2011年江苏专转本考试数学试卷及答案
江苏省专转本高数真题及答案
![江苏省专转本高数真题及答案](https://img.taocdn.com/s3/m/c206ae33dc36a32d7375a417866fb84ae45cc39a.png)
江苏省专转本⾼数真题及答案⾼等数学试题卷(⼆年级)注意事项:出卷⼈:江苏建筑⼤学-张源教授1、考⽣务必将密封线内的各项⽬及第 2页右下⾓的座位号填写清楚. 3、本试卷共8页,五⼤题24⼩题,满分150分,考试时间120分钟. ⼀、选择题(本⼤题共6⼩题,每⼩题4分,满分24分) 1、极限 lim(2xsin 1 Sin 3x )=()x xA. 0B.2C.3D.52、设f (x)⼆2)sinx ,则函数f (x )的第⼀类间断点的个数为()|x|(x -4)'A. 0B.1C.2D.3133、设 f(x) =2x 2 -5x 2,则函数 f(x)()A.只有⼀个最⼤值B.只有⼀个极⼩值C.既有极⼤值⼜有极⼩值D.没有极值34、设z =ln(2x)-在点(1,1)处的全微分为()y1 1A. dx - 3dyB. dx 3dyC. ⼀ dx 3dyD. - dx - 3dy2 21 15、⼆次积分pdy.y f (x, y )dx 在极坐标系下可化为()sec'— 'sec jA. —4d ⼨ o f (「cos 〒,「sin ⼨)d 「B. —4d 丁 ? f (「cos 〒,「sin ⼨)「d 「&下列级数中条件收敛的是()⼆、填空题(本⼤题共6⼩题,每⼩题4分,共24分)7要使函数f(x)=(1-2x )x 在点x=0处连续,则需补充定义f(0)= _________________ . 8、设函数 y = x (x 2 +2x +1)2 +e 2x ,贝⼙ y ⑺(0) = _______ .江苏省 2 0 12 年普通⾼校专转本选拔考试2、考⽣须⽤钢笔或圆珠笔将答案直接答在试卷上, 答在草稿纸上⽆效. sec ? iC. o f (「cosd 「sin Jd 「D.4sec ?2d 丁 ? f (「cos ⼨,「sin ⼨):?d "「TVXTnW ?、n9、设y =x x (x >0),则函数y 的微分dy =.(1)函数f (x)的表达式;11、设反常积分[_e 」dx=q ,则常数a= ______________ . 12、幕级数£上律(x -3)n 的收敛域为 __________________ :“⼆ n3 三、计算题(本⼤题共8⼩题,每⼩题8分,共64 分)2x +2cosx —2 lim ⼚x 0x ln(1 x)2116、计算定积分",-严.17、已知平⾯⼆通过M (1,2,3)与x 轴,求通过N(1,1,1)且与平⾯⼆平⾏,⼜与x 轴垂直的直线⽅程.18、设函数 “ f(x,xyr (x 2 y 2),其中函数f 具有⼆阶连续偏导数,函数具有⼆阶连-2续导数,求⼀Zc^cy19、已知函数f(x)的⼀个原函数为xe x ,求微分⽅程丫 4/ 4^ f (x)的通解. 20、计算⼆重积分..ydxdy ,其中D 是由曲线y 「x-1,D四、综合题(本⼤题共2⼩题,每⼩题10分,共20分)21、在抛物线y =x 2(x 0)上求⼀点P ,使该抛物线与其在点P 处的切线及x 轴所围成的平⾯图形的⾯积为2,并求该平⾯图形绕x 轴旋转⼀周所形成的旋转体的体积.3x322、已知定义在(⽫,畑)上的可导函数f(x)满⾜⽅程xf(x)-4( f(t)dt=x 3-3,试求:10、设向量a,b 互相垂直,且= 3,^=2,,贝 U ^+2b13、求极限 14、设函数 y = y(x)由参数⽅程 xdty = t 2 2lnt所确定, 求鱼dx dx 2 °15、求不定积分 2x 1 J 2~cos x1直线T 及x 轴所围成的平⾯(2)函数f(x)的单调区间与极值;(3)曲线y= f(x)的凹凸区间与拐点.五、证明题(本⼤题共2⼩题,每⼩题9分,共18分)123、证明:当0 : x :: 1 时,arcsinx x x3.6⼗x0 g(t)dt g(x)24、设f(x)⼀2—XHO,其中函数g(x)在(⽫,母)上连续,且lim g(x⼃=3证x T1—COSX卫(0) x = 01明:函数f (x)在X = 0处可导,且f (0)⼔.⼀. 选择题1-5BCCABD⼆. 填空题7-12e°128x n(1 ln x)dx5ln 2 (0,6]13求极限x m0 2x 2 cos x - 216、计算定积分 ----------- dx .1x ? 2x T13 t -^dt ⼆21 1 :; t2 1 t2dt =2arctant 1 t2原式=x叫x2 2 cos x -2 2x—2si nx=limx_0x—sin x3= lim4x3 x刃2x314、设函数y = y(x)由参数⽅程所确定,求2』=t +21 nt dydxd2ydx2原式号dx dydtdx2t -t12td2y_d燈)dtdx2t2 dt t2dx2dxdtt2115、求不定积分2x 12dx. cos x2x 1原式=i'2■ dx ' cosx ⼆(2x 1)d tanx ⼆(2x 1) tanx - tanxd(2x 1) 原式=令.2x -1 “,则原式=.?? 32(1)函数f (x)的表达式;17、已知平⾯⼆通过M (1,2,3)与x 轴,求通过N(1,1,1)且与平⾯⼆平⾏,⼜与x 轴垂直的直线⽅程.解:平⾯⼆的法向量n -OM 「=(0,3,⼀2),直线⽅向向量为S = n "「= (0,-2,-3),直线⽅程:x -1 y -1 z -10 ⼀ -2 ⼀ -3 18、设函数z ⼆f(x,xy^ (x 2 y 2),其中函数f 具有⼆阶连续偏导数,函数具有⼆阶连Z =f i f 2 y 2x ' zf i2 x f 2 xyf 22 2x 2y : .x :x.y19、已知函数f (x)的⼀个原函数为xe x ,求微分⽅程y” ? 4y ' 4y = f (x)的通解. 解:f (x) = (xe x ^ = (x 1)e x ,先求 y ” ? 4y ' 4y =0 的通解,特征⽅程:r 2 ? 4r *4 = 0,h 、2 = -2,齐次⽅程的通解为Y =(G C 2X )e'x .令特解为y =(Ax B)e x ,代⼊原⽅程9Ax 6A 9^x 1,有待定系数法得:__ 120、计算⼆重积分i iydxdy ,其中D 是由曲线y = :x-1,直线y= —x 及x 轴所围成的平⾯D 2闭区域.原式=ydy 丫 dx 1.j 0'2y12四. 综合题21、在抛物线y =x 2(x 0)上求⼀点P ,使该抛物线与其在点P 处的切线及x 轴所围成的平⾯图形的⾯积为2,并求该平⾯图形绕x 轴旋转⼀周所形成的旋转体的体积. 3 解:设 P 点(x 0,x ° )(x 0 0),则 k 切=2x °,切线:,y - x ° = 2x 0(x- x °)续导数,求;2z解:9A=1QA+9B =1解得* A 」9 -1,所以通解为丫"6)⼧(討?2x/即,y +x ° =2x °x ,由题意((y x^ 2x 0s y)dy =⼻,得 X0 = 2,P(2,4)(2)函数f(x)的单调区间与极值;(3)曲线—f(x)的凹凸区间与拐点.x解:(1)已知 xf(x)-4 4 f (t)dt =X 3 -3两边同时对 x 求导得:f (X )? x 「(x)-4f(x) =3x 2 3即.y" — -y=3x 则 y = —3x 2+cx 3 由题意得:f(1)=—2, c=1,贝U f(x)=—3x 2 + x 3 ■ x ' (2) f (x) =3x 2 -6x = 0,论=0,x 2 = 2 列表讨论得在(-⼆,0) (2,::)单调递增,在(0,2)单调递减。
2011年江苏专转本高等数学试卷及答案
![2011年江苏专转本高等数学试卷及答案](https://img.taocdn.com/s3/m/10a50316ff00bed5b9f31d8f.png)
江苏省2011年普通高校专转本统一考试试卷高等数学试卷一、选择题(本大题共6小题,每小题4分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,请把所选项前的字母填在答题卷的指定位置上)1、当x→0时,函数f(x)=e-x-1是函数g(x)=x的。
A、高阶无穷小B、低阶无穷小C、同阶无穷小D、等价无穷小评析:本题是考查无穷小阶的比较,两个无穷小之间的关系通过作“商的极限”可以得出相x2x2x 2与函数g(x)为同阶无穷小,因此选C。
这种题型还是比较常见的,关键是掌握无穷小阶的比较的概念,即有三种关系:高阶、同阶(包括等价)、低阶。
h→0hA、-4B、-2C、2D、4评析:本题是一道经典的关于导数定义的考查题型,即通过导数的定义来构造极限。
h→0h h→0-2hf'(x0)=-2,因此选B。
3、若点(1,-2)是曲线y=ax-bx的拐点,则。
A、a=1,b=3B、a=-3,b=-1C、a=-1,b=-3D、a=4,b=6评析:本题间接地考查了导数的应用,即利用已知极值点或拐点的有关信息反求函数中的参数。
对于多项式函数y=ax-bx,显然满足二阶可导的,因此点(1,-2)一定是使得二阶导数等于零的点,因为y''=6ax-2b,所以y''(1)=6a-2b=0,又点(1,-2)本身也是曲线y=ax-bx2上的点,所以y(1)=a-b=-2,结合两个关于a,b的方程解得a=1,b=3,因此选A。
4、设z=f(x,y)为由方程z1 1 3-3yz+3x=8所确定的函数,则∂z∂y|x=0y=0=。
A、-2 B、2C、-2D、2x2 x xe-x-1e-1x 1应的关系,因为lim=lim=lim=(常数),所以当x→0时函数f(x)2f(x-h)-f(x+h)002、设函数f(x)在点x处可导,且lim=4,则f(x)=。
f(x-h)-f(x+h)f(x-h)-f(x+h)'32323评析:本题考查二元隐函数求偏导,利用的是构造三元函数F (x ,y ,z )=z2y3-3yz+3x-8,则F y =-3z,F z =3z -3y ,于是∂y=- z=- 3z 2 -3y=3z 2 -3y;把x=0,y=0代入到原方程中得z =2,所以 ∂z ∂y | x =0 y =0 = 3⋅2 3⋅2-3⋅0 = 12,因此选B 。
2011江苏专转本数学试题真题及参考答案
![2011江苏专转本数学试题真题及参考答案](https://img.taocdn.com/s3/m/c9d1fa5b77232f60ddcca1c6.png)
8.已知矩形的面积为10,则它的长与宽之间的关系用图象大致可表示为()
9.铜仁市某中学七年级八个班的学生到锦江两岸植树,各班植树情况如下表:
班级一二三四五六七八
棵数15 18 22 25 29 14 18 19
下列说法错误的是()
A.这组数据的众数是18 B.这组数据的中位数是18.5
14.某库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来.如图所示,则这堆正方体货箱共有箱.
15.用“※”定义新运算:对于任意实数,,都有※.例如※,那么:※= .
16.掷一枚硬币两次,至少有一次出现正面的概率是.
17.如果关于的一元二次方程有两个不相等的实数根,那么的取值范围是.
乙队单独完成任务需要支付的费用为:
即,时间充裕应选乙队
六、(本题满分14分)
25. (1)∵抛物线交轴于点(,0)、(-1,0)
∴,∴,∴,∴(3,0)
把(3,0)、(-1,0)代入得:
解得:∴抛物线的解析式:
(2)抛物线的解析式:∴顶点(1,4)
由(1)得:∴, ,
∴,∴△是直角三角形。
(3)∵∠=∠∴∠=∠
22.今年3月5日,铜仁市某中学九年级一班全体同学分为3部分参加“服务社会”的活动。一部分学生打扫街道,一部分学生去敬老院服务,一部分学生到社区文艺演出。数学老师做了如下条形统计图和扇形统计图.请根据所作的两个图形,
解答:
(1)九年级一班共有名学生。
(2)参加社区文艺演出有名学生。
(3)去敬老院服务有名学生。
A、1.504×B、1.5×C、1.5×D、15.04×
3.已知圆锥的底面周长为58cm,母线长为30cm,求得圆锥的侧面积为( )
[专升本(地方)考试密押题库与答案解析]江苏省专升本高等数学真题2011年
![[专升本(地方)考试密押题库与答案解析]江苏省专升本高等数学真题2011年](https://img.taocdn.com/s3/m/3ff4c00b524de518974b7d1d.png)
[专升本(地方)考试密押题库与答案解析]江苏省专升本高等数学真题 2011 年
[解析] 根据题意:
则,代入 x=1,得
问题:5. 定积分的值为______ 答案:[考点] 定积分——定积分计算技巧.
[解析] 根据题意得:
因为 x3 是有函数, 所以,
即答案为 问题:6. 幂级数的收敛域为______ 答案:[-1,1)[考点] 无穷级数——幂级数.
f(x)=y'+2y =(x+2)ex+2·(x+1)ex =(3x+4)ex, 则 y"+3y'+2y=(3x+4)ex. 求上式特征方程 r2+3r+2=0,得 r1=-1,r2=-2, 所以,y"+3y'+2y=(3x+4)ex 的通解为 Y=C1e-x+C2e-2x, 因为 λ=1 不是特征根, 所以原方程的一个特解为 y=(Ax+B)ex, 即 y'=(Ax+A+B)ex y"=(Ax+2A+B)ex, 上述二式代入 y"+3y'+2y=(3x+4)ex 得 (Ax+2A+B)ex+3(Ax+A+B)ex+2(Ax+B)ex=(3x+4)ex, 化解为 6Ax+5A+6B=3x+4, 解得.
解上式得 a=1, 易知曲线与横轴交点为 x=2, 则 f(x)=-x2+2x.[考点] 定积分——定积分运用. 5. 求平面图形 D 绕 x 轴旋转一周所形成的旋转体的体积 Vx; 答案:解:根据上述计算, 因为 f(x)=-x2+x,
江苏专转本2001-2011年数学历年真题
![江苏专转本2001-2011年数学历年真题](https://img.taocdn.com/s3/m/dbb2b26927d3240c8447efd1.png)
江苏省2001年普通高校“专转本”统一考试试卷高等数学注意事项:1. 考生务必将密封线内的各项填写清楚。
2. 考生须用钢笔或圆珠笔将答案直接打在试卷上,答在草稿纸上无效。
3. 本试卷共8页,四大题24小题,满分100分,考试时间120分钟。
题号 一 二 三 四 合计分数评卷人 得分一、选择题(本大题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项是符合要求的,请把所选项前的字母填在题后的括号内)。
1、下列极限正确的是( )A. 01lim(1)x x e x→+= B. 11lim(1)x x e x →∞+=C.1lim sin1x x x →∞= D. 01lim sin 1x x x→=2、不定积分211dx x=-⎰( )A.211x- B.211C x+- C. arcsin x D. arcsin x C +3、若()()f x f x =-,且在(0,)+∞内:()0,()0f x f x '''>>,则()f x 在(,0)-∞内必有( )A.()0,()0f x f x '''<< B. ()0,()0f x f x '''<> C.()0,()0f x f x '''>< D. ()0,()0f x f x '''>>4、定积分21x dx -=⎰( )A. 0B. 2C. -1D. 15、方程224x y x +=在空间直角坐标系下表示( )A. 圆柱面B. 点C. 圆D. 旋转抛物面评卷人 得分二、填空题(本大题共5小题,每小题3分,共15分,请把正确答案的结果填在划线上)。
6、设参数方程为22tx tey t t⎧=⎪⎨=+⎪⎩;则0t dy dx == 。
7、微分方程6130y y y '''-+=的通解为: 。
01—10年江苏专转本数学真题(附答案)
![01—10年江苏专转本数学真题(附答案)](https://img.taocdn.com/s3/m/403c351314791711cc791736.png)
2001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211C 、x arcsinD 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx x x220),(9、函数yx z =的全微分=dz10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos)21ln(arctan π+++=xx y ,求dy .12、计算xx dte x xt x sin lim202⎰-→.等价无穷小,洛必达13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.x 分别为0,1,-1时化简求极限14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 的值. 17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求x z∂∂、yx z ∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程; (2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。
2011年江苏省专转本真题讲解
![2011年江苏省专转本真题讲解](https://img.taocdn.com/s3/m/2fdaa65b52d380eb62946dff.png)
77. A. model B. example C. concept D. idea78. A. waste B. have C. use D. try79. A. interesting B. important C. pressing D. advantageous80. A. unity B. entire C. whole D. complete英语试题卷(非英语类专业)第Ⅱ卷(共50分)Part IV Translation (共35分)Section A (共5小题,每小题4分,共20分〉Directions: Translate the following sentences into Chinese. You may refer to the corresponding passages in Part I.81. Indian food can be the spiciest of al-sometimes it's so hot that it can make your mouth burn! But that'sokay because then you can drink some good Italian or French wine to reduce the burning!82. The number of students using the iPhone is expected to reach about 1,000.This is the first time a particular cell phone has been used on such a huge scale at a Japanese university.83. Due to the shortage of material during the war,she took the opportunity to show that less can trulybe more,introducing turtle-neck (叠领) sweater and pants for women.84. They may not trust their fellow workers and they are unable to join in any group task for fear of beinglaughed at or for fear of having their ideas stolen.85. Some people may look lazy while they are really thinking,planning and researching. We should alremember that great scientific discoveries happened by chance.Section B (共5小题,每小题3分,共15分〉Directions: Translate the following sentences into English.86.日本地震后,人们开始担忧核能安全了。
江苏省专转本高等数学试题题型分类整理
![江苏省专转本高等数学试题题型分类整理](https://img.taocdn.com/s3/m/de34530dccbff121dd3683b9.png)
江苏省普通高校“专转本”统一考试高等数学专转本高数试卷结构知识分类与历年真题●函数、极限和连续●一元函数微分学●一元函数积分学●向量代数与空间解析几何●多元函数微积分●无穷级数●常微分方程时间排序与参考答案◆2004年高等数学真题参考答案◆2005年高等数学真题参考答案◆2006年高等数学真题参考答案◆2007年高等数学真题参考答案◆2008年高等数学真题参考答案◆2009年高等数学真题参考答案◆2010年高等数学真题参考答案◆2011年高等数学真题参考答案◆2012年高等数学真题参考答案◆2013年高等数学真题参考答案江苏省普通高校“专转本”统一考试高等数学试卷结构全卷满分150分一、单选题(本大题共6小题,每小题4分,满分24分) 二、填空题(本大题共6小题,每小题4分,满分24分) 三、解答题(本大题共8小题,每小题8分,满分64分) 四、综合题(本大题共2小题,每小题10分,满分20分) 五、证明题(本大题共2小题,每小题9分,满分18分)知识分类与历年真题一、函数、极限和连续(一)函数(0401)[](]333,0()0,2x x f x x x ⎧∈-⎪=⎨-∈⎪⎩是( ) A.有界函数 B.奇函数 C.偶函数 D.周期函数 (0801)设函数)(x f 在),(+∞-∞上有定义,下列函数中必为奇函数的是( )A.()y f x =-B.)(43x f x y = C.()y f x =-- D.)()(x f x f y -+= (二)极限(0402)当0→x 时,x x sin 2-是关于x 的( )A.高阶无穷小B.同阶无穷小C.低阶无穷小D.等价无穷小(0407)设xx x x f ⎪⎭⎫⎝⎛++=32)(,则=∞→)(lim x f x .(0601)若012lim 2x x f x →⎛⎫ ⎪⎝⎭=,则0lim 3x xx f →=⎛⎫ ⎪⎝⎭( ) A.21 B.2C.3D.31 (0607)已知0→x 时,(1cos )a x ⋅-与x x sin 是等价无穷小,则=a .(0613)计算x →. (0701)若0(2)lim2x f x x→=,则1lim 2x xf x →∞⎛⎫= ⎪⎝⎭( ) A.41B.21 C.2D.4(0702)已知当0→x 时,)1ln(22x x +是x n sin 的高阶无穷小,而x nsin 又是x cos 1-的高阶无穷小,则正整数=n ( ) A.1B.2C.3D.4(0813)求极限:32lim xx x x →∞-⎛⎫⎪⎝⎭. (0901)已知22lim32x x ax bx →++=-,则常数b a ,的取值分别为( ) A.2,1-=-=b a B.0,2=-=b aC.0,1=-=b aD.1,2-=-=b a(0907)已知lim 2xx x x C →∞⎛⎫= ⎪-⎝⎭,则常数=C . (1001)设当0x →时,()sin f x x x =-与()ng x ax =是等价无穷小,则常数,a n 的值为 ( ) A.1,36a n == B.1,33a n == C.1,412a n == D.1,46a n == (1007) 1lim 1xx x x →∞+⎛⎫= ⎪-⎝⎭. (1101)当0→x 时,函数1)(--=x e x f x是函数2)(x x g =的( )A.高阶无穷小B.低阶无穷小C.同阶无穷小D.等价无穷小(1107)已知22lim kxx x e x →∞-⎛⎫= ⎪⎝⎭,则=k _________. (1201)极限1sin 3lim 2sinx x x x x →∞⎛⎫+= ⎪⎝⎭( ) A.0 B.2 C.3D.5(1301)当0x →时,函数()ln(1)f x x x =+-是函数2()g x x =的( ) A.高阶无穷小 B.低阶无穷小C.同阶无穷小D.等价无穷小(1310)设10lim xx a x e a x →+⎛⎫=⎪-⎝⎭,则常数a = . (三)连续(0413)求函数xxx f sin )(=的间断点,并判断其类型. (0501)0=x 是xx x f 1sin )(=的( ) A.可去间断点B.跳跃间断点C.第二类间断点D.连续点(0513)设()2sin 0()0f x xx F x xa x +⎧≠⎪=⎨⎪=⎩在R 内连续,并满足0)0(=f ,(0)6f '=,求a . (0602)函数21sin 0()00x x f x xx ⎧≠⎪=⎨⎪=⎩在0x =处( ) A.连续但不可导B.连续且可导C.不连续也不可导D.可导但不连续(0608)若A x f x x =→)(lim 0,且)(x f 在0x x =处有定义,则当=A 时,)(x f 在0x x =处连续.(0707)设函数1(1)0()20x kx x f x x ⎧⎪+≠=⎨⎪=⎩,在点0=x 处连续,则常数=k .(0807)设函数21()(1)x f x x x -=-,则其第一类间断点为 .(0808)设函数0()tan 30a x x f x x x x+≥⎧⎪=⎨<⎪⎩在点0=x 处连续,则a = .(0902)已知函数423)(22-+-=x x x x f ,则2=x 为)(x f 的( )A.跳跃间断点B.可去间断点C.无穷间断点D.震荡间断点(1123)设210arctan ()1010sin 2ax axe x ax x x xf x x e x x ⎧---<⎪⎪⎪==⎨⎪-⎪>⎪⎩,问常数为何值时:(1)0=x 是函数)(x f 的连续点? (2)0=x 是函数)(x f 的可去间断点? (3)0=x 是函数)(x f 的跳跃间断点? (1202)设()2(2)sin ()4x xf x x x -⋅=⋅-,则函数)(x f 的第一类间断点的个数为( ) A.0 B.1C.2D.3(1207)要使函数()1()12xf x x =-在点0=x 处连续,则需补充定义(0)f =_________.