金属注射成型MIM
金属粉末的注射成型
金属粉末的注射成型金属粉末的注射成型,也被称为金属粉末注射成型(Metal Powder Injection Molding,简称MIM),是一种先进的制造技术,将金属粉末与有机物相结合,通过注射成型和烧结工艺,制造出高密度、精确尺寸、复杂形状的金属零件。
在金属粉末注射成型过程中,首先将金属粉末与有机粘结剂和其他添加剂混合均匀,形成金属粉末/有机物混合物。
其次,在高压下,将混合物通过注射机注射到具有细微孔隙和管道的模具中。
模具通常采用两片结构,上模和下模之间形成的形状即为所需制造的零件形状。
注射机将足够的压力用于将混合物推进模具的每一个细微空间,以确保零件形状准确,毛边小。
注射后,模具中的混合物开始固化,形成绿色零件。
最后,通过烧结处理,去除有机物并使金属颗粒结合成整体,形成具有理想密度和力学性能的金属粉末零件。
相对于传统的金属加工方法,金属粉末注射成型具有以下优势:首先,MIM可以制造复杂形状的金属零件,包括薄壁结构、内外复杂曲面和细小结构,满足了一些特殊零件的制造需求。
其次,MIM的材料利用率高,废料少,可以减少原材料和能源的浪费。
此外,零件的尺寸稳定性好,需要的加工工序少,可以降低生产成本。
最重要的是,对于一些其他制造工艺难以实现的金属材料,例如高强度不锈钢、钨合金和钛合金,MIM可以实现高质量的制造。
然而,金属粉末注射成型也存在应用范围的限制。
首先,相对较高的制造成本使得该技术在一些低成本产品上难以应用。
其次,较大的尺寸限制了MIM在制造大尺寸、高精度的零件上的应用。
此外,与其他成型方法相比,MIM的制造周期较长,对行业响应速度要求较高的场景不适用。
尽管如此,金属粉末注射成型技术已经在汽车、电子产品、医疗器械、工具和航空航天等领域得到了广泛的应用。
随着制造技术的进步和材料属性的改进,金属粉末注射成型有望在更多领域发挥其优势,并带来更多创新的解决方案。
MIM技术介绍
MIM技术介绍MIM技术,即金属注射成型技术(Metal Injection Molding),是一种将金属粉末与高聚合物粉末相混合,通过注射成型后烧结制成零件的先进制造技术。
该技术的特点是将金属粉末颗粒与粘结剂混合,并在注射成型后通过烧结过程将粉末颗粒结合在一起形成致密的金属零件。
MIM技术是目前最流行的三维成型技术之一,它兼具了传统压力成型和金属烧结的优点。
在MIM技术中,首先将金属粉末与粘结剂按一定比例混合,形成MIM料浆。
然后,通过注射机将MIM料浆注射到金属模具中进行成型。
成型后的零件经过脱模,形成近净成型的未烧结零件。
最后,通过烧结过程,将未烧结零件在惰性气氛下加热至金属粉末的熔点以上进行烧结,粘结剂将烧结后残留物挥发,金属粉末颗粒结合在一起,形成致密的金属零件。
MIM技术的优点主要表现在以下几个方面。
首先,MIM技术可以制造形状复杂、精度高的零件,相比传统的金属加工方法更加灵活。
其次,MIM技术能够生产大批量的零件,并且具有高度的一致性,适用于需求量大的产品制造。
此外,MIM技术还可以制造超细或微型零件,满足现代微电子、医疗器械等领域对高精度零件的需求。
尽管MIM技术在低成本、高效率和高精度等方面具有明显优势,但也存在一些挑战。
首先,MIM技术对原料的要求较高,金属粉末的粒度和形状对成型效果有较大影响。
其次,粘结剂的选择和控制也是一项关键任务。
此外,由于烧结过程中需要控制温度和气氛等因素,烧结工艺相对复杂。
因此,MIM技术的成功应用需要综合考虑材料、工艺和设备等多个因素。
总的来说,MIM技术是一种高度灵活、高效率、高精度的金属成型方法,已在汽车、航空航天、电子、医疗器械等领域得到广泛应用。
随着材料科学和制造技术的不断发展,MIM技术将进一步完善和推广,为各个行业提供更多高质量的金属零件。
MIM技术作为一种金属粉末成型技术,具有独特的优势和特点,逐渐成为制造业中不可忽视的一种先进工艺。
干货一文看懂金属注射成型(MIM)
干货一文看懂金属注射成型(MIM)1、金属注射成形(MIM)介绍金属注射成形(MIM)是一种金属先进制造技术,融合了塑料注塑成形和粉末冶金两种传统工艺的优势。
众多性能要求高的产品均使用MIM,涉及电子、民生、汽配、医疗器械、军工、航天等行业。
如移动电话,电子散热器、密封包装、接线盒、工业用工具、光纤连接器、流体喷洒系统、运动设备、硬盘,汽车供油与点火系统,牙科器械与牙齿加固工具、制药设备、泵、手术器械,航天与国防系统等。
MIM即(Metal Injection Molding)是金属注射成型的简称。
