高二数学月考试卷(含答案)

合集下载

山西省部分学校2024-2025学年高二上学期10月月考数学试题(含答案)

山西省部分学校2024-2025学年高二上学期10月月考数学试题(含答案)

2024~2025学年高二10月质量检测卷数学(A 卷)考生注意:1.本试卷分选择题和非选择题两部分。

满分150分,考试时间120分钟。

2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚。

3.考生作答时,请将答案答在答题卡上。

选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。

4.本卷命题范围:人教A 版选择性必修第一册第一章~第二章。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知直线经过,两点,则的倾斜角为()A.B.C.D.2.已知圆的方程是,则圆心的坐标是( )A. B. C. D.3.在长方体中,为棱的中点.若,,,则()A. B. C. D.4.两平行直线,之间的距离为( )B.3D.5.曲线轴围成区域的面积为( )l (A (B l 6π3π23π56πC 2242110x y x y ++--=C ()2,1-()2,1-()4,2-()4,2-1111ABCD A B C D -M 1CC AB a = AD b =1AA c = AM =111222a b c -+ 111222a b c ++12a b c-+12a b c++ 1:20l x y --=2:240l x y -+=y =xA. B. C. D.6.已知平面的一个法向量,是平面内一点,是平面外一点,则点到平面的距离是( )A. B.D.37.在平面直角坐标系中,圆的方程为,若直线上存在点,使以点为圆心,1为半径的圆与圆有公共点,则实数的取值范围是( )A. B.C. D.8.在正三棱柱中,,,为棱上的动点,为线段上的动点,且,则线段长度的最小值为( )A.2二、选择题:本题共3小题,每小题6分,共18分。

河南省南阳市2024-2025学年高二上学期10月月考数学试题(含答案)

河南省南阳市2024-2025学年高二上学期10月月考数学试题(含答案)

高二数学全卷满分150分,考试时间120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置.2.请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效.3.选择题用2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚.4.考试结束后,请将试卷和答题卡一并上交.5.本卷主要考查内容:北师大版选择性必修第一册第一章,第二章.一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设直线的倾斜角为,则( )A .B .C .D .2.已知双曲线的虚轴长是实轴长的3倍,则实数的值为( )A .B .C .D .3.已知方程表示一个焦点在轴上的椭圆,则实数的取值范围为( )A .B .C .D .4.直线被圆截得的弦长为( )ABCD .5.已知抛物线的焦点为,点为抛物线上任意一点,则的最小值为( )A .1B .C .D .6.已知椭圆的离心率为,双曲线的离心率为,则( )A .B .C .D .:80l x -+=αα=120︒60︒30︒150︒221(0)1x y a a a -=>+a 1214131822124x y m m+=--y m ()2,3()3,4()()2,33,4⋃()2,426y x =+22(2)4x y ++=23y x =F P PF 43323422122:1(0)x y C a b a b +=>>1e 22222:1x y C a b-=2e 22122e e +=112e e +=22211e e =+212e e =7.在平面直角坐标系中,已知圆,若圆上存在点,使得,则正数的取值范围为( )A .B .C .D .8.已知双曲线的左、右焦点分别为,过点的直线与双曲线的右支相交于两点,,且的周长为10,则双曲线的焦距为( )A .3BCD二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知椭圆的对称中心为坐标原点,焦点在坐标轴上,若椭圆的长轴长为6,焦距为4,则椭圆的标准方程可能为( )A .B .C .D .10.如图,抛物线的焦点为,过抛物线上一点(点在第一象限)作准线的垂线,垂足为为边长为8的等边三角形.则( )A .B .C .点的坐标为D .点的坐标为11.已知双曲线的左、右焦点分别为,点为双曲线右支上的动点,过点作两渐近线的垂线,垂足分别为.若圆与双曲线的渐近线相切,则下列说法正确的是( )xOy ()222:()()(0),3,0C x a y a a a A -+-=>-C P 2PA PO =a (]0,1[]1,21,3⎡+⎣⎤⎦2222:1(0,0)x y C a b a b-=>>12,F F 2F ,A B 12224BF BF AF ==1ABF △C C C 22149x y +=22195x y +=22194x y +=22159x y +=2:2(0)C y px p =>F C P P l ,H PHF △2p =4p =P (P (222:1(0)3x y C b b-=>12,F F P C P ,A B 22(2)1x y -+=CA .双曲线的渐近线方程为B .双曲线的离心率C .当点异于双曲线的顶点时,的内切圆的圆心总在直线上D.为定值三、填空题:本题共3小题,每小题5分,共15分.12.过点且在轴、轴上截距相等的直线方程为______.13.已知是圆______.14.如图,已知椭圆的左、右焦点分别为,过椭圆左焦点的直线与椭圆相交于两点,,,则椭圆的离心率为______.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.(本小题满分13分)已知的顶点坐标为.(1)若点是边上的中点,求直线的方程;(2)求边上的高所在的直线方程.16.(本小题满分15分)已知动点到点为常数且的距离与到直线的距离相等,且点在动点的轨迹上.(1)求动点的轨迹的方程,并求的值;(2)在(1)的条件下,已知直线与轨迹交于两点,点是线段的中点,求直线的方y x =C e =P C 12PF F △x =PA PB ⋅32()3,1x y (),P m n 22:(4)(4)8C x y -+-=2222:1(0)x y C a b a b+=>>12,F F 1F C,P Q 222QF PF =21cos 4PF Q ∠=C ABC △()()()1,6,3,1,4,2A B C ---D AC BD AB P (),0(F t t 0)t >x t =-()1,1-P P C t l C ,A B ()2,1M AB l程.17.(本小题满分15分)已知点,动点满足.(1)求动点的轨迹的方程;(2)已知圆的圆心为,且圆与轴相切,若圆与曲线有公共点,求实数的取值范围.18.(本小题满分17分)已知双曲线的一条渐近线方程为,点在双曲线上.(1)求双曲线的标准方程;(2)过定点的动直线与双曲线的左、右两支分别交于两点,与其两条渐近线分别交于(点在点的左边)两点,证明:线段与线段的长度始终相等.19.(本小题满分17分)在平面直角坐标系中,已知椭圆,短轴长为2.(1)求椭圆的标准方程;(2)已知点分别为椭圆的左、右顶点,点为椭圆的下顶点,点为椭圆上异于椭圆顶点的动点,直线与直线相交于点,直线与直线相交于点.证明:直线与轴垂直.()()2,0,6,0O A -(),P x y 3PA PO =P C Q (),(0)Q t t t >Q y Q C t 2222:1(0,0)x y C a b a b-=>>20x y +=()1-C C ()0,1P l C ,A B ,M N M N AM BN xOy 2222:1(0)x y C a b a b+=>>C ,A B C D C P C AP BD M BP AD N MN x2024~2025学年度10月质量检测·高二数学参考答案、提示及评分细则1.C 因为直线的斜率为,由斜率和倾斜角的关系可得又,.故选C .2.D,解得.3.A 若方程表示为焦点在轴上的一个椭圆,有解得.4.B 圆心,直线被圆截得的弦长为.故选B .5.D 设点的坐标为,有,故的最小值为.6.A 由,可得.7.C 设点的坐标为,有,整理为,可化为,若圆上存在这样的点,只需要圆与圆有交点,有,解得C .8.B 设,可得,有,解得,在和中,由余弦定理有,解得,可得双曲线的焦距为.9.BD 由题意有,故椭圆的标准方程可能为或.10.BD 设抛物线的准线与轴的交点为,由,有:80l x +=k =tan α=0180α︒≤<︒30α=︒=18a =y 20,40,24,m m m m ->⎧⎪->⎨⎪-<-⎩23m <<()2,0-=P ()00,x y 03344PF x =+≥PF 34222222221222221,1a b b a b b e e a a a a-+==-==+22122e e +=P (),x y =22230x y x +--=22(1)4x y -+=C P C 22(1)4x y -+=22a a -≤≤+13a ≤≤+221,2,4AF m BF m BF m ===13AF m =23410m m m m +++=1m =12AF F △12BF F △224194416048c c c c +-+-+=c =3,2,5a c b ====C 22195x y +=22159x y +=C x Q 60,PHF HFO FQ p ∠=∠=︒=,有,得,点的坐标为.11.ABC 由题意得,对于选项A :双曲线的渐近线方程是,圆的圆心是,半径是1(舍去),又,故A 正确;则,离心率为B 正确;对于选项C :设的内切圆与轴相切于点,由圆的切线性质知,所以,因此内心在直线,即直线上,故C 正确;对于选项D :设,则,渐近线方程是,则为常数,故D 错误.故选ABC .12.或 设在轴、轴上的截距均为,若,即直线过原点,设直线为,代入,可得,所以直线方程为,即;若,则直线方程为,代入,则,解得,所以此时直线方程为;综上所述:所求直线方程为或.13.表示点到原点的距离,由,有的取值范围为.14设椭圆的焦距为,有,在中,由余弦定理有,有,可得,有.在中,由余弦定理有可得2,HF p HQ ==28p =4p =P (0bx ±=22(2)1x y -+=()2,01,1b ==1-1,b b y x a ===2c ==c e a ===12PF F △x M 122F M F M a -=M x a =I x a =x a ==()00,P x y 222200001,333x y x y -=-=0x ±=3440x y +-=30x y -=x y a 0a =y kx =()3,113k =13y x =30x y -=0a ≠1x ya a+=()3,1311a a+=4a =4x y +=40x y +-=30x y -=⎡⎣P O 28OC r ==OC OP OC -≤≤+OP ≤≤⎡⎣C 222,,2c PF t QF t ==112,22,43PF a t QF a t PQ a t =-=-=-2PQF △2222(43)4a t t t t -=+-45t a =21886,,555QF a PQ a PF a ===22PF Q QPF ∠=∠12PF F △2c ==c e a ==15.解:(1)因为点是边上的中点,则,所以,所以直线的方程为,即;(2)因为,所以边上的高所在的直线的斜率为,所以边上的高所在的直线方程为,即.16.解:(1)由题意知,动点的轨迹为抛物线,设抛物线的方程为,则,所以,所以抛物线的方程为,故;(2)设点的坐标分别有,可得有,可得,有,可得直线的斜率为,故直线的议程为,整理为.17.解:(1)由得,,整理得,故动点的轨迹的方程为;(2)点的坐标为且圆与轴相切,圆的半径为,圆的方程为,D AC 3,42D ⎛⎫⎪⎝⎭14103932BD k --==--BD 01(3)9y x 1+=+109210x y -+=167312AB k --==-+AB 27-AB ()2247y x -=--27220x y +-=P C 22(0)y px p =>12p =12p =C 2y x =124p t ==,A B ()()1122,,,x y x y 12124,2,x x y y +=⎧⎨+=⎩211222y x y x ⎧=⎨=⎩222121y y x x -=-212121112y y x x y y -==-+l 12l 11(2)2y x -=-12y x =3PA PO =229PA PO =2222(6)9(2)x y x y ⎡⎤++=-+⎣⎦22(3)9x y -+=P C 22(3)9x y -+= Q (),(0)t t t >Q y ∴Q t ∴Q 222()()x t y t t -+-=圆与圆两圆心的距离为,圆与圆有公共点,,即,解得,所以实数的取值范围是.18.(1)解:由渐近线方程的斜率为,有,可得,将点代入双曲线的方程,有,联立方程解得故双曲线的标准议程为;(2)证明:设点的坐标分别为,线段的中点的坐标为,线段的中点的坐标为.设直线的方程为,联立方程解得,联立方程解得,可得,联立方程消去后整理为,∴Q C CQ == Q C 33t CQ t ∴-≤≤+2222|3|(3)(3)t t t t -≤-+≤+012t <≤t (]0,1220x y +=12-12b a -=-2a b =()1-C 22811a b-=222,811,a b a b =⎧⎪⎨-=⎪⎩2,1,a b =⎧⎨=⎩C 2214x y -=,,,A B M N ()()()()11223344,,,,,,,x y x y x y x y AB D ()55,x y MN E ()66,x y l 1y kx =+1,1,2y kx y x =+⎧⎪⎨=-⎪⎩3221x k =-+1,1,2y kx y x =+⎧⎪⎨=⎪⎩4221x k =--5212242212141kx k k k ⎛⎫=--=- ⎪+--⎝⎭221,1,4y kx x y =+⎧⎪⎨-=⎪⎩y ()2241880k x kx -++=有,可得,由,可知线段和共中点,故有.19.(1)解:设椭圆的焦距为,由题意有:,解得故椭圆的标准方程为;(2)证明:由(1)知,点的坐标为,点的坐标为,点的坐标为,设点的坐标为(其中,),有,可得,直线的方程为,整理为,直线的方程为,整理为,直线的方程为,联立方程,解得:,故点的横坐标为,直线的方程为, 联立方程,解得:,故点的横坐标为,122841k x x k +=--62441kx k =--46x x =AB MN AM BN =C 2c 22222a b c b c a⎧⎪=+⎪⎪=⎨⎪⎪=⎪⎩2,1,a b c ===C 2214x y +=A ()2,0-B ()2,0D ()0,1-P (),m n ()()2,00,2m ∈- 2214m n +=2244m n +=BD 121x y +=-112y x =-AD 121x y +=--112y x =--AP ()22ny x m =++()2,2112n y x m y x ⎧=+⎪⎪+⎨⎪=-⎪⎩24422m n x m n ++=-+M ()22222m n m n ++-+BP ()22ny x m =--()2,2112n y x m y x ⎧=-⎪⎪-⎨⎪=--⎪⎩42422n m x m n -+=+-N ()22222n m m n -++-又由,故点和点的横坐标相等,可得直线与轴垂直.()()()()()()22222222222222222222m n m n m n m n m n n m m n m n m n m n +++-+-+--++-+-=-++--++-()()()()()()()222222(2)4(2)42442880222222222222m n m n m n m n m n m n m n m n m n m n ⎡⎤⎡⎤+-+--+-+-⎣⎦⎣⎦====-++--++--++-M N MN x。