(1303)设sin 20()0xx x f x x ⎧<⎪⎪=⎨>,这点0x =是函数()f x 的( )A.跳跃间断点B.可去间断点C.无穷间断点D.连续点(1307)设1sin0()0x x f x xa x ⎧≠⎪=⎨⎪=⎩在点0x =处连续,则常数a = . 二、一元函数微分学(一) 导数与微分(0403)直线L 与x 轴平行且与曲线xe x y -=相切,则切点的坐标是( ) A.()1,1B.()1,1-C.()0,1-D.()0,1(0409)设()(1)(2)()f x x x x x n =+++,N n ∈,则=)0('f .(0415)设函数)(x y y =由方程1=-yxe y 所确定,求22d d x yx=的值.(0502)若2=x 是函数1ln 2y x ax ⎛⎫=-+ ⎪⎝⎭的可导极值点,则常数=a ( ) A.1-B.21C.21- D.1 (0514)设函数)(x y y =由方程cos sin cos x t y t t t =⎧⎨=-⎩所确定,求d d y x 、22d d yx .(0614)若函数)(x y y =是由参数方程2ln (1)arctan x t y t t⎧=+⎨=-⎩所确定,求d d y x 、22d d yx .(0708)若直线m x y +=5是曲线232++=x x y 的一条切线,则常数=m .(0714)设函数)(x y y =由方程xy e e yx=-确定,求d d x yx=、22d d x y x =.(0802)设函数)(x f 可导,则下列式子中正确的是( ) A.0(0)()lim(0)x f f x f x →-'=- B.000(2)()lim ()x f x x f x f x x→+-'=C.0000()()lim ()x f x x f x x f x x ∆→+∆--∆'=∆D.0000()()lim 2()x f x x f x x f x x∆→-∆-+∆'=∆ (0814)设函数)(x y y =由参数方程sin 1cos x t t y t =-⎧⎨=-⎩(2t n π≠,n Z ∈)所决定,求d d y x 、22d d y x .(0903)设函数00()1sin 0x f x x x x α≤⎧⎪=⎨>⎪⎩在点0=x 处可导,则常数α的取值范围为( ) A.10<<αB.10≤<αC.1>αD.1≥α(0914)设函数)(x y y =由参数方程2ln (1)23x t y t t =+⎧⎨=+-⎩所确定,d d y x 、22d d yx . (0923)已知函数0()10x e x f x x x -⎧<=⎨+≥⎩,证明函数)(x f 在点0=x 处连续但不可导.(1008).若(0)1f '=,则0()()limx f x f x x→--= .(1014)设函数()y y x =由方程2x yy ex ++=所确定,求d d y x 、22d d yx .(1022)设()0()1x x f x xx ϕ⎧≠⎪=⎨⎪=⎩,其中函数()x ϕ在0x =处具有二阶连续导数,且(0)0ϕ=,(0)1ϕ'=,证明:函数()f x 在0x =处连续且可导.(1102)设函数)(x f 在点0x 处可导,且4)()(lim 000=+--→hh x f h x f h ,则=')(0x f ( )A.4-B.2-C.2D.4(1110)设函数x y arctan=,则1d x y==_____________.(1114)设函数)(x y y =由参数方程⎪⎩⎪⎨⎧=++=22ty e tt x y 所确定,求d d y x .(1208)设函数()22221x y x x x e =⋅+++,则=)0()7(y________.(1209)设xy x =(0x >),则函数y 的微分=dy ___________.(1214)设函数)(x y y =由参数方程⎪⎩⎪⎨⎧+=-=tt y tt x ln 212所确定,求d d y x 、22d d y x . (1304)设1y f x ⎛⎫= ⎪⎝⎭,其中f 具有二阶导数,则22d d y x =( )A.231121f f x x x x ⎛⎫⎛⎫'''-+ ⎪ ⎪⎝⎭⎝⎭ B.231121f f x x x x ⎛⎫⎛⎫'''+ ⎪ ⎪⎝⎭⎝⎭ C.231121f f x x x x ⎛⎫⎛⎫'''--⎪ ⎪⎝⎭⎝⎭D.231121f f x x x x ⎛⎫⎛⎫'''-⎪ ⎪⎝⎭⎝⎭(1306)已知函数()f x 在点1x =处连续,且21()1lim 12x f x x →=-,则曲线()f x 在点()1,()f x 处切线方程为( ) A.1y x =-B.22y x =-C.33y x =-D.44y x =-(1309)设函数由参数方程2211x t y t ⎧=+⎨=-⎩所确定,则221d d t yx == .(二)中值定理及导数的应用(0423)甲、乙二城位于一直线形河流的同一侧,甲城位于岸边,乙城离河岸40公里,乙城在河岸的垂足与甲城相距50公里,两城计划在河岸上合建一个污水处理厂,已知从污水处理厂到甲乙二城铺设排污管道的费用分别为每公里500、700元.问污水处理厂建在何处,才能使铺设排污管道的费用最省?(0507)02limsin x x x e e xx x-→--=- . (0508)函数x x f ln )(=在区间[]1,e 上满足拉格郎日中值定理的=ξ . (0521)证明方程:0133=+-x x 在[]1,1-上有且仅有一根.(0603)下列函数在[]1,1-上满足罗尔定理条件的是( ) A.xe y =B.1y x =+C.21x y -=D.xy 11-= (0621)证明:当2x ≤时,332x x -≤.(0703)设函数()(1)(2)(3)f x x x x x =---,则方程()0f x '=的实根个数为( ) A.1B.2C.3D.4(0713)求极限01lim tan x x e x x x→--.(0722)设函数9)(23-++=cx bx ax x f 具有如下性质:(1)在点1-=x 的左侧临近单调减少; (2)在点1-=x 的右侧临近单调增加; (3)其图形在点(1,2)的两侧凹凸性发生改变. 试确定a ,b ,c 的值.(0724)求证:当0>x 时,22(1)ln (1)x x x -⋅≥-.(0809)已知曲线543223++-=x x x y ,则其拐点为 . (0821)求曲线1y x=(0x >)的切线,使其在两坐标轴上的截距之和最小,并求此最小值. (0823)设函数)(x f 在闭区间[]0,2a (0a >)上连续,且)()2()0(a f a f f ≠=,证明:在开区间(0,)a 上至少存在一点ξ,使得()()f f a ξξ=+. (0824)对任意实数x ,证明不等式:(1)1xx e -⋅≤. (0904)曲线221(1)x y x +=-的渐近线的条数为( )A.1B.2C.3D.4(0913)求极限30lim sin x x x x→-.(0921)已知函数13)(3+-=x x x f ,试求: (1)函数)(x f 的单调区间与极值; (2)曲线)(x f y =的凹凸区间与拐点;(3)函数)(x f 在闭区间[2,3]-上的最大值与最小值.(0924)证明:当12x <<时,24ln 23x x x x >+-.(1002)曲线223456x x y x x -+=-+的渐近线共有 ( )A.1条B.2条C.3条D.4条 (1006)设3()3f x x x =-,则在区间(0,1)内 ( ) A.函数()f x 单调增加且其图形是凹的 B.函数()f x 单调增加且其图形是凸的 C.函数()f x 单调减少且其图形是凹的 D.函数()f x 单调减少且其图形是凸的(1013)求极限2|011lim tan x x x x →⎛⎫-⎪⎝⎭.(1021)证明:当1x >时,121122x e x ->+. (1103)若点(1,2)-是曲线23bx ax y -=的拐点,则( ) A.3,1==b aB.1,3-=-=b aC.3,1-=-=b aD.6,4==b a(1113)求极限()()22limln 1xx x eex -→-+.(1121)证明:方程()2ln 12x x ⋅+=有且仅有一个小于2的正实根. (1122)证明:当0>x 时,x x201120102011≥+.(1203)设232152)(x x x f -=,则函数)(x f ( ) A.只有一个最大值 B.只有一个极小值 C.既有极大值又有极小值D.没有极值(1213)求极限()2302cos 2lim ln 1x x x x x →+-+. (1223)证明:当10<<x 时,361arcsin x x x +>. (1302)曲线22232x xy x x +=-+的渐近线共有( )A.1条B.2条C.3条D.4条(1313)求极限01lim ln (1)x x e x x →⎡⎤-⎢⎥+⎣⎦.(1323)证明:当1x >时,2(1ln )21x x +<-.三、一元函数积分学(一)不定积分(0410)求不定积分3x = .(0416)设)(x f 的一个原函数为xe x,计算(2)d x f x x '⎰.(0503)若()d ()f x x F x C =+⎰,则sin (cos )d x f x x =⎰( )A.C x F +)(sinB.C x F +-)(sinC.C F +(cos)D.C x F +-)(cos(0515)计算3tan sec d x x x ⎰.(0522)设函数)(x f y =的图形上有一拐点(2,4)P ,在拐点处的切线斜率为3-,又知该函数的二阶导数6y x a ''=+,求)(x f .(0604)已知2()d x f x x e C =+⎰,则()d f x x '-=⎰( )A.C ex+-22B.C e x +-221 C.C e x +--22 D.C e x +--221(0615)计算x . (0622)已知曲线)(x f y =过原点且在点),(y x 处的切线斜率等于y x +2,求此曲线方程. (0704)设函数)(x f 的一个原函数为x 2sin ,则(2)d f x x '=⎰( )A.C x +4cosB.C x +4cos 21C.C x +4cos 2D.C x +4sin(0715)求不定积分2d x x e x -⎰.(0810)设函数)(x f 的导数为x cos ,且21)0(=f ,则不定积分()d f x x =⎰ . (0815)求不定积分3d 1x x x +⎰. (0905)设()ln (31)F x x =+是函数)(x f 的一个原函数,则(21)d f x x '+=⎰( )A.C x ++461B.C x ++463C.C x ++8121D.C x ++8123(0915)求不定积分x ⎰.(1015)求不定积分arctan d x x x ⎰.(1115)设)(x f 的一个原函数为x x sin 2,求不定积分()d f x x x⎰. (1215)求不定积分sin 2d x x x ⎰. (1315)求不定积分sin 2d x x x ⎰.(二)定积分(0404)2228R y x =+设所围的面积为S ,则0x ⎰的值为( )A.SB.4S C.2S D.S 2(0421)证明:0(sin )d (sin )d 2x f x x f x x πππ=⎰⎰,并利用此式求20sin d 1cos xxx xπ+⎰.(0509)1211d 1x x x π-+=+⎰.(0516)计算10arctan d x x ⎰.(0609)设)(x f 在[]0,1上有连续的导数且(1)2f =,10()d 3f x x =⎰,则1()d x f x x '=⎰ .(0616)计算22cos d x x x π⎰.(0709)定积分)231cos d x x x -+⎰的值为 .(0716)计算定积分x . (0811)定积分1212sin d 1xx x -++⎰的值为 .(0816)求定积分10d x ⎰.(0916)求定积分:210⎰.(1009)定积分31211d 1x x x -++⎰的值为 . (1016)计算定积分40x ⎰. (1111)定积分()32221sin d xx x ππ-+⋅⎰的值为____________.(1116)计算定积分3⎰ . (1216)计算定积分21⎰.(1316)计算定积分20⎰(1324)设函数()f x 在[,]a b 上连续,证明:[]2()d ()()d a b b aaf x x f x f a b x x +=++-⎰⎰.(三)变限积分与广义积分(0417)计算广义积分2+∞⎰(0422)设函数)(x f 可导,且满足方程20()d 1()x t f t t x f x =++⎰,求)(x f .(0705)设221()sin d x f x t t =⎰,则()f x '=( )A.4sin x B.2sin 2x xC.2cos 2x xD.4sin 2x x(0803)设函数)(x f 122sin d xt t t =⎰,则()f x '等于( )A.x x 2sin 42B.x x 2sin 82C.x x 2sin 42-D.x x 2sin 82-(0908)设函数20()d x t x te t ϕ=⎰,则()x ϕ'= .(1003)设函数22()cos d t xx e t t Φ=⎰,则函数()x Φ的导数()x 'Φ等于 ( )A.222cos x xe x B.222cos x xe x - C.2cos xxe x - D.22cos x e x - (1108)设函数2()ln (1)d x x t t Φ=+⎰ ,则=Φ'')1(____________.(1211)设反常积分1d 2x ae x +∞-=⎰,则常数=a ______. (1222)已知定义在(),-∞+∞上的可导函数)(x f 满足方程31()4()d 3xx f x f t t x -=-⎰,试求:(1)函数()f x 的表达式; (2)函数)(x f 的单调区间与极值; (3)曲线()y f x =的凹凸区间与拐点.(1224)设0()d 0()(0)0x g t t x f x g x ⎧≠⎪=⎨⎪=⎩⎰,其中函数)(x g 在(,)-∞+∞上连续,且3cos 1)(lim 0=-→xx g x .证明:函数)(x f 在0=x 处可导,且1(0)2f '=. (1322)已知251320()95d x F x t t t ⎛⎫=- ⎪⎝⎭⎰是()f x 的一个原函数,求曲线()y f x =的凹凸区间、拐点. (四)定积分的几何应用(0523)已知曲边三角形由x y 22=、0=x 、1=y 所围成,求:(1)曲边三角形的面积;(2)曲边三角形绕x 轴旋转一周的旋转体体积.(0623)已知一平面图形由抛物线2x y =、82+-=x y 围成.(1)求此平面图形的面积;(2)求此平面图形绕y 轴旋转一周所得的旋转体的体积.(0721)设平面图形由曲线21x y -=(0≥x )及两坐标轴围成.(1)求该平面图形绕x 轴旋转所形成的旋转体的体积;(2)求常数a 的值,使直线a y =将该平面图形分成面积相等的两部分.(0822)设平面图形由曲线2x y =,22x y =与直线1=x 所围成.(1)求该平面图形绕x 轴旋转一周所得的旋转体的体积;(2)求常数a ,使直线a x =将该平面图形分成面积相等的两部分.(0922)设1D 是由抛物线22x y =和直线x a =,0y =所围成的平面封闭区域,2D 是由抛物线22x y =和直线x a =,2x =及0=y 所围成的平面封闭区域,其中20<<a .试求:(1)1D 绕y 轴旋转所成的旋转体的体积1V ,以及2D 绕x 轴旋转所成的旋转体的体积2V ; (2)求常数a 的值,使得1D 的面积与2D 的面积相等.(1023)设由抛物线2y x =(0x ≥),直线2y a =(01a <<)与y 轴所围成的平面图形绕x 轴旋转一周所形成的旋转体的体积记为1()V a ,由抛物线2y x =(0x ≥),直线2y a =(01a <<)与直线1x =所围成的平面图形绕x 轴旋转一周所形成的旋转体的体积记为2()V a ,另12()()()V a V a V a =+,试求常数a 的值,使()V a 取得最小值.(1024)设函数()f x 满足方程()()2xf x f x e '+=,且(0)2f =,记由曲线'()()f x y f x =与直线1y =,x t =(0t >)及y 轴所围平面图形的面积为()A t ,试求lim ()t A t →+∞.(1124)设函数)(x f 满足微分方程()2()(1)x f x f x a x '-=-+(其中a 为正常数),且1)1(=f ,由曲线()y f x =(1x ≤)与直线1x =,0y =所围成的平面图形记为D .已知D 的面积为32. (1)求函数)(x f 的表达式;(2)求平面图形D 绕x 轴旋转一周所形成的旋转体的体积x V ; (3)求平面图形D 绕y 轴旋转一周所形成的旋转体的体积y V .(1221)在抛物线2y x =(0x >)上求一点P ,使该抛物线与其在点P 处的切线及x 轴所围成的平面图形的面积为32,并求该平面图形绕x 轴旋转一周所形成的旋转体的体积.(1321)设平面图形D 是由曲线x =y =1y =所围成,试求:(1)平面图形D 的面积;(2)平面图形D 绕x 轴旋转一周所形成的旋转体的体积.四、向量代数与空间解析几何(一)向量代数(0510)设向量{}3,4,2=-a 、{}2,1,k =b ;a 、b 互相垂直,则=k . (0610)设1=a ,⊥a b ,则()⋅+=a a b . (0710)已知a 、b 均为单位向量,且12⋅=a b ,则以a 、b 为邻边的平行四边形面积为 . (0804)设向量(1,2,3)=a ,(3,2,4)=b ,则⨯a b 等于( )A.(2,5,4)B.(2,5,4)--C.(2,5,4)-D.(2,5,4)--(0909)已知向量{}1,0,1=-a ,{}1,2,1=-b ,则+a b 与a 的夹角为 . (1010)设{}1,2,3=a ,{}2,5,k=b ,若a 与b 垂直,则常数k = .(1109)若1=a ,4=b ,2⋅=a b ,则⨯=a b ____________.(1210)设向量a 、b 互相垂直,且3=a ,2=b ,则2+=a b ________.(1308)已知空间三点(1,1,1)A ,(2,3,4)B ,(3,4,5)C ,则ABC ∆的面积为 .(二)平面与直线(0518)求过点(3,1,2)A -且通过直线L :43521x y z-+==的平面方程. (0619)求过点(3,1,2)M -且与二平面07=-+-z y x 、0634=-+-z y x 都平行的直线方程.(0719)求过点(1,2,3)且垂直于直线20210x y z x y z +++=⎧⎨-++=⎩的平面方程.(0817)设平面∏经过点(2,0,0)A ,(0,3,0)B ,(0,0,5)C ,求经过点(1,2,1)P 且与平面∏垂直的直线方程. (0917)求通过直线12213-=-=z y x 且垂直于平面02=+++z y x 的平面方程. (1017)求通过点(1,1,1),且与直线23253x ty t z t =+⎧⎪=+⎨⎪=+⎩垂直,又与平面250x z --=平行的直线的方程.(1117)求通过x 轴与直线132zy x ==的平面方程. (1217)已知平面∏通过(1,2,3)M 与x 轴,求通过(1,1,1)N 且与平面∏平行,又与x 轴垂直的直线方程.(1318)已知直线10330x y z x y z -+-=⎧⎨--+=⎩在平面∏上,又知直线23132x ty t z t=-⎧⎪=+⎨⎪=+⎩与平面∏平行,求平面∏的方程.五、多元函数微积分(一)多元函数微分学(0418)设(,)z f x y xy =-,且具有二阶连续的偏导数,求x z ∂∂、yx z∂∂∂2.(0505)设yxy x u arctan),(=,(,)v x y =,则下列等式成立的是( )A.yv x u ∂∂=∂∂ B.xvx u ∂∂=∂∂ C.x v y u ∂∂=∂∂ D.y v y u ∂∂=∂∂ (0517)已知函数2(sin ,)z f x y =,其中),(v u f 有二阶连续偏导数,求x z ∂∂、yx z∂∂∂2.(0611)设x e u xysin =,=∂∂xu. (0620)设2(,)z x f x xy =⋅其中(,)f u v 的二阶偏导数存在,求y z ∂∂、xy z∂∂∂2.(0711)设yxz =,则全微分d z = . (0717)设(23,)z f x y xy =+其中f 具有二阶连续偏导数,求yx z∂∂∂2.(0805)函数xyz ln =在点(2,2)处的全微分d z 为( )A.11d d 22x y -+B.11d d 22x y +C.11d d 22x y -D.11d d 22x y --(0818)设函数,y z f x y x ⎛⎫=+ ⎪⎝⎭,其中)(x f 具有二阶连续偏导数,求y x z ∂∂∂2.(0910)设函数(,)z z x y =由方程12=+yz xz 所确定,则xz∂∂= . (0919)设函数(sin ,)z f x xy =,其中)(x f 具有二阶连续偏导数,求yx z∂∂∂2.(1011)设函数z =,则10d x y z=== .(1018)设()2,xz y f xy e =⋅,其中函数f 具有二阶连续偏导数,求2zx y∂∂∂.(1104)设),(y x f z =为由方程8333=+-x yz z 所确定的函数,则=∂∂==00y x yz ( )A.21-B.21C.2-D.2(1118)设)(y xyxf z ,=,其中函数f 具有二阶连续偏导数,求y x z ∂∂∂2.(1204)设3ln 2z x y=+在点()1,1处的全微分为 ( )A.d 3d x y -B.d 3d x y +C.1d 3d 2x y +D.1d 3d 2x y -(1218)设函数22(,)()z f x xy x y ϕ=++,其中函数f 具有二阶连续偏导数,函数()x ϕ具有二阶连续导数,求yx z∂∂∂2.(1314)设函数(,)z z x y =由方程3331z xy z +-=所确定,求d z 及22zx∂∂.(1317)设()223,x yz fx e+=,其中函数f 具有二阶连续偏导数,求2zy x∂∂∂.(二)二重积分(0411)交换二次积分的次序2120d (,)d x x x f x y y -=⎰⎰.(0419)计算二重积分sin d d Dyx y y ⎰⎰,其中D 由曲线x y =及x y =2所围成. (0504)设区域D 是xoy 平面上以点(1,1)A 、(1,1)B -、(1,1)C --为顶点的三角形区域,区域1D 是D 在第一象限的部分,则(cos sin )d d Dxy x y x y +=⎰⎰( )A.⎰⎰1)sin (cos 2D dxdy y xB.⎰⎰12D xydxdyC.⎰⎰+1)sin cos (4D dxdy y x xyD. 0(0511)交换二次积分的次序11d (,)d x x f x y y -+=⎰;(0524)设)(x f 为连续函数,且1)2(=f ,1()d ()d uuyF u y f x x =⎰⎰(1u >). (1)交换)(u F 的积分次序; (2)求(2)F '.(0606)设对一切x 有(,)(,)f x y f x y -=-,22{(,)|1,0}D x y x y y =+≤≥,=1D 22{(,)|1,0,0}x y x y x y +≤≥≥,则(,)d d Df x y x y =⎰⎰( )A. 0B.1(,)d d D f x y x y ⎰⎰C.21(,)d d D f x y x y ⎰⎰D.41(,)d d D f x y x y ⎰⎰(0612)D 为以点(0,0)O 、(1,0)A 、(0,2)B 为顶点的三角形区域,d d Dx y =⎰⎰ .(0624)设⎪⎩⎪⎨⎧=≠=⎰⎰00)(1)(t a t dxdy x f t t g tD ,其中t D 是由t x =、t y =以及坐标轴围成的正方形区域,函数)(x f 连续.(1)求a 的值使得)(t g连续;(2)求)('t g .(0720)计算二重积分d Dx y ,其中{}22(,)|2,0D x y x y x y =+≤≥.(0723)设0>>a b ,证明:()232d ()d ()d b b b x y xx a ayay f x e x ee f x x ++⋅=-⎰⎰⎰.(0819)计算二重积分2d d Dx x y ⎰⎰,其中D 是由曲线xy 1=,直线y x =,2x =及0=y 所围成的平面区域. (0918)计算二重积分d Dy σ⎰⎰,其中22{(,)02,2,2}D x y x x y x y =≤≤≤≤+≥. (1005)二次积分111d (,)d y y f x y x +⎰⎰交换积分次序后得 ( )A.1101d (,)d x x f x y y +⎰⎰B.2110d (,)d x x f x y y -⎰⎰C.2111d (,)d x x f x y y -⎰⎰D.2111(,)d x dx f x y y -⎰⎰(1019)计算d d Dx x y ⎰⎰,其中D 是由曲线x =y x =及x 轴所围成的闭区域.(1105)若(,)d d Df x y x y ⎰⎰可转化为二次积分1201d (,)d y y f x y x +⎰⎰ ,则积分域D 可表示为( ) A.{}(,)01,11x y x x y ≤≤-≤≤ B.{}(,)12,11x y x x y ≤≤-≤≤C.{}(,)01,10x y x x y ≤≤-≤≤D.{}(,)12,01x y x y x ≤≤≤≤-(1119)计算二重积分d d Dy x y ⎰⎰,其中D 是由曲线y =直线x y -=及y 轴所围成的平面闭区域. (1205)二次积分dx y x f dy y),(11⎰⎰ 在极坐标系下可化为( )A.sec 40d (cos ,sin )d f πθθρθρθρ⎰⎰ B.sec 40d (cos ,sin )d f πθθρθρθρρ⎰⎰C.sec 24d (cos ,sin )d f πθπθρθρθρ⎰⎰D .sec 24d (cos ,sin )d f πθπθρθρθρρ⎰⎰ (1220)计算二重积分d d Dy x y ⎰⎰,其中D 是由曲线y =2xy =及x 轴所围成的平面闭区域.(1320)计算二重积分d d Dx x y ⎰⎰,其中D 是由曲线y =0x >)与三条直线y x =,3x =,0y =所围成的平面闭区域.六、无穷级数(一)数项级数(0506)正项级数(1)∑∞=1n n u 、(2)∑∞=13n n u ,则下列说法正确的是( ) A.若(1)发散、则(2)必发散 B.若(2)收敛、则(1)必收敛C.