是将金属粉末与其粘结剂的增塑混合料注射于模型中的成形方法。
它是先将所选粉末与粘结剂进行混合,然后将混合料进行制粒再注射成形所需要的形状。
2、金属注射成形(MIM)流程MIM流程结合了注塑成型设计的灵活性和精密金属的高强度和整体性,来实现极度复杂几何部件的低成本解决方案。
MIM流程分为四个独特加工步骤(混合、成型、脱脂和烧结)来实现零部件的生产,针对产品特性决定是否需要进行表面处理。
MIM制造流程一般包括:混炼造粒、注塑成型、脱脂、烧结以及二次处理等。
3、MIM工艺主要技术特点:•适合各种粉末材料的成形,产品应用十分广泛;•原材料利用率高,生产自动化程度高,适合连续大批量生产。
•能直接成形几何形状复杂的小型零件(0.03g~200g);•零件尺寸精度高(±0.1%~±0.5%),表面光洁度好(粗糙度1~5μm);•产品相对密度高(95~100%),组织均匀,性能优异;4、MIM件的常用几种表面处理工艺抛光处理利用机械、化学或电化学的作用,使工件表面粗糙度降低,以获得光亮、平整表面的加工。
电镀处理利用电解作用使金属或其它材料制件的表面附着一层金属膜的工艺。
电镀可以起到防止金属氧化(如锈蚀),提高耐磨性、导电性、反光性、抗腐蚀性(硫酸铜等)及增进美观等作用。
PVD处理利用物理过程实现物质转移,将原子或分子由源转移到基材表面上的过程。
MIM金属注射成形工艺
MIM金属注射成形工艺MIM(Metal Injection Molding)金属注射成形工艺是一种集粉末冶金和塑料注射成形技术于一体的先进制造工艺。
它能够将金属粉末与有机粘结剂混合后注射成形,再通过脱脂和烧结工艺将有机粘结剂去除,最终得到具有高密度和良好力学性能的金属零件。
MIM工艺是20世纪70年代初期由美国开发出来的,随后逐渐发展成为一种重要的中小型复杂金属部件加工方法。
MIM工艺具有以下几个特点:1.范围广泛:MIM工艺可以用于加工多种金属材料,如不锈钢、钨合金、硬质合金、软磁合金等,能够满足不同行业的各类零件加工需求。
2. 高精度:MIM工艺能够制造出极其复杂形状的零件,其尺寸精度可以达到0.01mm,能够满足不同行业对于精度要求较高的零件加工需求。
3.高密度:由于MIM工艺采用了高压注射成形和高温烧结工艺,所得金属零件具有较高的密度,接近于纯金属的密度,因此具有良好的力学性能。
4.成本低:相比于传统的加工方法,MIM工艺具有成本低、生产效率高的特点。
同时,由于MIM工艺能够实现零件的复合成形,使得原本需要多道工序制造的零件可以一次性完成,从而节约了生产成本。
MIM工艺的加工过程主要包括原料制备、注射成形、脱脂和烧结四个步骤:1.原料制备:首先需要将金属粉末和有机粘结剂按一定比例混合,得到可以流动注射的MIM料浆。
2.注射成形:将MIM料浆注入MIM注射机中,经过热筒和螺杆的作用,将MIM料浆注射到注射模具中,形成所需形状的零件。
3.脱脂:将注射成形后的零件进行脱脂处理。
脱脂是将有机粘结剂从注射件中去除的过程,通常通过热脱脂和溶剂脱脂两种方法进行。
4.烧结:脱脂后的注射件在高温环境下进行烧结处理。
烧结是将金属粉末粒子相互结合的过程,通过高温使金属粉末颗粒间形成颗粒间结合,从而得到具有高密度和良好力学性能的金属零件。
总结一下,MIM金属注射成形工艺通过将金属粉末与有机粘结剂混合注射成形,然后经过脱脂和烧结工艺,最终得到高密度和良好力学性能的金属零件。
金属粉末注射成型
金属粉末注射成型金属粉末注射成型(Metal Powder Injection Molding,简称MIM)是一种高效、精确和经济的金属加工技术。
它结合了传统的塑料注射成型和金属粉末冶金工艺,可以生产出复杂形状的金属部件。
MIM技术在汽车、医疗、航空航天等行业中得到广泛应用,本文将介绍MIM的工艺原理、材料选择和应用领域。
MIM工艺原理可以分为四个步骤:混合、注射、脱模和烧结。
首先,将金属粉末与聚合物粉末、脱模剂等混合,并将其加热到高温使其熔化。
然后,将熔融的混合物喷射到模具中,形成所需的部件形状。
接下来,通过在高温和高压下使部件凝固,并将其从模具中取出。
最后,在高温下进行烧结,以消除聚合物,并在金属颗粒之间形成冶金结合。
在MIM中,材料选择是关键。
常用的金属材料包括不锈钢、工具钢、硬质合金、钻石等。
不锈钢具有良好的韧性和耐腐蚀性,常用于制造医疗器械、手表零件等高精度部件。
工具钢具有高强度和耐磨性,常用于制造汽车零部件、工具等。
硬质合金具有高硬度和耐磨性,常用于制造切削工具、注射模具等。