2024-2025学年重庆八中高二(上)第一次月考数学试卷(含答案)

2024-2025学年重庆八中高二(上)第一次月考数学试卷(含答案)

2024-2025学年重庆八中高二(上)第一次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.复数z 满足z(2−i)=3+4i(i 为虚数单位),则|−z |的值为( )A. 1B. 5C. 5 53D. 5 52.已知α,β是两个不同的平面,l ,m 是两条不同的直线,下列说法正确的是( )A. 若α//β,l ⊂α,m ⊂β,则l//mB. 若α⊥β,l ⊂α,则l ⊥βC. 若l ⊥α,α⊥β,则l//βD. 若l//α,m ⊥α,则l ⊥m3.“直线ax−(a +6)y +8=0与3x−ay +a−5=0平行”是“a =6”的( )条件.A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要4.已知两个单位向量e 1,e 2的夹角为120°,则(e 1+2e 2)⋅(e 2−e 1)=( )A. 32B. 3C. 52D. 55.圆x 2+y 2+2mx +4my +6=0关于直线mx +y +3=0对称,则实数m =( )A. 1B. −3C. 1或−3D. −1或36.直线l :x + 3y− 3=0与圆C :(x +2)2+(y−1)2=2交于A ,B 两点,则直线AC 与直线BC 的倾斜角之和为( )A. 120°B. 145°C. 165°D. 210°7.已知tan2θ=43,θ∈(0,π4),若mcos(π4−θ)=cos(π4+θ),则实数m 的值为( )A. −13B. −12C. 13D. 128.已知圆C :(x−2)2+(y +1)2=5及直线l :(m +2)x +(m−1)y−m−8=0,下列说法正确的是( )A. 圆C 被x 轴截得的弦长为2B. 直线l 过定点(3,2)C. 直线l 被圆C 截得的弦长存在最大值,此时直线l 的方程为x +y−1=0D. 直线l 被圆C 截得的弦长存在最小值,此时直线l 的方程为x−y−5=0二、多选题:本题共3小题,共18分。

四川省成都2024-2025学年高二上学期10月月考试题 数学含答案

四川省成都2024-2025学年高二上学期10月月考试题 数学含答案

成都2024—2025学年度高二上期10月月考数学试卷(答案在最后)注意事项:1.本试卷分第I 卷和第II 卷两部分;2.本堂考试120分钟,满分150分;3.答题前,考生务必将自己的姓名、学号正确填写在答题卡上,并使用2B 铅笔填涂;4.考试结束后,将答题卡交回.第I 卷一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项符合题目要求.1.现须完成下列2项抽样调查:①从12瓶饮料中抽取4瓶进行食品卫生检查;②某生活小区共有540名居民,其中年龄不超过30岁的有180人,年龄在超过30岁不超过60岁的有270人,60岁以上的有90人,为了解居民对社区环境绿化方面的意见,拟抽取一个容量为30的样本.较为合理的抽样方法分别为()A .①随机数法,②抽签法B .①随机数法,②分层抽样C .①抽签法,②分层抽样D .①抽签法,②随机数法2.已知向量()1,2,1a =- ,()3,,b x y = ,且//a b r r,那么实数x y +等于()A .3B .-3C .9D .-93.若,l n 是两条不相同的直线,,αβ是两个不同的平面,则下列命题中为真命题的是()A .若l n ⊥,n β⊥,则l //βB .若αβ⊥,l α⊥,则l //βC .若//αβ,l α⊂,则l //βD .若//l α,//αβ,则l //β4.如图,空间四边形OABC 中,,,OA a OB b OC c ===,点M 为BC 中点,点N 在侧棱OA上,且2ON NA =,则MN =()A .121232a b c--+B .211322a b c-++C .211322a b c-- D .111222a b c+-5.为了养成良好的运动习惯,某人记录了自己一周内每天的运动时长(单位:分钟),分别为53,57,45,61,79,49,x ,若这组数据的第80百分位数与第60百分位数的差为3,则x =()A .58或64B .59或64C .58D .596.已知点D 在ABC V 确定的平面内,O 是平面ABC 外任意一点,正数,x y 满足23DO xOA yOB OC =+- ,则yx 21+的最小值为()A .25B .29C .1D .27.现有一段底面周长为12π厘米和高为12厘米的圆柱形水管,AB 是圆柱的母线,两只蜗牛分别在水管内壁爬行,一只从A 点沿上底部圆弧顺时针方向爬行π厘米后再向下爬行3厘米到达P 点,另一只从B 沿下底部圆弧逆时针方向爬行π厘米后再向上爬行3厘米爬行到达Q 点,则此时线段PQ 长(单位:厘米)为()A .B .C .6D .128.如图,四边形,4,ABCD AB BD DA BC CD =====ABD △沿BD 折起,当二面角A BD C --的大小在[,63ππ时,直线AB 和CD 所成角为α,则cos α的最大值为()A .16B C .16D .8二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列命题中,正确的是()A .两条不重合直线12,l l 的方向向量分别是()2,0,1a =-,()4,0,2b =- ,则12//l l B .直线l 的方向向量()1,1,2c =-,平面α的法向量是()6,4,1m =- ,则l α⊥C .两个不同的平面α,β的法向量分别是()2,2,1u =-,()3,4,2v =- ,则αβ⊥D .直线l 的方向向量()0,1,1d = ,平面α的法向量()1,0,1n =,则直线l 与平面α所成角的大小为π310.小刘一周的总开支分布如图①所示,该周的食品开支如图②所示,则以下说法正确的是()A .娱乐开支比通信开支多5元B .日常开支比食品中的肉类开支多100元C .娱乐开支金额为100元D .肉类开支占储蓄开支的1311.已知四面体OABC 的所有棱长都为1,,D E 分别是,OA BC 的中点.N M ,是该四面体内切球球面上的两点,P 是该四面体表面上的动点.则下列选项中正确的是()A.DE 的长为44B.D 到平面ABC 的距离为66C.当线段MN 最长时,PN PM ⋅的最大值为31D.直线OE 与直线AB 所成角的余弦值为33第II 卷三、填空题:本题共3小题,每小题5分,共15分.12.某校高一年级共有学生200人,其中1班60人,2班50人,3班50人,4班40人.该校要了解高一学生对食堂菜品的看法,准备从高一年级学生中随机抽取40人进行访谈,若采取按比例分配的分层抽样,则应从高一2班抽取的人数是.13.已知(2,1,3),(1,4,2)a b =-=-- ,c (4,5,)λ=,若,,a b c 三向量不能构成空间向量的一组基底,则实数λ的值为.14.在正方体ABCD A B C D -''''中,点P 是AA '上的动点,Q 是平面BB C C ''内的一点,且满足A D BQ '⊥,则平面BDP 与平面BDQ 所成角余弦值的最大值为.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.(满分13分)15.已知向量()6a m = ,,()1,0,2=b ,()()2R c m =∈ (1)求()a b c ⋅-的值;(2)求cos b c ,;(3)求a b - 的最小值.(满分15分)16.成都市政府委托市电视台进行“创建文明城市”知识问答活动,市电视台随机对该市1565~岁的人群抽取了n人,绘制出如图所示的频率分布直方图,回答问题的统计结果如表所示.组号分组回答正确的人数回答正确的人数占本组的频率第一组[15,25)500.5第二组[25,35)180a第三组[35,45)x0.9第四组[45,55)90b第五组[55,65)y0.6a b x y的值;(1)分别求出,,,(2)从第二、三、四、五组回答正确的人中用分层抽样的方法抽取7人,则从第二、三、四、五组每组回答正确的人中应各抽取多少人.-中,ABCD是边长为2的正方形,平面PBC⊥(满分15分)17.如图,在四棱锥P ABCDPC=.平面ABCD,直线PA与平面PBC所成的角为45︒,2(1)若E,F分别为BC,CD的中点,求证:直线AC⊥平面PEF;(2)求二面角D PA B--的正弦值.(满分17分)18.随着时代不断地进步,人们的生活条件也越来越好,越来越多的人注重自己的身材,其中体脂率是一个很重要的衡量标准.根据一般的成人体准,女性体脂率的正常范围是20%至25%,男性的正常范围是15%至18%.这一范围适用于大多数成年人,可以帮助判断个体是否存在肥胖的风险.某市有关部门对全市100万名成年女性的体脂率进行一次抽样调查统计,抽取了1000名成年女性的体脂率作为样本绘制频率分布直方图,如图.(1)求a ;(2)如果女性体脂率为25%至30%属“偏胖”,体脂率超过30%属“过胖”,那么全市女性“偏胖”,“过胖”各约有多少人?(3)小王说:“我的体脂率是调查所得数据的中位数.”小张说:“我的体脂率是调查所得数据的平均数.”那么谁的体脂率更低?(精确到小数点后2位)(满分17分)19.如图,四面体ABCD 中,2,AB BC BD AC AD DC ======(1)求证:平面ADC ⊥平面ABC ;(2)若(01)DP DB λλ=<<,①若直线AD 与平面APC 所成角为30°,求λ的值;②若PH ⊥平面,ABC H 为垂足,直线DH 与平面APC 的交点为G .当三棱锥CHP A -体积最大时,求DGGH的值.高二上10月月考数学答案一、单选题:C D C C A B A B二、多选题:AC;BCD;BC3三、填空题:10;5;318:(1)由频率直方图可得,(2)由频率分布直方图可得样本中女性⨯=,所以全市女性50.020.1⨯=,10000000.1100000。