若(1)发散、则(2)不确定D.(1)、(2)敛散性相同(0605)设∑∞=1n nu为正项级数,如下说法正确的是( )A.若0lim 0=→n n u ,则∑∞=1n nu必收敛 B.若l u u nn n =+∞→1lim )0(∞≤≤l ,则∑∞=1n n u 必收敛C.若∑∞=1n nu收敛,则∑∞=12n nu必定收敛D.若∑∞=-1)1(n n nu 收敛,则∑∞=1n n u 必定收敛(0706)下列级数收敛的是( )A.∑∞=122n nnB.∑∞=+11n n n C.∑∞=-+1)1(1n nnD.∑∞=-1)1(n nn(0906)设α为非零常数,则数项级数∑∞=+12n n n α( )A.条件收敛B.绝对收敛C.发散D.敛散性与α有关(1004)下列级数收敛的是( )A.11n nn ∞=+∑B.2121n n n n ∞=++∑C.nn ∞= D.212n n n ∞=∑(1206)下列级数中条件收敛的是( )A.1(1)21nn nn ∞=-+∑B.13(1)2nnn ∞=⎛⎫- ⎪⎝⎭∑C.21(1)nn n ∞=-∑D.1nn ∞=(1305)下列级数中收敛的是( )A.211n n n∞=+∑ B.11nn n n ∞=⎛⎫ ⎪+⎝⎭∑C.1!2n n n ∞=∑D.1n ∞= (二)幂级数(0412)幂级数∑∞=-12)1(n nnx 的收敛区间为 .(0420)把函数21)(+=x x f 展开为2-x 的幂级数,并写出它的收敛区间. (0512)幂级数1(21)nn n x∞=-∑的收敛区间为 .(0519)把函数222)(x x x x f --=展开为x 的幂级数,并写出它的收敛区间.(0618)将函数()ln (1)f x x x =+展开为x 的幂函数(要求指出收敛区间).(0812)幂函数12n nn x n ∞=⋅∑的收敛域为 . (0911)若幂函数21n nn a x n∞=∑(0a >)的收敛半径为21,则常数=a .(1012)幂级数0(1)n nn x n ∞=-∑的收敛域为 .(1106)若x x f +=21)(的幂级数展开式为0()nn n f x a x ∞==∑(22x -<<),则系数=n a ( )A.n 21B.121+n C.(1)2nn -D.1(1)2nn +-(1112)幂级数0nn ∞=的收敛域为_ _ _________. (1212)幂级数1(1)(3)3nn nn x n ∞=--⋅∑的收敛域为____________. (1312)幂级数1n nn ∞=的收敛域为 . 七、常微分方程(一)一阶微分方程(0520)求微分方程0'=-+xe y xy 满足1x ye ==的特解.(0617)求微分方程22x y xy y '=-的通解. (0718)求微分方程22007xy y x '-=满足初始条件12008x y==的特解.(0820)求微分方程22xy y x '=+的通解.(0912)微分方程2(1)d (2)d 0x y x y x y +--=的通解为 . (1311)微分方程d d y x y x x+=的通解为 . (二)二阶线性微分方程(0406)微分方程232xy y y xe '''-+=的特解*y 的形式应为( )A.xAxe 2B.xe B Ax 2)(+C.xeAx 22D.xeB Ax x 2)(+(0712)设x xe C eC y 3221+=为某二阶常系数齐次线性微分方程的通解,则该微分方程为 .(0806)微分方程321y y y '''++=的通解为( )A.1221++=--x xe c e c yB.21221++=--x xe c ec yC.1221++=-xxec e c yD.21221++=-xxec e c y (0920)求微分方程y y x ''-=的通解. (1020)已知函数xy e =和2xy e-=是二阶常系数齐次线性微分方程0y py qy '''++=的两个解,试确定常数p 、q 的值,并求微分方程xy py qy e '''++=的通解.(1120)已知函数(1)xy x e =+⋅是一阶线性微分方程2()y y f x '+=的解,求二阶常系数线性微分方程)(23x f y y y =+'+''的通解.(1219)已知函数)(x f 的一个原函数为xxe ,求微分方程)(44x f y y y =+'+''的通解. (1319)已知函数()y f x =是一阶微分方程d d yy x=满足初始条件(0)1y =的特解,求二阶常系数非齐次线性微分方程32()y y y f x '''-+=的通解.时间排序与参考答案2004年高等数学真题参考答案1、A .2、B .3、C .4、B .5、A .6、D .7、1-e . 8、32241-+==-z y x . 9、!n . 10、C x +4arcsin 41. 11、12201d (,)d d (,)d y y f x y x y f x y x -+⎰⎰⎰.12、()3,1-.13、解:间断点为πk x =(Z k ∈),当0=x 时,1sin lim)(lim 00==→→xxx f x x ,为可去间断点;当πk x =(0≠k ,Z k ∈)时,∞=→xxx sin lim0,为第二类间断点.14、解:原式0430(tan sin )d tan sin limlim312xx x t t tx xx x →→--==⎰233001tan (1cos )12lim lim 121224x x x x x x x x →→⋅-===. 15、解:0=x 代入原方程得1)0(=y ,对原方程求导得0''=--y xe e y yy,对上式求导并将0=x 、1=y 代入,解得:22''e y =.16、解:因为)(x f 的一个原函数为x e x,所以2')1()(x e x x e x f xx -=⎪⎪⎭⎫ ⎝⎛=, 原式11(2)d(2)d (2)22xf x x x f x '==⎰⎰11(2)(2)d 22x f x f x x =-⎰ 222211(21)1(2)(2)d(2)24884x x xx x e e x x f x f x x C e C x x x--=-=-+=+⎰. 17211122d d 22arctan (1)12t tt tt t t π+∞∞+∞+===++⎰.18、解:12zf f y x∂''=+⋅∂; []21112221221112222(1)(1)()zf f x f y f f x f x y f xy f f x y∂''''''''''''''''=⋅-+⋅++⋅-+⋅=-+-⋅+⋅+∂∂.19、解:原式21100sin sin d d d d (1)sin d y y Dyy x y y x y y y y y ===-⎰⎰⎰⎰⎰ 1100(1)cos cos d 1sin1y y y y =--=-⎰.20、解:01111(2)()(1)24244414n n nn x f x x x ∞=-==⋅=--+-+∑)62(<<-x . 21、证:00(sin )d ()[sin ()]d ()(sin )d t xx f x xt f t t t f t I t πππππππ=-=---=-⎰⎰⎰(sin )d (sin )d (sin )d f x x x f x x f x x I πππππ=-=-⎰⎰⎰解得: 0(sin )d (sin )d 2f x x f x x I x πππ==⎰⎰, 原命题证毕.222000sin sin d d arctan (cos )1cos 21cos 24x x x x x x x x ππππππ⋅==-=++⎰⎰. 22、解:等式两边求导得()2()x f x x f x '=+,即()()2f x x f x x '-=-,且(0)1f =-,x p -=,x q 2-=,而2()d 2x x xe e --⎰=,由公式求得通解:222222()2d 2x x x f x e xq x C C e -⎡⎤⎛⎫=-+=+⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎣⎦⎰, 将初始条件(0)1f =-代入通解,解得:3-=C ,故22()23x f x e =-.23、解:设污水厂建在河岸离甲城x 公里处,则()500M x x =+500≤≤x ),由150070002M '=+⨯=解得:650050-=x (公里),唯一驻点,即为所求.2005年高等数学真题参考答案1、A .2、C .3、D .4、A .5、A .6、C .7、2. 8、1-e . 9、2π. 10、5. 11、11d (,)d y y f x y x -⎰⎰.12、(1,1)-.13、解:因为)(x F 在0=x 处连续,所以)0()(lim 0F x F x =→,'00()2sin ()(0)lim ()limlim 2(0)28x x x f x x f x f F x f x x→→→+-==+=+=, 解得:a F =)0(,故8=a .14、解:d d cos cos sin d d d sin d yy t t t t t t x x t t-+===--,22d ()csc d (cos )y t t x t '-=='.15、解:原式22tan tan sec d (sec1)d(sec )x x x xx x =⋅-⎰⎰积进去231sec d(sec )d(sec )sec sec 3x x x x x C =-=-+⎰⎰.16、解:原式211120002d 1d(1)arctan 1421x x x x x x x π+=--++⎰⎰积进去 ()12011ln 1ln 24242x ππ⎡⎤=-+=-⎣⎦.17、解:1cos zx f x∂'=⋅∂,()21212cos 22cos z x f y y x f x y ∂''''=⋅⋅=⋅∂∂. 18、解:直线L 的方向向量{}5,2,1=s ,过点()4,3,0B -,{}1,4,2AB =-;所求平面的法向量{}5218,9,22142AB =⨯==---ij kn s ,点法式为8(3)9(1)22(2)0x y z ----+=,即592298=--z y x .19、解:2222101111(1)()13216313212n nn n x x x x f x x x x x x ∞+=⎡⎤-⎛⎫=+=⋅+⋅=+⋅ ⎪⎢⎥+--⎝⎭⎣⎦+∑, 收敛域为:11<<-x .20、解:1x e y y x x '+⋅=,即1p x=,x e q x =,而1d 1x x e x -⎰=;故通解为1d xx e e C y x x C x x x ⎛⎫+=+= ⎪⎝⎭⎰.把初始条件1x y e ==解得:0=C ;故所求特解为:xe y x=.21、证:令13)(3+-=x x x f ,[]1,1x ∈-,且(1)30f -=>,(1)10f =-<,(1)(1)0f f -⋅<;由连续函数零点定理知:)(x f 在(1,1)-内至少有一实根;对于()1,1x ∈-恒有()22()33310f x x x '=-=-<,即)(x f 在(1,1)-内单调递减, 故方程0133=+-x x 在[]1,1-上有且仅有一根; 原命题获证.22、解:设所求函数为)(x f y =,则有4)2(=f ,(2)3f '=-,(2)0f ''=;由()6f x x a ''=+和(2)0f ''=解得:12-=a ,即()612f x x ''=-,故21()312f x x x C '=-+,由(2)3f '=-解得:91=C ,故22396C x x x y ++-=,由(2)4f =解得:22=C ; 所求函数为:29623++-=x x x y .23、解:(1)112300111d 266S y y y ===⎰;(如图1所示) (2)()()112222012d 4x V x x x xπππ=-=-=⎰.24、解:积分区域D 为:u y ≤≤1,u x y ≤≤;(1)111()()d d ()d (1)()d u xuDF u f x x f x y x f x x σ===-⎰⎰⎰⎰⎰;(2)()(1)()F u u f u '=-,(2)(21)(2)(2)1F f f '=-==.2006年高等数学真题参考答案1、C .2、B .3、C .4、C .5、C .6、A .7、2. 8、)(0x f . 9、1-. 10、1. 11、(sin cos )xye y x x +. 12、1.13、解:原式322131lim 21341==--→x xx .图114、解:2211d 12d 21t t y y t t t x x t-'+==='+,2222d 1d d 122d 41ty x y t t x x t t '⎛⎫ ⎪+⎝⎭==='+. 15、解:原式322ln )(1ln )3x x C =+=++.16、解:原式()2222220d(sin )sin 2sin d x x x xx x πππ=-⎰⎰积进去222220sin 2sin d 2d(cos )4x xx x xx x ππππ-+⎰⎰积进去导出来2222002cos 2cos d 244x x x x ππππ=+-=-⎰.17、解:方程变形为2y y y x x ⎛⎫'=- ⎪⎝⎭,即得到了形如d d y y f x x ⎛⎫= ⎪⎝⎭齐次方程; 令y u x =,则d d d d y u u x x x =+,代入得:2d d u x u x =-,分离变量得:211d d u x u x-=; 两边积分,得:211d d u x u x -=⎰⎰,1ln x C u=+,故ln x y x C =+. 18、解:令()ln (1)g x x =+,则(0)0g =;由于01()(1)1n n n g x x x ∞='==-+∑((]1,1x ∈-), 所以01(1)((1))d x n n n g x n x g t t ∞+='=+=-∑⎰((]1,1x ∈-),故20(1)()1n n n f x x n ∞+=-=+∑,收敛域为:11x -<≤.19、解:由题意知:{}11,1,1=-n ,{}24,3,1=-n ;{}12311232,3,1431=⨯=-=++=-i j ks n n i j k ,故所求直线方程的对称式方程为:123123+=-=-z y x .20、解:22z x f x∂'=∂,2'2'''''3''2''22122221222(2)22z x f x f x f y x f x f x y f y x ∂=+⋅+⋅=++∂∂. 21、证:令33)(x x x f -=,[]2,2x ∈-,由2()330f x x '=-=解得驻点:1±=x ,比较以下函数值的大小:(1)2f -=-,(1)2f =,(2)2f =-,(2)2f -=; 所以2min -=f ,2m ax =f ,故2)(2≤≤-x f ,即332x x -≤,原命题获证.22、解:0)0(=y ,2y x y '=+,通解为:xCe x y +--=)22(;将0)0(=y 代入通解解得:2=C ,故所求特解为:xe x y 222+--=.23、解:(1)()2222648d 3S x x x -=--=⎰; (2)224804d d 16y V y y πππ=+=⎰⎰.24、解:()d d d ()d ()d tt tt D f x x y x f x y t f x x ==⎰⎰⎰⎰⎰,0()d 0()0t f x x t g t a t ⎧≠⎪=⎨⎪=⎩⎰;(1)00lim ()lim()d 0t t t g t f x x →→==⎰,由)(t g 的连续性可知:0)(lim )0(0===→t g g a t ;(2)当0≠t 时,()()g t f t '=,当0=t 时,0000()d ()(0)(0)limlim lim ()(0)hh h h f x x g h g g f h f h h→→→-'====⎰; 综上,()()g t f t '=.2007年高等数学真题参考答案1、B .2、C .3、C .4、A .5、D .6、D .7、2ln . 8、1. 9、π2. 10、23. 11、21d d xx y y y-. 12、06'5''=+-y y y . 13、解:212lim 21lim 1lim tan 1lim00200==-=--=--→→→→x x x x x x x x e x e x x e x x x e . 14、解:当0=x 时,0=y ;。
2011年普通专升本高等数学真题汇总
![2011年普通专升本高等数学真题汇总](https://img.taocdn.com/s3/m/8a884ccfd4d8d15abe234edc.png)
2011年普通专升本高等数学真题一一. 选择题(每个小题给出的选项中,只有一项符合要求:本题共有5个小题,每小题4分,共20分)1.函数()()x x x f cos 12+=是( ).()A 奇函数 ()B 偶函数 ()C 有界函数 ()D 周期函数2.设函数()x x f =,则函数在0=x 处是( ).()A 可导但不连续 ()B 不连续且不可导()C 连续且可导 ()D 连续但不可导3.设函数()x f 在[]1,0上,022>dxfd ,则成立( ). ()A ()()0101f f dxdf dxdf x x ->>== ()B ()()0110==>->x x dx df f f dxdf()C ()()0101==>->x x dxdf f f dxdf()D ()()101==>>-x x dxdf dxdf f f4.方程22y x z +=表示的二次曲面是( ).()A 椭球面 ()B 柱面()C 圆锥面 ()D 抛物面5.设()x f 在[]b a ,上连续,在()b a ,内可导,()()b f a f =, 则在()b a ,内,曲线()x f y =上平行于x 轴的切线( ).()A 至少有一条 ()B 仅有一条().C 不一定存在 ().D 不存在二.填空题:(只须在横线上直接写出答案,不必写出计算过程,每小题4分,共40分)考学校:______________________报考专业:______________________姓名: 准考证号: ----------------------------------------------------------------------------密封线---------------------------------------------------------------------------------------------------2.设函数()x f 在1=x 可导, 且()10==x dx x df ,则()().__________121lim=-+→xf x f x .3.设函数(),ln 2x x f =则().________________________=dxx df4.曲线x x x y --=233的拐点坐标._____________________5.设x arctan 为()x f 的一个原函数,则()=x f ._____________________6.()._________________________2=⎰xdt t f dx d7.定积分().________________________2=+⎰-ππdx x x8.设函数()22cos y x z +=,则._________________________=∂∂x z9. 交换二次积分次序().__________________________,010=⎰⎰xdy y x f dx10. 设平面∏过点()1,0,1-且与平面0824=-+-z y x 平行,则平面∏的方程为._____________________三.计算题:(每小题6分,共60分)1.计算xe x x 1lim 0-→.2.设函数()()x x g e x f xcos ,==,且⎪⎭⎫⎝⎛=dx dg f y ,求dx dy .3.计算不定积分()⎰+.1x x dx4.计算广义积分⎰+∞-0dx xe x .5.设函数()⎩⎨⎧<≥=0,0,cos 4x x x x x f ,求()⎰-12dx x f . 6. 设()x f 在[]1,0上连续,且满足()()⎰+=12dt t f e x f x,求()x f .7.求微分方程xe dx dy dxy d =+22的通解. 8.将函数()()x x x f +=1ln 2展开成x 的幂级数.9.设函数()yx yx y x f +-=,,求函数()y x f ,在2,0==y x 的全微分. 10.计算二重积分,()⎰⎰+Ddxdy y x22,其中1:22≤+y x D .四.综合题:(本题共30分,其中第1题12分,第2题12分,第3题6分) 1.设平面图形由曲线xe y =及直线0,==x e y 所 围成,()1求此平面图形的面积;()2求上述平面图形绕x 轴旋转一周而得到的旋转体的体积.2.求函数1323--=x x y 的单调区间、极值及曲线的凹凸区间.3.求证:当0>x 时,e x x<⎪⎭⎫⎝⎛+11.__报考专业:______________________姓名: 准考证号------------------------------密封线---------------------------------------------------------------------------------------------------2011年普通专升本高等数学真题二一. 选择题(每个小题给出的选项中,只有一项符合要求:本题共有5个小题,每小题4分,共20分)1.当0→x 时,1sec -x 是22x 的( )..A 高阶无穷小 .B 低阶无穷小 .C 同阶但不是等阶无穷小 D .等阶无穷小2.下列四个命题中成立的是( )..A 可积函数必是连续函数 .B 单调函数必是连续函数 .C 可导函数必是连续函数 D .连续函数必是可导函数 3.设()x f 为连续函数,则()⎰dx x f dx d等于( ). .A ()C x f + .B ()x f.C ()dx x dfD .()C dxx df + 4.函数()x x x f sin 3=是( )..A 偶函数 .B 奇函数.C 周期函数 D .有界函数5.设()x f 在[]b a ,上连续,在()b a ,内可导,()()b f a f =, 则在()b a ,内,曲线()x f y =上平行于x 轴的切线( ).()A 不存在 ()B 仅有一条 ().C 不一定存在 ().D 至少有一条二.填空题:(只须在横线上直接写出答案,不必写出计算过程,每小题4分,共40分)__________=a .2.()()().___________________311sin lim221=+--→x x x x3..___________________________1lim 2=++--∞→xx x x x 4.设函数()x f 在点1=x 处可导,且()11==x dx x df ,则()()._______121lim=-+→xf x f x5设函数()x x f ln 2=,则().____________________=dxx df6.设xe 为()xf 的一个原函数,则().___________________=x f 7.()._________________________2=⎰x dt t f dxd 8.._________________________0=⎰∞+-dx e x9.().________________________2=+⎰-ππdx x x10.幂级数()∑∞=-022n nnx 的收敛半径为.________________三.计算题:(每小题6分,共60分) 1.求极限()()()()()x b x a x b x a x ---+++∞→lim.2.求极限()nnnn n n 75732lim+-++∞→.3.设()b ax ey +=sin ,求dy .4.设函数xxe y =,求22=x dx yd .5.设y 是由方程()11sin =--xy xy 所确定的函数,求(1).0=x y ; (2).=x dx dy .6.计算不定积分⎰+dx x x132.7.设函数()⎩⎨⎧≤<≤≤=21,210,2x x x x x f ,求定积分()⎰20dx x f .8.计算()xdte ex t tx cos 12lim--+⎰-→.9.求微分方程022=+dxdydx y d 的通解. 10.将函数()()x x x f +=1ln 2展开成x 的幂级数.四.综合题:(每小题10分,共30分)1. 设平面图形由曲线xe y =及直线0,==x e y 所围成, (1)求此平面图形的面积;(2)求上述平面图形绕x 轴旋转一周而得到的旋转体的体积. 2.求过曲线xxey -=上极大值点和拐点的中点并垂直于0=x 的直线方程。
2011年江苏专转本计算机真题附答案
![2011年江苏专转本计算机真题附答案](https://img.taocdn.com/s3/m/db502211ee06eff9aef807b9.png)
C.用鼠标左键单击软键盘上的Esc键
D.用鼠标右键单击软键盘上的Esc键
计算机
基础试题卷 第4页(共8页〉
37.在Word 2003中,新建一个Word文档,文档第一行的内容是"信息技
术(IT)"。若保存时采用默认
文件名,则该文挡的文件名是 ▲
A. doc1. doc
B.文档1. doc
C.信息技术. doc
B和1E£E-1394都以并行方式传送数据
B以串行方式传送数据,IEEE-1394以并行方式传送数据
B以并行方式传送数据. IEEE-1394以串行方式传送数据
10.下列关于I/O设备的叙述,错误的是
▲
A.I/O设备的操作由CPU启动
B.I/O设备的操作在I/O控制器的控制下完成
F分别对应于 ▲
A.列名或列表达式、基本表或视图、条件表达式
B.视图属性、基本表、表的存储文件
C.列名或条件表达式、基本表、
关系表式
D.属性序列、表的存储文件、条
件表达式
30.在关系模式中,关系的主键是指 ▲
A.不能为外键的一组属性
B.第一个属性
C.不为空值的一组属性
D.能惟一确定元组的最小属性集
31.下列关于数据库系统的叙述,错误的是 ▲
▲
A.用鼠标左键拖动文件或文件夹到目的文件夹上
B.按住Ctrl键,然后用鼠标左键拖动文件或文件夹到目的文件夹上
C.按住Shift键,然后用鼠标左键拖动文件或文件夹到目的文件夹上
D.用鼠标左键拖动文件或文件夹到目的文件夹上,然后在弹出的菜
单中选择"复制到当前位置"
35.在Windows中,下列错误的文件名是 ▲
2011年普通高等学校招生全国统一考试(江苏卷)数学(不分文理)试题及答案解析
![2011年普通高等学校招生全国统一考试(江苏卷)数学(不分文理)试题及答案解析](https://img.taocdn.com/s3/m/2cca6a7ce45c3b3567ec8bd9.png)
