杨辉三角与二项式定理

合集下载

杨辉三角的规律以及推导公式

杨辉三角的规律以及推导公式

杨辉三角的规律以及定理李博洋摘要杨辉三角中的一些规律关键词杨辉三角幂二项式引言杨辉是我国南宋末年的一位杰出的数学家。

在他所着的《详解九章算法》一书中,画了一张表示二项式展开后的系数构成的三角图形,称做“开方做法本源”,现在简称为“杨辉三角”,它是世界的一大重要研究成果。

我们则来对“杨辉三角”的规律进行探讨和研究。

内容1二项式定理与杨辉三角与杨辉三角联系最紧密的是二项式乘方展开式的系数规律,即。

杨辉三角我们首先从一个二次多项式(a+b)2的展开式来探讨。

由上式得出:(a+b)2=a2+2ab+b2此代数式的系数为:121则(a+b)3的展开式是什么呢?答案为:a3+3a2b+3ab2+b3由此可发现,此代数式的系数为:1331但似乎没有什么规律,所以让我们再来看看(a+b)4的展开式。

展开式为:a4+4a3b+6a2b2+4ab3+b4由此又可发现,代数式的系数为:14641似乎发现了一些规律,就可以发现以下呈三角形的数列:1(110)11(111)121(112)1331(113)14641(114)15101051(115)1615201561(116)因此可得出二项式定理的公式为:(a+b)n=C(n,0)a^n*b^0+C(n,1)a^(n-1)*b^1+...+C(n,r)a^(n-r)*b^r...+C(n,n)a^0*b^n 因此,二项式定理与杨辉三角形是一对天然的数形趣遇,它把带进了。

求二项式展开式系数的问题,实际上是一种组合数的计算问题。

用系数来计算,称为“式算”;用杨辉三角形来计算,称作“图算”。

2杨辉三角的幂的关系首先我们把杨辉三角的每一行分别相加,如下:1(1)11(1+1=2)121(1+2+1=4)1331(1+3+3+1=8)14641(1+4+6+4+1=16)15101051(1+5+10+10+5+1=32)1615201561(1+6+15+20+15+6+1=64)……相加得到的数是1,2,4,8,16,32,64,…刚好是2的0,1,2,3,4,5,6,…次幂,即杨辉三角第n行中n个数之和等于2的n-1次幂3杨辉三角中斜行和水平行之间的关系(1)1(2)n=111(3)n=2121(4)n=31331(5)n=414641(6)n=515101051n=61615201561把斜行(1)中第7行之前的数字相加得1+1+1+1+1+1+1=6把斜行(2)中第7行之前的数字相加得1+2+3+4+5=15把斜行(3)中第7行之前的数字相加得1+3+6+10=20把斜行(4)中第7行之前的数字相加得1+4+10=15把斜行(5)中第7行之前的数字相加得1+5=6把斜行(6)中第7行之前的数字相加得1将上面得到的数字与杨辉三角中的第7行中的数字对比,我们发现它们是完全相同的。

杨辉三角和二项式定理

杨辉三角和二项式定理

杨辉三角和二项式定理杨辉三角和二项式定理是数学中经典的基本概念和定理,被广泛应用于组合数学、数理统计、微积分等领域。

本文将介绍杨辉三角和二项式定理的定义、性质以及应用。

一、杨辉三角杨辉三角是一种数学图形,是由数字排列成三角形的形式,数字排列的规律性很强,主要是由二项式系数的各个项的系数构成的,又称为帕斯卡三角。

杨辉三角的构造方法如下:1.第一行写上数字1;2.从第二行开始,每相邻的两个数字都是上一行数字的相邻两个数字之和;例子:11 11 2 11 3 3 11 4 6 4 1二、二项式定理二项式定理是代数学中的基本定理,它阐述了将一个二项式求幂的基本方法。

二项式定理的全称为“任意实数a和b以及非负整数n,有:(a+b)^n = C(n, 0)a^n + C(n, 1)a^(n-1)b + … + C(n, n)b^n”其中C(n, k)为组合数,在组合数学中有明确的定义,即从n个不同元素中选取k个元素的不同组合数。

组合数用符号C(n, k)表示,其计算公式为:C(n, k) = n! / [k! (n-k)!]这样,我们就得到了二项式定理的定义。

三、杨辉三角和二项式定理的联系和应用二项式定理中的系数C(n, k)可以在杨辉三角中找到,这也是杨辉三角的一个重要应用。

具体来说,杨辉三角的第n行第k个数就是C(n, k)。

另外,杨辉三角还可以用来计算排列组合中的一些问题。

例如,需要在n个元素中选取m个元素的不同组合数,这就可以通过杨辉三角中的组合数来解决。

杨辉三角和二项式定理还可以应用于微积分中的泰勒公式、数理统计中的二项分布等问题。

在统计学中,二项分布是一个离散的概率分布,用来计算在n个独立的是/非试验中成功k次的概率。

杨辉三角和二项式定理在数学中属于基本概念和基本定理,对于理解和应用数学知识是非常重要的。

通过了解杨辉三角和二项式定理的定义和性质,可以更好地应用它们来解决实际问题。

杨辉三角与二项式系数的性质(经典)

杨辉三角与二项式系数的性质(经典)
杨辉三角与二项式系数的 性质(经典)
杨辉三角和二项式系数是数学中的经典概念。它们有着许多有趣的性质和应 用,让我们一起来探索吧!
杨辉三角的定义
每一行的首尾数字都为1
每一行的其他数字都是 上一行两个相邻数数和杨辉三角的关系
1 二项式系数是杨辉三角的每一行的数字 2 杨辉三角可以用来计算二项式系数
计算杨辉三角和二项式系数的例子
1
根据给定行数计算杨辉三角的数字
2
使用杨辉三角计算二项式系数
3
杨辉三角和二项式系数在数学中的应用
杨辉三角和二项式系数在数学中
杨辉三角和二项式系数是数学中广泛应用的基础概念。它们在组合数学、概率论、代数和数论等领域都有重要的应 用。

杨辉三角融入二项式定理的教学实践及反思

杨辉三角融入二项式定理的教学实践及反思

杨辉三角融入二项式定理的教学实践及反思【摘要】本文通过介绍杨辉三角和二项式定理的基本原理,探讨了二者之间的联系,并结合教学实践展示了如何将杨辉三角融入二项式定理的教学中。

具体操作包括利用杨辉三角展示二项式系数的规律,引导学生理解二项式定理的概念,并通过实例演示二者之间的对应关系。

在教学实践中,学生表现出良好的学习效果,对二项式定理和杨辉三角有了更深入的理解。

反思部分分析了教学中遇到的困难和不足,并提出了改进的建议。

将杨辉三角融入二项式定理的教学能够激发学生的学习兴趣,提高他们的数学能力,有助于培养学生的逻辑思维和数学推理能力。

在未来的教学中,可以进一步探索更多的教学方法,促进学生对数学知识的深入理解和应用。

【关键词】杨辉三角, 二项式定理, 教学实践, 学习效果, 反思, 展望1. 引言1.1 引言杨辉三角和二项式定理是高中数学中重要且常见的概念,它们在代数学习中扮演着重要的角色。

杨辉三角最早起源于中国古代数学家杨辉的工作,它是一种数学图形,数字按照一定的规律排列在三角形中,具有一些特殊的性质和规律。

而二项式定理则是代数学中的一个重要定理,描述了如何展开一个形如(a+b)^n的表达式。

本文将探讨杨辉三角和二项式定理之间的联系,以及如何将杨辉三角融入到二项式定理的教学中。

我们将首先介绍杨辉三角的基本原理,然后简要回顾二项式定理的基本概念,接着深入探讨杨辉三角和二项式定理之间的联系。

在教学实践中,我们将分享一些具体操作和案例,探讨学生学习效果及教学过程中的反思。

通过本文的研究与实践,我们希望能够更好地理解和运用杨辉三角和二项式定理,帮助学生更好地掌握代数知识,提高他们的数学能力和解决问题的能力。

我们也将对教学实践中的一些挑战和改进方向进行探讨,以期能够进一步完善教学方法,提高教学质量和效果。

2. 正文2.1 杨辉三角的基本原理杨辉三角是中国古代数学的杰出成就之一,它由中国数学家杨辉在13世纪提出。

杨辉三角是一个由数字构成的三角形,每一行的数字是通过上一行相邻两个数字相加而得到的。

杨辉三角与二项式定理

杨辉三角与二项式定理

杨辉三⾓与⼆项式定理⾸先杨辉三⾓是啥:利益⽅⾯,把(a + b)^n 展开,将会得到⼀个关于x的多项式: (a + b)^0 = 1 (a + b)^1 = a + b (a + b)^2 = a^2 + 2*a*b + b^2 (a + b)^3 = a^3 + 3*a^2*b + 3*a*b^2 + b^3 (a + b)^4 = a^4 + 4*a^3*b + 6*a^2*b^2 + 4*a*b^3 + b^4系数正好跟杨辉三⾓⼀致。