钻石是一种具有超硬性和导热性的材料,常用于制造高性能刀具。
MIM技术具有许多优点。
首先,MIM可以生产出复杂形状的部件,减少了后续加工的需要。
其次,MIM可以实现批量生产,提高了生产效率。
再次,MIM可以生产出高密度的部件,具有良好的力学性能和表面质量。
此外,MIM工艺还可以减少材料的浪费,提高了资源利用率。
MIM技术在许多领域中得到了广泛的应用。
在汽车行业中,MIM可以制造各种复杂形状的汽车零部件,如发动机零件、制动系统零件等。
在医疗行业中,MIM可以制造高精度医疗器械,如人工关节、牙科器械等。
在航空航天行业中,MIM可以制造轻量化部件,提高了飞机的燃油效率。
此外,MIM还可以应用于电子、军工等领域。
总之,金属粉末注射成型是一种高效、精确和经济的金属加工技术。
通过在MIM中选择合适的材料和工艺参数,可以生产出各种复杂形状的金属部件,并在汽车、医疗、航空航天等行业中得到广泛应用。
mimmil成型工艺
mimmil成型工艺
MIM(Metal Injection Molding)是一种金属注射成型工艺,也被称为Mimmil。
它是将粉末冶金和塑料注塑成型工艺相结合
的一种复合工艺。
MIM工艺可以制造出复杂形状、高密度、
高强度的金属部件。
Mimmil工艺的主要步骤包括:
1. 原料制备:将金属粉末与聚合物混合,形成可流动的注射料。
2. 注塑成型:将注射料加热至熔融状态后,通过注射机将熔融物质注入到成型模具中,然后冷却固化。
3. 去脱模:将成型的零件从模具中取出。
4. 烧结:通过高温处理,使得金属粉末粒子结合在一起,形成固体金属零件。
5. 后处理:包括去除模具支撑结构、表面处理、加工等工序,以得到最终的产品。
Mimmil工艺具有以下优点:
1. 可以制造出复杂形状的零件,如小孔、细槽等。
2. 良好的直线尺寸精度,可以达到±0.1%。
3. 零件密度高,可以达到 98%以上。
4. 可以制造高强度、高硬度和高耐磨的金属零件。
5. 生产周期短,工艺灵活,能够实现大批量生产。
Mimmil工艺在汽车、医疗器械、电子设备等领域有广泛应用,并且正在不断发展和完善,为金属制造行业带来了新的可能性。
MIM金属注射成型工艺
MIM金属注射成型工艺金属注射成型(Metal Injection Molding),简称MIM。
是一种将金属、陶瓷或复合材料通过粉末冶金工艺和塑料注射成型工艺相结合加工成型的先进制造工艺。
相对于传统的金属加工方式,MIM工艺具有高精度、高效率、低成本和复杂几何形状加工等优点。
MIM工艺的工作原理是先将金属粉末与绑定剂混合,形成可注射的糊状物。
然后,将糊状物充填进注射模具中,在高温高压的条件下,将糊状物注射成模具所需的形状。
经过烧结、退bind剂和后处理等步骤,最终得到高密度、高强度的金属零件。
MIM工艺的特点如下:1.高精度:MIM工艺可以制造出精度高的复杂零件,其精度可达到0.1mm。
与传统的金属加工方式相比,MIM工艺无需进行额外的加工,能够大大提高生产效率。
2.高效率:MIM工艺能够一次性完成复杂零件的成型,无需多次加工。
同时,每次注射可以注射多个零件,大大提高了生产效率。
3.低成本:相对于传统的金属加工方式,MIM工艺不需要额外加工,可以减少人工和设备投入。
另外,由于MIM工艺采用粉末冶金工艺,材料的浪费也相对较少。
4.适用范围广:MIM工艺适用于多种材料,包括不锈钢、钛合金、铁基合金、镍基合金等。
同时,MIM工艺还能够制造涂层、多孔和镶嵌等复合材料,并且能够制造具有种类繁多的零件。
MIM工艺在多个领域得到应用,包括汽车、医疗设备、航空航天、电子等。
例如,汽车领域,MIM工艺可以制造发动机零件、传动装置零件等。
医疗设备领域,MIM工艺可以制造外科器械、植入器械等。
航空航天领域,MIM工艺可以制造航天器零件、航空发动机零件等。
电子领域,MIM工艺可以制造电子连接器、电子器件外壳等。
然而,MIM工艺也存在一些挑战和限制。
其中之一是材料选择的限制,因为不同材料的烧结温度和性能要求不同,这对生产过程的稳定性和成本有一定的影响。
另外,由于注射模具的制造和维护成本高,对于小批量生产和复杂形状的零件来说,MIM工艺的成本可能较高。
注塑机金属成型新工艺:MIM
注塑机金属成型新工艺:MIM1MIM是一种金属加工成型工艺MIM (Metal injection Molding )是金属注射成形的简称。
是将金属粉末与其粘结剂的增塑混合料注射于模型中的成形方法。