四川省南充2024-2025学年高二上学期10月月考数学试题含答案

四川省南充2024-2025学年高二上学期10月月考数学试题含答案

南充高中高2023级上期第一次月考数学试卷(答案在最后)考试时间:120分钟满分:150分注意事项:1.答题前,务必将自己的姓名、班级、考号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,将答案书写在答题卡相应位置上,写在本试卷上无效.4.考试结束后将答题卡交回.一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的4个选项中,只有一项是符合题目要求的)1.“2sin 2θ=”是“π4θ=”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】C 【解析】【分析】判断“sin 2θ=”和“π4θ=”之间的逻辑推理关系,即可得答案.【详解】当2sin 2θ=时,π2π,Z 4k k θ=+∈或3π2π,Z 4k k θ=+∈,推不出π4θ=;当π4θ=时,必有2sin 2θ=,故“sin 2θ=”是“π4θ=”的必要不充分条件,故选:C2.设l ,m 是两条不同的直线,α,β,γ是三个不同的平面,下列说法正确的是()A.若//l α,//m α,则//l mB.若//l α,//l β,则//αβC.若l α⊥,m α⊥,则//l mD.若αγ⊥,βγ⊥,则//αβ【答案】C【分析】根据直线与直线的位置关系、直线与平面的位置关系和平面与平面的位置关系依次判断选项即可.【详解】对选项A ,若//l α,//m α,则l 与m 的位置关系是平行,相交和异面,故A 错误.对选项B ,若//l α,//l β,则α与β的位置关系是平行和相交,故B 错误.对选项C ,若l α⊥,m α⊥,则根据线面垂直的性质得l 与m 的位置关系是平行,故C 正确.对选项D ,若αγ⊥,βγ⊥,则α与β的位置关系是平行和相交,故D 错误.故选:C3.若sin 2αα-+=,则tan(π)α-=()A. B.C.3D.3-【答案】C 【解析】【分析】由sin 2αα-+=两边同时平方,从而利用sin tan cos =aa a可以实现角α的弦切互化,【详解】由sin 2αα-+=两边同时平方,可得22sin cos 3cos 4αααα-+=,∴222222sin cos 3cos tan 34sin cos tan 1ααααααααα-+-+==++,解得tan 3α=-.()tan tan 3παα∴-=-=.故选:C.4.如图,在正方体1111ABCD A B C D -中,,M N 分别为11,DB A C 的中点,则直线1A M 和BN 夹角的余弦值为()A.23B.33C.23D.13【解析】【分析】以1,,DA DC DD 所在直线为,,x y z 轴,建立空间直角坐标系,根据向量夹角的余弦公式求解即可.【详解】分别以1,,DA DC DD 所在直线为,,x y z轴,建立如图所示空间直角坐标系,设正方体1111ABCD A B C D -的棱长为2,则()1(2,0,2),(1,1,0),(2,2,0),1,1,2A M B N ,所以()1(1,1,2),1,1,2MA BN =-=--设向量1MA 与BN的夹角为θ,则1142cos 63MA BN MA BNθ⋅===⋅,所以直线1A M 和BN 夹角的余弦值为23,故选:C .5.在三棱锥S ABC -中,()()20SC SA BS SC SA ++⋅-=,则ABC V 是()A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形【答案】C 【解析】【分析】由向量的线性运算得到2,SC SA BS BC BA SC SA BC BA ++=+-=- ,从而说明22BC BA = ,即可求解.【详解】()()22,SC SA BS SC SA SB SC SB SA SB BC BA SC SA AC BC BA ++=+-=-+-=+-==- ,()()()()2220SC SA SB SC SA BC BA BC BA BC BA ∴+-⋅-=+⋅-=-= ,BC BA ∴=,即BC BA =,所以ABC V 是等腰三角形.故选:C6.杭州亚运会的三个吉祥物分别取名“琮琮”“宸宸”“莲莲”,如图,现将三张分别印有“琮踪”“宸宸”“莲莲”图案的卡片(卡片的形状、大小和质地完全相同)放入盒子中.若从盒子中依次有放回地取出两张卡片,则一张为“琮琮”,一张为“宸宸”的概率是()A.38B.29C.59D.34【答案】B 【解析】【分析】记印有“琮琮”“宸宸”“莲莲”图案的卡片分别为,,A B C ,用列举法即可求解.【详解】记印有“琮琮”“宸宸”“莲莲”图案的卡片分别为,,A B C ,(),x y 代表依次摸出的卡片,{},,,x y A B C ∈,则基本事件分别为:()()()()()()()()(),,,,,,,,,,,,,,,,,A A A B A C B A B B B C C A C B C C ,其中一张为“琮琮”,一张为“宸宸”的共有两种情况:()(),,,A B B A ,所以从盒子中依次有放回地取出两张卡片,则一张为“琮琮”,一张为“宸宸”的概率是29.故选:B.7.已知函数()3f x x =,若正实数a ,b 满足()()490f a f b +-=,则11a b+的最小值为()A.1B.3C.6D.9【答案】A 【解析】【分析】根据函数的奇偶性可得49a b +=,再结合基本不等式“1”的代换可得解.【详解】由已知()3f x x =,定义域为R ,且()()()33f x x x f x -=-=-=-,则()f x 是R 上的奇函数,且函数()3f x x =在R 上单调递增,又()()490f a f b +-=,即()()()499f a f b f b =--=-,则49a b =-,即49a b +=,且0a >,0b >,所以()1111114144415999a b a b a b a b a b b a b a ⎛⎫⎛⎫⎛⎫+=++=+++=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭又44a b b a +≥=,即()11141554199a b a b b a ⎛⎫+=++≥+= ⎪⎝⎭,当且仅当4a b b a =,即32a =,3b =时,等号成立,即11a b+的最小值为1.故选:A.8.已知正三棱锥P ABC -的六条棱长均为6,S 是ABC V 及其内部的点构成的集合.设集合{}5T Q S PQ =∈=,则集合T 所表示的曲线长度为()A.5πB.2πC.3D.π【答案】B 【解析】【分析】求出以P 为球心,5为半径的球与底面ABC 的截面圆的半径后即可求解.【详解】设顶点P 在底面上的投影为O ,连接BO ,则O 为三角形ABC 的中心,且23632BO =⨯⨯=,故PO ==因为5PQ =,故1OQ =,故S 的轨迹为以O 为圆心,1为半径的圆,集合T 所表示的曲线长度为2π故选:B二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的4个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部份分分,有选错的得0分.)9.函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则()A.2ω=B.π6ϕ=C.()f x 的图象关于点π,012⎛⎫⎪⎝⎭对称D.()f x 在区间5ππ,4⎛⎫⎪⎝⎭上单调递增【答案】ACD 【解析】【分析】根据三角函数的图象,先求得ω,然后求得ϕ,根据三角函数的对称性、单调性确定正确答案.【详解】()()5ππ2ππ,π,2,sin 22632T T f x x ωϕω=-=∴==∴==+,π2sin π133f ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,由于πππ2π7π,22636ϕϕ-<<<+<,所以2πππ,326ϕϕ+==-,所以A 选项正确,B 选项错误.()ππππsin 2,2π,,66122k f x x x k x k ⎛⎫=--==+∈ ⎪⎝⎭Z ,当0k =时,得π12x =,所以()f x 关于π,012⎛⎫⎪⎝⎭对称,C 选项正确,11111πππππ2π22π,ππ,26263k x k k x k k -+<-<+-+<<+∈Z ,当11k =时,得()f x 在54π,π63⎛⎫ ⎪⎝⎭上递增,则()f x 在区间5ππ,4⎛⎫⎪⎝⎭上单调递增,所以D 选项正确.故选:ACD10.对于随机事件A 和事件B ,()0.3P A =,()0.4P B =,则下列说法正确的是()A.若A 与B 互斥,则()0.3P AB =B.若A 与B 互斥,则()0.7P A B ⋃=C.若A 与B 相互独立,则()0.12P AB =D.若A 与B 相互独立,则()0.7P A B ⋃=【答案】BC 【解析】【分析】根据互斥事件、相互独立事件的概率公式计算可得.【详解】对于A :若A 与B 互斥,则()0P AB =,故A 错误;对于B :若A 与B 互斥,则()()()0.7P A B P A P B =+= ,故B 正确;对于C :若A 与B 相互独立,则()()()0.12P AB P A P B ==,故C 正确;对于D :若A 与B 相互独立,则()()()()0.30.40.30.40.58P A B P A P B P AB ⋃=+-=+-⨯=,故D 错误.故选:BC11.如图,边长为1的正方形ABCD 所在平面与正方形ABEF 在平面互相垂直,动点,M N 分别在正方形对角线AC 和BF 上移动,且(0CM BN a a ==<<,则下列结论中正确的有()A.(a ∃∈,使12MN CE=B.线段MN 存在最小值,最小值为23C.直线MN 与平面ABEF 所成的角恒为45°D.(a ∀∈,都存在过MN 且与平面BEC 平行的平面【分析】利用向量的线性运算可得()1MN a BC aBE =-+,结合向量的模的计算可判断B 的正误,结合向量夹角的计算可判断C 的正误,结合共面向量可判断D 的正误.【详解】因为四边形ABCD 正方形,故CB AB ⊥,而平面ABCD ⊥平面ABEF ,平面ABCD 平面ABEF AB =,CB ⊂平面ABCD ,故CB ⊥平面ABEF ,而BE ⊂平面ABEF ,故CB BE ⊥.设MC AC λ=,则= BN BF λ,其中()0,1λ=,由题设可得MN MC CB BN AC CB BF λλ=++=++,()()()1BC BA CB BA BE BC BE λλλλ=-+++=-+,对于A ,当12λ=即2a =时,111222MN BC BE CE =-+= ,故A 正确;对于B ,()22222111221222MN λλλλλ⎛⎫=-+=-+=-+ ⎪⎝⎭ ,故22MN ≥,当且仅当12λ=即2a =时等号成立,故min 22MN =,故B 错误;对于C ,由B 的分析可得()1MN BC BE λλ=-+,而平面ABEF 的法向量为BC 且()211MN BC BC λλ⋅=-=-,故cos ,MN BC =,此值不是常数,故直线MN 与平面ABEF 所成的角不恒为定值,故C 错误;对于D ,由B 的分析可得()1MN BC BE λλ=-+ ,故,,MN BC BE为共面向量,而MN ⊄平面BCE ,故//MN 平面BCE ,故D 正确;故选:AD三、填空题(本题共3小题,每小题5分,共15分.)12.复数2i12iz +=-的共轭复数z =______.【分析】根据复数的除法运算及共轭复数的概念可求解.【详解】因为2i 12i z +=-()()()()2i 12i 12i 12i ++=-+5i i 5==,所以z =i -.故答案为:i-13.