⼀般的,有⼆项式定理:所以,(a + b)^n 是n个括号连乘,每个括号⾥任选⼀项乘起来都会对最后的结果有⼀个影响。

如果选择了 k 个 a,就⼀定会选择 n - k个 b,最后的项也就是 a^(n-k)*b^k 。

然⽽从n个a⾥选择k个有多少种⽅法呢?有 C(k , n)种⽅法,这就是组合数的定义。

给定 n ,如何求出(a + b)^n 中所有项的系数呢?⼀个⽅法是⽤递归,根据杨辉三⾓中不难发现的规律,可以写出程序:1 memset(c,0,sizeofcv));2for(int i = 0;i <= n;i++){3 c[i][0] = 1;4for(int j = 1;j <= i;j++)5 c[i][j] = c[i-1][j-1] + c[i-1][j];6 }(以上的算法的时间复杂度是O(n^2))另⼀个⽅法是利⽤等式C( k, n) = ( n - k + 1) / ( k ) * C( k-1, n),从C( 0, n) = 1开始从左往右递推,如下:c[0] = 1;for(int i = 1;i <= n;i++)c[i] = c[i-1]*(n-i+1)/i;可能不明显,却容易⽤组合数公式 C(k , n)= n! /( k! * (n - k)! )。

第3节 二项式定理与杨辉三角

第3节 二项式定理与杨辉三角

第3节二项式定理与杨辉三角知识梳理1.二项式定理及相关概念一般地,当n是正整数时,有(a+b)n=C0n a n+C1n a n-1b+…+C k n a n-k b k+…+C n n b n.上述公式称为二项式定理,等式右边的式子称为(a+b)n的展开式,它共有n+1项,其中C k n a n-k b k是展开式中的第k+1项(通常用T k+1表示),C k n称为第k+1项的二项式系数,我们将T k+1=C k n a n-k b k称为二项展开式的通项公式.2.二项式系数的性质(1)C0n+C1n+C2n+…+C n n=2n.(2)C0n+C2n+C4n+…=C1n+C3n+C5n+…=2n-1.3.杨辉三角具有以下性质(1)每一行都是对称的,且两端的数都是1;(2)从第三行起,不在两端的任意一个数,都等于上一行中与这个数相邻的两数之和;(3)当n是偶数时,中间一项的二项式系数最大,当n是奇数时,中间两项的二项式系数相等且最大.(a+b)n的展开式形式上的特点(1)项数为n+1.(2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n.(3)字母a按降幂排列,从第一项开始,次数由n逐项减1直到零;字母b按升幂排列,从第一项起,次数由零逐项增1直到n.,C n n.(4)二项式系数从C0n,C1n,一直到C n-1n诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)C k n an -k b k是二项展开式的第k 项.( ) (2)二项展开式中,系数最大的项为中间一项或中间两项.( ) (3)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.( )(4)(a +b )n 某项的系数是该项中非字母因数部分,包括符号等,与该项的二项式系数不同.( )答案 (1)× (2)× (3)√ (4)√解析 二项展开式中C k n an -k b k 是第k +1项,二项式系数最大的项为中间一项或中间两项,故(1)(2)均不正确.2.(x -y )n 的二项展开式中,第m 项的系数是( ) A .C m nB .C m +1nC .C m -1nD .(-1)m -1C m -1n答案 D解析 (x -y )n 展开式中第m 项的系数为C m -1n (-1)m -1. 3.C 02022+C 12022+C 22022+…+C 20222022C 02021+C 22021+C 42021+…+C 20202021的值为( ) A .2 B .4C .2022D .2021×2022答案 B 解析 原式=2202222021-1=22=4.4.(2020·北京卷)在(x -2)5的展开式中,x 2的系数为( ) A .-5 B .5 C .-10 D .10 答案 C 解析T r +1=C r 5(x )5-r(-2)r=C r 5x5-r2·(-2)r,令5-r2=2,∴r =1.x 2的系数为C 15(-2)1=-10.故选C.5.(多选题)(2021·淄博调研)对于二项式⎝ ⎛⎭⎪⎫1x +x 3n(n ∈N *),以下判断正确的有( )A .存在n ∈N *,展开式中有常数项B .对任意n ∈N *,展开式中没有常数项C .对任意n ∈N *,展开式中没有x 的一次项D .存在n ∈N *,展开式中有x 的一次项 答案 AD解析 该二项展开式的通项为T k +1=C k n ⎝ ⎛⎭⎪⎫1x n -k(x 3)k =C k n x 4k -n,∴当n =4k 时,展开式中存在常数项,A 选项正确,B 选项错误;当n =4k -1时,展开式中存在x 的一次项,D 选项正确,C 选项错误.故选AD.6.(2020·浙江卷)二项展开式(1+2x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 4=__________,a 1+a 3+a 5=__________. 答案 80 122解析 由题意,得a 4=C 45×24=5×16=80.当x =1时,(1+2)5=a 0+a 1+a 2+a 3+a 4+a 5=35=243,① 当x =-1时,(1-2)5=a 0-a 1+a 2-a 3+a 4-a 5=-1.② 由①-②,得2(a 1+a 3+a 5)=243-(-1)=244, 可得a 1+a 3+a 5=122.考点一 通项公式及其应用角度1 求二项展开式中的特定项 【例1】(1)(2021·新高考8省联考)(1+x )2+(1+x )3+…+(1+x )9的展开式中x 2的系数是( )A.60B.80C.84D.120(2)⎝⎛⎭⎪⎪⎫3x -123x 10的展开式中所有的有理项为________. 答案 (1)D (2)454x 2,-638,45256x -2解析 (1)(利用公式C m n +C m +1n =C m +1n +1)(1+x )2+(1+x )3+…+(1+x )9的展开式中x 2的系数为C 22+C 23+…+C 29=C 33+C 23+…+C 29=C 310=120.(2)二项展开式的通项公式为T k +1=C k 10⎝ ⎛⎭⎪⎫-12kx由题意10-2k3∈Z ,且0≤k ≤10,k ∈N . 令10-2k 3=r (r ∈Z ),则10-2k =3r ,k =5-32r , ∵k ∈N ,∴r 应为偶数.∴r 可取2,0,-2,即k 可取2,5,8,∴第3项,第6项与第9项为有理项,它们分别为454x 2, -638,45256x -2.感悟升华 求二项展开式中的特定项,一般是化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数r +1,代回通项公式即可.角度2 求二项展开式中特定项的系数【例2】 (1)(2020·全国Ⅰ卷)⎝ ⎛⎭⎪⎫x +y 2x (x +y )5的展开式中x 3y 3的系数为( )A .5B .10C .15D .20(2)已知(1+ax )3+(1-x )5的展开式中含x 3的系数为-2,则a 等于( ) A.2 3 B.2 C.-2 D.-1(3)(x 2+x +y )5的展开式中,x 5y 2的系数为( ) A .10 B .20 C .30 D .60 答案 (1)C (2)B (3)C解析 (1)法一 ∵⎝ ⎛⎭⎪⎫x +y 2x (x +y )5=⎝ ⎛⎭⎪⎫x +y 2x (x 5+5x 4y +10x 3y 2+10x 2y 3+5xy 4+y 5),∴x 3y 3的系数为10+5=15.法二 当x +y 2x 中取x 时,x 3y 3的系数为C 35,当x +y 2x 中取y 2x 时,x 3y 3的系数为C 15,∴x 3y 3的系数为C 35+C 15=10+5=15.故选C.(2)(1+ax )3+(1-x )5的展开式中x 3的系数为C 33a 3+C 35(-1)3=a 3-10=-2,则a 3=8,解得a =2.