=5 C.x1=1 x2=﹣5 D.x1=﹣1 x2=510.如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=4,设AB=x,AD=y,则x2+(y﹣4)2的值为()A.4 B.8 C.12 D.16二、填空题.11.分解因式:x3﹣6x2+9x= .12.如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为.13.关于x的一元二次方程ax2+bx+=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a= ,b= .14.如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD于点E、F,CE=2,连接CF,以下结论:①△ABF≌△CBF;②点E到AB的距离是2;③tan∠DCF=;④△ABF的面积为.其中一定成立的是(把所有正确结论的序号都填在横线上).三、解答题:15.计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.16.解方程:.17.国务院办公厅在2015年3月16日发布了《中国足球发展改革总体方案》,这是中国足球史上的重大改革,为进一步普及足球知识,传播足球文化,我市某区在中小学举行了“足球在身边”知识竞赛,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:(1)获得一等奖的学生人数;(2)在本次知识竞赛活动中,A,B,C,D四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛,请用画树状图或列表的方法求恰好选到A,B两所学校的概率.18.如图,在△ABC中,AB=AC,分别以B、C为圆心,BC长为半径在BC下方画弧.设两弧交于点D,与AB、AC的延长线分别交于点E、F,连接AD、BD、CD(1)求证:AD平分∠BAC;(2)若BC=6,∠BAC=50°,求弧DE、弧DF的长度之和(结果保留π).19.如图,已知函数y=(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E(1)若AC=OD,求a、b的值;(2)若BC∥AE,求BC的长.20.如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B 处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).21.(12分)如图,已知AD是△ABC的角平分线,⊙O经过A、B、D三点.过点B作BE∥AD,交⊙O于点E,连接ED(1)求证:ED∥AC;(2)若BD=2CD,设△EBD的面积为S1,△ADC的面积为S2,且S12﹣16S2+4=0,求△ABC的面积.22.如图,在平面直角坐标系中,抛物线w的表达式为y=﹣,抛物线w与X轴交于A、B两点(B在A右侧)与y轴交于点C,它的对称轴与x轴交于点D,直线L经过C、D两点.(1)求A、B两点的坐标及直线L的函数表达式;(2)将抛物线W沿x轴向右平移得到抛物线W′,设抛物线W′的对称轴与直线L交于点F,当△ACF是直角三角形时,求点F的坐标,并直接写出抛物线W′的函数表达式.23.我们把两条中线互相垂直的三角形称为“称为中垂三角形”,例如图1,图2,图3中,AF,BE是△ABC 的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均称为“中垂三角形”,设BC=a,AC=b,AB=c.特例探索(1)如图1,当∠ABE=45°,c=2时,a= ,b= .如图2,当∠ABE=30°,c=4时,a= ,b= .归纳证明(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式.拓展应用(3)如图4,在▱ABCD中,点E、F、G分别是AD,BC,CD的中点,BE⊥EG,AD=2,AB=3,求AF的长.2019年安徽省宿州市泗县中考直升数学试卷参考答案与试题解析一、选择题.1.计算﹣3+(﹣1)的结果是()A.2 B.﹣2 C.4 D.﹣4【考点】有理数的加法.【分析】根据同号两数相加的法则进行计算即可.【解答】解:﹣3+(﹣1)=﹣(3+1)=﹣4,故选:D.【点评】本题主要考查了有理数的加法法则,解决本题的关键是熟记同号两数相加,取相同的符号,并把绝对值相加.2.下列运算正确的是()A.(a2)5=a7B.a2•a4=a6C.3a2b﹣3ab2=0 D.()2=【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据幂的乘方、同底数幂的乘法和同类项合并计算即可.【解答】解:A、(a2)5=a10,错误;B、a2•a4=a6,正确;C、3a2b与3ab2不能合并,错误;D、()2=,错误;故选B.【点评】此题考查幂的乘方、同底数幂的乘法和同类项合并,关键是根据法则进行计算.3.2015年初,一列CRH5型高速车组进行了“300000公里正线运营考核”标志着中国高速快车从“中国制造”到“中国创造”的飞跃,将300000用科学记数法表示为()A.3×106B.3×105C.0.3×106D.30×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将300000用科学记数法表示为:3×105.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如图,在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是()A.8 B.10 C.12 D.14【考点】三角形中位线定理.【分析】首先根据点D、E分别是边AB,BC的中点,可得DE是三角形BC的中位线,然后根据三角形中位线定理,可得DE=AC,最后根据三角形周长的含义,判断出△ABC的周长和△DBE的周长的关系,再结合△DBE的周长是6,即可求出△ABC的周长是多少.【解答】解:∵点D、E分别是边AB,BC的中点,∴DE是三角形BC的中位线,AB=2BD,BC=2BE,∴DE∥BC且DE=AC,又∵AB=2BD,BC=2BE,∴AB+BC+AC=2(BD+BE+DE),即△ABC的周长是△DBE的周长的2倍,∵△DBE的周长是6,∴△ABC的周长是:6×2=12.故选:C.【点评】(1)此题主要考查了三角形中位线定理的应用,要熟练掌握,解答此题的关键是要明确:三角形的中位线平行于第三边,并且等于第三边的一半.(2)此题还考查了三角形的周长和含义的求法,要熟练掌握.5.如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为()A.105°B.110°C.115°D.120°【考点】平行线的性质.【分析】如图,首先证明∠AMO=∠2;然后运用对顶角的性质求出∠ANM=55°,借助三角形外角的性质求出∠AMO即可解决问题.【解答】解:如图,∵直线a∥b,∴∠AMO=∠2;∵∠ANM=∠1,而∠1=55°,∴∠ANM=55°,∴∠AMO=∠A+∠ANM=60°+55°=115°,∴∠2=∠AMO=115°.故选C.【点评】该题主要考查了平行线的性质、对顶角的性质、三角形的外角性质等几何知识点及其应用问题;牢固掌握平行线的性质、对顶角的性质等几何知识点是灵活运用、解题的基础.6.某市举行创建文明城市志愿活动,我校初二(1)班、初二(2)班、初二(3)各班均有2名同学志愿者报名参加,现从6名同学中随机选一名志愿者,则被选中的同学恰好是初二(3)班同学的概率是()A.B.C.D.【考点】概率公式.【分析】用初二(3)班的学生数除以所有报名学生数的和即可求得答案.【解答】解:∵共有6名同学,初二(3)班有2人,∴P(初二3班)==,故选:B.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.7.化简﹣的结果是()A.B.C.D.【考点】分式的加减法.【专题】计算题.【分析】原式第一项约分后,利用同分母分式的减法法则计算,即可得到结果.【解答】解:原式=﹣=﹣==,故选A.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.8.如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD.若∠A=30°,⊙O的半径为2,则图中阴影部分的面积为()A.﹣B.﹣2C.π﹣D.﹣【考点】扇形面积的计算;切线的性质.【分析】过O点作OE⊥CD于E,首先根据切线的性质和直角三角形的性质可得∠AOB=60°,再根据平角的定义和三角形外角的性质可得∠COD=120°,∠OCD=∠ODC=30°,根据含30°的直角三角形的性质可得OE,CD的长,再根据阴影部分的面积=扇形OCD的面积﹣三角形OCD的面积,列式计算即可求解.【解答】解:过O点作OE⊥CD于E,∵AB为⊙O的切线,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∴∠COD=120°,∠OCD=∠ODC=30°,∵⊙O的半径为2,∴OE=1,CE=DE=,∴CD=2,∴图中阴影部分的面积为:﹣×2×1=π﹣.故选:A.【点评】考查了扇形面积的计算,切线的性质,本题关键是理解阴影部分的面积=扇形OCD的面积﹣三角形OCD的面积.9.若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解是()A.x1=0 x2=4 B.x1=1 x2=5 C.x1=1 x2=﹣5 D.x1=﹣1 x2=5【考点】抛物线与x轴的交点.【分析】根据对称轴方程﹣=2,得b=﹣4,解x2﹣4x=5即可.【解答】解:∵对称轴是经过点(2,0)且平行于y轴的直线,∴﹣=2,解得:b=﹣4,解方程x2﹣4x=5,解得x1=﹣1,x2=5,故选:D.【点评】本题主要考查二次函数的对称轴和二次函数与一元二次方程的关系,解题的关键是求出b的值,难度不大.10.如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=4,设AB=x,AD=y,则x2+(y﹣4)2的值为()A.4 B.8 C.12 D.16【考点】矩形的性质;直角三角形斜边上的中线;勾股定理.【分析】根据矩形的性质得到CD=AB=x,BC=AD=y,然后利用直角△BDE的斜边上的中线等于斜边的一半得到:BF=DF=EF=4,则在直角△DCF中,利用勾股定理求得x2+(y﹣4)2=DF2.【解答】解:∵四边形ABCD是矩形,AB=x,AD=y,∴CD=AB=x,BC=AD=y,∠BCD=90°.又∵BD⊥DE,点F是BE的中点,DF=4,∴BF=DF=EF=4.∴CF=4﹣BC=4﹣y.∴在直角△DCF中,DC2+CF2=DF2,即x2+(4﹣y)2=42=16,∴x2+(y﹣4)2=x2+(4﹣y)2=16.故选:D.【点评】本题考查了勾股定理,直角三角形斜边上的中线以及矩形的性质.根据“直角△BDE的斜边上的中线等于斜边的一半”求得BF的长度是解题的突破口.二、填空题.11.分解因式:x3﹣6x2+9x= x(x﹣3)2.【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】先提取公因式x,再对余下的多项式利用完全平方公式继续分解.【解答】解:x3﹣6x2+9x,=x(x2﹣6x+9),=x(x﹣3)2.故答案为:x(x﹣3)2.【点评】本题考查提公因式法分解因式和利用完全平方公式分解因式,关键在于需要进行二次分解因式.12.如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为110°.【考点】圆周角定理.【分析】根据圆周角定理求得∠BOC=100°,进而根据三角形的外角的性质求得∠BDC=70°,然后根据邻补角求得∠ADC的度数.【解答】解:∵∠A=50°,∴∠BOC=2∠A=100°,∵∠B=30°,∠BOC=∠B+∠BDC,∴∠BDC=∠BOC﹣∠B=100°﹣30°=70°,∴∠ADC=180°﹣∠BDC=110°,故答案为110°.【点评】本题考查了圆心角和圆周角的关系及三角形外角的性质,圆心角和圆周角的关系是解题的关键.13.关于x的一元二次方程ax2+bx+=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a= 4 ,b= 2 .【考点】根的判别式.【专题】开放型.【分析】由于关于x的一元二次方程ax2+bx+=0有两个相等的实数根,得到a=b2,找一组满足条件的数据即可.【解答】关于x的一元二次方程ax2+bx+=0有两个相等的实数根,∴△=b2﹣4×a=b2﹣a=0,∴a=b2,当b=2时,a=4,故b=2,a=4时满足条件.故答案为:4,2.【点评】本题主要考查了一元二次方程根的判别式,熟练掌握判别式的意义是解题的关键.14.如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD于点E、F,CE=2,连接CF,以下结论:①△ABF≌△CBF;②点E到AB的距离是2;③tan∠DCF=;④△ABF的面积为.其中一定成立的是①②③(把所有正确结论的序号都填在横线上).【考点】四边形综合题.【专题】压轴题.【分析】利用SAS证明△ABF与△CBF全等,得出①正确,根据含30°角的直角三角形的性质得出点E到AB的距离是2,得出②正确,同时得出;△ABF的面积为得出④错误,得出tan∠DCF=,得出③正确.【解答】解:∵菱形ABCD,∴AB=BC=6,∵∠DAB=60°,∴AB=AD=DB,∠ABD=∠DBC=60°,在△ABF与△CBF中,,∴△ABF≌△CBF(SAS),∴①正确;过点E作EG⊥AB,过点F作MH⊥CD,MH⊥AB,如图:∵CE=2,BC=6,∠ABC=120°,∴BE=6﹣2=4,∵EG⊥AB,∴EG=,∴点E到AB的距离是2,故②正确;∵BE=4,EC=2,∴S△BFE:S△FEC=4:2=2:1,∴S△ABF:S△FBE=3:2,∴△ABF的面积为=,故④错误;∵,∴=,∵,∴FM=,∴DM=,∴CM=DC﹣DM=6﹣,∴tan∠DCF=,故③正确;故答案为:①②③【点评】此题考查了四边形综合题,关键是根据菱形的性质、等边三角形的判定与性质以及全等三角形的判定与性质分析.此题难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.三、解答题:15.计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=4﹣1+2﹣+4×=5+.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.解方程:.【考点】解分式方程.【分析】观察可得最简公分母是2(2x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘2(2x﹣1),得2=2x﹣1﹣3,解得x=3.检验:把x=3代入2(2x﹣1)≠0.所以原方程的解为:x=3.【点评】本题考查了解分式方程,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.17.国务院办公厅在2015年3月16日发布了《中国足球发展改革总体方案》,这是中国足球史上的重大改革,为进一步普及足球知识,传播足球文化,我市某区在中小学举行了“足球在身边”知识竞赛,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:(1)获得一等奖的学生人数;(2)在本次知识竞赛活动中,A,B,C,D四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛,请用画树状图或列表的方法求恰好选到A,B两所学校的概率.【考点】列表法与树状图法;扇形统计图.【分析】(1)根据三等奖所在扇形的圆心角的度数求得总人数,然后乘以一等奖所占的百分比即可求得一等奖的学生数;(2)列表将所有等可能的结果列举出来,利用概率公式求解即可.【解答】解:(1)∵三等奖所在扇形的圆心角为90°,∴三等奖所占的百分比为25%,∵三等奖为50人,∴总人数为50÷25%=200人,∴一等奖的学生人数为200×(1﹣20%﹣25%﹣40%)=30人;(2)列表:A B C DA AB AC ADB BA BC BDC CA CB CDD DA DB DC∵共有12种等可能的结果,恰好选中A、B的有2种,∴P(选中A、B)==.【点评】本题考查了列表与树状图的知识,解题的关键是通过列表将所有等可能的结果列举出来,然后利用概率公式求解,难度不大.18.如图,在△ABC中,AB=AC,分别以B、C为圆心,BC长为半径在BC下方画弧.设两弧交于点D,与AB、AC的延长线分别交于点E、F,连接AD、BD、CD(1)求证:AD平分∠BAC;(2)若BC=6,∠BAC=50°,求弧DE、弧DF的长度之和(结果保留π).【考点】全等三角形的判定与性质;等边三角形的判定与性质;弧长的计算.【专题】证明题.【分析】(1)根据题意得出BD=CD=BC,由SSS证明△ABD≌△ACD,得出∠BAD=∠CAD即可;(2)由等腰三角形的性质得出∠ABC=∠ACB=65°,由等边三角形的性质得出∠DBC=∠DCB=60°,再由平角的定义求出∠DBE=∠DCF=55°,然后根据弧长公式求出、的长度,即可得出结果.【解答】(1)证明:根据题意得:BD=CD=BC,在△ABD和△ACD中,,∴△ABD≌△ACD(SSS).∴∠BAD=∠CAD,即AD平分∠BAC;(2)解:∵AB=AC,∠BAC=50°,∴∠ABC=∠ACB=65°,∵BD=CD=BC,∴△BDC为等边三角形,∴∠DBC=∠DCB=60°,∴∠DBE=∠DCF=55°,∵BC=6,∴BD=CD=6,∴的长度=的长度==;∴、的长度之和为+=.【点评】本题考查了全等三角形的判定与性质、等边三角形的判定与性质、弧长的计算;熟练掌握全等三角形和等边三角形的判定与性质,并能进行推理计算是解决问题的关键.19.如图,已知函数y=(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E(1)若AC=OD,求a、b的值;(2)若BC∥AE,求BC的长.【考点】反比例函数与一次函数的交点问题.【分析】(1)首先利用反比例函数图象上点的坐标性质得出k的值,再得出A、D点坐标,进而求出a,b的值;(2)设A点的坐标为:(m,),则C点的坐标为:(m,0),得出tan∠ADF==,tan∠AEC= =,进而求出m的值,即可得出答案.【解答】解;(1)∵点B(2,2)在函数y=(x>0)的图象上,∴k=4,则y=,∵BD⊥y轴,∴D点的坐标为:(0,2),OD=2,∵AC⊥x轴,AC=OD,∴AC=3,即A点的纵坐标为:3,∵点A在y=的图象上,∴A点的坐标为:(,3),∵一次函数y=ax+b的图象经过点A、D,∴,解得:;(2)设A点的坐标为:(m,),则C点的坐标为:(m,0),∵BD∥CE,且BC∥DE,∴四边形BCED为平行四边形,∴CE=BD=2,∵BD∥CE,∴∠ADF=∠AEC,∴在Rt△AFD中,tan∠ADF==,在Rt△ACE中,tan∠AEC==,∴=,解得:m=1,∴C点的坐标为:(1,0),则BC=.【点评】此题主要考查了反比例函数与一次函数的交点以及锐角三角函数关系等知识,得出A,D点坐标是解题关键.20.如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B 处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).【考点】解直角三角形的应用﹣方向角问题.【分析】过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB的平行线,两线交于点F,则∠E=∠F=90°,拦截点D处到公路的距离DA=BE+CF.解Rt△BCE,求出BE=BC=×1000=500米;解Rt△CDF,求出CF=CD=500米,则DA=BE+CF=(500+500)米.【解答】解:如图,过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB 的平行线,两线交于点F,则∠E=∠F=90°,拦截点D处到公路的距离DA=BE+CF.在Rt△BCE中,∵∠E=90°,∠CBE=60°,∴∠BCE=30°,∴BE=BC=×1000=500米;在Rt△CDF中,∵∠F=90°,∠DCF=45°,CD=BC=1000米,∴CF=CD=500米,∴DA=BE+CF=(500+500)米,故拦截点D处到公路的距离是(500+500)米.【点评】本题考查了解直角三角形的应用﹣方向角问题,锐角三角函数的定义,正确理解方向角的定义,进而作出辅助线构造直角三角形是解题的关键.21.如图,已知AD是△ABC的角平分线,⊙O经过A、B、D三点.过点B作BE∥AD,交⊙O于点E,连接ED(1)求证:ED∥AC;(2)若BD=2CD,设△EBD的面积为S1,△ADC的面积为S2,且S12﹣16S2+4=0,求△ABC的面积.【考点】相似三角形的判定与性质;解一元二次方程﹣配方法;圆周角定理.【分析】(1)由AD是△ABC的角平分线,得到∠BAD=∠DAC,由于∠E=∠BAD,等量代换得到∠E=∠DAC,根据平行线的性质和判定即可得到结果;(2)由BE∥AD,得到∠EBD=∠ADC,由于∠E=∠DAC,得到△EBD∽△ADC,根据相似三角形的性质相似三角形面积的比等于相似比的平方即可得到结果.【解答】(1)证明:∵AD是△ABC的角平分线,∴∠BAD=∠DAC,∵∠E=∠BAD,∴∠E=∠DAC,∵BE∥AD,∴∠E=∠EDA,∴∠EDA=∠DAC,∴ED∥AC;(2)解:∵BE∥AD,∴∠EBD=∠ADC,∵∠E=∠DAC,∴△EBD∽△ADC,且相似比k=,∴=k2=4,即s1=4s2,∵﹣16S2+4=0,∴16﹣16S2+4=0,即=0,∴S2=,∵====3,∴S△ABC=.【点评】本题考查了相似三角形的判定和性质,角平分线的性质,平行线的性质,记住相似三角形面积的比等于相似比的平方是解题的关键.22.如图,在平面直角坐标系中,抛物线w的表达式为y=﹣,抛物线w与X轴交于A、B两点(B在A右侧)与y轴交于点C,它的对称轴与x轴交于点D,直线L经过C、D两点.(1)求A、B两点的坐标及直线L的函数表达式;(2)将抛物线W沿x轴向右平移得到抛物线W′,设抛物线W′的对称轴与直线L交于点F,当△ACF是直角三角形时,求点F的坐标,并直接写出抛物线W′的函数表达式.【考点】抛物线与x轴的交点;二次函数图象与几何变换.【分析】(1)根据自变量与函数值对应关系,当函数值为零时,可得A、B点坐标,当自变量为零时,可得C点坐标,根据对称轴公式,可得D点坐标,根据待定系数法,可得l的解析式;(2)根据余角性质,可得∠1与∠3的关系,根据正切的定义,可得关于F点的横坐标的方程,根据解方程,可得F点坐标,平移后的对称轴,根据平移后的对称轴,可得平移后的函数解析式.【解答】解:(1)当y=0时,﹣ x2+x+4=0,解得x1=﹣3,x2=7,∴点A坐标为(﹣3,0),点B的坐标为(7,0).∵﹣=2,∴抛物线w的对称轴为直线x=2,∴点D坐标为(2,0).当x=0时,y=4,∴点C的坐标为(0,4).设直线l的表达式为y=kx+b,,解得,∴直线l的解析式为y=﹣2x+4;(2)∵抛物线w向右平移,只有一种情况符合要求,即∠FAC=90°,如图.此时抛物线w′的对称轴与x轴的交点为G,∵∠1+∠2=90°∠2+∠3=90°,∴∠1=∠3,∴tan∠1=tan∠3,∴=.设点F的坐标为(x F,﹣2x F+4),∴=,解得x F=5,﹣2x F+4=﹣6,∴点F的坐标为(5,﹣6),此时抛物线w′的函数表达式为y=﹣x2+x;【点评】本题考查了抛物线与x轴的交点问题,(1)利用了自变量与函数值的对应关系,待定系数法求函数解析式;(2)利用了余角的性质,正切函数的性质,利用等角的正切函数值相等得出关于F点横坐标的方程是解题关键23.我们把两条中线互相垂直的三角形称为“称为中垂三角形”,例如图1,图2,图3中,AF,BE是△ABC 的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均称为“中垂三角形”,设BC=a,AC=b,AB=c.特例探索(1)如图1,当∠ABE=45°,c=2时,a= 2,b= 2.如图2,当∠ABE=30°,c=4时,a= 2,b= 2.归纳证明(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式.拓展应用(3)如图4,在▱ABCD中,点E、F、G分别是AD,BC,CD的中点,BE⊥EG,AD=2,AB=3,求AF的长.【考点】相似形综合题.【专题】压轴题.【分析】(1)由等腰直角三角形的性质得到AP=BP=AB=2,根据三角形中位线的性质,得到EF∥AB,EF= AB=,再由勾股定理得到结果;(2)连接EF,设∠ABP=α,类比着(1)即可证得结论.(3)连接AC交EF于H,设BE与AF的交点为P,由点E、G分别是AD,CD的中点,得到EG是△ACD的中位线于是证出BE⊥AC,由四边形ABCD是平行四边形,得到AD∥BC,AD=BC=2,∠EAH=∠FCH根据E,F 分别是AD,BC的中点,得到AE=BF=CF=AD=,证出四边形ABFE是平行四边形,证得EH=FH,推出EH,AH分别是△AFE的中线,由(2)的结论得即可得到结果.【解答】解:(1)∵AF⊥BE,∠ABE=45°,∴AP=BP=AB=2,∵AF,BE是△ABC的中线,∴EF∥AB,EF=AB=,∴∠PFE=∠PEF=45°,∴PE=PF=1,在Rt△FPB和Rt△PEA中,AE=BF==,∴AC=BC=2,∴a=b=2,如图2,连接EF,同理可得:EF=×4=2,∵EF∥AB,∴△PEF~△ABP,∴,在Rt△ABP中,AB=4,∠ABP=30°,∴AP=2,PB=2,∴PF=1,PE=,在Rt△APE和Rt△BPF中,AE=,BF=,∴a=2,b=2,故答案为:2,2,2,2;(2)猜想:a2+b2=5c2,如图3,连接EF,设∠ABP=α,∴AP=csinα,PB=ccosα,由(1)同理可得,PF=PA=,PE==,AE2=AP2+PE2=c2sin2α+,BF2=PB2+PF2=+c2cos2α,∴=c2sin2α+, =+c2cos2α,∴+=+c2cos2α+c2sin2α+,∴a2+b2=5c2;(3)如图4,连接AC,EF交于H,AC与BE交于点Q,设BE与AF的交点为P,∵点E、G分别是AD,CD的中点,∴EG∥AC,∵BE⊥EG,∴BE⊥AC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=2,∴∠EAH=∠FCH,∵E,F分别是AD,BC的中点,∴AE=AD,BF=BC,∴AE=BF=CF=AD=,∵AE∥BF,∴四边形ABFE是平行四边形,∴EF=AB=3,AP=PF,在△AEH和△CFH中,,∴△AEH≌△CFH,∴EH=FH,∴EP,AH分别是△AFE的中线,由(2)的结论得:AF2+EF2=5AE2,∴AF2=5﹣EF2=16,∴AF=4.【点评】本题考查了相似三角形的判定和性质,勾股定理,锐角三角函数,注意类比思想在本题中的应用.。

