中考数学考前模拟测试题新

合集下载

2024年中考数学模拟试卷及答案

2024年中考数学模拟试卷及答案

20
21
22
23
-6-
17.2024年合肥市第三十八中学教育集团信心信息卷(三)
x+3≥-2,
5.在数轴上表示不等式组ቊ
的解集,正确的
7-x>5
是( C )
【解析】解不等式x+3≥-2,得x≥-5,解不等式7-
x>5,得x<2,∴-5≤x<2,只有C项符合题意.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
4
5
6
7
8
9
10
C.80°
11
12
13
14
15
16
D.85°
17
18
19
20
21
22
23
-8-
17.2024年合肥市第三十八中学教育集团信心信息卷(三)
【解析】∵AC∥DF,∠A=45°,∴∠FGB=∠A=
45°.∵∠DEF=90°,∠D=60°,∴∠F=180°-
∠DEF-∠D=180°-90°-60°=30°(依据:三角
知某电阻式粮食水分测量仪的内部电路如图1所示,将粮食放在湿
敏电阻R1上,使R1的阻值发生变化,其阻值随粮食水分含量的变化
关系如图2所示.观察图象,下列说法不正确的是(
D)
A.当没有粮食放置时,R1的阻值为40 Ω
B.R1的阻值随着粮食水分含量的增大而减小
C.该装置能检测的粮食水分含量的最大值是12.5%
16
17
18
19
20
21
22
23
-14-
17.2024年合肥市第三十八中学教育集团信心信息卷(三)

中招考试数学模拟考试卷(附有答案解析)

中招考试数学模拟考试卷(附有答案解析)

中招考试数学模拟考试卷(附有答案解析)一.选择题(共10小题)1.下列实数中,比1大的数是()A.﹣2B.﹣C.D.22.如图所示的几何体是由几个大小相同的小正方体搭成的,其俯视图是()A.B.C.D.3.用科学记数法表示0.000000202是()A.0.202×10﹣6B.2.02×107C.2.02×10﹣6D.2.02×10﹣7 4.下列计算正确的是()A.2a﹣a=1B.6a2÷2a=3aC.6a+2a=8a2D.(﹣2a2)3=﹣6a65.某企业车间有50名工人,某一天他们生产的机器零件个数统计如表:零件个数(个)678人数(人)152213表中表示零件个数的数据中,众数、中位数分别是()A.7个,7个B.7个,6个C.22个,22个D.8个,6个6.不等式的解集为()A.x≤B.1<x≤C.1≤x<D.x>17.已知直线l l∥l2,将一块直角三角板ABC按如图所示方式放置,∠ABC=90°,∠A=30°,若∠1=85°,则∠2的度数是()A.35°B.45°C.55°D.65°8.已知方程组,则x﹣y=()A.5B.2C.3D.49.反比例函数y=图象如图所示,下列说法正确的是()A.k>0B.y随x的增大而减小C.若矩形OABC面积为2,则k=﹣2D.若图象上点B的坐标是(﹣2,1),则当x<﹣2时,y的取值范围是y<110.如图,在正方形ABCD外作等腰直角三角形CDE,∠CED=90°,DE=CE,连接BE,则tan∠EBC =()A.B.C.D.二.填空题(共6小题)11.分解因式:2x2﹣4xy+2y2=.12.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在0.2附近,则估计口袋中白球大约有个.13.圆内接正方形的边长为3,则该圆的直径长为.14.计算:(+a)•=.15.如图,有一个矩形苗圃园、其中一边靠墙(墙长为15m),另外三边用长为16m的篱笆围成,则这个苗圃园面积的最大值为.16.如图,在菱形ABCD中,AB=6,∠A=60°,点E为边AD上一点,将点C折叠与点E重合,折痕与边CD和BC分别交于点F和G,当DE=2时,线段CF的长是.三.解答题(共9小题)17.计算:(﹣1)2020+|﹣2|+tan45°+.18.在一个不透明的口袋里装着分别标有汉字“中”、“国”、“加”、“油”的四个小球,除汉字不同外完全相同.摇匀后任意摸出一个球,记下汉字后不放回,再随机从中摸出一个球,请用树状图或列表法,求取出的两个球上的汉字恰能组成“中国”或“加油”的概率.19.如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连接CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)若BE=5,DE=7,则△ACD的周长是.20.为了解居民对垃圾分类相关知识的知晓程度(“A.非常了解”,“B.了解”,“C.基本了解”,“D.不太了解”),小明随机调查了若干人(每人必选且只能选择四种程度中的一种).根据调查结果绘制成如图两幅不完整的统计图:请你结合统计图所给信息解答下列问题:(1)小明共调查了人,扇形统计图中表示“C”的圆心角为°;(2)请在答题卡上直接补全条形统计图;(3)请你估计50000名市民中不太了解垃圾分类相关知识的人数.21.某商场销售一批名牌衬衫,平均每天能售出20件,每件盈利50元.经调查发现:这种衬衫的售价每降低1元,平均每天能多售出2件,设每件衬衫降价x元.(1)降价后,每件衬衫的利润为元,平均每天的销量为件;(用含x的式子表示)(2)为了扩大销售,尽快滅少库存,商场决定采取降价措施,但需要平均每天盈利1600元,那么每件衬衫应降价多少元?22.如图,在△ABC中,AB=AC,AB是⊙O的直径,边BC交⊙O于点D,作DE⊥AC于点E,延长DE 和BA交于点F.(1)求证:DE是⊙O的切线;(2)若tan B=,AE=3,则直径AB的长度是.23.如图1,在平面直角坐标系中,点A的坐标是(﹣1,0),点B(2,3),点C(3,).(1)求直线AB的解析式;(2)点P(m,0)是x轴上的一个动点,过点P作直线PM∥y轴,交直线AB于点M,交直线BC于点N(P,M,N三点中任意两点都不重合),当MN=MP时,求点M的坐标;(3)如图2,取点D(4,0),动点E在射线BC上,连接DE,另一动点P从点D出发,沿线段DE以每秒1个单位的速度运动到点E,再沿线段EB以每秒个单位的速度运动到终点B,当点E的坐标是多少时,点P在整个运动过程中用时最少?请直接写出此时点E的坐标.24.在△ABC中,AB=AC,点O在BC边上,且OB=OC,在△DEF中,DE=DF,点O在EF边上,且OE=OF,∠BAC=∠EDF,连接AD,BE.(1)如图1,当∠BAC=90°时,连接AO,DO,则线段AD与BE的数量关系是,位置关系是;(2)如图2,当∠BAC=60°时,(1)中的结论还成立吗?请说明理由;(3)如图3,AC=3,BC=6,DF=5,当点B在直线DE上时,请直接写出sin∠ABD的值.25.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)经过点A(﹣1,0)和B(4,0),交y轴于点C,点D和点C关于对称轴对称,作DE⊥OB于点E,点M是射线EO上的动点,点N是y轴上的动点,连接DM,MN,设点N的坐标为(0,n).(1)求抛物线的解析式;(2)当点M,N分别在线段OE,OC上,且ME=ON时,连接CM,若△CMN的面积是,求此时点M的坐标;(3)是否存在n的值使∠DME=∠MNO=α(0°<α<90°)?若存在,请直接写出n的取值范围;若不存在,请说明理由.参考答案与解析一.选择题(共10小题)1.下列实数中,比1大的数是()A.﹣2B.﹣C.D.2【分析】直接估算无理数大小的方法以及实数比较大小的方法分析得出答案.【解答】解:∵1<<2;∴0<<1;故﹣2<﹣<<1<2;故选:D.2.如图所示的几何体是由几个大小相同的小正方体搭成的,其俯视图是()A.B.C.D.【分析】根据俯视图是从上面看到的图形,从上面看有两层,上层有4个正方形,下层有一个正方形且位于左二的位置.【解答】解:从上面看,得到的视图是:;故选:A.3.用科学记数法表示0.000000202是()A.0.202×10﹣6B.2.02×107C.2.02×10﹣6D.2.02×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000202=2.02×10﹣7.故选:D.4.下列计算正确的是()A.2a﹣a=1B.6a2÷2a=3aC.6a+2a=8a2D.(﹣2a2)3=﹣6a6【分析】根据合并同类项的运算法则、同底数幂的除法、积的乘方分别进行计算即可得出答案.【解答】解:A、2a﹣a=a,故本选项错误;B、6a2÷2a=3a,故本选项正确;C、6a+2a=8a,故本选项错误;D、(﹣2a2)3=﹣8a6,故本选项错误;故选:B.5.某企业车间有50名工人,某一天他们生产的机器零件个数统计如表:零件个数(个)678人数(人)152213表中表示零件个数的数据中,众数、中位数分别是()A.7个,7个B.7个,6个C.22个,22个D.8个,6个【分析】根据众数和中位数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:由表可知7个出现次数最多,所以众数为7个;因为共有50个数据;所以中位数为第25个和第26个数据的平均数,即中位数为7个.故选:A.6.不等式的解集为()A.x≤B.1<x≤C.1≤x<D.x>1【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x﹣1>0,得:x>1;解不等式2x﹣4≤1,得:x≤;则1<x≤;故选:B.7.已知直线l l∥l2,将一块直角三角板ABC按如图所示方式放置,∠ABC=90°,∠A=30°,若∠1=85°,则∠2的度数是()A.35°B.45°C.55°D.65°【分析】利用对顶角相等及三角形内角和定理,可求出∠4的度数,由直线l1∥l2,利用“两直线平行,内错角相等”可求出∠2的度数.【解答】解:∵∠A+∠3+∠4=180°,∠A=30°,∠3=∠1=85°;∴∠4=65°.∵直线l1∥l2;∴∠2=∠4=65°.故选:D.8.已知方程组,则x﹣y=()A.5B.2C.3D.4【分析】方程组两方程相减即可求出所求.【解答】解:;①﹣②得:(2x+3y)﹣(x+4y)=16﹣13;整理得:2x+3y﹣x﹣4y=3,即x﹣y=3;故选:C.9.反比例函数y=图象如图所示,下列说法正确的是()A.k>0B.y随x的增大而减小C.若矩形OABC面积为2,则k=﹣2D.若图象上点B的坐标是(﹣2,1),则当x<﹣2时,y的取值范围是y<1【分析】根据反比例函数的性质对A、B、D进行判断;根据反比例函数系数k的几何意义对C进行判断.【解答】解:A、反比例函数图象分布在第二、四象限,则k<0,所以A选项错误;B、在每一象限,y随x的增大而增大,所以B选项错误;C、矩形OABC面积为2,则|k|=2,而k<0,所以k=﹣2,所以C选项正确;D、若图象上点B的坐标是(﹣2,1),则当x<﹣2时,y的取值范围是0<y<1,所以D选项错误.故选:C.10.如图,在正方形ABCD外作等腰直角三角形CDE,∠CED=90°,DE=CE,连接BE,则tan∠EBC =()A.B.C.D.【分析】根据题意,作出合适的辅助线,然后根据矩形的性质和正方形的性质,可以得到BG和EG的长,从而可以得到tan∠EBC的值.【解答】解:作EF⊥DC于点F,作EG⊥BC交BC的延长线于点G;则四边形CGEF是矩形;设AB=2a;∵在正方形ABCD外作等腰直角三角形CDE,∠CED=90°,DE=CE;∴EF=a,BC=2a;∴EG=a,CG=a;∴tan∠EBC=;故选:A.二.填空题(共6小题)11.分解因式:2x2﹣4xy+2y2=2(x﹣y)2.【分析】先提取公因式(常数2),再对余下的多项式利用完全平方公式继续分解.【解答】解:2x2﹣4xy+2y2;=2(x2﹣2xy+y2);=2(x﹣y)2.故答案为:2(x﹣y)2.12.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在0.2附近,则估计口袋中白球大约有20个.【分析】由摸到红球的频率稳定在0.2附近得出口袋中得到红色球的概率,进而求出白球个数即可.【解答】解:设白球个数为:x个;∵摸到红色球的频率稳定在0.2左右;∴口袋中得到红色球的概率为0.2=;∴=;解得:x=20;即白球的个数为20个;故答案为:20.13.圆内接正方形的边长为3,则该圆的直径长为3.【分析】连接BD,利用圆周角定理得到BD是圆的直径,然后根据边长利用勾股定理求得直径的长即可.【解答】解:如图;∵四边形ABCD是⊙O的内接正方形;∴∠C=90°,BC=DC;∴BD是圆的直径;∵BC=3;∴BD===3;故答案为:3.14.计算:(+a)•=.【分析】先把括号内通分,然后约分得到原式的值.【解答】解:原式=•=•=.故答案为.15.如图,有一个矩形苗圃园、其中一边靠墙(墙长为15m),另外三边用长为16m的篱笆围成,则这个苗圃园面积的最大值为32m2.【分析】设垂直于墙面的长为xm,则平行于墙面的长为(16﹣x)m,首先列出矩形的面积y关于x的函数解析式,结合x的取值范围,利用二次函数的性质可得最值情况.【解答】解:设垂直于墙面的长为xm,则平行于墙面的长为(16﹣x)m,由题意可知:y=x(16﹣2x)=﹣2(x﹣4)2+32,且x<8;∵墙长为15m;∴16﹣2x≤15;∴0.5≤x<8;∴当x=4时,y取得最大值,最大值为32m2;故答案为:32m2.16.如图,在菱形ABCD中,AB=6,∠A=60°,点E为边AD上一点,将点C折叠与点E重合,折痕与边CD和BC分别交于点F和G,当DE=2时,线段CF的长是.【分析】过点F作FH⊥AD于H,易证∠DFH=30°,设CF=x,则DF=6﹣x,DH=(6﹣x),HF =(6﹣x),EH=DE+DH=5﹣,由折叠的性质得EF=CF=x,在Rt△EFH中,EF2=EH2+HF2,即可得出答案.【解答】解:过点F作FH⊥AD于H,如图所示:∵四边形ABCD是菱形,∠A=60°;∴AB=CD=6,∠EDF=120°;∴∠FDH=60°;∴∠DFH=30°;设CF=x;则DF=6﹣x,DH=DF=(6﹣x),HF=(6﹣x);∴EH=DE+DH=2+(6﹣x)=5﹣;由折叠的性质得:EF=CF=x;在Rt△EFH中,EF2=EH2+HF2;即x2=(5﹣)2+[(6﹣x)]2;解得:x=;∴CF=;故答案为:.三.解答题(共9小题)17.计算:(﹣1)2020+|﹣2|+tan45°+.【分析】直接利用特殊角的三角函数值以及二次根式的性质、绝对值的性质分别化简得出答案.【解答】解:原式=1+﹣2+1﹣2=﹣.18.在一个不透明的口袋里装着分别标有汉字“中”、“国”、“加”、“油”的四个小球,除汉字不同外完全相同.摇匀后任意摸出一个球,记下汉字后不放回,再随机从中摸出一个球,请用树状图或列表法,求取出的两个球上的汉字恰能组成“中国”或“加油”的概率.【分析】先根据题意列举出所有可能的结果与取出的两个球上的汉字恰能组成“中国”或“加油”的情况,再利用概率公式即可求得答案.【解答】解:列举如下:中国加油中/(国,中)(加,中)(油,中)国(中,国)/(加,国)(油,国)加(中,加)(国,加)/(油,加)油(中,油)(国,油)(加,油)/所有等可能的情况有12种,其中取出的两个球上的汉字恰能组成“中国”或“加油”的情况有4种;则取出的两个球上的汉字恰能组成“中国”或“龙岩加油”的概率为=.19.如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连接CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)若BE=5,DE=7,则△ACD的周长是30.【分析】(1)根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC;(2)利用(1)中结论,根据全等三角形的性质即可解决问题;【解答】(1)证明:∵BE⊥CE,AD⊥CE;∴∠E=∠ADC=90°;∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°;∴∠EBC=∠DCA.在△BCE和△CAD中;;∴△BCE≌△CAD(AAS);(2)解:∵:△BCE≌△CAD,BE=5,DE=7;∴BE=DC=5,CE=AD=CD+DE=5+7=12.∴由勾股定理得:AC=13;∴△ACD的周长为:5+12+13=30;故答案为:30.20.为了解居民对垃圾分类相关知识的知晓程度(“A.非常了解”,“B.了解”,“C.基本了解”,“D.不太了解”),小明随机调查了若干人(每人必选且只能选择四种程度中的一种).根据调查结果绘制成如图两幅不完整的统计图:请你结合统计图所给信息解答下列问题:(1)小明共调查了500人,扇形统计图中表示“C”的圆心角为72°;(2)请在答题卡上直接补全条形统计图;(3)请你估计50000名市民中不太了解垃圾分类相关知识的人数.【分析】(1)从两个统计图中可知“A非常了解”的人数为150人,占调查人数的30%,可求出调查人数;用360°乘以“C”所占的百分比即可得出“C”的圆心角度数;(2)用总人数减去其它等级的人数求出B等级的人数,从而补全条形统计图;(3)用总人数乘以不太了解垃圾分类人数所占的百分比即可.【解答】解:(1)小明共调查的总人数是:150÷30%=500(人);扇形统计图中表示“C”的圆心角为:360°×=72°;故答案为:500,72;(2)B等级的人数有:500×40%=200人,补全条形统计图如图所示:(3)根据题意得:50000×=5000(人);答:估计50000名市民中不太了解垃圾分类相关知识的人数有5000人.21.某商场销售一批名牌衬衫,平均每天能售出20件,每件盈利50元.经调查发现:这种衬衫的售价每降低1元,平均每天能多售出2件,设每件衬衫降价x元.(1)降价后,每件衬衫的利润为(50﹣x)元,平均每天的销量为(20+2x)件;(用含x的式子表示)(2)为了扩大销售,尽快滅少库存,商场决定采取降价措施,但需要平均每天盈利1600元,那么每件衬衫应降价多少元?【分析】(1)根据“这种衬衫的售价每降低1元时,平均每天能多售出2件”结合每件衬衫的原利润及降价x元,即可得出降价后每件衬衫的利润及销量;(2)根据总利润=每件利润×销售数量,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.【解答】解:(1)∵每件衬衫降价x元;∴每件衬衫的利润为(50﹣x)元,销量为(20+2x)件.故答案为:(50﹣x);(20+2x).(2)依题意,得:(50﹣x)(20+2x)=1600;整理,得:x2﹣40x+300=0;解得:x1=10,x2=30.∵为了扩大销售,尽快减少库存;∴x=30.答:每件衬衫应降价30元.22.如图,在△ABC中,AB=AC,AB是⊙O的直径,边BC交⊙O于点D,作DE⊥AC于点E,延长DE 和BA交于点F.(1)求证:DE是⊙O的切线;(2)若tan B=,AE=3,则直径AB的长度是.【分析】(1)连接OD,AD,根据圆周角定理得到AD⊥BC,根据等腰三角形的性质得到∠BAD=∠CAD,推出OD∥AC,根据平行线的性质得到OD⊥DE,于是得到DE是⊙O的切线;(2)设AD=3k,BD=4k,根据勾股定理得到AB=5k,根据相似三角形的性质即可得到结论.【解答】解:(1)连接OD,AD;∵AB是⊙O的直径;∴AD⊥BC;∵AB=AC;∴∠BAD=∠CAD;∵OA=OD;∴∠OAD=∠ODA;∴∠DAC=∠ADO;∴OD∥AC;∵DE⊥AC;∴OD⊥DE;∴DE是⊙O的切线;(2)∵tan B==;∴设AD=3k,BD=4k;∴AB=5k;∵∠AED=∠ADB=90°,∠BAD=∠DAE;∴△ABD∽△DAE;∴=;∴=;∴k=;∴AB=5k=.故答案为:.23.如图1,在平面直角坐标系中,点A的坐标是(﹣1,0),点B(2,3),点C(3,).(1)求直线AB的解析式;(2)点P(m,0)是x轴上的一个动点,过点P作直线PM∥y轴,交直线AB于点M,交直线BC于点N(P,M,N三点中任意两点都不重合),当MN=MP时,求点M的坐标;(3)如图2,取点D(4,0),动点E在射线BC上,连接DE,另一动点P从点D出发,沿线段DE以每秒1个单位的速度运动到点E,再沿线段EB以每秒个单位的速度运动到终点B,当点E的坐标是多少时,点P在整个运动过程中用时最少?请直接写出此时点E的坐标.【分析】(1)设直线AB的解析式为y=kx+b,把A,B两点坐标代入,转化为解方程组即可.(2)由题意M(m,m+1),N(m,﹣m+4),根据MN=MP,构建方程解决问题即可.(3)如图2中,作BT∥AD,过点E作EK⊥BT于K.设直线BC交x轴于J.由BT∥OJ,推出∠BJO =∠TBJ,推出tan∠TBJ=tan∠BJO=,推出=,设EK=m,BK=2m,则BE=m,推出EK =BE,由点P在整个运动过程中的运动时间t=+=DE+BE=DE+EK,推出当D,E,K 共线,DE+EK的值最小.【解答】解:(1)设直线AB的解析式为y=kx+b;∵点A的坐标是(﹣1,0),点B(2,3);∴;解得:;∴直线AB的解析式为y=x+1;(2)∵点B(2,3),点C(3,);∴直线BC的解析式为y=﹣x+4;∵点P(m,0),PM∥y轴,交直线AB于点M,交直线BC于点N;∴M(m,m+1),N(m,﹣m+4);∵MN=MP;∴m+1=(﹣m+4)﹣(m+1);解得:m=;∴M(,);(3)如图2中,作BT∥AD,过点E作EK⊥BT于K.设直线BC交x轴于J.∵直线BC的解析式为y=﹣x+4;∴tan∠BJO=;∵BT∥OJ;∴∠BJO=∠TBJ;∴tan∠TBJ=tan∠BJO=;∴=,设EK=m,BK=2m,则BE=m;∴EK=BE;∵点P在整个运动过程中的运动时间t=+=DE+BE=DE+EK;∴当D,E,K共线,DE+EK的值最小,此时DE=DJ=2,EK=BK=1;∴点P在整个运动过程中的运动时间的最小值为2+1=3秒,此时E(4,2).24.在△ABC中,AB=AC,点O在BC边上,且OB=OC,在△DEF中,DE=DF,点O在EF边上,且OE=OF,∠BAC=∠EDF,连接AD,BE.(1)如图1,当∠BAC=90°时,连接AO,DO,则线段AD与BE的数量关系是AD=BE,位置关系是AD⊥BE;(2)如图2,当∠BAC=60°时,(1)中的结论还成立吗?请说明理由;(3)如图3,AC=3,BC=6,DF=5,当点B在直线DE上时,请直接写出sin∠ABD的值.【分析】(1)由等腰直角三角形的性质可得AO=BO,DO=EO,∠AOB=∠DOE=90°,由“SAS”可证△BOE≌△AOD,可得AD=BE,∠OBE=∠OAD,由直角三角形的性质可得AD⊥BE;(2)通过证明△AOD∽△BOE,可得=,∠OAD=∠OBE,可得结论;(3)如图3,连接AO,DO,由勾股定理可求AO的长,由(2)可知:△BEO∽△ADO,可求AD=2BE,由勾股定理可求解.【解答】解:(1)如图1,延长AD,BE交于点H;∵AB=AC,DE=DF,∠BAC=∠EDF=90°,OB=OC,OE=OF;∴AO=BO,DO=EO,∠AOB=∠DOE=90°;∴∠BOE=∠AOD;∴△BOE≌△AOD(SAS);∴AD=BE,∠OBE=∠OAD;∵∠OAB+∠OBA=90°=∠OBE+∠ABE+∠OAB;∴∠OAB+∠OAD+∠ABE=90°;∴∠AHB=90°;∴AD⊥BE;故答案为:AD=BE,AD⊥BE;(2)AD=BE不成立,AD⊥BE仍然成立;理由如下:如图2,连接AO,DO;∵AB=AC,DE=DF,∠BAC=∠EDF=60°;∴△ABC和△DEF是等边三角形;∵OB=OC,OE=OF;∴∠DOE=90°=∠AOB,DO=EO,AO=BO;∴∠AOD=∠BOE,;∴△AOD∽△BOE;∴=,∠OAD=∠OBE;∴AD=BE;∵∠OAB+∠OBA=90°=∠OBE+∠ABE+∠OAB;∴∠OAB+∠OAD+∠ABE=90°;∴∠AHB=90°;∴AD⊥BE;(3)如图3,连接AO,DO;∵AC=3=AB,OB=OC,BC=6;∴AO⊥BC,BO=3;∴AO===6;由(2)可知:△BEO∽△ADO,AD⊥BE;∴==2;∴AD=2BE;∵AB2=AD2+BD2;∴45=4BE2+(5+BE)2;∴BE=﹣1;∴AD=2﹣2;∴sin∠ABD==.25.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)经过点A(﹣1,0)和B(4,0),交y轴于点C,点D和点C关于对称轴对称,作DE⊥OB于点E,点M是射线EO上的动点,点N是y轴上的动点,连接DM,MN,设点N的坐标为(0,n).(1)求抛物线的解析式;(2)当点M,N分别在线段OE,OC上,且ME=ON时,连接CM,若△CMN的面积是,求此时点M的坐标;(3)是否存在n的值使∠DME=∠MNO=α(0°<α<90°)?若存在,请直接写出n的取值范围;若不存在,请说明理由.【分析】(1)将点A,B坐标代入抛物线解析式中,求解即可得出结论;(2)先求出点E坐标,进而表示出OM,利用三角形面积公式建立方程求解即可得出结论;(3)先判断出△MON∽△DEM,得出;再分点M在线段OE上和EO的延长线上,表示出ME,ON,进而得出n=,即可得出结论.【解答】解:∵抛物线y=ax2+bx+2(a≠0)经过点A(﹣1,0)和B(4,0);∴设抛物线的解析式为y=a(x+1)(x﹣4)=ax2﹣3ax﹣4a;∴﹣4a=2;∴a=﹣;∴抛物线的解析式为y=﹣x2+x+2;(2)由(1)知,抛物线的解析式为y=﹣x2+x+2;∴C(0,2),对称轴为x=;∵点D和点C关于对称轴对称;∴D(3,2);∵DE⊥OB;∴E(3,0);∵N(0,n),且N在线段OC上;∴CN=OC﹣ON=2﹣n;∵ME=ON=n;∴OM=OE﹣ME=3﹣n;∵△CMN的面积是;∴S△CMN=CN•OM=(2﹣n)(3﹣n)=;∴n=或n=(舍去);∴M(,0);(3)∵∠DME=∠MNO=α,∠MON=∠DEM;∴△MON∽△DEM;∴;∵D(3,2);∴DE=2;设M(m,0);当m=0时,点M和点O重合,不能构成三角形MON;当点M在线段OE上时,则0<m<3;∴OM=m,ME=3﹣m;∴ON=n;∴;∴n===;∴0<n<;当点M在x轴负半轴时,则m<0;∴OM=﹣m,ME=3﹣m;∴ON=﹣n;∴;∴n===;∴n<0;即n的取值范围n<且n≠0.。