绝密★启用前2011年普通高等学校招生全国统一考试(江苏卷)数学I参考公式:(1)样本数据12,,,n x x x 的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑(2)直柱体的侧面积S ch =,其中c 为底面周长,h 是高 (3)柱体的体积公式V Sh =,其中S 为底面面积,h 是高一、填空题:本大题共14小题,每小题5分,共70分。
请把答案填写在答题卡相应位置上........。
1、已知集合{1,1,2,4},{1,0,2},A B =-=- 则_______,=⋂B A 答案:{}1-,22、函数)12(log )(5+=x x f 的单调增区间是__________答案:+∞1(-,)23、设复数i 满足i z i 23)1(+-=+(i 是虚数单位),则z 的实部是_________ 答案:14、根据如图所示的伪代码,当输入b a ,分别为2,3时,最后输出的m 的值是________答案:35、从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是______ 答案:136、某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差___2=s★此卷上交考点保存★ 姓名___________________ 准考证号___________________2解析:可以先把这组数都减去6再求方差,1657、已知,2)4tan(=+πx 则xx2tan tan 的值为__________解析:22tan()11tan tan 1tan 44tan tan(),2tan 443tan 229tan()141tan x x x x x x x x x xππππ+-+-===++(-)===-8、在平面直角坐标系xOy 中,过坐标原点的一条直线与函数xx f 2)(=的图象交于P 、Q 两点,则线段PQ 长的最小值是________解析:4,设交点为2(,)x x ,2(,)x x --,则4PQ =≥9、函数ϕϕ,,(),sin()(w A wx A x f +=是常数,)0,0>>w A 的部分图象如图所示,则____)0(=f 解析:由图可知:7,2,41234T A πππω==-==2,3k k πϕπϕπ⨯+==10、已知→→21,e e 是夹角为π32的两个单位向量,,,22121→→→→→→+=-=e e k b e e a 若,则k 的值为解析:由0=⋅→→b a 得:k=211、已知实数0≠a ,函数⎩⎨⎧≥--<+=1,21,2)(x a x x a x x f ,若)1()1(a f a f +=-,则a 的值为________解析:30,2212,2a a a a a a >-+=---=-,30,1222,4a a a a a a <-+-=++=- 12、在平面直角坐标系xOy 中,已知点P 是函数)0()(>=x e x f x的图象上的动点,该图象在P 处的切线l 交y 轴于点M ,过点P 作l 的垂线交y 轴于点N ,设线段MN 的中点的纵坐标为t ,则t 的最大值是_____________ 解析:设00(,),xP x e 则00000:(),(0,(1))x x x l y ee x x M x e -=-∴-,过点P 作l 的垂线000000(),(0,)x x x x y e e x x N e x e ---=--+,00000000011[(1)]()22x x x x x x t x e e x e e x e e --=-++=+-00'01()(1)2x x t e e x -=+-,所以,t 在(0,1)上单调增,在(1,)+∞单调减,max 11()2t e e=+。
江苏省专转本(数学)模拟试题及参考答案(一)
![江苏省专转本(数学)模拟试题及参考答案(一)](https://img.taocdn.com/s3/m/438f0b210a1c59eef8c75fbfc77da26925c596b4.png)
江苏省普通高校专转本模拟试题及参考答案高等数学 试题卷一、单项选择题(本大题共 8 小题,每小题 4 分,共 32 分.在下列每小题中选出一个正确答 案,请在答题卡上将所选项的字母标号涂黑)1. 要使函数21()(2)xx f x x −−=−在区间(0,2) 内连续,则应补充定义 f (1) =( )A. 2eB. 1e −C. eD. 2e − 2. 函数2sin ()(1)xf x x x =−的第一类间断点的个数为( )A. 0B. 2C. 3D. 1 3. 设'()1f x =,则0(22)(22)limh f h f h h→−−+=( )A. 2−B. 2C. 4D. 4−4.设()F x 是函数()f x 的一个原函数,且()f x 可导,则下列等式正确的是( ) A. ()()dF x f x c =+∫ B. ()()df x F x c =+∫ C.()()F x dx f x c =+∫ D.()()f x dx F x c =+∫5. 设2Dxdxdy =∫∫,其中222{(,)|,0}D x y x y R x =+≤>,则R 的值为( )A. 1B.D.6.下列级数中发散的是( )A 21sin n nn∞=∑. B. 11sin n n ∞=∑C. 1(1)nn ∞=−∑ D.211(1)sinnn n ∞=−∑ 7.若矩阵11312102A a −−= 的秩为2,则常数a 的值为( )A. 0B. 1C. 1−D. 28. 设1100001111111234D =−−,其中ij M 是D 中元素ij a 的余子式,则3132M M +=( ) A. 2− B. 2 C. 0 D. 1 二、填空题(本大题共6小题,每小题4分,满分24分) 9. 1lim sinn n n→∞=____________________________.10.设函数2sin ,0()10,0xx f x x x ≠ =+ =,则'(0)f =______________________________________.11.设函数()cos 2f x x =, 则(2023)(0)f =__________________________________________. 12.若21ax e dx −∞=∫,则常数a =___________________________________.13. 若幂级数1nnn a x +∞=∑的收敛半径为2,则幂级数11(1)nn n x a +∞=−∑的收敛区间为__________________. 14.若向量组1(1,0,2,0)α=,2(1,0,0,2)α=,3(0,1,1,1)α=,4(2,1,,2)k α=线性相关,则k =_____________________________________.三、计算题(本大题共8小题,每小题8分,满分64分) 15. 求极限22sin lim(cos 1)x x t tdtx x →−∫;16.求不定积分22x x e dx ∫;17.求定积分21sin 2x dx π−∫; 18.设函数(,)z z x y =由方程cos y x e xy yz xz =+++所确定的函数,求全微分dz . 19.求微分方程''4'5x y y y xe −−−=的通解; 20.求二重积分Bxydxdy ∫∫,其中D 为由曲线2(0)y x x ≥及直线2x y +=和y 轴所围成的平面闭区域;21.设矩阵A 与B 满足关系是2AB A B =+,其中301110014A= ,求矩阵B .22.求方程组12341234123436536222x x x x x x x x x x x x ++−=−++=− −+−= 的通解; 四、证明题(本大题10分)23.证明:当04x π−<<时,0sin xt e tdt x <∫.五、综合题(本大题共2小题,每小题10分,满分20分)24.求曲线x =及直线2y =与y 轴所围成的平面图形的面积并计算该图形绕y 轴旋转一周所得的旋转体的体积..25.设定义在(,)−∞+∞上的函数()f x 满足方程'()()f x f x x −=,且(0)0f =,求: (1)函数()f x 的解析式;(2)曲线()y f x =的单调区间和极值点.参考答案一、单项选择题1. B2. D3. D4. D5. B6. B7. A8. B9. C 二、填空题9. 1 10. 1 11. 0 12. 1ln 2213. (1,3)− 14. 4三、计算题15. 2232022250022sin sin 2sin()4lim lim 4lim (1cos )63()2x x x x x t tdt t tdt x x x x x x x →→→===−∫∫; 16. 2222222222222222222224x x x x x x x xxe e x e e e x e e e x e dx x x dx x dx x c =−=−+=−++∫∫∫;17.26206111sin (sin )(sin )22212x dx x dx x dx πππππ−=−+−−∫∫∫; 18. 因为sin sin ,,z zz x y zx y yz x x x x y x ∂∂∂−−−−=+++=∂∂∂+ 且0,y yz zz e x z e x z y x y yy y x∂∂∂−−−=++++=∂∂∂+ 所以可得sin y x y z e x zdzdx dy y x y x−−−−−−=+++. 19. 解:因为特征方程为2450r r −−=,特征值为125,1r r ==−,所以齐次微分方程''4'50y y y −−=的通解为5112x x y c e c e −=+; 设''4'5x y y y xe −−−=的一个特解为*()x y x ax b e −=+,可得11*()1236x y x x e −=−+,所以原方程的通解为:511211*()1236x x x y y y c e c e x x e −−=+=+−+.20. 由22y x x y =+= 可得交点坐标(11),, 可得21116xBxydxdydx xydy ==∫∫∫∫; 21. 因为2AB A B =+,所以可得(2)A E B A −=,从而可得:1(2)B A E A −=−;又因1211(2)221111A E −−−−=−−− ,所以可得1522(2)432223B A E A −−− =−=−− − ; 22.求方程组12341234123436536222x x x x x x x x x x x x ++−=−++=− −+−= 的通解; 解:111361113611136101241513601012010120101212212031240011200112100120101200112−−−−−−→−→−→− −−−−−−− →− − 一个特解为2220 ,齐次线性方程组12341234123430530220x x x x x x x x x x x x ++−=−++= −+−= 的一组基础解系为:11111η= ,所以原方程组的通解为:123412121210x x c x x=+. 四、证明题 23.证明:当04x π−<<时,0sin xt e tdt x <∫.证明:令0()sin xt f x x e tdt =−∫,则有'()1sin x f x e x =−,令:''()sin cos 0x x f x e x e x =−−=,可得4x π=−,当04x π−<<,''()0f x <,所以当04x π−<<时,'()1sin x f x e x =−为递减函数,可得'()1sin '(0)1x f x e x f =−>=,所以当04x π−<<时,0()sin xt f x x e tdt =−∫为递增函数,因此可得:0()sin (0)0xt f x x e tdt f =−>=∫,从而可证得:0sin x t e tdt x <∫; 五、综合题 24.求曲线x =及直线2y =与y 轴所围成的平面图形的面积并计算该图形绕y 轴旋转一周所得的旋转体的体积..解:x x y = ⇒ =,则图形面积为:20Aydx dx = 旋转体的体积:2222200022y V x dy ydy ππππ====∫∫; 25.设定义在(,)−∞+∞上的函数()f x 满足方程'()()f x f x x −=,且(0)0f =,求: (1)函数()f x 的解析式;(2)曲线()y f x =的单调区间和极值点. 解:(1)()()()1dxdxx x x f x e xe dx c e xe dx c x ce −−−−−∫∫=+=+=−++∫∫,又因为(0)0f =,所以可得:1c =−,即:()1x f x x e −=−+−; (2)令'()10x f x e −=−+=,可得0x =; x(,0)−∞ 0 (0,)+∞ '()f x −+因此可知:(,0)−∞为函数()1x f x x e −=−+−的递减区间,(0,)+∞为函数()1x f x x e −=−+−的递增区间,点(0,0)为函数()1x f x x e −=−+−的极小值点.。
2011年江苏专转本(计算机基础)真题试卷(题后含答案及解析)
![2011年江苏专转本(计算机基础)真题试卷(题后含答案及解析)](https://img.taocdn.com/s3/m/8dc4ebd8eff9aef8951e06d4.png)
2011年江苏专转本(计算机基础)真题试卷(题后含答案及解析) 题型有:1. 填空题 2. 单选题 3. 多选题 4. 判断题填空题每空2分,共20分。
请将每一个空的正确答案写在答题卡上。
1.n个二进位表示的无符号整数的取值范围是________。
正确答案:0~2n-1解析:无符号整数,即表示,最高位也作为数值。
最小数是0,最高位是2n -1。
则答案为0~2n-1。
2.若X的补码为10011000,Y的补码为00110011,则[x]补=[Y]补的原码对应的十进制数值是________。
正确答案:-53解析:补码运算规则是:[X+Y]补码=[X]补码+[Y]补码,[X-Y]补码=[X]补码+[-Y]补码。
因此,本题1001,1000+0011,0011=1100,1011,转换成原码是:1011,0101=-53,即答案为-53。
3.冯.诺依曼结构计算机的基本工作原理是________。
正确答案:存储程序控制解析:硬件系统遵循冯.诺依曼提出的存储程序与程序控制的原理,由五部分构成:运算器、控制器、存储器、输入设备和输出设备。
4.芯片组一般由北桥芯片和南桥芯片组成,北桥芯片是________控制中心,南桥芯片是I/O控制中心。
正确答案:存储器解析:北桥芯片是主板上最重要的芯片,是存储器控制中心,主要负责与CPU,内存,显卡进行通讯,北桥芯片可以看成是CPU、内存、显卡之间的桥梁。
南桥芯片是I/O控制中心,负责连接硬盘、USB接口、PCI接口等其他接口。
南桥芯片和北桥芯片之间也有通道进行数据通讯。
因此,答案存储器。
5.从硬件和软件资源管理的角度来看,操作系统的主要功能包括处理器管理、存储器管理、________、I/O设备管理等几个方面。
正确答案:文件管理解析:本题是一个概念题,需要掌握操作系统的主要功能,即处理器管理、存储器管理、文件管理、输入输出管理等。
因此答案为文件管理。
6.一个算法总是在执行了有限步的操作后退止,这个特性称为算法的________。
2011江苏省专转本数学真题以及答案
![2011江苏省专转本数学真题以及答案](https://img.taocdn.com/s3/m/d43ee96f011ca300a6c39011.png)
江苏省2011年普通高校专转本统一考试试卷 高等数学 试卷一、选择题(本大题共6小题,每小题4分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,请把所选项前的字母填在答题卷的指定位置上)A 、2-B 、2C 、2-D 、2 5、如果二重积分(,)Df x y dxdy ⎰⎰可化为二次积分121(,)y dy f x y dx +⎰⎰,则积分域D 可表示为 。
A 、{(,)|01,11}x y x x y ≤≤-≤≤B 、{(,)|12,11}x y x x y ≤≤-≤≤C 、{(,)|01,10}x y x x y ≤≤-≤≤D 、{(,)|12,01}x y x y x ≤≤≤≤- 6、若函数1()2f x x=+的幂级数展开式为0()(22)n n n f x a x x ∞==-<<∑,则系数n a = 。
n n共64分)13、求极限220()lim ln(1)x x x e e x -→-+。
14、设函数()y y x =由参数方程22y x t t e y t⎧=+⎨+=⎩所确定,求dydx 。
15、设()f x 的一个原函数为2sin x x ,求不定积分()f x dx x⎰。
16、计算定积分30⎰。
17、求通过x 轴与直线231x y z==的平面方程。
x 分,共20分)23、设210arctan ()1001sin 2ax axe x ax x x xf x x x e x ⎧---⎪<⎪⎪==⎨⎪>-⎪⎪⎩,问常数a 为何值时,(1)0x =是函数()f x 的连续点?(2)0x =是函数()f x 的可去间断点? (3)0x =是函数()f x 的跳跃间断点? 24、设函数()f x 满足微分方程'()2()(1)xf x f x a x -=-+(其中a 为正常数),且(1)1f =,由曲线()(1)y f x x =≤与直线1,0x y ==所围成的平面图形记为D 。
2011年江苏专转本高等数学真题答案
![2011年江苏专转本高等数学真题答案](https://img.taocdn.com/s3/m/a5970a19d0d233d4b14e6990.png)
2011年江苏省普通高校“专转本”统一考试高等数学参考答案一、选择题(本大题共6小题,每小题4分,共24分)1、C2、B3、A4、B5、D6、D二、填空题(本大题共6小题,每小题4分,共24分)7、-1 8、2ln 22+ 9、32 10、dx 41 11、2π 12、[)11,- 三、计算题(本大题共8小题,每小题8分,共64分)13、原式=4lim 22))((2lim )(lim 00220=-=+-=--→--→-→x e e x e e e e x e e xx x x x x x x x x x 14、)12)(1(21212++=++==t e t t e t dtdx dt dydx dy y y 15、原式=⎰⎰⎰+-=+=+x xd x dx x x x dx xx x x x sin cos 2)cos sin 2(cos sin 22 =C x x x ++-sin cos16、令t x =+1,则原式=⎰⎰=-=+-21221235)22(211 dt t t tdt t t 17、设所求平面方程为0=+++D Cz By Ax .因为该平面经过x 轴,所以0==D A ;又该平面经过已知直线,所以法向量互相垂直,即03=+C B .综上,所求平面方程为03=-Bz By ,即03=-z y .18、'-=⎥⎦⎤⎢⎣⎡⋅'+-⋅'⋅+⋅=∂∂12210)(1f x y f f x y f x f x z "-"-'=⎥⎦⎤⎢⎣⎡⋅"+⋅"⋅+'⋅⋅-⋅'+⋅'=∂∂∂12112212111212)11(11)11(f x y f x y f f x f y f x f x f y x z 19、原式=⎰⎰=20243232sin dr r d θθππ 20、由已知可得x x x x e x e x e x e x f )13()1(2)1()(+=++++=,特征方程:0232=++r r ,齐次方程的通解为x x e C e C Y 221--+=.令特解为x e B Ax y )(+=*, 代入原方程得:43656+=++x B A Ax ,有待定系数法得:⎩⎨⎧=+=46536B A A ,解得⎪⎩⎪⎨⎧==4121B A ,所以通解为x x x e x e C e C Y )4121(221+++=--. 四、证明题(本大题共2小题,每小题9分,共18分)21、令012)1ln()(,2)1ln()(2222>+++='-+=x x x x f x x x f 则,所以)(x f 单调递增. 又025ln 2)2(,02)0(>-=<-=f f ,所以由零点定理可知命题得证.22、设20112011)(,20112010)(20102011-='-+=x x f x x x f 则,令0)(='x f 得驻点1=x ,又020102011)1(20102011)(2009>⋅=''⋅=''f x x f ,所以,因此由判定极值的第二充分条件可知0)1(=f 为极小值,并由单峰原理可知0)1(=f 也为函数)(x f 的最小值,即0)(≥x f ,也即原不等式成立.五、综合题(本大题共2小题,每小题10分,共20分)23、2222lim 1lim arctan 1lim 22022020-=-=---=------→→→a e a x ax x e x x ax x e ax x ax x ax x 22lim 21lim 2sin 1lim 000a ae x e x e ax x ax x ax x ==-=--++→→→ (1)依题意有2222a a =-,解得21=-=a a 或,又1)0(=f ,所以2=a . (2)左右极限必须相等,且不能等于函数值,所以1-=a .(3)依题意有2222a a ≠-,解得21≠-≠a a 且. 24、(1)将原方程化为一阶线性微分方程得)1()(2)(+-=-'a x f xx f ,所以 x a Cx C x a x C dx e a e x f dx x dx x )1()1()1()(2222++=++=⎥⎦⎤⎢⎣⎡+⎰+-⎰=⎰--- 代入x a ax x f a C f )1()(1)1(2++-=-==,即,得 由此作出平面图形D ,并求出其面积[]3263)1(102=+=++-=⎰a dx x a ax S 解得1=a ,则此时函数的表达式为x x x f 2)(2+-=(2)ππ158)2(2102=+-=⎰dx x x V x (3)πππ65)11(112102=---⋅⋅=⎰dy y V y 。
江苏省2011年普通高校专转本统一考试
![江苏省2011年普通高校专转本统一考试](https://img.taocdn.com/s3/m/7cd5116a011ca300a6c390ec.png)
江苏省2011年普通高校专转本统一考试英语模拟卷本试卷分为第I卷(客观题)和第II卷(主观题)两部分。
两卷满分150分。
考试时间120分钟。
第一卷(共100分)注意事项:1.答第I卷前,考生务必按规定要求填涂答题卡上的姓名、准考证号等项目及卷首和第7页的姓名。
2.用2B 铅笔把答题卡上相应题号中正确答案的字母涂黑。
答案应涂写在答题卡上,否则无效。