安徽省宿州市2019-2020学年中考数学第二次押题试卷含解析

安徽省宿州市2019-2020学年中考数学第二次押题试卷含解析

安徽省宿州市2019-2020学年中考数学第二次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,从边长为a 的正方形中去掉一个边长为b 的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b -=-+C .222()2a b a ab b +=++D .2()a ab a a b +=+2.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A .0.7米B .1.5米C .2.2米D .2.4米3.如图,在△ABC 中,点D 是边AB 上的一点,∠ADC =∠ACB ,AD =2,BD =6,则边AC 的长为( )A .2B .4C .6D .84.下列计算正确的是( ) A 326=B .3+25=C ()222-=- D 2+2=25.若关于x 的一元二次方程x (x+2)=m 总有两个不相等的实数根,则( ) A .m <﹣1B .m >1C .m >﹣1D .m <16.在对某社会机构的调查中收集到以下数据,你认为最能够反映该机构年龄特征的统计量是( ) 年龄 13 14 15 25 28 30 35 其他 人数3053317 12209 23A .平均数B .众数C .方差D .标准差7.一元一次不等式组的解集中,整数解的个数是( )A .4B .5C .6D .78.若在同一直角坐标系中,正比例函数y =k 1x 与反比例函数y =2k x的图象无交点,则有( ) A .k 1+k 2>0B .k 1+k 2<0C .k 1k 2>0D .k 1k 2<09.如图,O 为直线 AB 上一点,OE 平分∠BOC ,OD ⊥OE 于点 O ,若∠BOC=80°,则∠AOD 的度数是( )A .70°B .50°C .40°D .35°10.长度单位1纳米米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是( ) A .米 B .米 C .米 D .米11.老师随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图,其中条形图被墨迹遮盖了一部分,则条形图中被遮盖的数是( )A .5B .9C .15D .2212.如图,淇淇一家驾车从A 地出发,沿着北偏东60°的方向行驶,到达B 地后沿着南偏东50°的方向行驶来到C 地,C 地恰好位于A 地正东方向上,则( ) ①B 地在C 地的北偏西50°方向上; ②A 地在B 地的北偏西30°方向上; ③cos ∠BAC=32; ④∠ACB=50°.其中错误的是( )A .①②B .②④C .①③D .③④二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.如图,点A 在双曲线1y=x 上,点B 在双曲线3y=x上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD为矩形,则它的面积为 .14.若分式方程x a 2x 4x 4=+--的解为正数,则a 的取值范围是______________. 15.如图,直线y kx b =+经过(2,1)A 、(1,2)B --两点,则不等式122x kx b >+>-的解集为_______.16.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC 是半高三角形,且斜边AB=5,则它的周长等于_____. 17.若332y x x =-+-+,则y x = .18.用一个半径为10cm 半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为 . 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知D 是AC 上一点,AB=DA ,DE ∥AB ,∠B=∠DAE .求证:BC=AE .20.(6分)如图,在平面直角坐标系中,直线y 1=2x ﹣2与双曲线y 2=kx交于A 、C 两点,AB ⊥OA 交x 轴于点B ,且OA=AB . (1)求双曲线的解析式;(2)求点C 的坐标,并直接写出y 1<y 2时x 的取值范围.21.(6分)如图,⊙O的直径AD长为6,AB是弦,CD∥AB,∠A=30°,且CD=3.(1)求∠C的度数;(2)求证:BC是⊙O的切线.22.(8分)十八大报告首次提出建设生态文明,建设美丽中国.十九大报告再次明确,到2035年美丽中国目标基本实现.森林是人类生存发展的重要生态保障,提高森林的数量和质量对生态文明建设非常关键.截止到2013年,我国已经进行了八次森林资源清查,其中全国和北京的森林面积和森林覆盖率情况如下:表1全国森林面积和森林覆盖率清查次数一(1976年)二(1981年)三(1988年)四(1993年)五(1998年)六(2003年)七(2008年)八(2013年)森林面积(万公顷)12200 1150 12500 1340015894.0917490.92 19545.22 20768.73森林覆盖率12.7% 12% 12.98% 13.92% 16.55% 18.21% 20.36% 21.63% 表2北京森林面积和森林覆盖率清查次数一(1976年)二(1981年)三(1988年)四(1993年)五(1998年)六(2003年)七(2008年)八(2013年)森林面积(万公顷)33.74 37.88 52.05 58.81森林覆盖率11.2% 8.1% 12.08% 14.99% 18.93% 21.26% 31.72% 35.84% (以上数据来源于中国林业网)请根据以上信息解答下列问题:(1)从第次清查开始,北京的森林覆盖率超过全国的森林覆盖率;(2)补全以下北京森林覆盖率折线统计图,并在图中标明相应数据;(3)第八次清查的全国森林面积20768.73(万公顷)记为a,全国森林覆盖率21.63%记为b,到2018年第九次森林资源清查时,如果全国森林覆盖率达到27.15%,那么全国森林面积可以达到万公顷(用含a和b的式子表示).23.(8分)如图,已知⊙O经过△ABC的顶点A、B,交边BC于点D,点A恰为»BD的中点,且BD=8,AC=9,sinC=13,求⊙O的半径.24.(10分)如图,点A是直线AM与⊙O的交点,点B在⊙O上,BD⊥AM,垂足为D,BD与⊙O交于点C,OC平分∠AOB,∠B=60°.求证:AM是⊙O的切线;若⊙O的半径为4,求图中阴影部分的面积(结果保留π和根号).25.(10分)鲜丰水果店计划用12元/盒的进价购进一款水果礼盒以备销售.()1据调查,当该种水果礼盒的售价为14元/盒时,月销量为980盒,每盒售价每增长1元,月销量就相应减少30盒,若使水果礼盒的月销量不低于800盒,每盒售价应不高于多少元?()2在实际销售时,由于天气和运输的原因,每盒水果礼盒的进价提高了25%,而每盒水果礼盒的售价比(1)中最高售价减少了1%5m,月销量比(1)中最低月销量800盒增加了%m,结果该月水果店销售该水果礼盒的利润达到了4000元,求m的值.26.(12分)已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB 交CB的延长线于G.求证:△ADE≌△CBF;若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.27.(12分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.求证:△ABC≌△AED;当∠B=140°时,求∠BAE的度数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.A 【解析】 【分析】由图形可以知道,由大正方形的面积-小正方形的面积=矩形的面积,进而可以证明平方差公式. 【详解】解:大正方形的面积-小正方形的面积=22a b -, 矩形的面积=()()a b a b +-, 故22()()a b a b a b +-=-, 故选:A . 【点睛】本题主要考查平方差公式的几何意义,用两种方法表示阴影部分的面积是解题的关键. 2.C 【解析】 【分析】在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度. 【详解】在Rt △A′BD 中,∵∠A′DB=90°,A′D=2米,BD 2+A′D 2=A′B′2,∴BD 2+22=6.25,∴BD 2=2.25,∵BD >0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C .【点睛】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键. 3.B 【解析】 【分析】证明△ADC ∽△ACB ,根据相似三角形的性质可推导得出AC 2=AD•AB ,由此即可解决问题. 【详解】∵∠A=∠A ,∠ADC=∠ACB , ∴△ADC ∽△ACB ,∴AC ADAB AC=, ∴AC 2=AD•AB=2×8=16, ∵AC>0, ∴AC=4, 故选B. 【点睛】本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题. 4.A 【解析】 【分析】原式各项计算得到结果,即可做出判断. 【详解】A 、原式,正确;B 、原式不能合并,错误;C 、原式2=,错误;D 、原式 故选A . 【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 5.C 【解析】 【分析】将关于x 的一元二次方程化成标准形式,然后利用Δ>0,即得m 的取值范围. 【详解】因为方程是关于x 的一元二次方程方程,所以可得220x x m +-=,Δ=4+4m > 0,解得m>﹣1,故选D. 【点睛】本题熟练掌握一元二次方程的基本概念是本题的解题关键. 6.B 【解析】分析:根据平均数的意义,众数的意义,方差的意义进行选择.详解:由于14岁的人数是533人,影响该机构年龄特征,因此,最能够反映该机构年龄特征的统计量是众数. 故选B .点睛:本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用. 7.C 【解析】试题分析:∵解不等式得:,解不等式,得:x≤5,∴不等式组的解集是,整数解为0,1,2,3,4,5,共6个,故选C .考点:一元一次不等式组的整数解. 8.D 【解析】当k 1,k 2同号时,正比例函数y =k 1x 与反比例函数y =2k x的图象有交点;当k 1,k 2异号时,正比例函数y =k 1x 与反比例函数y =2k x的图象无交点,即可得当k 1k 2<0时,正比例函数y =k 1x 与反比例函数y =2k x的图象无交点,故选D. 9.B 【解析】分析:由OE 是∠BOC 的平分线得∠COE=40°,由OD ⊥OE 得∠DOC=50°,从而可求出∠AOD 的度数. 详解:∵OE 是∠BOC 的平分线,∠BOC=80°, ∴∠COE=12∠BOC=12×80°=40°, ∵OD ⊥OE ∴∠DOE=90°,∴∠DOC=∠DOE-∠COE=90°-40°=50°,∴∠AOD=180°-∠BOC-∠DOC==180°-80°-50°=50°. 故选B.点睛:本题考查了角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.性质:若OC 是∠AOB 的平分线则∠AOC=∠BOC=12∠AOB 或∠AOB=2∠AOC=2∠BOC . 10.D 【解析】先将25 100用科学记数法表示为2.51×104,再和10-9相乘,等于2.51×10-5米. 故选D11.B【解析】【分析】条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.【详解】课外书总人数:6÷25%=24(人),看5册的人数:24﹣5﹣6﹣4=9(人),故选B.【点睛】本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.12.B【解析】【分析】先根据题意画出图形,再根据平行线的性质及方向角的描述方法解答即可.【详解】如图所示,由题意可知,∠1=60°,∠4=50°,∴∠5=∠4=50°,即B在C处的北偏西50°,故①正确;∵∠2=60°,∴∠3+∠7=180°﹣60°=120°,即A在B处的北偏西120°,故②错误;∵∠1=∠2=60°,∴∠BAC=30°,∴cos∠BAC=3,故③正确;∵∠6=90°﹣∠5=40°,即公路AC和BC的夹角是40°,故④错误.故选B.【点睛】本题考查的是方向角,平行线的性质,特殊角的三角函数值,解答此类题需要从运动的角度,正确画出方位角,再结合平行线的性质求解.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2【解析】【详解】如图,过A 点作AE ⊥y 轴,垂足为E ,∵点A 在双曲线1y=x 上,∴四边形AEOD 的面积为1 ∵点B 在双曲线3y=x上,且AB ∥x 轴,∴四边形BEOC 的面积为3 ∴四边形ABCD 为矩形,则它的面积为3-1=214.a <8,且a≠1【解析】分式方程去分母得:x=2x-8+a ,解得:x=8- a ,根据题意得:8- a >2,8- a≠1,解得:a <8,且a≠1.故答案为:a <8,且a≠1.【点睛】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,根据分式方程解为正数求出a 的范围即可.此题考查了分式方程的解,需注意在任何时候都要考虑分母不为2.15.-1<X <2【解析】12y x Q 经过点A ,∴不等式12x>kx+b>-2的解集为1x 2-<<.16. .【解析】【分析】分两种情况讨论:①Rt △ABC 中,CD ⊥AB ,CD=12AB=52;②Rt △ABC 中,AC=12BC ,分别依据勾股定理和三角形的面积公式,即可得到该三角形的周长为【详解】由题意可知,存在以下两种情况:(1)当一条直角边是另一条直角边的一半时,这个直角三角形是半高三角形,此时设较短的直角边为a ,则较长的直角边为2a ,由勾股定理可得:222(2)5a a +=,解得:a =,∴此时直角三角形的周长为:5+;(2)当斜边上的高是斜边的一半是,这个直角三角形是半高三角形,此时设两直角边分别为x 、y , 这有题意可得:①2225x y +=,②S △=1155222xy =⨯⨯, ∴③225xy =,由①+③得:22250x xy y ++=,即2()50x y +=,∴x y +=∴此时这个直角三角形的周长为:综上所述,这个半高直角三角形的周长为:5+或故答案为5+【点睛】(1)读懂题意,弄清“半高三角形”的含义是解题的基础;(2)根据题意,若直角三角形是“半高三角形”,则存在两种情况:①一条直角边是另一条直角边的一半;②斜边上的高是斜边的一半;解题时这两种情况都要讨论,不要忽略了其中一种.17.1.【解析】试题分析:2y =有意义,必须30x -≥,30x -≥,解得:x=3,代入得:y=0+0+2=2,∴y x=23=1.故答案为1.考点:二次根式有意义的条件.18.5【解析】试题分析:根据图形可知圆锥的侧面展开图的弧长为2π×10÷2=10π(cm),因此圆锥的底面半径为10π÷2π=5(cm),因此圆锥的高为:=5(cm).考点:圆锥的计算三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.见解析【解析】【分析】【详解】证明:∵DE∥AB,∴∠CAB=∠ADE.在△ABC和△DAE中,∵CAB ADE {AB DAB DAE∠=∠=∠=∠,∴△ABC≌△DAE(ASA).∴BC=AE.【点睛】根据两直线平行,内错角相等求出∠CAB=∠ADE,然后利用“角边角”证明△ABC和△DAE全等,再根据全等三角形对应边相等证明即可.20.(1)24yx=;(1)C(﹣1,﹣4),x的取值范围是x<﹣1或0<x<1.【解析】【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=1x﹣1,可得A的坐标,从而得双曲线的解析式;(1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论.【详解】(1)∵点A在直线y1=1x﹣1上,∴设A(x,1x﹣1),过A作AC⊥OB于C,∵AB⊥OA,且OA=AB,∴OC=BC,∴AC=1 2OB=OC,∴x=1x﹣1,x=1,∴A(1,1),∴k=1×1=4,∴24yx=;(1)∵224y xyx=-⎧⎪⎨=⎪⎩,解得:1122xy=⎧⎨=⎩,2214xy=-⎧⎨=-⎩,∴C(﹣1,﹣4),由图象得:y1<y1时x的取值范围是x<﹣1或0<x<1.【点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大.21.(1)60°;(2)见解析【解析】【分析】(1)连接BD,由AD为圆的直径,得到∠ABD为直角,再利用30度角所对的直角边等于斜边的一半求出BD的长,根据CD与AB平行,得到一对内错角相等,确定出∠CDB为直角,在直角三角形BCD中,利用锐角三角函数定义求出tanC的值,即可确定出∠C的度数;(2)连接OB,由OA=OB,利用等边对等角得到一对角相等,再由CD与AB平行,得到一对同旁内角互补,求出∠ABC度数,由∠ABC﹣∠ABO度数确定出∠OBC度数为90,即可得证;【详解】(1)如图,连接BD,∵AD 为圆O 的直径,∴∠ABD=90°,∴BD=12AD=3, ∵CD ∥AB ,∠ABD=90°,∴∠CDB=∠ABD=90°,在Rt △CDB 中,tanC=33BD CD == ∴∠C=60°;(2)连接OB ,∵∠A=30°,OA=OB ,∴∠OBA=∠A=30°,∵CD ∥AB ,∠C=60°,∴∠ABC=180°﹣∠C=120°,∴∠OBC=∠ABC ﹣∠ABO=120°﹣30°=90°,∴OB ⊥BC ,∴BC 为圆O 的切线.【点睛】此题考查了切线的判定,熟练掌握性质及定理是解本题的关键.22.(1)四;(2)见解析;(3)0.2715a b. 【解析】【分析】(1)比较两个折线统计图,找出满足题意的调查次数即可;(2)描出第四次与第五次北京森林覆盖率,补全折线统计图即可;(3)根据第八次全面森林面积除以森林覆盖率求出全国总面积,除以第九次的森林覆盖率,即可得到结果.【详解】解:(1)观察两折线统计图比较得:从第四次清查开始,北京的森林覆盖率超过全国的森林覆盖率; 故答案为四;(2)补全折线统计图,如图所示:(3)根据题意得:ab×27.15%=0.2715ab,则全国森林面积可以达到0.2715ab万公顷,故答案为0.2715ab.【点睛】此题考查了折线统计图,弄清题中的数据是解本题的关键.23.⊙O的半径为256.【解析】【分析】如图,连接OA.交BC于H.首先证明OA⊥BC,在Rt△ACH中,求出AH,设⊙O的半径为r,在Rt△BOH中,根据BH2+OH2=OB2,构建方程即可解决问题。

安徽省宿州市2019-2020学年中考数学第五次押题试卷含解析

安徽省宿州市2019-2020学年中考数学第五次押题试卷含解析

安徽省宿州市2019-2020学年中考数学第五次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列计算正确的是()A.x2+x2=x4 B.x8÷x2=x4 C.x2•x3=x6 D.(-x)2-x2=02.如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为()A.1 B.3C.3D.233.如果将直线l1:y=2x﹣2平移后得到直线l2:y=2x,那么下列平移过程正确的是()A.将l1向左平移2个单位B.将l1向右平移2个单位C.将l1向上平移2个单位D.将l1向下平移2个单位4.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A.B.C.D.5.下列算式中,结果等于a5的是()A.a2+a3B.a2•a3C.a5÷a D.(a2)36.计算(x-l)(x-2)的结果为()A.x2+2 B.x2-3x+2 C.x2-3x-3 D.x2-2x+27.在学校演讲比赛中,10名选手的成绩折线统计图如图所示,则下列说法正确的是( )A .最高分90B .众数是5C .中位数是90D .平均分为87.58.等腰三角形三边长分别为2a b 、、,且a b 、是关于x 的一元二次方程2610x x n -+-=的两根,则n 的值为( )A .9B .10C .9或10D .8或109.已知关于x 的方程x 2﹣4x+c+1=0有两个相等的实数根,则常数c 的值为( )A .﹣1B .0C .1D .310.PM2.5是指大气中直径小于或等于2.5μm (0.0000025m )的颗粒物,含有大量有毒、有害物质,也称为可入肺颗粒物,将25微米用科学记数法可表示为( )米.A .25×10﹣7B .2.5×10﹣6C .0.25×10﹣5D .2.5×10﹣511.我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册.把2100000用科学记数法表示为( )A .0.21×108B .21×106C .2.1×107D .2.1×10612.方程x 2+2x ﹣3=0的解是( )A .x 1=1,x 2=3B .x 1=1,x 2=﹣3C .x 1=﹣1,x 2=3D .x 1=﹣1,x 2=﹣3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知直线l :y=3x ,过点(2,0)作x 轴的垂线交直线l 于点N ,过点N 作直线l 的垂线交x 轴于点M 1;过点M 1作x 轴的垂线交直线l 于N 1,过点N 1作直线l 的垂线交x 轴于点M 2,……;按此做法继续下去,则点M 2000的坐标为______________.14.已知:如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,且BC =6cm ,AC =8cm ,∠ABD =45º.则图中阴影部分的面积是____________.15.若a:b=1:3,b:c=2:5,则a:c=_____.16.如图,点1A 、2A 、3A ⋯在直线y x =上,点1C ,2C ,3C ⋯在直线y 2x =上,以它们为顶点依次构造第一个正方形1121A C A B ,第二个正方形2232A C A B ⋯,若2A 的横坐标是1,则3B 的坐标是______,第n 个正方形的面积是______.17.如图,在平面直角坐标系xOy 中,△ABC 的顶点A 、C 在坐标轴上,点B 的坐标是(2,2).将△ABC 沿x 轴向左平移得到△A 1B 1C 1,点1B 落在函数y=-6x .如果此时四边形11AAC C 的面积等于552,那么点1C 的坐标是________.18.如图,边长为6的菱形ABCD 中,AC 是其对角线,∠B=60°,点P 在CD 上,CP=2,点M 在AD 上,点N 在AC 上,则△PMN 的周长的最小值为_____________ .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,一次函数y =kx +b 的图象与反比例函数y =m x的图象交于点A (-3,m +8),B (n ,-6)两点.(1)求一次函数与反比例函数的解析式;(2)求△AOB 的面积.20.(6分)如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.(1)求证:BE=CE(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)①求证:△BEM≌△CEN;②若AB=2,求△BMN面积的最大值;③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.21.(6分)如图是根据对某区初中三个年级学生课外阅读的“漫画丛书”、“科普常识”、“名人传记”、“其它”中,最喜欢阅读的一种读物进行随机抽样调查,并绘制了下面不完整的条形统计图和扇形统计图(每人必选一种读物,并且只能选一种),根据提供的信息,解答下列问题:(1)求该区抽样调查人数;(2)补全条形统计图,并求出最喜欢“其它”读物的人数在扇形统计图中所占的圆心角度数;(3)若该区有初中生14400人,估计该区有初中生最喜欢读“名人传记”的学生是多少人?22.(8分)先化简,再求代数式(222311a a a --+-)÷11a +的值,其中a=2sin45°+tan45°. 23.(8分)关于x 的一元二次方程x 2﹣(2m ﹣3)x+m 2+1=1.(1)若m 是方程的一个实数根,求m 的值;(2)若m 为负数,判断方程根的情况.24.(10分)已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得顶点B 落在CD 边上的P 点处.如图,已知折痕与边BC 交于点O ,连接AP 、OP 、OA .(1)求证:OC OP PD AP=; (2)若△OCP 与△PDA 的面积比为1:4,求边AB 的长.25.(10分)如图,已知反比例函数1k y x=和一次函数21y ax =+的图象相交于第一象限内的点A ,且点A 的横坐标为1.过点A 作AB ⊥x 轴于点B ,△AOB 的面积为1.求反比例函数和一次函数的解析式.若一次函数21y ax =+的图象与x 轴相交于点C ,求∠ACO 的度数.结合图象直接写出:当1y >2y >0时,x 的取值范围.26.(12分)已知二次函数y=a (x+m )2的顶点坐标为(﹣1,0),且过点A (﹣2,﹣12). (1)求这个二次函数的解析式;(2)点B (2,﹣2)在这个函数图象上吗?(3)你能通过左,右平移函数图象,使它过点B 吗?若能,请写出平移方案.且∠A=∠ADE.(1)求证:DE是⊙O的切线;(2)若AD=16,DE=10,求BC的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】试题解析:A原式=2x2,故A不正确;B原式=x6,故B不正确;C原式=x5,故C不正确;D原式=x2-x2=0,故D正确;故选D考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.2.C【解析】连接AE,OD,OE.又∵∠BED=120°,∴∠AED=30°.∴∠AOD=2∠AED=60°.∵OA=OD .∴△AOD 是等边三角形.∴∠A=60°.又∵点E 为BC 的中点,∠AED=90°,∴AB=AC .∴△ABC 是等边三角形,∴△EDC 是等边三角形,且边长是△ABC 边长的一半2.∴∠BOE=∠EOD=60°,∴»BE和弦BE 围成的部分的面积=»DE 和弦DE 围成的部分的面积.∴阴影部分的面积=EDC 1S =22∆⋅C . 3.C【解析】【分析】根据“上加下减”的原则求解即可.【详解】将函数y =2x ﹣2的图象向上平移2个单位长度,所得图象对应的函数解析式是y =2x .故选:C .【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键.4.C【解析】【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h 与t 的关系变为先快后慢.【详解】根据题意和图形的形状,可知水的最大深度h 与时间t 之间的关系分为两段,先快后慢。

安徽省宿州市2019-2020学年中考数学模拟试题(1)含解析

安徽省宿州市2019-2020学年中考数学模拟试题(1)含解析

安徽省宿州市2019-2020学年中考数学模拟试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是()A.①B.③C.②或④D.①或③2.如图,A、B两点在双曲线y=4x上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3 B.4 C.5 D.63.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查4.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°5.一元二次方程3x2-6x+4=0根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.有两个实数根 D.没有实数根6.如图,小明为了测量河宽AB ,先在BA 延长线上取一点D ,再在同岸取一点C ,测得∠CAD=60°,∠BCA=30°,AC=15 m ,那么河AB 宽为( )A .15 mB .53 mC .103 mD .123 m7.两个同心圆中大圆的弦AB 与小圆相切于点C ,AB=8,则形成的圆环的面积是( )A .无法求出B .8C .8πD .16π8.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( ) A .23(2)3y x =++ B .23(2)3y x =-+ C .23(2)3y x =+- D .23(2)3y x =--9.如图:A 、B 、C 、D 四点在一条直线上,若AB =CD ,下列各式表示线段AC 错误的是( )A .AC =AD ﹣CDB .AC =AB+BC C .AC =BD ﹣AB D .AC =AD ﹣AB10.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是( )A .摸出的三个球中至少有一个球是黑球B .摸出的三个球中至少有一个球是白球C .摸出的三个球中至少有两个球是黑球D .摸出的三个球中至少有两个球是白球11.如图,在△ABC 中,∠C =90°,将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,已知MN ∥AB ,MC =6,NC =23,则四边形MABN 的面积是( )A .3B .123C .183D .24312.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是_____°.14.写出一个大于3且小于4的无理数:___________.15.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.16.竖直上抛的小球离地面的高度h(米)与时间t(秒)的函数关系式为h=﹣2t2+mt+258,若小球经过74秒落地,则小球在上抛的过程中,第____秒时离地面最高.17.如图,长方体的底面边长分别为1cm 和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要_____cm.18.中国的陆地面积约为9 600 000km2,把9 600 000用科学记数法表示为.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣1 220.(6分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F,CD垂直于地面,于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号)21.(6分)某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:补全条形统计图;求扇形统计图扇形D的圆心角的度数;若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?22.(8分)2019年1月,温州轨道交通1S线正式运营,1S线有以下4种购票方式:A.二维码过闸B.现金购票C.市名卡过闸D.银联闪付某兴趣小组为了解最受欢迎的购票方式,随机调查了某区的若干居民,得到如图所示的统计图,已知选择方式D的有200人,求选择方式A的人数.小博和小雅对A,B,C三种购票方式的喜爱程度相同,随机选取一种方式购票,求他们选择同一种购票方式的概率.(要求列表或画树状图). 23.(8分)地下停车场的设计大大缓解了住宅小区停车难的问题,如图是龙泉某小区的地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小刚认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小刚和小亮谁说得对?请你判断并计算出正确的限制高度.(结果精确到0.1m,参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.325)24.(10分)已知抛物线y=ax2+ c(a≠0).(1)若抛物线与x轴交于点B(4,0),且过点P(1,–3),求该抛物线的解析式;(2)若a>0,c =0,OA、OB是过抛物线顶点的两条互相垂直的直线,与抛物线分别交于A、B 两点,求证:直线AB恒经过定点(0,1a );(3)若a>0,c <0,抛物线与x轴交于A,B两点(A在B左边),顶点为C,点P在抛物线上且位于第四象限.直线PA、PB与y轴分别交于M、N两点.当点P运动时,OCOM ON是否为定值?若是,试求出该定值;若不是,请说明理由.25.(10分)如图,在▱ABCD中,∠BAC=90°,对角线AC,BD相交于点P,以AB为直径的⊙O分别交BC,BD于点E,Q,连接EP并延长交AD于点F.(1)求证:EF是⊙O的切线;(2)求证:2EF=4BP•QP.26.(12分)如图,在等边三角形ABC中,点D,E分别在BC, AB上,且∠ADE=60°.求证:△ADC~△DEB.27.(12分)为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B 两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.开通隧道前,汽车从A地到B地大约要走多少千米?开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:2≈1.413≈1.73)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】分两种情形讨论当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,由此即可解决问题.【详解】分两种情况讨论:①当点P顺时针旋转时,BP的长从2增加到2,再降到02,图象③符合;②当点P逆时针旋转时,BP2降到0,再增加到22,图象①符合.故答案为①或③.故选D.【点睛】本题考查了动点问题函数图象、圆的有关知识,解题的关键理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.2.D【解析】【分析】欲求S1+S1,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=4x的系数k,由此即可求出S1+S1.【详解】∵点A、B是双曲线y=4x上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S1=4+4-1×1=2.故选D.3.D【解析】【分析】【详解】A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;故选D.4.C【解析】试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.试题解析:连接AC,如图:根据勾股定理可以得到:510.51+51=10)1.∴AC1+BC1=AB1.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选C.考点:勾股定理.5.D【解析】【分析】根据∆=b2-4ac,求出∆的值,然后根据∆的值与一元二次方程根的关系判断即可.【详解】∵a=3,b=-6,c=4,∴∆=b2-4ac=(-6)2-4×3×4=-12<0,∴方程3x2-6x+4=0没有实数根.故选D.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根. 6.A【解析】过C作CE⊥AB,Rt△ACE中,∵∠CAD=60°,AC=15m,∴∠ACE=30°,AE=12AC=12×15=7.5m,CE=AC•cos30°=15×32=1532,∵∠BAC=30°,∠ACE=30°,∴∠BCE=60°,∴BE=CE•tan60°=153×3=22.5m,∴AB=BE﹣AE=22.5﹣7.5=15m,故选A.【点睛】本题考查的知识点是解直角三角形的应用,关键是构建直角三角形,解直角三角形求出答案.7.D【解析】试题分析:设AB于小圆切于点C,连接OC,OB.∵AB于小圆切于点C,∴OC⊥AB,∴BC=AC=12AB=12×8=4cm.∵圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2)又∵直角△OBC中,OB2=OC2+BC2∴圆环(阴影)的面积=π•OB 2-π•OC 2=π(OB 2-OC 2)=π•BC 2=16π.故选D .考点:1.垂径定理的应用;2.切线的性质.8.A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A .9.C【解析】【分析】根据线段上的等量关系逐一判断即可.【详解】A 、∵AD-CD=AC ,∴此选项表示正确;B 、∵AB+BC=AC ,∴此选项表示正确;C 、∵AB=CD ,∴BD-AB=BD-CD ,∴此选项表示不正确;D 、∵AB=CD ,∴AD-AB=AD-CD=AC ,∴此选项表示正确.故答案选:C.【点睛】本题考查了线段上两点间的距离及线段的和、差的知识,解题的关键是找出各线段间的关系.10.A【解析】【分析】根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.【详解】A 、是必然事件;B 、是随机事件,选项错误;C 、是随机事件,选项错误;D 、是随机事件,选项错误.故选A .11.C【解析】连接CD ,交MN 于E ,∵将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,∴MN ⊥CD ,且CE=DE .∴CD=2CE .∵MN ∥AB ,∴CD ⊥AB .∴△CMN ∽△CAB . ∴2CMN CAB S CE 1S CD 4∆∆⎛⎫== ⎪⎝⎭. ∵在△CMN 中,∠C=90°,MC=6,NC=3CMN 11S ?CM CN 62?3?6?322∆=⋅=⨯⨯=∴CAB CMN S 4S 46?3?24?3∆∆==⨯=. ∴CAB CMN MABN S S S 24?36?318?3∆∆=-==四边形C . 12.A【解析】分析:根据点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,得到4=|2a +2|,即可解答. 详解:∵点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,∴4=|2a +2|,a +2≠3,解得:a =−3,故选A .点睛:考查点的坐标的相关知识;用到的知识点为:到x 轴和y 轴的距离相等的点的横纵坐标相等或互为相反数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.4.【解析】试题分析:连结BC ,因为AB 是⊙O 的直径,所以∠ACB =90°,∠A+∠ABC =90°,又因为BD ,CD 分别是过⊙O 上点B ,C 的切线,∠BDC =440°,所以CD=BD,所以∠BCD =∠DBC =4°,又∠ABD =90°,所以∠A=∠DBC =4°.考点:4.圆周角定理;4.切线的性质;4.切线长定理.14π等,答案不唯一.【解析】【分析】【详解】本题考查无理数的概念.无限不循环小数叫做无理数.介于3和4之间的无理数有无穷多个,因为2239,416==,故而9和16L 都是无理数.15.4或8【解析】【分析】由平移的性质可知阴影部分为平行四边形,设A′D=x ,根据题意阴影部分的面积为(12−x)×x ,即x(12−x),当x(12−x)=32时,解得:x=4或x=8,所以AA′=8或AA′=4。