2024年辽宁省大连三十四中中考数学考前模拟试卷(6月份)+答案解析

2024年辽宁省大连三十四中中考数学考前模拟试卷(6月份)+答案解析

2024年辽宁省大连三十四中中考数学考前模拟试卷(6月份)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.的相反数是()A.3B.C.D.2.如图是一个正方体纸盒的展开图,正方体的各面标有数字1,2,3,,A ,B ,相对面上的两个数互为相反数,则()A. B.C.1D.23.我国自主研发的500m 口径球面射电望远镜有“中国天眼”之称,它的反射面面积约为用科学记数法表示数据250000为()A.B.C. D.4.中国“二十四节气”已被列入联合国教科文组织人类非物质文化遗产代表作名录,下列四幅作品分别代表“立春”、“立夏”、“芒种”、“大雪”,其中既是轴对称图形,又是中心对称图形的是()A. B. C. D.5.如图,把一块含有角的直角三角板的两个顶点分别放在直尺的一组对边上.如果,那么的度数是()A.B. C. D.6.下列计算正确的是()A.B. C. D.7.不等式组的解集在数轴上表示正确的是()A. B.C. D.8.下列命题中真命题的个数是()①过一点有且只有一条直线与已知直线平行;②同角的余角相等;③垂直于同一条直线的两直线平行;④长度相等的弧是等弧.A.1个B.2个C.3个D.4个9.如图,在中,以A为圆心,AC长为半径作弧,交BC于C,D两点,分别以点C和点D为圆心,大于长为半径作弧,两弧交于点P,作直线AP,交CD于点E,若,,则AE长为()A. B.3 C.4 D.510.如图,在中,,,,在中,,,BC与EF在同一条直线上,点C与点E重合以每秒1个单位长度的速度沿线段EF所在直线向右匀速运动,当点B运动到点F时,停止运动.设运动时间为t秒,与重叠部分的面积为S,则下列图象能大致反映S与t之间函数关系的是()A. B.C. D.二、填空题:本题共5小题,每小题3分,共15分。

11.若二次根式有意义,则x的取值范围为______.12.绿豆在相同条件下的发芽试验,结果如下表所示:每批粒数n100300400600100020003000发芽的粒数m9628238257094819122850发芽的频数则绿豆发芽的概率估计值是______精确到13.若关于x的方程的一个根是3,则此方程的另一个根是______.14.如图,在矩形ABCD中,点E为AD中点,BD和CE相交于点F,如果,那么线段BF的长度为______.15.如图,一条抛物线与x轴相交于A、B两点点A在点B的左侧,其顶点P在线段MN上移动.若点M、N的坐标分别为、,点B的横坐标的最大值为3,则点A的横坐标的最小值为______.三、解答题:本题共7小题,共63分。

九年级中考数学模拟考试卷(附答案)

九年级中考数学模拟考试卷(附答案)

九年级中考数学模拟考试卷(附答案)学校:___________班级:___________姓名:___________考号:___________一、选择题(每小题3分,共30分)1.的相反数的倒数是()A.B.﹣3C.3D.2.若一个正多边形的一个外角是60°,则这个正多边形的边数是()A.10B.9C.8D.63.总投资54亿元的万家丽高架快速路建成,不仅疏解了中心城区的交通,还形成了我市的快速路网,54亿用科学记数法表示为()A.0.54×109B.5.4×109C.54×108D.5.4×1084.在平面直角坐标系中,以点(﹣3,4)为圆心,以3个单位长度为半径的圆()A.与x轴相交,与y轴相切B.与x轴相离,与y轴相切C.与x轴相离,与y轴相交D.与x轴相切,与y轴相离5.关于x的方程x2﹣mx﹣1=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定6.甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,那么两者的方差的大小关系是()A.<B.>C.=D.不能确定7.如图,是由一个圆柱体和一个长方体组成的几何体,其俯视图是()A.B.C.D.8.已知菱形的周长为40,一条对角线长为12,则这个菱形的面积为()A.40B.47C.96D.1909.如图,△ABC内接于⊙O,∠ACB=90°,BD=5,则BC的长为()A.12B.8C.10D.10.周末晚会上,师生共有20人参加跳舞,其中方老师和7个学生跳舞,一直到何老师,他和参加跳舞的所有学生跳过舞()A.15B.14C.13D.12二、填空题(每小题3分,共18分)11.分解因式:3x3﹣3x=.12.若式子在实数范围内有意义,则x的取值范围为.13.如图,△ABC与△A1B1C1为位似图形,点O是它们的位似中心,位似比是1:3,那么△A1B1C1的面积是.14.圆锥底面圆的半径为3cm,其侧面展开图是半圆,则圆锥母线长为.15.如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,EF∥AB,且AD:DB=3:5.16.如图,点A在反比例(x>0)图象上,交x轴于点C、D.若点B的坐标为(0,2)则图中阴影部分面积为.三、解答题(第17、18、19题6分,第20、21题8分,第22、23题9分,第24、25题10分,共72分)17.计算:.18.先化简,再求值:,其中a满足a2+2a﹣3=0.19.“一号龙卷风”给小岛O造成了较大的破坏,救灾部门迅速组织力量,从仓储D处调集救援物资,再用货船运到小岛O.已知:OA⊥AD,∠ODA=15°,∠OBA=45°,CD =20km.若汽车行驶的速度为50km/时,问这批物资在哪个码头装船,最早运抵小岛O?(在物资搬运能力上每个码头工作效率相同,参考数据:≈1.4,≈1.7).20.历下区某中学举行了“中国梦,中国好少年”演讲比赛,菲菲同学将选手成绩划分为A、B、C、D四个等级根据图中提供的信息,解答下列问题:(1)参加演讲比赛的学生共有人,扇形统计图中m=,n=,并把条形统计图补充完整.(2)学校欲从A等级2名男生2名女生中随机选取两人,参加达州市举办的演讲比赛,请利用列表法或树状图求出恰好1男1女参加比赛的概率。

2024年广东省深圳市中考数学考前模拟冲刺卷

2024年广东省深圳市中考数学考前模拟冲刺卷

2024年广东省深圳市中考数学考前模拟冲刺卷一、单选题1.53-的相反数为()A.35-B.35C.53D.53-2.甲、乙两地相距100km,则汽车由甲地匀速行驶到乙地所用时间y(h)与行驶速度x(km/h)之间的函数图象大致是()A.B.C.D.3.如图所示的几何体的主视图是()A .B .C .D .4.如图,抛物线20y ax bx c a =++≠()的顶点坐标为()13-,,下列说法错误的是( )A .a 0<B .240ac b -<C .抛物线向下平移 c 个单位后,一定经过()20-,D .12b a =- 5.如图,正方形ABCD 的边长为8,在各边上顺次截取6AE BF CG DH ====,则四边形EFGH 的面积是( )A .34B .36C .40D .1006.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和等于6的概率是( )A .13B .14 C .15 D .3167.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .148.如图是“小孔成像”示意图,保持蜡烛与光屏平行,测得点O 到蜡烛、光屏的距离分别为10cm ,6cm .若CD 长为2cm ,则AB 长为( )A .6cm 5B .2cmC .8cm 3D .10cm 39.已知二次函数2y ax bx c =++的图象经过(3,0)-与(1,0)两点,关于x 的方程20(0)ax bx c m m +++=>有两个整数根,其中一个根是3,则另一个根是( ) A .5- B .3- C .1- D .310.如图,在正方形ABCD 中,BPC V 是等边三角形,、BP CP 的延长线分别交AD 于点E F 、,连接BD DP BD 、,与CF 相交于点H ,给出下列结论:其中正确的是( )①2BE AE =;②75CPD ∠=︒;③PFD PDB ∽△△;④2DP PH PC =⋅A .①②③B .①②③④C .①②④D .①③④二、填空题11.若a b =13,则a b a +的值为. 12.上午某一时刻,身高1.7米的小刚在地面上的影长为3.4米,则影长26米的旗轩高度为米 13.现有4条线段,长度依次是2、4、6、7,从中任选三条,能组成三角形的概率是.14.如图,正方形的顶点A ,C 分别在y 轴和x 轴上,边BC 的中点F 在y 轴上,若反比例函数12y x=的图象恰好经过CD 的中点E ,则OA 的长为.15.如图是一张矩形纸片ABCD ,点E 为AD 中点,点F 在BC 上,把该纸片沿EF 折叠,点A ,B 的对应点分别为A ',B ',A E '与BC 相交于点G ,B A ''的延长线过点C .若AD AB=则BF GC =.三、解答题16.解方程:2780x x --=.17.如图,已知点()4,4B ,反比例函数()0k y x x=>的图象经过点()1,3A .(1)求反比例函数的解析式,并在图中画出该反比例函数的图象;(2)当3x ≥时,求函数值y 的取值范围;(3)若关于x 的一次函数()0y ax b a =+≠的图象经过点B ,且与图中的反比例函数的图象交于点P ,当0a 时,直接..写出点P 的横坐标P x 的取值范围. 18.2023年的春节档电影竞争激烈,多部贺岁片上影,点燃新春,浓浓的年味让人们感受到了久违的热闹景象.小亮和小丽分别从《满江红》《无名》《流浪地球2》《熊出没·伴我“熊心”》四部电影中随机选择一部观看,将《满江红》表示为A ,《无名》表示为B ,《流浪地球2》表示为C ,《熊出没·伴我“熊心”》表示为D .(1)小亮从这4部电影中,随机选择1部观看,则他选中《满江红》的概率为________;(2)请用列表法或树状图法中的一种方法,求小亮和小丽恰好选择观看同一部电影的概率. 19.某公司展销如图所示的长方形工艺品,该工艺品长60cm ,宽40cm ,中间镶有宽度相同的三条丝绸花边.(1)若丝绸花边的面积(阴影面积)为6502cm ,求丝绸花边的宽度;(2)已知该工艺品的成本是40元/件,如果以单价100元/件销售,那么每天可售出200件,另每天还需支付各种费用2000元,根据销售经验,如果将销售单价降低1元,每天可多售出20件,同时,为了完成销售任务,该公司每天至少要销售800件,那么该公司应该把销售单价定为多少元,才能使每天所获销售利润最大,最大利润是多少.20.如图,正方形ABCD 中,M 为BC 上一点,F 是AM 的中点,EF ⊥AM ,垂足为F ,交AD 的延长线于点E ,交DC 于点N .(1)求证:△ABM ∽△EF A ;(2)若AB =12,BM =5,求DE 的长.21.如图1,矩形ABCD 中,点E 为AB 边上的动点(不与A ,B 重合),把ADE ∆沿DE 翻折,点A 的对应点为1A ,延长1EA 交直线DC 于点F ,再把BEF ∠折叠,使点B 的对应点1B 落在EF 上,折痕EH 交直线BC 于点H .(1)求证:11A DE B EH ∆∆∽;(2)如图2,直线MN 是矩形ABCD 的对称轴,若点1A 恰好落在直线MN 上,试判断DEF ∆的形状,并说明理由;(3)如图3,在(2)的条件下,点G 为DEF ∆内一点,且150DGF ∠=︒,试探究DG ,EG ,FG 的数量关系.22.根据以下素材,设计落地窗的遮阳篷.素材1:如图1,小浩家的窗户朝南,窗户的高度2m AB =,此地一年中的正午时刻,太阳光与地平面的最小夹角为α,最大夹角为β.如图2,小浩设计直角形遮阳篷BCD ,点C 在AB 的延长线上,CD AC ⊥,它既能最大限度地使冬天温暖的阳光射入室内(太阳光与BD 平行),又能最大限度地遮挡夏天炎热的阳光(太阳光与AD 平行).素材2:小浩查阅资料,计算出1tan 3α=,4tan 3β=(EAM α∠=,DAM β∠=,如图2). 素材3:如图3,为了美观及实用性,小浩再设计出圆弧形可伸缩遮阳篷(劣弧CD 延伸后经过点B ,DF 段可伸缩,F 为»CD 的中点),BC ,CD 的长保持不变.【任务1】如图2,求BC ,CD 的长.【任务2】如图3,求劣弧CD 的弓高.【任务3】如图3,若某时太阳光与地平面的夹角γ的正切值2tan3γ=,要最大限度地使阳光射入室内,求遮阳篷点D上升高度的最小值(点D¢到CD的距离).。

2024年黑龙江省哈尔滨市中考数学考前模拟试题

2024年黑龙江省哈尔滨市中考数学考前模拟试题

2024年黑龙江省哈尔滨市中考数学考前模拟试题一、单选题1.2024的相反数是( )A .2021B .2024-C .12024D .12024- 2.下列计算中,正确的是( )A .32523a a a -=B .()236a a -=C .3412236⨯=D .347m m m m ⋅⋅=3.如图是由大小相同的小正方体搭成的几何体,下列关于该几何体三视图的描述:①主视图是中心对称图形;②左视图是轴对称图形;③俯视图既是轴对称图形,又是中心对称图形.其中正确的是( )A .①B .②C .③D .②③4.某无盖分类垃圾桶如右图所示,则它的俯视图是( )A .B .C .D . 5.如图所示,已知AB CD ∥,37A ∠=︒,63C ∠=︒,那么F ∠的度数为( )A .63°B .45°C .37°D .26°6.如图,抛物线2y ax bx c =++经过点()2,0-,()3,0.下列结论:①0ab c >;②2c b =;③若抛物线上有点15,2y ⎛⎫ ⎪⎝⎭,()23,y -,31,2y ⎛⎫- ⎪⎝⎭,则213y y y <<;④方程20cx bx a ++=的解为112x =,213x =-,其中正确的个数是( )A .4B .3C .2D .17.现定义一种新运算“※”,对任意有理数m 、n 都有()m n mn m n =-※,则()()a b a b +-=※( )A .2222ab b -B .2322a b b -C .2222ab b +D .222ab ab -8.“敬老爱老”是中华民族的优秀传统美德.小刚、小强计划利用暑期从A ,B ,C 三处养老服务中心中,随机选择一处参加志愿服务活动,则两人恰好选到同一处的概率是( )A .12B .13C .16D .299.如图,已知正方形ABCD 由四个全等的直角三角形和一个小正方形EFGH 组成,把四个直角三角形分别沿斜边向外翻折,得到正方形MNPQ ,连接MF 并延长交NP 于点O ,设正方形EFGH 的面积为1S ,正方形MNPQ 的面积为2S ,若12449S S =,则OP OC 的值为( )A.4920B.5625C.3516D.210.双胞胎兄弟小明和小亮在同一班读书,周五16:00时放学后,小明和同学走路回家,途中没有停留,小亮骑车回家,他们各自与学校的距离s(米)与用去的时间t(分)的关系如图所示,根据图象提供的有关信息,下列说法中错误的是()A.兄弟俩的家离学校1000米B.他们同时到家,用时30分C.小明的速度为50米/分D.小亮中间停留了一段时间后,再以80米/分的速度骑回家二、填空题11.截止2021年4月中国高速路总里程达16万公里.请将“16万”用科学记数法表示记为.12.在函数31yx=+中,自变量x的取值范围是.13.反比例函数y=1kx+的图像经过点(-2,3),则k的值为.14.一个等腰三角形的周长为15.因式分解:3221218a a a-+=.16.不等式组2(1)3213x x +≤⎧⎪-⎨>-⎪⎩的解集为. 17.如图,ABC V 是等腰三角形,AC BC ⊥,以点A 为圆心,AC 为半径画弧,交边AB 于点D .若2AB =,则»CD 的长为(结果保留π).18.用火柴棍拼成如下图案,其中第①个图案由4个小等边三角形围成1个小菱形,第②个图案由6个小等边三角形围成2个小菱形,……,若按此规律拼下去,则第n 个图案需要火柴棍的根数为(用含n 的式子表示).19.如图所示的一块地,∠ADC=90°,CD=3,AD=4,AB=13,BC=12,求这块地的面积为.20.如图,在Rt ABC △中,90ACB ∠=︒,30ABC ∠=︒,1AC =,点D 为AB 边上一点(不与A ,B 重合),点E 为BC 的中点,将CDE V 沿DE 翻折,得到DEF V ,连接BF ,当以点D ,E ,B ,F 为顶点的四边形为平行四边形时,AD 的长为.三、解答题21.先化简,再求值.22421244x x x x x x x x -+-⎛⎫÷+ ⎪--+⎝⎭.已知2x .22.如图,在Rt ABC △中,30B ∠=o ,3AC =.(1)求作:以斜边AB 为对角线且其中一个顶点在BC 边上的菱形;(尺规作图,保留作图痕迹)(2)求(1)中所求作菱形的边长.23.在贯彻落实“五育并举”的工作中,某校开设了五个社团活动:传统国学(A )、科技兴趣(B )、民族体育(C )、艺术鉴赏(D )、劳技实践(E ),每个学生每个学期只参加一个社团活动.为了了解本学期学生参加社团活动的情况,学校随机抽取了若干名学生进行调查,并将调查结果绘制成如下两幅尚不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)将条形统计图补充完整;(2)在扇形统计图中,传统国学(A )对应扇形的圆心角度数是______;(3)若该校有2700名学生,请估算本学期参加艺术鉴赏(D )活动的学生人数;(4)若小明和小亮可从这五个社团活动中任选一个参加,请直接写出两人恰好选择同一个社团的概率.24.如图,在ABC V 中,90BAC ∠=︒,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF .(1)求证:四边形ADCF 是菱形;(2)若60ACB ∠=︒,平行线AF 与BC 间的距离为ADCF 的面积.25.2022年7月19日亚奥理事会宣布将于2023年9月23日至10月8日在杭州举办第19届亚运会,吉祥物为“宸宸”、“琮琮”、“莲莲”,如图,某校准备举行“第19届亚运会”知识竞赛活动,拟购买30套吉祥物(“宸宸”、“琮琮”、“莲莲”)作为竞赛奖品.某商店有甲,乙两种规格,其中乙规格比甲规格每套贵20元.(1)若用700元购买甲规格与用900元购买乙规格的数量相同,求甲、乙两种规格每套吉祥物的价格;(2)在(1)的条件下,若购买甲规格数量不超过乙规格数量的2倍,如何购买才能使总费用最少?26.如图,已知抛物线经过原点O ,顶点为A(1,1),且与直线-2y x =交于B ,C 两点. (1)求抛物线的解析式及点C 的坐标;(2)求△ABC 的面积;(3)若点N 为x 轴上的一个动点,过点N 作MN ⊥x 轴与抛物线交于点M ,则是否存在以O ,M ,N 为顶点的三角形与△ABC 相似?若存在,请求出点N 的坐标;若不存在,请说明理由.27.如图,在Rt ABC △中,90BAC ∠=︒,AB AC =,D ,E 是边BC 上的两点,过点D ,E 分别作DM AB ⊥,EN AC ⊥,垂足为M ,N ,MD 与NE 的延长线交于点F ,连接,AD AE .(1)若BD CE =.①求证:AD AE =.②试判断四边形AMFN 是什么特殊的四边形,并说明理由.(2)若BD CE ≠,45DAE =︒∠,DE AD =,求22CE BD DE CD +⋅的值.。

2024年中考数学考前押题密卷(河南卷)(考试版A4)

2024年中考数学考前押题密卷(河南卷)(考试版A4)

2024年中考考前押题密卷(河南卷)数学(考试时间:120分钟试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷1.-3的绝对值是()A.-3B.C.3D.-2.“石瓢”最早称为“石镜”,后来顾景舟引用“弱水三千,只取一瓢”,改称“石镜”为“石瓢”,从此相沿均称“石瓢”,如图是一盏做工精湛的“景舟石瓢”,其俯视图是()A.B.C.D.3.据统计,2023年考研报名人数约有457万,创下历史新高,把457万用科学记数法表示为()A.4.57×106B.45.7×106C.4.57×107D.0.457×1074.下列运算正确的是()A.a3+a3=a6B.a2•a3=a6C.(ab)2=ab2D.(a2)4=a85.如图,在△ABC中,AC=12,D、E分别是AB、AC的中点,F是DE上一点,DF=1,连接AF、CF,若∠AFC=90°,则BC的长度为()A.12B.13C.14D.156.定义运算:a※b =3ab 2﹣4ab ﹣2.例如:4※2=3×4×22﹣4×4×2﹣2=14.则方程2※χ=0的根的情况为()A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .无法确定7.如图,A ,B ,C 是半径为1的⊙O 上的三个点,若AB 2,∠CAB =30°,则∠ABC 的度数为()A.95°B.100°C.105°D.110°8.如图,有4张形状、大小、质地均相同的卡片,正面分别印有银行标志,背面完全相同.现将这4张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面图案恰好即是轴对称又是中心对称图形的概率是()A .14B .34C .12D .19.在同一平面直角坐标系中,一次函数y=ax+a 2与y=a 2x+a 的图像可能是()A. B.C. D.10.如图,矩形OABC 的顶点A ,C 分别在y 轴、x 轴的正半轴上,点D 在AB 上,且AD=14AB ,反比例函数y =kx(k>0)的图象经过点D 及矩形OABC 的对称中心M ,连接OD ,OM ,DM ,若ΔODM 的面积为3,则k的值为()A.2B.3C.4D.5第Ⅱ卷二、填空题(本大题共5个小题,每小题3分,共15分)11.若−8在实数范围内有意义,则实数x的取值范围是________.12.不等式312x-≥的解集为________.13.某商场准备进400双滑冰鞋,了解了某段时间内销售的40双滑冰鞋的鞋号,数据如下:鞋号353637383940414243销售量/双2455126321根据以上数据,估计该商场进鞋号需求最多的滑冰鞋的数量为________双.14.如图,AD,BC是⊙O的直径,点P在BC的延长线上,PA与⊙O相切于点A,连接BD,若∠P=40°,则∠ADB的度数为________。

数学中考冲刺模拟测试题(含答案解析)

数学中考冲刺模拟测试题(含答案解析)