它是先将所选粉末与粘结剂进行混合,然后将混合料进行制粒再注射成形所需要的形状。
2MIM工艺流程步骤MIM流程结合了注塑成型设计的灵活性和精密金属的高强度和整体性,来实现极度复杂几何部件的低成本解决方案。
MIM流程分为四个独特加工步骤(混合、成型、脱脂和烧结)来实现零部件的生产,针对产品特性决定是否需要进行表面处理.混合精细金属粉末和热塑性塑料、石蜡粘结剂按照精确比例进行混合。
混合过程在一个专门的混合设备中进行,加热到一定的温度使粘结剂熔化。
大部分情况使用机械进行混合,直到金属粉末颗粒均匀地涂上粘结剂冷却后,形成颗粒状(称为原料),这些颗粒能够被注入模腔。
成型注射成型的设备和技术与注塑成型是相似的。
颗粒状的原料被送入机器加热并在高压下注入模腔。
这个环节形成(green part)冷却后脱模,只有在大约200°c的条件下使粘结剂熔化(与金属粉末充分融合),上述整个过程才能进行,模具可以设计为多腔以提高生产率。
模腔尺寸设计要考虑金属部件烧结过程中产生的收缩。
每种材料的收缩变化是精确的、已知的。
脱脂脱脂是将成型部件中粘结剂去除的过程。
这个过程通常分几个步骤完成。
绝大部分的粘结剂是在烧结前去除的,残留的部分能够支撑部件进入烧结炉。
脱脂可以通过多种方法完成,最常用的是溶剂萃取法。
脱脂后的部件具有半渗透性,残留的粘结剂在烧结时很容易被挥发。
烧结经过脱脂的部件被放进高温、高压控制的熔炉中。
该部件在气体的保护下被缓慢加热,以去除残留的的粘合剂。
粘结剂被完全清除后,该部件就会被加热到很高的温度,颗粒之间的空隙由于颗粒的融合而消失。
该部件定向收缩到其设计尺寸并转变为一个致密的固体。
对于大多数的材料,典型的烧结密度理论上大于97%。
金属注射成型
一.成型的工艺参数的设定 比如合理设定注射温度、注射时间、开模时间等。 二.喂料在模腔中的流动行为 因为金属注射制品大多数是形状复杂、精度要求 高的异型件,喂料在模腔中的流动行为就涉及到 模具设计的问题,包括进料口的位置、流道的形 状和长短、排气孔的设置和分布等。因此,在模 具设计与制造中,必须对喂料的流变性质、模腔 内温度和残余应力分布进行详细分析。
金属注射成型 (Metal Injection Molding)
金属注射成型(Metal Injection Molding,简称 MIM)是在塑料注射成型和粉末冶金的基础上发 展起来的一种新工艺。 与粉末冶金相比,MIM有能一次成型复杂的金属 零件或粉末冶金使用的毛坯、制件表面质量好、 废品率低、易于实现自动化、生产效率高等优点; 由于加入粘接剂,它对模具材料的要求相对降低。 但与塑料注射成型工艺相比,MIM过程对模具和 工艺控制要求较高。
混炼的方法一般是先加入高熔点组元熔化,然 后降温,加入低熔点组元,然后分批加入金属粉 末。这样能防止低熔点组元的气化或分解,分批 加入金属粉可防止降温太快而导致的扭矩急增, 减少设备损失。 对于不同粒度粉末搭配时的加料方式,则是 先将较粗的15-40um水雾化粉加入粘结剂中,然 后加入5-15um粉,最后加入粉度≤5um粉,这样 得到的最终产品的收缩变化很少。为了在粉末周 围均匀涂覆一层粘结剂,还可将金属粉末直接加 入到高熔点组元中,再加入低熔点组分,最后去 除空气即可。 混料装置:双螺旋挤出机、Z形叶轮混料机、单 螺旋挤出机、柱塞式挤出机、双行星混炼机、双 凸轮混料机等,这些混料装置都适合于制备粘度 在1-1000Pa· s范围内的混合料。
烧结
烧结是粉末冶金(PM)的一个重要环节,同 时也是MIM工艺的最后一道工序。烧结除了完全 脱除预制坯中残留的粘接剂外,主要是使预制坯 的金属颗粒间形成金属键连接,成为具有一定机 械物理性能的金属制品。
MIM金属注射成形工艺
MIM材料性能指标参考
第十五页,共20页。
料专家Wiech博士发明,如今已成为世界粉末冶金领域发展最快的高新技术。由于该技术的独特优
点和先进性,被美国列为不对外扩散技术加以保密,直到1985年才向全世界公布这一技术,而在这期
间美国国内的MIM技术得以成熟并迅速发展形成产业化。该项技术向世界披露后得到世界 各国政府、学术界、企业界的广泛重视,并投入了大量人力物力和财力予以开发研究。 其中日本在研究上十分积极而且表现突出,许多大型株式会社参与了MIM技术的工业化推
?
MIM能做到多高等级精度?
第十三页,共20页。
MIM 金属 注射成型技术
MIM 工艺起 源与特点
MIM 工 艺流程
MIM 能做 哪些零件
?
MIM和其它工艺 比有什么优点?
什么情况该 用MIM工艺
?