(3)法一 (x 2+x +y )5=[(x 2+x )+y ]5,含y 2的项为T 3=C 25(x 2+x )3·y 2.其中(x 2+x )3中含x 5的项为C 13x 4·x =C 13x 5. 所以x 5y 2的系数为C 25C 13=30.法二 (x 2+x +y )5表示5个x 2+x +y 之积.∴x 5y 2可从其中5个因式中,两个取因式中x 2,剩余的3个因式中1个取x ,其余因式取y ,因此x 5y 2的系数为C 25C 13C 22=30.感悟升华 1.求几个多项式积的特定项:可先分别化简或展开为多项式和的形式,再分类考虑特定项产生的每一种情形,求出相应的特定项,最后进行合并即可. 2.求几个多项式和的特定项:先分别求出每一个多项式中的特定项,再合并,通常要用到方程或不等式的知识求解.3.三项展开式特定项:(1)通常将三项式转化为二项式积的形式,然后利用多项式积的展开式中的特定项(系数)问题的处理方法求解;(2)将其中某两项看成一个整体,直接利用二项式展开,然后再分类考虑特定项产生的所有可能情形. 【训练1】 (1)(2020·长沙调研)若(1+ax )(1+x )5的展开式中x 2,x 3的系数之和为-10,则实数a 的值为( )A .-3B .-2C .-1D .1(2)(2021·合肥质检)在⎝ ⎛⎭⎪⎫x -4+4x 5的展开式中,x 2的系数为________.(3)⎝ ⎛⎭⎪⎫2x -18x 38的展开式中的常数项为________. 答案 (1)B (2)-960 (3)28解析 (1)由(1+ax )(1+x )5=(1+x )5+ax (1+x )5,得x 2的系数为C 25+a C 15=5a +10,x 3的系数为C 35+a C 25=10a +10,又由展开式中x 2,x 3的系数之和为(5a +10)+(10a +10)=15a +20=-10,解得a =-2.故选B.(2)因为⎝ ⎛⎭⎪⎫x -4+4x 5=⎣⎢⎡⎦⎥⎤(x -2)2x 5=(x -2)10x 5,所以x 2的系数为C 310(-2)3=-960.(3)⎝ ⎛⎭⎪⎫2x -18x 38的通项为T r +1=C r 8(2x )8-r ·⎝ ⎛⎭⎪⎫-18x 3r=C r 828-r ⎝ ⎛⎭⎪⎫-18r·x 8-4r . 令8-4r =0,得r =2, ∴常数项为T 3=C 2826⎝ ⎛⎭⎪⎫-182=28. 考点二 二项式系数的和与各项系数的和 问题【例3】 (1)(2021·郑州模拟)若二项式⎝ ⎛⎭⎪⎫x 2-2x n的展开式的二项式系数之和为8,则该展开式每一项的系数之和为( ) A .-1 B .1 C .27 D .-27(2)(多选题)(2021·武汉模拟)若(1-2x )2021=a 0+a 1x +a 2x 2+a 3x 3+…+a 2021x 2021(x ∈R ),则( ) A .a 0=1B .a 1+a 3+a 5+…+a 2021=32021+12 C .a 0+a 2+a 4+…+a 2020=32021-12 D.a 12+a 222+a 323+…+a 202122021=-1 答案 (1)A (2)ACD解析 (1)依题意得2n =8,解得n =3.取x =1得,该二项展开式每一项的系数之和为(1-2)3=-1.(2)由题意,当x =0时,a 0=12021=1,当x =1时,a 0+a 1+a 2+a 3+…+a 2021=(-1)2021=-1, 当x =-1时,a 0-a 1+a 2-a 3+…-a 2021=32021, 所以a 1+a 3+a 5+…+a 2021=-32021+12, a 0+a 2+a 4+…+a 2020=32021-12,a 12+a 222+…+a 202122021=a 1×12+a 2×⎝ ⎛⎭⎪⎫122+…+a 2021×⎝ ⎛⎭⎪⎫122021,当x =12时,0=a 0+a 1×12+a 2×⎝ ⎛⎭⎪⎫122+…+a 2021×⎝ ⎛⎭⎪⎫122021,所以a 1×12+a 2×⎝ ⎛⎭⎪⎫122+…+a 2021×⎝ ⎛⎭⎪⎫122021=-a 0=-1.感悟升华 1.“赋值法”普遍适用于恒等式,是一种重要的方法,对形如(ax +b )n ,(ax 2+bx +c )m (a ,b ∈R )的式子求其展开式的各项系数之和,常用赋值法. 2.若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.【训练2】 (1)(2020·山西八校联考)已知(1+x )n 的展开式中第5项和第7项的二项式系数相等,则奇数项的二项式系数和为( ) A .29 B .210 C .211 D .212(2)(多选题)(2021·济南调研)若(1-2x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则下列结论中正确的是( ) A .a 0=1B .a 1+a 2+a 3+a 4+a 5=2C .a 0-a 1+a 2-a 3+a 4-a 5=35D .a 0-|a 1|+a 2-|a 3|+a 4-|a 5|=-1 答案 (1)A (2)ACD解析 (1)由题意知C 4n =C 6n ,由组合数性质得n =10,则奇数项的二项式系数和为2n -1=29.(2)令x =0,则a 0=15=1,故A 正确;令x =1得-1=a 0+a 1+a 2+a 3+a 4+a 5,所以a 1+a 2+a 3+a 4+a 5=-1-a 0= -2,故B 错误;令x =-1得35=a 0-a 1+a 2-a 3+a 4-a 5,故C 正确;因为二项式(1-2x )5的展开式的第r +1项为T r +1=C r 5(-2)r x r , 所以当r 为奇数时,C r 5(-2)r 为负数,即a i <0(其中i 为奇数),所以a 0-|a 1|+a 2-|a 3|+a 4-|a 5|=a 0+a 1+a 2+a 3+a 4+a 5=-1,故D 正确. 考点三 二项式系数的最值问题【例4】已知(3x -1)n 展开式的第5项的二项式系数最大,且n 为偶数,则(3x -1)n 展开式中x 2的系数为( )A .-252B .252C .-28D .28 答案 B解析 由题意可得n =8,则(3x -1)8的展开式的通项是T r +1=C r 8(3x )8-r·(-1)r ,令8-r =2,解得r =6,则展开式中x 2的系数为C 6832=252.感悟升华 二项式系数最大项的确定方法:当n 为偶数时,展开式中第n2+1项的二项式系数最大,最大值为2n nC;当n 为奇数时,展开式中第n +12项和第n +32项的二项式系数最大,最大值为或.【训练3】⎝ ⎛⎭⎪⎪⎫x +13x n 的展开式中各项系数之和大于8,但小于32,则展开式中系数最大的项是( ) A .63x B.4xC .4x 6x D.4x 或4x 6x答案 A解析 令x =1,可得⎝ ⎛⎭⎪⎪⎫x +13x n 的展开式中各项系数之和为2n ,即8<2n <32,解得n =4,故第3项的系数最大,所以展开式中系数最大的项是C 24(x )2⎝ ⎛⎭⎪⎪⎫13x 2=63x .考点四 二项式定理的逆用【例5】设复数x =2i 1-i(i 是虚数单位),则C 12022x +C 22022x 2+C 32022x 3+…+C 20222022x 2022等于( )A .0B .-2C .-1+iD .-1-i 答案 B解析 x =2i 1-i =2i (1+i )(1-i )(1+i )=-1+i ,由于C 12022x +C 22022x 2+C 32022x 3+…+C 20222022x2022=(1+x )2022-1=i 2022-1=-1-1=-2.感悟升华 根据所给式子的特点结合二项展开式的要求,使之具备二项式定理右边的结构,然后逆用二项式定理求解.【训练4】已知-C 1100(2-x )+C 2100(2-x )2-C 3100(2-x )3+…+C 100100(2-x )100=a 0+a 1x +a 2x 2+…+a 100x 100,则a 1+a 2+a 3+…+a 99的值是( )A .-1B .-2C .299-1D.299-12答案 B解析 记f (x )=1-C 1100(2-x )+C 2100(2-x )2-C 3100(2-x )3+…+C 100100(2-x )100-1=[1-(2-x )]100-1=(x -1)100-1,即(x -1)100-1=a 0+a 1x +a 2x 2+…+a 100x 100. 