安徽省宿州市2019-2020学年中考数学考前模拟卷(3)含解析

安徽省宿州市2019-2020学年中考数学考前模拟卷(3)含解析

安徽省宿州市2019-2020学年中考数学考前模拟卷(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.函数y=ax2+1与ayx(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C. D.2.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜边AB=4,CD =1.把三角板DCE绕着点C顺时针旋转11°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为()A.13B.5C.22D.43.不等式组的解集在数轴上表示正确的是()A.B.C.D.4.下列判断错误的是()A.两组对边分别相等的四边形是平行四边形 B.四个内角都相等的四边形是矩形C.两条对角线垂直且平分的四边形是正方形 D.四条边都相等的四边形是菱形5.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()A.40°B.45°C.50°D.55°6.下列计算正确的是()A.a²+a²=a4B.(-a2)3=a6C.(a+1)2=a2+1 D.8ab2÷(-2ab)=-4b7.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则cos∠OBD=()A.12B.34C.45D.358.下列命题中真命题是()A.若a2=b2,则a=b B.4的平方根是±2C.两个锐角之和一定是钝角D.相等的两个角是对顶角9.如图,扇形AOB中,OA=2,C为弧AB上的一点,连接AC,BC,如果四边形AOBC为菱形,则图中阴影部分的面积为()A.233π-B.2233π-C.433π-D.4233π-10.在△ABC中,∠C=90°,1cos2A=,那么∠B的度数为()A.60°B.45°C.30°D.30°或60°11.如图,在已知的△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于12BC的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,则下列结论正确的是()A.CD+DB=AB B.CD+AD=AB C.CD+AC=AB D.AD+AC=AB12.如图,在四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,分别以AB、BC、DC为边向外作正方形,它们的面积分别为S1、S2、S1.若S2=48,S1=9,则S1的值为()A.18 B.12 C.9 D.1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出2个球,都是黄球的概率为.14.分解因式:8x²-8xy+2y²= _________________________ .15.观察下列的“蜂窝图”按照它呈现的规律第n个图案中的“”的个数是_____(用含n的代数式表示)16.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是___.17.在直径为的圆柱形油槽内装入一些油后,截面如图所示如果油面宽,那么油的最大深度是_________.18.如图,在平行四边形ABCD中,AB<AD,∠D=30°,CD=4,以AB为直径的⊙O交BC于点E,则阴影部分的面积为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2)画出△ABC关于点B成中心对称的图形△A1BC1;以原点O为位似中心,位似比为1:2,在y轴的左侧画出△ABC放大后的图形△A2B2C2,并直接写出C2的坐标.20.(6分)某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?(2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?(利润=售价﹣进价)21.(6分)立定跳远是嘉兴市体育中考的抽考项目之一,某校九年级(1),(2)班准备集体购买某品牌的立定跳远训练鞋.现了解到某网店正好有这种品牌训练鞋的促销活动,其购买的单价y(元/双)与一次性购买的数量x(双)之间满足的函数关系如图所示.当10≤x<60时,求y关于x的函数表达式;九(1),(2)班共购买此品牌鞋子100双,由于某种原因需分两次购买,且一次购买数量多于25双且少于60双;①若两次购买鞋子共花费9200元,求第一次的购买数量;②如何规划两次购买的方案,使所花费用最少,最少多少元?22.(8分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.23.(8分)五一期间,小红到郊野公园游玩,在景点P处测得景点B位于南偏东45°方向,然后沿北偏东37°方向走200m米到达景点A,此时测得景点B正好位于景点A的正南方向,求景点A与景点B之间的距离.(结果保留整数)参考数据:sin37≈0.60,cos37°=0.80,tan37°≈0.7524.(10分)如图,∠BCD=90°,且BC=DC,直线PQ经过点D.设∠PDC=α(45°<α<135°),BA⊥PQ 于点A,将射线CA绕点C按逆时针方向旋转90°,与直线PQ交于点E.当α=125°时,∠ABC=°;求证:AC=CE;若△ABC的外心在其内部,直接写出α的取值范围.25.(10分)某学校2017年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元;求购买一个甲种足球、一个乙种足球各需多少元;2018年这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2910元,那么这所学校最多可购买多少个乙种足球?26.(12分)如图,在▱ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=12BC,求证:四边形OCFE是平行四边形.27.(12分)某校为了创建书香校远,计划进一批图书,经了解.文学书的单价比科普书的单价少20元,用800元购进的文学书本数与用1200元购进的科普书本数相等.文学书和科普书的单价分别是多少元?该校计划用不超过5000元的费用购进一批文学书和科普书,问购进60本文学书后最多还能购进多少本科普书?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】试题分析:分a>0和a<0两种情况讨论:当a>0时,y=ax2+1开口向上,顶点坐标为(0,1);ayx=位于第一、三象限,没有选项图象符合;当a<0时,y=ax2+1开口向下,顶点坐标为(0,1);ayx=位于第二、四象限,B选项图象符合.故选B.考点:1.二次函数和反比例函数的图象和性质;2.分类思想的应用.2.A【解析】试题分析:由题意易知:∠CAB=41°,∠ACD=30°.若旋转角度为11°,则∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,则AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD113故选A.考点: 1.旋转;2.勾股定理.3.D【解析】试题分析:,由①得:x≥1,由②得:x<2,在数轴上表示不等式的解集是:,故选D.考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.4.C【解析】【分析】根据平行四边形的判定,矩形的判定,菱形的判定,正方形的判定,对选项进行判断即可【详解】解:A、两组对边分别相等的四边形是平行四边形,故本选项正确;B、四个内角都相等的四边形是矩形,故本选项正确;C、两条对角线垂直且平分的四边形是菱形,不一定是正方形,故本选项错误;D、四条边都相等的四边形是菱形,故本选项正确.故选C【点睛】此题综合考查了平行四边形的判定,矩形的判定,菱形的判定,正方形的判定,熟练掌握判定法则才是解题关键5.D【解析】试题分析:如图,连接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°.故选D.考点:1、平行线的性质;2、圆周角定理;3等腰三角形的性质6.D【解析】【分析】各项计算得到结果,即可作出判断.【详解】A、原式=2a2,不符合题意;B、原式=-a6,不符合题意;C、原式=a2+2ab+b2,不符合题意;D、原式=-4b,符合题意,故选:D.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.7.C【解析】【分析】根据圆的弦的性质,连接DC,计算CD的长,再根据直角三角形的三角函数计算即可. 【详解】∵D(0,3),C(4,0),∴OD=3,OC=4,∵∠COD=90°,∴CD22=5,34连接CD,如图所示:∵∠OBD=∠OCD,∴cos∠OBD=cos∠OCD=45 OCCD=.故选:C.【点睛】本题主要三角函数的计算,结合考查圆性质的计算,关键在于利用等量替代原则.8.B【解析】【分析】利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项.【详解】A、若a2=b2,则a=±b,错误,是假命题;B、4的平方根是±2,正确,是真命题;C、两个锐角的和不一定是钝角,故错误,是假命题;D、相等的两个角不一定是对顶角,故错误,是假命题.故选B.【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大.9.D【解析】连接OC,过点A作AD⊥CD于点D,四边形AOBC是菱形可知OA=AC=2,再由OA=OC可知△AOC 是等边三角形,可得∠AOC=∠BOC=60°,故△ACO与△BOC为边长相等的两个等边三角形,再根据锐角三角函数的定义得出AD=OA•sin60°=2×32=3,因此可求得S阴影=S扇形AOB﹣2S△AOC=21202360π⨯﹣2×12×2×3=43π﹣23.故选D.点睛:本题考查的是扇形面积的计算,熟记扇形的面积公式及菱形的性质是解答此题的关键.10.C【解析】【分析】根据特殊角的三角函数值可知∠A=60°,再根据直角三角形中两锐角互余求出∠B的值即可. 【详解】解:∵1 cos2A ,∴∠A=60°.∵∠C=90°,∴∠B=90°-60°=30°.点睛:本题考查了特殊角的三角函数值和直角三角形中两锐角互余的性质,熟记特殊角的三角函数值是解答本题的突破点.11.B【解析】【分析】作弧后可知MN⊥CB,且CD=DB.【详解】由题意性质可知MN是BC的垂直平分线,则MN⊥CB,且CD=DB,则CD+AD=AB.【点睛】了解中垂线的作图规则是解题的关键.12.D【解析】【分析】过A作AH∥CD交BC于H,根据题意得到∠BAE=90°,根据勾股定理计算即可.【详解】∵S2=48,∴BC=43,过A作AH∥CD交BC于H,则∠AHB=∠DCB.∵AD∥BC,∴四边形AHCD是平行四边形,∴CH=BH=AD=23,AH=CD=1.∵∠ABC+∠DCB=90°,∴∠AHB+∠ABC=90°,∴∠BAH=90°,∴AB2=BH2﹣AH2=1,∴S1=1.故选D.【点睛】本题考查了勾股定理,正方形的性质,平行四边形的判定和性质,正确的作出辅助线是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.310 【解析】【分析】让黄球的个数除以球的总个数即为所求的概率.【详解】解:因为一共10个球,其中3个黄球,所以从袋中任意摸出2个球是黄球的概率是310. 故答案为:310. 【点睛】本题考查了概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.14.1()22x y -【解析】【分析】提取公因式1,再对余下的多项式利用完全平方公式继续分解.完全平方公式:a 1±1ab+b 1=(a±b )1. 【详解】8x 1-8xy+1y²=1(4x 1-4xy+y²)=1(1x-y )1.故答案为:1(1x-y )1【点睛】此题考查的是提取公因式法和公式法分解因式,本题关键在于提取公因式可以利用完全平方公式进行二次因式分解.15.3n+1【解析】【分析】根据题意可知:第1个图有4个图案,第2个共有7个图案,第3个共有10个图案,第4个共有13个图案,由此可得出规律.【详解】解:由题意可知:每1个都比前一个多出了3个“”, ∴第n 个图案中共有“”为:4+3(n ﹣1)=3n+1故答案为:3n+1.【点睛】本题考查学生的观察能力,解题的关键是熟练正确找出图中的规律,本题属于基础题型.16.50°【解析】【分析】先根据三角形外角的性质求出∠BEF的度数,再根据平行线的性质得到∠2的度数.【详解】如图所示:∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB∥CD,∴∠2=∠BEF=50°,故答案是:50°.【点睛】考查了平行线的性质,解题的关键是掌握、运用三角形外角的性质(三角形的一个外角等于与它不相邻的两个内角的和).17.2m【解析】【分析】本题是已知圆的直径,弦长求油的最大深度其实就是弧AB的中点到弦AB的距离,可以转化为求弦心距的问题,利用垂径定理来解决.【详解】解:过点O作OM⊥AB交AB与M,交弧AB于点E.连接OA.在Rt△OAM中:OA=5m,AM=AB=4m.根据勾股定理可得OM=3m,则油的最大深度ME为5-3=2m.【点睛】圆中的有关半径,弦长,弦心距之间的计算一般是通过垂径定理转化为解直角三角形的问题.18.43 3π-【解析】【分析】连接半径和弦AE,根据直径所对的圆周角是直角得:∠AEB=90°,继而可得AE和BE的长,所以图中弓形的面积为扇形OBE的面积与△OBE面积的差,因为OA=OB,所以△OBE的面积是△ABE 面积的一半,可得结论.【详解】如图,连接OE、AE,∵AB是⊙O的直径,∴∠AEB=90°,∵四边形ABCD是平行四边形,∴AB=CD=4,∠B=∠D=30°,∴AE=12AB=2,BE=2242-=23,∵OA=OB=OE,∴∠B=∠OEB=30°,∴∠BOE=120°,∴S阴影=S扇形OBE﹣S△BOE=2120211·36022AE BE π⨯-⨯=4142233 343ππ-⨯⨯=-,故答案为43 3π-.【点睛】本题考查了扇形的面积计算、平行四边形的性质,含30度角的直角三角形的性质等,求出扇形OBE 的面积和△ABE 的面积是解本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)画图见解析;(2)画图见解析,C 2的坐标为(﹣6,4).【解析】试题分析:()1利用关于点对称的性质得出11,A C 的坐标进而得出答案;()2利用关于原点位似图形的性质得出对应点位置进而得出答案.试题解析:(1)△A 1BC 1如图所示.(2)△A 2B 2C 2如图所示,点C 2的坐标为(-6,4).20. (1) 商店购进甲种商品40件,购进乙种商品60件;(2) 应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.【解析】【分析】(1)设购进甲、乙两种商品分别为x 件与y 件,根据甲种商品件数+乙种商品件数=100,甲商品的总进价+乙种商品的总进价=2700,列出关于x 与y 的方程组,求出方程组的解即可得到x 与y 的值,得到购进甲、乙两种商品的件数;(2)设商店购进甲种商品a 件,则购进乙种商品(100-a )件,根据甲商品的总进价+乙种商品的总进价小于等于3100,甲商品的总利润+乙商品的总利润大于等于890列出关于a 的不等式组,求出不等式组的解集,得到a 的取值范围,根据a 为正整数得出a 的值,再表示总利润W ,发现W 与a 成一次函数关系式,且为减函数,故a 取最小值时,W 最大,即可求出所求的进货方案与最大利润.【详解】(1)设购进甲种商品x 件,购进乙商品y 件,根据题意得:10015352700x y x y +⎧⎨+⎩==, 解得:4060x y ==⎧⎨⎩, 答:商店购进甲种商品40件,购进乙种商品60件;(2)设商店购进甲种商品a 件,则购进乙种商品(100﹣a )件,根据题意列得:()()15351003100510100890a a a a ⎧+-≤⎪⎨+-≥⎪⎩, 解得:20≤a≤22,∵总利润W=5a+10(100﹣a )=﹣5a+1000,W 是关于a 的一次函数,W 随a 的增大而减小, ∴当a=20时,W 有最大值,此时W=900,且100﹣20=80,答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.【点睛】此题考查了二元一次方程组的应用,一次函数的性质,以及一元一次不等式组的应用,弄清题中的等量关系及不等关系是解本题的关键.21.(1)y =150﹣x ; (2)①第一批购买数量为30双或40双.②第一次买26双,第二次买74双最省钱,最少9144元.【解析】【分析】(1)若购买x 双(10<x <1),每件的单价=140﹣(购买数量﹣10),依此可得y 关于x 的函数关系式;(2)①设第一批购买x 双,则第二批购买(100﹣x )双,根据购买两批鞋子一共花了9200元列出方程求解即可.分两种情况考虑:当25<x≤40时,则1≤100﹣x <75;当40<x <1时,则40<100﹣x <1. ②把两次的花费与第一次购买的双数用函数表示出来.【详解】解:(1)购买x 双(10<x <1)时,y =140﹣(x ﹣10)=150﹣x .故y 关于x 的函数关系式是y =150﹣x ;(2)①设第一批购买x 双,则第二批购买(100﹣x )双.当25<x≤40时,则1≤100﹣x <75,则x (150﹣x )+80(100﹣x )=9200,解得x 1=30,x 2=40;当40<x <1时,则40<100﹣x <1,则x (150﹣x )+(100﹣x )[150﹣(100﹣x )]=9200,解得x =30或x =70,但40<x <1,所以无解;答:第一批购买数量为30双或40双.②设第一次购买x 双,则第二次购买(100﹣x )双,设两次花费w 元.当25<x≤40时w =x (150﹣x )+80(100﹣x )=﹣(x ﹣35)2+9225,∴x =26时,w 有最小值,最小值为9144元;当40<x <1时,w =x (150﹣x )+(100﹣x )[150﹣(100﹣x )]=﹣2(x ﹣50)2+10000,∴x =41或59时,w 有最小值,最小值为9838元,综上所述:第一次买26双,第二次买74双最省钱,最少9144元.【点睛】考查了一元二次方程的应用,根据实际问题列一次函数关系式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.22.(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】【分析】(1)可用待定系数法来确定y 与x 之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w 与x 的函数关系式,进而利用所获利润等于3600元时,对应x 的值,根据增减性,求出x 的取值范围.【详解】(1)由题意得:4030055150k b k b +=⎧⎨+=⎩ 10700k b =-⎧⇒⎨=⎩. 故y 与x 之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x 2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x <50时,w 随x 的增大而增大,∴x=46时,w 大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x 2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.23.景点A与B之间的距离大约为280米【解析】【分析】由已知作PC⊥AB于C,可得△ABP中∠A=37°,∠B=45°且PA=200m,要求AB的长,可以先求出AC 和BC的长.【详解】解:如图,作PC⊥AB于C,则∠ACP=∠BCP=90°,由题意,可得∠A=37°,∠B=45°,PA=200m.在Rt△ACP中,∵∠ACP=90°,∠A=37°,∴AC=AP•cosA=200×0.80=160,PC=AP•sinA=200×0.60=1.在Rt△BPC中,∵∠BCP=90°,∠B=45°,∴BC=PC=1.∴AB=AC+BC=160+1=280(米).答:景点A与B之间的距离大约为280米.【点睛】本题考查了解直角三角形的应用-方向角问题,对于解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.24.(1)125;(2)详见解析;(3)45°<α<90°.【解析】【分析】(1)利用四边形内角和等于360度得:∠B+∠ADC=180°,而∠ADC+∠EDC=180°,即可求解;(2)证明△ABC≌△EDC(AAS)即可求解;(3)当∠ABC=α=90°时,△ABC的外心在其直角边上,∠ABC=α>90°时,△ABC的外心在其外部,即可求解.【详解】(1)在四边形BADC中,∠B+∠ADC=360°﹣∠BAD﹣∠DCB=180°,而∠ADC+∠EDC=180°,∴∠ABC=∠PDC=α=125°,故答案为125;(2)∠ECD+∠DCA=90°,∠DCA+∠ACB=90°,∴∠ACB=∠ECD,又BC=DC,由(1)知:∠ABC=∠PDC,∴△ABC≌△EDC(AAS),∴AC=CE;(3)当∠ABC=α=90°时,△ABC的外心在其斜边上;∠ABC=α>90°时,△ABC的外心在其外部,而45°<α<135°,故:45°<α<90°.【点睛】本题考查圆的综合运用,解题的关键是掌握三角形全等的判定和性质(AAS)、三角形外心.25.(1)购买一个甲种足球需要50元,购买一个乙种篮球需要1元(2)这所学校最多可购买2个乙种足球【解析】【分析】(1)根据题意可以列出相应的分式方程,从而可以求得购买一个甲种足球、一个乙种足球各需多少元;(2)根据题意可以列出相应的不等式,从而可以求得这所学校最多可购买多少个乙种足球.【详解】(1)设购买一个甲种足球需要x元,则购买一个乙种篮球需要(x+2)元,根据题意得:20001400220x x=⨯+,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴x+2=1.答:购买一个甲种足球需要50元,购买一个乙种篮球需要1元.(2)设可购买m个乙种足球,则购买(50﹣m)个甲种足球,根据题意得:50×(1+10%)(50﹣m)+1×(1﹣10%)m≤2910,解得:m≤2.答:这所学校最多可购买2个乙种足球.【点睛】本题考查分式方程的应用,一元一次不等式的应用,解答此类问题的关键是明确题意,列出相应的分式方程和一元一次不等式,注意分式方程要检验,问题(2)要与实际相联系.26.证明见解析.【解析】【分析】利用三角形中位线定理判定OE∥BC,且OE=12BC.结合已知条件CF=12BC,则OE//CF,由“有一组对边平行且相等的四边形为平行四边形”证得结论.【详解】∵四边形ABCD是平行四边形,∴点O是BD的中点.又∵点E是边CD的中点,∴OE是△BCD的中位线,∴OE∥BC,且OE=12 BC.又∵CF=12BC,∴OE=CF.又∵点F在BC的延长线上,∴OE∥CF,∴四边形OCFE是平行四边形.【点睛】本题考查了平行四边形的性质和三角形中位线定理.此题利用了“平行四边形的对角线互相平分”的性质和“有一组对边平行且相等的四边形为平行四边形”的判定定理.熟记相关定理并能应用是解题的关键. 27.(1)文学书的单价为40元/本,科普书的单价为1元/本;(2)购进1本文学书后最多还能购进2本科普书.【解析】【分析】(1)设文学书的单价为x元/本,则科普书的单价为(x+20)元/本,根据数量=总价÷单价结合用800元购进的文学书本数与用1200元购进的科普书本数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购进m本科普书,根据总价=文学书的单价×购进本数+科普书的单价×购进本数结合总价不超过5000元,即可得出关于m的一元一次不等式,解之取其中的最大整数值即可得出结论.【详解】解:(1)设文学书的单价为x元/本,则科普书的单价为(x+20)元/本,依题意,得:,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴x+20=1.答:文学书的单价为40元/本,科普书的单价为1元/本.(2)设购进m本科普书,依题意,得:40×1+1m≤5000,解得:m≤.∵m为整数,∴m的最大值为2.答:购进1本文学书后最多还能购进2本科普书.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.。

安徽省宿州市泗县2019-2020学年七年级下学期期中考试数学试卷(原卷版)

安徽省宿州市泗县2019-2020学年七年级下学期期中考试数学试卷(原卷版)

2019-2020学年安徽省宿州市泗县七年级(下)期中数学试卷一、选择题1.下列运算正确的是( )A. (x4)4=x8B. a4﹣a3=aC. (﹣x1000)2=x2000D. x•x2•x3=x52. 小明上网查得H7N9禽流感病毒的直径大约是0.00000008米,用科学记数法表示为A. B. C. D.3.下列各式中能用平方差公式计算的是( )A. (﹣x+2y)(x﹣2y)B. (3x﹣5y)(﹣3x﹣5y)C. (1﹣5m)(5m﹣1)D. (a+b)(b+a)4.下图可以近似地刻画下列哪个情景( )A. 小明匀速步行上学时离学校的距离与时间的关系B. 匀速行驶的汽车的速度与时间的关系C. 小亮妈妈到超市购买苹果的总费用与苹果质量的关系D. 一个匀速上升的气球的高度与时间的关系5.如图,AD⊥BC于D,BE⊥AC于E,CF⊥AB于F,GA⊥AC于A,则△ABC中,AC边上的高为( )A. ADB. GAC. BED. CF6.如果三角形的两边长分别是3和5,第三边是奇数,那么第三边长不可以是( )A. 3B. 1C. 5D. 77.已知a+b=2,ab=1,则a2+b2的值为( )A. ﹣1B. 1C. 2D. 38.下列正确说法的个数是( )①同位角相等②对顶角相等③等角的补角相等④两直线平行,同旁内角相等.A. 1B. 2C. 3D. 49.如图,已知两个三角形全等,则∠a=( )A. 50°B. 72°C.58°D. 80°10.规定”△”为有序实数对的运算,如果(a,b)△(c,d)=(ac+bd,ad+bc).如果对任意实数a,b都有(a,b)△(x,y)=(a,b),则(x,y)为( )A. (0,1)B. (1,0)C. (﹣1,0)D. (0,﹣1)二、填空题11.82014×(﹣0.125)2013=______.12.一辆汽车以45km/h的速度行驶,设行驶的路程为s(km),行驶的时间为t(h),则s与t的关系式为______,自变量是______,因变量是_______.13.如图,已知AB与CF相交于点E,∠AEF=80°,要使AB∥CD,需要添加的一个条件是______.14.如果25x2﹣kxy+49y2是一个完全平方式,那么k=______.15.如图,直线l∥m,将含有45°角的三角形板ABC的直角顶点C放在直线m上,若∠1=30°,则∠2=______.16.直角三角形两锐角的平分线的夹角是______.17.观察下列各式:(x2﹣1)÷(x﹣1)=x+1(x3﹣1)÷(x﹣1)=x2+x+1(x4﹣1)÷(x﹣1)=x3+x2+x+1(x5﹣1)÷(x﹣1)=x4+x3+x2+x+1…观察上面的规律计算:1+2+22+…+262+263=______.三、解答题18.计算(1)(﹣1)2015+()﹣1﹣(π﹣2)0﹣|﹣3|;(2)2x2•3x4﹣(﹣2x3)2﹣x8÷x2.19.先化简,再求值:[(2a+b)2﹣(2a+b)(2a﹣b)]÷(2b),其中a=﹣1,b=1.20.折一折:按下面的方法折纸,然后回答问题:(1)∠1与∠AEC有______关系;(2)∠1与∠3有_____关系;(3)∠2是多少度的角?请说明理由.21.光明村正在进行绿地改造,原有一正方形绿地,现将它每边都增加3米,面积则增加了63平方米,问原绿地的边长为多少?原绿地的面积又为多少?22.如图,EB∥DC,∠C=∠E,请你说出∠A和∠ADE有何关系?并说明你的理由.23.王大爷带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价出售一些后,又降价出售,售出土豆的千克数x与他手中持有的钱数y(含备用零钱)的关系如图所示.根据图象回答下列问题:(1)王大爷自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?(4)写出售出土豆的千克数x与他手中持有的钱数y(含备用零钱)的关系式.。