Part I Reading Comprehension(共20题,每题2分,共40分)Directions: There are 4 passages in this part. Each passage is followed by some questions or unfinished statements. For each of them there are 4 choices marked A, B, C and D. You should decide on the best choice and mark the corresponding letter on the Answer Sheet with a single line through the center.Passage OneQuestions 1 to 5 are based on the following passage.American researchers have developed a technique that may become an important tool in fighting AIDS. The technique stops the AIDS virus from attacking its target-cells in the body's defense system. When AIDS virus enters the blood, it searches for blood cells called T4 lymphocytes(淋巴细胞). The virus connects to the outside of T4 lymphocytes, then forces its way inside. There it directs the cells' genetic(基因的)material to produce copies of the AIDS virus. This is how AIDS spreads.Researchers think they may be able to stop AIDS from spreading by preventing virus from connecting to T4 cells. When AIDS virus finds a T4 cell, it actually connects to a part of the cell called CD4 protein.Researchers want to fool the virus by putting copies or clones of the CD4 protein into the blood. This way the AIDS virus will connect to the cloned protein instead of the real ones. Scientists use the genetic engineering methods to make the clones. Normally a CD4 protein remains on the T4 cell at all times. The AIDS virus must go to it.In a new technique, however, the cloned CD4 protein is not connected to a cell. It floats freely, so many more can be put into the blood to keep the AIDS virus away from real CD4 proteins on T4 cells. One report says the AIDS virus connects to the cloned proteins just as effectively as to real protein. That report was based on tests with blood cells grown in labs. The technique is just now beginning to be tested in animals. If successful, it may be tested in humans within a year.1. The new technique can ________.A. cure AIDSB. kill the AIDS virusC. prevent the AIDS virus from spreadingD. produce new medicines for AIDS2. When the AIDS virus enters the blood, it is reproduced by ________.A. the inside of the virus itselfB. any blood cells in the bodyC. the CD4 proteinD. the genetic material of T4 cells3 The AIDS virus connects to cloned proteins instead of to the real ones because ________.A. the cloned proteins stay on the T4 cellsB. the cloned proteins can float freely in the bloodC. it connects to cloned proteins more effectively than to the real onesD. the cloned proteins are made by genetic engineering methods4. Which of the following statements is NOT true?A. The new technique has been tested in labs.B. The new technique is being tested in animals.C. The new technique may be tested in humans.D. The new technique is now under clinical test.5 Which of the following could be the best title of this passage?A. AIDS---a Fatal Disease.B. A New Technique in fighting AIDS.C. A Report on the Spread of AIDS Virus.D. The Technique of Cloned CD4 Protein.Passage TWOQuestions 6 to 10 are based on the following passage.During the early ears of last century, wheat was seen as the very lifeblood of Western Canada. When the crops were good, the economy was good; when the crops failed, there was depression. People on city streets watched the yields and the price of wheat with almost as much feeling as if they wee growers. The marketing of wheat became an increasinglyfavorite topic of conversation.War set the stage for the most dramatic events in marketing the western crop. For years, farmers mistrusted speculative (投机的)grain selling as carried on through the Winnipeg Grain Exchange. Wheat prices were generally low in the autumn, but farmers could not wait for markets to improve. It had happened too often that they sold their wheat soon after harvest when farm debts were coming due(到期),only to see prices rising and speculators getting rich. On various occasions, producer groups asked for firmer controls, but governments had no wish to become involved, at least not until wartime wheat prices threatened to run wild.Anxious to check(控制) inflation(通货膨胀) and rising living costs, the federal government appointed a board(董事会) of grain supervisors to handle deliveries from the crops of 1917 and 1918. Grain Exchange trading was suspended (暂停) and farmers sold at prices fixed by the board. To handle the crop of 1919, the government appointed the first Canadian Wheat Board, with full authority to buy, sell, and set prices.6. The author uses the term “lifeblood”(Line1, para1.) to indicate that wheat was _______.A. difficult to produce in large quantitiesB. was easily affected by animals and plantsC. essential to the health of the countryD. expensive to gather and transport7. According to the passage, most farmers’ debts had to be paid __________.A. when the autumn harvest had just been completedB. because wheat prices were highC. as soon as the Winnipeg Grain Exchange demanded paymentD, when crop failure caused depression8. According to the passage, wheat prices became uncontrolled because of conditions caused by _____.A. farmersB. supervisorsC. weatherD. war9. The word “check” (Line 1, Para.3) could best be replaced by which of the following?A. controlB. investigateC. financeD. reinforce10. According to the passage, a preliminary step in the creation of the Canadian Wheat Board was the appointment of ______.A. the Winnipeg Grain ExchangeB. a board of supervisorsC. several producer groupsD. a new governmentPassage ThreeQuestions 10 to 15 are based on the following passage.Yellowstone Park is visited by two million people every summer and is the oldest, largest and most visited wilderness in the world. All are welcome and are invited on arrival to leave their cars and explore on foot.Yellowstone, a national park for ever 100 years, lies in the State of Wyoming, to the east of the Rocky Mountain. It is also in the center of the North American continent, midway between the equator and theNorth Pole, at a height of over 2300 meters.The very cold winter in this area closes the park around mid-November and lasts until April or even May. In February the temperature falls as low as 60F degree below freezing, and the animals that spend winterin the park are best able to live in the conditions such as bison, wapiti, beavers and otters. Fortunately, the area around the hot springs and geysers becomes a centrally heated oasis(绿洲) in the desert of snow, providingwarmth and a certain mount of food for the animals.Bison used to go around the plains in their millions until they were hunted almost to extinction(灭绝) by white men with guns. In 1900 only two dozen of them remained in the park. However, since they become aprotected animal, their numbers have risen to over two thousand.The end of winter is the most dangerous time for the animals as food becomes even less and they take great risks(冒险) to find it, such as walking across thin ice. This period is known as “winterkill”, when many of theweak and the old die, often from being too tired out, thus providing food for scavengers such as the coyote (a kind of wolf). With the arrival of summer, plants reappear and the animals fill themselves with rich food. The young grow strongand the tourists return to enjoy the warmth or 4 months before Yellowstone Park freezes over again.11 Bison used to go in danger. With the protection, the number is ________ now.A. falling downB. going upC. staying the sameD. becoming less12The Rocky Mountains are _____________A. in the center of WyomingB. to the west of Yellowstone ParkC. in the north of Yellowstone ParkD. to the east of Yellowstone Park13Which of the following is NOT an animal?A. otterB. beaverC. geysersD. coyote14.At the end of the 19th century_______________.A. bison ran around the plains in their millionsB. bison were hunted almost to extinctionC. bison became a kind of protected animalD. their number rose more than 20015.From the text, we can know that “ scavengers in the last paragraph are_______________A. animals which feed on other dead animalsB. places where water comes naturally from the groundC. birds which live in grass seedsD. animals which always eat as much as possiblePassage FourQuestions 15 to 20 are based on the following passage.What is your favorite color? Do you like yellow, orange, red? If you do, you must be an optimist(乐观者), a leader, an active person who enjoy life, people and excitement. Do you prefer grays and blues? Then you are probably quiet, shy and you would rather follow than lead. If you love green, you are strong-minded and determined. You wish to succeed and want other people to see you are successful. At least this is whatpsychologist(心理学家) tell us and they should know, because they have been seriously studying the meaning of color preference, and the effect that colors have on human beings. They tell us that we don’t choose our favourite color as we grow up. If you happen to love brown, you did so as soon as you opened your eyes, or at least as soon as you could see clearly.A yellow room makes us feel more cheerful and more comfortable than a dark green one, and a red dress brings warmth and cheer to the saddest winter day. On the other hand, black is depressing(压抑). Light and bright colors make people not only happier but more active. It is a fact that factory workers work better, harder and have fewer accidents when their machines are painted orange rather than black or dark gray.Remember, then, that if you feel low, you can always brighten your day or your life with a new shirt or a few colorful things. Remember also that you will know your friends and your enemies better when you find out what colors they like and dislike. And don’t forget that anyone can guess a lot about your character when you choose a piece of handkerchief or a lampshade.16. From this passage we learn that an active person would prefer those colors________.A. red, green and yellowB. gray, blue or darkC. orange, yellow or redD. yellow, orange or red17 bright colored room can _______ one’s mood.A. depressB. brightC. happyD. cheer up18Knowing the color preference can help one ____________ in their social life.A. understand the other people moreB. affect other people moreC. cheer up other people moreD. study better19In a factory, in order to reduce accidents or make the workers morehappily, it is better to have the machines painted________.A. redB. whiteC. grayD. orange20The main idea of this passage is_________.A. one’s color preference shows one’s characterB you can brighten your life with wonderful colorsC. psychologists have been studying the meaning of color preferenceD. one’s color preference has something to do with his character and colors have effects on human beingsPart II V ocabulary and Structure (共40小题,每小题1分,共40分)Directions; In this part there are forty incomplete sentences. Each sentence is followed by four choices. Choose the one that best completes the sentence and then mark your answer on the Answer sheet.21.—My best friend’s in a bad mood.—How about ________ her some flowers?A. givingB. givenC. to giveD. give22.On my birthday I got a watch from my uncle, ________ was made in Japan.A. whoB. thatC. whichD. what23.The news came as no surprise to me, for I ________ of it earlier.A. hearB. heardC. have heardD. had heard24.—Why are they pulling down the houses?—________ a new parking lot.A. BuildB. To buildC. BuildingD. Built25.I ________ on a sofa because my parents have come for the weekend.A. sleptB. was sleepingC. have sleptD. am sleepingst winter was extremely cold. , most people say it was the coldest winter of their lives.A.At lastB. As a resultC. In a wordD. In fact27.I passed by the sports field the other day,_______there was a football match going on then.A.thatB. whereC. winchD. when28.It was a great party, thank you. But Jill, why___ youmore friends to come?A.haven’t … invitedB. don’t …inviteC.didn’t … inviteD. won’t … invite29.He failed the mid-term examination and only then_______how much time he had wasted.A.he realizedB. did he realizeC. he had realizedD. had he realized30.I hadentered the classroom when I noticed the headmaster was sitting at the back.A.stillB. yetC. soonerD. hardly31.The most popular food for foreigners ________ on any menu in Beijing is roast duck.A. includeB. includingC. to includeD. included32.The mother, along with her two daughters,________ from the sinking aircraft by a passing ship.A. have rescuedB. have been rescuedC. has rescuedD. has been rescued33.________ every mistake you make, you’ll lose half a mark.A. ForB. AtC. ToD. By34.This painting is splendid, but ________ we actually need it is a different matter.A. thatB. whatC. whetherD. how35.Thank you, but I’ll have to ________ your offer.A. turn awayB. turn downC. turn backD. turn off36.It was with great joy _______ he received the news that his best friend would come to Beijing.A.because B.which C.since D.that37.Jane went off to the party with her husband, _______ a happy evening of wine, food and song.A.expected B.expecting C.to expect D.expects38.—Excuse me.Is this the right way to the Summer Palace?—Sorry, I’m not sure.But it _______ be.A.might B.will C.must D.can39.Shirley said that she would have a two-week holiday in July, ______ I think, is impossible.A.it B.that C.when D.which40.Although she doesn’t like to live in the country, ______ , she goes there for a picnic.A.once upon a time B.some timeC.once in a while D.from now on41.