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________满分:120分测试时间:120分钟一.选择题(共10小题,满分40分)1.在实数﹣2,,3,中,最小的实数是()A.﹣2 B.C.3 D.2.估算﹣2的值在()A.﹣1到0之间B.0到1之间C.1到2之间D.2到3之间3.下列计算正确的是()A.x2+x4=x6B.2x+3y=5xy C.x6÷x2=x3D.(x2)3=x64.如图所示的几何体,其左视图是()A.B.C.D.5.某工厂计划生产5000件T恤衫,由于更新了机器设备,实际每天生产T恤衫的数量是原计划的2倍,因此提前5天完成任务,设原计划每天生产T恤衫x件,根据题意,所列方程正确的是()A.﹣=5 B.﹣=5C.﹣=5 D.﹣=56.如图,已知△ABC中,AB=AC,点D,E是射线AB上的两个动点(点D在点E的右侧),且CE=DE,连接CD,若∠ACE=x°,∠BCD=y°,则y关于x的函数关系式是()A.y=90﹣x(0<x<180°) B.y=x(0<x<180°)C.y=90﹣x(0<x<180°) D.y=x(0<x<180°)7.在平面直角坐标系中,点A(1,0)第一次向左跳动至A1(﹣1,1),第二次向右跳至A2(2,1),第三次向左跳至A3(﹣2,2),第四次向右跳至A4(3,2),…,按照此规律,点A第2021次跳动至A2021的坐标是()A.(﹣1011,1011) B.(1011,1010)C.(﹣1010,1010) D.(1010,1009)8.如图1是传统的手工磨豆腐设备,根据它的原理设计了图2的机械设备,磨盘半径OM=20cm,把手MQ=15cm,点O,M,Q在同一直线,用长为135cm的连杆将点Q与动力装置P相连(∠PQM大小可变),点P在轨道AB上来回滑动并带动磨盘绕点O转动,OA⊥AB,OA=80cm.若磨盘转动1周,则点P在轨道AB上滑过的路径长为()A.90cm B.150cm C.180cm D.70πcm9.如图,半圆O的直径AB长为4,C是弧AB的中点,连接CO、CA、CB,点P从A出发沿A→O→C运动至C 停止,过点P作PE⊥AC于E,PF⊥BC于F.设点P运动的路程为x,则四边形CEPF的面积y随x变化的函数图象大致为()A.B.C.D.10.如图,E是正方形ABCD外一点,DE=AD,连接AE,CE过D作DH⊥CE于H,交AE于F,连接BF,交CD于G.①∠AFD=45°;②BF⊥DH;③AE=BF;④当F是DH中点,CH=3时,AE=9,以上结论正确的有()A.1个B.2个C.3个D.4个二.填空题(共4小题,每小题5分,满分20分)11.把多项式4a2﹣16b2分解因式结果是.12.如果关于x的方程x2+3x﹣k=0有两个不相等的实数根,那么k的取值范围是.13.如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B,点C为y轴上的一点,连接AC,BC.若△ABC的面积为2,则k的值是.14.如图,已知△ABC是等边三角形,点D,E,F分别是AB,AC,BC边上的点,∠EDF=120°,设.(1)若n=1,则=;(2)若,则n=.三.解答题(共9小题,15、16、17、18每题8分,19、20每题10分,21、22每题12分,23题14分,合计90分) 15.计算:.16.解方程:+=4.17.如图,在平面直角坐标系中,△ABC的三个顶点分别是A(﹣2,﹣1),B(﹣4,﹣4),C(﹣1,﹣3).(1)把△ABC向右平移4个单位后得到对应的△A1B1C1,请画出平移后的△A1B1C1;(2)把△ABC绕原点O旋转180°后得到对应的△A2B2C2,请画出旋转后的△A2B2C2;(3)观察图形可知,△A1B1C1与△A2B2C2关于点(,)成中心对称.18.观察下列等式:①12﹣4×12=﹣3; ②32﹣4×22=﹣7; ③52﹣4×32=﹣11;……根据上述各题的规律,解决下列问题:(1)完成第⑤个等式:92﹣4×2=;(2)请你猜想第n个等式(用含n的式子表示),并验证其正确性.19.如图,某电影院的观众席成“阶梯状”,每一级台阶的水平宽度都为1m,垂直高度都为0.3m.测得在C点的仰角∠ACE=42°,测得在D点的仰角∠ADF=35°.求银幕AB的高度.(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.7,sin42°≈0.67,cos42°≈0.74,tan42°≈0.9)20.如图,在四边形ABCD中,AD∥BC,DE⊥BC于点E,∠BAD的角平分线交DE于点O,以点O为圆心,OD为半径的圆经过点C ,交BC 于另一点F . (1)求证:AB 与⊙O 相切;(2)若CF =24,OE =5,求CD 的长.21.我县某中学就同学们对“道州历史文化”的了解程度进行随机抽样调查,将调查结果绘制成两幅统计图.根据统计图的信息,解答下列问题:(1)本次共调查 名学生,条形统计图中m = ;(2)若该校共有学生2400名,则该校约有多少名学生不了解“道州历史文化”;(3)调查结果中,该校九年级(1)班学生中了解程度为“很了解”的同学进行测试,发现其中有四名同学相当优秀,他们是三名男生、一名女生,现准备从这四名同学中随机抽取两人去县里参加“道州历史文化”知识竞赛,用树状图或列表法,求恰好抽中一男生一女生的概率.22.某超市经销A 、B 两种商品.商品A 每千克成本为20元,经试销发现,该种商品每天销售量y (千克)与销售单价x (元/千克)满足一次函数关系,其每天销售单价、销售量的对应值如表所示: 销售单价x (元/千克) 25303540销售量y (千克)50403020商品B 的成本为6元/克,销售单价为10元/克,但每天供货总量只有60千克,且能当天销售完为了让利消费者,超市开展了“买一送一“活动,即买1千克的商品A ,免费送1千克的商品B .(1)求y(千克)与x(元/千克)之间的函数表达式;(2)设这两种商品的每天销售总利润为w元,求出w(元)与x的函数关系式;(3)若商品A的售价不低于成本,不高于成本的180%,当销售单价定为多少时,才能使当天的销售总利润最大?最大利润是多少?(总利润=两种商品的销售总额﹣两种商品的成本)23.已知△ABC,点D在边BC上(不与点B,C重合),点E是△ABC内部一点.给出如下定义:若∠AEB=∠AEC,∠DEB=∠DEC,则称点E是点D的“等角点”.(1)如图1,若点E是点D的“等角点”,则∠AEB+∠DEC=°;(2)如图2,若AB=AC,点D是边BC的中点,点E是中线AD上任意一点(不与点A,D重合),求证:点E是点D的“等角点”;(3)如图3,若∠ACB=90°,且∠BAD>∠CAD,△ABC内是否存在点E是点D的“等角点”?若存在,请作出点E(要求:尺规作图,不写作法,保留作图痕迹);若不存在,请说明理由.参考答案一.选择题(共10小题,满分40分)1.在实数﹣2,,3,中,最小的实数是()A.﹣2 B.C.3 D.【分析】先估计的大小,再比较.【解答】解:∵2<<3.∴﹣2<<<3.故选:A.【点评】本题考查实数大小的比较,估计的范围是求解本题的关键.2.估算﹣2的值在()A.﹣1到0之间B.0到1之间C.1到2之间D.2到3之间【分析】根据1<<2即可得解.【解答】解:∵1<<2,∴1﹣2<﹣2<2﹣2,∴﹣1<﹣2<0,故选:A.【点评】此题考查了无理数的估算,正确估算出1<<2是解题的关键.3.下列计算正确的是()A.x2+x4=x6B.2x+3y=5xy C.x6÷x2=x3D.(x2)3=x6【分析】分别根据合并同类项法则,同底数幂的除法法则以及幂的乘方运算法则逐一判断即可.【解答】解:A、x2与x4不是同类项,属于不能合并,故本选项不合题意;B、2x与3y不是同类项,属于不能合并,故本选项不合题意;C、x6÷x2=x4,故本选项不合题意;D、(x2)3=x6,故本选项符合题意;故选:D.【点评】本题考查了合并同类项,同底数幂的除法以及幂的乘方,熟记幂的运算法则是解答本题的关键.4.如图所示的几何体,其左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看,底层是两个小正方形,上层的左边是一个小正方形.故选:A.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.某工厂计划生产5000件T恤衫,由于更新了机器设备,实际每天生产T恤衫的数量是原计划的2倍,因此提前5天完成任务,设原计划每天生产T恤衫x件,根据题意,所列方程正确的是()A.﹣=5 B.﹣=5C.﹣=5 D.﹣=5【分析】设原计划每天生产T恤衫x件,则实际每天生产T恤衫2x件,根据工作时间=工作总量÷工作效率,结合实际比原计划提前5天完成任务,即可得出关于x的分式方程,此题得解.【解答】解:设原计划每天生产T恤衫x件,则实际每天生产T恤衫2x件,依题意得:﹣=5.故选:C.【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.6.如图,已知△ABC中,AB=AC,点D,E是射线AB上的两个动点(点D在点E的右侧),且CE=DE,连接CD,若∠ACE=x°,∠BCD=y°,则y关于x的函数关系式是()A.y=90﹣x(0<x<180°) B.y=x(0<x<180°)C.y=90﹣x(0<x<180°) D.y=x(0<x<180°)【分析】根据等腰三角形的性质得出∠ACB=∠ABC=x°+∠BCE和∠ADC=∠DCE=y°+∠BCE,由三角形外角的性质得出∠ABC=∠ADC+∠BCD,即x°+∠BCE=y°+∠BCE+y°,即x=2y,可得y关于x 的函数关系式.【解答】解:在△ABC中,AB=AC,∴∠ACB=∠ABC=x°+∠BCE,∵CE=DE,∴∠ADC=∠DCE=y°+∠BCE,∵∠ABC=∠ADC+∠BCD,即x°+∠BCE=y°+∠BCE+y°,即x=2y,∴y关于x的函数关系式为y=x(0<x<180°).故选:B.【点评】本题考查了等腰三角形的性质,三角形外角的性质,三角形外角等于和它不相邻的两个内角的和,熟练掌握性质定理是解题的关键.7.在平面直角坐标系中,点A(1,0)第一次向左跳动至A1(﹣1,1),第二次向右跳至A2(2,1),第三次向左跳至A3(﹣2,2),第四次向右跳至A4(3,2),…,按照此规律,点A第2021次跳动至A2021的坐标是()A.(﹣1011,1011) B.(1011,1010)C.(﹣1010,1010) D.(1010,1009)【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可.【解答】解:如图,观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),则第2020次跳动至点的坐标是(1011,1010),第2021次跳动至点A2021的坐标是(﹣1011,1011).故选:A.【点评】本题考查了规律型:点的坐标,坐标与图形的性,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.8.如图1是传统的手工磨豆腐设备,根据它的原理设计了图2的机械设备,磨盘半径OM=20cm,把手MQ=15cm,点O,M,Q在同一直线,用长为135cm的连杆将点Q与动力装置P相连(∠PQM大小可变),点P在轨道AB上来回滑动并带动磨盘绕点O转动,OA⊥AB,OA=80cm.若磨盘转动1周,则点P在轨道AB上滑过的路径长为()A.90cm B.150cm C.180cm D.70πcm【分析】连接OP,求出OP的取值范围,再求出PA的取值范围,即可得结论.【解答】解:由题意可知OQ=OM+MQ=35cm,PQ=135cm,当Q、O、P三点共线且Q在线段OP左上方延长线上时,OP取得最小值,此时OP=PQ﹣MQ﹣OM=135﹣15﹣20=100cm;当Q、O、P三点共线且Q在右下方线段OP上时,OP取得最大值,此时OP=PQ+MQ+OM=135+15+20=170cm.∵OA⊥AP,OA=80cm,∴①当OP=170cm时,AP==150(cm);②当OP=100cm时,AP==60(cm).∵每转一周,AP从最小值到最大值再到最小值,∴点P的运动路径长为:(150﹣60)×2=180(cm).故选:C.【点评】本题考查点的运动轨迹,勾股定理,找出AP的最小值和最大值是解题的关键.9.如图,半圆O的直径AB长为4,C是弧AB的中点,连接CO、CA、CB,点P从A出发沿A→O→C运动至C 停止,过点P作PE⊥AC于E,PF⊥BC于F.设点P运动的路程为x,则四边形CEPF的面积y随x变化的函数图象大致为()A.B.C.D.【分析】根据Rt△ABC中,∠ACB=90°,AC=BC=2,可得AB=4,根据CD⊥AB于点D.可得AD=BD=2,CD平分角ACB,点P从点A出发,沿A→D→C的路径运动,运动到点C停止,分两种情况讨论:根据PE⊥AC,PF⊥BC,可得四边形CEPF是矩形和正方形,设点P运动的路程为x,四边形CEPF的面积为y,进而可得能反映y与x之间函数关系式,从而可以得函数的图象.【解答】解:∵在Rt△ABC中,∠ACB=90°,AC=BC=,∴AB=4,∠A=45°,∵CD⊥AB于点D,∴AD=BD=2,∵PE⊥AC,PF⊥BC,∴四边形CEPF是矩形,∴CE=PF,PE=CF,∵点P运动的路程为x,∴当点P从点A出发,沿A→D路径运动时,即0<x<2时,AP=x,则AE=PE=x•sin45°=,∴CE=AC﹣AE=,∵四边形CEPF的面积为y,∴y=PE•CE==﹣=,∴当0<x<2时,抛物线开口向下;当点P沿D→C路径运动时,即2≤x<4时,∵CD是∠ACB的平分线,∴PE=PF,∴四边形CEPF是正方形,∵AD=2,PD=x﹣2,∴CP=4﹣x,∴y=,∴当2≤x<4时,抛物线开口向上,综上所述:能反映y与x之间函数关系的图象是:A.故选:A.【点评】本题考查了动点问题的函数图象,解决本题的关键是掌握二次函数的性质.10.如图,E是正方形ABCD外一点,DE=AD,连接AE,CE过D作DH⊥CE于H,交AE于F,连接BF,交CD于G.①∠AFD=45°;②BF⊥DH;③AE=BF;④当F是DH中点,CH=3时,AE=9,以上结论正确的有()A.1个B.2个C.3个D.4个【分析】①由正方形的性质和等腰三角形的性质可证∠DAE=∠DCF,可得点A,点D,点F,点C四点共圆,即可求得∠AFD=∠ACD=45°;②通过证明点A,点B,点C,点F四点共圆,可得∠AFB=∠ACB=45°,可证BF⊥DH;③通过证明△BCF∽△ACE,可求得AE=BF;④由勾股定理可求AE=AF+EF=9.【解答】解:如图,连接AC,CF,∵四边形ABCD是正方形,∴∠ACD=∠ACB=45°,AD=CD=BC,AC=BC,∵DE=AD,∴∠DAE=∠DEA,DC=DE,∴∠DCE=∠DEC,又∵DH⊥CE,∴DH是CE的垂直平分线,∴FC=EF,∴∠FCE=∠FEC,∴∠DEF=∠DCF,∴∠DAE=∠DCF,∴点A,点D,点F,点C四点共圆,∴∠AFD=∠ACD=45°,∠ADC=∠AFC=90°,故①正确;∵∠ABC=∠AFC=90°,∴点A,点B,点C,点F四点共圆,∴∠AFB=∠ACB=45°,∠CBF=∠CAF,∠BFC=∠BAC=45°,∴∠DFB=90°,∴BF⊥DH,故②正确;∵∠AFC=∠FEC+∠FCE,∴∠FEC=∠FCE=45°,∴∠FEC=∠BFC,又∵∠CBF=∠CAF,∴△BCF∽△ACE,∴,∴AE=BF,故③错误;∵∠CFE=90°,CF=EF,FH⊥CE,∴FH=CH=EH=3,∴EF=3=FC,∵F是DH中点,∴DH=2FH=6,∴DC===3,∴AC=DC=3,∴AF===6,∴AE=AF+EF=9,故④错误,故选:B.【点评】本题是四边形综合题,考查了正方形的性质,勾股定理,等腰三角形的性质,相似三角形的判定和性质,圆的有关知识,灵活运用这些性质解决问题是本题的关键.二.填空题(共4小题)11.把多项式4a2﹣16b2分解因式结果是4(a+2b)(a﹣2b).【分析】提公因式后再利用平方差公式即可.【解答】解:4a2﹣16b2=4(a+2b)(a﹣2b),故答案为:4(a+2b)(a﹣2b).【点评】本题考查提公因式法、平方差公式进行因式分解,掌握平方差公式的结构特征是正确应用的前提.12.如果关于x的方程x2+3x﹣k=0有两个不相等的实数根,那么k的取值范围是k>﹣.【分析】利用判别式的意义得到△=32﹣4(﹣k)>0,然后解不等式即可.【解答】解:根据题意得△=32﹣4(﹣k)>0,解得k>﹣.故答案为k>﹣.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.13.如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B,点C为y轴上的一点,连接AC,BC.若△ABC的面积为2,则k的值是4.【分析】连接AO,将△ABC的面积转化为△ABO的面积,通过反比例函数系数k的几何意义求解.【解答】解:连接AO,∵AB⊥x轴,∴AB∥y轴,∴S△ABC=S△ABO==2,∴k=4.故答案为:4.【点评】本题考查反比例函数系数k的几何意义,解题关键是掌握反比例函数系数k的几何意义.14.如图,已知△ABC是等边三角形,点D,E,F分别是AB,AC,BC边上的点,∠EDF=120°,设.(1)若n=1,则=1;(2)若,则n=或.【分析】(1)作DG∥BC交AC于G,得出△ADG是等边三角形,得到AD=DG,再结合已知得出∠BDF=∠EDG,利用AAS得出△DBF≌△DGE,即可得出结论;(2)同(1)中方法得出AD=DG和∠BDF=∠EDG,从而得到△DBF~△DGE,得到=n,再根据∵列出方程n+=3,解方程即可.【解答】解:(1)作DG∥BC交AC于G,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵DG∥BC,∴∠B=∠ADG=∠C=∠AGD=60°,∠BDG=120°,∴△ADG是等边三角形,∴AD=DG,∵,n=1,∴DB=AD,∴DB=DG,∵∠BGD=120°,∠EDF=120°,∴∠BDF+∠GDF=∠EDG+∠GDF=120°, ∴∠BDF=∠EDG,∵∠B=∠AGD=60°,∴△DBF≌△DGE(ASA),∴DE=DF,∴=1,故答案为:1;(2)同(1)中方法得△ADG是等边三角形,∴AD=DG,∵∠BGD=120°,∠EDF=120°,∴∠BDF+∠GDF=∠EDG+∠GDF=120°, ∴∠BDF=∠EDG,∵∠B=∠AGD=60°,∴△DBF~△DGE,∴,∴=n,∵,∴n+=3,化简得,n2﹣n+1=0,∴n1=,n2=,经检验n1=,n2=是原方程的解, ∴n=或.故答案为:或.【点评】本题是三角形综合题目,考查了等边三角形的判定与性质、全等三角形的判定与性质,相似三角形的判定与性质,解题的关键是灵活运用有关定理来分析、判断、推理或解答.三.解答题(共9小题)15.计算:.【分析】首先计算零指数幂、特殊角的三角函数值、乘方和开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解:=﹣1+6×﹣2+1=﹣1+3﹣2+1=.【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.16.解方程:+=4.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:7﹣x=4x﹣8,解得:x=3,检验:当x=3时,x﹣2≠0,∴x=3是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.17.如图,在平面直角坐标系中,△ABC的三个顶点分别是A(﹣2,﹣1),B(﹣4,﹣4),C(﹣1,﹣3).(1)把△ABC向右平移4个单位后得到对应的△A1B1C1,请画出平移后的△A1B1C1;(2)把△ABC绕原点O旋转180°后得到对应的△A2B2C2,请画出旋转后的△A2B2C2;(3)观察图形可知,△A1B1C1与△A2B2C2关于点(2,0)成中心对称.【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)分别作出A,B,C的对应点A2,B2,C2即可.(3)对应点连线的交点即为对称中心.【解答】解:(1)如图,△A1B1C1即为所求作.(2)如图,△A2B2C2即为所求作.(3)△A1B1C1与△A2B2C2关于点(2,0),故答案为:2,0.【点评】本题考查作图﹣旋转变换,平移变换,中心对称等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.观察下列等式:①12﹣4×12=﹣3; ②32﹣4×22=﹣7; ③52﹣4×32=﹣11;……根据上述各题的规律,解决下列问题:(1)完成第⑤个等式:92﹣4×52=﹣19;(2)请你猜想第n个等式(用含n的式子表示),并验证其正确性.【分析】(1)根据题目提供的算式直接写出答案即可;(2)写出第n个算式然后展开验证即可.【解答】解:(1)第⑤个等式:92﹣4×52=﹣19;故答案为:5,﹣19;(2)猜想:第n个等式为:(2n﹣1)2﹣4n2=﹣4n+1,验证:左边=4n2﹣4n+1﹣4n2=﹣4n+1,右边=﹣4n+1,所以左边=右边,所以:(2n﹣1)2﹣4n2=﹣4n+1.【点评】本题主要考查了数字变化规律,根据已知数字得出数字之间的变与不变是解题关键.19.如图,某电影院的观众席成“阶梯状”,每一级台阶的水平宽度都为1m,垂直高度都为0.3m.测得在C点的仰角∠ACE=42°,测得在D点的仰角∠ADF=35°.求银幕AB的高度.(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.7,sin42°≈0.67,cos42°≈0.74,tan42°≈0.9)【分析】延长CE、DF交AB于H、G,在Rt△AGD中,由三角函数的定义用AG表示出即DG,在Rt△ACH 中,由三角函数的定义用AG表示出即CH,根据DG﹣CH=1得到关于AG的方程,解方程求出AG即可求出AB.【解答】解:延长CE、DF交AB于H、G,由题意知,∠AGD=∠AHC=90°,在Rt△AGD中,∠ADG=35°,∴tan35°=,即DG=,在Rt△ACH中,∠ACH=42°,∴tan42°=,即CH=,∵AH=AG+GH,GH=0.3,∴CH=,∵DG﹣CH=1,∴﹣=1,∴﹣=1解得:AG≈4.2,∴AB=AG+GH+BH=4.2+0.3+0.3=5.1.答:银幕AB的高度约为5.1m.【点评】本题考查了解直角三角形的应用,仰角的定义,以及三角函数,熟练掌握三角函数的定义是解决问题的关键.20.如图,在四边形ABCD中,AD∥BC,DE⊥BC于点E,∠BAD的角平分线交DE于点O,以点O为圆心,OD为半径的圆经过点C,交BC于另一点F.(1)求证:AB与⊙O相切;(2)若CF=24,OE=5,求CD的长.【分析】(1)过点O作AB的垂线,证明出OG=OD即可;(2)利用勾股定理求出半径,再利用勾股定理求出CD即可.【解答】解:(1)过点O作OG⊥AB,垂足为G,∵AD∥BC,DE⊥BC,∴DE⊥AD,又∵∠BAD的角平分线交DE于点O,∴OG=OD,又∵OG⊥AB,∴AB与⊙O相切;(2)连接OC.∵DE⊥CF,∴,在Rt△OEC中,=OD,∴DE=OD+OE=13+5=18,在Rt△DEC中,.【点评】本题考查切线的性质和判定,直角三角形的边角关系,以及垂径定理,掌握切线的判断方法和直角三角形的边角关系是解决问题的前提.21.我县某中学就同学们对“道州历史文化”的了解程度进行随机抽样调查,将调查结果绘制成两幅统计图.根据统计图的信息,解答下列问题:(1)本次共调查60名学生,条形统计图中m=18;(2)若该校共有学生2400名,则该校约有多少名学生不了解“道州历史文化”;(3)调查结果中,该校九年级(1)班学生中了解程度为“很了解”的同学进行测试,发现其中有四名同学相当优秀,他们是三名男生、一名女生,现准备从这四名同学中随机抽取两人去县里参加“道州历史文化”知识竞赛,用树状图或列表法,求恰好抽中一男生一女生的概率.【分析】(1)根据了解很少的有24人,占40%,即可求得总人数;利用调查的总人数减去其它各项的人数即可求得m的值;(2)利用2400乘以不了解“道州历史文化”的人所占的比例即可求解;(3)列出表格即可求出恰好抽中一男生一女生的概率.【解答】解:(1)由题目图表提供的信息可知总人数为24÷40%=60(名),m=60﹣12﹣24﹣6=18,故答案为:60,18;(2)2400×=480(名),所以该校约有480名学生不了解“道州历史文化”;(3)列表如下:男男男女男(男,男) (男,男) (男,女)男(男,男) (男,男) (男,女)男(男,男) (男,男) (男,女)女(女,男) (女,男) (女,男)由上表可知,共12种可能,其中一男一女的可能性有6种,∴恰好抽中一男生一女生的概率为=.【点评】本题考查的是条形统计图和扇形统计图的综合运用以及求随机事件的概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.某超市经销A、B两种商品.商品A每千克成本为20元,经试销发现,该种商品每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价、销售量的对应值如表所示:25303540销售单价x(元/千克)销售量y(千克)50403020商品B的成本为6元/克,销售单价为10元/克,但每天供货总量只有60千克,且能当天销售完为了让利消费者,超市开展了“买一送一“活动,即买1千克的商品A,免费送1千克的商品B.(1)求y(千克)与x(元/千克)之间的函数表达式;(2)设这两种商品的每天销售总利润为w元,求出w(元)与x的函数关系式;(3)若商品A的售价不低于成本,不高于成本的180%,当销售单价定为多少时,才能使当天的销售总利润最大?最大利润是多少?(总利润=两种商品的销售总额﹣两种商品的成本)【分析】(1)利用待定系数法可求出一次函数的解析式;(2)利用每件的利润×销售量=总利润,即可求出w(元)与x的函数关系式;(3)先根据已知求出x的取值范围,再将(2)的解析式化为配方式,然后根据二次函数的性质来进行计算即可.【解答】解:(1)设y与x之间的函数表达式为y=kx+b(k≠0),将表中数据(30,40)、(40,20)代入得:,解得:,∴y与x之间的函数表达式为y=﹣2x+100;(2)设当天的销售利润为w元,则:w=(x﹣20)(﹣2x+100)+(10﹣6)[60﹣(﹣2x+100]=﹣2x2+148x﹣360;(3)20×180%=36,由题意知20≤x≤36,w=﹣2x2+148x﹣360=﹣2(x﹣37)2+2378,∵﹣2<0,∴x<37时,w随x的增大而增大,∴x=36时,w的最大值=﹣2×(36﹣37)2+2378=2376,答:当销售单价定为36元时,才能使当天的销售总利润最大,最大利润是2376元.【点评】本题考查了待定系数法求一次函数的解析式和二次函数在实际问题中的应用,理清题中的数量关系是解题的关键.23.已知△ABC,点D在边BC上(不与点B,C重合),点E是△ABC内部一点.给出如下定义:若∠AEB=∠AEC,∠DEB=∠DEC,则称点E是点D的“等角点”.(1)如图1,若点E是点D的“等角点”,则∠AEB+∠DEC=180°;(2)如图2,若AB=AC,点D是边BC的中点,点E是中线AD上任意一点(不与点A,D重合),求证:点E是点D的“等角点”;(3)如图3,若∠ACB=90°,且∠BAD>∠CAD,△ABC内是否存在点E是点D的“等角点”?若存在,请作出点E(要求:尺规作图,不写作法,保留作图痕迹);若不存在,请说明理由.【分析】(1)由“等角点”可得∠AEB=∠AEC,∠DEB=∠DEC,由周角的定义可求解;(2)由等腰三角形的性质可得AD是BC的中垂线,可得BE=CE,由“等角点”的定义可证点E是点D的“等角点”;(3)如图3,过点B作AD的BF⊥AD,交AD的延长线于F,在线段BF的延长线上截取FH=BF,连接AH,CH,延长HC交AD于E,连接BE,即点E为所求,由作图可得AD是BC的中垂线,可得BE=CE,由“等角点”的定义可证点E是点D的“等角点”.【解答】解:(1)∵点E是点D的“等角点”,∴∠AEB=∠AEC,∠DEB=∠DEC,∵∠AEB+∠AEC+∠DEB+∠DEC=360°,∴∠AEB+∠DEC=180°,故答案为180;(2)如图,连接BE,CE,∵AB=AC,点D是边BC的中点,∴AD⊥BC,∴AD是BC的中垂线,∴BE=CE,又∵DE⊥BC,∴∠BED=∠CED,∴∠AEB=∠AEC,∴点E是点D的“等角点”;(3)如图3,过点B作AD的BF⊥AD,交AD的延长线于F,在线段BF的延长线上截取FH=BF,连接AH,CH,延长HC交AD于E,连接BE,即点E为所求,∵BF=FH,BF⊥AF,∴BE=EH,AB=AH,又∵EF⊥BH,∴∠BED=∠CED,∴∠AEB=∠AEC,∴点E是点D的“等角点”.【点评】本题是三角形综合题,考查了等腰三角形的性质,线段垂直平分线的性质,理解“等角点”的定义并运用是本题的关键.。

中考考前模拟检测 数学卷 含答案解析

中考考前模拟检测 数学卷 含答案解析
(1)求证: .
(2)若 , ,则 的长为______.
23.如图,在 中, , , .点 在边 的延长线上,且 .在 上方作射线 ,使 .点 从点 出发,以每秒1个单位长度的速度,沿射线 方向运动.过点 作 ,垂足为 ,过点 作 ,垂足为 ,交线段 或线段 于点 ,当点 与点 重合时,点 停止运动.设点 的运动时间为 秒.【答Βιβλιοθήκη 】B【解析】【分析】
利用折叠性质可得∠ADE=∠ ,由 可得 即可得ADE的大小.
【详解】∵沿DE将△ADE折叠到 的位置,
∴∠ADE=∠



故选B.
【点睛】本题考查了折叠的性质,以及三角形内角和的运算,掌握折叠的性质是解题的关键
6.如图,在 中, .用直尺和圆规在边 上确定一点 ,使点 到点 、点 的距离相等,则符合要求的作图痕迹是()
A. B. C. D.
4.《九章算术》中记载:”今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”译文:”今有甲乙二人,不知其钱包里有多少钱.若乙把自己一半 钱给甲,则甲的钱数为50钱;而甲把自己 的钱给乙,则乙的钱数也为50钱.问甲、乙各有多少钱?”设甲、乙原有钱数分别为 、 ,下列所列方程组正确的是()
A. B.
C. D.
【答案】C
【解析】
【分析】
点P到点A、点B的距离相等知点P在线段AB的垂直平分线上,据此可得答案.
【详解】解:∵点P到点A、点B的距离相等,
∴点P在线段AB的垂直平分线上,
故选:C.
【点睛】本题主要考查作图−复杂作图,解题的关键是掌握线段中垂线的性质与尺规作图.
7.当地时间2019年4月15日下午,法国巴黎圣母院发生火灾,大火烧毁了巴黎圣母院后塔的塔顶.烧毁前,为测量此塔顶 的高度,在地面选取了与塔底 共线的两点 、 , 、 在 的同侧,在 处测量塔顶 的仰角为27°,在 处测量塔顶 的仰角为45°, 到 的距离是89.5米.设 的长为 米,则下列关系式正确的是()

2024年广东深圳罗湖中学中考数学考前模拟卷(6月)含参考答案

2024年广东深圳罗湖中学中考数学考前模拟卷(6月)含参考答案

深圳市2023—2024学年初三年级中考模拟考试数学说明:1.答题前,请将姓名、准考证号和学校用黑色字迹的钢笔或签字笔填写在答题卡指定的位置上,并将条形码粘贴好。

2.全卷共6页。

考试时间90分钟,满分100分。

3.作答选择题1-10,选出每题答案后,用2B铅笔把答题卡上对应题目答案标号的信息点框涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案。