安徽省宿州市2019-2020学年第二次中考模拟考试数学试卷含解析

安徽省宿州市2019-2020学年第二次中考模拟考试数学试卷含解析

安徽省宿州市2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.估计56﹣24的值应在( )A .5和6之间B .6和7之间C .7和8之间D .8和9之间2.如果将抛物线2y x 2=+向下平移1个单位,那么所得新抛物线的表达式是A .()2y x 12=-+B .()2y x 12=++C .2y x 1=+D .2y x 3=+3.如图,正六边形A 1B 1C 1D 1E 1F 1的边长为2,正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切,正六边形A 3B 3C 3D 3E 3F 3的外接圆与正六边形A 2B 2C 2D 2E 2F 2的各边相切,…按这样的规律进行下去,A 11B 11C 11D 11E 11F 11的边长为( )A .92432B .813C .82432D .813 4.下列说法正确的是( )A .一个游戏的中奖概率是则做10次这样的游戏一定会中奖B .为了解全国中学生的心理健康情况,应该采用普查的方式C .一组数据 8 , 8 , 7 , 10 , 6 , 8 , 9 的众数和中位数都是 8D .若甲组数据的方差 S =" 0.01" ,乙组数据的方差 s = 0 .1 ,则乙组数据比甲组数据稳定 5.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是( )A .15B .310C .13D .126.已知a-2b=-2,则4-2a+4b 的值是( )A .0B .2C .4D .87.如图,△ABC 绕点A 顺时针旋转45°得到△AB′C′,若∠BAC =90°,AB =AC 2,则图中阴影部分的面积等于( )A.2﹣2B.1 C.2D.2﹣l8.关于的一元二次方程有两个不相等的实数根,则的取值范围为()A.B.C.D.9.一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是()A.x>1 B.x≥1C.x>3 D.x≥3 10.下列式子一定成立的是()A.2a+3a=6a B.x8÷x2=x4C.12aaD.(﹣a﹣2)3=﹣61a11.下列计算正确的是()A.2x+3x=5x B.2x•3x=6x C.(x3)2=5 D.x3﹣x2=x12.某公园里鲜花的摆放如图所示,第①个图形中有3盆鲜花,第②个图形中有6盆鲜花,第③个图形中有11盆鲜花,……,按此规律,则第⑦个图形中的鲜花盆数为()A.37 B.38 C.50 D.51二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知x、y是实数且满足x2+xy+y2﹣2=0,设M=x2﹣xy+y2,则M的取值范围是_____.14.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD 是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为_____.15.一个圆锥的三视图如图,则此圆锥的表面积为______.16.如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若BC=6,AB=10,OD ⊥BC 于点D ,则OD 的长为______.17.如图,某海监船以20km/h 的速度在某海域执行巡航任务,当海监船由西向东航行至A 处时,测得岛屿P 恰好在其正北方向,继续向东航行1小时到达B 处,测得岛屿P 在其北偏西30°方向,保持航向不变又航行2小时到达C 处,此时海监船与岛屿P 之间的距离(即PC 的长)为_____km .18.如图放置的正方形ABCD ,正方形11DCC D ,正方形1122D C C D ,…都是边长为3的正方形,点A 在y 轴上,点12,,,B C C C ,…,都在直线3y x 上,则D 的坐标是__________,n D 的坐标是______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知二次函数y=﹣x 2+bx+c (b ,c 为常数)的图象经过点A (3,1),点C (0,4),顶点为点M ,过点A 作AB ∥x 轴,交y 轴于点D ,交该二次函数图象于点B ,连结BC .(1)求该二次函数的解析式及点M 的坐标;(2)若将该二次函数图象向下平移m (m >0)个单位,使平移后得到的二次函数图象的顶点落在△ABC 的内部(不包括△ABC 的边界),求m 的取值范围;(3)点P 是直线AC 上的动点,若点P ,点C ,点M 所构成的三角形与△BCD 相似,请直接写出所有点P 的坐标(直接写出结果,不必写解答过程).20.(6分) 2018年4月份,郑州市教育局针对郑州市中小学参与课外辅导进行调查,根据学生参与课外辅导科目的数量,分成了:1科、2科、3科和4科,以下简记为:1、2、3、4,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)本次被调查的学员共有 人;在被调查者中参加“3科”课外辅导的有 人.(2)将条形统计图补充完整;(3)已知郑州市中小学约有24万人,那么请你估计一下参与辅导科目不多于2科的学生大约有多少人.21.(6分)如图,已知:C F 90o ∠∠==,AB DE =,CE BF =,求证:AC DF =.22.(8分)实践体验:(1)如图1:四边形ABCD 是矩形,试在AD 边上找一点P ,使△BCP 为等腰三角形;(2)如图2:矩形ABCD 中,AB=13,AD=12,点E 在AB 边上,BE=3,点P 是矩形ABCD 内或边上一点,且PE=5,点Q 是CD 边上一点,求PQ 得最值;问题解决:(3)如图3,四边形ABCD中,AD∥BC,∠C=90°,AD=3,BC=6,DC=4,点E在AB边上,BE=2,点P 是四边形ABCD内或边上一点,且PE=2,求四边形PADC面积的最值.23.(8分)许昌芙蓉湖位于许昌市水系建设总体规划中部,上游接纳清泥河来水,下游为鹿鸣湖等水系供水,承担着承上启下的重要作用,是利用有限的水资源、形成良好的水生态环境打造生态宜居城市的重要部分.某校课外兴趣小组想测量位于芙蓉湖两端的A,B两点之间的距离他沿着与直线AB平行的道路EF行走,走到点C处,测得∠ACF=45°,再向前走300米到点D处,测得∠BDF=60°.若直线AB与EF 之间的距离为200米,求A,B两点之间的距离(结果保留一位小数)24.(10分)黄石市在创建国家级文明卫生城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元;(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.25.(10分)已知:如图,在Rt△ABO中,∠B=90°,∠OAB=10°,OA=1.以点O为原点,斜边OA所在直线为x轴,建立平面直角坐标系,以点P(4,0)为圆心,PA长为半径画圆,⊙P与x轴的另一交点为N,点M在⊙P上,且满足∠MPN=60°.⊙P以每秒1个单位长度的速度沿x轴向左运动,设运动时间为ts,解答下列问题:(发现)(1)MN n的长度为多少;(2)当t=2s时,求扇形MPN(阴影部分)与Rt△ABO重叠部分的面积.(探究)当⊙P和△ABO的边所在的直线相切时,求点P的坐标.(拓展)当MN n与Rt△ABO的边有两个交点时,请你直接写出t的取值范围.26.(12分)如图,直线y1=﹣x+4,y2=34x+b都与双曲线y=kx交于点A(1,m),这两条直线分别与x轴交于B,C两点.求y与x之间的函数关系式;直接写出当x>0时,不等式34x+b>kx的解集;若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.27.(12分)如图,Rt V ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,过点D作⊙O的切线交CB的延长线于点E,交AC于点F.(1)求证:点F是AC的中点;(2)若∠A=30°,AF=3,求图中阴影部分的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】先化简二次根式,合并后,再根据无理数的估计解答即可.【详解】56﹣24=562636=54-=,∵49<54<64,∴7<54<8,∴56﹣24的值应在7和8之间,故选C.【点睛】本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.2.C【解析】【分析】根据向下平移,纵坐标相减,即可得到答案.【详解】∵抛物线y=x2+2向下平移1个单位,∴抛物线的解析式为y=x2+2-1,即y=x2+1.故选C.3.A【解析】分析:连接OE1,OD1,OD2,如图,根据正六边形的性质得∠E1OD1=60°,则△E1OD1为等边三角形,再根据切线的性质得OD2⊥E1D1,于是可得OD2=3E1D1=3×2,利用正六边形的边长等于它的半径得到正六边形A2B2C2D2E2F2的边长=3×2,同理可得正六边形A3B3C3D3E3F3的边长=(3)2×2,依此规律可得正六边形A11B11C11D11E11F11的边长=(3)10×2,然后化简即可.详解:连接OE1,OD1,OD2,如图,∵六边形A1B1C1D1E1F1为正六边形,∴∠E 1OD 1=60°,∴△E 1OD 1为等边三角形,∵正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切,∴OD 2⊥E 1D 1,∴OD 21D 12,∴正六边形A 2B 2C 2D 2E 2F 2的边长=2×2,同理可得正六边形A 3B 3C 3D 3E 3F 3的边长=(2)2×2,则正六边形A 11B 11C 11D 11E 11F 11的边长=10×2=92432. 故选A . 点睛:本题考查了正多边形与圆的关系:把一个圆分成n (n 是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.记住正六边形的边长等于它的半径.4.C【解析】【分析】众数,中位数,方差等概念分析即可.【详解】A 、中奖是偶然现象,买再多也不一定中奖,故是错误的;B 、全国中学生人口多,只需抽样调查就行了,故是错误的;C 、这组数据的众数和中位数都是8,故是正确的;D 、方差越小越稳定,甲组数据更稳定,故是错误.故选C.【点睛】考核知识点:众数,中位数,方差.5.D【解析】【分析】两个同心圆被均分成八等份,飞镖落在每一个区域的机会是均等的,由此计算出黑色区域的面积,利用几何概率的计算方法解答即可.【详解】因为两个同心圆等分成八等份,飞镖落在每一个区域的机会是均等的,其中黑色区域的面积占了其中的四等份,所以P(飞镖落在黑色区域)=48=12.故答案选:D.【点睛】本题考查了几何概率,解题的关键是熟练的掌握几何概率的相关知识点. 6.D【解析】∵a-2b=-2,∴-a+2b=2,∴-2a+4b=4,∴4-2a+4b=4+4=8,故选D.7.D【解析】∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=2,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,AC′=AC=2,∴AD⊥BC,B′C′⊥AB,∴AD=12BC=1,AF=FC′=22AC′=1,∴DC′=AC′-AD=2-1,∴图中阴影部分的面积等于:S△AFC′-S△DEC′=12×1×1-12×(2-1)2=2-1,故选D.【点睛】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.8.B【解析】试题分析:根据题意得△=32﹣4m >0,解得m <.故选B .考点:根的判别式.点睛:本题考查了一元二次方程ax 2+bx+c=0(a≠0,a ,b ,c 为常数)的根的判别式△=b 2-4ac .当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根. 9.C【解析】试题解析:一个关于x 的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是x >1.故选C .考点:在数轴上表示不等式的解集.10.D【解析】【分析】根据合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则进行计算即可.【详解】解:A :2a+3a=(2+3)a=5a ,故A 错误;B :x 8÷x 2=x 8-2=x 6,故B 错误;C :12a a C 错误;D :(-a -2)3=-a -6=-61a ,故D 正确. 故选D.【点睛】本题考查了合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则.其中指数为分数的情况在初中阶段很少出现.11.A【解析】【分析】依据合并同类项法则、单项式乘单项式法则、积的乘方法则进行判断即可.【详解】A 、2x +3x =5x ,故A 正确;B 、2x•3x =6x 2,故B 错误;C 、(x 3)2=x 6,故C 错误;D 、x 3与x 2不是同类项,不能合并,故D 错误. 故选A . 【点睛】本题主要考查的是整式的运算,熟练掌握相关法则是解题的关键. 12.D 【解析】 试题解析:第①个图形中有3 盆鲜花, 第②个图形中有336+=盆鲜花, 第③个图形中有33511++=盆鲜花, …第n 个图形中的鲜花盆数为23357(21)2n n ++++⋯++=+, 则第⑥个图形中的鲜花盆数为26238.+= 故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.23≤M≤6 【解析】 【分析】把原式的xy 变为2xy-xy ,根据完全平方公式特点化简,然后由完全平方式恒大于等于0,得到xy 的范围;再把原式中的xy 变为-2xy+3xy ,同理得到xy 的另一个范围,求出两范围的公共部分,然后利用不等式的基本性质求出2-2xy 的范围,最后利用已知x 2+xy+y 2-2=0表示出x 2+y 2,代入到M 中得到M=2-2xy ,2-2xy 的范围即为M 的范围. 【详解】由2220x xy y ++-=得:22220x xy y xy ++--=, 即2()20x y xy +=+≥,所以2xy ≥-; 由2220x xy y ++-=得:222230x xy y xy -+-+=, 即2()230,x y xy -=-≥ 所以32xy ≤, ∴322xy -≤≤,∴不等式两边同时乘以−2得:()()()322222xy -⨯-≥-≥⨯-,即4243xy -≤-≤, 两边同时加上2得:422242,3xy -+≤-≤+即22263xy ≤-≤,∵2220,x xy y ++-= ∴222x y xy +=-,∴2222M x xy y xy =-+=-, 则M 的取值范围是23≤M≤6. 故答案为:23≤M≤6. 【点睛】此题考查了完全平方公式,以及不等式的基本性质,解题时技巧性比较强,对已知的式子进行了三次恒等变形,前两次利用拆项法拼凑完全平方式,最后一次变形后整体代入确定出M 关于xy 的式子,从而求出M 的范围.要求学生熟练掌握完全平方公式的结构特点:两数的平方和加上或减去它们乘积的2倍等于两数和或差的平方. 14.113°或92° 【解析】解:∵△BCD ∽△BAC ,∴∠BCD=∠A=46°.∵△ACD 是等腰三角形,∠ADC >∠BCD ,∴∠ADC >∠A ,即AC≠CD .①当AC=AD 时,∠ACD=∠ADC=(180°﹣46°)÷2=67°,∴∠ACB=67°+46°=113°; ②当DA=DC 时,∠ACD=∠A=46°,∴∠ACB=46°+46°=92°. 故答案为113°或92°. 15.55cm 2 【解析】 【分析】由正视图和左视图判断出圆锥的半径和母线长,然后根据圆锥的表面积公式求解即可. 【详解】由三视图可知,半径为5cm,圆锥母线长为6cm, ∴表面积=π×5×6+π×52=55πcm 2, 故答案为: 55πcm 2. 【点睛】本题考查了圆锥的计算,由该三视图中的数据确定圆锥的底面直径和母线长是解本题的关键,本题体现了数形结合的数学思想.如果圆锥的底面半径为r ,母线长为l ,那么圆锥的表面积=πrl+πr 2.16.1【解析】【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=12BC=3,∵OB=12AB=5,∴在Rt△OBD中,=1.故答案为1.【点睛】本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.17.【解析】【分析】首先证明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解决问题.【详解】解:在Rt△PAB中,∵∠APB=30°,∴PB=2AB,由题意BC=2AB,∴PB=BC,∴∠C=∠CPB,∵∠ABP=∠C+∠CPB=60°,∴∠C=30°,∴PC=2PA,∵PA=AB•tan60°,∴PC=2×=km),故答案为【点睛】本题考查解直角三角形的应用﹣方向角问题,解题的关键是证明PB=BC,推出∠C=30°.18.33,2 2⎛⎫+⎪⎪⎝⎭3333,222n n⎛⎫+++⎪⎪⎝⎭【解析】【分析】先求出OA的长度,然后利用含30°的直角三角形的性质得到点D的坐标,探索规律,从而得到nD的坐标即可.【详解】分别过点12,,D D D L作y轴的垂线交y轴于点12,,E E E L,∵点B在33y x=上设3(,)3B mtan333AOBm∴∠==∴60AOB∠=︒3AB=Q32sin6032ABOA∴===︒90AOB OAB∠+∠=︒Q30OAB∴∠=︒90,90EAD OAB EAD EDA∠+∠=︒∠+∠=︒Q30EDA OAB∴∠=∠=︒同理,1122,n nAD E AD E AD EV V L V都是含30°的直角三角形∵322ED AD ==,122AE AD ==2OE OA AE ∴=+=+∴3(,22D同理,点n D 的横坐标为31)(1)2n n n x E D AD n n ===+=+纵坐标为1122(1)21)222n n AO AE AD n n +=+=++=++故点n D 的坐标为33222n ⎛⎫+++ ⎪ ⎪⎝⎭故答案为:322⎛⎫ ⎪ ⎪⎝⎭;33222n ⎛⎫+++ ⎪ ⎪⎝⎭. 【点睛】本题主要考查含30°的直角三角形的性质,找到点的坐标规律是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(1)y=﹣x 2+2x+4;M (1,5);(2)2<m <4;(3)P 1(311,31),P 2(313,31-),P 3(3,1),P 4(﹣3,7). 【解析】试题分析:(1)将点A 、点C 的坐标代入函数解析式,即可求出b 、c 的值,通过配方法得到点M 的坐标;(2)点M 是沿着对称轴直线x=1向下平移的,可先求出直线AC 的解析式,将x=1代入求出点M 在向下平移时与AC 、AB 相交时y 的值,即可得到m 的取值范围;(3)由题意分析可得∠MCP=90°,则若△PCM 与△BCD 相似,则要进行分类讨论,分成△PCM ∽△BDC 或△PCM ∽△CDB 两种,然后利用边的对应比值求出点坐标.试题解析:(1)把点A (3,1),点C (0,4)代入二次函数y=﹣x 2+bx+c 得,解得 ∴二次函数解析式为y=﹣x 2+2x+4, 配方得y=﹣(x ﹣1)2+5,∴点M 的坐标为(1,5);(2)设直线AC 解析式为y=kx+b ,把点A (3,1),C (0,4)代入得, 解得:∴直线AC 的解析式为y=﹣x+4,如图所示,对称轴直线x=1与△ABC 两边分别交于点E 、点F 把x=1代入直线AC 解析式y=﹣x+4解得y=3,则点E 坐标为(1,3),点F 坐标为(1,1)∴1<5﹣m<3,解得2<m<4;(3)连接MC,作MG⊥y轴并延长交AC于点N,则点G坐标为(0,5)∵MG=1,GC=5﹣4=1∴MC==,把y=5代入y=﹣x+4解得x=﹣1,则点N坐标为(﹣1,5),∵NG=GC,GM=GC,∴∠NCG=∠GCM=45°,∴∠NCM=90°,由此可知,若点P在AC上,则∠MCP=90°,则点D与点C必为相似三角形对应点①若有△PCM∽△BDC,则有∵BD=1,CD=3,∴CP===,∵CD=DA=3,∴∠DCA=45°,若点P在y轴右侧,作PH⊥y轴,∵∠PCH=45°,CP=∴PH==把x=代入y=﹣x+4,解得y=,∴P1();同理可得,若点P在y轴左侧,则把x=﹣代入y=﹣x+4,解得y=∴P2();②若有△PCM∽△CDB,则有∴CP==3∴PH=3÷=3,若点P在y轴右侧,把x=3代入y=﹣x+4,解得y=1;若点P在y轴左侧,把x=﹣3代入y=﹣x+4,解得y=7∴P3(3,1);P4(﹣3,7).∴所有符合题意得点P坐标有4个,分别为P1(),P2(),P3(3,1),P4(﹣3,7).考点:二次函数综合题20.(1)50,10;(2)见解析.(3)16.8万【解析】【分析】(1)结合条形统计图和扇形统计图中的参加“3科”课外辅导人数及百分比,求得总人数为50人;再由总人数减去参加“1科”,“2科”,“4科”课外辅导人数即可求出答案.(2)由(1)知在被调查者中参加“3科”课外辅导的有10人,由扇形统计图可知参加“4科”课外辅导人数占比为10%,故参加“4科”课外辅导人数的有5人.(3)因为参加“1科”和“2科”课外辅导人数占比为152050+,所以全市参与辅导科目不多于2科的人数为24×152050+ =16.8(万). 【详解】解:(1)本次被调查的学员共有:15÷30%=50(人),在被调查者中参加“3科”课外辅导的有:50﹣15﹣20﹣50×10%=10(人), 故答案为50,10;(2)由(1)知在被调查者中参加“3科”课外辅导的有10人, 在被调查者中参加“4科”课外辅导的有:50×10%=5(人), 补全的条形统计图如右图所示;(3)24×152050+ =16.8(万), 答:参与辅导科目不多于2科的学生大约有16.8人. 【点睛】本题考察了条形统计图和扇形统计图,关键在于将两者结合起来解题. 21.证明见解析; 【解析】 【分析】根据HL 定理证明Rt △ABC ≌Rt △DEF ,根据全等三角形的性质证明即可. 【详解】CE BF =Q ,BE 为公共线段,∴CE+BE=BF+BE , 即 CB EF =又90C F o Q ∠∠==,AB DE = 在Rt ABC V 与Rt DEF V 中,AB DECB EF =⎧⎨=⎩Rt ABC ∴V ≌Rt DEF V ()HL∴AC=DF. 【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键. 22.(1)见解析;(2)PQ min =7,PQ max =13;(3) S min=35425,S max =18. 【解析】 【分析】(1)根据全等三角形判定定理求解即可.(2)以E 为圆心,以5为半径画圆,①当E 、P 、Q 三点共线时最PQ 最小,②当P 点在2P 位置时PQ 最大,分类讨论即可求解.(3)以E 为圆心,以2为半径画圆,分类讨论出P 点在12P P ,位置时,四边形PADC 面积的最值即可. 【详解】(1)当P 为AD 中点时,AP DP AB CD A DQ ==∠=∠⎧⎪⎨⎪⎩, )ABP DCP SAS ∴∆≅∆(BE CE ∴=∴△BCP 为等腰三角形.(2)以E 为圆心,以5为半径画圆① 当E 、P 、Q 三点共线时最PQ 最小,PQ 的最小值是12-5=7. ② 当P 点在2P 位置时PQ 最大,PQ 225+12(3)以E 为圆心,以2为半径画圆.当点p 为1P 位置时,四边形PADC 面积最大()3+64==182⨯.当点p 为1P 位置时,四边形PADC 最小=四边形2P ADF +三角形2P CF =2414435452525+=. 【点睛】本题主要考查了等腰三角形性质,直线,面积最值问题,数形结合思想是解题关键. 23.215.6米. 【解析】 【分析】过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点,根据Rt △ACM 和三角函数tan BDF ∠求出CM 、DN ,然后根据MN MD DN AB =+=即可求出A 、B 两点间的距离. 【详解】解:过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点在Rt △ACM 中,∵45ACF ∠=︒, ∴AM=CM=200米,又∵CD=300米,所以100MD CD CM =-=米, 在Rt △BDN 中,∠BDF=60°,BN=200米 ∴115.6tan 60BNDN =≈o米, ∴215.6MN MD DN AB =+=≈米 即A ,B 两点之间的距离约为215.6米. 【点睛】本题主要考查三角函数,正确做辅助线是解题的关键.24. (1) A 种树每棵2元,B 种树每棵80元;(2) 当购买A 种树木1棵,B 种树木25棵时,所需费用最少,最少为8550元. 【解析】 【分析】(1)设A 种树每棵x 元,B 种树每棵y 元,根据“购买A 种树木2棵,B 种树木5棵,共需600元;购买A 种树木3棵,B 种树木1棵,共需380元”列出方程组并解答;(2)设购买A 种树木为x 棵,则购买B 种树木为(2-x )棵,根据“购买A 种树木的数量不少于B 种树木数量的3倍”列出不等式并求得x 的取值范围,结合实际付款总金额=0.9(A 种树的金额+B 种树的金额)进行解答. 【详解】解:(1)设A 种树木每棵x 元,B 种树木每棵y 元,根据题意,得256003380x y x y +=⎧⎨+=⎩ ,解得10080x y =⎧⎨=⎩, 答:A 种树木每棵2元,B 种树木每棵80元.(2)设购买A 种树木x 棵,则B 种树木(2-x )棵,则x≥3(2-x ).解得x≥1. 又2-x≥0,解得x≤2.∴1≤x≤2.设实际付款总额是y 元,则y =0.9[2x +80(2-x )]. 即y =18x +7 3.∵18>0,y 随x 增大而增大,∴当x =1时,y 最小为18×1+7 3=8 550(元). 答:当购买A 种树木1棵,B 种树木25棵时,所需费用最少,为8 550元.25.【发现】(3)MN n的长度为π3;(2)重叠部分的面积为8;【探究】:点P 的坐标为10(,);或 03()或 0-();【拓展】t 的取值范围是23t ≤<或45t ≤<,理由见解析. 【解析】 【分析】发现:(3)先确定出扇形半径,进而用弧长公式即可得出结论; (2)先求出PA=3,进而求出PQ ,即可用面积公式得出结论; 探究:分圆和直线AB 和直线OB 相切,利用三角函数即可得出结论;拓展:先找出·MN和直角三角形的两边有两个交点时的分界点,即可得出结论. 【详解】 [发现](3)∵P (2,0),∴OP=2.∵OA=3,∴AP=3,∴·MN 的长度为6011803ππ⨯=. 故答案为3π; (2)设⊙P 半径为r ,则有r=2﹣3=3,当t=2时,如图3,点N 与点A 重合,∴PA=r=3,设MP 与AB 相交于点Q .在Rt △ABO 中,∵∠OAB=30°,∠MPN=60°.∵∠PQA=90°,∴PQ 12=PA 12=,∴AQ=AP×cos30°32=,∴S 重叠部分=S △APQ 12=PQ×AQ 38=. 即重叠部分的面积为38. [探究] ①如图2,当⊙P 与直线AB 相切于点C 时,连接PC ,则有PC ⊥AB ,PC=r=3.∵∠OAB=30°,∴AP=2,∴OP=OA ﹣AP=3﹣2=3;∴点P 的坐标为(3,0);②如图3,当⊙P 与直线OB 相切于点D 时,连接PD ,则有PD ⊥OB ,PD=r=3,∴PD ∥AB ,∴∠OPD=∠OAB=30°,∴cos ∠OPD PD OP =,∴OP 12330cos ==︒,∴点P 的坐标为(23,0); ③如图2,当⊙P 与直线OB 相切于点E 时,连接PE ,则有PE ⊥OB ,同②可得:OP 23=; ∴点P 的坐标为(233-,0);[拓展]t 的取值范围是2<t≤3,2≤t <4,理由:如图4,当点N 运动到与点A 重合时,·MN与Rt △ABO 的边有一个公共点,此时t=2;当t>2,直到⊙P运动到与AB相切时,由探究①得:OP=3,∴t411-==3,·MN与Rt△ABO的边有两个公共点,∴2<t≤3.如图6,当⊙P运动到PM与OB重合时,·MN与Rt△ABO的边有两个公共点,此时t=2;直到⊙P运动到点N与点O重合时,·MN与Rt△ABO的边有一个公共点,此时t=4;∴2≤t<4,即:t的取值范围是2<t≤3,2≤t<4.【点睛】本题是圆的综合题,主要考查了弧长公式,切线的性质,锐角三角函数,三角形面积公式,作出图形是解答本题的关键.26.(1)3yx=;(2)x>1;(3)P(﹣54,0)或(94,0)【解析】分析:(1)求得A(1,3),把A(1,3)代入双曲线y=kx,可得y与x之间的函数关系式;(2)依据A(1,3),可得当x>0时,不等式34x+b>kx的解集为x>1;(3)分两种情况进行讨论,AP把△ABC的面积分成1:3两部分,则CP=14BC=74,或BP=14BC=74,即可得到OP=3﹣74=54,或OP=4﹣74=94,进而得出点P的坐标.详解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入双曲线y=kx,可得k=1×3=3,∴y与x之间的函数关系式为:y=3x;(2)∵A(1,3),∴当x>0时,不等式34x+b>kx的解集为:x>1;(3)y1=﹣x+4,令y=0,则x=4,∴点B的坐标为(4,0),把A(1,3)代入y2=34x+b,可得3=34+b,∴b=94,∴y2=34x+94,令y2=0,则x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面积分成1:3两部分,∴CP=14BC=74,或BP=14BC=74∴OP=3﹣74=54,或OP=4﹣74=94,∴P(﹣54,0)或(94,0).点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.27.(1)见解析;(2)31 26π-【解析】【分析】(1)连接OD、CD,如图,利用圆周角定理得到∠BDC=90°,再判定AC为⊙O的切线,则根据切线长定理得到FD=FC,然后证明∠3=∠A得到FD=FA,从而有FC=FA;(2)在Rt△ACB中利用含30度的直角三角形三边的关系得到BC=3AC=2,再证明△OBD为等边三角形得到∠BOD=60°,接着根据切线的性质得到OD⊥EF,从而可计算出DE的长,然后根据扇形的面积公式,利用S阴影部分=S△ODE-S扇形BOD进行计算即可.【详解】(1)证明:连接OD、CD,如图,∵BC为直径,∴∠BDC=90°,∵∠ACB=90°,∴AC为⊙O的切线,∵EF为⊙O的切线,∴FD=FC,∴∠1=∠2,∵∠1+∠A=90°,∠2+∠3=90°,∴∠3=∠A ,∴FD=FA ,∴FC=FA ,∴点F 是AC 中点;(2)解:在Rt △ACB 中,而∠A=30°,∴∠CBA=60°,, ∵OB=OD ,∴△OBD 为等边三角形,∴∠BOD=60°,∵EF 为切线,∴OD ⊥EF ,在Rt △ODE 中,∴S 阴影部分=S △ODE ﹣S 扇形BOD =12×2601360π⋅⋅16π. 【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理和扇形的面积公式.。

安徽省宿州市2019-2020学年中考数学模拟试题含解析

安徽省宿州市2019-2020学年中考数学模拟试题含解析

安徽省宿州市2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B时,点B所表示的实数是()A.1 B.-6 C.2或-6 D.不同于以上答案2.如图,已知▱ABCD中,E是边AD的中点,BE交对角线AC于点F,那么S△AFE:S四边形FCDE为( )A.1:3 B.1:4 C.1:5 D.1:63.已知二次函数y=ax2+bx+c的图像经过点(0,m)、(4、m)、(1,n),若n<m,则()A.a>0且4a+b=0 B.a<0且4a+b=0C.a>0且2a+b=0 D.a<0且2a+b=04.下列关于x的方程中,属于一元二次方程的是()A.x﹣1=0 B.x2+3x﹣5=0 C.x3+x=3 D.ax2+bx+c=05.如图,在等腰直角△ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF 为折痕,则sin∠BED的值是()A.5B.35C.222D.236.在如图的计算程序中,y与x之间的函数关系所对应的图象大致是()A.B.C.D.7.一元二次方程2x2﹣3x+1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根8.下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.菱形C.平行四边形D.正五边形9.已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形10.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A.B.C.D.11.下列四个实数中是无理数的是( )A.2.5 B.C.π D.1.41412.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张,则两次抽取的卡片上的数字之积为正偶数的概率是()A.49B.112C.13D.16二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,△ABC是直角三角形,∠C=90°,四边形ABDE是菱形且C、B、D共线,AD、BE交于点O,连接OC,若BC=3,AC=4,则tan∠OCB=_____14.关于x的一元二次方程x2+4x﹣k=0有实数根,则k的取值范围是__________.15.如图,边长为4的正方形ABCD内接于⊙O,点E是弧AB上的一动点(不与点A、B重合),点F 是弧BC上的一点,连接OE,OF,分别与交AB,BC于点G,H,且∠EOF=90°,连接GH,有下列结论:①弧AE=弧BF;②△OGH是等腰直角三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为4+22.其中正确的是_____.(把你认为正确结论的序号都填上)16.如图,四边形ABCD中,E,F,G,H分别是边AB、BC、CD、DA的中点.若四边形EFGH为菱形,则对角线AC、BD应满足条件_____.17.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是_____.18.如图,线段AB两端点坐标分别为A(﹣1,5)、B(3,3),线段CD两端点坐标分别为C(5,3)、D (3,﹣1)数学课外兴趣小组研究这两线段发现:其中一条线段绕着某点旋转一个角度可得到另一条线段,请写出旋转中心的坐标________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,Rt△ABC中,∠C=90°,⊙O是Rt△ABC的外接圆,过点C作⊙O的切线交BA的延长线于点E,BD⊥CE于点D,连接DO交BC于点M.(1)求证:BC平分∠DBA;(2)若23EAAO,求DMMO的值.20.(6分)已知,平面直角坐标系中的点A(a,1),t=ab﹣a2﹣b2(a,b是实数)(1)若关于x的反比例函数y=2ax过点A,求t的取值范围.(2)若关于x的一次函数y=bx过点A,求t的取值范围.(3)若关于x的二次函数y=x2+bx+b2过点A,求t的取值范围.21.(6分)如图,二次函数y=12x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点坐标是(8,6).求二次函数的解析式;求函数图象的顶点坐标及D点的坐标;二次函数的对称轴上是否存在一点C,使得△CBD的周长最小?若C点存在,求出C点的坐标;若C点不存在,请说明理由.22.(8分)在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B作⊙O的切线BF交CD的延长线于点F.(I)如图①,若∠F=50°,求∠BGF的大小;(II)如图②,连接BD,AC,若∠F=36°,AC∥BF,求∠BDG的大小.23.(8分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.求证:四边形ABCD 是菱形;若AB 5BD =2,求OE 的长.24.(10分)某校为美化校园,计划对面积为1800m 2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m 2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m 2?(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?25.(10分)先化简,再求值:()2111x x ⎛⎫-÷- ⎪+⎝⎭,其中x 为方程2320x x ++=的根. 26.(12分)某校组织学生去9km 外的郊区游玩,一部分学生骑自行车先走,半小时后,其他学生乘公共汽车出发,结果他们同时到达.己知公共汽车的速度是自行车速度的3倍,求自行车的速度和公共汽车的速度分别是多少?27.(12分)一件上衣,每件原价500元,第一次降价后,销售甚慢,于是再次进行大幅降价,第二次降价的百分率是第一次降价的百分率的2倍,结果这批上衣以每件240元的价格迅速售出,求两次降价的百分率各是多少.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】解:∵点A 为数轴上的表示-1的动点,①当点A 沿数轴向左移动4个单位长度时,点B 所表示的有理数为-1-4=-6;②当点A 沿数轴向右移动4个单位长度时,点B 所表示的有理数为-1+4=1.故选C .点睛:注意数的大小变化和平移之间的规律:左减右加.与点A 的距离为4个单位长度的点B 有两个,一个向左,一个向右.2.C根据AE ∥BC ,E 为AD 中点,找到AF 与FC 的比,则可知△AEF 面积与△FCE 面积的比,同时因为△DEC面积=△AEC 面积,则可知四边形FCDE 面积与△AEF 面积之间的关系.【详解】解:连接CE ,∵AE ∥BC ,E 为AD 中点, ∴12AE AF BC FC == . ∴△FEC 面积是△AEF 面积的2倍.设△AEF 面积为x ,则△AEC 面积为3x ,∵E 为AD 中点,∴△DEC 面积=△AEC 面积=3x .∴四边形FCDE 面积为1x ,所以S △AFE :S 四边形FCDE 为1:1.故选:C .【点睛】本题考查相似三角形的判定和性质、平行四边形的性质,解题关键是通过线段的比得到三角形面积的关系.3.A【解析】【分析】由图像经过点(0,m )、(4、m )可知对称轴为x=2,由n <m 知x=1时,y 的值小于x=0时y 的值,根据抛物线的对称性可知开口方向,即可知道a 的取值.【详解】∵图像经过点(0,m )、(4、m )∴对称轴为x=2,则-22b a=, ∴4a+b=0∵图像经过点(1,n ),且n <m∴抛物线的开口方向向上,∴a >0,此题主要考查抛物线的图像,解题的关键是熟知抛物线的对称性.4.B【解析】【分析】根据一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2进行分析即可.【详解】A. 未知数的最高次数不是2 ,不是一元二次方程,故此选项错误;B. 是一元二次方程,故此选项正确;C. 未知数的最高次数是3,不是一元二次方程,故此选项错误;D. a=0时,不是一元二次方程,故此选项错误;故选B.【点睛】本题考查一元二次方程的定义,解题的关键是明白:一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.5.B【解析】【分析】先根据翻折变换的性质得到△DEF≌△AEF,再根据等腰三角形的性质及三角形外角的性质可得到∠BED=CDF,设CD=1,CF=x,则CA=CB=2,再根据勾股定理即可求解.【详解】∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,设CD=1,CF=x,则CA=CB=2,∴DF=FA=2-x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得:x=34,∴sin∠BED=sin∠CDF=35 CFDF.故选B.【点睛】本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.6.A【解析】函数→一次函数的图像及性质7.B【解析】试题分析:对于一元二次方程,当△=时方程有两个不相等的实数根,当△=时方程有两个相等的实数根,当△=时方程没有实数根.根据题意可得:△=,则方程有两个不相等的实数根.8.B【解析】【分析】在平面内,如果一个图形沿一条直线对折,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内一个图形绕某个点旋转180°,如果旋转前后的图形能互相重合,那么这个图形叫做中心对称图形,分别判断各选项即可解答.【详解】解:A、等边三角形是轴对称图形,不是中心对称图形,故此选项错误;B、菱形是轴对称图形,也是中心对称图形,故此选项正确;C、平行四边形不是轴对称图形,是中心对称图形,故此选项错误;D、正五边形是轴对称图形,不是中心对称图形,故此选项错误.故选:B.【点睛】本题考查了轴对称图形和中心对称图形的定义,熟练掌握是解题的关键.9.D【解析】【分析】根据多边形的内角和=(n﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n,∴(n﹣2)•180°=1080°,解得n=8.故选D.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.10.C【解析】【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.【详解】根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢。