MIM产品设计 需要注意什么
?
MIM能做到 多高精度?
常用的材料及如何选材?
材料的选择主要由设计所要求的性能所决定,如强度,硬度,耐磨性等. 常用材料见下表:
MIM工艺起源与特点
第一页,共20页。
MIM 工艺起 源与特点
MIM 工 艺流程
MIM 能做 哪些零件
?
MIM 金属 注射成型技术
MIM和其它工艺 比有什么优点?
什么情况该 用MIM工艺 ?
MIM产品设计 需要注意什么
?
MIM能做到 多高精度?
MIM设计如何选材 及常用材料有哪些
?
MIM工艺起源与特点
?
MIM 金属 注射成型技术
MIM和其它工艺 比有什么优点?
什么情况该 用MIM工艺
?
MIM产品设计 需要注意什么
金属粉末注射成型技术(MIM)
金属粉末注射成型技术(Metal Powder Injection Molding,简称MIM)是将现代塑料注射成形技术引入粉末冶金领域而形成的一门新型粉末冶金近净形成形技术。
其基本工艺过程是:首先将固体粉末与有机粘结剂均匀混练,经制粒后在加热塑化状态下(~150℃)用注射成形机注入模腔内固化成形,然后用化学或热分解的方法将成形坯中的粘结剂脱除,最后经烧结致密化得到最终产品。
与传统工艺相比,具有精度高、组织均匀、性能优异,生产成本低等特点,其产品广泛应用于电子信息工程、生物医疗器械、办公设备、汽车、机械、五金、体育器械、钟表业、兵器及航空航天等工业领域。
因此,国际上普遍认为该技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“当今最热门的零部件成形技术”和“21世纪的成形技术”。
美国加州Parmatech公司于1973年发明,八十年代初欧洲许多国家以及日本也都投入极大精力开始研究该技术,并得到迅速推广。
特别是八十年代中期,这项技术实现产业化以来更获得突飞猛进的发展,每年都以惊人的速度递增。
到目前为止,美国、西欧、日本等十多个国家和地区有一百多家公司从事该工艺技术的产品开发、研制与销售工作。
日本在竞争上十分积极,并且表现突出,许多大型株式会社均参与MIM工业的推广,这些公司包括有太平洋金属、三菱制钢、川崎制铁、神户制钢、住友矿山、精工--爱普生、大同特殊钢等。
目前日本有四十多家专业从事MIM产业的公司,其MIM工业产品的销售总值早已超过欧洲并直追美国。
到目前为止,全球已有百余家公司从事该项技术的产品开发、研制与销售工作,MIM技术也因此成为新型制造业中最为活跃的前沿技术领域,被世界冶金行业的开拓性技术,代表着粉末冶金技术发展的主方向MIM技术金属粉末注射成型技术是集塑料成型工艺学、高分子化学、粉末冶金工艺学和金属材料学等多学科透与交叉的产物,利用模具可注射成型坯件并通过烧结快速制造高密度、高精度、三维复杂形状的结构零件,能够快速准确地将设计思想物化为具有一定结构、功能特性的制品,并可直接批量生产出零件,是制造技术行业一次新的变革。
MIM金属粉末注射成型技术简介
MIM金属粉末注射成型技术简介MIM(Metal Injection Molding)金属粉末注射成型技术是一种将金属粉末与聚合物混合并注射成型的成型工艺。
这种工艺结合了传统金属粉末冶金和塑料注射成型技术的优势,可以生产出复杂形状、高精度和高强度的金属零件。
MIM工艺的基本原理是将金属粉末与适当比例的聚合物混合,并在高温下注射进模具中。
注射后,模具中的混合物经过固化和烧结两个步骤。
首先,在固化阶段,聚合物在高温下固化成强度较低的绿坯。
然后,在烧结阶段,通过加热使聚合物燃烧脱除,金属粉末颗粒在密实的绿坯中结合成金属零件。
MIM工艺具有以下几个优点。
首先,它可以实现复杂形状的金属零件的制作,包括内腔、细槽和细孔等特殊结构。
其次,MIM可以生产出精度高、表面光滑的零件。
此外,在同样强度要求下,MIM制件的重量通常比传统制造工艺更轻。
最后,MIM工艺适用于大批量生产,可以实现高效率、低成本的生产。
MIM工艺的主要应用领域包括电子、汽车、医疗、军工等行业。
在电子领域,MIM可以制作出细小的电子器件,如连接器、电池片和耳机插头等。
在汽车领域,MIM可以制作出复杂的发动机零件、传动系统部件和刹车系统组件等。
在医疗领域,MIM可以制作出高精度的人工关节、牙科器械和手术工具等。
在军工领域,MIM可以制作出高强度、耐磨的武器部件和飞行器部件等。
然而,MIM工艺也存在一些限制。
首先,MIM工艺的设备和材料成本较高,需要更高的投资。
其次,MIM的制造周期较长,通常需要数周至数月的时间。
最后,MIM工艺的材料种类有限,只适用于可烧结金属粉末,如不锈钢、合金钢和钛合金等。