令x =1,得a 0+a 1+a 2+…+a 100=-1.令x =0,得a 0=0,又易知a 100=1,所以a 1+a 2+a 3+…+a 99=-2.A 级 基础巩固一、选择题 1.已知⎝ ⎛⎭⎪⎫x -1x 7的展开式的第4项等于5,则x 等于( )A.17 B .-17 C .7 D .-7 答案 B解析 由T 4=C 37x 4⎝ ⎛⎭⎪⎫-1x 3=5,得x =-17. 2.⎝ ⎛⎭⎪⎫12x -2y 5的展开式中x 2y 3的系数是( ) A .-20 B .-5 C .5 D .20 答案 A解析 T r +1=C r 5⎝ ⎛⎭⎪⎫12x 5-r ·(-2y )r =C r 5·⎝ ⎛⎭⎪⎫125-r ·(-2)r ·x 5-r ·y r .当r =3时,展开式中x 2y 3的系数为C 35⎝ ⎛⎭⎪⎫122×(-2)3=-20.故选A. 3.若⎝ ⎛⎭⎪⎫x +1x n 展开式的二项式系数之和为64,则展开式的常数项为( ) A .10 B .20 C .30 D .120答案 B解析 由2n =64,得n =6,∴T r +1=C r 6x 6-r ⎝ ⎛⎭⎪⎫1x r =C r 6x 6-2r (0≤r ≤6,r ∈N ). 由6-2r =0,得r =3.∴T 4=C 36=20.4.若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为( )A .9B .8C .7D .6答案 B解析 令x =1,则a 0+a 1+a 2+a 3+a 4=0,令x =-1,则a 0-a 1+a 2-a 3+a 4=16,两式相加得a 0+a 2+a 4=8.5.若(1-x )9=a 0+a 1x +a 2x 2+…+a 9x 9,则|a 1|+|a 2|+|a 3|+…+|a 9|=( )A .1B .513C .512D .511答案 D解析 令x =0,得a 0=1,令x =-1,得|a 1|+|a 2|+|a 3|+…+|a 9|=[1-(-1)]9-1=29-1=511.6.(多选题)(2021·威海调研)若⎝ ⎛⎭⎪⎫x 2+1ax 6的展开式中x 3的系数是-160,则( ) A .a =-12B .所有项系数之和为1C .二项式系数之和为64D .常数项为-320答案 ABC解析 对选项A ,⎝ ⎛⎭⎪⎫x 2+1ax 6的展开式中x 3项为C 36(x 2)3·⎝ ⎛⎭⎪⎫1ax 3, 所以C 36·⎝ ⎛⎭⎪⎫1a 3=-160,解得a =-12,故A 正确; 由A 知:⎝ ⎛⎭⎪⎫x 2+1ax 6=⎝ ⎛⎭⎪⎫x 2-2x 6, 令x =1,所有项系数之和为(1-2)6=1,故B 正确;对选项C ,二项式系数之和为26=64,故C 正确;对选项D ,⎝ ⎛⎭⎪⎫x 2-2x 6的常数项为C 26(x 2)2·⎝ ⎛⎭⎪⎫-2x 4=24C 26=240,故D 错误. 7.若(1+x +x 2)n =a 0+a 1x +a 2x 2+…+a 2n x 2n ,则a 0+a 2+a 4+…+a 2n 等于( )A .2n B.3n -12 C .2n +1D.3n +12答案 D 解析 设f (x )=(1+x +x 2)n ,则f (1)=3n =a 0+a 1+a 2+…+a 2n ①,f (-1)=1=a 0-a 1+a 2-a 3+…+a 2n ②,由①+②得2(a 0+a 2+a 4+…+a 2n )=f (1)+f (-1),所以a 0+a 2+a 4+…+a 2n =f (1)+f (-1)2=3n +12. 8.“杨辉三角形”是古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年,如图是三角形数阵,记a n 为图中第n 行各数之和,则a 5+a 11的值为( )A .528B .1020C .1038D .1040答案 D 解析 a 5=C 04+C 14+C 24+C 34+C 44=24=16,a 11=C 010+C 110+C 210+…+C 1010=210=1024,所以a 5+a 11=1040.故选D.二、填空题9.(2020·天津卷)在⎝ ⎛⎭⎪⎫x +2x 25的展开式中,x 2的系数是__________. 答案 10解析 ∵T r +1=C r 5x 5-r ⎝ ⎛⎭⎪⎫2x 2r =2r C r 5x 5-3r ,令5-3r =2,得r =1,∴T 2=2C 15x 2=10x 2,∴x 2的系数是10.10.在(1-3x )7+⎝ ⎛⎭⎪⎫x +a x 6的展开式中,若x 2的系数为19,则a =________. 答案 2解析 (1-3x )7+⎝ ⎛⎭⎪⎫x +a x 6的展开式中含x 2的项为C 67(-3x )6+C 16(x )5⎝ ⎛⎭⎪⎫a x 1=C 67x 2+C 16x 2a ,则a C 16+C 67=19,解得a =2.11.已知C 0n +2C 1n +22C 2n +23C 3n +…+2n C n n =729,则C 1n +C 2n +C 3n +…+C n n 等于________.答案 63解析 逆用二项式定理得C 0n +2C 1n +22C 2n +23C 3n +…+2n C n n =(1+2)n =3n =729,即3n =36,所以n =6,所以C 1n +C 2n +C 3n +…+C n n =26-C 0n =64-1=63.12.若(1-4x )2022=a 0+a 1x +a 2x 2+…+a 2022·x 2022,则a 12+a 222+…+a 202222022=________.答案 0解析 取x =0,则a 0=1;取x =12,则(-1)2022=a 0+a 12+a 222+…+a 202222022,所以a 12+a 222+…+a 202222022=1-a 0=0.B 级 能力提升13.(2021·长春模拟)在⎝ ⎛⎭⎪⎫x +1x 2-14的展开式中,常数项为( ) A .12 B .11 C .-11 D .-12答案 C解析 ⎝ ⎛⎭⎪⎫x +1x 2-14的通项为T k +1=C k 4(-1)4-k ·⎝ ⎛⎭⎪⎫x +1x 2k,要求常数项,需求 ⎝ ⎛⎭⎪⎫x +1x 2k (k =0,1,2,3,4)的展开式中的常数项,⎝ ⎛⎭⎪⎫x +1x 2k 的展开式的通项为 T r +1=C r k ·x k -r ·x -2r =C r k ·xk -3r ,令k -3r =0⇒k =3r ,即k 是3的倍数,所以k =0或3.当k =0时,C 04(-1)4-0=1;当k =3时,r =1,C 34·C 13·(-1)4-3=-12,所以原式展开后的常数项为1+(-12)=-11,故选C.14.已知m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m =( )A .5B .6C .7D .8答案 B解析 由题意可知,a =C m 2m ,b =C m 2m +1.∵13a =7b ,∴13·(2m )!m !m !=7·(2m +1)!m !(m +1)!, 即137=2m +1m +1,解得m =6. 15.9192除以100的余数是________.答案 81解析 9192=(90+1)92=C 0929092+C 1929091+…+C 9092902+C 919290+C 9292=k ×100+92×90+1=k ×100+82×100+81(k 为正整数),所以9192除以100的余数是81.16.(2021·重庆调研)设(1-ax)2022=a0+a1x+a2x2+…+a2022x2022,若a1+2a2+3a3+…+2022a2022=2022a(a≠0),则实数a=________.答案2解析已知(1-ax)2022=a0+a1x+a2x2+…+a2022·x2022,两边同时对x求导,得2022(1-ax)2021(-a)=a1+2a2x+3a3x2+…+2022a2022x2021,令x=1得,-2022a(1-a)2021=a1+2a2+3a3+…+2022a2022=2022a,又∵a≠0,所以(1-a)2021=-1,即1-a=-1,故a=2.。