安徽省宿州市2019-2020学年中考数学第一次押题试卷含解析

安徽省宿州市2019-2020学年中考数学第一次押题试卷含解析

安徽省宿州市2019-2020学年中考数学第一次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=4,则m+n的值是()A.﹣10 B.10 C.﹣6 D.22.下列方程中,没有实数根的是( )A.2x2x30-+=--=B.2x2x30C.2x2x10--=-+=D.2x2x103.一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有()①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h;⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时A.2个B.3个C.4个D.5个4.如图是一个几何体的三视图,则这个几何体是()A.B.C.D.5.下列命题是真命题的是()A.如实数a,b满足a2=b2,则a=bB.若实数a,b满足a<0,b<0,则ab<0C.“购买1张彩票就中奖”是不可能事件D.三角形的三个内角中最多有一个钝角6.下列各式中的变形,错误的是(()A.B.C.D.7.如图,⊙O内切于正方形ABCD,边BC、DC上两点M、N,且MN是⊙O的切线,当△AMN的面积为4时,则⊙O的半径r是()A.2B.22C.2 D.438.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A.B.C.D.9.下列运算正确的是()A.a6÷a2=a3B.(2a+b)(2a﹣b)=4a2﹣b2C.(﹣a)2•a3=a6D.5a+2b=7ab10.已知二次函数(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程2x3x m0-+=的两实数根是A.x1=1,x2=-1 B.x1=1,x2=2C.x1=1,x2=0 D.x1=1,x2=311.已知=2{=1xy是二元一次方程组+=8{=1mx nynx my-的解,则2m n-的算术平方根为()A.±2 B.C.2 D.412.如图,AB与⊙O相切于点A,BO与⊙O相交于点C,点D是优弧AC上一点,∠CDA=27°,则∠B 的大小是()A.27°B.34°C.36°D.54°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在函数12xyx-=+中,自变量x的取值范围是_________.14.如下图,在直径AB的半圆O中,弦AC、BD相交于点E,EC=2,BE=1.则cos∠BEC=________.15.阅读下面材料:数学活动课上,老师出了一道作图问题:“如图,已知直线l和直线l外一点P.用直尺和圆规作直线PQ,使PQ⊥l于点Q.”小艾的作法如下:(1)在直线l上任取点A,以A为圆心,AP长为半径画弧.(2)在直线l上任取点B,以B为圆心,BP长为半径画弧.(3)两弧分别交于点P和点M(4)连接PM,与直线l交于点Q,直线PQ即为所求.老师表扬了小艾的作法是对的.请回答:小艾这样作图的依据是_____.16.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是_____.17.三人中有两人性别相同的概率是_____________.18.如图,量角器的0度刻度线为AB,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A,D,量得10=,点D在量角器上的读数为60o,则该直尺的宽AD cm度为____________cm.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某街道需要铺设管线的总长为9000m,计划由甲队施工,每天完成150m.工作一段时间后,y m与甲队工作时间x(天)因为天气原因,想要40天完工,所以增加了乙队.如图表示剩余管线的长度()之间的函数关系图象.(1)直接写出点B的坐标;(2)求线段BC所对应的函数解析式,并写出自变量x的取值范围;(3)直接写出乙队工作25天后剩余管线的长度.20.(6分)阅读下列材料:材料一:早在2011年9月25日,北京故宫博物院就开始尝试网络预售门票,2011年全年网络售票仅占1.68%.2012年至2014年,全年网络售票占比都在2%左右.2015年全年网络售票占17.33%,2016年全年网络售票占比增长至41.14%.2017年8月实现网络售票占比77%.2017年10月2日,首次实现全部网上售票.与此同时,网络购票也采用了“人性化”的服务方式,为没有线上支付能力的观众提供代客下单服务.实现全网络售票措施后,在北京故宫博物院的精细化管理下,观众可以更自主地安排自己的行程计划,获得更美好的文化空间和参观体验.材料二:以下是某同学根据网上搜集的数据制作的年度中国国家博物馆参观人数及年增长率统计表.年度2013 2014 2015 2016 2017参观人数(人次)7450 0007630 0007290 0007550 0008060 000年增长率(%)38.7 2.4 -4.5 3.66.8他还注意到了如下的一则新闻:2018年3月8日,中国国家博物馆官方微博发文,宣布取消纸质门票,观众持身份证预约即可参观. 国博正在建设智慧国家博物馆,同时馆方工作人员担心的是:“虽然有故宫免(纸质)票的经验在前,但对于国博来说这项工作仍有新的挑战.参观故宫需要观众网上付费购买门票,他遵守预约的程度是不一样的.但(国博)免费就有可能约了不来,挤占资源,所以难度其实不一样.” 尽管如此,国博仍将积极采取技术和服务升级,希望带给观众一个更完美的体验方式.根据以上信息解决下列问题:(1)补全以下两个统计图;(2)请你预估2018年中国国家博物馆的参观人数,并说明你的预估理由.21.(6分)全民学习、终身学习是学习型社会的核心内容,努力建设学习型家庭也是一个重要组成部分.为了解“学习型家庭”情况,对部分家庭五月份的平均每天看书学习时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下列问题:本次抽样调查了个家庭;将图①中的条形图补充完整;学习时间在2~2.5小时的部分对应的扇形圆心角的度数是度;若该社区有家庭有3000个,请你估计该社区学习时间不少于1小时的约有多少个家庭?22.(8分)如图,在▱ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=12BC,求证:四边形OCFE是平行四边形.23.(8分)某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.(1)按约定,“某顾客在该天早餐得到两个鸡蛋”是事件(填“随机”、“必然”或“不可能”);(2)请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.24.(10分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价1元,商场平均每天可多售出2件.若某天该商品每件降价3元,当天可获利多少元?设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?25.(10分)已知点E是矩形ABCD的边CD上一点,BF⊥AE于点F,求证△ABF∽△EAD.26.(12分)反比例函数kyx=在第一象限的图象如图所示,过点A(2,0)作x轴的垂线,交反比例函数kyx=的图象于点M,△AOM的面积为2.求反比例函数的解析式;设点B的坐标为(t,0),其中t>2.若以AB为一边的正方形有一个顶点在反比例函数kyx的图象上,求t的值.27.(12分)甲、乙两个人做游戏:在一个不透明的口袋中装有1张相同的纸牌,它们分别标有数字1,2,3,1.从中随机摸出一张纸牌然后放回,再随机摸出一张纸牌,若两次摸出的纸牌上数字之和是3的倍数,则甲胜;否则乙胜.这个游戏对双方公平吗?请列表格或画树状图说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据“一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=4”,结合根与系数的关系,分别列出关于m和n的一元一次不等式,求出m和n的值,代入m+n即可得到答案.【详解】解:根据题意得:x1+x2=﹣m=2+4,解得:m=﹣6,x1•x2=n=2×4,解得:n=8,m+n=﹣6+8=2,故选D.【点睛】本题考查了根与系数的关系,正确掌握根与系数的关系是解决问题的关键.2.B【解析】【分析】分别计算四个方程的判别式的值,然后根据判别式的意义确定正确选项.【详解】解:A、△=(-2)2-4×(-3)=16>0,方程有两个不相等的两个实数根,所以A选项错误;B、△=(-2)2-4×3=-8<0,方程没有实数根,所以B选项正确;C、△=(-2)2-4×1=0,方程有两个相等的两个实数根,所以C选项错误;D、△=(-2)2-4×(-1)=8>0,方程有两个不相等的两个实数根,所以D选项错误.故选:B.【点睛】本题考查根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0根时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.3.B【解析】【分析】根据图形给出的信息求出两车的出发时间,速度等即可解答.【详解】解:①两车在276km处相遇,此时快车行驶了4个小时,故错误.②慢车0时出发,快车2时出发,故正确.③快车4个小时走了276km,可求出速度为69km/h,错误.④慢车6个小时走了276km,可求出速度为46km/h,正确.⑤慢车走了18个小时,速度为46km/h,可得A,B距离为828km,正确.⑥快车2时出发,14时到达,用了12小时,错误.故答案选B.【点睛】本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键.4.B【解析】试题分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B.考点:由三视图判断几何体.5.D【解析】【分析】A. 两个数的平方相等,这两个数不一定相等,有正负之分即可判断B. 同号相乘为正,异号相乘为负,即可判断C. “购买1张彩票就中奖”是随机事件即可判断D. 根据三角形内角和为180度,三个角中不可能有两个以上钝角即可判断【详解】如实数a ,b 满足a 2=b 2,则a =±b ,A 是假命题; 数a ,b 满足a <0,b <0,则ab >0,B 是假命题;若实“购买1张彩票就中奖”是随机事件,C 是假命题;三角形的三个内角中最多有一个钝角,D 是真命题;故选:D【点睛】本题考查了命题与定理,根据实际判断是解题的关键6.D【解析】【分析】根据分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变,可得答案.【详解】A 、,故A 正确;B 、分子、分母同时乘以﹣1,分式的值不发生变化,故B 正确;C 、分子、分母同时乘以3,分式的值不发生变化,故C 正确;D 、≠,故D 错误;故选:D .【点睛】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变.7.C【解析】【分析】连接AC ,交O e 于点,F 设,FN a =则2,NC a =(222,DC a =+()224,AC a =根据△AMN的面积为4,列出方程求出a 的值,再计算半径即可.【详解】连接AC ,交O e 于点,FO e 内切于正方形,ABCD MN 为O e 的切线,AC 经过点,,O F FNC V 为等腰直角三角形,2,NC FN =,CD MN 为O e 的切线,,EN NF =设,FN a =则2,NC a =(222,DC a =+()224,AC a =()223,AF AC CF a ∴=-= △AMN 的面积为4, 则14,2MN AF ⋅⋅= 即()122234,2a a ⋅⋅=解得222,a = ()()()2121222 2.r EC a ==== 故选:C.【点睛】考查圆的切线的性质,等腰直角三角形的性质,三角形的面积公式,综合性比较强.8.B【解析】【分析】△ADP 的面积可分为两部分讨论,由A 运动到B 时,面积逐渐增大,由B 运动到C 时,面积不变,从而得出函数关系的图象.【详解】解:当P 点由A 运动到B 点时,即0≤x≤2时,y =12×2x =x ,当P 点由B 运动到C 点时,即2<x <4时,y =12×2×2=2, 符合题意的函数关系的图象是B ;故选B .【点睛】 本题考查了动点函数图象问题,用到的知识点是三角形的面积、一次函数,在图象中应注意自变量的取值范围.9.B【解析】【分析】A 选项:利用同底数幂的除法法则,底数不变,只把指数相减即可;B 选项:利用平方差公式,应先把2a 看成一个整体,应等于(2a )2-b 2而不是2a 2-b 2,故本选项错误;C 选项:先把(-a )2化为a 2,然后利用同底数幂的乘法法则,底数不变,只把指数相加,即可得到;D 选项:两项不是同类项,故不能进行合并.【详解】A 选项:a 6÷a 2=a 4,故本选项错误;B 选项:(2a+b )(2a-b )=4a 2-b 2,故本选项正确;C 选项:(-a )2•a 3=a 5,故本选项错误;D 选项:5a 与2b 不是同类项,不能合并,故本选项错误;故选:B .【点睛】考查学生同底数幂的乘除法法则的运用以及对平方差公式的掌握,同时要求学生对同类项进行正确的判断.10.B【解析】试题分析:∵二次函数2y x 3x m -+=(m 为常数)的图象与x 轴的一个交点为(1,0),∴213m 0m 2-+=⇒=.∴2212x 3x m 0x 3x 20x 1x 2-+=⇒-+=⇒==,.故选B . 11.C【解析】二元一次方程组的解和解二元一次方程组,求代数式的值,算术平方根.【分析】∵=2{=1x y 是二元一次方程组+=8{ =1mx ny nx my -的解,∴2+=8{2=1m n n m -,解得=3{=2m n ..即2m n-的算术平方根为1.故选C.12.C【解析】【分析】由切线的性质可知∠OAB=90°,由圆周角定理可知∠BOA=54°,根据直角三角形两锐角互余可知∠B=36°.【详解】解:∵AB与⊙O相切于点A,∴OA⊥BA.∴∠OAB=90°.∵∠CDA=27°,∴∠BOA=54°.∴∠B=90°-54°=36°.故选C.考点:切线的性质.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x≤1且x≠﹣1【解析】试题分析:根据二次根式有意义,分式有意义得:1﹣x≥0且x+1≠0,解得:x≤1且x≠﹣1.故答案为x≤1且x≠﹣1.考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.14.1 2【解析】分析:连接BC,则∠BCE=90°,由余弦的定义求解.详解:连接BC,根据圆周角定理得,∠BCE=90°,所以cos∠BEC=2142 CEBE==.故答案为1 2 .点睛:本题考查了圆周角定理的余弦的定义,求一个锐角的余弦时,需要把这个锐角放到直角三角形中,再根据余弦的定义求解,而圆中直径所对的圆周角是直角.15.到线段两端距离相等的点在线段的垂直平分线上或两点确定一条直线或sss或全等三角形对应角相等或等腰三角形的三线合一【解析】【分析】从作图方法以及作图结果入手考虑其作图依据..【详解】解:依题意,AP =AM ,BP =BM ,根据垂直平分线的定义可知PM ⊥直线l.因此易知小艾的作图依据是到线段两端距离相等的点在线段的垂直平分线上;两点确定一条直线.故答案为到线段两端距离相等的点在线段的垂直平分线上;两点确定一条直线.【点睛】本题主要考查尺规作图,掌握尺规作图的常用方法是解题关键.16.233π- 【解析】【分析】连接BD ,易证△DAB 是等边三角形,即可求得△ABD 的高为3,再证明△ABG ≌△DBH ,即可得四边形GBHD 的面积等于△ABD 的面积,由图中阴影部分的面积为S 扇形EBF ﹣S △ABD 即可求解.【详解】如图,连接BD .∵四边形ABCD 是菱形,∠A =60°,∴∠ADC =120°,∴∠1=∠2=60°,∴△DAB 是等边三角形,∵AB =2,∴△ABD 3,∵扇形BEF 的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,234A AB BD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF ﹣S △ABD =2602360π⨯﹣12×2×3=233π-. 故答案是:233π-. 【点睛】 本题考查了扇形的面积计算以及全等三角形的判定与性质等知识,根据已知得出四边形GBHD 的面积等于△ABD 的面积是解题关键.17.1【解析】分析:由题意和生活实际可知:“三个人中,至少有两个人的性别是相同的”即可得到所求概率为1.详解:∵三人的性别存在以下可能:(1)三人都是“男性”;(2)三人都是“女性”;(3)三人的性别是“2男1女”;(4)三人的性别是“2女1男”,∴三人中至少有两个人的性别是相同的,∴P (三人中有二人性别相同)=1.点睛:列出本题中所有的等可能结果是解题的关键.18.533【解析】【分析】连接OC,OD,OC 与AD 交于点E ,根据圆周角定理有130,2BAD BOD ∠=∠=︒根据垂径定理有:15,2AE AD == 解直角OAE △即可. 【详解】连接OC,OD,OC 与AD 交于点E ,130,2BAD BOD ∠=∠=︒ 10 3.cos303AE OA ==︒ 5tan 303,3OE AE =⋅︒= 直尺的宽度:105533 3.333CE OC OE =-==【点睛】考查垂径定理,熟记垂径定理是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)(10,7500)(2)直线BC的解析式为y=-250x+10000,自变量x的取值范围为10≤x≤40.(3)1250米.【解析】【分析】(1)由于前面10天由甲单独完成,用总的长度减去已完成的长度即为剩余的长度,从而求出点B的坐标;(2)利用待定系数法求解即可;(3)已队工作25天后,即甲队工作了35天,故当x=35时,函数值即为所求.【详解】(1)9000-150×10=7500.∴点B的坐标为(10,7500)(2)设直线BC的解析式为y=kx+b,依题意,得:解得:∴直线BC的解析式为y=-250x+10000,∵乙队是10天之后加入,40天完成,∴自变量x的取值范围为10≤x≤40.(3)依题意,当x=35时,y=-250×35+10000=1250.∴乙队工作25天后剩余管线的长度是1250米.【点睛】本题考查了一次函数的应用,理解题意观察图象得到有用信息是解题的关键.20.(1)见解析;(2)答案不唯一,预估理由合理,支撑预估数据即可【解析】【分析】【详解】分析:(1)根据2015年网络售票占17.33%,2017年8月实现网络售票占比77%,2017年10月2日,首次实现全部网络售票,即可补全图1,根据2016年度中国国家博物馆参观人数及年增长率,即可补全图2;(2)根据近两年平均每年增长385000人次,即可预估2018年中国国家博物馆的参观人数.详解:(1)补全统计图如(2)近两年平均每年增长385000人次,预估2018年中国国家博物馆的参观人数为8445000人次.(答案不唯一,预估理由合理,支撑预估数据即可.)点睛:本题考查了统计表、折线统计图的应用,关键是正确从统计表中得到正确的信息,折线统计图表示的是事物的变化情况.21. (1)200;(2)见解析;(3)36;(4)该社区学习时间不少于1小时的家庭约有2100个.【解析】【分析】(1)根据1.5~2小时的圆心角度数求出1.5~2小时所占的百分比,再用1.5~2小时的人数除以所占的百分比,即可得出本次抽样调查的总家庭数;(2)用抽查的总人数乘以学习0.5-1小时的家庭所占的百分比求出学习0.5-1小时的家庭数,再用总人数减去其它家庭数,求出学习2-2.5小时的家庭数,从而补全统计图;(3)用360°乘以学习时间在2~2.5小时所占的百分比,即可求出学习时间在2~2.5小时的部分对应的扇形圆心角的度数;(4)用该社区所有家庭数乘以学习时间不少于1小时的家庭数所占的百分比即可得出答案.【详解】解:(1)本次抽样调查的家庭数是:30÷54360=200(个); 故答案为200;(2)学习0.5﹣1小时的家庭数有:200×108360=60(个), 学习2﹣2.5小时的家庭数有:200﹣60﹣90﹣30=20(个),补图如下:(3)学习时间在2~2.5小时的部分对应的扇形圆心角的度数是:360×20200=36°; 故答案为36;(4)根据题意得:3000×903020200++=2100(个).答:该社区学习时间不少于1小时的家庭约有2100个.【点睛】本题考查条形统计图、扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.22.证明见解析.【解析】【分析】利用三角形中位线定理判定OE∥BC,且OE=12BC.结合已知条件CF=12BC,则OE//CF,由“有一组对边平行且相等的四边形为平行四边形”证得结论.【详解】∵四边形ABCD是平行四边形,∴点O是BD的中点.又∵点E是边CD的中点,∴OE是△BCD的中位线,∴OE∥BC,且OE=12 BC.又∵CF=12BC,∴OE=CF.又∵点F在BC的延长线上,∴OE∥CF,∴四边形OCFE是平行四边形.【点睛】本题考查了平行四边形的性质和三角形中位线定理.此题利用了“平行四边形的对角线互相平分”的性质和“有一组对边平行且相等的四边形为平行四边形”的判定定理.熟记相关定理并能应用是解题的关键.23.(1)不可能;(2)1 6 .【解析】【分析】(1)利用确定事件和随机事件的定义进行判断;(2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结果数,然后根据概率公式计算.【详解】(1)某顾客在该天早餐得到两个鸡蛋”是不可能事件;故答案为不可能;(2)画树状图:共有12种等可能的结果数,其中某顾客该天早餐刚好得到菜包和油条的结果数为2,所以某顾客该天早餐刚好得到菜包和油条的概率=21 126.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式mn计算事件A或事件B的概率.24.(1)若某天该商品每件降价3元,当天可获利1692元;(2)2x;50﹣x.(3)每件商品降价1元时,商场日盈利可达到2000元.【解析】【分析】(1)根据“盈利=单件利润×销售数量”即可得出结论;(2)根据“每件商品每降价1元,商场平均每天可多售出2件”结合每件商品降价x元,即可找出日销售量增加的件数,再根据原来没见盈利50元,即可得出降价后的每件盈利额;(3)根据“盈利=单件利润×销售数量”即可列出关于x的一元二次方程,解之即可得出x的值,再根据尽快减少库存即可确定x的值.【详解】(1)当天盈利:(50-3)×(30+2×3)=1692(元).答:若某天该商品每件降价3元,当天可获利1692元.(2)∵每件商品每降价1元,商场平均每天可多售出2件,∴设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50-x)元.故答案为2x;50-x.(3)根据题意,得:(50-x)×(30+2x)=2000,整理,得:x2-35x+10=0,解得:x1=10,x2=1,∵商城要尽快减少库存,∴x=1.答:每件商品降价1元时,商场日盈利可达到2000元.【点睛】考查了一元二次方程的应用,解题的关键是根据题意找出数量关系列出一元二次方程(或算式).25.证明见解析【解析】试题分析:先利用等角的余角相等得到.DAE BAF ∠=∠根据有两组角对应相等,即可证明两三角形相似. 试题解析:∵四边形ABCD 为矩形,90,BAD D ∴∠=∠=o90DAE BAE ∴∠+∠=o ,BF AE ⊥Q 于点F ,90ABF BAE ∴∠+∠=o ,DAE BAF ∴∠=∠,.ABF EAD ∴V V ∽点睛:两组角对应相等,两三角形相似.26.(2)6y x =(2)7或2. 【解析】试题分析:(2)根据反比例函数k 的几何意义得到12|k|=2,可得到满足条件的k=6,于是得到反比例函数解析式为y=6x; (2)分类讨论:当以AB 为一边的正方形ABCD 的顶点D 在反比例函数y=6x 的图象上,则D 点与M 点重合,即AB=AM ,再利用反比例函数图象上点的坐标特征确定M 点坐标为(2,6),则AB=AM=6,所以t=2+6=7;当以AB 为一边的正方形ABCD 的顶点C 在反比例函数y=6x的图象上,根据正方形的性质得AB=BC=t-2,则C 点坐标为(t ,t-2),然后利用反比例函数图象上点的坐标特征得到t (t-2)=6,再解方程得到满足条件的t 的值.试题解析:(2)∵△AOM 的面积为2, ∴12|k|=2, 而k >0,∴k=6,∴反比例函数解析式为y=6x; (2)当以AB 为一边的正方形ABCD 的顶点D 在反比例函数y=6x 的图象上,则D 点与M 点重合,即AB=AM ,把x=2代入y=6x得y=6, ∴M 点坐标为(2,6),∴AB=AM=6,∴t=2+6=7;当以AB为一边的正方形ABCD的顶点C在反比例函数y=6x的图象上,则AB=BC=t-2,∴C点坐标为(t,t-2),∴t(t-2)=6,整理为t2-t-6=0,解得t2=2,t2=-2(舍去),∴t=2,∴以AB为一边的正方形有一个顶点在反比例函数y=kx的图象上时,t的值为7或2.考点:反比例函数综合题.27.不公平【解析】【分析】列表得到所有情况,然后找出数字之和是3的倍数的情况,利用概率公式计算后进行判断即可得. 【详解】根据题意列表如下:所有等可能的情况数有16种,其中两次摸出的纸牌上数字之和是3的倍数的情况有:(2,1),(1,2),(1,2),(3,3),(2,1),共5种,∴P(甲获胜)=516,P(乙获胜)=1﹣516=1116,则该游戏不公平.【点睛】本题考查了列表法或树状图法求概率,判断游戏的公平性,用到的知识点为:概率=所求情况数与总情况数之比.。

【附5套中考模拟试卷】安徽省宿州市2019-2020学年中考中招适应性测试卷数学试题(3)含解析

【附5套中考模拟试卷】安徽省宿州市2019-2020学年中考中招适应性测试卷数学试题(3)含解析

安徽省宿州市2019-2020学年中考中招适应性测试卷数学试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BE∥DF 的是()A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD2.如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为()A.2R B.32R C.22R D.3R3.将抛物线向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为()A.B.C.D.4.李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:阅读时间(小时) 2 2.5 3 3.5 4学生人数(名) 1 2 8 6 3则关于这20名学生阅读小时数的说法正确的是()A.众数是8 B.中位数是3C.平均数是3 D.方差是0.345.﹣18的相反数是()A.8 B.﹣8 C.18D.﹣186.关于x的不等式组24351xx-<⎧⎨-<⎩的所有整数解是()A.0,1 B.﹣1,0,1 C.0,1,2 D.﹣2,0,1,27.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元8.在直角坐标系中,设一质点M自P0(1,0)处向上运动一个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处……,如此继续运动下去,设P n(x n,y n),n=1,2,3,……,则x1+x2+……+x2018+x2019的值为()A.1 B.3 C.﹣1 D.20199.sin60°的值为()A.3B.32C.22D.1210.实数a,b,c,d在数轴上的对应点的位置如图所示,下列结论①a<b;②|b|=|d|;③a+c=a;④ad>0中,正确的有()A.4个B.3个C.2个D.1个11.我国的钓鱼岛面积约为4400000m2,用科学记数法表示为()A.4.4×106B.44×105C.4×106D.0.44×10712.若※是新规定的某种运算符号,设a※b=b 2 -a,则-2※x=6中x的值()A.4 B.8 C. 2 D.-2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.抛物线y=(x+1)2 - 2的顶点坐标是______ .14.函数32xyx=-中,自变量x的取值范围是______15.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,位似比为2:3,点B、E在第一象限,若点A的坐标为(1,0),则点E的坐标是______.16..如图,圆锥侧面展开得到扇形,此扇形半径 CA=6,圆心角∠ACB=120°, 则此圆锥高 OC 的长度是_______.17.如图,在菱形ABCD 中,AB=3,∠B=120°,点E 是AD 边上的一个动点(不与A ,D 重合),EF ∥AB 交BC 于点F ,点G 在CD 上,DG=DE .若△EFG 是等腰三角形,则DE 的长为_____.18.因式分解:x 2﹣10x+24=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)将二次函数2241y x x =+-的解析式化为2()y a x m k =++的形式,并指出该函数图象的开口方向、顶点坐标和对称轴.20.(6分)为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图.(单位:升)(1)求这7天内小申家每天用水量的平均数和中位数; (2)求第3天小申家洗衣服的水占这一天总用水量的百分比;(3)请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月(按30天计算)的节约用水量.21.(6分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.试求出每天的销售量y (盒)与每盒售价x (元)之间的函数关系式;当每盒售价定为多少元时,每天销售的利润P (元)最大?最大利润是多少?为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒? 22.(8分)如图,在△ABC 中,(1)求作:∠BAD=∠C ,AD 交BC 于D .(用尺规作图法,保留作图痕迹,不要求写作法). (2)在(1)条件下,求证:AB 2=BD•BC .23.(8分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为12. (1)求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;24.(10分)先化简,再求值:22122121x x x x xx x x ---⎛⎫-÷ ⎪+++⎝⎭,其中x 满足x 2﹣x ﹣1=1. 25.(10分) “食品安全”受到全社会的广泛关注,济南市某中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 ; (2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数;(4)若从对食品安全知识达到“了解”程度的2个女生和2个男生中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.26.(12分)小马虎做一道数学题,“已知两个多项式24A x x =-W ,2234B x x =+-,试求2A B +.”其中多项式A 的二次项系数印刷不清楚.小马虎看答案以后知道2228A B x x +=+-,请你替小马虎求出系数“W ”;在(1)的基础上,小马虎已经将多项式A 正确求出,老师又给出了一个多项式C ,要求小马虎求出A C -的结果.小马虎在求解时,误把“A C -”看成“A C +”,结果求出的答案为262x x --.请你替小马虎求出“A C -”的正确答案.27.(12分)先化简,再求值:(1+211x -)÷2221x x x ++,其中.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】 【分析】由四边形ABCD 是平行四边形,可得AD//BC ,AD=BC ,然后由AE=CF ,∠EBF=∠FDE ,∠BED=∠BFD 均可判定四边形BFDE 是平行四边形,则可证得BE//DF ,利用排除法即可求得答案. 【详解】Q 四边形ABCD 是平行四边形,∴AD//BC ,AD=BC , A 、∵AE=CF , ∴DE=BF ,∴四边形BFDE 是平行四边形, ∴BE//DF ,故本选项能判定BE//DF ; B 、∵BE=DF ,∴四边形BFDE 是等腰梯形, ∴本选项不一定能判定BE//DF ;C 、∵AD//BC ,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°, ∵∠EBF=∠FDE , ∴∠BED=∠BFD ,∴四边形BFDE 是平行四边形,故本选项能判定BE//DF;D、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠BED=∠BFD,∴∠EBF=∠FDE,∴四边形BFDE是平行四边形,∴BE//DF,故本选项能判定BE//DF.故选B.【点睛】本题考查了平行四边形的判定与性质,注意根据题意证得四边形BFDE是平行四边形是关键.2.D【解析】【分析】延长BO交圆于D,连接CD,则∠BCD=90°,∠D=∠A=60°;又BD=2R,根据锐角三角函数的定义得BC=3R.【详解】解:延长BO交⊙O于D,连接CD,则∠BCD=90°,∠D=∠A=60°,∴∠CBD=30°,∵BD=2R,∴DC=R,∴3,故选D.【点睛】此题综合运用了圆周角定理、直角三角形30°角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键.3.C试题分析:∵抛物线向右平移1个单位长度,∴平移后解析式为:,∴再向上平移1个单位长度所得的抛物线解析式为:.故选C.考点:二次函数图象与几何变换.4.B【解析】【分析】A、根据众数的定义找出出现次数最多的数;B、根据中位数的定义将这组数据从小到大重新排列,求出最中间的2个数的平均数,即可得出中位数;C、根据加权平均数公式代入计算可得;D、根据方差公式计算即可.【详解】解:A、由统计表得:众数为3,不是8,所以此选项不正确;B、随机调查了20名学生,所以中位数是第10个和第11个学生的阅读小时数,都是3,故中位数是3,所以此选项正确;C、平均数=122 2.5386 3.5433.3520⨯+⨯+⨯+⨯+⨯=,所以此选项不正确;D、S2=120×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]=5.6520=0.2825,所以此选项不正确;故选B.【点睛】本题考查方差;加权平均数;中位数;众数.5.C【解析】互为相反数的两个数是指只有符号不同的两个数,所以18-的相反数是18,故选C.6.B【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,据此即可得出答案.【详解】解不等式﹣2x<4,得:x>﹣2,解不等式3x﹣5<1,得:x<2,则不等式组的解集为﹣2<x<2,所以不等式组的整数解为﹣1、0、1,故选:B.【点睛】考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.C【解析】【分析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【详解】3m×2m=6m2,∴长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m2,∴扩大后长方形广告牌的成本是54×20=1080元,故选C.【点睛】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.8.C【解析】【分析】+x2+…+x7;经过观察分析可得每4个数的和为2,把2019个根据各点横坐标数据得出规律,进而得出x1数分为505组,即可得到相应结果.【详解】解:根据平面坐标系结合各点横坐标得出:x1、x2、x3、x4、x5、x6、x7、x8的值分别为:1,﹣1,﹣1,3,3,﹣3,﹣3,5;∴x1+x2+…+x7=﹣1∵x1+x2+x3+x4=1﹣1﹣1+3=2;x5+x6+x7+x8=3﹣3﹣3+5=2;…x 97+x 98+x 99+x 100=2…∴x 1+x 2+…+x 2016=2×(2016÷4)=1. 而x 2017、x 2018、x 2019的值分别为:1009、﹣1009、﹣1009, ∴x 2017+x 2018+x 2019=﹣1009,∴x 1+x 2+…+x 2018+x 2019=1﹣1009=﹣1, 故选C . 【点睛】此题主要考查规律型:点的坐标,解题关键在于找到其规律 9.B 【解析】解:sin60°B . 10.B 【解析】 【分析】根据数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义,可得答案. 【详解】解:由数轴,得a=-3.5,b=-2,c=0,d=2,①a <b ,故①正确;②|b|=|d|,故②正确;③a+c=a ,故③正确;④ad <0,故④错误; 故选B . 【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义是解题关键. 11.A【解析】4400000=4.4×1.故选A . 点睛:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 12.C 【解析】解:由题意得:226x +=,∴24x =,∴x=±1.故选C . 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13. (-1,-2)【解析】试题分析:因为y=(x+1)2﹣2是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(﹣1,﹣2),故答案为(﹣1,﹣2).考点:二次函数的性质.14.x≠1【解析】【详解】解:∵32xyx=-有意义,∴x-1≠0,∴x≠1;故答案是:x≠1.15.(32,32)【解析】【分析】由题意可得OA:OD=2:3,又由点A的坐标为(1,0),即可求得OD的长,又由正方形的性质,即可求得E点的坐标.【详解】解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为2:3,∴OA:OD=2:3,∵点A的坐标为(1,0),即OA=1,∴OD=32,∵四边形ODEF是正方形,∴DE=OD=32.∴E点的坐标为:(32,32).故答案为:(32,32).【点睛】此题考查了位似变换的性质与正方形的性质,注意理解位似变换与相似比的定义是解此题的关键.16.【解析】。