总的来说,MIM金属粉末注射成型技术是一种高效、精密和经济的金属制造工艺。
随着对金属零件的需求不断增加,MIM有望在各行业中得到更广泛的应用。
未来,随着新材料的发展和工艺改进,MIM技术将进一步提升零件的性能和质量,为各行业的发展带来更多的机遇和挑战。
MIM(金属粉末注塑成型)技术介绍
MIM(金属粉末注塑成型)技术介绍MIM是将现代塑料注射成形技术引入粉末冶金领域而形成的一种全新的金属零部件近净成形加工技术,是近年来粉末冶金学科和工业领域中发展十分迅猛的一项高新技术。
MIM的工艺步骤是:首先选取符合MIM要求的金属粉末与有机粘结剂在一定温度条件下采用适当的方法混合成均匀的喂料,然后经制粒后在加热塑化状态下用注射成形机注入模具型腔内获得成形坯,再经过化学或溶剂萃取的方法脱脂处理,最后经烧结致密化得到最终产品。
MIM产品的特点:1、零部件几何形状的自由度高,能像生产塑料制品一样,一次成形生产形状复杂的金属零部件 ;2、 MIM产品密度均匀、光洁度好,表面粗糙度可达到Ra 0.80 ~ 1.6 μm ,重量范围在 0.1 ~200g。
尺寸精度高(± 0.1% ~±0.3% ),一般无需后续加工 ;3、适用材料范围宽,应用领域广,原材料利用率高,生产自动化程度高,工序简单,可实现连续大批量生产 ;4、产品质量稳定、性能可靠,制品的相对密度可达95% ~ 99% ,可进行渗碳、淬火、回火等热处理。
产品强度、硬度、延伸率等力学性能高,耐磨性好,耐疲劳,组织均匀;国际上普遍认为MIM技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“21世纪最热门的零部件的成形技术”。
MIM技术优势参数MIM传统 PM机械加工精密铸造相对密度98%98%100%98%拉伸强度高低高高延伸率高低高高硬度高低高高复杂程度高低高中表面粗糙度高中高中量产可行性高高低中材料范围高高高中- 高成本中低高中MIM与传统粉末冶金相对比MIM可以制造复杂形状的产品,避免更多的二次机加工。
MIM产品密度高、耐蚀性好、强度高、延展性好。
MIM 可以将 2 个或更多 PM 产品组合成一个MIM产品,节省材料和工序。
MIM与机械加工相对比MIM设计可以节省材料、降低重量。
MIM可以将注射后的浇口料重复破碎使用,不影响产品性能,材料利用率高。
金属粉末注射成型技术
金属粉末注射成型技术前言金属材料是工业制造领域中最为基础和重要的材料之一,目前制造金属零件的方法主要有:铸造、锻造、加工、焊接等。
其中,传统的金属制造方法存在着一些局限性,比如造型精度有限、生产周期长等。
为了克服这些限制并满足不同领域对金属产品更高的要求,人们逐渐发展和推广了一种被称为“金属粉末注射成型技术”的新工艺。
什么是金属粉末注射成型技术?金属粉末注射成型技术(Metal Powder Injection Molding,简称MIM)是将金属粉末和橡胶树脂混合物压制成为原型,然后将原型通过特定的注射设备放到高温致密炉中进行高温烧结,同时橡胶树脂减数挥发,形成致密的金属部件。
注射成型过程的实标非常高,达到了85-95%。
与其他规整制造方式相比,MIM技术可制造出一些传统方法无法实现的金属部件。
同时,压缩烧结过程适用于大量制造、复杂的几何结构和高精度的细小零件。
MIM技术的工艺过程1.原材料制备:将金属粉末与橡胶树脂按配方按比例调配混合,制成金属粉末和树脂丸子。
2.注射成型:将上述丸子通过注射设备注射到有轨迹的催化剂上形成模具。
3.脱模:用加压空气将模具从漆面上分离出来。
4.热炼:采用专业热炼设备热炼金属制成物。
5.成品处理:通过各种加工手段对金属零件进行修整和抛光。
MIM技术的优势MIM技术具有以下优势:•可以生产细小的零件和高精度的特殊形状。
•最大程度上避免了应力集中的情况。
•可以制造比传统制造方式更复杂的形状、零件和组件。
•由于采用的是金属粉末生产工艺,因此可以大量节省原材料和成本。
•高生产效率,不需要进行额外的热加工或与这些工艺相似的形式。
•可适应多种金属材料的制造。
MIM技术的应用领域MIM技术在汽车、医疗设备、手表、航空航天、枪械等领域广泛应用。
其中汽车领域应用最为广泛。
例如,汽车行业中的高性能活塞、变速器、发动机零件等,都可以通过MIM技术制造,拥有更高的强度和更好的密封性能。
在枪械领域,MIM技术可以用于生产枪管、扳机、弹膛等零件。
金属注射成型MIM模具设计
金属注射成型MIM模具设计金属注射成型(Metal Injection Molding,简称MIM)是一种新兴的制造技术,将金属粉末与热塑性聚合物以及其他添加剂混合,形成注射成型的原料,在高温下注入模具中进行成型,最终得到具有金属特性的成品。