已知向量()2,1,1a =- ,()1,,1b x = ,()1,2,1c =-- ,当a b ⊥ 时,向量b 在向量c上的投影向量为________.(用坐标表示)【答案】()1,2,1-【解析】【分析】先根据向量垂直得到方程,求出3x =,再利用投影向量公式求出答案.【详解】因为a b ⊥ ,所以210a b x ⋅=-+=,所以3x =.因为()1,3,1b = ,所以b 在c 上的投影向量为()1,2,1||||b c cc c c ⋅⋅=-=-.故答案为:()1,2,1-14.已知在ABC V 中,满足)34AB AC AB ACAB AC AB AC++=+,点M 为线段AB 上的一个动点,若MA MC ⋅ 取最小值3-时,则BC 边的中线长为______.【答案】1112【解析】【分析】设)34,,AB AC AB AC AD AN AE ABAC AB AC+===+,根据题意可推得||3,||4AD AN == ,2π3ADE ∠=,进一步根据MA MC ⋅ 取最小值3-时,求得对应的AC =AB =,由此即可得解.【详解】设)34,,AB AC AB AC AD AN AE ABAC AB AC+===+,则//,//AD EN AN DE ,四边形ADEN为平行四边形,||||3||3,||4,||4||||AB AD AD AN AE AC AN =====,22343712πcos 23423ADE ADE +-∴∠==-⇒∠=⨯⨯,又四边形ADEN 为平行四边形,3πBAC ∴∠=,设,,0,0MA AD AC AN λμλμ==≤≥,()()296MA MC MA MA AC AD AD AN λλμλλμ⋅=⋅+=⋅+=+,由题意2963λλμ+≥-即29630λλμ++≥恒成立,且存在,R λμ∈使得29630λλμ++=成立,其次29630λλμ++=当且仅当2296303Δ361080λλλμμμ⎧⎧=-++=⎪⇔⎨⎨=-=⎩⎪=⎩,此时AC ==AB ==所以BC边的中线长为122AB AC +===.故答案为:2.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.如图,四边形ABCD 为矩形,且2AD =,1AB =,PA ⊥平面ABCD ,1PA =,E 为BC 的中点.(1)求证:PE DE ⊥;(2)求四棱锥P ABCD -的外接球体积.【答案】(1)证明见解析(2【解析】【分析】(1)连接AE ,由线面垂直得到PA DE ⊥,再由线面垂直的判定定理得到DE ⊥平面PAE ,即可证明;(2)由底面为矩形利用长方体的性质可得四棱锥外接球的半径,再由体积公式计算体积.【小问1详解】连结,AE E 为BC 的中点,1EC CD ==,∴DCE △为等腰直角三角形,则45DEC ∠=︒,同理可得45AEB ∠=︒,∴90AED ∠=︒,∴DE AE ⊥,又PA ⊥平面ABCD ,且DE ⊂平面ABCD ,∴PA DE ⊥,又∵AE PA A = ,,AE PA ⊂平面PAE ,∴DE ⊥平面PAE ,又PE ⊂平面PAE ,∴DE PE ⊥.【小问2详解】∵PA ⊥平面ABCD ,且四边形ABCD 为矩形,∴P ABCD -的外接球直径2R =∴2R =,故:3344ππ332V R ⎛⎫=== ⎪ ⎪⎝⎭,∴四棱锥P ABCD -.16.ABC V 的内角,,A B C 的对边分别为,,a b c ,已知cos cos a B b A b c -=+.(1)求角A 的值;(2)若a ABC = ,求,b c .【答案】(1)2π3(2)2,2【解析】【分析】(1)由正弦定理及三角恒等变换化简即可得解;(2)由三角形面积公式及余弦定理求解即可.【小问1详解】cos cos a B b A b c -=+ ,由正弦定理可得:sin cos sin cos sin sin A B B A B C -=+,sin sin()sin cos cos sin C A B A B A B =+=+ ,sin cos sin cos sin sin cos cos sin A B B A B A B A B ∴-=++,即2sin cos sin B A B -=,sin 0B ≠ ,1cos 2A ∴=-,(0,π)A ∈ ,2π3A ∴=.【小问2详解】由题意,1sin 24ABC S bc A bc ===△,所以4bc =,由222222cos a b c bc A b c bc =+-=++,得()2216b c a bc +=+=,所以4b c +=,解得:2b c ==.17.全国执业医师证考试分实践技能考试与医学综合笔试两部分,每部分考试成绩只记“合格”与“不合格”,两部分考试都“合格”者,则执业医师考试“合格”,并颁发执业医师证书.甲、乙、丙三人在医学综合笔试中“合格”的概率依次为45,34,23,在实践技能考试中“合格”的概率依次为12,23,23,所有考试是否合格互不影响.(1)求甲没有获得执业医师证书的概率;(2)这三人进行实践技能考试与医学综合理论考试两项考试后,求恰有两人获得执业医师证书的概率.【答案】(1)35(2)13【解析】【分析】(1)先根据对立事件的概率公式结合独立事件概率乘积公式计算;(2)先应用对立事件的概率公式及独立事件概率乘积公式应用互斥事件求和计算;【小问1详解】记甲,乙,丙三人在医学综合笔试中合格依次为事件1A ,1B ,1C ,在实践考试中合格依次为2A ,2B ,2C ,设甲没有获得执业医师证书的概率为P124131()1525P P A A =-=-⨯=.【小问2详解】甲、乙、丙获得执业医师证书依次为12A A ,12B B ,12C C ,并且1A 与2A ,1B 与2B ,1C 与2C 相互独立,则()12412525P A A =⨯=,()12321432P B B =⨯=,()12224339P C C =⨯=,由于事件12A A ,12B B ,12C C 彼此相互独立,“恰有两人获得执业医师证书”即为事件:()()()()()()()()()121212121212121212A A B B C C A A B B C C A A B B C C ++,概率为212142141(1)(1)(1)52952952934P =⨯⨯-+⨯-⨯+-⨯⨯=.18.为深入学习贯彻习近平总书记关于禁毒工作重要指示精神,切实落实国家禁毒委员会《关于加强新时代全民禁毒宣传教育工作的指导意见》,巩固青少年毒品预防教育成果,大力推进防范青少年滥用涉麻精药品等成瘾性物质宣传教育活动,进一步增强青少年学生识毒防毒拒毒意识和能力,某市每年定期组织同学们进行禁毒知识竞赛活动,为了解同学们对禁毒知识的掌握情况,现从所有答卷中随机抽取100份作为样本,将样本的成绩(满分100分,成绩均为不低于40分的整数)分成六段:40,50,50,60,…,90,100得到如图所示的频率分布直方图.(1)求频率分布直方图中a 的值;(2)求样本成绩的第75百分位数;(3)已知落在50,60的平均成绩是56,方差是7,落在60,70的平均成绩为65,方差是4,求两组成绩的总平均数z 和总方差2s .【答案】(1)0.030(2)84(3)平均数为62;方差为23【解析】【分析】(1)根据频率之和为1即可求解,(2)根据百分位数的计算公式即可求解,(3)根据平均数的计算公式可求得两组成绩的总平均数;再由样本方差计算总体方差公式可求得两组成绩的总方差,即可求解.【小问1详解】由每组小矩形的面积之和为1得,0.050.10.2100.250.11a +++++=,解得0.030a =.【小问2详解】成绩落在[)40,80内的频率为0.050.10.20.30.65+++=,落在[)40,90内的频率为0.050.10.20.30.250.9++++=,显然第75百分位数[)80,90m ∈,由()0.65800.0250.75m +-⨯=,解得84m =,所以第75百分位数为84;【小问3详解】由频率分布直方图知,成绩在[)50,60的市民人数为1000.110⨯=,成绩在[)60,70的市民人数为1000.220⨯=,所以10562065621020z ⨯+⨯==+;由样本方差计算总体方差公式,得总方差为()(){}222110756622046562231020s ⎡⎤⎡⎤=+-++-=⎣⎦⎣⎦+.19.如图,三棱柱111ABC A B C -中,2AB =,且ABC V 与1ABA △均为等腰直角三角形,1π2ACB AA B ∠=∠=.(1)若1A BC 为等边三角形,证明:平面1AAB ⊥平面ABC ;(2)若二面角1A AB C --的平面角为π3,求以下各值:①求点1B 到平面1A CB 的距离;②求平面11B A C 与平面1A CB 所成角的余弦值.【答案】(1)证明见解析(2)①2217,②277【解析】【分析】(1)根据等腰直角三角形及等边三角形的性质可得各边长,再根据勾股定理证明线线垂直,根据线线垂直可证线面垂直,进而可证面面垂直;(2)根据二面角的定义可值1CEA 为等边三角形,①利用等体积转化法可得点到平面距离;②根据二面角的定义可得两平面夹角.【小问1详解】设AB 的中点为E ,连接CE ,1A E ,如图所示,因为ABC V 与1ABA △均为等腰直角三角形,1π2ACB A AB ∠=∠=,故1cos 452BC A B AB ==⋅︒=CE AB ⊥,且112CE AB ==,1112A E AB ==,因为1A BC 为等边三角形,故12==AC BC ,故22211A C CE A E =+,即1CE A E ⊥,又AB ,1A E ⊂平面1AA B ,1A E AB E ⋂=,故CE ⊥平面1AA B ,且CE ⊂平面ABC ,故平面1AA B ⊥平面ABC ;【小问2详解】①由(1)知,CE AB ⊥,1A E AB ⊥,且平面1AA B ⋂平面ABC AB =,故1CEA ∠即二面角1A AB C --的平面角,即1π3CEA ∠=,故1CEA 为等边三角形,则111CA CE A E ===,因为CE AB ⊥,1A E AB ⊥,1A E CE E ⋂=,且CE ,1A E ⊂平面1CEA ,所以AB ⊥平面1CEA ,设线段1A E 中点为F ,则1CF A E ⊥,AB CF ⊥,又AB ,1A E ⊂平面11ABB A ,1AB A E E = ,CF ∴⊥平面11ABB A ,又在三角形1CEA中易知:2CF =,∴11111112133226C A BB A BB V CF S -=⋅=⨯⨯⨯⨯= ,又在三角形1A BC 中,由11AC =,1BC A B ==则22211113cos 24BC A B A CA BC BC AB +-∠==⋅,1sin 4A BC ∠=,则11117sin 24A BC S AB BC A BC =⋅⋅∠= ,设点1B 到平面1A CB 的距离为d ,又由1111113C A BB B A BC A BC V V S d --==⋅⋅△,可得7d =,即求点1B 到平面1A CB 的距离为2217;②由①知,AB ⊥平面1CEA ,而11//AB A B ,故11A B ⊥平面1CEA ,且1A C ⊂平面1CEA ,故111A B AC ⊥,则2211115B C A B AC =+=,设1AC 和1B C 的中点分别为M ,N ,连接MN ,BN ,BM,则11//MN A B ,11112MN A B ==,1MN AC ⊥,又因为12BC A B ==1BM A C ⊥,且MN ⊂平面11A B C ,BM ⊂平面1A BC ,故BMN ∠即二面角11B A C B --的平面角,且222211722BM BC CM BC A C ⎛⎫=-=-= ⎪⎝⎭,因为112BB AA BC ===,故1BN B C ⊥,则222211322BN BC CN BC B C ⎛⎫=-=-= ⎪⎝⎭,所以222731744cos 277212BM MN BN BMN BM MN +-+-∠==⋅⨯⨯,故平面11B A C 与平面1A CB 所成角的余弦值为277.。