安徽省宿州市2019-2020学年中考数学模拟试题(3)含解析

安徽省宿州市2019-2020学年中考数学模拟试题(3)含解析

安徽省宿州市2019-2020学年中考数学模拟试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,两个等直径圆柱构成如图所示的T 形管道,则其俯视图正确的是( ) A .B .C .D .2.已知等腰三角形的周长是10,底边长y 是腰长x 的函数,则下列图象中,能正确反映y 与x 之间函数关系的图象是( )A .B .C . D3.如图,矩形ABCD 中,AB=3,AD=4,连接BD ,∠DBC 的角平分线BE 交DC 于点E ,现把△BCE 绕点B 逆时针旋转,记旋转后的△BCE 为△BC′E′.当线段BE′和线段BC′都与线段AD 相交时,设交点分别为F ,G .若△BFD 为等腰三角形,则线段DG 长为( )A .2513B .2413C .95D .85 4.下列方程中是一元二次方程的是( ) A .20ax bx c ++=B .2211x x +=C .(1)(2)1x x -+=D .223250x xy y --=5.抢微信红包成为节日期间人们最喜欢的活动之一.对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是()A.20,20 B.30,20 C.30,30 D.20,306.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x-1)=1035 C.12x(x+1)=1035 D.12x(x-1)=10357.下列运算正确的是()A.a2+a3=a5B.(a3)2÷a6=1 C.a2•a3=a6D.(+)2=58.一元二次方程mx2+mx﹣12=0有两个相等实数根,则m的值为()A.0 B.0或﹣2 C.﹣2 D.29.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是()A.B.C.D.10.如图图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.11.如图,已知AB∥CD,DE⊥AC,垂足为E,∠A=120°,则∠D的度数为()A.30°B.60°C.50°D.40°12.关于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,则()A.a≠±1B.a=1 C.a=﹣1 D.a=±1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,某小型水库栏水坝的横断面是四边形ABCD,DC∥AB,测得迎水坡的坡角α=30°,已知背水坡的坡比为1.2:1,坝顶部DC宽为2m,坝高为6m,则坝底AB的长为_____m.14.一次函数y=kx+b 的图像如图所示,则当kx+b>0 时,x 的取值范围为___________.15.某社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m1)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是_____m1.16.分解因式:2a2﹣2=_____.17.已知某二次函数图像的最高点是坐标原点,请写出一个符合要求的函数解析式:_______.18.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)关于x的一元二次方程x2+(m-1)x-(2m+3)=1.(1)求证:方程总有两个不相等的实数根;(2)写出一个m的值,并求出此时方程的根.20.(6分)如图,△ABC,△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上,求证:△CDA≌△CEB.21.(6分)如图,在四边形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,3E,F同时从B 点出发,沿射线BC向右匀速移动,已知点F的移动速度是点E移动速度的2倍,以EF为一边在CB的上方作等边△EFG,设E点移动距离为x(0<x<6).(1)∠DCB=度,当点G在四边形ABCD的边上时,x=;(2)在点E,F的移动过程中,点G始终在BD或BD的延长线上运动,求点G在线段BD的中点时x 的值;(3)当2<x<6时,求△EFG与四边形ABCD重叠部分面积y与x之间的函数关系式,当x取何值时,y有最大值?并求出y的最大值.22.(8分)计算:﹣(﹣2)0+|1﹣|+2cos30°.23.(8分)在“打造青山绿山,建设美丽中国”的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具,下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A 30人/辆380元/辆B 20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式。

安徽省宿州市2019-2020学年中考数学第三次押题试卷含解析

安徽省宿州市2019-2020学年中考数学第三次押题试卷含解析

安徽省宿州市2019-2020学年中考数学第三次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.把a•1a -的根号外的a 移到根号内得( ) A .aB .﹣aC .﹣a -D .a - 2.若2(3)3b b -=-,则( )A .3b >B .3b <C .3b ≥D .3b ≤3.在平面直角坐标系中,若点A(a ,-b)在第一象限内,则点B(a ,b)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.如图,矩形ABCD 中,AB=3,AD=4,连接BD ,∠DBC 的角平分线BE 交DC 于点E ,现把△BCE 绕点B 逆时针旋转,记旋转后的△BCE 为△BC′E′.当线段BE′和线段BC′都与线段AD 相交时,设交点分别为F ,G .若△BFD 为等腰三角形,则线段DG 长为( )A .2513B .2413C .95D .855.如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是( )A .三亚﹣﹣永兴岛B .永兴岛﹣﹣黄岩岛C .黄岩岛﹣﹣弹丸礁D .渚碧礁﹣﹣曾母暗山6.如图,在正三角形ABC 中,D,E,F 分别是BC,AC,AB 上的点,DE ⊥AC,EF ⊥AB,FD ⊥BC ,则△DEF 的面积与△ABC 的面积之比等于( )A .1∶3B .2∶3C .3∶2D .3∶37.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是( )A .参加本次植树活动共有30人B .每人植树量的众数是4棵C .每人植树量的中位数是5棵D .每人植树量的平均数是5棵 8.下列四个几何体,正视图与其它三个不同的几何体是( )A .B .C .D .9.下列各点中,在二次函数2y x =-的图象上的是( )A .()1,1B .()2,2-C .()2,4D .()2,4--10.小明和小亮按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列说法中正确的是( )A .小明不是胜就是输,所以小明胜的概率为12B .小明胜的概率是13,所以输的概率是23C.两人出相同手势的概率为12D.小明胜的概率和小亮胜的概率一样11.潍坊市2018年政府工作报告中显示,潍坊社会经济平稳运行,地区生产总值增长8%左右,社会消费品零售总额增长12%左右,一般公共预算收入539.1亿元,7家企业入选国家“两化”融合贯标试点,潍柴集团收入突破2000亿元,荣获中国商标金奖.其中,数字2000亿元用科学记数法表示为()元.(精确到百亿位)A.2×1011B.2×1012C.2.0×1011D.2.0×101012.如图,点A、B、C都在⊙O上,若∠AOC=140°,则∠B的度数是()A.70°B.80°C.110°D.140°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,△ABC中,AB=17,BC=10,CA=21,AM平分∠BAC,点D、E分别为AM、AB上的动点,则BD+DE的最小值是_____.14.不等式1﹣2x<6的负整数解是___________.15.如图,等边△ABC的边长为1cm,D、E分别是AB、AC边上的点,将△ADE沿直线DE折叠,点A落在点'A处,且点'A在△ABC的外部,则阴影部分图形的周长为_____cm.16.计算a10÷a5=_______.17.如图,在正六边形ABCDEF中,AC于FB相交于点G,则AGGC值为_____.18.飞机着陆后滑行的距离S(单位:米)与滑行的时间t(单位:秒)之间的函数关系式是s=60t﹣1.2t2,那么飞机着陆后滑行_____秒停下.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某校数学综合实践小组的同学以“绿色出行”为主题,把某小区的居民对共享单车的了解和使用情况进行了问卷调查.在这次调查中,发现有20人对于共享单车不了解,使用共享单车的居民每天骑行路程不超过8千米,并将调查结果制作成统计图,如下图所示:本次调查人数共人,使用过共享单车的有人;请将条形统计图补充完整;如果这个小区大约有3000名居民,请估算出每天的骑行路程在2~4千米的有多少人?20.(6分)在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣4,0),B (1,0)两点,与y轴交于点C.(1)求这个二次函数的解析式;(2)连接AC、BC,判断△ABC的形状,并证明;(3)若点P为二次函数对称轴上点,求出使△PBC周长最小时,点P的坐标.21.(6分)石狮泰禾某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.设每件童装降价x元时,每天可销售______ 件,每件盈利______ 元;(用x的代数式表示)每件童装降价多少元时,平均每天赢利1200元.要想平均每天赢利2000元,可能吗?请说明理由.22.(8分)A粮仓和B粮仓分别库存粮食12吨和6吨,现决定支援给C市10吨和D市8吨.已知从A 粮仓调运一吨粮食到C市和D市的运费分别为400元和800元;从B粮仓调运一吨粮食到C市和D市的运费分别为300元和500元.设B粮仓运往C市粮食x吨,求总运费W(元)关于x的函数关系式.(写出自变量的取值范围)若要求总运费不超过9000元,问共有几种调运方案?求出总运费最低的调运方案,最低运费是多少?23.(8分)如图1,已知抛物线y=ax2+bx(a≠0)经过A(6,0)、B(8,8)两点.(1)求抛物线的解析式;(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,在坐标平面内有点P,求出所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).24.(10分)综合与探究如图1,平面直角坐标系中,抛物线y=ax2+bx+3与x轴分别交于点A(﹣2,0),B(4,0),与y轴交于点C,点D是y轴负半轴上一点,直线BD与抛物线y=ax2+bx+3在第三象限交于点E(﹣4,y)点F是抛物线y=ax2+bx+3上的一点,且点F在直线BE上方,将点F沿平行于x轴的直线向右平移m 个单位长度后恰好落在直线BE上的点G处.(1)求抛物线y=ax2+bx+3的表达式,并求点E的坐标;(2)设点F的横坐标为x(﹣4<x<4),解决下列问题:①当点G与点D重合时,求平移距离m的值;②用含x的式子表示平移距离m,并求m的最大值;(3)如图2,过点F作x轴的垂线FP,交直线BE于点P,垂足为F,连接FD.是否存在点F,使△FDP 与△FDG的面积比为1:2?若存在,直接写出点F的坐标;若不存在,说明理由.25.(10分)如图,在△ABC中,∠ACB=90°,O是AB上一点,以OA为半径的⊙O与BC相切于点D,与AB交于点E,连接ED并延长交AC的延长线于点F.(1)求证:AE=AF;(2)若DE=3,sin∠BDE=13,求AC的长.26.(12分)如图,抛物线y=x1﹣1x﹣3与x轴交于A、B两点(点A在点B的左侧),直线l与抛物线交于A,C两点,其中点C的横坐标为1.(1)求A,B两点的坐标及直线AC的函数表达式;(1)P是线段AC上的一个动点(P与A,C不重合),过P点作y轴的平行线交抛物线于点E,求△ACE 面积的最大值;(3)若直线PE为抛物线的对称轴,抛物线与y轴交于点D,直线AC与y轴交于点Q,点M为直线PE 上一动点,则在x轴上是否存在一点N,使四边形DMNQ的周长最小?若存在,求出这个最小值及点M,N的坐标;若不存在,请说明理由.(4)点H是抛物线上的动点,在x轴上是否存在点F,使A、C、F、H四个点为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的F点坐标;如果不存在,请说明理由.27.(12分)立定跳远是嘉兴市体育中考的抽考项目之一,某校九年级(1),(2)班准备集体购买某品牌的立定跳远训练鞋.现了解到某网店正好有这种品牌训练鞋的促销活动,其购买的单价y(元/双)与一次性购买的数量x(双)之间满足的函数关系如图所示.当10≤x<60时,求y关于x的函数表达式;九(1),(2)班共购买此品牌鞋子100双,由于某种原因需分两次购买,且一次购买数量多于25双且少于60双;①若两次购买鞋子共花费9200元,求第一次的购买数量;②如何规划两次购买的方案,使所花费用最少,最少多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据二次根式有意义的条件可得a<0,原式变形为﹣(﹣a )1a-21()a a ⎛⎫-⋅- ⎪⎝⎭【详解】 解:∵﹣1a>0, ∴a <0,∴原式=﹣(﹣a )1a- =21()a a ⎛⎫--⋅- ⎪⎝⎭a -.故选C .【点睛】本题考查的是二次根式的化简,主要是判断根号有意义的条件,然后确定值的范围再进行化简,是常考题型.2.D【解析】【分析】等式左边为非负数,说明右边3b 0-≥,由此可得b 的取值范围.【详解】解:3b =-Q ,3b 0∴-≥,解得b 3.≤故选D .【点睛】()0a 0≥≥()a a 0=≥.3.D【解析】【分析】先根据第一象限内的点的坐标特征判断出a 、b 的符号,进而判断点B 所在的象限即可.【详解】∵点A(a ,-b)在第一象限内,∴a>0,-b>0,∴b<0,∴点B((a ,b)在第四象限,故选D .【点睛】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.4.A【解析】【分析】 先在Rt △ABD 中利用勾股定理求出BD=5,在Rt △ABF 中利用勾股定理求出BF=258,则AF=4-258=78.再过G 作GH ∥BF ,交BD 于H ,证明GH=GD ,BH=GH ,设DG=GH=BH=x ,则FG=FD-GD=258-x ,HD=5-x ,由GH ∥FB ,得出FD GD =BD HD ,即可求解. 【详解】解:在Rt △ABD 中,∵∠A=90°,AB=3,AD=4,∴BD=5,在Rt△ABF中,∵∠A=90°,AB=3,AF=4-DF=4-BF,∴BF2=32+(4-BF)2,解得BF=25 8,∴AF=4-258=78.过G作GH∥BF,交BD于H,∴∠FBD=∠GHD,∠BGH=∠FBG,∵FB=FD,∴∠FBD=∠FDB,∴∠FDB=∠GHD,∴GH=GD,∵∠FBG=∠EBC=12∠DBC=12∠ADB=12∠FBD,又∵∠FBG=∠BGH,∠FBG=∠GBH,∴BH=GH,设DG=GH=BH=x,则FG=FD-GD=258-x,HD=5-x,∵GH∥FB,∴FDGD=BDHD,即258x=55-x,解得x=25 13.故选A.【点睛】本题考查了旋转的性质,矩形的性质,等腰三角形的性质,勾股定理,平行线分线段成比例定理,准确作出辅助线是解题关键.5.A【解析】【分析】根据两点直线距离最短可在图中看出三亚-永兴岛之间距离最短.【详解】由图可得,两个点之间距离最短的是三亚-永兴岛.故答案选A.【点睛】本题考查的知识点是两点之间直线距离最短,解题的关键是熟练的掌握两点之间直线距离最短. 6.A【解析】∵DE ⊥AC ,EF ⊥AB ,FD ⊥BC ,∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,∴∠C=∠FDE ,同理可得:∠B=∠DFE ,∠A=DEF ,∴△DEF ∽△CAB ,∴△DEF 与△ABC 的面积之比=2DE AC ⎛⎫ ⎪⎝⎭, 又∵△ABC 为正三角形,∴∠B=∠C=∠A=60°∴△EFD 是等边三角形,∴EF=DE=DF ,又∵DE ⊥AC ,EF ⊥AB ,FD ⊥BC ,∴△AEF ≌△CDE ≌△BFD ,∴BF=AE=CD ,AF=BD=EC ,在Rt △DEC 中,DE=DC×sin ∠,EC=cos ∠C×DC=12DC , 又∵DC+BD=BC=AC=32DC ,∴232DC DE AC DC ==, ∴△DEF 与△ABC的面积之比等于:221:3DE AC ⎛⎫== ⎪⎝⎭⎝⎭ 故选A .点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直角三角形三边间的关系(锐角三角形函数)即可得出对应边DE AC 之比,进而得到面积比.7.D【解析】试题解析:A 、∵4+10+8+6+2=30(人),∴参加本次植树活动共有30人,结论A 正确;B 、∵10>8>6>4>2,∴每人植树量的众数是4棵,结论B 正确;C 、∵共有30个数,第15、16个数为5,∴每人植树量的中位数是5棵,结论C 正确;D 、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),∴每人植树量的平均数约是4.73棵,结论D 不正确.故选D .考点:1.条形统计图;2.加权平均数;3.中位数;4.众数.8.C【解析】【分析】根据几何体的三视图画法先画出物体的正视图再解答.【详解】解:A 、B 、D 三个几何体的主视图是由左上一个正方形、下方两个正方形构成的,而C 选项的几何体是由上方2个正方形、下方2个正方形构成的,故选:C .【点睛】此题重点考查学生对几何体三视图的理解,掌握几何体的主视图是解题的关键.9.D【解析】【分析】将各选项的点逐一代入即可判断.【详解】解:当x=1时,y=-1,故点()1,1不在二次函数2y x =-的图象;当x=2时,y=-4,故点()2,2-和点()2,4不在二次函数2y x =-的图象;当x=-2时,y=-4,故点()2,4--在二次函数2y x =-的图象; 故答案为:D .【点睛】本题考查了判断一个点是否在二次函数图象上,解题的关键是将点代入函数解析式.10.D【解析】【分析】利用概率公式,一一判断即可解决问题.【详解】A、错误.小明还有可能是平;B、错误、小明胜的概率是13,所以输的概率是也是13;C、错误.两人出相同手势的概率为13;D、正确.小明胜的概率和小亮胜的概率一样,概率都是13;故选D.【点睛】本题考查列表法、树状图等知识.用到的知识点为:概率=所求情况数与总情况数之比.11.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2000亿元=2.0×1.故选:C.【点睛】考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.C【解析】分析:作»AC对的圆周角∠APC,如图,利用圆内接四边形的性质得到∠P=40°,然后根据圆周角定理求∠AOC的度数.详解:作»AC对的圆周角∠APC,如图,∵∠P=12∠AOC=12×140°=70° ∵∠P+∠B=180°,∴∠B=180°﹣70°=110°,故选:C .点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.8【解析】试题分析:过B 点作BF AC ⊥于点F ,BF 与AM 交于D 点,根据三角形两边之和小于第三边,可知BD DE +的最小值是线BF 的长,根据勾股定理列出方程组即可求解.过B 点作BF AC ⊥于点F ,BF 与AM 交于D 点,设AF=x ,21CF x =-,222221)2217{(10x BF x BF -+=+=n , 15{8x BF ==,15{8x BF ==-(负值舍去).故BD +DE 的值是8故答案为8考点:轴对称-最短路线问题.14.﹣2,﹣1【解析】试题分析:根据不等式的性质求出不等式的解集,找出不等式的整数解即可.解:1﹣2x <6,移项得:﹣2x <6﹣1,合并同类项得:﹣2x<5,不等式的两边都除以﹣2得:x>﹣,∴不等式的负整数解是﹣2,﹣1,故答案为:﹣2,﹣1.点评:本题主要考查对解一元一次不等式,一元一次不等式的整数解,不等式的性质等知识点的理解和掌握,能根据不等式的性质求出不等式的解集是解此题的关键.15.3【解析】【分析】由折叠前后图形全等,可将阴影部分图形的周长转化为三角形周长.【详解】∵△A'DE与△ADE关于直线DE对称,∴AD=A'D,AE=A'E,C阴影=BC+A'D+A'E+BD+EC= BC+AD+AE+BD+EC =BC+AB+AC=3cm.故答案为3.【点睛】由图形轴对称可以得到对应的边相等、角相等.16.a1.【解析】试题分析:根据同底数幂的除法底数不变指数相减,可得答案.原式=a10-1=a1,故答案为a1.考点:同底数幂的除法.17.12.【解析】【分析】由正六边形的性质得出AB=BC=AF,∠ABC=∠BAF=120°,由等腰三角形的性质得出∠ABF=∠BAC=∠BCA=30°,证出AG=BG,∠CBG=90°,由含30°角的直角三角形的性质得出CG=2BG=2AG,即可得出答案.【详解】∵六边形ABCDEF是正六边形,∴AB=BC=AF,∠ABC=∠BAF=120°,∴∠ABF=∠BAC=∠BCA=30°,∴AG=BG,∠CBG=90°,∴CG=2BG=2AG,∴AGGC=12;故答案为:12.【点睛】本题考查了正六边形的性质、等腰三角形的判定、含30°角的直角三角形的性质等知识;熟练掌握正六边形的性质和含30°角的直角三角形的性质是解题的关键.18.1【解析】【分析】飞机停下时,也就是滑行距离最远时,即在本题中需求出s最大时对应的t值.【详解】由题意,s=﹣1.2t2+60t=﹣1.2(t2﹣50t+61﹣61)=﹣1.2(t﹣1)2+750即当t=1秒时,飞机才能停下来.故答案为1.【点睛】本题考查了二次函数的应用.解题时,利用配方法求得t=2时,s取最大值.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)200,90 (2)图形见解析(3)750人【解析】试题分析:(1)用对于共享单车不了解的人数20除以对于共享单车不了解的人数所占得百分比即可得本次调查人数;用总人数乘以使用过共享单车人数所占的百分比即可得使用过共享单车的人数;(2)用使用过共享单车的总人数减去0~2,4~6,6~8的人数,即可得2~4的人数,再图上画出即可;(3)用3000乘以骑行路程在2~4千米的人数所占的百分比即可得每天的骑行路程在2~4千米的人数.试题解析:(1)20÷10%=200,200×(1-45%-10%)=90 ;(2)90-25-10-5=50,补全条形统计图(3)503000200=750(人)答: 每天的骑行路程在2~4千米的大约750人20.(1)抛物线解析式为y=﹣12x2﹣32x+2;(2)△ABC为直角三角形,理由见解析;(3)当P点坐标为(﹣32,54)时,△PBC周长最小【解析】【分析】(1)设交点式y=a(x+4)(x-1),展开得到-4a=2,然后求出a即可得到抛物线解析式;(2)先利用两点间的距离公式计算出AC2=42+22,BC2=12+22,AB2=25,然后利用勾股定理的逆定理可判断△ABC为直角三角形;(3)抛物线的对称轴为直线x=-32,连接AC交直线x=-32于P点,如图,利用两点之间线段最短得到PB+PC的值最小,则△PBC周长最小,接着利用待定系数法求出直线AC的解析式为y=12x+2,然后进行自变量为-32所对应的函数值即可得到P点坐标.【详解】(1)抛物线的解析式为y=a(x+4)(x﹣1),即y=ax2+3ax﹣4a,∴﹣4a=2,解得a=﹣,∴抛物线解析式为y=﹣12x2﹣32x+2;(2)△ABC为直角三角形.理由如下:当x=0时,y=﹣x2﹣x+2=2,则C(0,2),∵A(﹣4,0),B (1,0),∴AC2=42+22,BC2=12+22,AB2=52=25,∴AC2+BC2=AB2,∴△ABC为直角三角形,∠ACB=90°;(3)抛物线的对称轴为直线x=﹣,连接AC交直线x=﹣于P点,如图,∵PA=PB,∴PB+PC=PA+PC=AC,∴此时PB+PC的值最小,△PBC周长最小,设直线AC的解析式为y=kx+m,把A(﹣4,0),C(0,2)代入得,解得,∴直线AC的解析式为y=x+2,当x=﹣时,y=x+2=,则P(﹣,)∴当P点坐标为(﹣32,54)时,△PBC周长最小.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化解.关于x的一元二次方程即可求得交点横坐标.也考查了待定系数法求二次函数解析式和最短路径问题.21.(1)(20+2x),(40﹣x);(2)每件童装降价20元或10元,平均每天赢利1200元;(3)不可能做到平均每天盈利2000元.【解析】【分析】(1)、根据销售量=原销售量+因价格下降而增加的数量;每件利润=原售价-进价-降价,列式即可;(2)、根据总利润=单件利润×数量,列出方程即可;(3)、根据(2)中的相关关系方程,判断方程是否有实数根即可.【详解】(1)、设每件童装降价x元时,每天可销售20+2x件,每件盈利40-x元,故答案为(20+2x),(40-x);(2)、根据题意可得:(20+2x)(40-x)=1200,解得:121020x x ==,,即每件童装降价10元或20元时,平均每天盈利1200元;(3)、(20+2x)(40-x)=2000, 230x 6000x -+=,∵此方程无解,∴不可能盈利2000元.【点睛】本题主要考查的是一元二次方程的实际应用问题,属于中等难度题型.解决这个问题的关键就是要根据题意列出方程.22.(1)w =200x+8600(0≤x≤6);(2)有3种调运方案,方案一:从B 市调运到C 市0台,D 市6台;从A 市调运到C 市10台,D 市2台;方案二:从B 市调运到C 市1台,D 市5台;从A 市调运到C 市9台,D 市3台;方案三:从B 市调运到C 市2台,D 市4台;从A 市调运到C 市8台,D 市4台;(3)从A 市调运到C 市10台,D 市2台;最低运费是8600元.【解析】【分析】(1)设出B 粮仓运往C 的数量为x 吨,然后根据A ,B 两市的库存量,和C ,D 两市的需求量,分别表示出B 运往C ,D 的数量,再根据总费用=A 运往C 的运费+A 运往D 的运费+B 运往C 的运费+B 运往D的运费,列出函数关系式;(2)由(1)中总费用不超过9000元,然后根据取值范围来得出符合条件的方案;(3)根据(1)中的函数式以及自变量的取值范围即可得出费用最小的方案.【详解】解:(1)设B 粮仓运往C 市粮食x 吨,则B 粮仓运往D 市粮食6﹣x 吨,A 粮仓运往C 市粮食10﹣x 吨,A 粮仓运往D 市粮食12﹣(10﹣x )=x+2吨,总运费w =300x+500(6﹣x )+400(10﹣x )+800(x+2)=200x+8600(0≤x≤6).(2)200x+8600≤9000解得x≤2共有3种调运方案方案一:从B 市调运到C 市0台,D 市6台;从A 市调运到C 市10台,D 市2台;方案二:从B 市调运到C 市1台,D 市5台;从A 市调运到C 市9台,D 市3台;方案三:从B 市调运到C 市2台,D 市4台;从A 市调运到C 市8台,D 市4台;(3)w =200x+8600k >0,所以当x=0时,总运费最低.也就是从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;最低运费是8600元.【点睛】本题重点考查函数模型的构建,考查利用一次函数的有关知识解答实际应用题,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义.23.(1)抛物线的解析式是y=12x2﹣3x;(2)D点的坐标为(4,﹣4);(3)点P的坐标是(345,416--)或(453,164).【解析】试题分析:(1)利用待定系数法求二次函数解析式进而得出答案即可;(2)首先求出直线OB的解析式为y=x,进而将二次函数以一次函数联立求出交点即可;(3)首先求出直线A′B的解析式,进而由△P1OD∽△NOB,得出△P1OD∽△N1OB1,进而求出点P1的坐标,再利用翻折变换的性质得出另一点的坐标.试题解析:(1)∵抛物线y=ax2+bx(a≠0)经过A(6,0)、B(8,8)∴将A与B两点坐标代入得:64883660a ba b+=⎧⎨+=⎩,解得:123ab⎧=⎪⎨⎪=-⎩,∴抛物线的解析式是y=12x2﹣3x.(2)设直线OB的解析式为y=k1x,由点B(8,8),得:8=8k1,解得:k1=1∴直线OB的解析式为y=x,∴直线OB向下平移m个单位长度后的解析式为:y=x﹣m,∴x﹣m=12x2﹣3x,∵抛物线与直线只有一个公共点,∴△=16﹣2m=0,解得:m=8,此时x1=x2=4,y=x2﹣3x=﹣4,∴D点的坐标为(4,﹣4)(3)∵直线OB的解析式为y=x,且A(6,0),∴点A关于直线OB的对称点A′的坐标是(0,6),根据轴对称性质和三线合一性质得出∠A′BO=∠ABO,设直线A′B的解析式为y=k2x+6,过点(8,8),∴8k2+6=8,解得:k2=14,∴直线A′B的解析式是y=164y x=+,∵∠NBO=∠ABO,∠A′BO=∠ABO,∴BA′和BN重合,即点N在直线A′B上,∴设点N(n,164x+),又点N在抛物线y=12x2﹣3x上,∴164x+=12n2﹣3n,解得:n1=﹣32,n2=8(不合题意,舍去)∴N点的坐标为(﹣32,458).如图1,将△NOB沿x轴翻折,得到△N1OB1,则N1(﹣32,-458),B1(8,﹣8),∴O、D、B1都在直线y=﹣x上.∵△P1OD∽△NOB,△NOB≌△N1OB1,∴△P1OD∽△N1OB1,∴11112OP ODON OB==,∴点P1的坐标为(345,416--).将△OP1D沿直线y=﹣x翻折,可得另一个满足条件的点P2(453,164),综上所述,点P的坐标是(345,416--)或(453,164).【点睛】运用了翻折变换的性质以及待定系数法求一次函数和二次函数解析式以及相似三角形的判定与性质等知识,利用翻折变换的性质得出对应点关系是解题关键.24.(3)(﹣4,﹣6);(3-3;②4;(2)F的坐标为(﹣3,03,92).【解析】【分析】(3)先将A(﹣3,0),B(4,0),代入y=ax3+bx+2求出a,b的值即可求出抛物线的表达式,再将E 点坐标代入表达式求出y的值即可;(3)①设直线BD的表达式为y=kx+b,将B(4,0),E(﹣4,﹣6)代入求出k,b的值,再将x=0代入表达式求出D点坐标,当点G与点D重合时,可得G点坐标,GF∥x轴,故可得F的纵坐标,再将y=﹣2代入抛物线的解析式求解可得点F的坐标,再根据m=FG即可得m的值;②设点F与点G的坐标,根据m=FG列出方程化简可得出m的二次函数关系式,再根据二次函数的图象可得m的取值范围;(2)分别分析当点F在x轴的左侧时与右侧时的两种情况,根据△FDP与△FDG的面积比为3:3,故PD:DG=3:3.已知FP∥HD,则FH:HG=3:3.再分别设出F,G点的坐标,再根据两点关系列出等式化简求解即可得F的坐标.【详解】解:(3)将A(﹣3,0),B(4,0),代入y=ax3+bx+2得:4230 16430 a ba b-+=⎧⎨++=⎩,解得:3834ab⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的表达式为y=﹣38x3+34x+2,把E(﹣4,y)代入得:y=﹣6,∴点E的坐标为(﹣4,﹣6).(3)①设直线BD的表达式为y=kx+b,将B(4,0),E(﹣4,﹣6)代入得:4046 k bk b+=⎧⎨-+=-⎩,解得:3k4b3⎧=⎪⎨⎪=-⎩,∴直线BD的表达式为y=34x﹣2.把x=0代入y=34x﹣2得:y=﹣2,∴D(0,﹣2).当点G与点D重合时,G的坐标为(0,﹣2).∵GF∥x轴,∴F的纵坐标为﹣2.将y=﹣2代入抛物线的解析式得:﹣38x3+34x+2=﹣2,解得:x=17+3或x=﹣17+3.∵﹣4<x<4,∴点F的坐标为(﹣17+3,﹣2).∴m=FG=17﹣3.②设点F的坐标为(x,﹣38x3+34x+2),则点G的坐标为(x+m,34(x+m)﹣2),∴﹣38x3+34x+2=34(x+m)﹣2,化简得,m=﹣12x3+4,∵﹣12<0,∴m有最大值,当x=0时,m的最大值为4.(2)当点F在x轴的左侧时,如下图所示:∵△FDP与△FDG的面积比为3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.设F的坐标为(x,﹣38x3+34x+2),则点G的坐标为(﹣3x,﹣32x﹣2),∴﹣38x3+34x+2=﹣32x﹣2,整理得:x3﹣6x﹣36=0,解得:x=﹣3或x=4(舍去),∴点F的坐标为(﹣3,0).当点F在x轴的右侧时,如下图所示:∵△FDP与△FDG的面积比为3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.设F的坐标为(x,﹣38x3+34x+2),则点G的坐标为(3x,32x﹣2),∴﹣38x3+34x+2=32x﹣2,整理得:x3+3x﹣36=0,解得:17﹣3或x=17﹣3(舍去),∴点F17﹣3,31792-).综上所述,点F的坐标为(﹣3,017﹣33179-.【点睛】本题考查了二次函数的应用,解题的关键是熟练的掌握二次函数的应用. 25.(1)证明见解析;(2)1.【解析】【分析】(1)根据切线的性质和平行线的性质解答即可;(2)根据直角三角形的性质和三角函数解答即可.【详解】(1)连接OD,∵OD=OE,∴∠ODE=∠OED.∵直线BC为⊙O的切线,∴OD⊥BC.∴∠ODB=90°.∵∠ACB=90°,∴OD∥AC.∴∠ODE=∠F.∴∠OED=∠F.∴AE=AF;(2)连接AD,∵AE是⊙O的直径,∴∠ADE=90°,∵AE=AF,∴DF=DE=3,∵∠ACB=90°,∴∠DAF+∠F=90°,∠CDF+∠F=90°,∴∠DAF=∠CDF=∠BDE,在Rt△ADF中,DFAF=sin∠DAF=sin∠BDE=13,∴AF=3DF=9,在Rt△CDF中,CFDF=sin∠CDF=sin∠BDE=13,∴CF=13DF=1,∴AC=AF﹣CF=1.【点睛】本题考查了切线的性质,解直角三角形的应用,等腰三角形的判定等,综合性较强,正确添加辅助线、熟练掌握和灵活运用相关知识是解题的关键.26.(1)y=﹣x﹣1;(1)△ACE的面积最大值为278;(3)M(1,﹣1),N(12,0);(4)满足条件的F点坐标为F1(1,0),F1(﹣3,0),F3(7,0),F4(47,0).【解析】【分析】(1)令抛物线y=x 1-1x-3=0,求出x 的值,即可求A ,B 两点的坐标,根据两点式求出直线AC 的函数表达式;(1)设P 点的横坐标为x (-1≤x≤1),求出P 、E 的坐标,用x 表示出线段PE 的长,求出PE 的最大值,进而求出△ACE 的面积最大值;(3)根据D 点关于PE 的对称点为点C (1,-3),点Q (0,-1)点关于x 轴的对称点为M (0,1),则四边形DMNQ 的周长最小,求出直线CM 的解析式为y=-1x+1,进而求出最小值和点M ,N 的坐标; (4)结合图形,分两类进行讨论,①CF 平行x 轴,如图1,此时可以求出F 点两个坐标;②CF 不平行x 轴,如题中的图1,此时可以求出F 点的两个坐标.【详解】解:(1)令y=0,解得11x =-或x 1=3,∴A (﹣1,0),B (3,0);将C 点的横坐标x=1代入y=x 1﹣1x ﹣3得3y =-,∴C (1,-3),∴直线AC 的函数解析式是1y x =--,(1)设P 点的横坐标为x (﹣1≤x≤1),则P 、E 的坐标分别为:P (x ,﹣x ﹣1),E (x ,x 1﹣1x ﹣3),∵P 点在E 点的上方,()()221232PE x x x x x =-----=-++, ∴当12x =时,PE 的最大值9,4= △ACE 的面积最大值()1327[21]228PE PE =--==, (3)D 点关于PE 的对称点为点C (1,﹣3),点Q (0,﹣1)点关于x 轴的对称点为K (0,1), 连接CK 交直线PE 于M 点,交x 轴于N 点,可求直线CK 的解析式为21y x =-+,此时四边形DMNQ 的周长最小,最小值2CM QD =+=,求得M (1,﹣1),102N ⎛⎫ ⎪⎝⎭,. (4)存在如图1,若AF ∥CH ,此时的D 和H 点重合,CD=1,则AF=1,于是可得F 1(1,0),F 1(﹣3,0),如图1,根据点A 和F 的坐标中点和点C 和点H 的坐标中点相同,再根据|HA|=|CF|, 求出()()434747F F +,,,. 综上所述,满足条件的F 点坐标为F 1(1,0),F 1(﹣3,0),()347F ,,()447F ,. 【点睛】属于二次函数综合题,考查二次函数与x 轴的交点坐标,待定系数法求一次函数解析式,二次函数的最值以及平行四边形的性质等,综合性比较强,难度较大.27.(1)y =150﹣x ; (2)①第一批购买数量为30双或40双.②第一次买26双,第二次买74双最省钱,最少9144元.【解析】【分析】(1)若购买x 双(10<x <1),每件的单价=140﹣(购买数量﹣10),依此可得y 关于x 的函数关系式;(2)①设第一批购买x 双,则第二批购买(100﹣x )双,根据购买两批鞋子一共花了9200元列出方程求解即可.分两种情况考虑:当25<x≤40时,则1≤100﹣x <75;当40<x <1时,则40<100﹣x <1. ②把两次的花费与第一次购买的双数用函数表示出来.【详解】。