作答非选择题11-22,用黑色字迹的钢笔或签字笔将答案(含作辅助线)写在答题卡指定区域内。

写在本试卷或草稿纸上,其答案一律无效。

4.考试结束后,请将答题卡交回。

第一部分选择题一、选择题(本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1.2-的相反数是()A.2-B.12C.12-D.22.如图是某种榫卯构件的示意图,其中榫的主视图为()A.B.C.D.3.中国科学院国家天文台日前向全球发布郭守敬望远镜7年巡天光谱数据,其中高质量光谱达到9370000条,约是轨迹上其他巡天项目发布光谱数之和的2倍,将9370000用科学记数法可以表示为()A.9.37×10-6B.937×104C.9.37×106D.9.37×1074.某班六名同学体能测试成绩(分)如下:80,90,75,75,80,80,对这组数据表述错误的是()A.众数是80B.方差是25C.平均数是80D.中位数是755.把不等式组133xx-<⎧⎨≥⎩的解集表示在数轴上,下列选项正确的是()A.B.C.D.6.下列各式中运算不正确的是()A .235ab ab ab +=B .23ab ab ab -=-C .236ab ab ab⋅=D .2233ab ab ÷=7.在标有数字3,5,7的三张卡片中,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是()A .16B .14C .13D .128.青年志愿团队到某地开展志愿服务活动,他们从距离活动地点11km 的地方出发.一部分人骑自行车先走,过了30min 后,其余的人乘汽车出发,结果他们同时到达.已知汽车速度是志愿者骑车速度的2倍,设志愿者骑车的速度为km/h x .根据题意,下列方程正确的是()A .1111302x x+=B .1111302x x-=C .11110.52x x+=D .11110.52x x-=9.如图,为测量观光塔AB 的高度,冬冬在坡度i =5:12的斜坡CD 的D 点测得塔顶A 的仰角为52°,斜坡CD 长为26米,C 到塔底B 的水平距离为9米.图中点A ,B ,C ,D 在同一平面内,则观光塔AB 的高度约为()米.(结果精确到0.1米,参考数据:sin52°≈0.79,co s 52°≈0.62,tan52°≈1.28)A .10.5米B .16.1米C .20.7米D .32.2米10.如图,在菱形ABCD 中,2A B ∠=∠,2AB =,点E 和点F 分别在边AB 和边BC 上运动,且满足AE CF =,则DF CE +的最小值为().A .4B.C.D .6第二部分非选择题二、填空题(本大题共5小题,每小题3分,共15分)11.若()223a =-,则=a .12.如图,在ABC 中,点D 是边BC 上的一点.若AB AD DC ==,64BAD ∠=︒,则C ∠的度数为.13.如图,PB 是O 的切线,切点为B ,连接OP 交O 于点C ,AB 是O 的直径,连接AC ,若30A ∠=︒,2OA =,则图中阴影部分的面积为.14.如图,在平面直角坐标系中,正方形ABCD 的顶点A ,B 分别在x 轴、y 轴上,E 为正(第9题)图(第10题)图方形对角线的交点,反比例函数()0ky xx=>的图象经过点C,E.若正方形的面积为10,则k的值是.15.如图,在矩形纸片ABCD中,点E在边BC上(不与点B,点C重合),连接AE,将ABE沿直线AE折叠,使得点B落在点F处,若ECF BAE∠=∠,53ECBE=,则AEBE=.三、解答题(本题共7小题,共55分)16.(本题5分)计算:()020181923 3.142cos30π-+--+--︒;17.(本题7分)先化简,再求值:229232393x x xx x x+---÷--,其中33x.=-18.(本题7分)某中学举行了心理健康知识测试,为大概了解学生心理健康情况,该校随机抽取了部分学生进行测试,根据成绩(单位:分)分成:()7580E x≤<,()8085D x≤<,()8590C x≤<,()9095B x<≤,()95100A x≤≤五个组,并绘制了如图1和图2所示的统计图.请根据图中提供的信息,回答下列问题.(1)本次抽取测试的学生有人,m=;(2)直接补全图1中的统计图,由扇形统计图知E组所占扇形圆心角的度数为;(3)根据调查结果,可估计该校2000名学生中,成绩大于或等于80分的学生约有______人;(第12题)图(第13题)图(第14题)图(第15题)图19.(本题8分)如图,在四边形ABCD 中,90A ∠=︒,AD BC ∥,以CD 为直径的O 与BC 边交于点E ,与对角线BD 交于点F ,连接DE CF ,.(1)请判断四边形ABED 的形状,并说明理由.(2)若3230AD DF BF ABD ==∠=︒,,,求O 的半径.20.(本题8分)为落实春季流感防控,某校需购买一批测温枪和消毒液,若购买4个测温枪和2桶消毒液共需400元;若购买2个测温枪和4桶消毒液共需320元.(1)求测温枪和消毒液的单价;(2)学校计划购买这两种物资共80件,并要求测温枪的数量不少于消毒液的数量的14,请设计最省钱的购买方案,求出最少的费用,并说明理由.21.(本题10分)【项目式学习】问题背景:小明在某公园游玩时,对一口“喊泉”产生了兴趣,当人们在泉边喊叫时,泉口便会涌起泉水,声音越大,涌起的泉水越高,涌至最高点所需的时间也越长.任务一:高度测算(1)小明借助测角仪测算泉水的高度.如图1,在A 点测泉口B 的俯角为15°;当第一次大喊时,泉水从泉口B 竖直向上涌至最高点C ,在A 点测C 点的仰角为75°.已知测角仪直立于地面,其高AD 为1.5米.求第一次大喊时泉水所能达到的高度BC 的值.(仅.结果保留整数)(参考数据:sin 750.97︒≈,cos750.26︒≈,tan 75 3.7︒≈)任务二:初建模型(2)泉水边设有一个响度显示屏,在第一次大喊时显示数据为66分贝,而泉水高度h (m )与响度x (分贝)之间恰好满足正比例函数关系.根据任务1的结果和以上数据,得到h 关于x 的函数关系式为_____________.任务三:数据分析(3)为探究响度与泉水涌至最高点所需时间的关系,小明通过多次实验,记录数据如下表:时间t (秒)0 1.5 1.752 2.25 2.5响度x (分贝)36496481100为了更直观地体现响度x 与时间t 之间的关系,请在图2中用描点法画出大致图象,并选取适当的数据,建立x 关于t 的函数关系式.任务四:推理计算(4)据“喊泉”介绍显示,泉水最高可达50米.试根据以上活动结论,求该泉水从泉口喷射至50米所需要的时间为_________.22.(本题10分)【问题发现】(1)如图1,在Rt ABC △中,AB AC =,90BAC ∠=︒,点D 为BC 的中点,以BD 为一边作正方形BDEF ,点E 与点A 重合,易知ABF CBE ∽,则线段AF 与CE 的数量关系是________;【拓展研究】(2)在(1)的条件下,将正方形BDEF 绕点B 旋转至如图2所示的位置,连接BE ,CE ,AF .请猜想线段AF 和CE 的数量关系,并证明你的结论;【结论运用】(3)在(1)(2)的条件下,若ABC 的面积为8时,当正方形BDEF 旋转到C 、E 、F 三点共线时,请直接写出线段AF 的长.2024深圳市罗湖中学中考数学考前模拟卷参考答案及评分标准一、选择题题号 1 2 3 4 5 6 7 8 9 10 答案 DBCDBCCDDA二、填空题三、解答题 16.原式(13212=−+−+−……………………………………………………2 分1321=−+−分1= ………………………………………………………5 分17.原式=22923932-3x x xx x x +−−⋅−− ………………………………………………………1 分 =22993x x x x +−−− ………………………………………………………2 分 =()()()()()2+39+33+33x x x x x x x +−−−………………………………………………………3 分=()()93+33x x x −− ………………………………………………………4 分 =33x −+. ………………………………………………………5 分当3x=时,原式=…………………………………………………7 分18 .(1) 40 , 20 . ……………………………………………………2 分 (2)……………………………………………………3 分(3) 1700 . ……………………………………………………7 分19.(1)解:四边形ABED 是矩形,理由如下: …………………………………………1 分 ∵CD 是圆的直径,∴90CED ∠=°, ………………………………………………………2 分 ∴1809090BED∠=°−°=°, ∵AD BC ∥,∴180ABC A ∠+∠=°, ∵90A ∠=°, ………………………………………………………3 分 ∴90ABC ∠=°, ∴四边形ABED 是矩形; ………………………………………………………4 分 (2)解:∵9030A ABD ∠=°∠=°,,∴2236BD AD ==×=, ………………………………………………………5 分 ∵2DF BF =,∴42BF DF ==,, ………………………………………………………6 分 ∵四边形ABED 是矩形,∴30FDE ABD ∠=∠=°, ∴30FCE FDE ∠=∠=°, ∵CD 是圆的直径,∴90CFD ∠=°, ∴90BFC ∠=°, ∴CF = ………………………………………………………7 分∴CD ==∴O ………………………………………………………8 分20.(1)设测温枪每个x 元,消毒液每桶y 元, …………………………………………1 分根据题意,得4240024320.x y x y +=+=,①② ………………………………………………………2 分 解得:8040.x y = = ,………………………………………………………3 分 答:测温枪每个80元,消毒液每桶40元.…………………………………………………4 分 (2)设购买测温枪m 个,则购买消毒液(80)m −桶,根据题意,得:1(80)4m m ≥−.设学校购买两种物资共需w 元,则()804080403200w m m m +−+.……………………………………………………6 分 ∵400>,∴w 随m 的增大而增大.∴当16m =时,w 取得最小值,此时80801664m −=−=.……………………………7 分 此时401632003840w =×+=.∴最省钱的购买方案为:购买测温枪16个,消毒液64桶.最少费用为3840元.……8 分 21.解:(1) 法一:如图1,过点A 作AE BC ⊥于点E ,由题意得,15BAE ∠=°,75CAE ∠=°,∴90CAB ∠=°,15C ∠=°,75ABC ∠=°, ∵ 1.5ADBE ==,∴tan 1.5tan 75 5.55AE BE ABC =⋅∠=×°≈………………………………………………1 分∴tan 5.55tan 7520.54CEAE CAE =⋅∠≈×°≈,…………………………………………2 分 ∴()20.54 1.522m BC CE BE =+≈+≈.…………………………………………………3 分 法二:如图1,过点A 作AE BC ⊥于点E ,由题意得,15BAE ∠=°,75CAE ∠=°, ∴90CAB ∠=°,15C ∠=°,75ABC ∠=°,……………………………………………1 分∵ 1.5AD BE ==,∴ 1.55.77cos 75AB=≈,………………………………2 分 ∴ 5.7722cos cos 75AB BCABC ==≈∠. ………………………………………………………3 分(2) 13h x =. ………………………………………………………5 分 (3)如图2,由图象可知,x 与t 大致满足二次函数关系 设2x at bt =+,把 1.5t =,36x =;2t =,64x =代入得2.25 1.5364264a b a b +=+= ,解得160a b = = , 经检验,表中其他数据均满足216x t =,………………………………………………7 分………………………………………………………8 分(4) 1t =………………………………………………………10 分22. (1)CE =; ………………………………………………………2 分(2)CE =, ………………………………………………………3 分 理由为:∵在Rt ABC △中,AB AC =,90BAC ∠=°, ∴BC =, ………………………………………………………4 分∵四边形BDEF 是正方形,∴BE =,45FBE ∠=°,∴BC BEAB BF==45CBE ABF ABE ∠=∠=°−∠,∴CBE ABF △∽△, ………………………………………………………5 分∴CE BC AF AB==,∴CE =; ………………………………………………………6 分(3)满足条件的线段AF 值为2或2.…………………………………10 分 (两个答案,写一个给2分)。

中考考前模拟测试 数学试题 附答案解析

中考考前模拟测试 数学试题 附答案解析
一、选择题
1.如果反比例函数y= 的图象经过点(﹣2,3),那么k的值是()
A. B.﹣6C. D.6
2.如图,在△ABC中,点D,E,F分别是边AB,AC,BC上的点,DE∥BC,EF∥AB,且AD∶DB=3∶5,那么CF∶CB等于( )
A.5∶8B.3∶8C.3∶5D.2∶5
3.如图,△ABC内接于⊙O,若∠OAB=28°,则∠C的大小为()
【详解】解:在 中,
∵ ,
∴ ,
又∵ ,
∴ ,
∴ ;
故答案为D.
【点睛】本题考查了等腰三角形的性质,圆周角定理及三角形内角和定理.解题的关键是利用圆的半径相等,将圆心角置于等腰三角形中解答.
4.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①a>0;②函数的对称轴为直线 ;③当 或 时,函数y的值都等于0.其中正确结论的个数是()
A.3.6B.4C.4.8D.5
8.如图,已知在Rt△ABC中,∠BAC=90°,AC=4,BC=5,若把Rt△ABC绕直线AC旋转一周,则所得圆锥的侧面积等于()
A. 9πB. 12πC. 15πD. 20π
9.函数y=x+m与y= (m≠0)在同一坐标系内的图象可以是()
A. B.
C. D.
10.如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B作BE⊥AP于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF,下列结论正确的是()
(2)求 长.
18.如图,在⊙O中,半径OA与弦BD垂直,点C在⊙O上,∠AOB=80°
(1) 若点C在优弧BD上,求∠ACD的大小
(2) 若点C在劣弧BD上,直接写出∠ACD的大小

中考数学模拟测试题(附含答案)

中考数学模拟测试题(附含答案)

中考数学模拟测试题(附含答案)(满分:120分;考试时间120分钟)一、单选题。

(每小题4分,共40分) 1.实数﹣2023的绝对值是( )A.2023B.﹣2023C.12023 D.﹣120232.如图是由6个相同的正方体搭成的几何体,这个几何体的主视图是( )A. B. C. D.3.山东省济南济阳区躯曲堤街道,号称中国黄瓜之乡,特产曲堤黄瓜,全国农产品地理标志,2022年,该街道黄瓜年产值超15 0000 0000元,将数字15 0000 0000用科学记数法表示为( ) A.15×108 B.1.5×109 C.0.15×1010 D.1.5×1084.如图,AB ∥CD ,点E 在AB 上,EC 平分∠AED ,若∠2=50°,则∠1的度数为( ) A.45° B.50° C.65° D.80°(第4题图) (第8题图) (第9题图)5.数学中的对称之美无处不在,下列是张强看到的他所在小区的垃圾桶上的四幅垃圾分类标志图案,如果不考虑图案下面的文字说明,那么这四幅图案既是轴对称图形,又是中心对称图形的是( )A.有害垃圾B.可回收物C.厨余垃圾D.其它垃圾 6.化简:x 2x 2-4÷xx -2=( )A.1B.xC.xx-2D.xx+27.现将正面分别标有“善”、“美”、“济”、“阳”图案的四张卡片(除卡片正面内容不同处,其余完全相同),背面朝上放在桌面上,混合洗匀后,王刚从中随机抽取两张,则这两张卡片的图案恰好可以组成济阳概率是()A.12B.13C.14D.168.反比例函数y=kx在第一象限的图案如图所示,则k的值可能是()A.9B.18C.25D.369.如图,点C是直线AB为4的半圆的中点,连接BC,分别以点B和点C为圆心,大于12BC的长为半径画弧,两弧相交于点D,作直线OD交BC于点E,连接AE,则阴影部分面积为()A.πB.2πC.3√3-πD.2√3-π10.把二次函数y=ax2+bx+c(a>0)的图象作关于y轴的对称变换,所的图象的解析式为y=a (x+1)2-a2,若(m-2)a+b+c≥0成立,则m的最小整数值为()A.2B.3C.4D.5二、填空题。

2024年中考数学考前押题密卷(黑龙江哈尔滨卷)(全解全析)

2024年中考数学考前押题密卷(黑龙江哈尔滨卷)(全解全析)

2024年中考考前押题密卷(黑龙江哈尔滨卷)数学·全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.有理数13-的倒数()A .13B .13-C .3D .3-【答案】D 【详解】解:∵()1313-⨯-=∴有理数13-的倒数是3-.故选:D .2.下列有关学科的图标中,是中心对称图形的是()A .B .C .D .【答案】B【详解】解:A 、此图不是中心对称图形,故此选项不符合题意;B 、此图是中心对称图形,故此选项符合题意;C 、此图不是中心对称图形,故此选项不符合题意;D 、此图不是中心对称图形,故此选项不符合题意.故选:B .3.下列运算正确的是()A .2374x x x -=-B .236()a a -=C .22234y y y -+=D .248a a a ⋅=【答案】C【详解】解:A 、23x 与7x -不属于同类项,不能合并,故A 不符合题意;B 、236()a a -=-,故B 不符合题意;C 、22234y y y -+=,故C 符合题意;D 、246a a a ⋅=,故D 不符合题意;故选:C .4.在我国古代建筑中经常使用榫卯构件,如图是某种榫卯构件的示意图,其中榫的俯视图是()A .B .C .D .【答案】D 【详解】解:根据主视图可以发现,顶端是一个上宽下窄的梯形,∴从上往下看立体图,可以得到俯视图的形状应该是四根实线夹着两根虚线的长方形,故选:D .5.如图,在RtΔABC 中,90ABC ∠=︒,D 为边AB 上一点,过点D 作DE AC ⊥,垂足为E ,则下列结论中正确的是()A .sin BC A AB =B .cos =AE A ADC .tan =BC A AD D .tan =AB A BC【答案】B 【详解】解:DE AC ⊥ ,90AED ABC ︒∴∠=∠=,A 、sin BC A AC=,故A 不符合题意;B 、结论正确,故B 符合题意;C 、tan =CB A AB,故C 不符合题意;D 、tan BC A AB =,故D 不符合题意.故选:B .6.从写有数字1,2,3的3张卡片中任意抽取两张,摆成一个两位数,摆出的两位数是3的倍数的概率为()A .12B .13C .23D .16【答案】B 【详解】解:列表如下:123112132212333132共有6种等可能的结果,其中摆出的两位数是3的倍数的结果有:12,21,共2种,∴摆出的两位数是3的倍数的概率为2163=.故选:B .7.深高小学部饲养了两只萌萌的羊驼,建筑队在学校一边靠墙处,计划用15米长的铁栅栏围成三个相连的长方形羊驼草料仓库,仓库总面积为y 平方米,为方便取物,在各个仓库之间留出了1米宽的缺口作通道,在平行于墙的一边留下一个1米宽的缺口作小门,若设AB x =米,则y 关于x 的函数关系式为()A .(184)y x x =-B .(162)y x x =-C .(172)y x x =-D .(154)y x x =-【答案】A 【详解】解: 铁栅栏的全长为15米,AB x =米,∴平行于墙的一边长为1534(184)x x +-=-米.根据题意得:(184)y x x =-.故选:A8.如图,在矩形ABCD 中,E ,F 分别在CD 边和AD 边上,BE CF ⊥于点G ,且G 为CF 的中点.若4,5==AB BC ,则BG 的长为()A .4B .32C .25D .26【答案】C【详解】解:连接BF ,四边形ABCD 是矩形,90BAF CDF ∴∠=∠=︒,∵BE CF ⊥且G 为CF 的中点,5BF BC ∴==,90FGB ∠=︒,在Rt ABF 中2222543AF BF AB =-=-=,532DF AD AF ∴=-=-=,在Rt CDF △中22224225CF CD DF -=+=,152FG CG ∴===在Rt BGF 中()2222555BG BF FG =--故选:C .9.如图,OA 、OB 、OC 都是O 的半径,2ACB BAC ∠=∠,若4AB =,5BC =O 的半径为()A .32B .52C .2D .3【答案】B【详解】证明:∵ AB AB =,∴12ACB AOB ∠=∠,∵ BCBC =,∴12BAC BOC ∠=∠,2ACB BAC ∠=∠ ,2AOB BOC ∴∠=∠.过点O 作半径OD AB ⊥于点E ,则1,2∠=∠=DOB AOB AE BE ,∴DOB BOC ∠=∠,BD BC ∴=,4,5== AB BC ,2,5∴==BE DB ,在Rt BDE △中,90DEB =︒∠Q 221∴=-=DE BD BE ,在Rt BOE 中,90OEB ∠=︒ ,222(1)2∴=-+OB OB ,52OB ∴=,即O 的半径是52.故选:B .10.如图,在平面直角坐标系中,矩形ABCD 的顶点A 的坐标为()2,0-,D 的坐标为()0,4,矩形ABCD 向右平移7个单位长度后点B 恰好落在直线3y kx =+上,若点B 的横坐标为4-,则k 的值为()A .2-B .1-C .34-D .23-【答案】D【详解】过点B 作BE x ⊥轴交于点E ,90AEB ∴∠=︒,点A 的坐标为()2,0-,D 的坐标为()0,4,∴2OA =,4OD =,四边形ABCD 是矩形,∴90BAD ∠=︒,90BAE DAO ∴∠+∠=︒,90AOD ∠=︒ ,90OAD ODA ∴∠+∠=︒,BAE ODA ∴∠=∠,90AEB AOD ∠=∠=︒ ,AEB DOA ∴△∽△,∴4122BE OA EA OD ===,点B 的横坐标为4-,4OE ∴=,2AE OE OA ∴=-=,1BE =,()4,1B ∴-,矩形ABCD 向右平移7个单位长度后点B 恰好落在直线3y kx =+上,∴平移后点B 坐标变为()3,1,把()3,1代入3y kx =+中,解得:23k =-;故选:D .第Ⅱ卷二、填空题(本大题共10个小题,每小题3分,共30分)11.“新型冠状病毒”发生以来,各相关部门和地方按照党中央、国务院的部署,对人民高度负责,全力以赴科学有效抓好疫情防控,同时提醒市民要勤洗手,戴口罩,多通风,不扎堆.经科学研究发现,该病毒的直径大小约为100纳米(1纳米=0.0000001米),则100纳米用科学记数法表示为米.【答案】51.010-⨯【详解】解:100纳米=100×0.0000001米=0.00001米,50.00001=110-⨯,故答案为:5110-⨯.【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的知识.122124m m ++有意义,则m 的取值范围是.【答案】2m >-【详解】解:∵211m +≥,21024m m +≥+且240m +≠,∴240m +>,∴2m >-;故答案为:2m >-.13.若分解因式()()263x mx x x n +-=++,则m n -=.【答案】3【详解】解:()()3x x n ++()233x n x n=+++∵()()263x mx x x n +-=++∴()22633x mx x n x n+-=+++336n mn +=⎧∴⎨=-⎩解得12m n =⎧⎨=-⎩∴()123m n -=--=.故答案为:3.14133333a b ==,则ab =.【答案】29-【详解】解:1123333333=-∵1233333333a b ===∴1233a b ==-∴,122339ab ⎛⎫⨯-=- ⎪⎝⎭=∴故答案为:29-.15.不等式组210353x xx x ≥-⎧⎨+>⎩的解集为.【答案】522x ≤<【详解】解:210353x x x x ≥-⎧⎨+>⎩①②解不等式①得:2x ≥解不等式②得:52x <∴不等式组的解集为:522x ≤<故答案为:522x ≤<.16.如图,在Rt ABC △中,点D 是AB 中点,EF CD ,若:2:3AE EC =,2EF =,则AB =.【答案】10【详解】∵:2:3AE EC =∴25AE AC =∵EF CD∴AEF ACD∽△△∴25AE EF AC CD ==∴225CD =∴5CD =∵在Rt ABC △中,点D 是AB 中点,∴210AB CD ==.故答案为:10.17.二次函数277y kx x =--的图象与x 轴有两个交点,则k 的取值范围为.【答案】74k >-且0k ≠【详解】解:∵二次函数277y kx x =--的图象与x 轴有两个交点,∴关于x 的一元二次方程2770kx x --=有两个不相等的实数根,∴()()2Δ74700k k ⎧=--⨯-⋅>⎪⎨≠⎪⎩,解得74k >-且0k ≠,故答案为:74k >-且0k ≠.18.对于字母m 、n ,定义新运算22m n m mn n =++★,若方程2310x x ++=的解为a 、b ,则2a b +★的值为.【答案】10【详解】解:∵方程2310x x ++=的解为a 、b ,∴3,1a b ab +=-=,∵22m n m mn n =++★,∴2222a b a ab b +=+++★2222a ab b ab =++-+()22a b ab =+-+()2312=--+912=-+10=.故答案为:10.19.如图,在矩形ABCD 中,点G 在AD 上,且1GD AB ==,3AG =,点E 是线段BC 上的一个动点(点E 不与点B ,C 重合),连接GB ,GE ,将GBE 关于直线GE 对称的三角形记作GFE ,当点E 运动到使点F 落在矩形任意一边所在的直线上时,则线段BE 的长是.【答案】3或5210【详解】解:①当点F 落在DC 的延长线上时,设BE EF x ==,1== AB GD ,BG GF =,90D A ∠=∠=︒,∴()Rt Rt HL ABG DGF ≌3∴==AG DF ,2CF ∴=,在Rt ECF 中,222EC CF EF +=,222(4)2x x ∴-+=,解得52x =,52BE ∴=;②当点F 落在BC 的延长线上时,则3BE AG ==,③当点F 落在AD 的延长线上时,∵AD BC∥∴BEG EGF∠=∠∵GBE 关于直线GE 对称的三角形记作GFE ,∴BGE EGF∠=∠∴BGE BEG ∠=∠,∴2210BE BG AG AB ==+=,综上所述,满足条件的BE 的值为3或5210.20.如图,在正方形ABCD 中,O 为对角线AC 的中点,E 为正方形内一点,连接BE ,BE BA =,连接CE 并延长,与ABE ∠的平分线交于点F ,连接OF ,若2AB =,则OF 的长度为2【详解】解:如图,连接AF ,四边形ABCD 是正方形,AB BE BC ∴==,90ABC ∠=︒,22AC AB ==BEC BCE ∴∠=∠,1802EBC BEC ∴∠=︒-∠,290ABE ABC EBC BEC ∴∠=∠-∠=∠-︒,BF 平分ABE ∠,1452ABF EBF ABE BEC ∴∠=∠=∠=∠-︒,45BFE BEC EBF ∴∠=∠-∠=︒,在BAF △与BEF △,AB EBABF EBF BF BF=⎧⎪∠=∠⎨⎪=⎩,()SAS BAF BEF ∴ ≌,45BFE BFA ∴∠=∠=︒,90AFC BFA BFE ∴∠=∠+∠=︒,O 为对角线AC 的中点,122OF AC ∴=,2三、解答题(本大题共7个小题,共60分.解答应写出文字说明,证明过程或演算步骤)21.(本小题满分7分)先化简,再求代数式22122444x x x x x x +⎛⎫-÷ ⎪--++⎝⎭的值,其中tan 602x =︒+.【详解】解:22122444x x x x x x +⎛⎫-÷ ⎪--++⎝⎭()()()()()22222222x x x x x x x x ⎡⎤++=-÷⎢⎥-+-++⎢⎥⎣⎦........................................................................................2分()()()222222x x x x +=⋅-++22x =-,.................................................................................................................................................4分当tan 60232x =︒+=时,..............................................................................................................6分原式233322==+-......................................................................................................................8分22.(本小题满分7分)如图,正方形网格中每个小正方形边长都是1,小正方形的顶点称为格点,在正方形网格中分别画出下列图形:(1)10的线段PQ ,其中P 、Q 都在格点上(2)面积为5的正方形ABCD ,其中A 、B 、C 、D 都在格点上【详解】(1)解:如图,线段PQ 即为所求,其中221310PQ =+=...................................................................................................................3分(2)如图,四边形ABCD 即为所求,其中:22215AB BC CD AD ===+连接AC ,...............................................................................................................................................5分∴2221310AC =+=,∴222AB BC AC +=,∴90ABC ∠=︒,∴四边形ABCD 555=..........................................................................7分23.(本小题满分8分)我校鹿鸣“博·约”和融课程极大地满足了学生的兴趣需求,受到社会的广泛赞誉,现在“博·约”和融课程需开设数学类拓展性课程,为了解学生最喜欢的数学类拓展性课程内容,随机抽取了部分学生进行问卷调查(每人必须且只选其中一项),并将统计结果绘制成如下统计图(不完整).根据统计图提供的信息,解答下列问题:(1)m =________,n =________;(2)在扇形统计图中,“C .实验探究”所对应的扇形的圆心角度数是________度;(3)请根据以上信息补全条形统计图;(4)我校共有6000名学生,试估计全校最喜欢“思想方法”的学生人数.【详解】(1)解:观察条形统计图与扇形统计图知:选A 的有12人,占20%,故总人数有1220%60÷=(人),1560100%25%m =÷⨯=,960100%15%n =÷⨯=,故答案为:25%,15%;.....................................................................................................................2分(2)解:36015%54︒⨯=︒,故答案为:54;.....................................................................................................................................4分(3)解:D 类别人数为6030%18⨯=(人),补全图形如下:..............................................................................................6分(4)解:6600060060⨯=(人),答:估计全校最喜欢“思想方法”的学生人数有600人...................................................................8分24.(本小题满分8分)为进一步落实“德、智、体、美、劳”五育并举工作,某学校体育社团准备从商场一次性购买若干副羽毛球拍和乒乓球拍,已知羽毛球拍的单价比乒乓球拍的单价高50元,用320元购买羽毛球拍的数量和用120元购买乒乓球拍的数量相等.(1)求购买一副羽毛球拍、一副乒乓球拍各需要多少元?(2)如果该校需要乒乓球拍的数量是羽毛球拍数量的2倍还多3副,且购买乒乓球拍和羽毛球拍的总费用不超过2890元,那么学校最多可购买多少副羽毛球拍?【详解】(1)设购买一副乒乓球拍需要x 元,则购买一副羽毛球拍需要()50x +元,根据题意得32012050x x=+,解得30x =,............................................................................................................................................2分经检验,30x =是原方程的解,所以50305080x +=+=,....................................................................................................................3分答:购买一副羽毛球拍需要80元,购买一副乒乓球拍需要30元;.............................................4分(2)设该校购买羽毛球拍a 副,则需要购买乒乓球拍是()23a +副,由题意得:()8030232890a a ++≤,..................................................................................................6分解得20a ≤,答:学校最多可购买20副羽毛球拍................................................................................................8分25.(本小题满分10分)问题背景:如图1,在正方形ABCD 中,边长为4.点M ,N 是边AB ,BC 上两点,且1BM CN ==,连接CM ,DN ,CM 与DN 相交于点O .(1)探索发现:探索线段DN 与CM 的数量关系和位置关系,并证明;(2)拓展提高:如图2,延长CM 至P ,连接BP ,若45BPC ∠=︒,求线段PM 的长.【详解】(1)解:CM DN =,且DN CM ⊥,.................................................................................1分理由:∵四边形ABCD 是正方形,∴BC CD =,90B NCD ∠=∠=︒,∵BM CN =,∴()SAS BCM CDN ≌,∴CM DN =,BCM CDN ∠=∠,......................................................................................................3分∵90BCM MCD ∠+∠=︒,∴90CDN MCD ∠+∠=︒,∴90COD ∠=︒,∴DN CM ⊥,∴线段CM 和DN 的关系为:CM DN =,且DN CM ⊥;..............................................................5分(2)如图,过点B 作BH CM ⊥于点H ,.........................................................................................6分∵222CM BC BM =+,∴221417CM =+∵1122CM BH BC BM ⨯=⨯,∴1717BH =,∴221717CH BC BH =-=,..........................................................................................................8分∵45BPC ∠=︒,∴45PBH ∠=︒,∴41717PH BH ==,∴201717PC PH CH =+=,∴31717PM PC CM =-=...............................................................................................................10分26.(本小题满分10分)如图,AC 是O 的直径,弦BD 交AC 于点E , 2BCCD =,连结AB ,AD .(1)如图1,若50D ∠=︒,求CAD ∠的度数.(2)如图2,点N 在弦AD 上,作MN AD ⊥,MN 分别交弦AB ,AC 于点M ,P ,=MN BE ,过B 作BF MN ∥交AC 于点F .①求证:BF MN =.②如图3,连结ME ,若4BM =,211ME =,求AP ,PE 的长.【详解】(1)解:∵50D ∠=︒,∴ AB 的度数为100︒,∵AC 是O 的直径,∴ BC的度数为:18010080︒-︒=︒,..................................................................................................1分∵ 2BCCD =,∴ CD的度数为40︒,∴20CAD ∠=︒,∴CAD ∠的度数为20︒;.......................................................................................................................2分(2)①证明:连结BC ,∵AC 是O 的直径,∴90ABC ∠=︒,∵CAD ∠和CBD ∠是 CD 所对的圆周角,∴CAD CBD ∠=∠,令CAD CBD x ∠=∠=,∴90ABE ABC CBD x ∠=∠-∠=︒-, CD 的度数为2x ,.................................................................3分∵ 2BC CD =,∴ BC 的度数为4x ,∴2BAC x ∠=,∴()180********AEB BAE ABE x x x ∠=︒-∠-∠=︒--︒-=︒-,∵MN AD ⊥,∴9090MPC APN PAN x ∠=∠=︒-∠=︒-,......................................................................................4分∵BF MN ∥,∴90BFE MPC x ∠=∠=︒-,∴BFE AEB ∠=∠,∴BE BF =,..........................................................................................................................................5分∵=MN BE ,∴BF MN =;............................................................................................................................6分②解:连结FN ,由①知:BF MN =,又∵BF MN ∥,4BM =,211ME =∴四边形MNFB 是平行四边形,∴NF MB ∥,4NF MB ==,∴23FND BAN BAC CAD x x x ∠=∠=∠+∠=+=,2AFN BAE x ∠=∠=,...................................7分取AP 的中点Q ,连结QN ,∵MN AD ⊥,∴AQ QP QN ==,∴QNA QAN x ∠=∠=,∴2PQN QNA QAN x x x ∠=∠+∠=+=,∴2PQN x AFN ∠==∠,∴4QN NF ==,∴2248AP QN ==⨯=,......................................................................................................................8分过M 作MT BE ∥交AC 于点T ,过M 作MH AC ⊥交AC 于点H ,∴90MTA BEA x MPE ∠=∠=︒-=∠,∴MT MP =,∴PH HT =,.........................................................................................................................................9分设()0PH HT a a ==>,由①知:90ABE x AEB ∠=︒-=∠,∴AMT ABE AEB ATM ∠=∠=∠=∠,AB AE =,∴82AM AT AP PT a ==+=+,∴4TE BM ==,在Rt MHA △与Rt MHE △中,22222AM AH MH ME HE -==-,∴()()(()22228282114a a a +-+=-+,解得:1a =或7a =-(负值不符合题意,舍去),∴1146PE PT TE PH HT TE =+=++=++=,∴8AP =,6PE =............................................................................................................................10分27.(本小题满分10分)如图1,在平面直角坐标系中,抛物线223y ax ax =-+与x 轴交于点A ,B (点A在点B 的左侧),交y 轴于点C ,点A 的坐标为()1,0-,点D 为抛物线的顶点,对称轴与x 轴交于点E .(1)填空:a =_____,点B 的坐标是______;(2)连接BD ,点M 是线段BD 上一动点(点M 不与端点B ,D 重合),过点M 作MN BD ⊥,交抛物线于点N(点N 在对称轴的右侧),过点N 作NH x ⊥轴,垂足为H ,交BD 于点F ,点P 是线段OC 上一动点,当MNF 的周长取得最大值时,求12FP PC +的最小值;(3)在(2)中,当MNF 的周长取得最大值时,12FP PC +取得最小值时,如图2,把点P 233单位得到点Q ,连接AQ ,把AOQ △绕点O 顺时针旋转一定的角度()0360αα︒<<︒,得到A OQ '' ,其中边A Q ''交坐标轴于点G .在旋转过程中,是否存在一点G ,使得GQ OG '=?若存在,请直接写出所有满足条件的点Q '的坐标;若不存在,请说明理由.【详解】(1)解:将点(10)A -,代入223y ax ax =-+,得230a a ++=,解得,1a =-,......................................................................................................................................1分∴223y x x =-++,当0y =时,2230x x -++=,解得,1213x x =-=,,∴点B 的坐标是()3,0;故答案为:1-,()3,0;........................................................................................................................2分(2)解:∵223y x x =-++()214x =--+,∴点(03)C ,,点4(1)D ,,设直线BD 的解析式为()0y kx b k =+≠,将(30)B ,,4(1)D ,代入得:3=0=4k b k b +⎧⎨+⎩,解得,=2=6k b -⎧⎨⎩,∴26y x =-+,......................................................................................................................................3分设点()()2,26,23F m m N m m m -+-++,,由图形可知,MNF DBE ∠=∠,∵2sin 55DBE ∠=5cos 5DBE ∠=,∴52535555MN MF NF NF +=+=,∴355MNF C NF NF=+ 3555+=()235523265m m m +=-+++-()2355435m m +=-+-()2355215m ⎡⎤=⨯--+⎣⎦,∴当2m =时,MNF C 最大,此时2(2)F ,,2HF =,.......................................................................5分在x 轴上取点()3K -,,则30OCK ∠=︒,过F 作CK 的垂线段FG 交y 轴于点P ,此时12PG PC =,∴12PF PC FP PG +=+,∴当点F ,P ,G 三点共线时,12PF PC +有最小值为FG ,而此时点P 不在线段OC 上,故不符合题意,∴12PF PC +的最小值为FC 的长度,∵点(03)C ,,点2(2)F ,,∴22125CF =+∴当MNF 的周长取得最大值时,12PF PC +5.....................................................6分(3)解:存在.由(2)可知,点3(0)P ,,将点P 233Q ,∴点230,33Q ⎛ ⎝⎭,在Rt AOQ 中,23133OA OQ ==-,,则5AQ =....................................................................7分取AQ 的中点G ,则有OG GQ =,∴A OQ '' 在旋转过程中,只需使AQ '的中点G 在坐标轴上即可使得GQ OG '=,如图所示,当点G 在y 轴正半轴上时,过点Q '作Q I x '⊥轴,垂足为I ,∵GQ OG '=,∴GOQ GQ O∠='∠'∵OG IQ ∥,∴GOQ IQ O ''∠=∠,∴IQ O GQ O ''∠=∠,设(),Q x y ',则有:sin sin IQ O AQ O ∠''∠=2x =5=,∴255x =,则点2545Q ⎝⎭',....................................................................................................8分同理可知,当点G 在x 轴正半轴上时,点455,55Q ⎛⎫- ⎝'⎪⎪⎭;当点G 在y 轴负半轴上时,点255,55Q ⎛-- ⎪ '⎪⎝⎭;当点G在x轴负半轴上时,点45555Q⎛⎫-⎝'⎪⎪⎭.综上,点Q'的坐标为2545452525454525,,,,,,55555555⎛⎫⎛⎫⎛⎫---⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭................10分。