---- Are we about to have a dinner?--- Yes, it ________ in the dinning room.A. is being servedB. is servingC. has servedD. has been serving42. ---- I’d like to buy an expensive sports car.---- Well, Mike, we have got several models_________.A. to be chosen fromB. to chooseC. to choose fromD. to be chosen43. A fence at the back of the garden _______ us from the neighbours.A. separatedB. dividedC. concludedD. connected44. There is a _______ between two acts in the play.A. stopB. timeC. breakD. end45. ---- Is your camera like Bill’s and Ann’s?---- No, but it’s almost the same as ________.A. herB. yoursC. themD. their46. A thief is a danger to _______.A. societyB. the societyC. societiesD. a society47. The cost of one day in the hospital in this city can run _______ 250 dollars.A. as high toB. so high toC. so high asD. as high as48. If you keep on, you’ll succeed ________.A. in timeB. at one timeC. at the same timeD. on time49. Is ______ possible to fly to the moon in a spaceship?A. nowB. manC. thatD. it50. The plant is dead. I _______ it more water.A. will giveB. would have givenC. must giveD. should have given51. __________ this material can be used in our factory has not been studied yet.A. WhichB. WhatC. ThatD. Whether52. _______ school_______ it began raining.A. As soon as we reached; thenB. As soon as we had reached; thenC. No sooner did we reach; whenD. No sooner had we reached; then53. If it _______ fine tomorrow, we would go for a swim in the sea.A. will beB. should beC. isD. were to54. The boy you referred _____ is far ahead ______ everyone else in the class.A. to; toB. to; ofC. at; withD. at; from55. ----How’s the young man?---- _______________.A. He is twentyB. He’s a doctorC. He’s much betterD. He’s David56. As soon as he entered the room, he took ________ his cap and sat down.A. offB. outC. awayD. down57. ----What are you doing?---- I’m looking ________ the children. They should be back for lunch now.A. afterB. atC. forD. up58. The teacher told the class to _________ their books.A. put awayB. put byC. put onD. put up59. I asked him to _______ me a few minutes so that we could go over all the problems.A. spendB. saveC. spareD. share60. Mother __________ us stories when we were young.A. was used to tellB. is used to tellingC. used to tellD. used to tellingPart Three Cloze (共20小题;每小题1分,满分20分)Directions: There are twenty blanks in the following passage. For each blank there are four choices. Choose the one that best fits into the passage and then mark your answer on the Answer Sheet.What makes a child speak a language has long been a puzzle to linguists (语言学家). 61 speaking, there are two schools of linguists, both of 62 try to explain 63 a child picks up a language so easily. The fact that a child picks up a language 64 is surprising: at one year old, a child is able to 65 "bye-bye"; at two, he is able to use fifty words; by three he begins to 66 tenses. The famous American linguist Noam Chomsky 67 that human beings have a sort of built-in system for language use, and that the 68 is only secondary. Children are not taught language 69 they are taught arithmetic. Other linguists, 70, hold the view that a child learns 71 of his language from the hints in the environment. 72, theorists of both schools 73 that there is a biological basis for language and language use. The 74 is which is more important, the inner ability or the environment. This is certainly a field 75 to be explored. Researchers from both schools are busy finding evidence to 76 their own theory, but 77 side is persuading the other. It seems that in order to 78 why a child learns a language so easily, we have to 79 the joint efforts of both schools. Some linguists, like De Villiers, have recognized the value of cooperation, and 80 linguists of both sides to work together.61. A. Surprisingly B. Personally C. Properly D. Roughly62. A. them B. who C. whom D. which63. A. that B. when C why D. how64. A. independently B. naturally C. without help D. with ease65. A. speak B. say C. wave D. respond66. A. master B. study C. have D. get67. A. doubts B. believes C. realizes D. criticizes68. A. help B. teacher C. environment D. hint69. A. as B. for C. when D. though70. A. in particular B. as a result C. however D. therefore71. A. a little B. some C. nothing D. most72. A. Before B. From now on C. Just now D. By now73 A. suspect B. disagree C. agree D. realize74 A. case B. quarrel C. problem D. question75 A. waiting B. planning C. never D. unlikely76 A. provide B. create C. supply D. support77 A. not a B. one C. neither D. either78. A. find out B. rule put' C. search for D. look for79 A. get rid of B. trust in C. rely on D. persist in80A. ordered B. criticized C. challenged D. urged第II卷(共50分)Part IV Translation (共35分)Section A (共5小题,每小题4分,共20分)81 merican researchers have developed a technique that may become an important tool in fighting AIDS. (Passage one)82 t had happened too often that they sold their wheat soon after harvest when farm debts were coming due(到期) (Passage Two)83 Park is visited by two million people every summer and is the oldest, largest and most visited wilderness in the world. (Passage Three)84 because they have been seriously studying the meaning of color preference, and the effect that colors have on human beings.(Passage Four)85 Light and bright colors make people not only happier but more active.(Passage Five)Section B (共5小题,每小题3分,共15分)Directions: Translate the following sentences into English.86别打扰我,我现在正忙于做计划呢。
2011年江苏卷数学高考试卷(原卷 答案)
![2011年江苏卷数学高考试卷(原卷 答案)](https://img.taocdn.com/s3/m/56e9cad705a1b0717fd5360cba1aa81144318f7e.png)
绝密★启用前2011年普通高等学校招生全国统一考试(江苏卷)数学本试卷共30题,共160分。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、填空题1.(5分)(2011•江苏)已知集合A={﹣1,1,2,4},B={﹣1,0,2},则A∩B=_________.2.(5分)(2011•江苏)函数f(x)=log5(2x+1)的单调增区间是_________.3.(5分)(2011•江苏)设复数z满足i(z+1)=﹣3+2i(i为虚数单位),则z的实部是_________.4.(5分)(2011•江苏)根据如图所示的伪代码,当输入a,b分别为2,3时,最后输出的m的值为_________.5.(5分)(2011•江苏)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是_________.6.(5分)(2011•江苏)某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差s2=_________.7.(5分)(2011•江苏)已知,则的值为_________.8.(5分)(2011•江苏)在平面直角坐标系xOy中,过坐标原点的一条直线与函数的图象交于P、Q两点,则线段PQ长的最小值是_________.9.(5分)(2011•江苏)函数f(x)=Asin(ωx+ϕ),(A,ω,ϕ是常数,A>0,ω>0)的部分图象如图所示,则f(0)=_________.10.(5分)(2011•江苏)已知,是夹角为的两个单位向量,=﹣2,=k+,若•=0,则实数k的值为_________.11.(5分)(2011•江苏)已知实数a≠0,函数,若f(1﹣a)=f(1+a),则a的值为_________.12.(5分)(2011•江苏)在平面直角坐标系xOy中,已知P是函数f(x)=e x(x>0)的图象上的动点,该图象在点P处的切线l交y轴于点M,过点P作l的垂线交y轴于点N,设线段MN的中点的纵坐标为t,则t的最大值是_________.13.(5分)(2011•江苏)设1=a1≤a2≤…≤a7,其中a1,a3,a5,a7成公比为q的等比数列,a2,a4,a6成公差为1的等差数列,则q的最小值是_________.14.(5分)(2011•江苏)设集合,B={(x,y)|2m≤x+y≤2m+1,x,y∈R},若A∩B≠∅,则实数m的取值范围是_________.二、解答题15.(14分)(2011•江苏)在△ABC中,角A、B、C的对边分别为a,b,c(1)若,求A的值;(2)若,求sinC的值.16.(14分)(2011•江苏)如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD.17.(14分)(2011•江苏)请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.18.(16分)(2011•江苏)如图,在平面直角坐标系xOy中,M、N分别是椭圆的顶点,过坐标原点的直线交椭圆于P,A两点,其中点P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k(1)若直线PA平分线段MN,求k的值;(2)当k=2时,求点P到直线AB的距离d;(3)对任意k>0,求证:PA⊥PB.19.(16分)(2011•江苏)已知a,b是实数,函数f(x)=x3+ax,g(x)=x2+bx,f'(x)和g'(x)是f(x),g (x)的导函数,若f'(x)g'(x)≥0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致(1)设a>0,若函数f(x)和g(x)在区间[﹣1,+∞)上单调性一致,求实数b的取值范围;(2)设a<0,且a≠b,若函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,求|a﹣b|的最大值.20.(16分)(2011•江苏)设M为部分正整数组成的集合,数列{a n}的首项a1=1,前n项和为S n,已知对任意整数k∈M,当整数n>k时,S n+k+S n﹣k=2(S n+S k)都成立(1)设M={1},a2=2,求a5的值;(2)设M={3,4},求数列{a n}的通项公式.数学Ⅱ(附加题)21.(10分)(2011•江苏)A.选修4﹣1:几何证明选讲如图,圆O1与圆O2内切于点A,其半径分别为r1与r2(r1>r2).圆O1的弦AB交圆O2于点C (O1不在AB 上).求证:AB:AC为定值.B.选修4﹣2:矩阵与变换已知矩阵,向量.求向量,使得A2=.C.选修4﹣4:坐标系与参数方程在平面直角坐标系xOy中,求过椭圆(φ为参数)的右焦点,且与直线(t为参数)平行的直线的普通方程.D.选修4﹣5:不等式选讲(本小题满分10分)解不等式:x+|2x﹣1|<3.22.(10分)(2011•江苏)如图,在正四棱柱ABCD﹣A1B1C1D1中,AA1=2,AB=1,点N是BC的中点,点M 在CC1上.设二面角A1﹣DN﹣M的大小为θ(1)当θ=90°时,求AM 的长;(2)当时,求CM 的长.23.(10分)(2011•江苏)设整数n≥4,P(a,b)是平面直角坐标系xOy 中的点,其中a,b∈{1,2,3,…,n},a>b.(1)记A n为满足a﹣b=3 的点P 的个数,求A n;(2)记B n为满足是整数的点P 的个数,求B n.2011年普通高等学校招生全国统一考试(江苏卷)数学(参考答案)一、填空题(共14小题,每小题5分,满分70分)故函数的定义域为(﹣)在区间(﹣(﹣则其概率为故答案为:10,6,8,5,=7,,=2====故答案为y=的两个交点的坐标是(),﹣)==4 =,﹣)点A=且+即=sin)sin=故答案为:是夹角为的两个单位向量==解得故答案为:舍去故答案为[t'=[故答案为:,得,所以≥故答案为:集,需直线与圆有交点,由可得|||则有﹣﹣m≥||2+﹣1+[,[[,)因为,所以sinA=tanA=又因为BF⊂平面EBF,所以平面BEFx h=S取最大值.(﹣x=20时,包装盒容积此时,.即此时包装盒的高与底面边长的比值是,,﹣,﹣.,代入椭圆方程得((﹣,﹣(﹣.•=)时,)时,且,从而﹣,于是﹣﹣,)(﹣)在(﹣,的最大值为d=∴EC∥DB,∴AB:AC=AD,设向量=2=,解得=.、椭圆为参数)的普通方程为=1直线,故所求的直线方程为,或,(所以(=,则=,则=,t=)AM=)因为,=因为=解得t=t=的长为解:(1)点P的坐标中,满足条件:,设=﹣m===。
近十年江苏省专转本高等数学试题分类整理
![近十年江苏省专转本高等数学试题分类整理](https://img.taocdn.com/s3/m/8e889d59caaedd3383c4d34c.png)
江苏省普通高校“专转本”统一考试高等数学专转本高数试卷结构知识分类与历年真题●函数、极限和连续●一元函数微分学●一元函数积分学●向量代数与空间解析几何●多元函数微积分●无穷级数●常微分方程时间排序与参考答案◆2004年高等数学真题参考答案◆2005年高等数学真题参考答案◆2006年高等数学真题参考答案◆2007年高等数学真题参考答案◆2008年高等数学真题参考答案◆2009年高等数学真题参考答案◆2010年高等数学真题参考答案◆2011年高等数学真题参考答案◆2012年高等数学真题参考答案◆2013年高等数学真题参考答案江苏省普通高校“专转本”统一考试高等数学试卷结构全卷满分150分一、单选题(本大题共6小题,每小题4分,满分24分) 二、填空题(本大题共6小题,每小题4分,满分24分) 三、解答题(本大题共8小题,每小题8分,满分64分) 四、综合题(本大题共2小题,每小题10分,满分20分) 五、证明题(本大题共2小题,每小题9分,满分18分)知识分类与历年真题一、函数、极限和连续(一)函数(0401)[](]333,0()0,2x x f x x x ⎧∈-⎪=⎨-∈⎪⎩是( ) A.有界函数 B.奇函数 C.偶函数 D.周期函数 (0801)设函数)(x f 在),(+∞-∞上有定义,下列函数中必为奇函数的是( )A.()y f x =-B.)(43x f x y = C.()y f x =-- D.)()(x f x f y -+= (二)极限(0402)当0→x 时,x x sin 2-是关于x 的( )A.高阶无穷小B.同阶无穷小C.低阶无穷小D.等价无穷小(0407)设xx x x f ⎪⎭⎫⎝⎛++=32)(,则=∞→)(lim x f x .(0601)若012lim2x x f x →⎛⎫ ⎪⎝⎭=,则0lim 3x xx f →=⎛⎫ ⎪⎝⎭( ) A.21 B.2C.3D.31 (0607)已知0→x 时,(1cos )a x ⋅-与x x sin 是等价无穷小,则=a .(0613)计算311lim1x x x →--. (0701)若0(2)lim2x f x x→=,则1lim 2x xf x →∞⎛⎫= ⎪⎝⎭( ) A.41B.21 C.2D.4(0702)已知当0→x 时,)1ln(22x x +是x n sin 的高阶无穷小,而x nsin 又是x cos 1-的高阶无穷小,则正整数=n ( ) A.1B.2C.3D.4(0813)求极限:32lim xx x x →∞-⎛⎫⎪⎝⎭. (0901)已知22lim32x x ax bx →++=-,则常数b a ,的取值分别为( ) A.2,1-=-=b a B.0,2=-=b aC.0,1=-=b aD.1,2-=-=b a(0907)已知lim 2xx x x C →∞⎛⎫= ⎪-⎝⎭,则常数=C . (1001)设当0x →时,()sin f x x x =-与()ng x ax =是等价无穷小,则常数,a n 的值为 ( ) A.1,36a n == B.1,33a n == C.1,412a n == D.1,46a n == (1007) 1lim 1xx x x →∞+⎛⎫= ⎪-⎝⎭. (1101)当0→x 时,函数1)(--=x e x f x是函数2)(x x g =的( ) A.高阶无穷小 B.低阶无穷小C.同阶无穷小D.等价无穷小(1107)已知22lim kxx x e x →∞-⎛⎫= ⎪⎝⎭,则=k _________. (1201)极限1sin 3lim 2sinx x x x x →∞⎛⎫+= ⎪⎝⎭( ) A.0 B.2 C.3D.5(1301)当0x →时,函数()ln(1)f x x x =+-是函数2()g x x =的( ) A.高阶无穷小 B.低阶无穷小C.同阶无穷小D.等价无穷小(1310)设10lim xx a x e a x →+⎛⎫=⎪-⎝⎭,则常数a = . (三)连续(0413)求函数xxx f sin )(=的间断点,并判断其类型. (0501)0=x 是xx x f 1sin )(=的( ) A.可去间断点B.跳跃间断点C.第二类间断点D.连续点(0513)设()2sin 0()0f x xx F x xa x +⎧≠⎪=⎨⎪=⎩在R 内连续,并满足0)0(=f ,(0)6f '=,求a . (0602)函数21sin 0()00x x f x xx ⎧≠⎪=⎨⎪=⎩在0x =处( ) A.连续但不可导B.连续且可导C.不连续也不可导D.可导但不连续(0608)若A x f x x =→)(lim 0,且)(x f 在0x x =处有定义,则当=A 时,)(x f 在0x x =处连续.(0707)设函数1(1)0()20x kx x f x x ⎧⎪+≠=⎨⎪=⎩,在点0=x 处连续,则常数=k .(0807)设函数21()(1)x f x x x -=-,则其第一类间断点为 .(0808)设函数0()tan 30a x x f x x x x+≥⎧⎪=⎨<⎪⎩在点0=x 处连续,则a = .(0902)已知函数423)(22-+-=x x x x f ,则2=x 为)(x f 的( )A.跳跃间断点B.可去间断点C.无穷间断点D.震荡间断点(1123)设210arctan ()1010sin 2ax axe x ax x x xf x x e x x ⎧---<⎪⎪⎪==⎨⎪-⎪>⎪⎩,问常数为何值时:(1)0=x 是函数)(x f 的连续点? (2)0=x 是函数)(x f 的可去间断点? (3)0=x 是函数)(x f 的跳跃间断点? (1202)设()2(2)sin ()4x xf x x x -⋅=⋅-,则函数)(x f 的第一类间断点的个数为( ) A.0 B.1C.2D.3(1207)要使函数()1()12xf x x =-在点0=x 处连续,则需补充定义(0)f =_________.(1303)设sin 20()011xx x f x x x x ⎧<⎪⎪=⎨⎪>⎪+-⎩,这点0x =是函数()f x 的( )A.跳跃间断点B.可去间断点C.无穷间断点D.连续点(1307)设1sin0()0x x f x xa x ⎧≠⎪=⎨⎪=⎩在点0x =处连续,则常数a = . 二、一元函数微分学(一) 导数与微分(0403)直线L 与x 轴平行且与曲线xe x y -=相切,则切点的坐标是( ) A.()1,1B.()1,1-C.()0,1-D.()0,1(0409)设()(1)(2)()f x x x x x n =+++,N n ∈,则=)0('f .(0415)设函数)(x y y =由方程1=-yxe y 所确定,求22d d x yx=的值.