2024-2025学年天津市滨海学校高二数学上学期第一次月考试卷及答案解析

2024-2025学年天津市滨海学校高二数学上学期第一次月考试卷及答案解析

2024-2025学年天津市滨海学校高二数学上学期第一次月考试卷满分:150分考试时间:100分钟一、单选题(每题5分,共60分)1.20my ++=的倾斜角为π3,则m =()A.1B.1- C.2D.2-【答案】B 【解析】【分析】由直线的倾斜角求直线的斜率,结合直线方程得m 的值.20my ++=倾斜角为π33m-1m =-.故选:B2.若方程2242x y x y a +-+=表示圆,则实数a 的取值范围为()A.(,5)-∞-B.(5,)-+∞C.(,0)-∞ D.(0,+∞)【答案】B 【解析】【分析】方程配方,左边配成平方和的形式,右边为正即可表示圆.【详解】方程化为标准方程为22(2)(1)5x y a -++=+,有50a +>,∴5a >-..故选:B3.已知圆心为()2,1-的圆与y 轴相切,则该圆的标准方程是()A.()()22211x y ++-= B.()()22214x y ++-=C.()()22211x y -++= D.()()22214x y -++=【答案】B 【解析】【分析】圆的圆心为(2,1)-,半径为2,得到圆方程.【详解】根据题意知圆心为(2,1)-,半径为2,故圆方程为:22(2)(1)4x y ++-=.故选:B.4.圆22260x y x y +-+=的圆心到直线20x y -+=的距离为()A.B.2C.3D.【答案】D 【解析】【分析】求出圆心坐标,再利用点到直线距离公式即可.【详解】由题意得22260x y x y +-+=,即()()221310x y -++=,则其圆心坐标为()1,3-,则圆心到直线20x y -+=的距离为=故选:D.5.若直线:l y kx =2360x y +-=的交点位于第一象限,则直线l 的倾斜角的取值范围是()A.ππ,63⎡⎫⎪⎢⎣⎭ B.ππ,62⎛⎫⎪⎝⎭C.ππ,32⎛⎫⎪⎝⎭D.ππ,32⎡⎤⎢⎣⎦【答案】B 【解析】【分析】根据题意结合斜率、倾斜角之间的关系分析求解.【详解】因为直线:l y kx =-(0,P ,直线2360x y +-=与坐标轴的交点分别为()()3,0,0,2A B ,直线AP的斜率3AP k =,此时倾斜角为π6;直线BP 的斜率不存在,此时倾斜角为π2;所以直线l 的倾斜角的取值范围是ππ,62⎛⎫ ⎪⎝⎭.故选:B.6.若1:10l x my --=与()2:2310l m x y --+=是两条不同的直线,则“1m =-”是“12l l ∥”的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件【答案】C 【解析】【分析】利用两直线平行解出m 的值即可.【详解】由题意,若12l l ∥,所以()()()132m m ⨯-=--,解得1m =-或3m =,经检验,1m =-或3m =时,12l l ∥,则“1m =-”是“12l l ∥”的充分不必要条件,故选:C .7.四棱锥S ABCD -中,()4,2,3AB =- ,()4,1,0AD =- ,()3,1,4AS =--,则顶点S 到底面ABCD的距离为()A.1B.2C.3D.4【答案】A 【解析】【分析】先求出平面ABCD 的法向量,再根据点到面的距离的向量公式求解即可.【详解】设平面ABCD 的法向量为(),,n x y z =,则有423040n AB x y z n AD x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,令3x =,则12,4y z ==,所以()3,12,4n =,所以顶点S 到底面ABCD 的距离为91216113n AS n ⋅-+-== .故选:A .8.已知直线30x y λ++=与直线2610x y ++=间的距离为2,则λ=()A.92-或112B.9-C.9-或11D.6或4-【答案】A 【解析】【分析】运用两条平行直线间的距离公式计算即可.【详解】直线30x y λ++=可化为2620x y λ++=,所以102=,解得92λ=-或112λ=.故选:A.9.已知直线l 过定点()2,3,1A ,且方向向量为()0,1,1s = ,则点()4,3,2P 到l 的距离为()A.322B.2C.102D.【答案】A 【解析】【分析】先计算PA 与s的夹角的余弦值得出直线PA 与直线l 的夹角的正弦值,再计算点P 到直线l 的距离.【详解】由题意得()2,0,1PA =-- ,所以PA ==,又直线l 的方向向量为()0,1,1s=,则s ==,所以cos ,PA sPA s PA s⋅<>==-⋅,设直线PA 与直线l 所成的角为θ,则cos cos ,10PA s θ=<>= ,则sin 10θ=,所以点()4,3,2P 到直线l 的距离为sin 102d PA θ=⋅== .故选:A .10.已知点D 在△ABC 确定的平面内,O 是平面ABC 外任意一点,实数x ,y 满足32OD OC xOA yOB =--,则222x y +的最小值为()A.13 B.23C.1D.43【答案】D 【解析】【分析】根据空间四点共面及二次函数的最值求解.【详解】因为32OD OC xOA yOB =--,且,,,A B C D 四点共面,由空间四点共面的性质可知321x y --=,即22x y =-,所以()2222222442226846333x y y y y y y ⎛⎫+=-+=-+=-+≥ ⎪⎝⎭,所以当23y =时,222x y +有最小值43.故选:D11.已知集合()3,2,1y A x y y x ⎧⎫-==∈⎨⎬-⎩⎭R ,(){},4160,,B x y x ay x y =+-=∈R ,A B ≠∅ ,则实数a 的取值范围为()A.()(),44,-∞-+∞B.()(),22,-∞-+∞ C.()()(),22,44,-∞-⋃-⋃+∞ D.()()(),44,22,-∞-⋃-⋃+∞【答案】C 【解析】【分析】根据集合,A B 的元素以及A B ≠∅ 求得a 的取值范围.【详解】集合A 表示直线()321y x -=-,即21y x =+上除去点()1,3的点,集合B 表示直线4160x ay +-=上的点.因为A B ≠∅ ,所以直线21y x =+与4160x ay +-=相交,且交点不是点()1,3,所以240a +≠且43160a +-≠,解得2a ≠-且4a ≠.故选:C12.已知()11,A x y 、()22,B x y 为圆22:1C x y +=不同两点,且满足12OA OB ⋅=,则+)A.-B.2-C.2-D.【答案】D 【解析】【分析】求出π3AOB ∠=,题目转化为A 、B 到直线20x y +-=的距离之和,变换得到2AC BD EF +=,计算min2EF =-得到答案.【详解】因为1,1、2,2在圆221x y +=上,12OA OB ⋅=所以22111x y +=,22221x y +=,121212x x y y +=,且12121cos 2OA OB AOB x x y y OA OB⋅∠==+=⋅,因为0πAOB ≤∠≤,则π3AOB ∠=,因为1OA OB ==,则AOB V 是边长为1的等边三角形,表示A 、B 到直线20x y +-=的距离之和,原点O 到直线20x y +-=的距离为d ==如图所示:AC CD ⊥,BD CD ⊥,E 是AB 的中点,作EF CD ⊥于F ,且OE AB ⊥,2AC BD EF +=,2OE ==,故E 在圆2234x y +=上,min22EF d =-=.min2EF=故选:D.【点睛】关键点睛:本题的关键是首先求出π3AOB ∠=,再将题意转化为表示A 、B 到直线20x y +-=的距离之和,最后利用中位线性质和圆外点外圆上点距离最值问题解决.二、填空题(每题5分,共40分)13.已知经过()1,1A a a -+、()3,2B a 两点的直线l 的方向向量为()1,2-,则实数a 的值为______.【答案】1-【解析】【分析】由已知得出()2,1AB a a =+-,进而根据已知条件、结合向量共线列出方程,求解即可得出答案.【详解】由已知可得,()2,1AB a a =+-.又直线l 的方向向量为()1,2-,所以,()2,1AB a a =+-与()1,2-共线,所以有()()22110a a -+-⨯-=,解得1a =-.故答案为:1-.14.直三棱柱111ABC A B C -中,90BCA ∠=o ,11,D F 分别是1111A B A C ,的中点,1BC AC CC ==,则11BD AF 与所成角的余弦值为___________【答案】3010【解析】【分析】建立空间直角坐标系,利用向量的夹角即可求解.【详解】依题意可知1,,AC BC CC 两两相互垂直,由此建立如图所示空间直角坐标系,设12BC AC CC ===,则()()()()()()11112,0,0,1,0,2,1,0,2,0,2,0,1,1,2,1,1,2A F AF B D BD =-=-,设1BD 与1AF 所成角为α,则1111cos 10AF BD AF BD α⋅==⋅.故答案为:1015.已知直线l 的倾斜角为4,sin 5αα=,且这条直线l 经过点()3,5P ,则直线l 的一般式方程为__________.【答案】4330x y -+=或43270x y +-=【解析】【分析】先由倾斜角求直线的斜率,然后写出直线的点斜式方程,最后化为直线的一般式方程.【详解】因为4sin 5α=,且[)0,πα∈,则cos 53α==±,所以直线l 的斜率为4tan 3k α==±,又因为直线l 经过点()3,5P ,则直线l 的方程为()4533y x -±-=,所以直线l 的一般式方程为4330x y -+=或43270x y +-=.故答案为:4330x y -+=或43270x y +-=.16.如图,在平行六面体1111ABCD A B C D -中,底面是边长为1的正方形,若1160A AB A AD ∠=∠=,且13AA =,则1AC 的长为__________.【解析】【分析】由111AC AB BC CC AB AD AA =++=++,借助模长公式得出1AC 的长.【详解】因为111AC AB BC CC AB AD AA =++=++所以()2211AC AB AD AA =++222111222AB AD AA AB AD AB AA AD AA =+++⋅+⋅+⋅ 11119202132131722=+++⨯+⨯⨯⨯+⨯⨯⨯=即1AC =17.如图,已知A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是_________.【答案】【解析】【分析】求出P 关于直线AB 和y 的对称点,由两个对称点间距离得结论.【详解】设点P 关于直线AB 的对称点为(,)D x y ,直线AB 方程为4x y +=,因此122422yx x y ⎧=⎪⎪-⎨+⎪+=⎪⎩.解得42x y =⎧⎨=⎩,即(4,2)D ,P 关于y 轴的对称点为C (-2,0),则光线所经过的路程PMN 的长为CD =.故答案为:.18.①坐标系中,经过三点()()()0,0,1,1,2,0的圆的方程为___________②过()()5,0,2,1-两点,且圆心在直线3100x y --=上的圆的标准方程为___________【答案】①.2220x y x +-=②.()()221325x y -++=【解析】【分析】①设所求圆的一般方程为220x y Dx Ey F ++++=,将三个点的坐标代入圆的一般方程,可得出关于D 、E 、F 的方程组,解出这三个未知数的值,可得出圆的方程,进而可求得圆心坐标和半径.②首先设圆的标准方程为()()222x a y b r -+-=,根据题意得到()()()2222225213100a b r a b r a b ⎧-+=⎪⎪--+-=⎨⎪--=⎪⎩,再解方程即可.【详解】①设所求圆的一般方程为220x y Dx Ey F ++++=,由题意可得020240F D E F D F =⎧⎪+++=⎨⎪++=⎩,解得200D E F =-⎧⎪=⎨⎪=⎩,所以,所求圆的方程为2220x y x +-=②设圆的标准方程为()()222x a y b r -+-=,由题知:()()()2222225121331005a b r a a b r b a b c ⎧-+==⎧⎪⎪⎪--+-=⇒=-⎨⎨⎪⎪--==⎩⎪⎩,所以标准方程为()()221325x y -++=.故答案为:2220x y x +-=,()()221325x y -++=19.如图,圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面中心,M 为SO 中点,动点P 在圆锥底面内(包括圆周).若AM ⊥MP ,则点P 形成的轨迹长度为________,点S 与P 距离的最小值是________.【答案】①.2②.【解析】【分析】建系,根据空间向量的垂直关系可得点P 的轨迹方程为34y =.空1:根据圆的弦长公式运算求解;空2:根据空间中两点间距离公式运算求解.【详解】由题意可知,建立空间直角坐标系,如图所示.则()()(0,1,0,0,1,0,0,0,,0,0,3A B S M ⎛- ⎝⎭,设(),,0P x y,则0,1,,,,22AM MP x y ⎛⎛==- ⎝⎭⎝⎭uuu r uuu r ,因为AM ⊥MP,则01022AM MP x y ⎛⎫⋅=⨯+⨯+-= ⎪ ⎪⎝⎭uuu r uuu r ,解得34y =,所以点P 的轨迹方程为34y =,空1:根据圆的弦长公式,可得点P形成的轨迹长度为2=;空2:因为SP =,所以当0x =时,点S 与P距离的最小,其最小值为574.故答案为:2;4.20.已知圆22:(6)9C x y -+=,点M 的坐标为(2,4),过点(4,0)N 作直线l 交圆C 于A B 、两点,则MA MB +的取值范围为______【答案】812MA MB ≤+≤.【解析】【分析】取AB 中点为D ,连接MD ,CD ,确定点D 的轨迹为以NC 为直径的圆,根据MF r MD MFr -≤≤+得到答案.【详解】取AB 中点为D ,连接MD ,如图所示:则CD ND ⊥,又()6,0C,(4,0)N ,(2,4)M 故点D 的轨迹为以NC 为直径的圆,圆心为()5,0G ,半径为1r =,因为2MA MB MD +=,5MG =,所以MG r MD MG r -≤≤+,即46MD ≤≤,则812MA MB ≤+≤.故答案为:812MA MB ≤+≤.三、解答题(前两题每题12分,后两题每题13分,共50分)21.已知点()1,2P -,直线1:430l x y ++=和2:3550l x y --=(1)过点P 作1l 的垂线PH ,求垂足H 的坐标;(2)过点P 作l 分别于12,l l 交于点A B 、,若P 恰为线段AB 的中点,求直线l 的方程.【答案】(1)2133,1717H -⎛⎫⎪⎝⎭(2)310x y ++=【解析】【分析】(1)由直线的位置关系求PH 方程,再联立求解交点坐标,(2)设出A 点坐标,由中点表示B 点坐标,分别代入直线方程联立求解.【小问1详解】1:430l x y ++=,即43y x =--,则14PH k =,直线PH 为()1124y x =++,即490x y -+=,联立方程430490x y x y ++=⎧⎨-+=⎩,解得21173317x y ⎧=-⎪⎪⎨⎪=⎪⎩,故2133,1717H -⎛⎫ ⎪⎝⎭.【小问2详解】不妨设()00,A x y ,则()002,4B x y ---,则()()0000430325450x y x y ++=⎧⎨-----=⎩,解得0025x y =-⎧⎨=⎩,故直线l 过点()1,2P -和点()1522,5,321k --==--+,故直线方程为()312y x =-++,即310x y ++=.22.如图,在四棱锥P ABCD -中,四边形ABCD 是边长为3的正方形,PA ⊥平面ABCD ,PC =,点E 是棱PB 的中点,点F 是棱PC 上的一点,且2PF FC =.(1)证明:平面AEC ⊥平面PBC ;(2)求平面AEF 和平面AFC 夹角的大小.【答案】(1)证明见解析(2)4π.【解析】【分析】(1)以A 为坐标原点,,,AB AD AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,分别求出平面AEC 与平面PBC 的法向量,从而可证明.(2)分别求出平面AEF 和平面AFC 的法向量,利用向量法可求解.【小问1详解】如图,以A 为坐标原点,,,AB AD AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,所以()()()0,0,0,3,0,0,3,3,0A B C ,设()0,0,0()P t t >,则PC ==,解得3t =,即()0,0,3P .则()3333,0,,,0,,3,3,02222E AE AC ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,设平面AEC 的一个法向量为(),,n x y z =,则0,0,n AE n AC ⎧⋅=⎪⎨⋅=⎪⎩ ,即33022330x z x y ⎧+=⎪⎨⎪+=⎩令1x =,解得1,1y z =-=-,所以平面AEC 的一个法向量为()1,1,1n =--.因为()()0,3,0,3,0,3BC BP ==- ,设平面PBC 的一个法向量为()111,,m x y z =,所以0,0,m BC m BP ⎧⋅=⎪⎨⋅=⎪⎩即11130330y x z =⎧⎨-+=⎩,令11x =,解得110,1y z ==,所以平面PBC 的一个法向量为()1,0,1m =,又0m n ⋅=,所以平面AEC ⊥平面PBC ;【小问2详解】()()113,3,31,1,133CF CP ==⨯--=-- ,所以()2,2,1AF AC CF =+=.设平面EAF 的一个法向量为()1222,,n x y z =,所以1100n AE n AF ⎧⋅=⎪⎨⋅=⎪⎩ ,即22222330,22220,x z x y z ⎧+=⎪⎨⎪++=⎩令21x =,解得221,12y z =-=-,所以平面EAF 的一个法向量为111,,12n ⎛⎫=-- ⎪⎝⎭.设平面CAF 的一个法向量为()2333,,n x y z =,则2200n AC n AF ⎧⋅=⎪⎨⋅=⎪⎩,即33333330,220,x y x y z +=⎧⎨++=⎩令31x =,解得331,0y z =-=,所以平面CAF 的一个法向量为()21,1,0n =-.12121232cos ,2n n n n n n ⋅==⋅,所以平面AEF 和平面AFC 夹角的大小为4π23.已知圆M与直线340x +=相切于点(,圆心M 在x 轴上.(1)求圆M 的标准方程;(2)若直线l :(21)(1)74m x m y m +++=+()m ∈R 与圆M 交于P ,Q 两点,求弦PQ 的最短长度.【答案】(1)22(4)16x y -+=(2)【解析】【分析】(1)根据已知条件,设出圆的方程,再结合两点之间的距离公式,以及直线垂直的性质,即可求解.(2)先求出直线l 的定点,再判断定点在圆内,再结合垂径定理,以及两点之间的距离公式,即可求解.【小问1详解】依题意, 圆心M 在x 轴上,∴可设圆的方程为222()x a y r -+=,圆M与直线340x -+=相切于点,∴()2217711a r a⎧-+=⎪⎨=-⎪-⎩,解得4a =,4r =,故圆的方程为22(4)16x y -+=.【小问2详解】直线l :(21)(1)74m x m y m +++=+,()2740m x y x y ∴+-++-=,令27040x y x y +-=⎧⎨+-=⎩,解得31x y =⎧⎨=⎩,∴直线l 过定点(3,1)D ,又圆M 的方程为22(4)16x y -+=.所以圆心(4,0)M ,半径4r=,4<,故定点(3,1)D 在圆M 的内部,当直线MD 与直线l 垂直时,弦PQ 取得最小值,()3,1D ,(4,0)M ,∴DM =,∴弦PQ 的最短长度为==.24.如图,在四棱锥E ABCD -中,平面ABCD ⊥平面ABE ,//AB DC ,,222AB BC AB BC CD ⊥===,AE BE ==M 为BE 的中点.(1)求证://CM 平面ADE ;(2)在线段AD 上是否存在一点N ,使直线MD 与平面BEN 所成的角正弦值为21,若存在求出AN 的长,若不存在说明理由.【答案】(1)证明见解析(2)存在求出AN 的.【解析】【分析】(1)利用线面平行判定定理证明;(2)利用空间向量的坐标运算,求直线与平面的夹角的正弦值,即可求解.【小问1详解】取AE 的中点P ,连接,,MP DP∵AE BE ==∴ABE 是等腰三角形,∵点M 为BE 的中点.∴.//MP AB ,2=MP AB ,∵,2//AB DC AB CD =,可得四边形CDPM 是平行四边形,∴//CM DP ,又∵DP ⊂平面,ADE CM ⊄平面ADE ,∴.//CM 平面ADE ;【小问2详解】取AB 中点为O ,连接,DO EO ,则有//DO BC ,因为,AB BC ⊥所以,AB DO ⊥因为平面ABCD ⊥平面ABE ,交线为AB ,DO ⊂平面ABCD ,所以DO ⊥平面ABE ,且,OE OB ⊂平面ABE ,所以,DO OE DO OB ⊥⊥,且在等腰三角形ABE 中,OE OB ⊥,所以以O 为坐标原点,建立如图所示空间直角坐标系,())()()0,1,0,,0,1,1,0,0,1,B E CD ()()1,,0,0,1,0,0,1,1,22M A AD ⎛⎫=-= ⎪ ⎪⎝⎭假设AD 上存在一点N ,设()01,AN AD λλ=≤≤则()())0,1,,0,2,,1,0,N BN BE λλλλ-=-=-1,,1,22MD ⎛⎫=-- ⎪ ⎪⎝⎭设平面BEN 的一个法向量为(,,)m x y z =,则(2)0m BN y z m BE y λλ⎧⋅=-+=⎪⎨⋅=-=⎪⎩,取,y λ=则2x z λ==-,所以,2m λλ⎫=-⎪⎭,设直线MD 与平面BEN 所成的角为α,则sin α=,即cos ,21MD m MD m MD m⋅==⋅,整理得,21634130λλ-+=,解得12λ=或138λ=(舍去),故得到AN 的长为1222AN AD ==.。