二项式定理(三)杨辉三角

二项式定理(三)杨辉三角

倒序相加法
1.当n10时常用杨辉三角处理二项式 系数问题; 2.利用杨辉三角和函数图象可得二项式 系数的对称性、增减性和最大值; 3.常用赋值法解决二项式系数问题.
学习小结:
求展开式的系数和 设(1-2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5.
求:(1)a1+a2+a3+a4+a5的值;
二项式定理(三)─杨辉三角
二项式定理(三)─杨辉三角
把(a+b)n展开式的二项式系数取出来,当 n依次取1,2,3,…时,可列成下表: 在我国,很早 1 就有人研究过二 1 1 1 (a+b) → 项式系数表 , 南 1 2 1 (a+b)2→ 宋数学家杨辉在 1 3 3 1 (a+b)3→ 其所著的《详解 1 4 6 4 1 九章算法》中就 (a+b)4→ (a+b)5→ 1 5 10 10 5 1有出现. (a+b)6→ 1 6 15 20 15 6 1
课前复习:
1.二项式定理:
(a b) C a C a b C a b C b Tr 1 C a b ,(r 0,1,2, n) 第(r+1)项 2.通项规律:
n 0 n n n n n
1 n1 n r n r r n
r n r r n
3.二项式系数: C
n
0 1 2 Cn , Cn , Cn , r n , Cn ,, Cn .
C
f(r),其定义域是{0,1,2,…,n},当 n=6时,其图象是右图中的7个孤立 点.
r n 可看成是以r为自变量的函数
16108642-
. .. .. . .
3
6
9
r

杨辉三角的规律以及推导公式

杨辉三角的规律以及推导公式

杨辉三角的规律以及定理1二项式定理与杨辉三角杨辉三角我们首先从一个二次多项式(a+b)2的展开式来探讨。

由上式得出:(a+b)2=a2+2ab+b2此代数式的系数为: 1 2 1则(a+b)3的展开式是什么呢?答案为:a3+3a2b+3ab2+b3由此可发现,此代数式的系数为: 1 3 3 1 但似乎没有什么规律,所以让我们再来看看(a+b)4的展开式。

展开式为:a4+4a3b+6a2b2+4ab3+b4由此又可发现,代数式的系数为:1 4 6 4 1 似乎发现了一些规律,就可以发现以下呈三角形的数列:1 (110)1 1 (111)1 2 1 (112)1 3 3 1 (113)1 4 6 4 1 (114)1 5 10 10 5 1 (115)1 6 15 20 15 6 1 (116)杨辉三角形的系数分别为:1,(1,1),(1,2,1),(1,3,3,1),(1,4,6,4,1)(1,5,10,10,5,1),(1,6,15,20,15,6,1),(1,7,21,35,35,21,7,1)所以:(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7。

由上式可以看出,(a+b)n等于a的次数依次下降n、n-1、n-2…n-n,b的次数依次上升,0、1、2…n次方。

系数是杨辉三角里的系数。

2杨辉三角的幂的关系首先我们把杨辉三角的每一行分别相加,如下:1 ( 1 )1 1 ( 1+1=2 )1 2 1 (1+2+1=4 )1 3 3 1 (1+3+3+1=8 )1 4 6 4 1 (1+4+6+4+1=16 )1 5 10 10 5 1 (1+5+10+10+5+1=32 )1 6 15 20 15 6 1 (1+6+15+20+15+6+1=64 )……相加得到的数是1,2,4,8,16,32,64,…刚好是2的0,1,2,3,4,5,6,…n次幂,即杨辉三角第n 行中n个数之和等于2的n-1次幂3 杨辉三角中斜行和水平行之间的关系(1)1 (2) n=11 1 (3) n=21 2 1 (4) n=31 3 3 1 (5) n=41 4 6 4 1 (6) n=51 5 10 10 5 1 n=61 6 15 20 15 6 1把斜行(1)中第7行之前的数字相加得1+1+1+1+1+1+1=6把斜行(2)中第7行之前的数字相加得1+2+3+4+5=15把斜行(3)中第7行之前的数字相加得1+3+6+10=20把斜行(4)中第7行之前的数字相加得1+4+10=15把斜行(5)中第7行之前的数字相加得1+5=6把斜行(6)中第7行之前的数字相加得1将上面得到的数字与杨辉三角中的第7行中的数字对比,我们发现它们是完全相同的。

杨辉三角与二项式系数的性质

杨辉三角与二项式系数的性质

的7个孤立点.
3 6 9r
由函数图象也可以很直观地看到 “对称性”、“增减性与最大值”,一目了然.
课堂练习:
1)已知C155 a, C195 b = (a b);9
,那C么1160
2)
的展开式中,二项式系数的最大
值是 (a ; b)n
3)若
的展开式中的第十项和第十
一项的二项式系数最大,则n=
k
!
n! (n
k)!
n
k k
1
(k
1)!
n! (n
k
1)!
n
k k
1
C k1 n
所以C相kn 对于 C的kn1增减情况由
nk 1 1 k n1
k
可知,当
k
n时,1
2
2
n 决k定1.
k
二项式系数是逐渐增大的,由对称性可知它的后 半部分是逐渐减小的,且中间项取得最大值。
(3)增减性与最大值
因此,当n为偶数时,中间一项的二项式
(a b)0
1
(a b)1
11
(a b)2
1 21
(a b)3
13 31
(a b)4 1 4 6 4 1
(a b)5 1 5 10 10 5 1
(a b)6 1 6 15 20 15 6 1
上面的表叫做二项式系数表(杨辉三角)
二项式系数的性质
(1)对称性:
与首末两端“等距离”的两个二项式系数相等.
系数 取得最大值;
当n为奇数时,中间两项的二项式系数 、
相等,且同时取得最大值。
(4)各二项式系数的和
C0n
C1n
C
2 n
C

杨辉三角和二项式系数的关系

杨辉三角和二项式系数的关系

1 二项式定理与杨辉三角与杨辉三角联系最紧密的是二项式乘方展开式的系数规律,即二项式定理。

杨辉三角我们首先从一个二次多项式(a+b) 2 的展开式来探讨。

由上式得出:(a+b) 2 2+2ab+b 2 =a此代数式的系数为:1 2 1则(a+b) 3 3+3a 2b+3ab 2+b 3 的展开式是什么呢?答案为:a由此可发现,此代数式的系数为:1 3 3 1但4似乎没有什么规律,所以让我们再来看看(a+b)的展开式。

展开式为:a 4+4a 3b+6a 2b2+4ab 3+b 4+4a 3b+6a 2b2+4ab 3+b 4 由此又可发现,代数式的系数为:1 4 6 4 1 似乎发现了一些规律,就可以发现以下呈三角形的数列:1 (11 0)1 1 (11 1)1 2 1 (11 2)1 3 3 1 (11 3)1 4 6 4 1 (11 4)1 5 10 10 5 1 (11 5)1 6 15 20 15 6 1 (11 6)杨辉三角形的系数分别为:1,(1,1 ),(1,2,1 ),(1,3,3,1 ),(1,4,6,4,1 )(1,5,10,10,5,1 ),(1,6,15,20,15,6,1 ),(1,7,21,35,35,21,7,1 )所以:(a+b) 7=a 7+7a 6 b+21a 5b 2+35a 4b 3+35a 3b 4+21a 2b 5+7ab 6+b 7。