中考数学模拟试题(含答案和解析)

中考数学模拟试题(含答案和解析)

中考数学模拟试题(含答案和解析)一、选择题(本题有10小题.每小题4分.共40分)1.(4分)给出四个实数.2.0.﹣1.其中负数是()A.B.2 C.0 D.﹣1 2.(4分)移动台阶如图所示.它的主视图是()A.B.C.D.3.(4分)计算a6•a2的结果是()A.a3B.a4C.a8D.a124.(4分)某校九年级“诗歌大会”比赛中.各班代表队得分如下(单位:分):9.7.8.7.9.7.6.则各代表队得分的中位数是()A.9分B.8分C.7分D.6分5.(4分)在一个不透明的袋中装有10个只有颜色不同的球.其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球.是白球的概率为()A.B.C.D.6.(4分)若分式的值为0.则x的值是()A.2 B.0 C.﹣2 D.﹣5 7.(4分)如图.已知一个直角三角板的直角顶点与原点重合.另两个顶点A.B的坐标分别为(﹣1.0).(0.).现将该三角板向右平移使点A与点O重合.得到△OCB′.则点B的对应点B′的坐标是()A.(1.0)B.(.)C.(1.)D.(﹣1.)8.(4分)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆.刚好坐满.设49座客车x 辆.37座客车y辆.根据题意可列出方程组()A.B.C.D.9.(4分)如图.点A.B在反比例函数y=(x>0)的图象上.点C.D 在反比例函数y=(k>0)的图象上.AC∥BD∥y轴.已知点A.B 的横坐标分别为1.2.△OAC与△ABD的面积之和为.则k的值为()A.4 B.3 C.2 D.10.(4分)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形.得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理.如图所示的矩形由两个这样的图形拼成.若a=3.b=4.则该矩形的面积为()A.20 B.24 C.D.二、填空题(本题有6小题.每小题5分.共30分)11.(5分)分解因式:a2﹣5a=.12.(5分)已知扇形的弧长为2π.圆心角为60°.则它的半径为.13.(5分)一组数据1.3.2.7.x.2.3的平均数是3.则该组数据的众数为.14.(5分)不等式组的解是.15.(5分)如图.直线y=﹣x+4与x轴、y轴分别交于A.B两点.C 是OB的中点.D是AB上一点.四边形OEDC是菱形.则△OAE的面积为.16.(5分)小明发现相机快门打开过程中.光圈大小变化如图1所示.于是他绘制了如图2所示的图形.图2中六个形状大小都相同的四边形围成一个圆的内接正六边形和一个小正六边形.若PQ所在的直线经过点M.PB=5cm.小正六边形的面积为cm2.则该圆的半径为cm.三、解答题(本题有8小题.共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:(﹣2)2﹣+(﹣1)0.(2)化简:(m+2)2+4(2﹣m).18.(8分)如图.在四边形ABCD中.E是AB的中点.AD∥EC.∠AED =∠B.(1)求证:△AED≌△EBC.(2)当AB=6时.求CD的长.19.(8分)现有甲、乙、丙等多家食品公司在某市开设蛋糕店.该市蛋糕店数量的扇形统计图如图所示.其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店.请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率.决定在该市增设蛋糕店.在其余蛋糕店数量不变的情况下.若要使甲公司经营的蛋糕店数量达到全市的20%.求甲公司需要增设的蛋糕店数量.20.(8分)如图.P.Q是方格纸中的两格点.请按要求画出以PQ为对角线的格点四边形.(1)画出一个面积最小的▱P AQB.(2)画出一个四边形PCQD.使其是轴对称图形而不是中心对称图形.且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.21.(10分)如图.抛物线y=ax2+bx(a≠0)交x轴正半轴于点A.直线y=2x经过抛物线的顶点M.已知该抛物线的对称轴为直线x =2.交x轴于点B.(1)求a.b的值.(2)P是第一象限内抛物线上的一点.且在对称轴的右侧.连接OP.BP.设点P的横坐标为m.△OBP的面积为S.记K=.求K关于m的函数表达式及K的范围.22.(10分)如图.D是△ABC的BC边上一点.连接AD.作△ABD的外接圆.将△ADC沿直线AD折叠.点C的对应点E落在⊙O上.(1)求证:AE=AB.(2)若∠CAB=90°.cos∠ADB =.BE=2.求BC的长.23.(12分)温州某企业安排65名工人生产甲、乙两种产品.每人每天生产2件甲或1件乙.甲产品每件可获利15元.根据市场需求和生产经验.乙产品每天产量不少于5件.当每天生产5件时.每件可获利120元.每增加1件.当天平均每件利润减少2元.设每天安排x 人生产乙产品.(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲15乙x x(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元.求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下.增加生产丙产品.要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品).丙产品每件可获利30元.求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.24.(14分)如图.已知P为锐角∠MAN内部一点.过点P作PB⊥AM 于点B.PC⊥AN于点C.以PB为直径作⊙O.交直线CP于点D.连接AP.BD.AP交⊙O于点E.(1)求证:∠BPD=∠BAC.(2)连接EB.ED.当tan∠MAN=2.AB=2时.在点P的整个运动过程中.①若∠BDE=45°.求PD的长.②若△BED为等腰三角形.求所有满足条件的BD的长.(3)连接OC.EC.OC交AP于点F.当tan∠MAN=1.OC∥BE时.记△OFP的面积为S1.△CFE的面积为S2.请写出的值.参考答案与试题解析一、选择题(本题有10小题.每小题4分.共40分.每小题只有一个选项是正确的.不选、多选、错选.均不给分)1.【分析】直接利用负数的定义分析得出答案.【解答】解:四个实数.2.0.﹣1.其中负数是:﹣1.故选:D.【点评】此题主要考查了实数.正确把握负数的定义是解题关键.2.【分析】根据从正面看得到的图形是主视图.可得答案.【解答】解:从正面看是三个台阶.故选:B.【点评】本题考查了简单组合体的三视图.从正面看得到的图形是主视图.3.【分析】根据同底数幂相乘.底数不变.指数相加进行计算.【解答】解:a6•a2=a8.故选:C.【点评】此题主要考查了同底数幂的乘法.关键是掌握同底数幂的乘法的计算法则.4.【分析】将数据重新排列后.根据中位数的定义求解可得.【解答】解:将数据重新排列为6、7、7、7、8、9、9.所以各代表队得分的中位数是7分.故选:C.【点评】本题主要考查中位数.解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列.如果数据的个数是奇数.则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数.则中间两个数据的平均数就是这组数据的中位数.5.【分析】根据概率的求法.找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵袋子中共有10个小球.其中白球有2个.∴摸出一个球是白球的概率是=.故选:D.【点评】此题主要考查了概率的求法.如果一个事件有n种可能.而且这些事件的可能性相同.其中事件A出现m种结果.那么事件A的概率P(A)=.6.【分析】分式的值等于零时.分子等于零.【解答】解:由题意.得x﹣2=0.解得.x=2.经检验.当x=2时.=0.故选:A.【点评】本题考查了分式的值为零的条件.注意.分式方程需要验根.7.【分析】根据平移的性质得出平移后坐标的特点.进而解答即可.【解答】解:因为点A与点O对应.点A(﹣1.0).点O(0.0). 所以图形向右平移1个单位长度.所以点B的对应点B'的坐标为(0+1.).即(1.).故选:C.【点评】此题考查坐标与图形变化.关键是根据平移的性质得出平移后坐标的特点.8.【分析】本题中的两个等量关系:49座客车数量+37座客车数量=10.两种客车载客量之和=466.【解答】解:设49座客车x辆.37座客车y辆.根据题意可列出方程组.故选:A.【点评】考查了由实际问题抽象出二元一次方程组.根据实际问题中的条件列方程组时.要注意抓住题目中的一些关键性词语.找出等量关系.列出方程组.9.【分析】先求出点A.B的坐标.再根据AC∥BD∥y轴.确定点C.点D的坐标.求出AC.BD.最后根据.△OAC与△ABD的面积之和为.即可解答.【解答】解:∵点A.B在反比例函数y=(x>0)的图象上.点A.B 的横坐标分别为1.2.∴点A的坐标为(1.1).点B的坐标为(2.).∵AC∥BD∥y轴.∴点C.D的横坐标分别为1.2.∵点C.D在反比例函数y=(k>0)的图象上.∴点C的坐标为(1.k).点D的坐标为(2.).∴AC=k﹣1.BD=.∴S△OAC=(k﹣1)×1=.S△ABD=•×(2﹣1)=.∵△OAC与△ABD的面积之和为.∴.解得:k=3.故选:B.【点评】本题考查了反比例函数系数k的几何意义.解决本题的关键是求出AC.BD的长.10.【分析】欲求矩形的面积.则求出小正方形的边长即可.由此可设小正方形的边长为x.在直角三角形ACB中.利用勾股定理可建立关于x的方程.利用整体代入的思想解决问题.进而可求出该矩形的面积.【解答】解:设小正方形的边长为x.∵a=3.b=4.∴AB=3+4=7.在Rt△ABC中.AC2+BC2=AB2.即(3+x)2+(x+4)2=72.整理得.x2+7x﹣12=0.而长方形面积为x2+7x+12=12+12=24∴该矩形的面积为24.故选:B.【点评】本题考查了勾股定理的证明以及运用和一元二次方程的运用.求出小正方形的边长是解题的关键.二、填空题(本题有6小题.每小题5分.共30分)11.【分析】提取公因式a进行分解即可.【解答】解:a2﹣5a=a(a﹣5).故答案是:a(a﹣5).【点评】考查了因式分解﹣提公因式法:如果一个多项式的各项有公因式.可以把这个公因式提出来.从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.12.【分析】根据弧长公式直接解答即可.【解答】解:设半径为r.2.解得:r=6.故答案为:6【点评】此题考查弧长公式.关键是根据弧长公式解答.13.【分析】根据平均数的定义可以先求出x的值.再根据众数的定义求出这组数的众数即可.【解答】解:根据题意知=3.解得:x=3.则数据为1、2、2、3、3、3、7.所以众数为3.故答案为:3.【点评】本题考查的是平均数和众数的概念.注意一组数据的众数可能不只一个.14.【分析】先求出不等式组中每一个不等式的解集.再求出它们的公共部分即可.【解答】解:.解①得x>2.解②得x>4.故不等式组的解集是x>4.故答案为:x>4.【点评】考查了解一元一次不等式组.一元一次不等式组的解法:解一元一次不等式组时.一般先求出其中各不等式的解集.再求出这些解集的公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.【分析】延长DE交OA于F.如图.先利用一次函数解析式确定B (0.4).A(4.0).利用三角函数得到∠OBA=60°.接着根据菱形的性质判定△BCD为等边三角形.则∠BCD=∠COE=60°.所以∠EOF=30°.则EF=OE=1.然后根据三角形面积公式计算.【解答】解:延长DE交OA于F.如图.当x=0时.y=﹣x+4=4.则B(0.4).当y=0时.﹣x+4=0.解得x=4.则A(4.0).在Rt△AOB中.tan∠OBA==.∴∠OBA=60°.∵C是OB的中点.∴OC=CB=2.∵四边形OEDC是菱形.∴CD=BC=DE=CE=2.CD∥OE.∴△BCD为等边三角形.∴∠BCD=60°.∴∠COE=60°.∴∠EOF=30°.∴EF=OE=1.△OAE的面积=×4×1=2.故答案为2.【点评】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b.(k≠0.且k.b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣.0);与y轴的交点坐标是(0.b).直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了菱形的性质.16.【分析】设两个正六边形的中心为O.连接OP.OB.过O作OG⊥PM.OH⊥AB.由正六边形的性质及邻补角性质得到三角形PMN为等边三角形.由小正六边形的面积求出边长.确定出PM的长.进而求出三角形PMN的面积.利用垂径定理求出PG的长.在直角三角形OPG中.利用勾股定理求出OP的长.设OB=xcm.根据勾股定理列出关于x的方程.求出方程的解即可得到结果.【解答】解:设两个正六边形的中心为O.连接OP.OB.过O作OG ⊥PM.OH⊥AB.由题意得:∠MNP=∠NMP=∠MPN=60°.∵小正六边形的面积为cm2.∴小正六边形的边长为cm.即PM=7cm.∴S△MPN=cm2.∵OG⊥PM.且O为正六边形的中心.∴PG=PM=cm.OG=PM=.在Rt△OPG中.根据勾股定理得:OP==7cm.设OB=xcm.∵OH⊥AB.且O为正六边形的中心.∴BH=x.OH=x.∴PH=(5﹣x)cm.在Rt△PHO中.根据勾股定理得:OP2=(x)2+(5﹣x)2=49. 解得:x=8(负值舍去).则该圆的半径为8cm.故答案为:8【点评】此题考查了正多边形与圆.熟练掌握正多边形的性质是解本题的关键.三、解答题(本题有8小题.共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.【分析】(1)本题涉及零指数幂、乘方、二次根式化简3个考点.在计算时.需要针对每个考点分别进行计算.然后根据实数的运算法则求得计算结果.(2)根据完全平方公式和去括号法则计算.再合并同类项即可求解.【解答】解:(1)(﹣2)2﹣+(﹣1)0=4﹣3+1=5﹣3;(2)(m+2)2+4(2﹣m)=m2+4m+4+8﹣4m=m2+12.【点评】本题主要考查了实数的综合运算能力.是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、乘方、二次根式、完全平方公式、去括号法则、合并同类项等考点的运算.18.【分析】(1)利用ASA即可证明;(2)首先证明四边形AECD是平行四边形.推出CD=AE=AB即可解决问题;【解答】(1)证明:∵AD∥EC.∴∠A=∠BEC.∵E是AB中点.∴AE=EB.∵∠AED=∠B.∴△AED≌△EBC.(2)解:∵△AED≌△EBC.∴AD=EC.∵AD∥EC.∴四边形AECD是平行四边形.∴CD=AE.∵AB=6.∴CD=AB=3.【点评】本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识.解题的关键是正确寻找全等三角形解决问题.属于中考常考题型.19.【分析】(1)由乙公司蛋糕店数量及其占总数的比例可得总数量.再用总数量乘以甲公司数量占总数量的比例可得;(2)设甲公司增设x家蛋糕店.根据“该市增设蛋糕店数量达到全市的20%”列方程求解可得.【解答】解:(1)该市蛋糕店的总数为150÷=600家.甲公司经营的蛋糕店数量为600×=100家;(2)设甲公司增设x家蛋糕店.由题意得:20%×(600+x)=100+x.解得:x=25.答:甲公司需要增设25家蛋糕店.【点评】本题主要考查扇形统计图与一元一次方程的应用.解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数及根据题意确定相等关系.并据此列出方程.20.【分析】(1)画出面积是4的格点平行四边形即为所求;(2)画出以PQ为对角线的等腰梯形即为所求.【解答】解:(1)如图①所示:(2)如图②所示:【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知.对应角都相等都等于旋转角.对应线段也相等.由此可以通过作相等的角.在角的边上截取相等的线段的方法.找到对应点.顺次连接得出旋转后的图形.也考查了轴对称变换.21.【分析】(1)根据直线y=2x求得点M(2.4).由抛物线的对称轴及抛物线上的点M的坐标列出关于a、b的方程组.解之可得;(2)作PH⊥x轴.根据三角形的面积公式求得S=﹣m2+4m.根据公式可得K的解析式.再结合点P的位置得出m的范围.利用一次函数的性质可得答案.【解答】解:(1)将x=2代入y=2x.得:y=4.∴点M(2.4).由题意.得:.∴;(2)如图.过点P作PH⊥x轴于点H.∵点P的横坐标为m.抛物线的解析式为y=﹣x2+4x.∴PH=﹣m2+4m.∵B(2.0).∴OB=2.∴S=OB•PH=×2×(﹣m2+4m)=﹣m2+4m.∴K==﹣m+4.由题意得A(4.0).∵M(2.4).∴2<m<4.∵K随着m的增大而减小.∴0<K<2.【点评】本题主要考查抛物线与x轴的交点.解题的关键是掌握待定系数法求函数解析式及一次函数的性质等知识点.22.【分析】(1)由折叠得出∠AED=∠ACD、AE=AC.结合∠ABD =∠AED知∠ABD=∠ACD.从而得出AB=AC.据此得证;(2)作AH⊥BE.由AB=AE且BE=2知BH=EH=1.根据∠ABE =∠AEB=∠ADB知cos∠ABE=cos∠ADB==.据此得AC=AB=3.利用勾股定理可得答案.【解答】解:(1)由折叠的性质可知.△ADE≌△ADC.∴∠AED=∠ACD.AE=AC.∵∠ABD=∠AED.∴∠ABD=∠ACD.∴AB=AC.∴AE=AB;(2)如图.过A作AH⊥BE于点H.∵AB=AE.BE=2.∴BH=EH=1.∵∠ABE=∠AEB=∠ADB.cos∠ADB=.∴cos∠ABE=cos∠ADB=.∴=.∴AC=AB=3.∵∠BAC=90°.AC=AB.∴BC=3.【点评】本题主要考查三角形的外接圆.解题的关键是掌握折叠的性质、圆周角定理、等腰三角形的性质及三角函数的应用等知识点.23.【分析】(1)根据题意列代数式即可;(2)根据(1)中数据表示每天生产甲乙产品获得利润根据题意构造方程即可;(3)根据每天甲、丙两种产品的产量相等得到m与x之间的关系式.用x表示总利润利用二次函数性质讨论最值.【解答】解:(1)由已知.每天安排x人生产乙产品时.生产甲产品的有(65﹣x)人.共生产甲产品2(65﹣x)130﹣2x件.在乙每件120元获利的基础上.增加x人.利润减少2x元每件.则乙产品的每件利润为120﹣2(x﹣5)=130﹣2x.故答案为:65﹣x;130﹣2x;130﹣2x;(2)由题意15×2(65﹣x)=x(130﹣2x)+550∴x2﹣80x+700=0解得x1=10.x2=70(不合题意.舍去)∴130﹣2x=110(元)答:每件乙产品可获得的利润是110元.(3)设生产甲产品m人W=x(130﹣2x)+15×2m+30(65﹣x﹣m)=﹣2(x﹣25)2+3200∵2m=65﹣x﹣m∴m=∵x、m都是非负整数∴取x=26时.m=13.65﹣x﹣m=26即当x=26时.W最大值=3198答:安排26人生产乙产品时.可获得的最大利润为3198元.【点评】本题以盈利问题为背景.考查一元二次方程和二次函数的实际应用.解答时注意利用未知量表示相关未知量.24.【分析】(1)由PB⊥AM、PC⊥AN知∠ABP=∠ACP=90°.据此得∠BAC+∠BPC=180°.根据∠BPD+∠BPC=180°即可得证;(2)①由∠APB=∠BDE=45°、∠ABP=90°知BP=AB=2.根据tan∠BAC=tan∠BPD==2知BP=PD.据此可得答案;②根据等腰三角形的定义分BD=BE、BE=DE及BD=DE三种情况分类讨论求解可得;(3)作OH⊥DC.由tan∠BPD=tan∠MAN=1知BD=PD.据此设BD=PD=2a、PC=2b.从而得出OH=a、CH=a+2b、AC=4a+2b.证△ACP∽△CHO得=.据此得出a=b及CP=2a、CH=3a、OC=a.再证△CPF∽△COH.得=.据此求得CF=a、OF=a.证OF为△PBE的中位线知EF=PF.从而依据=可得答案.【解答】解:(1)∵PB⊥AM、PC⊥AN.∴∠ABP=∠ACP=90°.∴∠BAC+∠BPC=180°.又∠BPD+∠BPC=180°.∴∠BPD=∠BAC;(2)①如图1.∵∠APB=∠BDE=45°.∠ABP=90°.∴BP=AB=2.∵∠BPD=∠BAC.∴tan∠BPD=tan∠BAC.∴=2.∴BP=PD.∴PD=2;②当BD=BE时.∠BED=∠BDE.∴∠BPD=∠BPE=∠BAC.∴tan∠BPE=2.∵AB=2.∴BP=.∴BD=2;当BE=DE时.∠EBD=∠EDB.∵∠APB=∠BDE、∠DBE=∠APC.∴∠APB=∠APC.∴AC=AB=2.过点B作BG⊥AC于点G.得四边形BGCD是矩形.∵AB=2、tan∠BAC=2.∴AG=2.∴BD=CG=2﹣2;当BD=DE时.∠DEB=∠DBE=∠APC.∵∠DEB=∠DPB=∠BAC.∴∠APC=∠BAC.设PD=x.则BD=2x.∴=2.∴.∴x=.∴BD=2x=3.综上所述.当BD=2、3或2﹣2时.△BDE为等腰三角形;(3)如图3.过点O作OH⊥DC于点H.∵tan∠BPD=tan∠MAN=1.∴BD=PD.设BD=PD=2a、PC=2b.则OH=a、CH=a+2b、AC=4a+2b.∵OC∥BE且∠BEP=90°.∴∠PFC=90°.∴∠P AC+∠APC=∠OCH+∠APC=90°.∴∠OCH=∠P AC.∴△ACP∽△CHO.∴=.即OH•AC=CH•PC.∴a(4a+2b)=2b(a+2b).∴a=b.即CP=2a、CH=3a.则OC=a.∵△CPF∽△COH.∴=.即=.则CF=a.OF=OC﹣CF=a.∵BE∥OC且BO=PO.∴OF为△PBE的中位线.∴EF=PF.∴==.【点评】本题主要考查圆的综合问题.解题的关键是掌握圆周角定理、相似三角形的判定与性质、中位线定理、勾股定理及三角函数的应用等知识点.。