MIM模具设计是成功实施MIM工艺的关键环节之一,下面将对MIM模具设计进行详细介绍。
首先,MIM模具的设计需要考虑材料的选择。
MIM可用的材料种类众多,如不锈钢、钛合金、钨合金等。
在选择材料时需要考虑成品的机械性能、耐腐蚀性能、热处理能力等因素。
而这些因素又会影响到模具的设计,如材料的硬度会影响到模具的磨损情况,材料的良好流动性则需要考虑模具的通道设计等。
其次,MIM模具设计需要考虑成品的形状和尺寸。
由于MIM是注塑成型技术,所以成品的形状可以非常复杂,包括一些细小零件,如齿轮、螺纹等。
在设计模具时需要考虑到成品的流道、塑料的冷却等因素,以确保成品的精度和质量。
另外,MIM模具设计还需要关注模具的维修和更换。
由于MIM产品一般具有较高的成型精度和表面质量要求,模具的磨损会直接影响到成品的质量。
因此,模具需要设计成易于维修和更换的结构,例如采用可拆卸的模具部件、易于更换的耐磨部位等,以降低生产成本和提高效率。
另外,MIM模具设计还需要考虑生产的经济性。
对于大批量生产的MIM产品来说,一套好的模具设计可以大幅度降低生产成本和周期。
因此,在设计模具时需要考虑到模具的制造、使用和维护方面的综合成本,以及模具的生产周期和产能等因素。
最后,MIM模具设计需要考虑到生产的可靠性和稳定性。
MIM是一种复杂的制造工艺,模具是该工艺的核心设备,因此,模具的设计需要具有稳定性和可靠性,以保证生产的连续性和成品的质量稳定。
总结起来,金属注射成型(MIM)模具设计是成功实施MIM工艺的关键环节之一、在设计MIM模具时,需要考虑材料的选择、成品的形状和尺寸、模具的维修和更换、生产的经济性以及生产的可靠性和稳定性等因素。
金属的粉末注射成型技术
金属的粉末注射成型技术
金属粉末注射成型技术(Metal Powder Injection Molding,简称MIM)是发展至今最先进的一种小批量生产要求精密复杂零件的高技术技术。
MIM技术是一种热致凝固的成型技术,能够在低温(一般在200-300℃)及低压(一般为50-150MPa之间)的条件下进行加工,将外形精密、规格复杂的金属粉末挤压成型,利用高温热致凝固成型而制得复杂的金属零件。
MIM技术的主要流程主要包括材料制备、模具制备和成型烧结三个部分。
材料制备包括:混合、消粒、压制、搅拌及造粒等工序。
MIM技术所用金属粉末材料分两大类:一类是质量比较稳定的内部结构欠晶的粉末,铁、钢、铜;另一类是其他一些稀有金属,如钛、硼、银、锆、钨等,其含金量比较高。
金属粉末的粒径大小以及水合作用均对模具的质量有明显影响。
模具制备,是将金属粉状混合物填充进模具,用特殊的装置,以精确的压力、温度将粉末材料填缩成固体零件形状的工序,其又分为热凝固成型和气凝固成型,热凝固成型技术中,常用的有塑性凝固注射成型、凝固热压成型、凝固热熔成型。
最后是成型烧结,在高温等环境下,通过去除材料体内的组分,形成固态聚合物状态,从而达到陶瓷晶体的烧结。
金属粉末注射成型技术
金属粉末注射成型技术金属粉末注射成型(Metal Powder Injection Molding,简称MIM)技术是一种通过将金属粉末与热塑性聚合物射出成型技术相结合,制造复杂形状的金属制品。
MIM技术结合了传统的注射成型和金属粉末冶金技术的优点,能够高效、精确地制造出形状复杂的金属部件。
下面将从工艺原理、材料特点、工艺流程以及应用领域等方面详细介绍MIM技术。
一、工艺原理MIM技术主要包括四个步骤,即粉末混合、注射成型、烧结和后处理。
首先,将金属粉末与增塑剂、溶剂等辅助剂混合均匀,形成可塑性的混合料。
然后,将混合料装入注射机中,通过高压力将混合料注射至模具腔穴中,得到近成型的部件。
接下来,通过烧结工艺,将成型的部件进行加热,使金属粉末颗粒之间相互扩散,实现部件的致密化和结合。
最后,进行去脱模、表面处理等后处理工艺,使得最终制品达到所需的精度和表面质量。
二、材料特点MIM技术可以制造多种金属的制品,包括不锈钢、钛合金、铜合金、铁合金等。
这些材料具有良好的机械性能、耐磨、耐腐蚀等特点,可以满足各种应用领域的需求。
金属粉末的粒度一般在5-20μm之间,可以根据制品要求进行选择。
此外,MIM制品可以采用多种表面处理工艺,如抛光、电镀、喷涂等,进一步提高产品的表面质量和装饰效果。
三、工艺流程MIM技术的工艺流程相对复杂,包括原料准备、混合、注射、烧结和后处理等环节。
首先,需要根据制品要求选择合适的金属粉末和添加剂,并对其进行筛选和处理。
然后,将金属粉末与增塑剂、溶剂等辅助剂进行混合,形成可塑性的混合料。