由上式可以看出,(a+b) n 等于a 的次数依次下降n 、n-1 、n- 2? n -n ,b 的次数依次上升,0、1、2? n 次方。

系数是杨辉三角里的系数。

2 杨辉三角的幂的关系首先我们把杨辉三角的每一行分别相加,如下:1 ( 1 )1 1 ( 1+1=2 )1 2 1 (1+2+1=4 )1 3 3 1 (1+3+3+1=8 )1 4 6 4 1 (1+4+6+4+1=16 )1 5 10 10 5 1 (1+5+10+10+5+1=32 )1 6 15 20 15 6 1 (1+6+15+20+15+6+1=64 )相加得到的数是1,2,4,8,16,32,64,? 刚好是2 的0,1,2,3,4,5,6,? n 次幂,即杨辉三角第n 行中n 个数之和等于2 的n-1 次幂3 杨辉三角中斜行和水平行之间的关系(1)1 (2) n=11 1 (3) n=21 2 1 (4) n=31 3 3 1 (5) n=41 4 6 4 1 (6) n=51 5 10 10 5 1 n=61 6 15 20 15 6 1把斜行(1)中第7 行之前的数字相加得1+1+1+1+1+1+1=6把斜行(2) 中第7 行之前的数字相加得1+2+3+4+5=15把斜行(3) 中第7 行之前的数字相加得1+3+6+10=20把斜行(4) 中第7 行之前的数字相加得1+4+10=15把斜行(5) 中第7 行之前的数字相加得1+5=6把斜行(6) 中第7 行之前的数字相加得1将上面得到的数字与杨辉三角中的第7 行中的数字对比,我们发现它们是完全相同的。

杨辉三角的规律以及推导公式doc资料

杨辉三角的规律以及推导公式doc资料

杨辉三角的规律以及定理李博洋摘要杨辉三角中的一些规律关键词杨辉三角幂二项式引言杨辉是我国南宋末年的一位杰出的数学家。

在他所著的《详解九章算法》一书中,画了一张表示二项式展开后的系数构成的三角图形,称做“开方做法本源”,现在简称为“杨辉三角”,它是世界的一大重要研究成果。

我们则来对“杨辉三角”的规律进行探讨和研究。

内容1二项式定理与杨辉三角杨辉三角我们首先从一个二次多项式(a+b)2的展开式来探讨。

由上式得出:(a+b)2=a2+2ab+b2此代数式的系数为: 1 2 1则(a+b)3的展开式是什么呢?答案为:a3+3a2b+3ab2+b3由此可发现,此代数式的系数为: 1 3 3 1 但似乎没有什么规律,所以让我们再来看看(a+b)4的展开式。

展开式为:a4+4a3b+6a2b2+4ab3+b4由此又可发现,代数式的系数为:1 4 6 4 1 似乎发现了一些规律,就可以发现以下呈三角形的数列:1 (110)1 1 (111)1 2 1 (112)1 3 3 1 (113)1 4 6 4 1 (114)1 5 10 10 5 1 (115)1 6 15 20 15 6 1 (116)因此可得出二项式定理的公式为:(a+b)n=C(n,0)a^n*b^0+C(n,1)a^(n-1)*b^1+...+C(n,r)a^(n-r)*b^r...+ C(n,n)a^0*b^n因此,二项式定理与杨辉三角形是一对天然的数形趣遇,它把数形结合带进了计算数学。

求二项式展开式系数的问题,实际上是一种组合数的计算问题。

用系数通项公式来计算,称为“式算”;用杨辉三角形来计算,称作“图算”。

2杨辉三角的幂的关系首先我们把杨辉三角的每一行分别相加,如下:1 ( 1 )1 1 ( 1+1=2 )1 2 1 (1+2+1=4 )1 3 3 1 (1+3+3+1=8 )1 4 6 4 1 (1+4+6+4+1=16 )1 5 10 10 5 1 (1+5+10+10+5+1=32 )1 6 15 20 15 6 1 (1+6+15+20+15+6+1=64 )……相加得到的数是1,2,4,8,16,32,64,…刚好是2的0,1,2,3,4,5,6,…次幂,即杨辉三角第n行中n个数之和等于2的n-1次幂3 杨辉三角中斜行和水平行之间的关系(1)1 (2) n=11 1 (3) n=21 2 1 (4) n=31 3 3 1 (5) n=41 4 6 4 1 (6) n=51 5 10 10 5 1 n=61 6 15 20 15 6 1把斜行(1)中第7行之前的数字相加得1+1+1+1+1+1+1=6把斜行(2)中第7行之前的数字相加得1+2+3+4+5=15把斜行(3)中第7行之前的数字相加得1+3+6+10=20把斜行(4)中第7行之前的数字相加得1+4+10=15把斜行(5)中第7行之前的数字相加得1+5=6把斜行(6)中第7行之前的数字相加得1将上面得到的数字与杨辉三角中的第7行中的数字对比,我们发现它们是完全相同的。

杨辉三角

杨辉三角

与杨辉三角联系最紧密的是二项式乘方展开式的系数规律,即二项式定理。

例如在杨辉三角中,第3行的三个数恰好对应着两数和的平方的展开式的每一项的系数(性质 8),第4行的四个数恰好依次对应两数和的立方的展开式的每一项的系数,即,以此类推。

又因为性质5:第n行的m个数可表示为C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。

因此可得出二项式定理的公式为:因此,二项式定理与杨辉三角形是一对天然的数形趣遇,它把数形结合带进了计算数学。

求二项式展开式系数的问题,实际上是一种组合数的计算问题。

用系数通项公式来计算,称为“式算”;用杨辉三角形来计算,称作“图算”[3]。

杨辉三角数在杨辉三角中的出现次数由1开始,正整数在杨辉三角形出现的次数为∞,1, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 4, ... (OEIS:A003016)。

最小而又大于1的数在贾宪三角形至少出现n次的数为2, 3, 6, 10, 120, 120, 3003, 3003, ... (OEIS:A062527)除了1之外,所有正整数都出现有限次,只有2出现刚好一次,6,20,70等出现三次;出现两次和四次的数很多,还未能找到出现刚好五次的数。

120,210,1540等出现刚好六次。

(OEIS:A098565)因为丢番图方程有无穷个解,所以出现至少六次的数有无穷个多。

解为,其中F n表示第n个斐波那契数(F1=F2=1)。

3003是第一个出现八次的数。

这也是多项式(a+b) n打开括号后的各个项的n次项系数的规律即为0 (a+b) 0 (0 nCr 0)1 (a+b) 1 (1 nCr 0) (1 nCr 1)2 (a+b)2 (2 nCr 0) (2 nCr 1) (2 nCr 2)3 (a+b)3 (3 nCr 0) (3 nCr 1) (3 nCr 2) (3 nCr 3). ... ... ... ... ...杨辉三角最本质的特征是,它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和。

杨辉三角与二项式系数的性质(经典)

杨辉三角与二项式系数的性质(经典)
这一性质可直接由公式
Cmn Cnnm 得到.
图象的对称轴: r n 2
(2)增减性与最大值
由于:C k n n (n 1 ) (n k ( 2 k ) 1 ) ( ! n k 1 ) C k n 1 n k k 1
nk 1
所以C
k n
相对于C
k n
1的增减情况由
决定.
k
由:nk11 kn1
杨辉三角与二项式系数的 性质(经典)
二项定理: 一般地,对于n ∈ N*有
(a b)n Cn0an Cn1a n1b Cn2a b n2 2
课前练习:
C
r n
a
nr
b
r
Cnnbn
1.乘积 a1 a2 a3 b1 b2 b3 c1 c2 c3 c4 c5 有_4_5_项.
2r1
C2r0
320r
2r
C r1 20
321r
2r1
即 3(r+1)>2(20-r) 解得 7 2 r 8 2
2(21-r)>3r
5
5
所以当r=8时,系数绝对值最大的项为
T9 C280 312 28 x12 y8
小结
对称性
(1)二项式系数的三个性质 增减性与最大值
各二项式系数的和
第0行
1
第1行
11
第2行
12 1
第3行
13 3 1
第4行
14 6 4 1
第5行
1 5 10 10 5 1
第6行 1 6 15 20 15 6 1
第7行 1 7 21 35 35 21 7 1 第8行 1 8 28 56 …7…0 56 28 8 1