初三中考数学模拟试题及答案

初三中考数学模拟试题及答案

初三中考数学模拟试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^3 + bx^2 + cx + dC. y = ax^2 + bx + c + dD. y = ax^2 + bx + c + dx2. 已知一个直角三角形的两条直角边长分别为3和4,求斜边的长度。

A. 5B. 6C. 7D. 83. 以下哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/104. 一个数的相反数是-3,那么这个数是多少?A. 3B. -3C. 0D. 65. 一个等腰三角形的底角是45度,求顶角的度数。

A. 45度B. 60度C. 90度D. 135度6. 圆的半径是5厘米,求圆的面积。

A. 25π平方厘米B. 50π平方厘米C. 75π平方厘米D. 100π平方厘米7. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 08. 以下哪个选项是不等式的基本性质?A. 如果a > b,那么a + c > b + cB. 如果a > b,那么ac > bcC. 如果a > b,那么a/c > b/cD. 如果a > b,那么a^2 > b^29. 一个长方体的长、宽、高分别是2cm、3cm、4cm,求其体积。

A. 8立方厘米B. 12立方厘米C. 24立方厘米D. 36立方厘米10. 一个多项式的最高次项系数是-1,且次数为3,这个多项式可能是?A. -x^3 + 2x^2 - 3x + 4B. -x^3 + 2x^2 + 3x - 4C. x^3 + 2x^2 - 3x + 4D. x^3 + 2x^2 + 3x - 4二、填空题(每题3分,共15分)1. 一个数的立方根是2,那么这个数是______。

2. 一个数的平方是9,那么这个数是______或______。

2024年中考数学考前押题密卷(浙江卷)(全解全析)

2024年中考数学考前押题密卷(浙江卷)(全解全析)

2024年中考考前押题密卷(浙江卷)数学·全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下列手机中的图标是轴对称图形的是()A.B.C.D.【答案】C【分析】根据轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,进行判断即可.【解析】解:A.不是轴对称图形,故此选项不合题意;B.不是轴对称图形,故此选项不合题意;C.是轴对称图形,故此选项符合题意;D.不是轴对称图形,故此选项不合题意.故选:C.【点睛】本题考查的是轴对称图形的概念,正确掌握相关定义是解题关键.2.已知,则的值为()A.B.C.12D.18【答案】B【分析】根据二次根式的被开方数是非负数,由非负数的性质列式求出x的值;然后将x的值代入求出y的值,最后代入待求式,进行计算即可.【解析】解:由题意得:,解得x=3,把x=3代入,可得y=3,所以==.故选:B.【点睛】本题考查二次根式有意义的条件,关键是掌握二次根式有意义的条件以及求代数式的值的方法.3.下列运算结果正确的是()A.m2+m2=2m4B.a2•a3=a5C.(mn2)3=mn6D.m6÷m2=m3【答案】B【分析】直接利用合并同类项法则、同底数幂的乘除运算法则、积的乘方运算分别计算,进而判断得出答案.【解析】解:A.m2+m2=2m2,故此选项不合题意;B.a2•a3=a5,故此选项符合题意;C.(mn2)3=m3n6,故此选项不合题意;D.m6÷m2=m4,故此选项不合题意.故选:B.【点睛】此题主要考查了合并同类项、同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.4.在五边形ABCDE中,∠A=∠E=120°,∠B=130°,∠C=70°,则∠D=()A.100°B.110°C.120°D.130°【答案】A【分析】根据多边形内角和公式解题即可.【解析】解:多边形的内角和为180°×(n﹣2),∴五边形ABCDE的内角和为180°×(5﹣2)=540°,∴∠D=540°﹣∠A﹣∠B﹣∠C﹣∠E=540°﹣120°﹣130°﹣70°﹣120°=100°.故选:A.【点睛】本题主要考查了多边形的内角和求法,关键是多边形内角和公式的应用.5.下列调查适合做普查的是()A.调查游客对我市景点的满意程度B.调查我省中小学生的身高情况C.调查九年级(3)班全班学生本周末参加社区活动的时间D.调查我市中小学生保护水资源的意识【答案】C【分析】全面调查是对需要调查的对象逐个调查,这种调查能够收集全面、广泛、可靠的资料,但调查费用较高,时间延续较长,适合于较小的调查范围,抽样调查适合于较广的调查范围,据此可得到结.【解析】解:A、调查游客对我市景点的满意程度,范围较广,适合于抽样调查,该选项不符合题意;B、调查我省中小学生的身高情况,人数多,范围广,适合于抽样调查,该选项不符合题意;C、调查九年级(3)班全班学生本周末参加社区活动的时间,人数少,范围小,适合于全面调查,即普查,该选项符合题意;D、调查我市中小学生保护水资源的意识,人数多,范围广,适合于抽样调查,该选项不符合题意;故选:C.【点睛】本题考查了判断全面调查与抽样调查,了解全面调查与抽样调查的区别是解题的关键.6.一个正棱柱的正(主)视图和俯视图如图所示,则该三棱柱的侧(左)视图的面积为()A.8B.16C.8D.8【答案】A【分析】求出正三棱锥底面边长的高,然后求解侧视图的面积.【解析】解:由题意可知,底面三角形是正三角形,边长为4,高为2,所以侧视图的面积为:4×=8.故选:A.【点睛】本题考查三视图求解几何体的侧视图,求解底面三角形的高是解题的关键,是基础题.7.如图,为做好疫情防控,小航同学在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,请根据图中信息,如果把这50个纸杯整齐叠放在一起时,它的高度为()A.56cm B.57cm C.58cm D.59cm【答案】B【分析】根据题中所给图形,求出一个杯子高度及叠放后每个杯子漏出部分的高度即可得到答案.【解析】解:由图可知,右边8个杯子叠放高度比左边3个杯子高15﹣10=5(cm),∴杯子叠放后每个杯子漏出来部分的高度为5÷5=1cm,则一个杯子高度为10﹣2=8(cm),∴把这50个纸杯整齐叠放在一起时,它的高度为8+49=57(cm),故选:B.【点睛】本题考查数学知识解决实际问题,读懂题意,数形结合,分析出叠放后每个杯子漏出来部分的高度是解决问题的关键.8.将一副三角板如图放置,则下列结论中正确的是()①如果∠2=30°,则有AC∥DE;②∠BAE+∠CAD=180°;③如果BC∥AD,则有∠2=45°;④如果∠CAD=150°,必有∠4=∠C.A.①②③B.③④C.①②④D.①②③④【答案】D【分析】根据平行线的性质与判定,余角的性质,等逐项分析并选择正确的选项即可.【解析】解:①∵∠2=30°,∴∠1=60°,∴∠1=∠E,∴AC∥DE,故①正确;②∵∠1+∠2=90°,∠2+∠3=90°,∴∠BAE+∠CAD=∠2+∠1+∠2+∠3=90°+90°=180°,故②正确;③∵BC∥AD,∴∠1+∠2+∠3+∠C=180°,又∵∠C=45°,∠1+∠2=90°,∴∠3=45°,∴∠2=90°﹣45°=45°,故③正确;④∵∠CAD=150°,∠DAE=90°,∴∠1=∠CAD﹣∠DAE=150°﹣90°=60°,∵∠E=60°,∴∠1=∠E,∴AC∥DE,∴∠4=∠C,故④正确;故选:D.【点睛】本题考查三角板中的角度计算,平行线的性质与判定,能够掌握数形结合思想是解决本题的关键.9.在学习勾股定理时,甲同学用四个相同的直角三角形(直角边长分别为a,b,斜边长为c)构成如图所示的正方形;乙同学用边长分别为a,b的两个正方形和长为b,宽为a的两个长方形构成如图所示的正方形,甲、乙两位同学给出的构图方案,可以证明勾股定理的是()A.甲B.乙C.甲,乙都可以D.甲,乙都不可以【答案】A【分析】由图形中的面积关系,应用完全平方公式即可解决问题.【解析】解:甲同学的方案:∵大正方形的面积=小正方形的面积+直角三角形的面积×4,∴(a+b)2=c2+ab×4,∴a2+b2+2ab=c2+2ab,∴a2+b2=c2,因此甲同学的方案可以证明勾股定理;乙同学的方案:∵大正方形的面积=矩形的面积×2+两个小正方形的面积,∴(a+b)2=a2+2ab+b2,∴得不到a2+b2=c2,因此乙同学的方案不可以证明勾股定理.故选:A.【点睛】本题考查勾股定理的证明,关键是应用面积法,完全平方公式.10.如图,在△ABC中,∠ACB=90°,以△ABC的各边为边分别作正方形BAHI,正方形BCFG与正方形CADE,延长BG,FG分别交AD,DE于点K,J,连结DH,IJ.图中两块阴影部分面积分别记为S1,S2.若S1:S2=1:4,S四边形边BAHE=18,则四边形MBNJ的面积为()A.5B.6C.8D.9【答案】B【分析】先证△CAB≌△DAH(SAS),得∠ADH=90°,则H、D、E三点共线,再证=,则BC =FC=FG=BG=2GJ,AC=AD=DE=CE=BC+GJ=3GJ,然后由S四边形BAHE=S△ADH+S梯形ADEB=18,求出GJ=,证△FAN≌△EBM(ASA),则S△FAN=S△EBM,最后由S四边形MBNJ =S矩形CFJE﹣S四边形BCFN﹣S△EBM=S矩形CFJE﹣S△ABC,即可得出结果.【解析】解:∵四边形BAHI和四边形CADE都是正方形,∴AC=AD,AB=AH,∠CAD=∠ABI=∠BAH=∠ADE=90°,∴∠CAB+∠BAD=∠DAH+∠BAD,∴∠CAB=∠DAH,在△CAB和△DAH中,,∴△CAB≌△DAH(SAS),∴∠ADH=∠ACB=90°,∵∠ADE=90°,∴H、D、E三点共线,∵四边形BCFG和四边形CADE都是正方形,延长BG、FG分别交AD、DE于点K、J,∴四边形ADJF和四边形BEDK都是矩形,且AF=BE,∠AFN=∠BEM=90°,四边形DKGJ是正方形,四边形CFJE是矩形,∵S1:S2=1:4,∴=,∴BC=FC=FG=BG=2GJ,∵四边形CADE是正方形,∴∠ADE=90°,AC=AD=DE=CE=BC+GJ=3GJ,在Rt△ACB中,由勾股定理得:AB===GJ,在Rt△ADH中,由勾股定理得:DH===2GJ,∵S四边形BAHE=S△ADH+S梯形ADEB=18,∴AD•DH+(AD+BE)•DE=×3GJ×2GJ+(3GJ+GJ)×3GJ=18,解得:GJ=(负值已舍去),∵∠ABC+∠EBM=180°﹣∠ABI=180°﹣90°=90°,∠ABC+∠CAB=90°,∴∠CAB=∠EBM,即∠FAN=∠EBM,在△FAN和△EBM中,,∴△FAN≌△EBM(ASA),∴S△FAN=S△EBM,∴S△ABC=S四边形BCFN+S△FAN=S四边形BCFN+S△EBM,∴S四边形MBNJ=S矩形CFJE﹣S四边形BCFN﹣S△EBM=S矩形CFJE﹣S△ABC=FC•CE﹣AC•BC=2GJ×3GJ﹣×3GJ×2GJ=3GJ2=3×()2=6,故选:B.【点睛】本题考查了勾股定理、正方形的判定与性质、矩形的判定与性质、全等三角形的判定与性质、矩形面积、梯形面积与三角形面积的计算等知识,证明△FAN≌△EBM是解题的关键.第Ⅱ卷二、填空题(本大题共6个小题,每小题4分,共24分)11.分解因式6xy2﹣3x2y=.【答案】3xy(2y﹣x)【分析】原式提取公因式3xy即可.【解析】解:原式=3xy(2y﹣x).故答案为:3xy(2y﹣x).【点睛】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.12.如图,▱ABCD的对角线AC、BD相交于点O,AC+BD=22,AB=9.则△OCD的周长为.【答案】20【分析】由平行四边形的性质得OC=AC,OD=BD,CD=AB=9,则OC+OD=(AC+BD)=11,即可求出OC+OD+CD的值.【解析】解:∵四边形ABCD是平行四边形,对角线AC与BD交于点O,∴OC=OA=AC,OD=OB=BD,CD=AB=9,∵AC+BD=18,∴OC+OD=(AC+BD)=×22=11,∴OC+OD+CD=11+9=20,∴△OCD的周长为20,故答案为:20.【点睛】此题重点考查平行四边形的性质、三角形的周长等知识,证明OC=AC,OD=BD,并且求得OC+OD=11是解题的关键.13.如图,将等腰△ABC(∠A是锐角)沿BD对折,使得点A落在射线BC上的E点处,再将△DCE沿CD 对折得到△DCF,若DF刚好垂直于BC,则∠A的大小为°.【答案】45【分析】由等腰三角形的性质可得∠ABC=∠ACB,由折叠的性质可得∠A=∠E=∠F,∠DCE=∠DCF,由外角性质可求∠BCF=∠A=∠E=∠F,由直角三角形的性质可求解.【解析】解:∵AB=AC,∴∠ABC=∠ACB,∵将等腰△ABC(∠A是锐角)沿BD对折,使得点A落在射线BC上的E点处,∴∠A=∠E,∵将△DCE沿CD对折得到△DCF,∴∠E=∠F,∠DCE=∠DCF,∵∠DCE=∠ABC+∠A,∠DCF=∠ACB+∠BCF,∴∠BCF=∠A,∴∠BCF=∠A=∠E=∠F,∵DF⊥BC,∴∠BCF=∠F=45°,∴∠A=45°,故答案为:45.【点睛】本题考查了翻折变换,等腰三角形的性质,外角的性质,灵活运用折叠的性质是本题的关键.14.已知一组数据x1,x2,x3,x4,x5的方差是,那么x1﹣5,x2﹣5,x3﹣5,x4﹣5,x5﹣5的方差是.【答案】【分析】方差是用来衡量一组数据波动大小的量,每个数都减去5所以波动不会变,方差不变.【解析】解:由题意知,原数据的平均数为,新数据的每一个数都减去了5,则平均数变为﹣5,则原来的方差=[(x1﹣)2+(x2﹣)2+…+(x5﹣)2]=,现在的方差=[(x1﹣5﹣+5)2+(x2﹣5﹣+5)2+…+(x5﹣5﹣+5)2]=[(x1﹣)2+(x2﹣)2+…+(x5﹣)2]=,所以方差不变.故答案为:.【点睛】本题考查了方差,本题说明了当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.15.直线y=kx+6k交x轴于点A,交y轴于点B,以原点O为圆心,3为半径的⊙O与l相交,则k的取值范围为.【答案】﹣<k<【分析】根据题意得到A(﹣6,0),B(0,6k),设⊙O于AB相切于C,连接OC,求得∠OAC=30°,于是得到结论.【解析】解:∵直线y=kx+6k交x轴于点A,交y轴于点B,∴A(﹣6,0),B(0,6k),设⊙O与AB相切于C,连接OC,∴OA=6,OC=3,∠ACO=90°,∴OC=OA,∴∠OAC=30°,当⊙O与l相交时,OB=|6k|<2,∴﹣<k<,故答案为﹣<k<.【点睛】本题考查了直线与圆的位置关系,一次函数图象与系数的关系,正确的作出图形是解题的关键.16.在二次函数y=x2﹣2tx+3中,t为大于0的常数.(1)若此二次函数的图象过点(2,1),则t等于;(2)如果A(m﹣2,a),B(4,b),C(m,a)都在此二次函数的图象上,且a<b<3,则m的取值范围是.【答案】(1);(2)3<m<4或m>6【分析】(1)将(2,1)代入y=x2﹣2tx+3计算得出t值即可;(2)先根据点AC的纵坐标相等,可得对称轴x=t=m﹣1,再分两种情况讨论得出结果即可.【解析】解:(1)将(2,1)代入y=x2﹣2tx+3得:1=4﹣4t+3,解得:t=,故答案为:.(2)∵A(m﹣2,a),C(m,a)都在二次函数图象上,∴二次函数y=x2﹣2tx+3的对称轴为直线x=t==m﹣1,∵t>0,∴m﹣1>0,解得m>1,∵m﹣2<m,∴A点在对称轴左侧,C点对称轴右侧,在二次函数y=x2﹣2tx+3中,令x=0,y=3,∴抛物线与y轴的交点坐标为(0,3),∴点(0,3)关于对称轴对称点的坐标为(2m﹣2,3),∵b<3,∴4<2m﹣2,解得m>3,①当点A(m﹣2,a),B(4,b)都在对称轴左侧时,∵y随x的增大而减小,且a<b,∴4<m﹣2,解得m>6,此时m满足的条件为:m>6;②当点A(m﹣2,a)在对称轴左侧,点B(4,b)在对称轴右侧时,∵a<b,∴点B(4,b)到对称轴的距离大于点A到对称轴的距离,∴4﹣(m﹣1)>m﹣1﹣(m﹣2),解得:m<4,此时,m满足的条件是:3<m<4,综上分析,3<m<4或m>6.故答案为:3<m<4或m>6.【点睛】本题考查了二次函数的性质,解题的关键是分类讨论.三、解答题(本大题共8个小题,共66分.解答应写出文字说明,证明过程或演算步骤)17.以下是某同学化简分式的部分运算过程:解:原式=……第一步=第二步=.……第三步……(1)上面第二步计算中,中括号里的变形的依据是通分;(2)上面的运算过程中第三步出现了错误;(3)请你写出完整的正确解答过程,并从﹣2,2,0中选一个作为x的值代入求值.【分析】(1)根据分式的性质,即可求解;(2)根据分式的运算法则:先乘方,再加减,最后乘除,有括号先算括号里面的计算即可;(3)取x=0,代入计算即可.【解析】解:(1)上面第二步计算中,中括号里的变形是通分,通分的依据是分式的基本性质,故答案为:通分;(2)第三步出现错误,原因是分子相减时未变号,原式=[﹣]×,=[﹣]×,=×,=×,=.故答案为:三.(3)当x=0时,上式==.【点睛】本题主要考查了分式的混合运算,熟练掌握分式的运算法则是解决本题的关键.18.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(﹣1,5),B(﹣4,3),C(﹣2,2).(1)△A1B1C1与△ABC关于原点O成中心对称,画出△A1B1C1,并写出点A1,B1,C1的坐标;(2)将△ABC绕原点O顺时针旋转90°得到△A2B2C2,画出△A2B2C2;(3)求(2)的旋转过程中点C经过的路径长.【分析】(1)利用中心对称的性质分别作出A,B,C的对应点A1,B1,C1,再顺次连接,写出点A1,B1,C1的坐标即可.(2)利用旋转变换的性质分别作出A,B,C的对应点A2,B2,C2,再顺次连接即可.(3)利用弧长公式求得点C经过的路径长.【解析】解:(1)如图1,△A1B1C1即为所求.A1(1,﹣5),B1(4,﹣3),C1(2,﹣2);(2)如图2,△A2B2C2即为所求;(3),点C经过的路径长为.【点睛】本题考查作图﹣平移变换,旋转变换,解题的关键是掌握平移变换,旋转变换的性质,属于中考常考题型.19.如图,在△ABC中,AB=AC,点D,E,F分别在AB,BC,AC边上,且BE=CF,BD=CE.(1)求证:∠BED=∠CFE;(2)当∠BAC=44°时,求∠DEF的度数.【分析】利用边角边定理证明△DBE≌△CEF,利用三角形内角和定理即可求出∠DEF的度数.【解析】(1)证明:∵AB=AC,∴∠ABC=∠ACB,在△DBE和△CEF中,,∴△DBE≌△CEF(SAS),∴∠BED=∠CFE;(2)解:由(1)知:△DBE≌△CEF,∴∠1=∠3,∵∠A+∠B+∠C=180°,∠B=∠C,∴∠B=(180°﹣44°)=68°,∴∠1+∠2=180°﹣68°=112°,∴∠3+∠2=112°,∴∠DEF=180°﹣112°=68°.【点睛】本题考查了全等三角形的判定和性质,证明三角形全等是解题的关键.20.跳绳是驿城区某校体育活动的特色项目.体育组为了了解八年级学生1分钟跳绳次数情况,随机抽取20名八年级学生进行1分钟跳绳测试(单位:次),数据如下:100110114114120122122131144148152155156165165165165174188190对这组数据进行整理和分析,结果如下:平均数众数中位数145a b请根据以上信息解答下列问题:(1)填空:a=165,b=150.(2)学校规定1分钟跳绳165次及以上为优秀,请你估计七年级500名学生中,约有多少名学生能达到优秀.(3)某同学1分钟跳绳152次,请推测该同学的1分钟跳绳次数是否超过年级一半的学生?说明理由.【分析】(1)根据众数和中位数的定义解答即可;(2)用总人数乘样本中1分钟跳绳165次及以上所占比例即可;(3)根据中位数的意义解答即可.【解析】解:(1)在被抽取20名八年级学生进行1分钟跳绳测试成绩中,165出现的次数最多,故众数a=165;把被抽取20名八年级学生进行1分钟跳绳测试成绩从小到大排列,排在中间的两个数分别是148,152,故中位数b==150.故答案为:165;150;(2)500×=175(名),答:估计八年级500名学生中,约有175名学生能达到优秀;(3)超过年级一半的学生,理由如下:∵152>150,∴推测该同学的1分钟跳绳次数超过年级一半的学生.【点睛】本题考查众数、中位数以及用样本估计总体等知识,解题的关键是熟练掌握基本概念.21.A、B两地相距120km,甲车从A地驶往B地,乙车从B地以80km/h的速度匀速驶往A地,乙车比甲车晚出发m h.设甲车行驶的时间为x(h),甲、乙两车离A地的距离分别为y1(km)、y2(km),图中线段OP表示y1与x的函数关系.(1)甲车的速度为60km/h;(2)若两车同时到达目的地,在图中画出y2与x的函数图象,并求甲车行驶几小时后与乙车相遇;(3)若甲、乙两车在距A地60km至72km之间的某处相遇,直接写出m的范围.【分析】(1)甲车的速度为120÷2=60(km/h);(2)求出乙车比甲车晚出发0.5h,即可画出图象,再求出y1=60x,y2=﹣80x+160,联立解析式解方程组即可得到答案;(3)求得y1=60x,y2=120﹣80(x﹣m)=﹣80x+120+80m,联立解方程组可得y1=y2=60(+m),根据甲、乙两车在距A地60km至72km之间的某处相遇,可列60<60(+m)<72,即可解得答案.【解析】解:(1)由图可得,甲车的速度为120÷2=60(km/h),故答案为:60;(2)∵乙车从B地以80km/h的速度匀速驶往A地,两车同时到达目的地,∴乙车行驶时间为120÷80=1.5(h),∵2﹣1.5=0.5(h),∴乙车比甲车晚出发0.5h,画出y2与x的函数图象如下:图象CD即为y2与x的函数图象,由题意得y1=60x,设CD的函数表达式为y2=﹣80x+b,将(2,0)代入y2=﹣80x+b,得b=160,∴y2=﹣80x+160,由﹣80x+160=60x,解得x=,∴甲车出发后h与乙车相遇,答:甲车出发后h与乙车相遇;(3)根据题意得y1=60x,y2=120﹣80(x﹣m)=﹣80x+120+80m,由60x=﹣80x+120+80m得:x=+m,当x=+m时,y1=y2=60(+m),∵甲、乙两车在距A地60km至72km之间的某处相遇,∴60<60(+m)<72,解得<m<,∴m的范围是<m<.【点睛】本题考查一次函数的应用,涉及待定系数法,解题的关键是数形结合数形的应用.22.某校八年级学生在数学课上进行了项目化学习研究,某小组研究如下:【提出驱动性问题】机场监控问题.【设计实践任务】选择“素材1”“素材2”,设计了“任务1”“任务2”“任务3”的实践活动.请你尝试帮助他们解决相关问题.机场监控问题的思考素材1如图是某机场监控屏显示两飞机的飞行图象,1号指挥机(看成点P)始终以3km/min的速度在离地面5km高的上空匀速向右飞行.素材22号试飞机(看成点Q)一直保持在1号机P的正下方从原点O处沿45°角爬升,到高4km 的A 处便立刻转为水平飞行,再过1min 到达B 处开始沿直线BC 降落,要求1min 后到达C(10,3)处.问题解决任务1求解析式和速度求出OA 段h 关于s 的函数解析式,直接写出2号机的爬升速度;任务2求解析式和坐标求出BC 段h 关于s 的函数解析式,并预计2号机着陆点的坐标;任务3计算时长通过计算说明两机距离PQ 不超过3km 的时长是多少.【分析】(1)设OA 段h 关于s 的函数解析式为正比例函数的一般形式,根据OA 与水平方向的夹角求出k 值,从而求出对应函数解析式;根据勾股定理,求出点O 与A 的距离,1号机与2号机在水平方向的速度相同,由速度=路程÷时间求出2号机的爬升速度即可;(2)先求出点B 的坐标,再利用待定系数法求出BC 段h 关于s 的函数解析式;当h =0时对应s 的值,从而求得2号机着陆点的坐标;(3)分别求出2号机在OA 段和BC 段PQ =3时对应的s 的值,根据图象,当s 处于这两者之间时PQ 不超过3km ,根据时间=路程÷速度求解即可.【解析】解:任务1:设OA 段h 关于s 的函数解析式为h =ks ,∴k ==tan45°=1,∴h =s ,∴当h =4时,s =4,∴OA 段h 关于s 的函数解析式为h =s (0≤s ≤4);2号机从O 点到达A 点飞行的路程为OA ==4(km ),所用时间为min ,∴2号机的爬升速度为4÷=3(km /min ).任务2:B 点的横坐标为4+1×3=7,∴B点的坐标为(7,4).设BC段h关于s的函数解析式为h=k1s+b(k1、b为常数,且k1≠0).将坐标B(7,4)和C(10,3)分别代入h=k1s+b,得,解得,∴BC段h关于s的函数解析式为h=﹣s+.当h=0时,0=﹣s+,解得s=19,∴预计2号机着陆点的坐标为(19,0).任务3:当2号机在OA段,且PQ=3时,5﹣s=3,解得s=2;当2号机在BC段,且PQ=3时,5﹣(﹣s+)=3,解得s=13,根据图象可知,当2≤s≤13时,两机距离PQ不超过3km,∴两机距离PQ不超过3km的时长是(13﹣2)÷3=(min).【点睛】本题考查一次函数的应用,理解题意并利用待定系数法求出函数关系式是解题的关键.23.【操作与发现】如图①,在正方形ABCD中,点N,M分别在边BC、CD上.连接AM、AN、MN.∠MAN=45°,将△AMD 绕点A顺时针旋转90°,点D与点B重合,得到△ABE.易证:△ANM≌△ANE,从而可得:DM+BN=MN.(1)【实践探究】在图①条件下,若CN=6,CM=8,则正方形ABCD的边长是12.(2)如图②,在正方形ABCD中,点M、N分别在边DC、BC上,连接AM、AN、MN,∠MAN=45°,若tan∠BAN=,求证:M是CD的中点.(3)【拓展】如图③,在矩形ABCD中,AB=12,AD=16,点M、N分别在边DC、BC上,连接AM、AN,已知∠MAN=45°,BN=4,则DM的长是8.【分析】(1)先证△AMN≌△EAN(SAS),得MN=EN.则MN=BN+DM.再由勾股定理得MN=10,则BN+DM=10,设正方形ABCD的边长为x,则BN=BC﹣CN=x﹣6,DM=CD﹣CM=x﹣8,得x﹣3+x ﹣4=5,求解即可;(2)设BN=m,DM=n,由(1)得MN=BN+DM=m+n,再由锐角三角函数定义得AB=3BN=3m,则CN=BC﹣BN=2m,CM=CD﹣DM=3m﹣n,然后在Rt△CMN中,由勾股定理得出方程,得3m=2n,即可解决问题;(3)延长AB至P,使BP=BN=4,过P作BC的平行线交DC的延长线于Q,延长AN交PQ于E,连接EM,则四边形APQD是正方形,得PQ=DQ=AP=AB+BP=16,设DM=a,则MQ=16﹣a,证△ABN∽△APE,得PE=BN=,则EQ=,然后在Rt△QEM中,由勾股定理得出方程,求解即可.【解析】(1)解:∵四边形ABCD是正方形,∴AB=CD=AD,∠BAD=∠C=∠D=90°,由旋转的性质得:△ABE≌△ADM,∴BE=DM,∠ABE=∠D=90°,AE=AM,∠BAE=∠DAM,∴∠BAE+∠BAM=∠DAM+∠BAM=∠BAD=90°,即∠EAM=90°,∵∠MAN=45°,∴∠EAN=90°﹣45°=45°,∴∠MAN=∠EAN,在△AMN和△AEN中,,∴△AMN≌△AEN(SAS),∴MN=EN,∵EN=BE+BN=DM+BN,∴MN=BN+DM,在Rt△CMN中,由勾股定理得:MN===10,则BN+DM=10,设正方形ABCD的边长为x,则BN=BC﹣CN=x﹣6,DM=CD﹣CM=x﹣8,∴x﹣6+x﹣8=10,解得:x=12,即正方形ABCD的边长是12;故答案为:12;(2)证明:设BN=m,DM=n,由(1)可知,MN=BN+DM=m+n,∵∠B=90°,tan∠BAN=,∴tan∠BAN==,∴AB=3BN=3m,∴CN=BC﹣BN=2m,CM=CD﹣DM=3m﹣n,在Rt△CMN中,由勾股定理得:(2m)2+(3m﹣n)2=(m+n)2,整理得:3m=2n,∴CM=2n﹣n=n,∴DM=CM,即M是CD的中点;(3)解:延长AB至P,使BP=BN=4,过P作BC的平行线交DC的延长线于Q,延长AN交PQ于E,连接EM,如图③所示:则四边形APQD是正方形,∴PQ=DQ=AP=AB+BP=12+4=16,设DM=a,则MQ=16﹣a,∵PQ∥BC,∴△ABN∽△APE,∴===,∴PE=BN=,∴EQ=PQ﹣PE=16﹣=,由(1)得:EM=PE+DM=+a,在Rt△QEM中,由勾股定理得:()2+(16﹣a)2=(+a)2,解得:a=8,即DM的长是8;故答案为:8.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、旋转的性质、勾股定理、锐角三角函数定义、相似三角形的判定与性质等知识;本题综合性强,熟练掌握正方形的性质和矩形的性质,证明三角形全等和三角形相似是解题的关键,属于中考常考题型.24.如图1,E点为x轴正半轴上一点,⊙E交x轴于A、B两点,交y轴于C、D两点,P点为劣弧上一个动点,且A(﹣1,0)、E(1,0).(1)的度数为120°;(2)如图2,连结PC,取PC中点G,连结OG,则OG的最大值为;(3)如图3,连接AC、AP、CP、CB.若CQ平分∠PCD交PA于Q点,求AQ的长;(4)如图4,连接PA、PD,当P点运动时(不与B、C两点重合),求证:为定值,并求出这个定值.【分析】(1)由已知条件可以得到CD垂直平分AE,所以CA=CE,由于CE=AE,所以可以证得三角形ACE为等边三角形,得到∠CEB=120°;(2)由于直径AB⊥CD,根据垂径定理,可以得到O是CD的中点,又G是CP的中点,连接PD,则OG∥PD,OG=,要求OG最大值,只需要求PD最大值,由于P是劣弧上的一动点,故当P,E,D三点共线,即PD为直径时,PD最大,此时OG最大;(3)由于直径AB⊥CD,根据垂径定理,可以得到,所以∠ACD=∠CPA,又CQ平分∠DCP,所以∠PCQ=∠DCQ,可以证明∠ACQ=∠AQC,所以AC=AQ,由(1)可得,AC=AE=2,所以AQ =2;(4)由直径AB⊥CD,可以得到AB垂直平分CD,所以AC=AD,∠CAD=2∠CAE=120°,将△ACP 绕A点顺时针旋转120°至△ADM,可以证明M,D,P三点共线,所以PC+PD=PM,可以证明△PAM 是顶角为120°的等腰三角形,过A做AG⊥PM于G,由于∠APM=30°,可以通过勾股定理或者三角函数证明PM=PA,所以=.【解析】解:(1)连接AC,CE,∵A(﹣1,0)、E(1,0),∴OA=OE=1,∵OC⊥AE,∴AC=CE,∵AE=CE,∴AC=CE=AE,∴∠CAE=60°,∴∠BEC=2∠CAB=120°,∴的度数为120°,故答案为:120;(2)由题可得,AB为⊙E直径,且AB⊥CD,由垂径定理可得,CO=OD,连接PD,如图2,又∵G为PC的中点,∴OG∥PD,且OG=,当D,E,P三点共线时,此时DP取得最大值,且DP=AB=2AE=4,∴OG的最大值为2,故答案为:2;(3)连接AC,BC,∵直径AB⊥CD,∴,∴∠ACD=∠CPA,∵CQ平分∠DCP,∴∠DCQ=∠PCQ,∴∠ACD+∠DCQ=∠CPA+∠PCQ,∴∠ACQ=∠AQC,∴AQ=AC,∵∠CAO=60°,AO=1,∴AC=2,∴AQ=2;(4)由题可得,直径AB⊥CD,∴AB垂直平分CD,如图4,连接AC,AD,则AC=AD,由(1)得,∠DAC=120°,将△ACP绕A点顺时针旋转120°至△ADM,∴△ACP≌△ADM,∴∠ACP=∠ADM,PC=DM,∵四边形ACPD为圆内接四边形,∴∠ACP+∠ADP=180°,∴∠ADM+∠ADP=180°,∴M、D、P三点共线,∴PD+PC=PD+DM=PM,过A作AG⊥PM于G,则PM=2PG,⋅∠APM=∠ACD=30°,在Rt△APG中,∠APM=30°,设AG=x,则AP=2x,∴,∴∴,∴∴为定值.【点睛】本题是一道圆的综合题,重点考查了垂径定理在圆中的应用,最后一问由“共顶点,等线段”联想到旋转,是此题的突破口,同时,要注意顶角为120度的等腰三角形腰和底边比是固定值.。