接下来,将混合料装入注射机中,通过高压力将混合料注射至模具腔穴中。
然后,将近成型的部件进行烧结,使其实现致密化和结合。
最后,通过去脱模、除渣、表面处理等后处理工艺,得到最终的金属部件。
四、应用领域MIM技术的应用领域非常广泛,包括电子通讯、汽车工业、医疗器械、军工等领域。
在电子通讯领域,MIM技术可以制造小型高精度的连接器、插件等零部件,满足电子设备不断减小体积和提高性能的需求。
金属注射成型综述
金属注射成型综述金属注射成型(Metal Injection Molding,简称MIM)是一种结合了传统塑料注射成型和金属粉末冶金工艺的先进制造技术。
它通过将金属粉末与聚合物粉末及其它添加剂混合,制作成可注射成型的混合粉末,然后在恒温的注射成型机中将其注射到模具中,进行成型和烧结处理,最终得到金属零件。
1.精度高:通过粉末注射成型技术,可以制造出复杂形状的金属零件,具有较高的尺寸和形状精度。
2.材料利用率高:金属注射成型可以利用金属粉末的纯度较低,成本较高的优势,降低材料成本。
3.节约能源:相比传统金属加工技术,金属注射成型过程中不需要进行大量的切削工序,可以节约能源。
4.生产周期短:金属注射成型可以大量生产复杂形状的金属零件,提高生产效率,缩短生产周期。
金属注射成型的工艺流程包括原料制备、混合、注射成型、脱模、烧结等环节。
在原料制备阶段,需要选择合适的金属粉末、聚合物粉末和添加剂,并将其进行混合,得到可注射成型的混合粉末。
在注射成型过程中,将混合粉末注射到恒温的注射成型机中,通过热熔和压力作用,使混合粉末填充到模具的腔室中。
之后,脱模和烧结过程分别用于去除模具和烧结获得密实的金属零件。
金属注射成型在汽车、医疗器械、军工、电子等领域有广泛的应用。
例如,在汽车制造中,金属注射成型可以制造出轻量化的零部件,提高汽车的燃油效率;在医疗器械领域,金属注射成型可以用于制造高精度的手术工具和植入物等。
尽管金属注射成型具有广阔的应用前景,但也存在一些挑战和限制。
首先,金属注射成型设备和工具的成本较高,限制了技术的普及和应用。
其次,金属注射成型技术对原料的选择和制备要求较高,对于一些特殊金属材料的应用仍存在挑战。
此外,金属注射成型过程中的残留应力和尺寸变化等问题,也需要进一步研究和解决。
综上所述,金属注射成型是一种先进的制造技术,能够制造复杂形状的金属零件,具有高精度、材料利用率高、节约能源和生产周期短等优势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属注射成型MIM(metal injection molding)
MIM技术的特点
MM作为一种制造高质量精密零件的近净成形技术,具有常规粉末冶金和机加工方法无法比拟的优势。
MM能制造许多具有复杂形状特征的零件:如各种外部切槽,外螺纹,锥形外表面,交叉孔盲孔,凹台与键销,加强筋板,表面滚花等等,具有以上特征的零件都是无法用常规粉末冶金方法得到的。
由于通过MM制造的零件几乎不需要再进行机加工,所以减少了材料的消耗,因此在所要求生产的复杂形状零件数量高于一定值时,MM就会比机加工方法更为经济。
图1给出了MM零件的生产量对成本的影响。
可以看出,重4.5g的零件的每件生产成本,年产250000件时为$1.4,年产3000000件以上时降为$0.2。
此图还指出零件尺寸对成本的影响——零件越大,250000件与3000000件之间的成本差就越小。
另一典型的与MM竞争的工艺是精密铸造,表1比较了这两种工艺制造的零件的特点,在许多方面,MM 都具有较大的优势。
但这不足以说明全部问题,许多由MM制造的形状是其它途径无法得到的。
MM和精密铸造成形能力的比较
特点精密铸造 MIM
最小孔直径 2mm 0.4mm
2mm直径的盲孔最大深度2mm 20mm
最小壁厚2mm <1mm
最大壁厚无限制 10mm
4mm直径的公差±0.2mm ±0.06mm
表面粗糙度(Ra)5un 1um
MIM技术的主要特点:MIM技术可以低成本地生产复杂形状的高性能产品。
MM技术由于采用大量的粘结剂作为增强流动的手段,所以可以像塑料工业中一样任意成形各种复杂形状的金属零件,这是传统粉末冶金模压工艺不可能达到的。
而且由于注射成形是一种近净成形工艺,基本上不需要后续加工,使零件制造成本大大降低,以前需要几十道机加工工序的零件可以一次成形获得。
另外,由于注射成形时流动充填模腔的均匀性,使得MM产品各处密度均匀,避免了PM模压工艺中不可避免的密度不均匀性,且由于采用细粉,产品烧结后可达到很高的密度。
因而,MM产品的力学性能一般都优于模压和精密铸造产品。
因此,MM技术被认为是“当今最热门的零部件成形技术”。