2024-2025学年江西省抚州市临川二中高二(上)第一次月考数学试卷(含答案)

2024-2025学年江西省抚州市临川二中高二(上)第一次月考数学试卷(含答案)

2024-2025学年江西省抚州市临川二中高二(上)第一次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.若直线3x +2y−3=0和直线6x +my +1=0互相平行,则m 的值为( )A. −9B. 32C. −4D. 42.若两个非零向量a ,b 的夹角为θ,且满足|a |=2|b |,(a +3b )⊥a ,则cosθ=( )A. −23B. −13C. 13D. 233.已知直线3x−(a−2)y−2=0与直线x +ay +8=0互相垂直,则a =( )A. 1B. −3C. −1或3D. −3或14.为了得到函数y =sin (5x +π3)的图象,只要将函数y =sin5x 的图象( )A. 向左平移π15个单位长度 B. 向右平移π15个单位长度C. 向左平移π3个单位长度D. 向右平移π3个单位长度5.过点(3,−2)且与椭圆4x 2+9y 2−36=0有相同焦点的椭圆方程是( )A. x 215+y 210=1 B. x 25+y 210=1 C. x 210+y 215=1 D. x 225+y 210=16.已知圆的方程为x 2+y 2−2x =0,M(x,y)为圆上任意一点,则y−2x−1的取值范围是( )A. [− 3,3]B. [−1,1]C. (−∞,− 3]∪[3,+∞)D. [1,+∞)∪(−∞,−1]7.已知圆C :(x−3)2+(y−4)2=1和两点A(−m ,0),B(m ,0)(m >0),若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为 ( )A. 7B. 6C. 5D. 48.已知向量a ,b 满足|a |=1,|2a +b |+|b |=4,则|a +b |的取值范围是( )A. [2−3,2]B. [1,3]C. [2− 3,2+3]D. [3,2]二、多选题:本题共3小题,共18分。