数学初三模拟试卷及答案

数学初三模拟试卷及答案

一、选择题(每题4分,共40分)1. 下列数中,有理数是()A. √2B. πC. -3D. 0.1010010001…2. 下列运算中,正确的是()A. (-2)×(-3) = 6B. (-2)×3 = -6C. (-2)÷(-3) = -6D. (-2)÷3 = -63. 下列函数中,单调递增的是()A. y = x^2B. y = -x^2C. y = x^3D. y = -x^34. 已知等差数列的前三项分别为2,5,8,则该数列的公差是()A. 1B. 2C. 3D. 45. 下列不等式中,正确的是()A. 2x + 3 > 7B. 2x + 3 < 7C. 2x - 3 > 7D. 2x - 3 < 76. 已知一次函数y = kx + b的图象过点(2,3),且与y轴交于点(0,-1),则该函数的解析式为()A. y = 2x - 1B. y = -2x + 1C. y = 2x + 1D. y = -2x - 17. 已知正方形的边长为a,则对角线的长度为()A. √2aB. √3aC. 2aD. 3a8. 已知三角形的三边长分别为3,4,5,则该三角形是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 梯形9. 下列图形中,中心对称图形是()A. 正方形B. 等腰三角形C. 等边三角形D. 梯形10. 已知等比数列的前三项分别为2,4,8,则该数列的公比为()A. 2B. 3C. 4D. 6二、填空题(每题4分,共20分)11. 计算:-3 - (-2) + 1 = _______12. 若x = -3,则2x^2 - 5x + 3 = _______13. 已知函数y = 3x - 2,当x = 2时,y的值为 _______14. 已知等差数列的前三项分别为-1,2,5,则该数列的公差为 _______15. 已知一次函数y = kx + b的图象过点(1,2),且与x轴交于点(-2,0),则该函数的解析式为 _______三、解答题(每题10分,共30分)16. 已知函数y = 2x - 3,求以下问题:(1)当x = 4时,y的值为多少?(2)若y = 1,求x的值。

2024年中考数学考前押题密卷+全解全析(湖北卷)

2024年中考数学考前押题密卷+全解全析(湖北卷)