杨辉三角的规律以及推导公式

杨辉三角的规律以及推导公式

精心整理杨辉三角的规律以及定理1二项式定理与杨辉三角杨辉三角我们首先从一个二次多项式(a+b)2的展开式来探讨。

222则为:11(11)(1,5,10,10,5,1),(1,6,15,20,15,6,1),(1,7,21,35,35,21,7,1)所以:(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7。

由上式可以看出,(a+b)n等于a的次数依次下降n、n-1、n-2…n-n,b的次数依次上升,0、1、2…n次方。

系数是杨辉三角里的系数。

2杨辉三角的幂的关系首先我们把杨辉三角的每一行分别相加,如下:1(1)11(1+1=2)121(1+2+1=4)1331(1+3+3+1=8)6,…n31615201561把斜行(1)中第7行之前的数字相加得1+1+1+1+1+1+1=6把斜行(2)中第7行之前的数字相加得1+2+3+4+5=15把斜行(3)中第7行之前的数字相加得1+3+6+10=20把斜行(4)中第7行之前的数字相加得1+4+10=15把斜行(5)中第7行之前的数字相加得1+5=6把斜行(6)中第7行之前的数字相加得1将上面得到的数字与杨辉三角中的第7行中的数字对比,我们发现它们是完全相同的。

n(3)中第2、每行数字左右对称,由1开始逐渐变大。

3、第n行的数字有n+1项。

4、第n行数字和为2(n-1)。

(2的(n-1)次方)5 (a+b)n的展开式中的各项系数依次对应杨辉三角的第(n+1)行中的每一项。

[1]6、第n行的第m个数和第n-m个数相等,即C(n,m)=C(n,n-m),这是组合数性质。

杨辉三角与二项式定理

杨辉三角与二项式定理

一 五 十 十 五一
一 六 十五 二十 十五 六 一
二、杨辉简介:
杨辉,杭州钱塘人。中国南宋末年数学家,数学 教育家.著作甚多,著有《详解九章算法》十二卷 (1261年)、《日用算法》二卷、《乘除通变本末》三 卷、《田亩比类乘除算法》二卷、《续古摘奇算法》二
卷.其中后三种合称《杨辉算法》,朝鲜、日 本等国均有译本出版,流传世界。
四、总结
1、杨辉三角蕴含的基本性质 2、杨辉三角蕴含的数字排列规律
3、利用杨辉三角进行简单的应用
探究2:研究斜行规律:
第一条斜线上:
1+1+1+1+1+1= 6 C61 第二条斜线上: 1+2+3+4+5= 15 C62 第三条斜线上:1+3+6+10=
20 C63
第四条斜线上:1+4+10= 15 C64
设 (2x 1)5 a0 a1x a2x2 a3x3 a4x4 a5x5,求 (2) | a0 | | a1 | | a 2| | a3 | | a4 | | a5 |;
解:设 f (x) (2x -1)5 a0 a1x a5x5, 则 f (1) a0 a1 a2 a3 a4 a5 15 1
f (-1) a0 a1 a2 a3 a4 a5 (3)5 243
(2) | a0 | | a1 | | a2 | | a5 | a0 a1 a2 a3 a4 a5
f (1) 243
设 (2x 1)5 a0 a1x a2x2 a3x3 a4x4 a5x5,求 (3) a1 a3 a5;
都为1 的是第一行,第二次全行的数都为1 的是第3
行,……第n次全行的数都为1 的是第 2n-1 行

杨辉三角与二项式定理

杨辉三角与二项式定理
在欧洲,这个表被认为是法国数学家物理学家帕斯卡首先发现 的(Blaise Pascal, 1623年~1662年),他们把这个表叫做帕斯卡 三角.这就是说,杨辉三角的发现要比欧洲早500年左右,由此可 见我国古代数学的成就是非常值得自豪的.
a b1
11
a b2 a b3
121 1331
2、杨辉三角的基本性质和对称性
1.对 称 性:杨辉三角形的每一行中的
数字左右对称.
即Cnr

C nr n
2.基本性质:杨辉三角形的两条斜边都
是数字1,而其余的数都等于它肩上的两
个数字相加.
即Cnr

C r1 n1

Cr n1
性质3:增减性与最大值
二项式系数在对称轴的左边
11
是逐渐增大的.在对称轴右边
解:设 f (x) (2x -1)5 a0 a1x a5x5, 则 f (1) a0 a1 a2 a3 a4 a5 15 1
f (-1) a0 a1 a2 a3 a4 a5 (3)5 243
设 (2x 1)5 a0 a1x a2x2 a3x3 a4x4 a5x5,求 (1) a0 a1 a2 a3 a4;
C 11++11++11++ ......++11== 1 ((第第11条条斜斜线线 )) n
C C11

C21

C31

C1 n1

2 (第2条斜线 )
n
C C22
C32
C42

C2 n 1

3
n (第3条斜线 )
Crr

Cr r 1

杨辉三角与二项式系数的性质ppt

杨辉三角与二项式系数的性质ppt

Tk 1 Cnkbnk ak ;Tk 1 Cnk ank (b)k
4.在定理中,令a=1,b=x,则
(1 x)n Cn0 Cn1 x Cn2 x2 Cnr xr Cnn xn
观察猜想
(a+b)n= Cn0an+C1nan-1b+…+Crnan-rbr+…+Cnnbn
展开式的二项式系数Cn0 ,Cn1 ,Cn2 ,Cnr ,Cnn 有什么变化规律?二项式系数最大的是哪 一项? 为了研究它的一般规律,我们先来观察 n为特殊值时,二项展开式中二项式系 数有什么特点?
1 33 1 1 4641
1 5 10 10 5 1 1 6 15 20 15 6 1 Cnn
当n为偶数如2、4、6时,中间一项最大 当n为奇数如1、3、5时,中间两项最大
最大项与增减性
增减性的实质是比较 Cnk与Cnk1的大小.
Cnk
k
!
n! (n
k)!
n
k k
1
(k
1)!
n! (n
k
1)!
1 5 10 10 5 1
32 25
1 6 15 20 15 6 1 64 26
求证 : Cn0 Cn1 Cn2....... Cnn 2n
证明:
在(a+b)n=Cn0an+Cn1an-1b+Cn2an-2b2+ …+ Cnran-rbr+ …+Cnnbn
令a=b=1,则
2n
C
0 n
Cn1
n是偶数时,中间的一项 取得最大值;
11 121
当n是奇数时,中间的两项
1 33 1

二项式定理与杨辉三角

二项式定理与杨辉三角

知识对接测查1 1、在(a+b)6展开式中,与倒数第三项二 项式系数相等是( B )
A 第2项 B 第3项 C 第4项 D 第5项
2、若(a+b)n的展开式中,第三项的二项 式系数与第七项的二项式系数相等, 8 则n=__________
2 6 析: C n Cn n 2 6 8
[( x 1) 1]
4
x
4
研究性课题:
杨辉三角
计算(a+b)n展开式的二项式系数并填入下表
n 1 2 3 4 5 6 1 1 1 1 1 1
(a+b)n展开式的二项式系数
1 2 3 4 5 6 1 3 6 10 15
1 4 10 20
1 5 15
1 6
1
对称性
(a+b)1 (a+b)2 (a+b)3 (a+b)4 (a+b)5 (a+b)6
杨 辉 三 角
第 0行 1 第 1行 1 1 第 2行 1 2 1 6=3+3 4=1+3 第 3行 1 3 3 1 10=6+4 10=6+4 第 4行 1 4 1 4 6 20=10+10 15=5+10 第 5行 1 5 10 10 5 1 第 6行 1 6 15 20 15 6 1
…… …… 2 r n 2 r 1 1 … C n 1 C n 1 … C n 1 第n-1行 1 C n 1 C n 1 r n 1 2 1 … … C C 第 n行 1 C n C n n n …… … …
n 0 n n k n 1 n 1 n n k k
b C b (n N )
n n n *

杨辉三角的规律以及推导公式

杨辉三角的规律以及推导公式

杨辉三角的规律以及推导公式文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)杨辉三角的规律以及定理1二项式定理与杨辉三角与杨辉三角联系最紧密的是二项式乘方展开式的系数规律,即。