安徽省宿州市2019-2020学年中考数学考前模拟卷(1)含解析

安徽省宿州市2019-2020学年中考数学考前模拟卷(1)含解析

安徽省宿州市2019-2020学年中考数学考前模拟卷(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.一次函数y=kx+k (k≠0)和反比例函数()0ky k x=≠在同一直角坐标系中的图象大致是( ) A . B . C . D .2.定义运算“※”为:a ※b=()()2200ab b ab b ⎧>⎪⎨-≤⎪⎩,如:1※(﹣2)=﹣1×(﹣2)2=﹣1.则函数y=2※x 的图象大致是( )A .B .C .D .3.最小的正整数是( )A .0B .1C .﹣1D .不存在4.如图,直线a 、b 被c 所截,若a ∥b ,∠1=45°,∠2=65°,则∠3的度数为( )A .110°B .115°C .120°D .130°5.如图,在正五边形ABCDE 中,连接BE ,则∠ABE 的度数为( )A .30°B .36°C .54°D .72°6.在如图的计算程序中,y 与x 之间的函数关系所对应的图象大致是( )A .B .C .D .7.如图所示,在平面直角坐标系中,点A 、B 、C 的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC 沿一确定方向平移得到△A 1B 1C 1,点B 的对应点B 1的坐标是(1,2),则点A 1,C 1的坐标分别是 ( )A .A 1(4,4),C 1(3,2)B .A 1(3,3),C 1(2,1) C .A 1(4,3),C 1(2,3)D .A 1(3,4),C 1(2,2)8.如图,已知BD 是ABC △的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .339.下列四个命题中,真命题是( ) A .相等的圆心角所对的两条弦相等 B .圆既是中心对称图形也是轴对称图形 C .平分弦的直径一定垂直于这条弦D.相切两圆的圆心距等于这两圆的半径之和10.如图,在△ABC中,AC=BC,点D在BC的延长线上,AE∥BD,点ED在AC同侧,若∠CAE=118°,则∠B的大小为()A.31°B.32°C.59°D.62°11.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.宜晶游C.爱我宜昌D.美我宜昌12.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=4,则m+n的值是()A.﹣10 B.10 C.﹣6 D.2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,﹣4),顶点C在x轴的负半轴上,函数y=kx(x<0)的图象经过菱形OABC中心E点,则k的值为_____.14.如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB,你补充的条件是_____.15.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为_____.16.如下图,在直径AB的半圆O中,弦AC、BD相交于点E,EC=2,BE=1.则cos∠BEC=________.17.因式分解:9a2﹣12a+4=______.18.如图,已知直线m∥n,∠1=100°,则∠2的度数为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC中,∠C=90°.作∠BAC的平分线AD,交BC于D;若AB=10cm,CD=4cm,求△ABD的面积.20.(6分)已知点A、B分别是x轴、y轴上的动点,点C、D是某个函数图象上的点,当四边形ABCD (A、B、C、D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形.如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.(1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;(2)若某函数是反比例函数kyx(k>0),它的图象的伴侣正方形为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数解析式;(3)若某函数是二次函数y=ax2+c(a≠0),它的图象的伴侣正方形为ABCD,C、D中的一个点坐标为(3,4).写出伴侣正方形在抛物线上的另一个顶点坐标_____,写出符合题意的其中一条抛物线解析式_____,并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数?_____.(本小题只需直接写出答案)21.(6分)(1)问题发现:如图①,在等边三角形ABC 中,点M 为BC 边上异于B 、C 的一点,以AM 为边作等边三角形AMN ,连接CN ,NC 与AB 的位置关系为 ; (2)深入探究:如图②,在等腰三角形ABC 中,BA=BC ,点M 为BC 边上异于B 、C 的一点,以AM 为边作等腰三角形AMN ,使∠ABC=∠AMN ,AM=MN ,连接CN ,试探究∠ABC 与∠ACN 的数量关系,并说明理由; (3)拓展延伸:如图③,在正方形ADBC 中,AD=AC ,点M 为BC 边上异于B 、C 的一点,以AM 为边作正方形AMEF ,点N 为正方形AMEF 的中点,连接CN ,若BC=10,CN=2,试求EF 的长.22.(8分)如图,在平面直角坐标系中,点1O 的坐标为()4,0-,以点1O 为圆心,8为半径的圆与x 轴交于A ,B 两点,过A 作直线l 与x 轴负方向相交成60o 的角,且交y 轴于C 点,以点()213,5O 为圆心的圆与x 轴相切于点D .(1)求直线l 的解析式;(2)将2O e 以每秒1个单位的速度沿x 轴向左平移,当2O e 第一次与1O e 外切时,求2O e 平移的时间. 23.(8分)在平面直角坐标系xOy 中,点C 是二次函数y =mx 2+4mx +4m +1的图象的顶点,一次函数y=x+4的图象与x轴、y轴分别交于点A、B.(1)请你求出点A、B、C的坐标;(2)若二次函数y=mx2+4mx+4m+1与线段AB恰有一个公共点,求m的取值范围.24.(10分)张老师在黑板上布置了一道题:计算:2(x+1)2﹣(4x﹣5),求当x=12和x=﹣12时的值.小亮和小新展开了下面的讨论,你认为他们两人谁说的对?并说明理由.25.(10分)计算:2-1+20160-3tan30°+|-3|26.(12分)如图,在等腰△ABC中,AB=BC,以AB为直径的⊙O与AC相交于点D,过点D作DE⊥BC 交AB延长线于点E,垂足为点F.(1)证明:DE是⊙O的切线;(2)若BE=4,∠E=30°,求由»BD、线段BE和线段DE所围成图形(阴影部分)的面积,(3)若⊙O的半径r=5,5,求线段EF的长.27.(12分)计算:4sin30°+(12)0﹣|﹣2|+(12)﹣2参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】A 、由反比例函数的图象在一、三象限可知k >0,由一次函数的图象过二、四象限可知k <0,两结论相矛盾,故选项错误;B 、由反比例函数的图象在二、四象限可知k <0,由一次函数的图象与y 轴交点在y 轴的正半轴可知k >0,两结论相矛盾,故选项错误;C 、由反比例函数的图象在二、四象限可知k <0,由一次函数的图象过二、三、四象限可知k <0,两结论一致,故选项正确;D 、由反比例函数的图象在一、三象限可知k >0,由一次函数的图象与y 轴交点在y 轴的负半轴可知k <0,两结论相矛盾,故选项错误, 故选C . 2.C 【解析】 【分析】根据定义运算“※” 为: a ※b=()()2200ab b ab b ⎧>⎪⎨-≤⎪⎩,可得y=2※x 的函数解析式,根据函数解析式,可得函数图象. 【详解】解:y=2※x=()()222020x x x x ⎧>⎪⎨-≤⎪⎩, 当x>0时,图象是y=22x 对称轴右侧的部分; 当x <0时,图象是y=22x -对称轴左侧的部分, 所以C 选项是正确的. 【点睛】本题考查了二次函数的图象,利用定义运算“※”为: a ※b=()()2200ab b ab b ⎧>⎪⎨-≤⎪⎩ 得出分段函数是解题关键. 3.B 【解析】 【分析】根据最小的正整数是1解答即可.最小的正整数是1.故选B.【点睛】本题考查了有理数的认识,关键是根据最小的正整数是1解答.4.A【解析】试题分析:首先根据三角形的外角性质得到∠1+∠2=∠4,然后根据平行线的性质得到∠3=∠4求解.解:根据三角形的外角性质,∴∠1+∠2=∠4=110°,∵a∥b,∴∠3=∠4=110°,故选A.点评:本题考查了平行线的性质以及三角形的外角性质,属于基础题,难度较小.5.B【解析】【分析】在等腰三角形△ABE中,求出∠A的度数即可解决问题.【详解】解:在正五边形ABCDE中,∠A=15×(5-2)×180=108°又知△ABE是等腰三角形,∴AB=AE,∴∠ABE=12(180°-108°)=36°.【点睛】本题主要考查多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题,比较简单.6.A【解析】函数→一次函数的图像及性质7.A【解析】分析:根据B点的变化,确定平移的规律,将△ABC向右移5个单位、上移1个单位,然后确定A、C 平移后的坐标即可.详解:由点B(﹣4,1)的对应点B1的坐标是(1,2)知,需将△ABC向右移5个单位、上移1个单位,则点A(﹣1,3)的对应点A1的坐标为(4,4)、点C(﹣2,1)的对应点C1的坐标为(3,2),故选A.点睛:此题主要考查了平面直角坐标系中的平移,关键是根据已知点的平移变化总结出平移的规律.8.D【解析】【分析】根据ED是BC的垂直平分线、BD是角平分线以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.【详解】∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴故选D.【点睛】本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.9.B【解析】试题解析:A.在同圆或等圆中,相等的圆心角所对的两条弦相等,故A项错误;B. 圆既是中心对称图形也是轴对称图形,正确;C. 平分弦(不是直径)的直径一定垂直于这条弦,故C选项错误;D.外切两圆的圆心距等于这两圆的半径之和,故选项D错误.故选B.10.A【解析】【分析】根据等腰三角形的性质得出∠B=∠CAB,再利用平行线的性质解答即可.【详解】∵在△ABC中,AC=BC,∴∠B=∠CAB,∵AE∥BD,∠CAE=118°,∴∠B+∠CAB+∠CAE=180°,即2∠B=180°−118°,解得:∠B=31°,故选A.【点睛】此题考查等腰三角形的性质,关键是根据等腰三角形的性质得出∠B=∠CAB.11.C【解析】试题分析:(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),因为x﹣y,x+y,a+b,a﹣b四个代数式分别对应爱、我,宜,昌,所以结果呈现的密码信息可能是“爱我宜昌”,故答案选C.考点:因式分解.12.D【解析】【分析】根据“一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=4”,结合根与系数的关系,分别列出关于m和n的一元一次不等式,求出m和n的值,代入m+n即可得到答案.【详解】解:根据题意得:x1+x2=﹣m=2+4,解得:m=﹣6,x1•x2=n=2×4,解得:n=8,m+n=﹣6+8=2,故选D.【点睛】本题考查了根与系数的关系,正确掌握根与系数的关系是解决问题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.8【解析】【分析】根据反比例函数的性质结合点的坐标利用勾股定理解答.【详解】解:菱形OABC的顶点A的坐标为(-3,-4),5,=则点B的横坐标为-5-3=-8,点B的坐标为(-8,-4),点C的坐标为(-5,0)则点E的坐标为(-4,-2),将点E的坐标带入y=kx(x<0)中,得k=8.给答案为:8.【点睛】此题重点考察学生对反比例函数性质的理解,掌握坐标轴点的求法和菱形性质是解题的关键.14.∠A=∠C或∠ADC=∠ABC【解析】【分析】本题证明两三角形全等的三个条件中已经具备一边和一角,所以只要再添加一组对应角或边相等即可.【详解】添加条件可以是:∠A=∠C或∠ADC=∠ABC.∵添加∠A=∠C根据AAS判定△AOD≌△COB,添加∠ADC=∠ABC根据AAS判定△AOD≌△COB,故填空答案:∠A=∠C或∠ADC=∠ABC.【点睛】本题考查了三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解题的关键.15.【解析】【分析】根据旋转的性质知AB=AE,在直角三角形ADE中根据勾股定理求得AE长即可得.【详解】∵四边形ABCD是矩形,∴∠D=90°,BC=AD=3,∵将矩形ABCD绕点A逆时针旋转得到矩形AEFG,∴EF=BC=3,AE=AB,∵DE=EF,∴AD=DE=3,∴,∴,故答案为.【点睛】本题考查矩形的性质和旋转的性质,熟知旋转前后哪些线段是相等的是解题的关键.16.1 2【解析】分析:连接BC,则∠BCE=90°,由余弦的定义求解.详解:连接BC,根据圆周角定理得,∠BCE=90°,所以cos∠BEC=2142 CEBE==.故答案为1 2 .点睛:本题考查了圆周角定理的余弦的定义,求一个锐角的余弦时,需要把这个锐角放到直角三角形中,再根据余弦的定义求解,而圆中直径所对的圆周角是直角.17.(3a﹣1)1【解析】【分析】直接利用完全平方公式分解因式得出答案.【详解】9a1-11a+4=(3a-1)1.故答案是:(3a﹣1)1.【点睛】考查了公式法分解因式,正确运用公式是解题关键.18.80°.【解析】【分析】如图,已知m∥n,根据平行线的性质可得∠1=∠3,再由平角的定义即可求得∠2的度数. 【详解】如图,∵m∥n,∴∠1=∠3,∵∠1=100°,∴∠3=100°,∴∠2=180°﹣100°=80°,故答案为80°.【点睛】本题考查了平行线的性质,熟练运用平行线的性质是解决问题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)答案见解析;(2)220cm【解析】【分析】(1)根据三角形角平分线的定义,即可得到AD;(2)过D作于DE⊥ABE,根据角平分线的性质得到DE=CD=4,由三角形的面积公式即可得到结论. 【详解】解:(1)如图所示,AD即为所求;(2)如图,过D作DE⊥AB于E,∵AD平分∠BAC,∴DE=CD=4,∴S △ABD =12AB·DE=20cm 2. 【点睛】 掌握画角平分线的方法和角平分线的相关定义知识是解答本题的关键. 20.(1)2?2?或;(2)2y x =;(3)(﹣1,3);(7,﹣3);(﹣4,7);(4,1),对应的抛物线分别为272234040y x =+ ;23177y x =+ ;235577y x =+,偶数. 【解析】【分析】(1)设正方形ABCD 的边长为a ,当点A 在x 轴负半轴、点B 在y 轴正半轴上时,可知3a=2,求出a ,(2)作DE 、CF 分别垂直于x 、y 轴,可知ADE ≌△BAO ≌△CBF ,列出m 的等式解出m , (3)本问的抛物线解析式不止一个,求出其中一个.【详解】解:(1)∵正方形ABCD 是一次函数y=x+1图象的其中一个伴侣正方形.当点A 在x 轴正半轴、点B 在y 轴负半轴上时,∴AO=1,BO=1,∴正方形ABCD 的边长为2 ,当点A 在x 轴负半轴、点B 在y 轴正半轴上时,设正方形的边长为a ,得3a=2,∴1a 23= , 所以伴侣正方形的边长为2或123; (2)作DE 、CF 分别垂直于x 、y 轴,知△ADE ≌△BAO ≌△CBF ,此时,m <2,DE=OA=BF=mOB=CF=AE=2﹣m∴OF=BF+OB=2∴C 点坐标为(2﹣m ,2),∴2m=2(2﹣m )解得m=1,反比例函数的解析式为y=2x, (3)根据题意画出图形,如图所示:过C 作CF ⊥x 轴,垂足为F ,过D 作DE ⊥CF ,垂足为E ,∴△CED ≌△DGB ≌△AOB ≌△AFC ,∵C (3,4),即CF=4,OF=3,∴EG=3,DE=4,故DG=DE ﹣GE=DE ﹣OF=4﹣3=1,则D 坐标为(﹣1,3);设过D 与C 的抛物线的解析式为:y=ax 2+b ,把D 和C 的坐标代入得:394a b a b +=⎧⎨+=⎩ , 解得18238a b ⎧=⎪⎪⎨⎪=⎪⎩, ∴满足题意的抛物线的解析式为y=18x 2+238; 同理可得D 的坐标可以为:(7,﹣3);(﹣4,7);(4,1),;对应的抛物线分别为272234040y x =+ ;23177y x =+ ;235577y x =+, 所求的任何抛物线的伴侣正方形个数为偶数.【点睛】本题考查了二次函数的综合题.灵活运用相关知识是解题关键.21.(1)NC ∥AB ;理由见解析;(2)∠ABC=∠ACN ;理由见解析;(3)41【解析】【分析】(1)根据△ABC ,△AMN 为等边三角形,得到AB=AC ,AM=AN 且∠BAC=∠MAN=60°从而得到∠BAC-∠CAM=∠MAN-∠CAM ,即∠BAM=∠CAN ,证明△BAM ≌△CAN ,即可得到BM=CN . (2)根据△ABC ,△AMN 为等腰三角形,得到AB :BC=1:1且∠ABC=∠AMN ,根据相似三角形的性质得到AB AC AM AN=,利用等腰三角形的性质得到∠BAC=∠MAN ,根据相似三角形的性质即可得到结论; (3)如图3,连接AB ,AN ,根据正方形的性质得到∠ABC=∠BAC=45°,∠MAN=45°,根据相似三角形的性质得出BM AB CN AC =,得到BM=2,CM=8,再根据勾股定理即可得到答案. 【详解】(1)NC ∥AB ,理由如下:∵△ABC 与△MN 是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN =60°,∴∠BAM=∠CAN ,在△ABM 与△ACN 中,AB AC BAM CAN AM AN =⎧⎪∠=∠⎨⎪=⎩,∴△ABM ≌△ACN (SAS ),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°, ∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN ∥AB ;(2)∠ABC=∠ACN ,理由如下:∵AB AM BC MN==1且∠ABC=∠AMN , ∴△ABC ~△AMN ∴AB AC AM AN=, ∵AB=BC , ∴∠BAC=12(180°﹣∠ABC ), ∵AM=MN ∴∠MAN=12(180°﹣∠AMN ), ∵∠ABC=∠AMN ,∴∠BAC=∠MAN ,∴∠BAM=∠CAN ,∴△ABM ~△ACN ,∴∠ABC=∠ACN ;(3)如图3,连接AB ,AN ,∵四边形ADBC ,AMEF 为正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC ﹣∠MAC=∠MAN ﹣∠MAC即∠BAM=∠CAN , ∵2AB AM BC AN ==, ∴AB AC AM AN =, ∴△ABM ~△ACN∴BM AB CN AC=, ∴CN AC BM AB ==cos45°=22, ∴222BM =, ∴BM=2,∴CM=BC ﹣BM=8,在Rt △AMC ,AM=2222108241AC MC +=+=,∴EF=AM=241.【点睛】本题是四边形综合题目,考查了正方形的性质、等边三角形的性质、等腰三角形的性质、全等三角形的性质定理和判定定理、相似三角形的性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键.22.(1)直线l 的解析式为:3123y x =-(2)2O e 平移的时间为5秒.【解析】【分析】(1)求直线的解析式,可以先求出A 、C 两点的坐标,就可以根据待定系数法求出函数的解析式.(2)设⊙O2平移t秒后到⊙O3处与⊙O1第一次外切于点P,⊙O3与x轴相切于D1点,连接O1O3,O3D1.在直角△O1O3D1中,根据勾股定理,就可以求出O1D1,进而求出D1D的长,得到平移的时间.【详解】(1)由题意得OA4812=-+=,∴A点坐标为()12,0-.∵在RtΔAOC中,OAC60∠=︒,OC OAtan OAC12tan60123∠==⨯︒=,∴C点的坐标为()0,123-.设直线l的解析式为y kx b=+,由l过A、C两点,得123012bk b⎧-=⎪⎨=-+⎪⎩,解得1233bk⎧=-⎪⎨=-⎪⎩,∴直线l的解析式为:y3x123=--.(2)如图,设2Oe平移t秒后到3Oe处与1Oe第一次外切于点P,3Oe与x轴相切于1D点,连接13O O,31O D.则1313O O O P PO8513=+=+=,∵31O D x⊥轴,∴31O D5=,在131RtΔO O D中,2225111331O D O O O D13512=-=-=. ∵11O D O O OD41317=+=+=,∴1111D D O D O D17125=-=-=,∴5t51==(秒),∴2O e 平移的时间为5秒.【点睛】本题综合了待定系数法求函数解析式,以及圆的位置关系,其中两圆相切时的辅助线的作法是经常用到的.23.(1)A (-4,0)和B (0,4);(2)304m <<或104m -≤< 【解析】【分析】(1)抛物线解析式配方后,确定出顶点C 坐标,对于一次函数解析式,分别令x 与y 为0求出对应y 与x 的值,确定出A 与B 坐标;(2)分m >0与m <0两种情况求出m 的范围即可.【详解】解:(1)y =mx 2+4mx +4m +1=m (x +2)2+1,∴抛物线顶点坐标为C (-2,1),对于y =x +4,令x =0,得到y =4;y =0,得到x =-4,直线y =x +4与x 轴、y 轴交点坐标分别为A (-4,0)和B (0,4);(2)把x =-4代入抛物线解析式得:y =4m +1,①当m >0时,y =4m +1>0,说明抛物线的对称轴左侧总与线段AB 有交点,∴只需要抛物线右侧与线段AB 无交点即可,如图1所示,只需要当x =0时,抛物线的函数值y =4m +1<4,即34m <, 则当304m <<时,抛物线与线段AB 只有一个交点; ②当m <0时,如图2所示,只需y=4m+1≥0即可,解得:10 4m-≤<,综上,当34m<<或14m-≤<时,抛物线与线段AB只有一个交点.【点睛】此题考查了抛物线与x轴的交点,二次函数的性质,以及二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解本题的关键.24.小亮说的对,理由见解析【解析】【分析】先根据完全平方公式和去括号法则计算,再合并同类项,最后代入计算即可求解.【详解】2(x+1)2﹣(4x﹣5)=2x2+4x+2﹣4x+5,=2x2+7,当x=12时,原式=12+7=712;当x=﹣12时,原式=12+7=712.故小亮说的对.【点睛】本题考查完全平方公式和去括号,解题的关键是明确完全平方公式和去括号的计算方法.25.3 2【解析】【分析】原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值化简,最后一项利用绝对值的代数意义化简,即可得到结果;【详解】原式=13+133 2-⨯+=1+133 2-+=32.【点睛】此题考查实数的混合运算.此题难度不大,注意解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、特殊角的三角函数值、绝对值等考点的运算.26.(1)见解析(2)8833π-(3)83【解析】分析:(1)连接BD、OD,由AB=BC及∠ADB=90°知AD=CD,根据AO=OB知OD是△ABC的中位线,据此知OD∥BC,结合DE⊥BC即可得证;(2)设⊙O的半径为x,则OB=OD=x,在Rt△ODE中由sinE=12ODOE=求得x的值,再根据S阴影=S△ODE-S扇形ODB计算可得答案.(3)先证Rt△DFB∽Rt△DCB得BF BDBD BC=,据此求得BF的长,再证△EFB∽△EDO得EB BFEO OD=,据此求得EB的长,继而由勾股定理可得答案.详解:(1)如图,连接BD、OD,∵AB是⊙O的直径,∴∠BDA=90°,∵BA=BC,∴AD=CD,又∵AO=OB,∴OD∥BC,∵DE⊥BC,∴OD⊥DE,∴DE是⊙O的切线;(2)设⊙O 的半径为x ,则OB=OD=x ,在Rt △ODE 中,OE=4+x ,∠E=30°, ∴142x x =+, 解得:x=4,∴S △ODE =12×4× S 扇形ODB =260?·483603ππ=,则S 阴影=S △ODE -S 扇形ODB -83π;(3)在Rt △ABD 中, ∵DE ⊥BC ,∴Rt △DFB ∽Rt △DCB ,∴BF BDBD BC == ∴BF=2,∵OD ∥BC ,∴△EFB ∽△EDO , ∴EB BF EO OD =,即255EB EB =+, ∴EB=103,∴83. 点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、中位线定理、三角函数的应用及相似三角形的判定与性质等知识点.27.1.【解析】【分析】按照实数的运算顺序进行运算即可.【详解】 原式14124,2=⨯+-+ =1.【点睛】本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及绝对值,熟练掌握各个知识点是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽省宿州市泗县中考直升数学试卷一、选择题.1.计算﹣3+(﹣1)的结果是()A.2 B.﹣2 C.4 D.﹣42.下列运算正确的是()A.(a2)5=a7B.a2•a4=a6C.3a2b﹣3ab2=0 D.()2=3.2015年初,一列CRH5型高速车组进行了“300000公里正线运营考核”标志着中国高速快车从“中国制造”到“中国创造”的飞跃,将300000用科学记数法表示为()A.3×106B.3×105C.0.3×106D.30×1044.如图,在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是()A.8 B.10 C.12 D.145.如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为()A.105°B.110°C.115°D.120°6.某市举行创建文明城市志愿活动,我校初二(1)班、初二(2)班、初二(3)各班均有2名同学志愿者报名参加,现从6名同学中随机选一名志愿者,则被选中的同学恰好是初二(3)班同学的概率是()A.B.C.D.7.化简﹣的结果是()A. B. C. D.8.如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD.若∠A=30°,⊙O的半径为2,则图中阴影部分的面积为()A.﹣B.﹣2C.π﹣D.﹣9.