山东省济宁市2024-2025学年高二上学期9月月考数学试题含答案

山东省济宁市2024-2025学年高二上学期9月月考数学试题含答案

济宁市高二年级第一学期九月模块测试数学试题(答案在最后)注意事项:1.答卷前,先将自己的考生号等信息填写在试卷和答题纸上,并在答题纸规定位置贴条形码. 2.本试卷满分150分,分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第2页,第Ⅱ卷为第3页至第4页.3.选择题的作答:每小题选出答案后,用28铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.4.非选择题的作答:用0.5mm黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.第Ⅰ卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.以下事件是随机事件的是()A.标准大气压下,水加热到100C ,必会沸腾B.走到十字路口,遇到红灯C.长和宽分别为,a b的矩形,其面积为abD.实系数一元一次方程必有一实根【答案】B【解析】【分析】根据随机事件的概念判断即可【详解】解:A.标准大气压下,水加热到100℃必会沸腾,是必然事件;故本选项不符合题意;B.走到十字路口,遇到红灯,是随机事件;故本选项符合题意;C.长和宽分别为,a b的矩形,其面积为ab是必然事件;故本选项不符合题意;D.实系数一元一次方程必有一实根,是必然事件.故本选项不符合题意.故选:B.2.抽查10件产品,设事件A:至少有两件次品,则A的对立事件为A.至多两件次品B.至多一件次品C.至多两件正品D.至少两件正品【答案】B【解析】【详解】试题分析:事件A 不包含没有次品或只有一件次品,即都是正品或一件次品9件正品,所以事件A 的对立事件为至多一件次品.故B 正确.考点:对立事件.3.两名同学分3本不同的书,其中一人没有分到书,另一人分得3本书的概率为()A.12B.14C.13D.16【答案】B 【解析】【分析】列举出所有的可能事件,结合古典概型概率计算公式,计算出所求概率.【详解】两名同学分3本不同的书,记为,,a b c ,基本事件有(0,3),(1a ,2),(1b ,2),(1c ,2),(2,1a ),(2,1b ),(2,1c ),(3,0),共8个,其中一人没有分到书,另一人分到3本书的基本事件有2个,∴一人没有分到书,另一人分得3本书的概率p =28=14.故选:B4.掷一个骰子的试验,事件A 表示“小于5的偶数点出现”,事件B 表示“小于5的点数出现”,则一次试验中事件A B +发生的概率为()A.13B.12C.23D.56【答案】C 【解析】【分析】由互斥事件的概率可知(()(1())P A B P A P B +=+-,从而得解.【详解】由已知得:1()3P A =,2()3P B =,事件B 表示“小于5的点数出现”,则事件B 表示“出现5点或6点”故事件A 与事件B 互斥,122()()(1())(1)333P A B P A P B ∴+=+-=+-=故选:C5.直三棱柱111ABC A B C -中,若1,,CA a CB b CC c ===,则1A B = ()A.a b c+-r r r B.a b c-+r r r C.a b c -++D.a b c-+- 【答案】D 【解析】【分析】由空间向量线性运算法则即可求解.【详解】()11111A A B B a b B A B c CC C CB =+=-+=-+--+.故选:D .6.已知空间向量0a b c ++=,2a = ,3b = ,4c = ,则cos ,a b = ()A.12B.13C.12-D.14【答案】D 【解析】【分析】设,,AB a BC b CA c ===,在ABC V 中由余弦定理求解.【详解】空间向量0a b c ++= ,2a = ,3b = ,4c =,则,,a b c三向量可能构成三角形的三边.如图,设,,AB a BC b CA c === 2a = ,则ABC V 中,||2,||3,||4AB BC CA === 2a =,222||||cos ,cos 2AB BC CA a b ABC AB BC+-∴=-∠=-⨯⨯ 491612234+-=-=⨯⨯.故选:D7.端午节放假,甲回老家过节的概率为13,乙,丙回老家过节的概率分别为11,45.假定三人的行动相互之间没有影响,那么这段时间内至少1人回老家过节的概率为()A.5960 B.35 C.12 D.160【答案】B【解析】【分析】这段时间内至少1人回老家过节的对立事件是这段时间没有人回老家过节,由此能求出这段时间内至少1人回老家过节的概率.【详解】端午节放假,甲回老家过节的概率为13,乙,丙回老家过节的概率分别为11,45.假定三人的行动相互之间没有影响,这段时间内至少1人回老家过节的对立事件是这段时间没有人回老家过节,∴这段时间内至少1人回老家过节的概率为:1113 11113455 p⎛⎫⎛⎫⎛⎫=----=⎪⎪⎪⎝⎭⎝⎭⎝⎭.故选:B.8.在调查运动员是否服用过兴奋剂的时候,给出两个问题作答,无关紧要的问题是:“你的身份证号码的尾数是奇数吗?”敏感的问题是:“你服用过兴奋剂吗?”然后要求被调查的运动员掷一枚硬币,如果出现正面,就回答第一个问题,否则回答第二个问题.由于回答哪一个问题只有被测试者自己知道,所以应答者一般乐意如实地回答问题.如我们把这种方法用于300个被调查的运动员,得到80个“是”的回答,则这群人中服用过兴奋剂的百分率大约为()A.4.33%B.3.33%C.3.44%D.4.44%【答案】B【解析】【分析】推理出回答第一个问题的150人中大约有一半人,即75人回答了“是”,故回答服用过兴奋剂的人有5人,从而得到答案.【详解】因为抛硬币出现正面朝上的概率为12,大约有150人回答第一个问题,又身份证号码的尾数是奇数或偶数是等可能的,在回答第一个问题的150人中大约有一半人,即75人回答了“是”,共有80个“是”的回答,故回答服用过兴奋剂的人有5人,因此我们估计这群人中,服用过兴奋剂的百分率大约为5150≈3.33%.故选:B二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,选对但不全的得部分分,有选错的得0分.9.在平行六面体ABCD A B C D -''''中,若AB 所在直线的方向向量为(2,1,3)-,则C D ''所在直线的方向向量可能为()A.(2,1,3)B.(2,1,3)--C.(4,2,6)-D.(4,2,6)-【答案】BC 【解析】【分析】由已知可得//AB C D '',所以它们的方向向量共线,利用向量共线的坐标关系,即可判断各个选项.【详解】由已知可得//AB C D '',故它们的方向向量共线,对于B 选项,(2,1,3)(2,1,3)--=--,满足题意;对于C 选项,(4,2,6)2(2,1,3)-=-,满足题意;由于A 、D 选项不满足题意.故选:BC.10.下列各组事件中,是互斥事件的是()A.一个射手进行一次射击,命中环数大于8与命中环数小于6B.统计一个班的数学成绩,平均分不低于90分与平均分不高于90分C.播种100粒菜籽,发芽90粒与发芽80粒D.检验某种产品,合格率高于70%与合格率低于70%【答案】ACD 【解析】【分析】根据互斥事件的定义,两个事件不会同时发生,命中环数大于8与命中环数小于6,发芽90粒与发芽80粒,合格率高于0070与合格率为0070均为互斥事件,而平均分数不低于90分与平均分数不高于90分,当平均分为90分时可同时发生,即得解.【详解】根据互斥事件的定义,两个事件不会同时发生,对于A ,一个射手进行一次射击,命中环数大于8与命中环数小于6,为互斥事件;对于B ,统计一个班级数学期中考试成绩,平均分数不低于90分与平均分数不高于90分当平均分为90分时可同时发生,不为互斥事件;对于C ,播种菜籽100粒,发芽90粒与发芽80粒,为互斥事件;对于D ,检查某种产品,合格率高于0070与合格率为0070,为互斥事件;故选:ACD.11.已知点P 为三棱锥O ABC -的底面ABC 所在平面内的一点,且12OP OA mOB nOC =+-(m ,n R ∈),则m ,n 的值可能为()A.1m =,12n =- B.12m =,1n = C.12m =-,1n =- D.32m =,1n =【答案】CD 【解析】【分析】根据平面向量基本定理,结合空间向量加法的几何意义进行求解即可.【详解】因为点P 为三棱锥O ABC -的底面ABC 所在平面内的一点,所以由平面向量基本定理可知:()()AP y AC z AB AO OP y AO OC z AO OB =+⇒+=+++ ,化简得:(1)OP y z OA yOC zOB =--++,显然有11y z y z --++=,而12OP OA mOB nOC =+- ,所以有11122m n m n +-=⇒-=,当1m =,12n =-时,32m n -=,所以选项A 不可能;当12m =,1n =时,12m n -=-,所以选项B 不可能;当12m =-,1n =-时,12m n -=,所以选项C 可能;当32m =,1n =时,12m n -=,所以选项D 可能,故选:CD第Ⅱ卷(非选择题)三.填空题:本题共3小题,每小题5分,共15分.12.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________.【答案】34【解析】【详解】从长度分别为2,3,4,5的四条线段中任意取出三条这一事件共有4种,而不能构成三角形的情形为2,3,5.所以这三条线段为边可以构成三角形的概率是P =34.13.已知事件A ,B ,C 两两互斥,且()0.3P A =,()0.6P B =,()0.2P C =,则()P A B C ⋃⋃=______.【答案】0.9##910【解析】【分析】由互斥事件与对立事件的相关公式求解【详解】由题意得()1()0.4P B P B =-=,则()()()()0.9P A P P A B C B P C ⋃⋃=++=.故答案为:0.914.在长方体1111ABCD A B C D -中,122AB AA AD ===,以D 为原点,DA ,DC ,1DD方向分别为x 轴,y 轴,z 轴正方向建立空间直角坐标系,则1AC =______,若点P 为线段AB 的中点,则P 到平面11A BC 距离为______.【答案】①.(1,2,2)-②.6【解析】【分析】第一空,根据向量的坐标运算可得答案;第二空,求出平面11A BC 的法向量,利用向量法求点到平面的距离即可得解.【详解】如图,建立空间直角坐标系,因为122AB AA AD ===,则(1,0,0)A ,1(0,2,2)C ,1(1,0,2)A ,(1,2,0)B ,(1,1,0)P ,所以1(1,2,2)AC =- ,11(1,2,0)A C =- ,1(0,2,2)A B =- ,(0,1,0)PB =,设平面11A BC 的法向量为(,,)n x y z = ,则11100A B n A C n ⎧⋅=⎪⎨⋅=⎪⎩,即22020y z x y -=⎧⎨-+=⎩,令1y =,则2,1x z ==,故(2,1,1)n =,则P 到平面11A BC距离为66n PB d n⋅== .故答案为:(1,2,2)-;66.四.解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(1)已知2,3a b == ,且a b ⊥ 求2a b a b +⋅()(-)(2)已知a b a b +=- ,求a b⋅ 【答案】(1)1-(2)0【解析】【分析】(1)由已知,利用向量数量积运算,结合向量垂直的向量表示即可求解;(2)由a b a b +=-,两边平方,展开运算即可.【详解】(1)因为2,3a b == ,且a b ⊥ ,所以22222222031a b a b a a b b +⋅+⋅-=⨯+-=- ()(-)=.(2)因为a b a b +=- ,则22a b a b +=- ,所以222222a a b b a a b b +⋅+=-⋅+ ,化简得22a b a b ⋅=-⋅ ,所以0a b ⋅=.16.已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i )试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.【答案】(1)3,2,2(2)(i)见解析(ii)5 21【解析】【详解】分析:(Ⅰ)结合人数的比值可知应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(Ⅱ)(i)由题意列出所有可能的结果即可,共有21种.(ii)由题意结合(i)中的结果和古典概型计算公式可得事件M发生的概率为P(M)=5 21.详解:(Ⅰ)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(Ⅱ)(i)从抽出的7名同学中随机抽取2名同学的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21种.(ii)由(Ⅰ),不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A,B},{A,C},{B,C},{D,E},{F,G},共5种.所以,事件M发生的概率为P(M)=5 21.点睛:本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识.考查运用概率知识解决简单实际问题的能力.17.甲、乙二人进行一次围棋比赛,采用5局3胜制,约定先胜3局者获得这次比赛的胜利,同时比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.(1)求再赛2局结束这次比赛的概率;(2)求甲获得这次比赛胜利的概率.【答案】(1)0.52(2)0.648【解析】【分析】(1)再赛2局结束这次比赛分“第三、四局甲胜”与“第三、四局乙胜”两类情况,根据根据互斥事件的概率和及独立事件同时发生的概率求解可得;(2)由题意,甲获得这次比赛胜利只需后续比赛中甲先胜两局即可,根据互斥事件的概率和及独立事件同时发生的概率求解即可.【小问1详解】用i A 表示事件“第i 局甲胜”,j B 表示事件“第j 局乙胜”(,3,4,5i j =),设“再赛2局结束这次比赛”为事件A ,则3434A A A B B =+,由于各局比赛结果相互独立,且事件34A A 与事件34B B 互斥.所以()()()()()()()()343434343434P A P A A B B P A A P B B P A P A P B P B =+=+=+0.60.60.40.40.52=⨯+⨯=.故再赛2局结束这次比赛的概率为0.52.【小问2详解】记“甲获得这次比赛胜利”为事件B ,因前两局中,甲、乙各胜一局,故甲成为胜方当且仅当在后面的比赛中,甲先胜2局,从而34345345B A A B A A A B A =++,由于各局比赛结果相互独立,且事件34A A ,345B A A ,345A B A 两两互斥,所以()0.60.60.40.60.60.60.40.60.648P B =⨯+⨯⨯+⨯⨯=.故甲获得这次比赛胜利的概率为0.648.18.如图所示,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,ABAF =1,M 是线段EF 的中点.求证:(1)AM ∥平面BDE ;(2)AM ⊥平面BDF.【答案】(1)见解析(2)见解析【解析】【详解】(1)建立如图所示的空间直角坐标系,设AC∩BD =N ,连结NE.则N 22,,022⎛⎫ ⎪ ⎪⎝⎭,E(0,0,1),220),M 22,,122⎛⎫ ⎪ ⎪⎝⎭.∴NE =22,,122⎛⎫-- ⎪ ⎪⎝⎭,AM =22,,122⎛⎫-- ⎪ ⎪⎝⎭.∴NE =AM 且NE 与AM 不共线.∴NE ∥AM.∵NE ⊂平面BDE ,AM ⊄平面BDE ,∴AM ∥平面BDE.(2)由(1)知AM =22,,122⎛⎫-- ⎪ ⎪⎝⎭,∵2,0,0),22,1),∴DF =(02,1),∴AM ·DF=0,∴AM ⊥DF.同理AM ⊥BF.又DF∩BF =F ,∴AM ⊥平面BDF.19.在长方体1111ABCD A B C D -中,11AA AD ==,E 为线段CD 中点.(1)求直线1B E 与直线1AD 所成的角的余弦值;(2)在棱1AA 上是否存在一点P ,使得//DP 平面1B AE ?若存在,求AP 的长;若不存在,说明理由.【答案】(1)0(2)存在,12AP =【解析】【分析】(1)建立空间直角坐标系,设AB a =,写出点的坐标,求出110B E AD ⋅= ,得到异面直线夹角余弦值为0;(2)设()00,0,P z ,求出平面1B AE 的一个法向量1,,2a n a ⎛⎫=-- ⎪⎝⎭,根据0DP n ⋅= 得到方程,求出12z =,故存在点P ,使得//DP 平面1B AE ,此时12AP =.【小问1详解】以A 为坐标原点,1,,AB AD AA 所在直线分别为,,x y z轴,建立空间直角坐标系,设AB a =,则()()()11,0,1,,1,0,0,0,0,0,1,12a B a E A D ⎛⎫ ⎪⎝⎭,故()()()()11,1,0,0,1,1,1,0,1,10,0,00,1,122a a B E a AD ⎛⎫⎛⎫=-=--=-= ⎪ ⎪⎝⎭⎝⎭ ,则()11,1,10,1,11102a B E AD ⎛⎫⋅=--⋅=-= ⎪⎝⎭,故直线1B E 与直线1AD 所成的角的余弦值为0;【小问2详解】存在满足要求的点P ,理由如下:设棱1AA 上存在点()00,0,P z ,使得//DP 平面1B AE ,0,1,0,则()00,1,DP z =- ,设平面1B AE 的一个法向量为(),,n x y z =,则()()()1,,,0,10,,,1,0022n AB x y z a ax z a a n AE x y z x y ⎧⋅=⋅=+=⎪⎨⎛⎫⋅=⋅=+= ⎪⎪⎝⎭⎩,取1x =得,2a y z a =-=-,故1,,2a n a ⎛⎫=-- ⎪⎝⎭,要使//DP 平面1B AE ,则n DP ⊥,即()00,1,1,,02a DP n z a ⎛⎫⋅=-⋅--= ⎪⎝⎭ ,所以002a az -=,解得012z =,故存在点P ,使得//DP 平面1B AE ,此时12AP =.。