(0502)若2=x 是函数1ln 2y x ax ⎛⎫=-+ ⎪⎝⎭的可导极值点,则常数=a ( ) A.1-B.21C.21- D.1 (0514)设函数)(x y y =由方程cos sin cos x t y t t t =⎧⎨=-⎩所确定,求d d y x 、22d d yx .(0614)若函数)(x y y =是由参数方程2ln (1)arctan x t y t t⎧=+⎨=-⎩所确定,求d d y x 、22d d yx .(0708)若直线m x y +=5是曲线232++=x x y 的一条切线,则常数=m .(0714)设函数)(x y y =由方程xy e e yx=-确定,求d d x yx=、22d d x y x =.(0802)设函数)(x f 可导,则下列式子中正确的是( ) A.0(0)()lim(0)x f f x f x →-'=- B.000(2)()lim ()x f x x f x f x x→+-'=C.0000()()lim ()x f x x f x x f x x ∆→+∆--∆'=∆D.0000()()lim 2()x f x x f x x f x x∆→-∆-+∆'=∆ (0814)设函数)(x y y =由参数方程sin 1cos x t t y t =-⎧⎨=-⎩(2t n π≠,n Z ∈)所决定,求d d y x 、22d d y x .(0903)设函数00()1sin 0x f x x x x α≤⎧⎪=⎨>⎪⎩在点0=x 处可导,则常数α的取值范围为( ) A.10<<αB.10≤<αC.1>αD.1≥α(0914)设函数)(x y y =由参数方程2ln (1)23x t y t t =+⎧⎨=+-⎩所确定,d d y x 、22d d yx . (0923)已知函数0()10x e x f x x x -⎧<=⎨+≥⎩,证明函数)(x f 在点0=x 处连续但不可导.(1008).若(0)1f '=,则0()()limx f x f x x→--= .(1014)设函数()y y x =由方程2x yy ex ++=所确定,求d d y x 、22d d yx .(1022)设()0()1x x f x xx ϕ⎧≠⎪=⎨⎪=⎩,其中函数()x ϕ在0x =处具有二阶连续导数,且(0)0ϕ=,(0)1ϕ'=,证明:函数()f x 在0x =处连续且可导.(1102)设函数)(x f 在点0x 处可导,且4)()(lim 000=+--→hh x f h x f h ,则=')(0x f ( )A.4-B.2-C.2D.4(1110)设函数x y arctan=,则1d x y==_____________.(1114)设函数)(x y y =由参数方程⎪⎩⎪⎨⎧=++=22ty e tt x y 所确定,求d d y x .(1208)设函数()22221x y x x x e =⋅+++,则=)0()7(y________.(1209)设xy x =(0x >),则函数y 的微分=dy ___________.(1214)设函数)(x y y =由参数方程⎪⎩⎪⎨⎧+=-=tt y tt x ln 212所确定,求d d y x 、22d d y x . (1304)设1y f x ⎛⎫= ⎪⎝⎭,其中f 具有二阶导数,则22d d y x =( )A.231121f f x x x x ⎛⎫⎛⎫'''-+ ⎪ ⎪⎝⎭⎝⎭ B.231121f f x x x x ⎛⎫⎛⎫'''+ ⎪ ⎪⎝⎭⎝⎭ C.231121f f x x x x ⎛⎫⎛⎫'''--⎪ ⎪⎝⎭⎝⎭D.231121f f x x x x ⎛⎫⎛⎫'''-⎪ ⎪⎝⎭⎝⎭(1306)已知函数()f x 在点1x =处连续,且21()1lim 12x f x x →=-,则曲线()f x 在点()1,()f x 处切线方程为( ) A.1y x =-B.22y x =-C.33y x =-D.44y x =-(1309)设函数由参数方程2211x t y t ⎧=+⎨=-⎩所确定,则221d d t yx == .(二)中值定理及导数的应用(0423)甲、乙二城位于一直线形河流的同一侧,甲城位于岸边,乙城离河岸40公里,乙城在河岸的垂足与甲城相距50公里,两城计划在河岸上合建一个污水处理厂,已知从污水处理厂到甲乙二城铺设排污管道的费用分别为每公里500、700元.问污水处理厂建在何处,才能使铺设排污管道的费用最省?(0507)02limsin x x x e e xx x-→--=- . (0508)函数x x f ln )(=在区间[]1,e 上满足拉格郎日中值定理的=ξ . (0521)证明方程:0133=+-x x 在[]1,1-上有且仅有一根.(0603)下列函数在[]1,1-上满足罗尔定理条件的是( ) A.xe y =B.1y x =+C.21x y -=D.xy 11-= (0621)证明:当2x ≤时,332x x -≤.(0703)设函数()(1)(2)(3)f x x x x x =---,则方程()0f x '=的实根个数为( ) A.1B.2C.3D.4(0713)求极限01lim tan x x e x x x→--.(0722)设函数9)(23-++=cx bx ax x f 具有如下性质:(1)在点1-=x 的左侧临近单调减少; (2)在点1-=x 的右侧临近单调增加; (3)其图形在点(1,2)的两侧凹凸性发生改变. 试确定a ,b ,c 的值.(0724)求证:当0>x 时,22(1)ln (1)x x x -⋅≥-.(0809)已知曲线543223++-=x x x y ,则其拐点为 . (0821)求曲线1y x=(0x >)的切线,使其在两坐标轴上的截距之和最小,并求此最小值. (0823)设函数)(x f 在闭区间[]0,2a (0a >)上连续,且)()2()0(a f a f f ≠=,证明:在开区间(0,)a 上至少存在一点ξ,使得()()f f a ξξ=+.(0824)对任意实数x ,证明不等式:(1)1xx e -⋅≤.(0904)曲线221(1)x y x +=-的渐近线的条数为( )A.1B.2C.3D.4(0913)求极限30lim sin x x x x→-.(0921)已知函数13)(3+-=x x x f ,试求: (1)函数)(x f 的单调区间与极值; (2)曲线)(x f y =的凹凸区间与拐点;(3)函数)(x f 在闭区间[2,3]-上的最大值与最小值.(0924)证明:当12x <<时,24ln 23x x x x >+-.(1002)曲线223456x x y x x -+=-+的渐近线共有 ( )A.1条B.2条C.3条D.4条 (1006)设3()3f x x x =-,则在区间(0,1)内 ( ) A.函数()f x 单调增加且其图形是凹的 B.函数()f x 单调增加且其图形是凸的 C.函数()f x 单调减少且其图形是凹的 D.函数()f x 单调减少且其图形是凸的(1013)求极限2|011lim tan x x x x →⎛⎫-⎪⎝⎭.(1021)证明:当1x >时,121122x e x ->+. (1103)若点(1,2)-是曲线23bx ax y -=的拐点,则( ) A.3,1==b aB.1,3-=-=b aC.3,1-=-=b aD.6,4==b a(1113)求极限()()22limln 1xx x eex -→-+.(1121)证明:方程()2ln 12x x ⋅+=有且仅有一个小于2的正实根. (1122)证明:当0>x 时,x x201120102011≥+.(1203)设232152)(x x x f -=,则函数)(x f ( ) A.只有一个最大值 B.只有一个极小值 C.既有极大值又有极小值D.没有极值(1213)求极限()2302cos 2lim ln 1x x x x x →+-+. (1223)证明:当10<<x 时,361arcsin x x x +>. (1302)曲线22232x xy x x +=-+的渐近线共有( )A.1条B.2条C.3条D.4条(1313)求极限01lim ln (1)x x e x x →⎡⎤-⎢⎥+⎣⎦.(1323)证明:当1x >时,2(1ln )21x x +<-.三、一元函数积分学(一)不定积分(0410)求不定积分32arcsin d 1x x x=-⎰.(0416)设)(x f 的一个原函数为xe x,计算(2)d x f x x '⎰.(0503)若()d ()f x x F x C =+⎰,则sin (cos )d x f x x =⎰( )A.C x F +)(sinB.C x F +-)(sinC.C F +(cos)D.C x F +-)(cos(0515)计算3tan sec d x x x ⎰.(0522)设函数)(x f y =的图形上有一拐点(2,4)P ,在拐点处的切线斜率为3-,又知该函数的二阶导数6y x a ''=+,求)(x f .(0604)已知2()d x f x x e C =+⎰,则()d f x x '-=⎰( )A.C ex+-22B.C e x +-221 C.C e x +--22 D.C e x +--221(0615)计算1ln d xx x+⎰. (0622)已知曲线)(x f y =过原点且在点),(y x 处的切线斜率等于y x +2,求此曲线方程. (0704)设函数)(x f 的一个原函数为x 2sin ,则(2)d f x x '=⎰( )A.C x +4cosB.C x +4cos 21C.C x +4cos 2D.C x +4sin(0715)求不定积分2d x x e x -⎰.(0810)设函数)(x f 的导数为x cos ,且21)0(=f ,则不定积分()d f x x =⎰ . (0815)求不定积分3d 1x x x +⎰. (0905)设()ln (31)F x x =+是函数)(x f 的一个原函数,则(21)d f x x '+=⎰( )A.C x ++461B.C x ++463C.C x ++8121D.C x ++8123(0915)求不定积分sin21d x x +⎰.(1015)求不定积分arctan d x x x ⎰.(1115)设)(x f 的一个原函数为x x sin 2,求不定积分()d f x x x⎰. (1215)求不定积分sin 2d x x x ⎰. (1315)求不定积分sin 2d x x x ⎰.(二)定积分(0404)2228R y x =+设所围的面积为S ,则222208d R R x x -⎰的值为( )A.SB.4S C.2S D.S 2(0421)证明:0(sin )d (sin )d 2x f x x f x x πππ=⎰⎰,并利用此式求20sin d 1cos xxx xπ+⎰.(0509)1211d 1x x x π-+=+⎰.(0516)计算10arctan d x x ⎰.(0609)设)(x f 在[]0,1上有连续的导数且(1)2f =,10()d 3f x x =⎰,则1()d x f x x '=⎰ .(0616)计算22cos d x x x π⎰.(0709)定积分()223241cos d x x x x --+⎰的值为 .(0716)计算定积分212221d x x x-⎰. (0811)定积分1212sin d 1xx x -++⎰的值为 .(0816)求定积分10d xe x ⎰.(0916)求定积分:212d 2x x x-⎰.(1009)定积分31211d 1x x x -++⎰的值为 . (1016)计算定积分403d 21x x x ++⎰. (1111)定积分()32221sin d xx x ππ-+⋅⎰的值为____________.(1116)计算定积分3d 11x xx ++⎰ . (1216)计算定积分21d 21xx x -⎰.(1316)计算定积分22d 24x x+-⎰.(1324)设函数()f x 在[,]a b 上连续,证明:[]2()d ()()d a b b aaf x x f x f a b x x +=++-⎰⎰.(三)变限积分与广义积分(0417)计算广义积分2d 1xx x +∞⋅-⎰.(0422)设函数)(x f 可导,且满足方程20()d 1()x t f t t x f x =++⎰,求)(x f .(0705)设221()sin d x f x t t =⎰,则()f x '=( )A.4sin x B.2sin 2x xC.2cos 2x xD.4sin 2x x(0803)设函数)(x f 122sin d xt t t =⎰,则()f x '等于( )A.x x 2sin 42B.x x 2sin 82C.x x 2sin 42-D.x x 2sin 82-(0908)设函数20()d x t x te t ϕ=⎰,则()x ϕ'= .(1003)设函数22()cos d t xx e t t Φ=⎰,则函数()x Φ的导数()x 'Φ等于 ( )A.222cos x xe x B.222cos x xe x - C.2cos xxe x - D.22cos x e x - (1108)设函数2()ln (1)d x x t t Φ=+⎰ ,则=Φ'')1(____________.(1211)设反常积分1d 2x ae x +∞-=⎰,则常数=a ______. (1222)已知定义在(),-∞+∞上的可导函数)(x f 满足方程31()4()d 3xx f x f t t x -=-⎰,试求:(1)函数()f x 的表达式; (2)函数)(x f 的单调区间与极值; (3)曲线()y f x =的凹凸区间与拐点.(1224)设0()d 0()(0)0x g t t x f x g x ⎧≠⎪=⎨⎪=⎩⎰,其中函数)(x g 在(,)-∞+∞上连续,且3cos 1)(lim 0=-→xx g x .证明:函数)(x f 在0=x 处可导,且1(0)2f '=. (1322)已知251320()95d x F x t t t ⎛⎫=- ⎪⎝⎭⎰是()f x 的一个原函数,求曲线()y f x =的凹凸区间、拐点. (四)定积分的几何应用(0523)已知曲边三角形由x y 22=、0=x 、1=y 所围成,求:(1)曲边三角形的面积;(2)曲边三角形绕x 轴旋转一周的旋转体体积.(0623)已知一平面图形由抛物线2x y =、82+-=x y 围成.(1)求此平面图形的面积;(2)求此平面图形绕y 轴旋转一周所得的旋转体的体积.(0721)设平面图形由曲线21x y -=(0≥x )及两坐标轴围成.(1)求该平面图形绕x 轴旋转所形成的旋转体的体积;(2)求常数a 的值,使直线a y =将该平面图形分成面积相等的两部分.(0822)设平面图形由曲线2x y =,22x y =与直线1=x 所围成.(1)求该平面图形绕x 轴旋转一周所得的旋转体的体积;(2)求常数a ,使直线a x =将该平面图形分成面积相等的两部分.(0922)设1D 是由抛物线22x y =和直线x a =,0y =所围成的平面封闭区域,2D 是由抛物线22x y =和直线x a =,2x =及0=y 所围成的平面封闭区域,其中20<<a .试求:(1)1D 绕y 轴旋转所成的旋转体的体积1V ,以及2D 绕x 轴旋转所成的旋转体的体积2V ; (2)求常数a 的值,使得1D 的面积与2D 的面积相等.(1023)设由抛物线2y x =(0x ≥),直线2y a =(01a <<)与y 轴所围成的平面图形绕x 轴旋转一周所形成的旋转体的体积记为1()V a ,由抛物线2y x =(0x ≥),直线2y a =(01a <<)与直线1x =所围成的平面图形绕x 轴旋转一周所形成的旋转体的体积记为2()V a ,另12()()()V a V a V a =+,试求常数a 的值,使()V a 取得最小值.(1024)设函数()f x 满足方程()()2xf x f x e '+=,且(0)2f =,记由曲线'()()f x y f x =与直线1y =,x t =(0t >)及y 轴所围平面图形的面积为()A t ,试求lim ()t A t →+∞.(1124)设函数)(x f 满足微分方程()2()(1)x f x f x a x '-=-+(其中a 为正常数),且1)1(=f ,由曲线()y f x =(1x ≤)与直线1x =,0y =所围成的平面图形记为D .已知D 的面积为32. (1)求函数)(x f 的表达式;(2)求平面图形D 绕x 轴旋转一周所形成的旋转体的体积x V ; (3)求平面图形D 绕y 轴旋转一周所形成的旋转体的体积y V .(1221)在抛物线2y x =(0x >)上求一点P ,使该抛物线与其在点P 处的切线及x 轴所围成的平面图形的面积为32,并求该平面图形绕x 轴旋转一周所形成的旋转体的体积. (1321)设平面图形D 是由曲线2x y =,y x =-与直线1y =所围成,试求:(1)平面图形D 的面积;(2)平面图形D 绕x 轴旋转一周所形成的旋转体的体积.四、向量代数与空间解析几何(一)向量代数(0510)设向量{}3,4,2=-a 、{}2,1,k =b ;a 、b 互相垂直,则=k . (0610)设1=a ,⊥a b ,则()⋅+=a a b . (0710)已知a 、b 均为单位向量,且12⋅=a b ,则以a 、b 为邻边的平行四边形面积为 . (0804)设向量(1,2,3)=a ,(3,2,4)=b ,则⨯a b 等于( )A.(2,5,4)B.(2,5,4)--C.(2,5,4)-D.(2,5,4)--(0909)已知向量{}1,0,1=-a ,{}1,2,1=-b ,则+a b 与a 的夹角为 . (1010)设{}1,2,3=a ,{}2,5,k=b ,若a 与b 垂直,则常数k = .(1109)若1=a ,4=b ,2⋅=a b ,则⨯=a b ____________.(1210)设向量a 、b 互相垂直,且3=a ,2=b ,则2+=a b ________.(1308)已知空间三点(1,1,1)A ,(2,3,4)B ,(3,4,5)C ,则ABC ∆的面积为 .(二)平面与直线(0518)求过点(3,1,2)A -且通过直线L :43521x y z-+==的平面方程. (0619)求过点(3,1,2)M -且与二平面07=-+-z y x 、0634=-+-z y x 都平行的直线方程.(0719)求过点(1,2,3)且垂直于直线20210x y z x y z +++=⎧⎨-++=⎩的平面方程.(0817)设平面∏经过点(2,0,0)A ,(0,3,0)B ,(0,0,5)C ,求经过点(1,2,1)P 且与平面∏垂直的直线方程. (0917)求通过直线12213-=-=z y x 且垂直于平面02=+++z y x 的平面方程. (1017)求通过点(1,1,1),且与直线23253x ty t z t =+⎧⎪=+⎨⎪=+⎩垂直,又与平面250x z --=平行的直线的方程.(1117)求通过x 轴与直线132zy x ==的平面方程. (1217)已知平面∏通过(1,2,3)M 与x 轴,求通过(1,1,1)N 且与平面∏平行,又与x 轴垂直的直线方程.(1318)已知直线10330x y z x y z -+-=⎧⎨--+=⎩在平面∏上,又知直线23132x ty t z t=-⎧⎪=+⎨⎪=+⎩与平面∏平行,求平面∏的方程.五、多元函数微积分(一)多元函数微分学(0418)设(,)z f x y xy =-,且具有二阶连续的偏导数,求x z ∂∂、yx z∂∂∂2.(0505)设yxy x u arctan),(=,22(,)ln v x y x y =+,则下列等式成立的是( )A.yv x u ∂∂=∂∂ B.xvx u ∂∂=∂∂ C.x v y u ∂∂=∂∂ D.y v y u ∂∂=∂∂ (0517)已知函数2(sin ,)z f x y =,其中),(v u f 有二阶连续偏导数,求x z ∂∂、yx z∂∂∂2.(0611)设x e u xysin =,=∂∂xu. (0620)设2(,)z x f x xy =⋅其中(,)f u v 的二阶偏导数存在,求y z ∂∂、xy z∂∂∂2.(0711)设yxz =,则全微分d z = .(0717)设(23,)z f x y xy =+其中f 具有二阶连续偏导数,求yx z∂∂∂2.(0805)函数xyz ln =在点(2,2)处的全微分d z 为( )A.11d d 22x y -+B.11d d 22x y +C.11d d 22x y -D.11d d 22x y --(0818)设函数,y z f x y x ⎛⎫=+ ⎪⎝⎭,其中)(x f 具有二阶连续偏导数,求y x z ∂∂∂2.(0910)设函数(,)z z x y =由方程12=+yz xz 所确定,则xz∂∂= . (0919)设函数(sin ,)z f x xy =,其中)(x f 具有二阶连续偏导数,求yx z∂∂∂2.(1011)设函数2ln4z x y =+,则10d x y z=== .(1018)设()2,xz y f xy e =⋅,其中函数f 具有二阶连续偏导数,求2zx y∂∂∂.(1104)设),(y x f z =为由方程8333=+-x yz z 所确定的函数,则=∂∂==00y x yz ( )A.21-B.21C.2-D.2(1118)设)(y xyxf z ,=,其中函数f 具有二阶连续偏导数,求y x z ∂∂∂2.(1204)设3ln 2z x y=+在点()1,1处的全微分为 ( )A.d 3d x y -B.d 3d x y +C.1d 3d 2x y +D.1d 3d 2x y -(1218)设函数22(,)()z f x xy x y ϕ=++,其中函数f 具有二阶连续偏导数,函数()x ϕ具有二阶连续导数,求yx z∂∂∂2.(1314)设函数(,)z z x y =由方程3331z xy z +-=所确定,求d z 及22zx∂∂.(1317)设()223,x yz fx e+=,其中函数f 具有二阶连续偏导数,求2zy x ∂∂∂.(二)二重积分(0411)交换二次积分的次序2120d (,)d x x x f x y y -=⎰⎰.(0419)计算二重积分sin d d Dy x y y ⎰⎰,其中D 由曲线x y =及x y =2所围成. (0504)设区域D 是xoy 平面上以点(1,1)A 、(1,1)B -、(1,1)C --为顶点的三角形区域,区域1D 是D 在第一象限的部分,则(cos sin )d d Dxy x y x y +=⎰⎰( )A.⎰⎰1)sin (cos 2D dxdy y xB.⎰⎰12D xydxdyC.⎰⎰+1)sin cos (4D dxdy y x xyD. 0(0511)交换二次积分的次序20111d (,)d x x x f x y y --+=⎰⎰;(0524)设)(x f 为连续函数,且1)2(=f ,1()d ()d uuyF u y f x x =⎰⎰(1u >). (1)交换)(u F 的积分次序; (2)求(2)F '.(0606)设对一切x 有(,)(,)f x y f x y -=-,22{(,)|1,0}D x y x y y =+≤≥,=1D 22{(,)|1,0,0}x y x y x y +≤≥≥,则(,)d d Df x y x y =⎰⎰( )A. 0B.1(,)d d D f x y x y ⎰⎰C.21(,)d d D f x y x y ⎰⎰D.41(,)d d D f x y x y ⎰⎰(0612)D 为以点(0,0)O 、(1,0)A 、(0,2)B 为顶点的三角形区域,d d Dx y =⎰⎰ .(0624)设⎪⎩⎪⎨⎧=≠=⎰⎰00)(1)(t a t dxdy x f t t g tD ,其中t D 是由t x =、t y =以及坐标轴围成的正方形区域,函数)(x f 连续.(1)求a 的值使得)(t g 连续;(2)求)('t g .(0720)计算二重积分22d d Dx y x y +⎰⎰,其中{}22(,)|2,0D x y x y x y =+≤≥.(0723)设0>>a b ,证明:()232d ()d ()d b b b x y xx a ayay f x e x ee f x x ++⋅=-⎰⎰⎰.(0819)计算二重积分2d d Dx x y ⎰⎰,其中D 是由曲线xy 1=,直线y x =,2x =及0=y 所围成的平面区域.(0918)计算二重积分d Dy σ⎰⎰,其中22{(,)02,2,2}D x y x x y x y =≤≤≤≤+≥.(1005)二次积分111d (,)d y y f x y x +⎰⎰交换积分次序后得 ( )A.1101d (,)d x x f x y y +⎰⎰B.2110d (,)d x x f x y y -⎰⎰C.2111d (,)d x x f x y y -⎰⎰D.2111(,)d x dx f x y y -⎰⎰(1019)计算d d Dx x y ⎰⎰,其中D 是由曲线21x y =-,直线y x =及x 轴所围成的闭区域.(1105)若(,)d d Df x y x y ⎰⎰可转化为二次积分1201d (,)d y y f x y x +⎰⎰ ,则积分域D 可表示为( ) A.{}(,)01,11x y x x y ≤≤-≤≤ B.{}(,)12,11x y x x y ≤≤-≤≤C.{}(,)01,10x y x x y ≤≤-≤≤D.{}(,)12,01x y x y x ≤≤≤≤-(1119)计算二重积分d d Dy x y ⎰⎰,其中D 是由曲线22y x =-,直线x y -=及y 轴所围成的平面闭区域. (1205)二次积分dx y x f dy y),(11⎰⎰ 在极坐标系下可化为( )A.sec 40d (cos ,sin )d f πθθρθρθρ⎰⎰ B.sec 40d (cos ,sin )d f πθθρθρθρρ⎰⎰C.sec 24d (cos ,sin )d f πθπθρθρθρ⎰⎰D .sec 24d (cos ,sin )d f πθπθρθρθρρ⎰⎰ (1220)计算二重积分d d Dy x y ⎰⎰,其中D 是由曲线1y x =-,直线2xy =及x 轴所围成的平面闭区域.(1320)计算二重积分d d Dx x y ⎰⎰,其中D 是由曲线24y x =-(0x >)与三条直线y x =,3x =,0y =所围成的平面闭区域.六、无穷级数(一)数项级数(0506)正项级数(1)∑∞=1n nu、(2)∑∞=13n nu,则下列说法正确的是( )A.若(1)发散、则(2)必发散B.若(2)收敛、则(1)必收敛C.若(1)发散、则(2)不确定D.(1)、(2)敛散性相同(0605)设∑∞=1n nu为正项级数,如下说法正确的是( )A.若0lim 0=→n n u ,则∑∞=1n nu必收敛 B.若l u u nn n =+∞→1lim )0(∞≤≤l ,则∑∞=1n n u 必收敛C.若∑∞=1n nu收敛,则∑∞=12n nu必定收敛D.