2024年中考数学考前押题密卷(湖北卷)全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.实数a 在数轴上的位置如图所示,则下列计算结果为正数的是( )A .2aB .1aC .1a −D .2a +【答案】D【分析】本题考查了数轴,以及有理数四则运算法则.用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.由数轴得出21a −<<−且12a <<,再根据有理数的加减运算法则逐一判断即可得. 【详解】解:由数轴知21a −<<−且12a <<, 则20a <是负数,1a是负数,1a −是负数,2a +是正数, 故选:D .2.下面四幅图分别是“故宫博物馆”“广东博物馆”、“四川博物馆”、“温州博物馆”的标志,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】D【分析】本题考查了轴对称图形、中心对称图形的识别.熟练掌握:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形是轴对称图形;如果把一个图形绕某一点旋转180︒后能与自身重合,这个图形是中心对称图形是解题的关键.根据轴对称图形、中心对称图形的定义进行判断即可.【详解】解:A 中是轴对称图形,不是中心对称图形,故不符合要求; B 中既不是轴对称图形,也不是中心对称图形,故不符合要求;C 中是轴对称图形,不是中心对称图形,故不符合要求;D 中既是轴对称图形,又是中心对称图形,故符合要求; 故选:D .3.下列式子中,2x =是它的解的是( ) A .112x = B .2210x x −+= C .0x <D .13x x >⎧⎨>⎩【答案】A【分析】根据方程的解和不等式的解集的定义解答即可. 【详解】解:A 、将2x =代入原方程,左边1==右边, A ∴选项符合题意;B 、∵将2x =代入原方程,左边4411=−+=≠右边, ∴B 选项不符合题意;C 、2x =不是不等式0x <的解,C ∴选项不符合题意;D 、2x =不是不等式组13x x >⎧⎨>⎩的解, D ∴选项不符合题意.综上所述,A 选项符合题意. 故选:A .【点睛】本题主要考查了方程的解和不等式的解集,正确掌握方程的解和不等式的解集的定义是解题的关键.4.下列式子中,不能用平方差公式运算的是( ) A .()()22a a −−− B .()()3223x y y x +− C .()()4242m n m n −+ D .()()33x x −−【答案】D【分析】本题考查了平方差公式的应用,根据两数之和与两数之差的乘积即为能够运用平方差公式,进行逐一分析,即可作答.【详解】解:A 、()()()()()222224a a a a a −−−=−−+=−−,故能用平方差公式运算,该选项是不符合题意的;B 、()()()()223223232349x y y x y x y x y x +−=+−=−,故能用平方差公式运算,该选项是不符合题意的;C 、()()224242164m n m n m n −+=−,故能用平方差公式运算,该选项是不符合题意的;D 、()()()()()233333x x x x x −−=−−−=−−,运用完全平方公式,不能运用平方差公式运算,该选项是符合题意的; 故选:D5.下列调查中,适合采用抽样调查的是( ) A .调查本班同学的数学小测成绩 B .调查一批学生饮用奶的微量元素的含量C .为保证载人航天器成功发射,对其零部件进行检查D .对乘坐某班次飞机的乘客进行安检 【答案】B【分析】此题考查了全面调查和抽样调查,直接根据全面调查和抽样调查的意义分别分析即可得出答案,掌握抽样调查的意义是解题的关键.【详解】解:A 、调查本班同学的数学小测成绩,适合全面调查,该选项不符合题意; B 、调查一批学生饮用奶的微量元素的含量,适合抽样调查,该选项符合题意;CD 、对乘坐某班次飞机的乘客进行安检,必须全面调查,该选项不符合题意;故选:B .6.下图是描述某校足球队员年龄的条形图,则这个足球队员年龄的中位数和众数分别是( )A .14,14B .14.5,14C .15,15D .14.5,15【答案】D【分析】本题考查中位数、众数,根据中位数、众数的定义进行计算即可求解. 【详解】解:由条形统计图可知,有20名足球队员,这20名足球队员年龄出现次数最多的是15岁,共出现8次,因此众数是15岁; 将这20名足球队员的年龄从小到大排列,处在中间位置的2个数是14岁和15岁, 因此中位数141514.52+==岁 故选:D .7.将一副直角三角板作如图所示摆放,60,45,GEF MNP AB CD ∠=︒︒∠=∥,则下列结论不正确的是( )A .GE MP ∥B .75BEF ∠=︒C .145EFN ∠=︒D .AEG PMN ∠=∠【答案】C【分析】本题主要考查了平行线的性质,三角板中角度的计算,根据90G MPN MPG ∠=∠=∠=︒,即可判断A 选项;由30EFG ∠=︒,得到18030150EFN ∠=︒−︒=︒即可判断C 选项;过点F 作FH AB ∥,根据平行线的性质求出45HFN MNP ∠=∠=︒,然后根据平角,即可判断B 选项;由180AEG GEF BEF ∠=︒−∠−∠即可判断D 选项.【详解】解:90G MPN ∠=∠=∠︒,GE MP ∴∥,故A 选项不符合题意;30EFG ∠=︒,18030150EFN ∴∠=︒−︒=︒,故C 选项符合题意;过点F 作FH AB ∥,如图,∥AB CD ,FH CD ∴∥,45HFN MNP ∴∠=∠=︒, 15045105EFH ∴∠=︒−︒=︒,FH AB ∥,18010575BEF ∴∠=︒−︒=︒;故B 选项不符合题意;60,75GEF BEF ∠=∠=︒︒,180607545AEG ∴∠=︒−︒−︒=︒,45AEG PMN ∴∠=∠=︒,故D 选项不符合题意.故选:C .8.如图,在矩形ABCD 中,连接AC ,分别以点A 和C 为圆心,大于12AC 的长为半径作弧,两弧相交于点M 和N ,作直线MN 交CD 于点E ,交AB 于点F .若45CD CA =,10AC =,则线段BF 的长为( )A .54B .74C .34D .3【答案】B【分析】本题考查了作图−本作图得到152AO CO AC ===,EF AC ⊥,由于CD AB ∥,则BAC ACD ∠=∠,所以4cos cos 5BAC ACD ∠=∠=,根据余弦的定义,在Rt ABC △中求出AB ,在Rt AOF 中求出AF ,然后计算AB AF −即可,熟练掌握5种基本作图是解决问题的关键.【详解】解:由作法得EF 垂直平分AC ,设垂足为O 点,如图,152AO CO AC ∴===,EF AC ⊥, 90AOF ∴∠=︒,四边形ABCD 为矩形,//CD AB ∴, BAC ACD ∴∠=∠,45CD CA =, 4cos cos 5BAC ACD ∴∠=∠=, 在Rt ABC △中,4cos 5AB BAC AC ∠==, 4410855AB AC ∴==⨯=, 在Rt AOF 中,4cos 5OA FAO AF ∠==, 52544AF OA ∴==, 257844BF AB AF ∴=−=−=. 故选:B .9.如图,ABC 内接于O ,8AC BC ==,AD 是O 的直径,连结BD ,AE 平分BAC ∠交BD 于E ,若2DE =,则O 的半径为( )A .92B .133C .174D .5【答案】B【分析】过点C 作CK 垂直于点AB ,交AE 于点G ,交O 于点H ,连接AH ,易得CH 为O 的直径,根据圆周角定理,推出AOG ADE △∽△,求出OG 的长,圆周角定理结合角平分线的性质,推出AH GH =,设半径为r ,在Rt CAH △中,利用勾股定理,列出方程进行求解即可.【详解】解:过点C 作CK 垂直于点AB ,交AE 于点G ,交O 于点H ,连接AH ,∵AC BC =,∴CK 为线段AB 的中垂线,ACH BCH ∠=∠, ∵ABC 内接于O ,∴,,C O K 三点共线,ACH BCH BAH ∠=∠=∠, ∴CH 为O 的直径, ∴90CAH ∠=︒, ∵AE 平分BAC ∠, ∴CAE EAB ∠=∠,∴CAE ACH BAH EAB ∠+∠=∠+∠, 即:AGH HAG ∠=∠, ∴AH HG =, ∵AD 是O 的直径, ∴AB DB ⊥,2AD OA =, ∴CH BD ∥, ∴AOG ADE △∽△, ∴12OG AO DE AD ==, ∴112OG DE ==, 设半径为r ,则:2,CH r OH r ==, ∴1AH HG OH OG r ==−=−, 在Rt CAH △中,222CH AC AH =+,∴()222481r r =−−,解得:5r =−(舍去)或133r =; ∴O 的半径为133; 故选B .【点睛】本题考查圆周角定理,三角形的外接圆,等腰三角形的判定和性质,相似三角形的判定和性质,勾股定理等知识点,综合性强,难度较大,属于选择题中的压轴题,解题的关键是添加辅助线,构造特殊三角形和相似三角形.10.定义:函数图象上到两坐标轴的距离都不大于n (0n ≥)的点叫做这个函数图象的“n 阶方点”.例如,点()13,与点122⎛⎫ ⎪⎝⎭,都是函数=21+y x 图象的“3阶方点”.若y 关于x 的二次函数22()6y x n n =−+−的图象存在“n 阶方点”,则n 的取值范围是( )A .615n ≤≤ B .625n ≤≤ C .23n ≤≤ D .13n ≤≤【答案】D【分析】本题主要考查了二函数与几何综合,由二次函数解析式可知其顶点坐标在直线x n =上移动,当二次函数图象过点()n n −,-和点()n n ,时为临界情况,求出此时n 的值,进而可得n 的取值范围.【详解】解:由题意得:二次函数22()6y x n n =−+−的图象上的顶点坐标为:()26n n −,,∵y 关于x 的二次函数22()6y x n n =−+−的图象存在“n 阶方点”,∴二次函数22()6y x n n =−+−的图象与以坐标为()()()(),,,,n n n n n n n n −−−−,,,的正方形有交点, 当二次函数22()6y x n n =−+−恰好经过()n n −,-时,则2560n n +−=,解得:1n =或65n =−(舍去);如当二次函数22()6y x n n =−+−恰好经过()n n ,时,则260n n −−=,解得3n =或2n =−(舍去);∴当13n ≤≤时,二次函数22()6y x n n =−+−的图象存在“n 阶方点”,故选D .第Ⅱ卷二、填空题(本大题共5个小题,每小题3分,共15分)11.古人常说的“一刹那”大约是0.000005小时,这个数据用科学记数法表示是 小时. 【答案】6510−⨯【分析】本题考查了用科学记数法表示绝对值小于1的数.熟练掌握绝对值小于1的数,用科学记数法表示为10n a −⨯,其中110a ≤<,n 的值为第一个不为0的数的前面0的个数是解题的关键. 根据用科学记数法表示绝对值小于1的数,进行作答即可. 【详解】解:由题意知,60.000005510−⨯=,故答案为:6510−⨯.12.已知点()()1122,,,x y x y 都在函数3y x b =−+(b 为常数)的图象上,若21x x >,则2y 1y (用“>”或“<”填空). 【答案】<【分析】本题考查了一次函数值的大小比较,根据一次函数的增减性进行比较即可. 【详解】解:函数3y x b =−+中,30k =−<,y ∴随x 的增大而减小,21x x >,21y y ∴<, 故答案为:<.13.如图所示,电路连接完好,且各元件工作正常,随机闭合开关S S ₁,₂,3S 中的两个,能让两个小灯泡同时发光的概率是 .【答案】13【分析】本题考查了根据题意列表或画树状图求概率,正确列表或画出树状图是解题关键.根据题意画出树状图,得到共有6种等可能性,其中能让两个小灯泡同时发光有2种可能性,根据概率公式求解即可. 【详解】解:画树状图得由树状图得共有6种等可能性,其中能让两个小灯泡同时发光应同时闭合1S ,3S ,故有2种可能性,所以概率为2163=.故答案为:1314.“洛书”是世界上最古老的一个三阶幻方,它有3行3列,三横行的三个数之和,三竖列的三个数之和,两对角线的三个数之和都相等,其实幻方就是把一些有规律的数填在正方形图内,使每一行、每一列和每一条对角线上各个数之和都相等,如图幻方a b +的值是 .【答案】21【分析】本题考查二元一次方程组的应用.根据题意可得11121511121117a a ba b ++=++⎧⎨++=++⎩解出,a b 即可.【详解】解:根据题意可得:11121511121117a a b a b ++=++⎧⎨++=++⎩,解得138a b =⎧⎨=⎩ 13821∴+=+=a b .故答案为:21.15.如图,在边长为6的正方形ABCD 中,E 是CD 边上一点,连接BE ,在BE 上取一点F ,使2BAF CBE ∠=∠,过点F 作FG BE ⊥交CD 于点G ,若2EG =,60BAF ∠≠︒时,则DE = .1【分析】在BC 上取点K ,使BK CE =,连接AK 交BE 于H ,证明()SAS ABK BCE ≌,得BAK CBE ∠=∠,BK CE =,AK BE =,又2BAF CBE ∠=∠,可知BAH FAH ∠=∠,从而证明()SAS ABH AFH ≌,BH FH =,由GEF ABH ∽,得2163EF EG BH AB ===,设EF x =,则3BH x FH ==,7BE x AK ==,可得CE =Δ2ABK S AB BK AK BH =⋅=⋅,得73x x ⋅,可解得7CE =61DE CE =−=.【详解】解:在BC 上取点K ,使BK CE =,连接AK 交BE 于H ,如图:四边形ABCD 是正方形,AB BC ∴=,90ABKBCE ∠=∠=︒,BK CE =,()SAS ABK BCE ∴≌,BAK CBE ∴∠=∠,BK CE =,AK BE =, 2BAF CBE ∠=∠,2BAF BAK ∴∠=∠, BAH FAH ∴∠=∠,90BAK AKB ∠+∠=︒, 90CBE AKB ∴∠+∠=︒, 90AHB AHF ∴∠=︒=∠,AH AH =,()SAS ABH AFH ∴≌,BH FH ∴=,ABH CEF ∠=∠,90AHB GFE ∠=∠=︒, GEF ABH ∴∽,∴2163EF EG BH AB ===, 3BH EF ∴=,设EF x =,则3BH x FH ==,7BE x AK ∴==,CE ∴==BK ∴Δ2ABK S AB BK AK BH =⋅=⋅,73x x ∴=⋅, 42491961440x x ∴−+=,设249x y =,则214144049y y −+=,解得98y =±7CE ∴=== 6CE <,7CE ∴=61DE CE ∴=−=.1.【点睛】本题考查正方形性质,三角形相似的判定与性质,三角形全等的判定与性质,勾股定理.证明三角形全等与相似是解题的关键.三、解答题(本大题共9个小题,共75分.解答应写出文字说明,证明过程或演算步骤) 16.(1112cos301tan602−⎛⎫︒−−−︒ ⎪⎝⎭(2)解不等式组()3241213x x x x ⎧−−≥⎪⎨+>−⎪⎩.【答案】(1)1;(2)1x ≤【分析】本题主要考查了求特殊角三角函数值,实数的混合计算,负整数指数幂,解一元一次不等式组: (1)先计算特殊角三角函数值负整数指数幂,再根据实数的运算法则求解即可.(2)先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:(1112cos301tan602−⎛⎫︒−−−︒ ⎪⎝⎭2221=+−)221=−221=1=;(2)()3241213x x xx ⎧−−≥⎪⎨+>−⎪⎩①② 解不等式①得:1x ≤, 解不等式②得:4x <, ∴不等式组的解集为1x ≤.17.如图,在正方形ABCD 中,点E 在BC 上,延长CD 到F ,使DF BE =,连接AF 、EF 、AE ,若3AE =,求EF 的长.【答案】EF的长是【分析】本题考查正方形的性质、勾股定理、全等三角形的判定与性质.根据正方形的性质和全等三角形的性质,可以得到AF 和AE 的长,FAE ∠的度数,然后根据勾股定理即可得到EF 的长. 【详解】解:四边形ABCD 是正方形,AD AB ∴=,ADF ABE =∠∠,在ADF △和ABE 中,AD ABADF ABE DF BE =⎧⎪∠=∠⎨⎪=⎩,()SAS ADF ABE ∴≌,3AF AE ∴==,∠=∠DAF BAE ,90BAE EAD ∠+∠=︒, 90DAF EAD ∴∠+∠=︒,90FAE ∴∠=︒,EF ∴即EF的长是18.随着“双减”政策的逐步落实,其中增加中学生体育锻炼时间的政策引发社会的广泛关注,体育用品需求增加,某商店决定购进AB 、两种羽毛球拍进行销售,已知每副A 种球拍的进价比每副B 种球拍贵20元,用2800元购进A 种球拍的数量与用2000元购进B 种球拍的数量相同. (1)求A B 、两种羽毛球拍每副的进价;(2)若该商店决定购进这两种羽毛球拍共100副,考虑市场需求和资金周转,用于购买这100副羽毛球拍的资金不超过5900元,若销售A 种羽毛球拍每副可获利润25元,B 种羽毛球拍每副可获利润20元,如何进货获利最大?最大利润是多少元?【答案】(1)A 种羽毛球拍每副的进价为70元,B 种羽毛球拍每副的进价为50元 (2)购进A 种羽毛球拍45副,B 种羽毛球拍55副时,总获利最大,最大利润为2225元 【分析】本题考查了分式方程的应用,一元一次不等式的应用,一次函数的应用:(1)设A 种羽毛球拍每副的进价为x 元,根据用2800元购进A 种球拍的数量与用2000元购进B 种球拍的数量相同,列分式方程,求解即可;(2)设该商店购进A 种羽毛球拍m 副,设总利润为w 元,根据购买这100副羽毛球拍的资金不超过5900元,列一元一次不等式,求出m 的范围;再表示出w 与m 的函数关系式,根据一次函数的性质即可确定如何进货总利润最大,并进一步求出最大利润即可.【详解】(1)解:设A 种羽毛球拍每副的进价为x 元,则B 种羽毛球拍每副的进价为()20x −元 根据题意,得:2800200020x x =−, 解得:70x =,经检验70x =是原方程的解,702050−=(元),答:A 种羽毛球拍每副的进价为70元,B 种羽毛球拍每副的进价为50元; (2)解:设该商店购进A 种羽毛球拍m 副,总利润为w 元, 根据题意,得()70501005900m m +−≤, 解得45m ≤,且m 为正整数,()252010052000w m m m =+−=+,∵50>,∴w 随着m 的增大而增大,当45m =时,w 取得最大值,最大利润为54520002225⨯+=(元), 此时购进A 种羽毛球拍45副,B 种羽毛球拍1004555−=(副),答:购进A 种羽毛球拍45副,B 种羽毛球拍55副时,总获利最大,最大利润为2225元.19.“华罗庚数学奖”是中国三大顶尖数学奖项之一,为激励中国数学家在发展中国数学事业中做出突出贡献而设立,小华对截止到2023年第十六届“华罗庚数学奖”得主获奖时的年龄(单位:岁)数据进行了收集、整理和分析,下面是部分信息.a .“华罗庚数学奖”得主获奖时的年龄统计图(数据分成5组:5060,6070,7080,8090,90100x x x x x ≤<≤<≤<≤<≤<)b .“华罗庚数学奖”得主获奖时的年龄在6070x ≤<这一组的是:63 65 65 65 65 66 67 68 68 68 69 69 69 69,根据以上信息,回答下列问题: (1)补全“华罗庚数学奖”得主获奖年龄频数分布直方图;(2)直接写出“华罗庚数学奖”得主获奖时的年龄数据中位数;若以各组的组中值代表各组的实际数据,求出“华罗庚数学奖”得主获奖时年龄数据的平均数(结果保留整数);(3)小华准备从“华罗庚数学奖”得主获奖时的年龄在8090x ≤<和90100x ≤<这两组中任意选取两人了解他们的数学故事,求选取的两人年龄正好在同一组的概率. 【答案】(1)见解析(2)69,71(3)25【分析】本题考查统计图,求中位数,平均数,树状图法求概率:(1)用年龄在8090x ≤<这一组的人数除以所占的比例求出总数,进而求出7080x ≤<的人数,补全直方图即可;(2)根据中位数的定义,平均数的计算公式进行计算即可;(3)用,,A B C 表示8090x ≤<的三人,用,D E 表示90100x ≤<中的两人,画出树状图,利用概率公式进行计算即可.【详解】(1)解:310%30÷=,∴7080x ≤<的人数为30314328−−−−=, 补全直方图如图:(2)将数据排序后,第15个和第16个数据均为:69, ∴中位数为69; 平均数为:55365147588539527130⨯+⨯+⨯+⨯+⨯≈;(3)用,,A B C 表示8090x ≤<的三人,用,D E 表示90100x ≤<中的两人, 画出树状图如图:共有20种等可能的结果,其中两人是同一组的结果有8种, ∴82205P ==. 20.如图,直线y x b =+与反比例函数()0ky k x=>的图像交于()3,2A k −(1)求k ,b 的值;(2)根据函数图像,求当kx b x+>时,x 的取值范围. 【答案】(1)3k =,2b =−(2)10x −<<或3x > 【分析】本题考查一次函数与反比例函数的交点问题,(1)将点()3,2A k −代入反比例函数求出k ,将()3,1A 代入直线解析式求出b 值即可;(2)根据图像直接写出不等式的解集即可;理解和掌握两个函数图像的交点的坐标满足两个函数解析式是解题的关键. 【详解】(1)解:∵点()3,2A k −在反比例函数()0ky k x=>的图像上, ∴()32k k =−, 解得:3k =, ∴()3,1A ,∵点()3,1A 在直线y x b =+上, ∴13b =+, 解得:2b =−;(2)∵直线2y x =−与反比例函数3y x=的图像交于点A ,B , ∴32−=x x,解得:=1x −或3x =, ∴()1,3B −−,根据图像可知:当kx b x+>时,x 的取值范围为:10x −<<或3x >. 21.如图,ABC 中,10AB BC ==,以AB 为直径的O 交AC 于点D ,过点D 分别作DE AB ⊥于点E ,DF BC ⊥于点F ,延长DE 交O 于点G ,延长CF 分别交DG 于点H ,交O 于点M .(1)求证:DF 是O 的切线; (2)若1tan 2A =,求GH ,HM 的长. 【答案】(1)见解析(2)43GH =,83HM = 【分析】本题考查了圆与三角形的综合问题,证明某直线是圆的切线,根据正切值求线段长度:(1)连接OD ,根据题意得到角度之间的关系,根据等边对等角可得到90CDF ADO ∠+∠=︒,即可得到结果;(2)连接,BD AM ,先根据正切值以及勾股定理得到边长,然后根据三角形全等以及三角形的面积可得到关系式,解得边长,即可求得结果; 熟练运用知识点是解题的关键.【详解】(1)证明:连接OD ,如图所示:,∵DF BC ⊥于点F , ∴90DFC ∠=︒,则DFC △中90CDF C ∠+∠=︒, ∵在O 中OA OD =, ∴ADO A ∠=∠, ∴90CDF ADO ∠+∠=︒, ∴90ODF ∠=︒, ∴OD DF ⊥, ∴DF 是O 的切线;(2)解:连接,BD AM ,如图所示:,∵AB 为O 的直径, ∴90ADB ∠=︒, ∵1tan 2A =, 则在t R ABD 中12BD AD =, 设BD m =,则2AD m =, 则在t R ABD 中()222210m m +=,∴m =BD =AD =, ∵DE AB ⊥于点E ,∴4DE ==,则4EG =, ∵在ABC 中,AB CB =,BD ⊥, ∴等腰三角形中三线合一,即=DBF DBE ∠∠, 又∵DE AB ⊥于点E ,DF BC ⊥于点F ,在DBE DBF △和△中,90DEB DFB DBF DBE DB DB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴()AAS DBE DBF ≌, ∴4DF DE ==,则2BE ===,设EH x =,BH y =, ∵1122BDH S BH DF DH BE =⋅=⋅△, ∴()424y x =+,即24y x =+,又∵t R BEH 中224x y +=,∴83103x y ⎧=⎪⎪⎨⎪=⎪⎩或02x y =⎧⎨=⎩(舍去),则83EH =,103BH =, ∴84433GH EG EH =−=−=,∵在AMC 和BDC 中,M CDB ∠=∠,C C ∠=∠, ∴AMC BDC △∽△, ∴CM AC CD BC == ∴16CM =,∴108161033HM CM CB BH =−−=−−=. 22.高速隧道是为了更好地适应地形、保护环境、节省土地和提高通行效率等方面的需要,除此之外高速隧道还有重要的战略意义.如图所示,某高速隧道的下部近似为矩形OABC ,上部近似为一条抛物线.已知10OA =米,1AB =米,高速隧道的最高点P (抛物线的顶点)离地面OA 的距离为10米.(1)建立如图所示的平面直角坐标系,求抛物线的解析式;(2)若在高速隧道入口的上部安装两个车道指示灯E ,F ,若平行线段EF 与BC 之间的距离为8米,则点E 与隧道左壁OC 之间的距离为多少米? 【答案】(1)29181255y x x =−++(2)点E 与隧道左壁OC 之间的距离为103米. 【分析】本题主要考查了运用待定系数法求抛物线解析式,矩形的性质、坐标与图形等知识点等知识,掌握待定系数法和表示出点E 的解析式是解题的关键.(1)先根据坐标系确定点C P B ,,的坐标,然后用待定系数法即可解答;(2)先根据题意确定点E 的纵坐标,然后代入解析式求得点E 的横坐标即可解答.【详解】(1)解:由题意可得:()()()0,15,1010,1C P B ,,, 设抛物线的解析式为:2y ax bx c =++, 则有:110255110010c a b c a b c=⎧⎪=++⎨⎪=++⎩,解得:9251851a b c ⎧=−⎪⎪⎪=⎨⎪=⎪⎪⎩,∴29181255y x x =−++. (2)解:∵平行线段EF 与BC 之间的距离为8米,矩形OABC 且1AB =, ∴点E 到x 轴的距离为9且在第一象限, ∴点E 的纵坐标为9, ∴291891255x x =−++,解得:103x =或4053x =>(舍去). ∴点E 与隧道左壁OC 之间的距离为103米. 23.如图,矩形ABCD 中,AD AB >,点P 是对角线AC 上的一个动点(不包含A 、C 两点),过点P 作EF AC ⊥分别交射线AB 、射线AD 于点E 、F .(1)求证:AEF BCA △∽△;(2)连接BP ,若BP AB =,且F 为AD 中点,求APPC的值; (3)若2=AD AB ,移动点P ,使ABP 与CPD △相似,直接写出AFAB的值. 【答案】(1)答案见解析(2)2354【分析】(1)矩形的性质,得到90ABC FAE ∠=∠=︒,同角的余角相等,得到AEF ACB ∠=∠,即可得证; (2)根据等边对等角,等角的余角相等,得到E BPE ∠=∠,得到AB BP BE ==,设BC 交FE 于点G ,证明AFE BGE ∽,得到12BG AF =,证明AFP CGP ∽,列出比例式求解即可;(3)分ABP CDP ∽△△,ABP CPD ∽两种情况进行讨论求解. 【详解】(1)证明: 四边形ABCD 是矩形,EF AC ⊥,90ABC FAE ∴∠=∠=︒,90APE ∠=︒, 90AEF EAC ∴∠+∠=︒,90BCA EAC ∠+∠=︒, AEF BCA ∴∠=∠, AEF BCA ∴∽;(2)BP AB =,BAP BPA ∴∠=∠,90BAP E BPA BPE ∠+∠=︒−∠+∠,E BPE ∴∠=∠,12AB BP BE AE ∴===, 设BC 交FE 于点G ,四边形ABCD 是矩形,AD BC ∴∥,AD BC =, AFE BGE ∴∽,12BG BE AF AE ∴==, 12BG AF ∴=, 1122AF AD BC ∴==, 34CG BC BG AD ∴=−=, AD BC ∥,AFP CGP ∴∽,122334ADAP AF PC GC AD ∴===;(354.理由如下:四边形ABCD 是矩形,AD BC ∴∥,AD BC =,AB CD =,①当ABP CDP ∽△△时,1AP ABCP DC==, ∴P 是AC 的中点,AD BC ∥,ACB FAP ∴∠=∠, tan tan ACB FAP ∴∠=∠,即12PF AB AB AP BC AD ===, 设PF a =,则2AP a =,AF ∴,4AC a =,AC AB ==, AB ∴=,54AF AB ==;②当ABP CPD ∽时,AP ABCD CP=, AP CP AB CD ∴⋅=⋅,设AB CD x ==,AP t =,则2AD BC x ==,AC =,CP t ∴=−,2)t t x ∴−=,解得x =,AB ∴=, 由①知12PF AB AB AP BC AD ===, 1122PF AP t ∴==,AF ∴=,AFAB∴==AF AB ∴=54. 【点睛】本题考查矩形的性质,相似三角形的判定和性质,解直角三角形,勾股定理.熟练掌握矩形的性质及相似三角形的判定和性质,是解题的关键.24.已知:在平面直角坐标系中,点O 为坐标原点,直线=-3y x +与x 轴交于点B ,与y 轴交于点C ,抛物线2y x bx c =−++经过B 、C 两点,与x 轴的另一交点为点A .(1)如图1,求抛物线的解析式;(2)如图2,点D 为直线BC 上方抛物线上一动点,连接AC CD 、,设直线BC 交线段AD 于点E ,CDE 的面积为1S ACE ,的面积为2S ,当12S S 最大值时,求点D 的坐标; (3)如图3,在(2)的条件下,连接CD BD 、,将BCD △沿BC 翻折,得到BCF △(点D 和点F 为对应点),直线BF 交y 轴于点P ,点S 为BC 中点,连接PS ,过点S 作SP 的垂线交x 轴于点R ,在对称轴TH 上有一点Q ,使得PQB △是以PB 为直角边的直角三角形,求直线RQ 的解析式. 【答案】(1)223y x x =−++(2)D (32,154)(3)直线RQ 的解析式为254544y x =−或37333840y x =−+ 【分析】本题考查二次函数的图象和性质,相似三角形的判定和性质,掌握二次函数图象上的点的坐标特征,相似三角形的性质是关键; (1)利用待定系数法解答即可;(2)过点A 作x 轴的垂线交BC 的延长线于点M ,过点D 作y 轴平行线交BC 于点N ,利用相似三角形的判定与性质得到DE DNAE AM=,利用等高的三角形的面积比等于底的比的性质得到12S DE DN S AE AM ==,设()223D t t t −++,,则()3N t t −+,,进而求得线段DN ,求出线段4MA =,再利用配方法解答即可;(3)利用分类讨论的方法分两种情形讨论解答:①当90FBQ ∠︒=时,利用待定系数法求得直线PS BF SR PQ ,,,的解析式,进而求得点R ,Q 的坐标,再利用待定系数法解答即可;②当90BPQ ∠=︒时,利用①中的方法解答即可.【详解】(1)解:令0x =,则3y =,∴()03C ,, 令0y =,则=3x ,∴()30B ,, 把()30B ,和()03C ,代入抛物线解析式中得:3930c b c =⎧⎨−++=⎩,解得:23b c =⎧⎨=⎩,∴抛物线的解析式为223y x x =−++;(2)过点A 作x 轴的垂线交BC 的延长线于点M ,过点D 作y 轴平行线交BC 于点N ,如图,∵DN MA ∥,∴AME DNE MAE NDE ∠∠∠∠==,, ∴DEN AEM ∽, ∴DE DNAE AM=, ∵CDE 中DE 边上的高与ACE △中AE 边上的高相同,∴12S DE DNS AE AM==,设()223D t t t −++,,则()3N t t −+,, ∴()()22-23--3=-3DN t t t t t =++++,把=1x −代入3y x =−+中,得:4y =,∴()-14M ,, ∴4MA =,∴2212313994421616S DN t t t S AM −+⎛⎫===−−+≤ ⎪⎝⎭, ∴当32t =时,12S S 有最大值916, ∴D (32,154);(3)①当90FBQ ∠=︒时,如图,由(2)知:31524D ⎛⎫⎪⎝⎭,,∵点D 和点F 关于直线BC 对称, ∴3342F ⎛⎫− ⎪⎝⎭,.∴直线BF 的解析式为2655y x =−+,令=0x ,则65y =, ∴ 605P ⎛⎫ ⎪⎝⎭,,根据题意可知:3322S ⎛⎫⎪⎝⎭,,∴直线PS 的解析式为1655y x =+. ∴直线RS 的解析式为59y x =−+,令0y =,则95x =.∴905R ⎛⎫ ⎪⎝⎭,. ∵直线BF 的解析式为2655y x =−+,∵90FBQ ∠︒=, ∴直线BQ 的解析式为51522y x =−. ∵()22=-23=-14y x x x ++−+, ∴抛物线对称轴TH 的解析式为1x =,当1x =时, 5151522y =⨯−=−,∴()15Q −,. 设直线RQ 的解析式为y kx b =+,∴5905k b k b +=−⎧⎪⎨+=⎪⎩,解得254454k b ⎧=⎪⎪⎨⎪=−⎪⎩,∴直线RQ 的解析式为254544y x =−; ②当90BPQ ∠=︒时,∵直线BF 的解析式为2655y x =−+,90BPQ ∠=︒,∴直线PQ 的解析式为5625y x =+, ∵抛物线对称轴TH 的解析式为1x =, ∴当1x =时,3730y =, ∴ 37130Q ⎛⎫⎪⎝⎭,.设直线RQ 的解析式为y mx n =+,∴3710905m n m n ⎧+=⎪⎪⎨⎪+=⎪⎩,解得37833340m n ⎧=−⎪⎪⎨⎪=⎪⎩,∴直线RQ 的解析式为37333840y x =−+. 综上,直线RQ 的解析式为254544y x =−或37333840y x =−+.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学考前模拟测试题新TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】2011年中考模拟试卷数学卷考生须知:本试卷满分120分, 考试时间100分钟.答题前, 在答题纸上写姓名和准考证号.必须在答题纸的对应答题位置上答题,写在其他地方无效. 答题方式详见答题纸上的说明. 考试结束后, 试题卷和答题纸一并上交.试 题 卷一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的. 注意可用多种不同方法来选取正确答案.1.如图,数轴上点A 所表示的数的倒数是( ▲ )A. 2-B. 2C. 12D. 12-2.化简()2222a a --(a ≠0)的结果是( ▲ )A. 0B. 22a C. 24a - D. 26a - 3.下列判断正确的是( ▲ )A. “打开电视机,正在播NBA 篮球赛”是必然事件B. “掷一枚硬币正面朝上的概率是21”表示每抛掷硬币2次就必有1次反面朝上C. 一组数据2,3,4,5,5,6的众数和中位数都是5D. 甲组数据的方差S 甲2=0.24,乙组数据的方差S 乙2=0.03,则乙组数据比甲组数据稳定4.直角三角形两直角边和为7,面积为6,则斜边长为( ▲ )A. 5B.C. 7D.5.下列图形中,既是轴对称图形,又是中心对称图形的是( ▲ )A. B. C. D.6.已知()0332=++++m y x x 中,y 为负数,则m 的取值范围是( ▲ )A. m >9B. m <9C. m >-9D. m <-97.一个圆锥,它的左视图是一个正三角形,则这个圆锥的侧面展开图的圆心角度数是( ▲ )A. 60°B. 90°C. 120°D. 180°8.一种原价均为m 元的商品,甲超市连续两次打八折;乙超市一次性打六折;丙超市第一次打七折,第二次再打九折;若顾客要购买这种商品,最划算应到的超市是( ▲ )第9题 A. 甲或乙或丙 B. 乙 C. 丙 D. 乙或丙9.如图,在菱形ABCD 中,DE ⊥AB ,3cos 5A =,BE=2,则tan ∠DBE 的值是( ▲ )A .12 B .2 C.2 D.510.如图,在矩形ABCD 中,BC=8,AB=6相切,且与AB 、BC 、AD 、DC 分别交于点G 、H 、E 、F ,则A .6 B .8 C .二. 认真填一填 (本题有6个小题, 每小题4分, 共24分) 要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案.11. 已知点A (1,k -+2)在双曲线ky x =上.则k 的值为 .12. 如图,已知OB 是⊙O 的半径,点C 、D 在⊙O 上,∠DCB =40°,则∠OBD = ▲ 度.13. “五·一”假期,某公司组织全体员工分别到西湖、动漫节、宋城旅游,购买前往各地的车票种类、数量如图所示.若公司决定采用随机抽取的方式把车票分配给员工,则员工小王抽到去动漫节车票的概率为 ▲ .14. 如图是小明设计用手电来测量某古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB=1.2米,BP=1.8米,PD=12米, 那么该古城墙的高度是 ▲ 米.第1015. 如图,在半圆O 中,直径AE=10,四边形ABCD 是平行四边形,且顶点A 、B 、C 在半圆上,点D 在直径AE 上,连接CE ,若AD=8,则CE 长为 .16. 如图,在第一象限内作射线OC ,与x 轴的夹角为30o ,在射线OC 上取一点A ,过点A 作AH ⊥x 轴于点H .在抛物线y=x2(x >0)上取点P ,在y 轴上取点Q ,使得以P ,O ,Q 为顶点的三角形与△AOH 全等,则符合条件的点A 的坐标是 .三. 全面答一答 (本题有8个小题, 共66分)解答应写出文字说明, 证明过程或推演步骤. 如果觉得有的题目有点困难, 那么把自己 能写出的解答写出一部分也可以.17. (本小题满分6分)在下面三小题中任选其中两小题完成(1)已知2=+b a ,求代数式b b a 422+-的值;(2)分解因式(3)已知 ,求分式 的值18.(本小题满分6分)解不等式组:3265212x x x x -<+⎧⎪⎨-+>⎪⎩,并把解集在数轴上表示出来.19. (本小题满分6分)如图, CD 切⊙O 于点D ,连结OC , 交⊙O于点B ,过点B 作弦AB ⊥OD ,点E 为垂足,已知⊙O 的半径为10,sin ∠COD=54.求:(1)弦AB 的长;(2)CD 的长;20. (本小题满分8分)已知正比例函数x a y )3(1+=(a <0)与反比例函数x a y 32-=的图象有两个公共点,其中一个公共点的纵坐标为4. (1)求这两个函数的解析式;(2)在坐标系中画出它们的图象(可不列表);(3)利用图像直接写出当x 取何值时,21y y >.21. (本小题满分8分)学生小明、小华到某电脑销售公司参加社会实践活动,了解到2010年该公司经销的甲、己两种品牌电脑在第一季度三个月(即一、二、三月份)的销售数量情况.小明用直方图表示甲品牌电脑在第一季度每个月的销售量的分布情况,见图①;小华用扇形统计图表示乙品牌电脑每个月的销售量与该品牌电脑在第一季度的销售总量的比例分布情况,见图②.根据上述信息,回答下列问题:(1)这三个月中,甲品牌电脑在哪个月的销售量最大? ▲月份;(2)已知该公司这三个月中销售乙品牌电脑的总数量比销售甲品牌电脑的总数量多50台,求乙品牌电脑在二月份共销售了多少台?(3)若乙品牌电脑一月份比甲品牌电脑一月份多销售42台,那么三月份乙品牌电脑比甲品牌电脑多销售(少销售)多少台?22. (本小题满分10分)如图1,点P、Q分别是边长为4cm的等边?ABC边AB、BC上的动点,点P从顶点A,点Q 从顶点B同时出发,且它们的速度都为1cm/s,(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时?PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;23.某商场将进价50个方案来增加利润:方案一:提高价格,但这种商品每个售价涨价1元,销售量就减少10个;方案二:售价不变,但发资料做广告。

已知这种商品每月的广告费用m(千元)与销售量倍数p 关系为p = m m 24.02+- ;试通过计算,请你判断商场为赚得更大的利润应选择哪种方案?请说明你判断的理由!24. (本小题满分12分)如图,在平面直角坐标系xoy 中,矩形ABCD 的边AB 在x 轴上,且AB=3,BC=32,直线y=323-x 经过点C ,交y 轴于点G 。

(1)点C 、D 的坐标分别是C ( ),D ( (2)求顶点在直线y=323-x 上且经过点C 、D 的抛物 线的解析式;(3)将(2)中的抛物线沿直线y=323-x 平移,平移后的抛物线交y 轴于点F ,顶点为点E (顶点在y 轴右侧)。

平移后是否存在这样的抛物线,使⊿EFG 为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由。

2011年中考模拟试卷数学答题卷考生须知:本试卷满分120分, 考试时间100分钟.答题前, 在答题纸上写姓名和准考证号.必须在答题纸的对应答题位置上答题,写在其他地方无效. 答题方式详见答题纸上的说明.考试结束后, 试题卷和答题纸一并上交.试题卷一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的. 注意可用多种不同方法来选取正确答案.二. 认真填一填 (本题有6个小题, 每小题4分, 共24分) 要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案.11._______ _____; 12.______ _______; 13.____ ____________;14.______________; 15._______ ______; 16._____________ ________ .三. 全面答一答 (本题有8个小题, 共66分)解答应写出文字说明, 证明过程或推演步骤. 如果觉得有的题目有点困难, 那么把自己 能写出的解答写出一部分也可以.17.(本题6分)18.(本题6分)19.(本题6分)20.(本题8分)21.(本题8分)(1)(2)(3)22.(本题10分)(1)(2)(3)23.(本题10分)24.(本题12分)(1)C ( ), D ( );(2)(3)2011年中考模拟试卷数学卷参考答案及评分标准考生须知:本试卷满分120分, 考试时间100分钟.答题前, 在答题纸上写姓名和准考证号.必须在答题纸的对应答题位置上答题,写在其他地方无效. 答题方式详见答题纸上的说明.考试结束后, 试题卷和答题纸一并上交.试 题 卷一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)11. 1 12. 50 13. 2114. 815. 10 16. (33,31)(332,32)(3,3)(23,2) (对一个得1分)三. 全面答一答 (本题有8个小题, 共66分)17.(本小题满分6分)(1)2=+b ab b a b a b b a 4))((422++-=+-∴ b b a b b a 4224)(2+-=+-= 422)(222=⨯=+=+=b a b a(2))16(232244-=-a a )4)(4(222-+=a a )2)(2)(4(22+-+=a a a(3)32=y x ,不妨设k y k x 3,2== 81623422=+-=+-∴k k k k y x y x18. (本小题满分6分)解:由(1)得:4<x 由(2)得:0>x不等式组的解为:40<<x在数轴上表示为:19. (本小题满分6分)(1)OD AB ⊥ B BECOD BE AB 0sin ,2=∠=∴ 16,85410=∴=⨯=∴AB BE(2)∵CD 切⊙O 于D ,∴OD CD ⊥∴54sin ==∠OC CD COD ,不妨设k CD 4=,则k OD k CO 3,5==∴310,103===k k OD∴3404==k CD20. (本小题满分8分)(1) ∵交点纵坐标为4,∴⎩⎨⎧=-=+x a x a 434)3(,解得5,521=-=a a (舍去)x 8-=(2)(3)当202<<-<x x 或时,21y y > 21. (本小题满分8分)(1)二(2)二月份共销售乙品牌电脑:()150%3050120180150=⨯+++ (台)(3)三月份乙品牌电脑比甲品牌电脑多销售:108120%38%32)42150(=-⨯÷+(台)22. (本小题满分10分)(1)060=∠CMQ 不变。

相关文档
最新文档