若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解是()A.x1=0 x2=4 B.x1=1 x2=5 C.x1=1 x2=﹣5 D.x1=﹣1 x2=510.如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=4,设AB=x,AD=y,则x2+(y﹣4)2的值为()A.4 B.8 C.12 D.16二、填空题.11.分解因式:x3﹣6x2+9x= .12.如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为.13.关于x的一元二次方程ax2+bx+=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a= ,b= .14.如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD于点E、F,CE=2,连接CF,以下结论:①△ABF≌△CBF;②点E到AB的距离是2;③tan∠DCF=;④△ABF的面积为.其中一定成立的是(把所有正确结论的序号都填在横线上).三、解答题:15.计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.16.解方程:.17.国务院办公厅在2015年3月16日发布了《中国足球发展改革总体方案》,这是中国足球史上的重大改革,为进一步普及足球知识,传播足球文化,我市某区在中小学举行了“足球在身边”知识竞赛,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:(1)获得一等奖的学生人数;(2)在本次知识竞赛活动中,A,B,C,D四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛,请用画树状图或列表的方法求恰好选到A,B两所学校的概率.18.如图,在△ABC中,AB=AC,分别以B、C为圆心,BC长为半径在BC下方画弧.设两弧交于点D,与AB、AC的延长线分别交于点E、F,连接AD、BD、CD(1)求证:AD平分∠BAC;(2)若BC=6,∠BAC=50°,求弧DE、弧DF的长度之和(结果保留π).19.如图,已知函数y=(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E(1)若AC=OD,求a、b的值;(2)若BC∥AE,求BC的长.20.如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B 处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).21.(12分)如图,已知AD是△ABC的角平分线,⊙O经过A、B、D三点.过点B作BE∥AD,交⊙O于点E,连接ED(1)求证:ED∥AC;(2)若BD=2CD,设△EBD的面积为S1,△ADC的面积为S2,且S12﹣16S2+4=0,求△ABC的面积.22.如图,在平面直角坐标系中,抛物线w的表达式为y=﹣,抛物线w与X轴交于A、B两点(B在A右侧)与y轴交于点C,它的对称轴与x轴交于点D,直线L经过C、D两点.(1)求A、B两点的坐标及直线L的函数表达式;(2)将抛物线W沿x轴向右平移得到抛物线W′,设抛物线W′的对称轴与直线L交于点F,当△ACF是直角三角形时,求点F的坐标,并直接写出抛物线W′的函数表达式.23.我们把两条中线互相垂直的三角形称为“称为中垂三角形”,例如图1,图2,图3中,AF,BE是△ABC 的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均称为“中垂三角形”,设BC=a,AC=b,AB=c.特例探索(1)如图1,当∠ABE=45°,c=2时,a= ,b= .如图2,当∠ABE=30°,c=4时,a= ,b= .归纳证明(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式.拓展应用(3)如图4,在▱ABCD中,点E、F、G分别是AD,BC,CD的中点,BE⊥EG,AD=2,AB=3,求AF的长.2016年安徽省宿州市泗县中考直升数学试卷参考答案与试题解析一、选择题.1.计算﹣3+(﹣1)的结果是()A.2 B.﹣2 C.4 D.﹣4【考点】有理数的加法.【分析】根据同号两数相加的法则进行计算即可.【解答】解:﹣3+(﹣1)=﹣(3+1)=﹣4,故选:D.【点评】本题主要考查了有理数的加法法则,解决本题的关键是熟记同号两数相加,取相同的符号,并把绝对值相加.2.下列运算正确的是()A.(a2)5=a7B.a2•a4=a6C.3a2b﹣3ab2=0 D.()2=【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据幂的乘方、同底数幂的乘法和同类项合并计算即可.【解答】解:A、(a2)5=a10,错误;B、a2•a4=a6,正确;C、3a2b与3ab2不能合并,错误;D、()2=,错误;故选B.【点评】此题考查幂的乘方、同底数幂的乘法和同类项合并,关键是根据法则进行计算.3.2015年初,一列CRH5型高速车组进行了“300000公里正线运营考核”标志着中国高速快车从“中国制造”到“中国创造”的飞跃,将300000用科学记数法表示为()A.3×106B.3×105C.0.3×106D.30×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将300000用科学记数法表示为:3×105.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.如图,在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是()A.8 B.10 C.12 D.14【考点】三角形中位线定理.【分析】首先根据点D、E分别是边AB,BC的中点,可得DE是三角形BC的中位线,然后根据三角形中位线定理,可得DE=AC,最后根据三角形周长的含义,判断出△ABC的周长和△DBE的周长的关系,再结合△DBE的周长是6,即可求出△ABC的周长是多少.【解答】解:∵点D、E分别是边AB,BC的中点,∴DE是三角形BC的中位线,AB=2BD,BC=2BE,∴DE∥BC且DE=AC,又∵AB=2BD,BC=2BE,∴AB+BC+AC=2(BD+BE+DE),即△ABC的周长是△DBE的周长的2倍,∵△DBE的周长是6,∴△ABC的周长是:6×2=12.故选:C.【点评】(1)此题主要考查了三角形中位线定理的应用,要熟练掌握,解答此题的关键是要明确:三角形的中位线平行于第三边,并且等于第三边的一半.(2)此题还考查了三角形的周长和含义的求法,要熟练掌握.5.如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为()A.105°B.110°C.115°D.120°【考点】平行线的性质.【分析】如图,首先证明∠AMO=∠2;然后运用对顶角的性质求出∠ANM=55°,借助三角形外角的性质求出∠AMO即可解决问题.【解答】解:如图,∵直线a∥b,∴∠AMO=∠2;∵∠ANM=∠1,而∠1=55°,∴∠ANM=55°,∴∠AMO=∠A+∠ANM=60°+55°=115°,∴∠2=∠AMO=115°.故选C.【点评】该题主要考查了平行线的性质、对顶角的性质、三角形的外角性质等几何知识点及其应用问题;牢固掌握平行线的性质、对顶角的性质等几何知识点是灵活运用、解题的基础.6.某市举行创建文明城市志愿活动,我校初二(1)班、初二(2)班、初二(3)各班均有2名同学志愿者报名参加,现从6名同学中随机选一名志愿者,则被选中的同学恰好是初二(3)班同学的概率是()A.B.C.D.【考点】概率公式.【分析】用初二(3)班的学生数除以所有报名学生数的和即可求得答案.【解答】解:∵共有6名同学,初二(3)班有2人,∴P(初二3班)==,故选:B.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.7.化简﹣的结果是()A. B. C. D.【考点】分式的加减法.【专题】计算题.【分析】原式第一项约分后,利用同分母分式的减法法则计算,即可得到结果.【解答】解:原式=﹣=﹣==,故选A.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.8.如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD.若∠A=30°,⊙O的半径为2,则图中阴影部分的面积为()A.﹣B.﹣2C.π﹣D.﹣【考点】扇形面积的计算;切线的性质.【分析】过O点作OE⊥CD于E,首先根据切线的性质和直角三角形的性质可得∠AOB=60°,再根据平角的定义和三角形外角的性质可得∠COD=120°,∠OCD=∠ODC=30°,根据含30°的直角三角形的性质可得OE,CD的长,再根据阴影部分的面积=扇形OCD的面积﹣三角形OCD的面积,列式计算即可求解.【解答】解:过O点作OE⊥CD于E,∵AB为⊙O的切线,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∴∠COD=120°,∠OCD=∠ODC=30°,∵⊙O的半径为2,∴OE=1,CE=DE=,∴CD=2,∴图中阴影部分的面积为:﹣×2×1=π﹣.故选:A.【点评】考查了扇形面积的计算,切线的性质,本题关键是理解阴影部分的面积=扇形OCD的面积﹣三角形OCD的面积.9.若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解是()A.x1=0 x2=4 B.x1=1 x2=5 C.x1=1 x2=﹣5 D.x1=﹣1 x2=5【考点】抛物线与x轴的交点.【分析】根据对称轴方程﹣=2,得b=﹣4,解x2﹣4x=5即可.【解答】解:∵对称轴是经过点(2,0)且平行于y轴的直线,∴﹣=2,解得:b=﹣4,解方程x2﹣4x=5,解得x1=﹣1,x2=5,故选:D.【点评】本题主要考查二次函数的对称轴和二次函数与一元二次方程的关系,解题的关键是求出b的值,难度不大.10.如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=4,设AB=x,AD=y,则x2+(y﹣4)2的值为()A.4 B.8 C.12 D.16【考点】矩形的性质;直角三角形斜边上的中线;勾股定理.【分析】根据矩形的性质得到CD=AB=x,BC=AD=y,然后利用直角△BDE的斜边上的中线等于斜边的一半得到:BF=DF=EF=4,则在直角△DCF中,利用勾股定理求得x2+(y﹣4)2=DF2.【解答】解:∵四边形ABCD是矩形,AB=x,AD=y,∴CD=AB=x,BC=AD=y,∠BCD=90°.又∵BD⊥DE,点F是BE的中点,DF=4,∴BF=DF=EF=4.∴CF=4﹣BC=4﹣y.∴在直角△DCF中,DC2+CF2=DF2,即x2+(4﹣y)2=42=16,∴x2+(y﹣4)2=x2+(4﹣y)2=16.故选:D.【点评】本题考查了勾股定理,直角三角形斜边上的中线以及矩形的性质.根据“直角△BDE的斜边上的中线等于斜边的一半”求得BF的长度是解题的突破口.二、填空题.11.分解因式:x3﹣6x2+9x= x(x﹣3)2.【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】先提取公因式x,再对余下的多项式利用完全平方公式继续分解.【解答】解:x3﹣6x2+9x,=x(x2﹣6x+9),=x(x﹣3)2.故答案为:x(x﹣3)2.【点评】本题考查提公因式法分解因式和利用完全平方公式分解因式,关键在于需要进行二次分解因式.12.如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为110°.【考点】圆周角定理.【分析】根据圆周角定理求得∠BOC=100°,进而根据三角形的外角的性质求得∠BDC=70°,然后根据邻补角求得∠ADC的度数.【解答】解:∵∠A=50°,∴∠BOC=2∠A=100°,∵∠B=30°,∠BOC=∠B+∠BDC,∴∠BDC=∠BOC﹣∠B=100°﹣30°=70°,∴∠ADC=180°﹣∠BDC=110°,故答案为110°.【点评】本题考查了圆心角和圆周角的关系及三角形外角的性质,圆心角和圆周角的关系是解题的关键.13.关于x的一元二次方程ax2+bx+=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a= 4 ,b= 2 .【考点】根的判别式.【专题】开放型.【分析】由于关于x的一元二次方程ax2+bx+=0有两个相等的实数根,得到a=b2,找一组满足条件的数据即可.【解答】关于x的一元二次方程ax2+bx+=0有两个相等的实数根,∴△=b2﹣4×a=b2﹣a=0,∴a=b2,当b=2时,a=4,故b=2,a=4时满足条件.故答案为:4,2.【点评】本题主要考查了一元二次方程根的判别式,熟练掌握判别式的意义是解题的关键.14.如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD于点E、F,CE=2,连接CF,以下结论:①△ABF≌△CBF;②点E到AB的距离是2;③tan∠DCF=;④△ABF的面积为.其中一定成立的是①②③(把所有正确结论的序号都填在横线上).【考点】四边形综合题.【专题】压轴题.【分析】利用SAS证明△ABF与△CBF全等,得出①正确,根据含30°角的直角三角形的性质得出点E到AB的距离是2,得出②正确,同时得出;△ABF的面积为得出④错误,得出tan∠DCF=,得出③正确.【解答】解:∵菱形ABCD,∴AB=BC=6,∵∠DAB=60°,∴AB=AD=DB,∠ABD=∠DBC=60°,在△ABF与△CBF中,,∴△ABF≌△CBF(SAS),∴①正确;过点E作EG⊥AB,过点F作MH⊥CD,MH⊥AB,如图:∵CE=2,BC=6,∠ABC=120°,∴BE=6﹣2=4,∵EG⊥AB,∴EG=,∴点E到AB的距离是2,故②正确;∵BE=4,EC=2,∴S△BFE:S△FEC=4:2=2:1,∴S△ABF:S△FBE=3:2,∴△ABF的面积为=,故④错误;∵,∴=,∵,∴FM=,∴DM=,∴CM=DC﹣DM=6﹣,∴tan∠DCF=,故③正确;故答案为:①②③【点评】此题考查了四边形综合题,关键是根据菱形的性质、等边三角形的判定与性质以及全等三角形的判定与性质分析.此题难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.三、解答题:15.计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=4﹣1+2﹣+4×=5+.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.解方程:.【考点】解分式方程.【分析】观察可得最简公分母是2(2x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘2(2x﹣1),得2=2x﹣1﹣3,解得x=3.检验:把x=3代入2(2x﹣1)≠0.所以原方程的解为:x=3.【点评】本题考查了解分式方程,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.17.国务院办公厅在2015年3月16日发布了《中国足球发展改革总体方案》,这是中国足球史上的重大改革,为进一步普及足球知识,传播足球文化,我市某区在中小学举行了“足球在身边”知识竞赛,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:(1)获得一等奖的学生人数;(2)在本次知识竞赛活动中,A,B,C,D四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛,请用画树状图或列表的方法求恰好选到A,B两所学校的概率.【考点】列表法与树状图法;扇形统计图.【分析】(1)根据三等奖所在扇形的圆心角的度数求得总人数,然后乘以一等奖所占的百分比即可求得一等奖的学生数;(2)列表将所有等可能的结果列举出来,利用概率公式求解即可.【解答】解:(1)∵三等奖所在扇形的圆心角为90°,∴三等奖所占的百分比为25%,∵三等奖为50人,∴总人数为50÷25%=200人,∴一等奖的学生人数为200×(1﹣20%﹣25%﹣40%)=30人;(2)列表:A B C DA AB AC ADB BA BC BDC CA CB CDD DA DB DC∵共有12种等可能的结果,恰好选中A、B的有2种,∴P(选中A、B)==.【点评】本题考查了列表与树状图的知识,解题的关键是通过列表将所有等可能的结果列举出来,然后利用概率公式求解,难度不大.18.如图,在△ABC中,AB=AC,分别以B、C为圆心,BC长为半径在BC下方画弧.设两弧交于点D,与AB、AC的延长线分别交于点E、F,连接AD、BD、CD(1)求证:AD平分∠BAC;(2)若BC=6,∠BAC=50°,求弧DE、弧DF的长度之和(结果保留π).【考点】全等三角形的判定与性质;等边三角形的判定与性质;弧长的计算.【专题】证明题.【分析】(1)根据题意得出BD=CD=BC,由SSS证明△ABD≌△ACD,得出∠BAD=∠CAD即可;(2)由等腰三角形的性质得出∠ABC=∠ACB=65°,由等边三角形的性质得出∠DBC=∠DCB=60°,再由平角的定义求出∠DBE=∠DCF=55°,然后根据弧长公式求出、的长度,即可得出结果.【解答】(1)证明:根据题意得:BD=CD=BC,在△ABD和△ACD中,,∴△ABD≌△ACD(SSS).∴∠BAD=∠CAD,即AD平分∠BAC;(2)解:∵AB=AC,∠BAC=50°,∴∠ABC=∠ACB=65°,∵BD=CD=BC,∴△BDC为等边三角形,∴∠DBC=∠DCB=60°,∴∠DBE=∠DCF=55°,∵BC=6,∴BD=CD=6,∴的长度=的长度==;∴、的长度之和为+=.【点评】本题考查了全等三角形的判定与性质、等边三角形的判定与性质、弧长的计算;熟练掌握全等三角形和等边三角形的判定与性质,并能进行推理计算是解决问题的关键.19.如图,已知函数y=(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E(1)若AC=OD,求a、b的值;(2)若BC∥AE,求BC的长.【考点】反比例函数与一次函数的交点问题.【分析】(1)首先利用反比例函数图象上点的坐标性质得出k的值,再得出A、D点坐标,进而求出a,b 的值;(2)设A点的坐标为:(m,),则C点的坐标为:(m,0),得出tan∠ADF==,tan∠AEC==,进而求出m的值,即可得出答案.【解答】解;(1)∵点B(2,2)在函数y=(x>0)的图象上,∴k=4,则y=,∵BD⊥y轴,∴D点的坐标为:(0,2),OD=2,∵AC⊥x轴,AC=OD,∴AC=3,即A点的纵坐标为:3,∵点A在y=的图象上,∴A点的坐标为:(,3),∵一次函数y=ax+b的图象经过点A、D,∴,解得:;(2)设A点的坐标为:(m,),则C点的坐标为:(m,0),∵BD∥CE,且BC∥DE,∴四边形BCED为平行四边形,∴CE=BD=2,∵BD∥CE,∴∠ADF=∠AEC,∴在Rt△AFD中,tan∠ADF==,在Rt△ACE中,tan∠AEC==,∴=,解得:m=1,∴C点的坐标为:(1,0),则BC=.【点评】此题主要考查了反比例函数与一次函数的交点以及锐角三角函数关系等知识,得出A,D点坐标是解题关键.20.如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).【考点】解直角三角形的应用﹣方向角问题.【分析】过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB的平行线,两线交于点F,则∠E=∠F=90°,拦截点D处到公路的距离DA=BE+CF.解Rt△BCE,求出BE=BC=×1000=500米;解Rt△CDF,求出CF=CD=500米,则DA=BE+CF=(500+500)米.【解答】解:如图,过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB 的平行线,两线交于点F,则∠E=∠F=90°,拦截点D处到公路的距离DA=BE+CF.在Rt△BCE中,∵∠E=90°,∠CBE=60°,∴∠BCE=30°,∴BE=BC=×1000=500米;在Rt△CDF中,∵∠F=90°,∠DCF=45°,CD=BC=1000米,∴CF=CD=500米,∴DA=BE+CF=(500+500)米,故拦截点D处到公路的距离是(500+500)米.【点评】本题考查了解直角三角形的应用﹣方向角问题,锐角三角函数的定义,正确理解方向角的定义,进而作出辅助线构造直角三角形是解题的关键.21.如图,已知AD是△ABC的角平分线,⊙O经过A、B、D三点.过点B作BE∥AD,交⊙O于点E,连接ED(1)求证:ED∥AC;(2)若BD=2CD,设△EBD的面积为S1,△ADC的面积为S2,且S12﹣16S2+4=0,求△ABC的面积.【考点】相似三角形的判定与性质;解一元二次方程﹣配方法;圆周角定理.【分析】(1)由AD是△ABC的角平分线,得到∠BAD=∠DAC,由于∠E=∠BAD,等量代换得到∠E=∠DAC,根据平行线的性质和判定即可得到结果;(2)由BE∥AD,得到∠EBD=∠ADC,由于∠E=∠DAC,得到△EBD∽△ADC,根据相似三角形的性质相似三角形面积的比等于相似比的平方即可得到结果.【解答】(1)证明:∵AD是△ABC的角平分线,∴∠BAD=∠DAC,∵∠E=∠BAD,∴∠E=∠DAC,∵BE∥AD,∴∠E=∠EDA,∴∠EDA=∠DAC,∴ED∥AC;(2)解:∵BE∥AD,∴∠EBD=∠ADC,∵∠E=∠DAC,∴△EBD∽△ADC,且相似比k=,∴=k2=4,即s1=4s2,∵﹣16S2+4=0,∴16﹣16S2+4=0,即=0,∴S2=,∵====3,∴S△ABC=.【点评】本题考查了相似三角形的判定和性质,角平分线的性质,平行线的性质,记住相似三角形面积的比等于相似比的平方是解题的关键.22.如图,在平面直角坐标系中,抛物线w的表达式为y=﹣,抛物线w与X轴交于A、B两点(B在A右侧)与y轴交于点C,它的对称轴与x轴交于点D,直线L经过C、D两点.(1)求A、B两点的坐标及直线L的函数表达式;(2)将抛物线W沿x轴向右平移得到抛物线W′,设抛物线W′的对称轴与直线L交于点F,当△ACF是直角三角形时,求点F的坐标,并直接写出抛物线W′的函数表达式.【考点】抛物线与x轴的交点;二次函数图象与几何变换.【分析】(1)根据自变量与函数值对应关系,当函数值为零时,可得A、B点坐标,当自变量为零时,可得C点坐标,根据对称轴公式,可得D点坐标,根据待定系数法,可得l的解析式;(2)根据余角性质,可得∠1与∠3的关系,根据正切的定义,可得关于F点的横坐标的方程,根据解方程,可得F点坐标,平移后的对称轴,根据平移后的对称轴,可得平移后的函数解析式.【解答】解:(1)当y=0时,﹣ x2+x+4=0,解得x1=﹣3,x2=7,∴点A坐标为(﹣3,0),点B的坐标为(7,0).∵﹣=2,∴抛物线w的对称轴为直线x=2,∴点D坐标为(2,0).当x=0时,y=4,∴点C的坐标为(0,4).设直线l的表达式为y=kx+b,,解得,∴直线l的解析式为y=﹣2x+4;(2)∵抛物线w向右平移,只有一种情况符合要求,即∠FAC=90°,如图.此时抛物线w′的对称轴与x轴的交点为G,∵∠1+∠2=90°∠2+∠3=90°,∴∠1=∠3,∴tan∠1=tan∠3,∴=.设点F的坐标为(x F,﹣2x F+4),∴=,解得x F=5,﹣2x F+4=﹣6,∴点F的坐标为(5,﹣6),此时抛物线w′的函数表达式为y=﹣x2+x;【点评】本题考查了抛物线与x轴的交点问题,(1)利用了自变量与函数值的对应关系,待定系数法求函数解析式;(2)利用了余角的性质,正切函数的性质,利用等角的正切函数值相等得出关于F点横坐标的方程是解题关键23.我们把两条中线互相垂直的三角形称为“称为中垂三角形”,例如图1,图2,图3中,AF,BE是△ABC 的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均称为“中垂三角形”,设BC=a,AC=b,AB=c.特例探索(1)如图1,当∠ABE=45°,c=2时,a= 2,b= 2.如图2,当∠ABE=30°,c=4时,a= 2,b= 2.归纳证明(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式.拓展应用(3)如图4,在▱ABCD中,点E、F、G分别是AD,BC,CD的中点,BE⊥EG,AD=2,AB=3,求AF的长.【考点】相似形综合题.【专题】压轴题.【分析】(1)由等腰直角三角形的性质得到AP=BP=AB=2,根据三角形中位线的性质,得到EF∥AB,EF=AB=,再由勾股定理得到结果;(2)连接EF,设∠ABP=α,类比着(1)即可证得结论.(3)连接AC交EF于H,设BE与AF的交点为P,由点E、G分别是AD,CD的中点,得到EG是△ACD的中位线于是证出BE⊥AC,由四边形ABCD是平行四边形,得到AD∥BC,AD=BC=2,∠EAH=∠FCH根据E,F 分别是AD,BC的中点,得到AE=BF=CF=AD=,证出四边形ABFE是平行四边形,证得EH=FH,推出EH,AH分别是△AFE的中线,由(2)的结论得即可得到结果.【解答】解:(1)∵AF⊥BE,∠ABE=45°,∴AP=BP=AB=2,∵AF,BE是△ABC的中线,∴EF∥AB,EF=AB=,∴∠PFE=∠PEF=45°,∴PE=PF=1,在Rt△FPB和Rt△PEA中,AE=BF==,∴AC=BC=2,∴a=b=2,如图2,连接EF,同理可得:EF=×4=2,∵EF∥AB,∴△PEF~△ABP,∴,在Rt△ABP中,AB=4,∠ABP=30°,∴AP=2,PB=2,∴PF=1,PE=,在Rt△APE和Rt△BPF中,AE=,BF=,∴a=2,b=2,故答案为:2,2,2,2;(2)猜想:a2+b2=5c2,如图3,连接EF,设∠ABP=α,∴AP=csinα,PB=ccosα,由(1)同理可得,PF=PA=,PE==,AE2=AP2+PE2=c2sin2α+,BF2=PB2+PF2=+c2cos2α,∴=c2sin2α+, =+c2cos2α,∴+=+c2cos2α+c2sin2α+,∴a2+b2=5c2;(3)如图4,连接AC,EF交于H,AC与BE交于点Q,设BE与AF的交点为P,∵点E、G分别是AD,CD的中点,∴EG∥AC,∵BE⊥EG,∴BE⊥AC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=2,∴∠EAH=∠FCH,∵E,F分别是AD,BC的中点,∴AE=AD,BF=BC,∴AE=BF=CF=AD=,∵AE∥BF,∴四边形ABFE是平行四边形,∴EF=AB=3,AP=PF,在△AEH和△CFH中,,∴△AEH≌△CFH,∴EH=FH,∴EP,AH分别是△AFE的中线,由(2)的结论得:AF2+EF2=5AE2,∴AF2=5﹣EF2=16,∴AF=4.【点评】本题考查了相似三角形的判定和性质,勾股定理,锐角三角函数,注意类比思想在本题中的应用.。

相关文档
最新文档