杨辉三角我们首先从一个二次多项式(a+b)2的展开式来探讨。

由上式得出:(a+b)2=a2+2ab+b2此代数式的系数为:121则(a+b)3的展开式是什么呢?答案为:a3+3a2b+3ab2+b3由此可发现,此代数式的系数为:1331但似乎没有什么规律,所以让我们再来看看(a+b)4的展开式。

展开式为:a4+4a3b+6a2b2+4ab3+b4由此又可发现,代数式的系数为:14641似乎发现了一些规律,就可以发现以下呈三角形的数列:1(110)11(111)121(112)1331(113)14641(114)15101051(115)1615201561(116)杨辉三角形的系数分别为:1,(1,1),(1,2,1),(1,3,3,1),(1,4,6,4,1)(1,5,10,10,5,1),(1,6,15,20,15,6,1),(1,7,21,35,35,21,7,1)所以:(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7。

由上式可以看出,(a+b)n等于a的次数依次下降n、n-1、n-2…n-n,b的次数依次上升,0、1、2…n次方。

系数是杨辉三角里的系数。

2杨辉三角的幂的关系首先我们把杨辉三角的每一行分别相加,如下:1(1)11(1+1=2)121(1+2+1=4)1331(1+3+3+1=8)14641(1+4+6+4+1=16)15101051(1+5+10+10+5+1=32)1615201561(1+6+15+20+15+6+1=64)……相加得到的数是1,2,4,8,16,32,64,…刚好是2的0,1,2,3,4,5,6,…n 次幂,即杨辉三角第n行中n个数之和等于2的n-1次幂3杨辉三角中斜行和水平行之间的关系(1)1(2)n=111(3)n=2121(4)n=31331(5)n=414641(6)n=515101051n=61615201561把斜行(1)中第7行之前的数字相加得1+1+1+1+1+1+1=6把斜行(2)中第7行之前的数字相加得1+2+3+4+5=15把斜行(3)中第7行之前的数字相加得1+3+6+10=20把斜行(4)中第7行之前的数字相加得1+4+10=15把斜行(5)中第7行之前的数字相加得1+5=6把斜行(6)中第7行之前的数字相加得1将上面得到的数字与杨辉三角中的第7行中的数字对比,我们发现它们是完全相同的。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第n行各数的和为2n
尝 2、对称性:
表中的数字左右对称 ,即
试探 C
r n
C nr n

3、结构特征:除底边上1以外的各数,都等于它肩上的两数之和,

C
r n
C r 1 n1
Cr n1
1、杨辉三角第n行各数的特点
第0行
1
第1行 杨辉三角的第1n行1中的数对应于
第2行
121
第二3行项式(a+b)n展1开式3 的二3 项1 式系数
数的和等于偶数项的二项式系数和.
例1.设 (2x 1)5 a0 a1x a2 x2 a3x3 a4 x4 a5x5, 求:
(1) a0 a1 a2 a3 a4; (2) | a0 | | a1 | | a 2| | a3 | | a4 | | a5 |; (3) a1 a3 a5; (4)(a0 a2 a4 )2 (a1 a3 a5 )2
解:设 f (x) (2x -1)5 a0 a1x a5x5, 则 f (1) a0 a1 a2 a3 a4 a5 15 1
f (-1) a0 a1 a2 a3 a4 a5 (3)5 243 (1) a5 25 32
a0 a1 a2 a3 a4 f (1) 32 31
14641
a b5 1 5 10 10 5 1

a bn
c
0 n
c
1 n
c n2
……
c
r n
……
c n1 n
c
n n
三、教学过程 探究1: 杨辉三角之雾里看花
1、与二项式定理的关系:
表中的每个数都是二项式
C 系数,第n行的第r+1个数是 r n
2、杨辉三角的基本性质和对称性
1.对 称 性:杨辉三角形的每一行中的
数字左右对称.
即Cnr
C nr n
2.基本性质:杨辉三角形的两条斜边都
是数字1,而其余的数都等于它肩上的两
个数字相加.
即Cnr
C r1 n1
Cr n1
性质3:增减性与最大值
二项式系数在对称轴的左边
11
是逐渐增大的.在对称轴右边
121

一、引入




——
一一
一 二一
一 三 三一
一 四 六 四一
一 五 十 十 五一
一 六 十五 二十 十五 六 一
二、杨辉简介:
杨辉,杭州钱塘人。中国南宋末年数学家,数学 教育家.著作甚多,著有《详解九章算法》十二卷 (1261年)、《日用算法》二卷、《乘除通变本末》三 卷、《田亩比类乘除算法》二卷、《续古摘奇算法》二
卷.其中后三种合称《杨辉算法》,朝鲜、日 本等国均有译本出版,流传世界。
“杨辉三角”出现在杨辉编著的《详解九章算法》 一书中,此书还说明表内除“一”以外的每一个数都等 于它肩上两个数的和.杨辉指出这个方法出于《释锁》 算书,且我国北宋数学家贾宪(约公元11世纪)已经用 过它,这表明我国发现这个表不晚于11世纪.
设 (2x 1)5 a0 a1x a2x2 a3x3 a4x4 a5x5,求 (2) | a0 | | a1 | | a 2| | a3 | | a4 | | a5 |;
解:设 f (x) (2x -1)5 a0 a1x a5x5, 则 f (1) a0 a1 a2 a3 a4 a5 15 1
第4行
1 4 6 41
第5行
1 5 10 10 5 1
第6行 杨辉三1 角6 的…1各5…行…20数…字…15的6和等1 于与 第第n之 式n行-1对系行1 应数1Cn1的的CCn1(和a1n2 C+为nb2…1)2…nn…的。C…展nrC11…开nCr nr式…1 的……各C个nn12二Cnn项11 1
是逐渐减小的, 且在中间取得 1 3 3 1
最大值.
1 4641
n
当n是偶数时,中间的一项Cn2 1 5 10 10 5 1
取得最大值;当n是奇数时, 1 6 15 20 15 6 1
n1 n1
中间的两项Cn 2 ,Cn 2 相等,
且同时取得最大值.
课堂练习: 1、在(a+b)20展开式中,与第五项二项式
Cn1 Cn3 Cn5 ... 2n-1
性质1:
Cnm
C nm n
性质2:
Cm n 1
C m1 n
Cnm
性质3:如果二项式的幂指数是偶数,中间一
项的二项式系数最大;如果二项式的
幂指数是奇数,中间两项的二项式系
数最大;
性质4: Cn0
Cn1
Cn2
Cnk
C
n n
2n
性质5:(a+b)n的展开式中,奇数项的二项式系
f (-1) a0 a1 a2 a3 a4 a5 (3)5 243
系数相同的项是( C ).
A.第15项 B.第16项 C.第17项 D.第18项 2、在(a+b)10展开式中,二项式系数最大
的项是( A ).
A.第6项 B.第7项 C.第6和第7项 D.第5和第7项
在(a-b)10展开式中,系数最大的项又是什么?
性质4:各二项式系数的和
(1 x)n Cn0 Cn1x Cnr xr Cnnxn (n N*)
在欧洲,这个表被认为是法国数学家物理学家帕斯卡首先发现 的(Blaise Pascal, 1623年~1662年),他们把这个表叫做帕斯卡 三角.这就是说,杨辉三角的发现要比欧洲早500年左右,由此可 见我国古代数学的成就是非常值得自豪的.
a b1
11
a b2 a b3
121 1331
a b4
解:设 f (x) (2x -1)5 a0 a1x a5x5, 则 f (1) a0 a1 a2 a3 a4 a5 15 1
f (-1) a0 a1 a2 a3 a4 a5 (3)5 243
设 (2x 1)5 a0 a1x a2x2 a3x3 a4x4 a5x5,求 (1) a0 a1 a2 a3 a4;
Cn0 Cn1 Cn2 ... Cnr ... Cnn ?2n
11
赋值法
121
也就是说, (a+b)n的 展开式中的各个二项式系 数的和为2n
1 33 1 1 46 41 1 5 10 10 5 1
1 6 15 20 15 6 1
性质5:奇数项二项式系数与偶数项二项式系 数的和
Cn0 Cn2 Cn4 ... 2n-1
相关文档
最新文档