若∑∞=-1)1(n n nu 收敛,则∑∞=1n n u 必定收敛(0706)下列级数收敛的是( )A.∑∞=122n nnB.∑∞=+11n n n C.∑∞=-+1)1(1n nnD.∑∞=-1)1(n nn(0906)设α为非零常数,则数项级数∑∞=+12n nn α( )A.条件收敛B.绝对收敛C.发散D.敛散性与α有关(1004)下列级数收敛的是( )A.11n n n ∞=+∑B.2121n n n n ∞=++∑ C.11(1)nn n ∞=+-∑ D.212n n n ∞=∑(1206)下列级数中条件收敛的是( )A.1(1)21nn nn ∞=-+∑B.13(1)2nn n ∞=⎛⎫- ⎪⎝⎭∑C.21(1)nn n ∞=-∑ D.1(1)nn n ∞=-∑(1305)下列级数中收敛的是( )A.211n n n∞=+∑ B.11nn n n ∞=⎛⎫ ⎪+⎝⎭∑ C.1!2n n n ∞=∑ D.13n n n ∞=∑(二)幂级数(0412)幂级数∑∞=-12)1(n nnx 的收敛区间为 . (0420)把函数21)(+=x x f 展开为2-x 的幂级数,并写出它的收敛区间. (0512)幂级数1(21)nn n x∞=-∑的收敛区间为 .(0519)把函数222)(xx x x f --=展开为x 的幂级数,并写出它的收敛区间. (0618)将函数()ln (1)f x x x =+展开为x 的幂函数(要求指出收敛区间).(0812)幂函数12nnn x n ∞=⋅∑的收敛域为 . (0911)若幂函数21n nn a x n∞=∑(0a >)的收敛半径为21,则常数=a .(1012)幂级数0(1)n nn x n ∞=-∑的收敛域为 .(1106)若x x f +=21)(的幂级数展开式为0()nn n f x a x ∞==∑(22x -<<),则系数=n a ( )A.n 21B.121+n C.(1)2nn- D.1(1)2n n +-(1112)幂级数01nn x n ∞=+∑的收敛域为_ _ _________. (1212)幂级数1(1)(3)3n nnn x n ∞=--⋅∑的收敛域为____________. (1312)幂级数12n nn x n∞=∑的收敛域为 . 七、常微分方程(一)一阶微分方程(0520)求微分方程0'=-+xe y xy 满足1x ye ==的特解.(0617)求微分方程22x y xy y '=-的通解. (0718)求微分方程22007xy y x '-=满足初始条件12008x y==的特解.(0820)求微分方程22xy y x '=+的通解.(0912)微分方程2(1)d (2)d 0x y x y x y +--=的通解为 . (1311)微分方程d d y x y x x+=的通解为 . (二)二阶线性微分方程(0406)微分方程232xy y y xe '''-+=的特解*y 的形式应为( )A.xAxe 2B.xe B Ax 2)(+C.xeAx 22D.xeB Ax x 2)(+(0712)设x xe C eC y 3221+=为某二阶常系数齐次线性微分方程的通解,则该微分方程为 .(0806)微分方程321y y y '''++=的通解为( )A.1221++=--x xe c e c yB.21221++=--x xe c ec yC.1221++=-xxec e c yD.21221++=-xxec e c y (0920)求微分方程y y x ''-=的通解. (1020)已知函数xy e =和2xy e-=是二阶常系数齐次线性微分方程0y py qy '''++=的两个解,试确定常数p 、q 的值,并求微分方程xy py qy e '''++=的通解.(1120)已知函数(1)xy x e =+⋅是一阶线性微分方程2()y y f x '+=的解,求二阶常系数线性微分方程)(23x f y y y =+'+''的通解.(1219)已知函数)(x f 的一个原函数为xxe ,求微分方程)(44x f y y y =+'+''的通解. (1319)已知函数()y f x =是一阶微分方程d d yy x=满足初始条件(0)1y =的特解,求二阶常系数非齐次线性微分方程32()y y y f x '''-+=的通解.时间排序与参考答案2004年高等数学真题参考答案1、A .2、B .3、C .4、B .5、A .6、D .7、1-e . 8、32241-+==-z y x . 9、!n . 10、C x +4arcsin 41. 11、12201d (,)d d (,)d y y y f x y x y f x y x -+⎰⎰⎰⎰.12、()3,1-.13、解:间断点为πk x =(Z k ∈),当0=x 时,1sin lim)(lim 00==→→xxx f x x ,为可去间断点;当πk x =(0≠k ,Z k ∈)时,∞=→xxx sin lim0,为第二类间断点.14、解:原式04300(tan sin )d tan sin limlim312xx x t t tx xx x→→--==⎰ 233001tan (1cos )12lim lim 121224x x x x x x x x →→⋅-===. 15、解:0=x 代入原方程得1)0(=y ,对原方程求导得0''=--y xe e y yy,对上式求导并将0=x 、1=y 代入,解得:22''e y =.16、解:因为)(x f 的一个原函数为x e x,所以2')1()(x e x x e x f xx -=⎪⎪⎭⎫ ⎝⎛=, 原式11(2)d(2)d (2)22xf x x x f x '==⎰⎰11(2)(2)d 22x f x f x x =-⎰222211(21)1(2)(2)d(2)24884x x x x x e e x x f x f x x C e C x x x--=-=-+=+⎰. 17、解:原式2111122d d 22arctan (1)12t x t tt t t t t π+∞=∞-+∞+===++⎰⎰.18、解:12zf f y x∂''=+⋅∂; []21112221221112222(1)(1)()zf f x f y f f x f x y f xy f f x y∂''''''''''''''''=⋅-+⋅++⋅-+⋅=-+-⋅+⋅+∂∂.19、解:原式21100sin sin d d d d (1)sin d y y Dyy x y y x y y y y y ===-⎰⎰⎰⎰⎰ 1100(1)cos cos d 1sin1y y y y =--=-⎰.20、解:01111(2)()(1)24244414n n nn x f x x x ∞=-==⋅=--+-+∑)62(<<-x . 21、证:00(sin )d ()[sin ()]d ()(sin )d t xx f x xt f t t t f t I t πππππππ=-=---=-⎰⎰⎰(sin )d (sin )d (sin )d f x x x f x x f x x I πππππ=-=-⎰⎰⎰解得: 0(sin )d (sin )d 2f x x f x x I x πππ==⎰⎰, 原命题证毕.222000sin sin d d arctan (cos )1cos 21cos 24x x x x x x x x ππππππ⋅==-=++⎰⎰. 22、解:等式两边求导得()2()x f x x f x '=+,即()()2f x x f x x '-=-,且(0)1f =-,x p -=,x q 2-=,而2()d 2x x xe e --⎰=,由公式求得通解:222222()2d 2x x x f x e xq x C C e -⎡⎤⎛⎫=-+=+⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎣⎦⎰, 将初始条件(0)1f =-代入通解,解得:3-=C ,故22()23x f x e =-.23、解:设污水厂建在河岸离甲城x 公里处,则22()50070040(50)M x x x =++-(500≤≤x ), 由2212(50)5007000240(50)x M x -'=+⨯⨯=+-解得:650050-=x (公里),唯一驻点,即为所求.2005年高等数学真题参考答案1、A .2、C .3、D .4、A .5、A .6、C .7、2. 8、1-e . 9、2π. 10、5. 11、2111d (,)d y y y f x y x ---⎰⎰.12、(1,1)-.13、解:因为)(x F 在0=x 处连续,所以)0()(lim 0F x F x =→,'00()2sin ()(0)lim ()limlim 2(0)28x x x f x x f x f F x f x x→→→+-==+=+=, 解得:a F =)0(,故8=a .14、解:d d cos cos sin d d d sin d yy t t t t t t x x t t-+===--,22d ()csc d (cos )y t t x t '-=='.15、解:原式22tan tan sec d (sec1)d(sec )x x x xx x =⋅-⎰⎰积进去231sec d(sec )d(sec )sec sec 3x x x x x C =-=-+⎰⎰.16、解:原式211120002d 1d(1)arctan 1421x x x x x x x π+=--++⎰⎰积进去 ()12011ln 1ln 24242x ππ⎡⎤=-+=-⎣⎦.17、解:1cos zx f x∂'=⋅∂,()21212cos 22cos z x f y y x f x y ∂''''=⋅⋅=⋅∂∂. 18、解:直线L 的方向向量{}5,2,1=s ,过点()4,3,0B -,{}1,4,2AB =-;所求平面的法向量{}5218,9,22142AB =⨯==---ij kn s ,点法式为8(3)9(1)22(2)0x y z ----+=,即592298=--z y x .19、解:2222101111(1)()13216313212n nn n x x x x f x x x x x x ∞+=⎡⎤-⎛⎫=+=⋅+⋅=+⋅ ⎪⎢⎥+--⎝⎭⎣⎦+∑, 收敛域为:11<<-x .20、解:1x e y y x x '+⋅=,即1p x=,x e q x =,而1d 1x x e x -⎰=;故通解为1d xx e e C y x x C x x x ⎛⎫+=+= ⎪⎝⎭⎰.把初始条件1x y e ==解得:0=C ;故所求特解为:xe y x=.21、证:令13)(3+-=x x x f ,[]1,1x ∈-,且(1)30f -=>,(1)10f =-<,(1)(1)0f f -⋅<;由连续函数零点定理知:)(x f 在(1,1)-内至少有一实根;对于()1,1x ∈-恒有()22()33310f x x x '=-=-<,即)(x f 在(1,1)-内单调递减, 故方程0133=+-x x 在[]1,1-上有且仅有一根; 原命题获证.22、解:设所求函数为)(x f y =,则有4)2(=f ,(2)3f '=-,(2)0f ''=;由()6f x x a ''=+和(2)0f ''=解得:12-=a ,即()612f x x ''=-,故21()312f x x x C '=-+,由(2)3f '=-解得:91=C ,故22396C x x x y ++-=,由(2)4f =解得:22=C ; 所求函数为:29623++-=x x x y .23、解:(1)112300111d 266S y y y ===⎰;(如图1所示) (2)()()112222012d 4x V x x x x πππ=-=-=⎰.24、解:积分区域D 为:u y ≤≤1,u x y ≤≤;(1)111()()d d ()d (1)()d u xuDF u f x x f x y x f x x σ===-⎰⎰⎰⎰⎰;(2)()(1)()F u u f u '=-,(2)(21)(2)(2)1F f f '=-==.2006年高等数学真题参考答案1、C .2、B .3、C .4、C .5、C .6、A .7、2. 8、)(0x f . 9、1-. 10、1. 11、(sin cos )xye y x x +. 12、1.13、解:原式322131lim 21341==--→x xx . yOS1x12y x=图114、解:2211d 12d 21t t y y t t t x x t-'+==='+,2222d 1d d 122d 41ty x y t t x x t t '⎛⎫ ⎪+⎝⎭==='+. 15、解:原式3221ln d(1ln )(1ln )3x x x C =++=++⎰.16、解:原式()2222220d(sin )sin 2sin d x x x xx x πππ=-⎰⎰积进去222220sin 2sin d 2d(cos )4x xx x xx x ππππ-+⎰⎰积进去导出来2222002cos 2cos d 244x x x x ππππ=+-=-⎰.17、解:方程变形为2y y y x x ⎛⎫'=- ⎪⎝⎭,即得到了形如d d y y f x x ⎛⎫= ⎪⎝⎭齐次方程; 令yu x=,则d d d d y u u x x x =+,代入得:2d d u x u x =-,分离变量得:211d d u x u x -=; 两边积分,得:211d d u x u x -=⎰⎰,1ln x C u=+,故ln x y x C =+. 18、解:令()ln (1)g x x =+,则(0)0g =;由于01()(1)1n n n g x x x ∞='==-+∑((]1,1x ∈-), 所以01(1)((1))d x n n n g x n x g t t ∞+='=+=-∑⎰((]1,1x ∈-),故20(1)()1n n n f x x n ∞+=-=+∑,收敛域为:11x -<≤.19、解:由题意知:{}11,1,1=-n ,{}24,3,1=-n ;{}12311232,3,1431=⨯=-=++=-i j ks n n i j k ,故所求直线方程的对称式方程为:123123+=-=-z y x . 20、解:22z x f x∂'=∂,2'2'''''3''2''22122221222(2)22z x f x f x f y x f x f x y f y x ∂=+⋅+⋅=++∂∂.21、证:令33)(x x x f -=,[]2,2x ∈-,由2()330f x x '=-=解得驻点:1±=x ,比较以下函数值的大小:(1)2f -=-,(1)2f =,(2)2f =-,(2)2f -=; 所以2min -=f ,2m ax =f ,故2)(2≤≤-x f ,即332x x -≤,原命题获证.22、解:0)0(=y ,2y x y '=+,通解为:xCe x y +--=)22(;将0)0(=y 代入通解解得:2=C ,故所求特解为:xe x y 222+--=.23、解:(1)()2222648d 3S xx x -=--=⎰; (2)()()224804d 8d 16y V y y yy πππ=+-=⎰⎰.24、解:()d d d ()d ()d tt t tD f x x y x f x y t f x x ==⎰⎰⎰⎰⎰,0()d 0()0t f x x t g t a t ⎧≠⎪=⎨⎪=⎩⎰;(1)00lim ()lim()d 0t t t g t f x x →→==⎰,由)(t g 的连续性可知:0)(lim )0(0===→t g g a t ;(2)当0≠t 时,()()g t f t '=,当0=t 时,0000()d ()(0)(0)limlim lim ()(0)hh h h f x x g h g g f h f h h→→→-'====⎰; 综上,()()g t f t '=.2007年高等数学真题参考答案1、B .2、C .3、C .4、A .5、D .6、D .7、2ln . 8、1. 9、π2. 10、23. 11、21d d xx y y y-. 12、06'5''=+-y y y . 13、解:212lim 21lim 1lim tan 1lim00200==-=--=--→→→→x x x x x x x x e x e x x e x x x e . 14、解:当0=x 时,0=y ;在方程xy e e yx=-两边对x 求导得:''xye e y y x y -⋅=+⋅,故d 'd x yy e y y x e x-==+;。
江苏专升本高等数学真题(附答案)
![江苏专升本高等数学真题(附答案)](https://img.taocdn.com/s3/m/6fc36805e2bd960590c67752.png)
江苏专转本高数考纲及重点总结一、函数、极限和连续(一)函数(1)理解函数的概念:函数的定义,函数的表示法,分段函数。
(2)理解和把握函数的简单性质:单调性,奇偶性,有界性,周期性。
(3)了解反函数:反函数的定义,反函数的图象。
(4)把握函数的四则运算与复合运算。
(5)理解和把握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。
(6)了解初等函数的概念。
重点:函数的单调性、周期性、奇偶性,分段函数和隐函数(二)极限(1)理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
(2)了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,把握极限的四则运算法则。
(3)理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限。
(4)把握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。
(5)理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。
(6)熟练把握用两个重要极限求极限的方法。
重点:会用左、右极限求解分段函数的极限,把握极限的四则运算法则、利用两个重要极限求极限以及利用等价无穷小求解极限。
(三)连续(1)理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的中断点及其分类。
(2)把握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的中断点及确定其类型。
(3)把握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题。
(4)理解初等函数在其定义区间上连续,并会利用连续性求极限。
重点:理解函数(左、右连续)性的概念,会判别函数的中断点。
2011江苏省专转本高等数学同方预测试卷及详细答案
![2011江苏省专转本高等数学同方预测试卷及详细答案](https://img.taocdn.com/s3/m/576d5ade3186bceb19e8bbb4.png)
2011江苏省专转本高等数学同方预测试卷及详细答案一.选择题(每小题4分,共24分)1.当 0x →时,下列四个无穷小中,比另外三个更高阶的无穷小是( )A.2x B. 1cos x -1 D. tan x x -解:因为211cos 2x x -12222111(1)1()22x x x =---=- ,所以答案肯定选D ,因为前三个选项都是与2x 同阶的。
对于D 中的tan x x -,实际上它是于3x 同阶的,这是因为x 2.3.A 4.5.判断下列哪个级数是条件收敛的() A.n n ∞= B.11(1)2n nn n +∞=-∑ C.11(1)sin()1nn n ∞=-+∑ D.1(1)n n ∞=-∑ 解:本题要找的是条件收敛的级数,那么可以先把发散的级数排除掉。
对于选项A ,它的一般项的极限是0n n ≠(实际上不存在),所以级数1n n ∞=B ,由比值法可得112ρ=<,所以级数11(1)2n nn n+∞=-∑满足绝对收敛;对于选项C ,因为1sin()1lim 111n n n →∞+=+,所以11sin()1n n ∞=+∑与111n n ∞=+∑(发散的)有相同的敛散性,因此11sin()1n n ∞=+∑也发散,又由莱布尼茨判别法可知1(1)sin()1nn ∞-+∑是满足条件收敛的;对于选项D ,n ∞=与n ∞=-P 级数)满足绝对收敛。
综上,选C由20,,1y y x x ===围成,则(,)f x y =()(,)Df u v dudv A =⎰⎰;二(,)(,)Du v dudv f x y dxdy A ==⎰⎰,这点与定积分相似;]dxdy ,由上面的概念,则22100[()]2x xy Ay dx =-⎰3A ,即1123A A =-,解得18A =,所以2)0-=,所以22lim()420x x ax b a b →++=++=; 又2222lim lim 4121x x x ax b x aa x →→+++==+=--,所以5a =-,从而6b =8.2121(1sin )1x x dx x-+=+⎰_______________. 解:22222111112222211100(1sin )sin 112211111x x x x x x x dx dx dx dx dx x x x x x---++-=+==+++++⎰⎰⎰⎰⎰110212(1)2(a r c t a n)212dx x x x π=-=-=-+⎰9.改变积分次序1(,)dx f x y dy =⎰___________.解:根据二重积分的上下限,积分区域D是由0,1,0,x x y y ===所围成,y =(1,0),半径为1的上半圆,即22(1)1(0)x y y -+=≥,如图所示,则1111(,)dx f x y dy dy =⎰⎰⎰这里需要注意的是由y =1x =10.已知||2,||2,a b a b ==⋅= 则|a 解:由已知得cos ||||a b a b θ⋅==11.幂级数(1)(2)2n nnx n -+∑的收敛域为解:因为11(1)1(1)2lim (1)22n n n n n n n ρ++→∞-+==-当4x =-时,(1)(2)2nn n x n -+=∑当0x =时,(1)(2)2n nn x n -+=∑综上,收敛域为(4,0]-12.(1,1)arctan ,|xu du y ==_______.解:因为222111()u y x x y x y y ∂=⋅=∂++所以(1,1)12u x ∂=∂,(1,1)12uy∂=-∂三.计算题(每题8分,共64分) 13.求极限22221limsin (1)x x x e x x e →---解:原式=222224322000012211lim lim lim lim 4222x x x x x x x e x xe x e x x x x x →→→→----==== 14.求2ln (1)xdx x -⎰ 解:原式=1ln 1ln 11ln ()()11(1)11x x xd xdx dx x x x x x x x=-=-+-----⎰⎰⎰ ln ln 1ln |1|ln ||ln ||11x x xx x C C x x x-=+--+=++-- 15.设1,y y xe =+求(0)y ''。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. { } B.{ }
C. { } D.{ }
6.若函数 的幕级数展开式为 ,则系数 ▲.
A. B. C. D.
二、填空题{本大题共6小题,每小题4分,共24分)
7.已知 = ,则 =▲.
8.设函数 ▲.
9.若 , ▲.
10.设函数 y =arctan ▲.
11.定积分 的值为▲.
12.幕级数 的收敛域为▲.
20.已知函数 是一阶线性微分方程yˊ+2y= f(x)的解,求二阶常系数线性微分方程y +3yˊ+2y= f(x)的通解.
四、证明题(本大题共2小题,每小题9分,共18分)
21.证明:方程 有且仅有一个小于2的正实根.
22.证明:当x>O时, .
五、综合题(本大题共2小题,每小题10分,共20分)
(1)求函数f(x)的表达式;
(2)ห้องสมุดไป่ตู้平面图形D绕x轴旋转一周所形成的旋转体的体积 ;
(3)求平面图形D绕y轴旋转一周所形成的旋转体的体积 .
高等数学试题卷第3页(共3页)江苏省2011专转本
高等数学试题参考答案(及供参考)
一、选择题
1-6CB A B D D
二、填空题
7.-1
8.2+ln2
9.
10.
23.设
问常数a为何值时,
(1)x=O是函数f(x)的连续点?
(2) x=O是函数f(x)的可去间断点?
(3) x=O是函数f(抖的跳跃间断点?
24.设函数f(x)满足微分方程xf' (x)一2f(x) =一(α+1)x(其中a为正常数),且f(1)= 1由曲线y= f(x)x 1与直线x=1,y=O所围成的平面图形记为D.已知D的面积为 .
三、计算题(本大题共8小题,每小题8分,共64分}
13.求极限 .
14.设函数 由参数方程 所确定,求 .
15.设 的一个原函数为 求不定积分
高等数学试题卷第2页(共3页)
16.计算定积分 .
17.求通过x轴与直线 的平面方程.
18.设 ,其中函数 具有二阶连续偏导数,求 .
19.计算二重积分 ,其中D是由曲线 ,直线y=-x及y轴所围成的平面闭区域.
4.考试结束时,考生须将试题卷和答题卷一并交回。
一、选择题(本大题共6小题,每小题4分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把所选项前的字母填在答题卷的指定位置上)
l.当 时,函数 = - -1是函数g( )= 2的▲.
A.高阶无穷小B.低阶无穷小C.同阶无穷小D.等价无穷小
2.设函数 在点 0处可导,且 ,则 =▲.
A. -4B.-2C. 2D. 4
3.若点(1,-2)是曲线 的拐点,则▲.
A. =l, =3B. =-3, =-1
C. =-l, =-3D. =4, =6
高等数学试题卷第1页(共3页)
4.设 为由方程 所确定的函数,则 ▲.
A.- B. C.一 D.
5.如果二重积分 可化为二次积分 则积分域D可表示为
绝密★启用前
江苏省2011年普通高校专转本选拔考试
高等数学试题卷
注意事项:
1.本试卷分为试题卷和答题卷两部分。试题卷共3页,5大题,满分150分,考试时间
120分钟。
2.作答前,考生务必将自己的姓名、准考证号、座位号填写在试题卷和答题卷的指定位
置,并认真核对。
3.考生须用蓝、黑色钢笔或圆珠笔将答案答在答题卷上,答在试题卷、草稿纸上无效。
11.
12.
三、计算题
13.4
14.
15.
16.
17.
18.
19.
20.
五、综合题
23.(1) a=2(2)a=-1(3)
24.(1) (2) (3)