北京市顺义区2024-2025学年高二上学期10月月考数学试卷含答案

北京市顺义区2024-2025学年高二上学期10月月考数学试卷含答案

顺义2024-2025学年第一学期月考高二年级数学试卷(答案在最后)一、选择题(每小题5分,共40分,四个选项中,只有一项是符合题目要求的,将答案填涂在答题卡相应的位置上)1.空间任意四个点,,,A B C D ,则DA CD CB +-=()A.DBB.ACC.ABD.BA【答案】D 【解析】【分析】根据空间向量加减运算法则得到答案.【详解】C D C A A D B CA B CB +-=-=.故选:D2.直线20x --=的倾斜角是()A.30︒B.45︒C.60︒D.75︒【答案】A 【解析】【分析】先得到直线斜率,从而求出倾斜角.【详解】3232033x y x --=⇒=-,故斜率为33,故倾斜角为30︒.故选:A3.若直线经过()(1,0,A B 两点,则直线AB 的倾斜角为()A.30︒B.45︒C.60︒D.135︒【答案】C 【解析】【分析】根据两点坐标求出直线的斜率,进而求出倾斜角.【详解】由直线经过()(1,0,A B 两点,可得直线的斜率为3021-=-,设直线的倾斜角为θ,有tan θ=,又0180θ≤< ,所以60θ= .故选:C.4.已知直线l 的一个方向向量为()3,2a =-,则直线l 的斜率为()A.32-B.23-C.23 D.32【答案】B 【解析】【分析】根据直线斜率公式结合已知直线的方向向量可以直接求出直线的斜率.【详解】因为直线l 的一个方向向量为()3,2a =-,所以直线l 的斜率为23-.故选:B5.过点(1,3)P -且垂直于直线230x y -+=的直线方程为()A.210x y +-=B.250x y +-= C.250x y +-= D.270x y -+=【答案】A 【解析】【分析】由题意可得直线230x y -+=的斜率为12,由垂直得垂直直线的斜率,然后由点斜式写出直线方程,化为一般式可得结果.【详解】解:由题意可得直线230x y -+=的斜率为12,则过点(1,3)P -且垂直于直线230x y -+=的直线斜率为2-,直线方程为32(1)y x -=-+,化为一般式为210x y +-=.故选:A .6.若直线l 的方向向量为()2,1,m ,平面α的法向量为11,,22⎛⎫⎪⎝⎭,且l α⊥,则m =()A.1B.2C.3D.4【答案】D 【解析】【分析】由l α⊥可知,直线l 的方向向量与平面α的法向量平行,列方程组求解即可.【详解】∵直线l 的方向向量为()2,1,m ,平面α的法向量为11,,22⎛⎫⎪⎝⎭,且l α⊥,∴直线l 的方向向量与平面α的法向量平行,则存在实数λ使()12,1,1,,22m λ⎛⎫= ⎪⎝⎭,∴21122m λλλ=⎧⎪⎪=⎨⎪=⎪⎩,解得2,4m λ==,故选:D.7.如图,空间四边形OABC 中,,,OA a OB b OC c ===,点M 在OA 上,且23OM OA = ,点N 为BC 中点,则MN等于()A.111222a b c +-B.211322a b c-++C.221332a b c +- D.221332a b c-+- 【答案】B 【解析】【分析】根据给定的几何体,利用已知的空间基底表示向量MN.【详解】在空间四边形OABC 中,11111((323))2)2(MN MA AN OA AB AC OA OB OA OC OA =+=++=+-+- 211211322322OA OB OC a b c =-++=-++.故选:B8.如图,在棱长为2的正方体1111ABCD A B C D -中,P 为线段11A C 的中点,Q 为线段1BC 上的动点,则下列结论正确的是()A.存在点Q ,使得//PQ BDB.存在点Q ,使得PQ ⊥平面11AB C DC.三棱锥Q APD -的体积是定值D.存在点Q ,使得PQ 与AD 所成的角为π6【答案】B 【解析】【分析】A 由11//BD B D 、11B D PQ P = 即可判断;B 若Q 为1BC 中点,根据正方体、线面的性质及判定即可判断;C 只需求证1BC 与面APD 是否平行;D 利用空间向量求直线夹角的范围即可判断.【详解】A :正方体中11//BD B D ,而P 为线段11A C 的中点,即为11B D 的中点,所以11B D PQ P = ,故,BD PQ 不可能平行,错;B :若Q 为1BC 中点,则1//PQ A B ,而11A B AB ⊥,故1PQ AB ⊥,又AD ⊥面11ABB A ,1A B ⊂面11ABB A ,则1A B AD ⊥,故PQ AD ⊥,1AB AD A ⋂=,1,AB AD ⊂面11AB C D ,则PQ ⊥面11AB C D ,所以存在Q 使得PQ ⊥平面11AB C D ,对;C :由正方体性质知:11//BC AD ,而1AD 面APD A =,故1BC 与面APD不平行,所以Q 在线段1BC 上运动时,到面APD 的距离不一定相等,故三棱锥Q APD -的体积不是定值,错;D :构建如下图示空间直角坐标系D xyz -,则(2,0,0)A ,(1,1,2)P ,(2,2,)Q a a -且02a ≤≤,所以(2,0,0)DA = ,(1,1,2)PQ a a =--,若它们夹角为θ,则222cos ||2(1)1(2)233a a a a θ==⨯-++-⋅-+令1[1,1]t a =-∈-,则22cos 112121t t t tθ==⋅++⋅++,当(0,1]t ∈,则[)11,t ∈+∞,6cos (0,]6θ∈;当0t =则cos 0θ=;当[1,0)t ∈-,则(]1,1t∞∈--,2cos (0,2θ∈;所以π3cos62=不在上述范围内,错.故选:B二、填空题(每小题5分,共20分,将答案填写在答题卡相应的位置上)9.已知()2,1,3a =- ,()1,2,1b =- ,则a b ⋅= ______;a 与b夹角的余弦值为______.【答案】①.7②.2161216【解析】【分析】利用空间向量数量积公式和夹角余弦公式进行求解【详解】()()2,1,31,2,12237a b ⋅=-⋅-=++=,a 与b夹角的余弦值为216419141a b a b⋅==++⨯++⋅ .故答案为:7,21610.设()3,5,4a =- ,()2,1,2b =-- ,则2a b =-r r ______;2a b -= ______.【答案】①.()1,7,0-②.52【解析】【分析】根据空间向量线性运算法则得到()1,72,0a b =--rr ,并利用模长公式求出答案.【详解】()()()()()23,5,422,1,23,5,440,2,41,7,a b =-=------=---rr;214902a b -=++故答案为:()1,7,0,52-11.若直线1:10+-=l mx y 与2:(43)10l m x my -+-=平行,则实数m =______.【答案】3【解析】【分析】根据两直线平行,列出有关m 的等式,即可求出实数m 的值,再验证直线的关系.【详解】由于1l 与2l 平行,则()2430m m --=,则1m =或3m =,当1m =时,1:10l x y +-=,2:10l x y +-=,两直线重合,当3m =时,1:310l x y +-=,2:9310l x y +-=,两直线平行.故答案为:3.12.如图,四棱柱ABCD -A 1B 1C 1D 1为正方体,①直线DD 1的一个方向向量为()0,0,1;②直线BC 1的一个方向向量为()0,1,1;③平面ABB 1A 1的一个法向量为()0,1,0;④平面B 1CD 的一个法向量为 恈 恈 ;则上述结论正确的是___________(填序号)【答案】①②③【解析】【分析】根据向量的平行、方向向量、法向量及坐标运算求解即可.【详解】设正方体的棱长为1.因为11//AA DD ,且()10,0,1AA =,所以①正确;因为11//AD BC ,()10,1,1AD =,所以②正确;因为AD ⊥平面11ABB A ,()0,1,0AD =,所以③正确;因为正方体中CD ⊥平面11B BCC ,1BC ⊂平面11B BCC ,所以1CD BC ⊥,又11BC B C ⊥,1B C CD C ⋂=,1,B C CD ⊂平面1B CD ,所以1⊥BC 平面1B CD ,而1BC 与1AC 相交,不平行,1AC 与平面1B CD 不垂直,故()11,1,1AC =不是平面1B CD 的法向量,所以④错误.故答案为:①②③.三、解答题(共4小题,共60分,在答题卡相应位置上写出详细的解答过程)13.已知ABC V 的三个顶点为()4,0A ,()0,2B ,()2,6C .(1)求AC 边所在的直线方程.(2)求AC 边上的高BD 所在直线的方程;(3)求BC 边上的中线AE 所在直线的方程.【答案】(1)3120x y +-=(2)360x y -+=(3)43160x y +-=【解析】【分析】(1)两点式求出直线AC 的方程,化为一般式即可;(2)根据垂直关系,设出BD 所在直线方程为30x y t -+=,将()0,2B 代入,求出6t =,得到答案;(3)求出()1,4E ,两点式求出直线方程,化为一般式即可.【小问1详解】AC 边所在的直线方程为046024y x --=--,即3120x y +-=;【小问2详解】设AC 边上的高BD 所在直线方程为30x y t -+=,将()0,2B 代入得060t -+=,解得6t =,故AC 边上的高BD 所在直线方程为360x y -+=;【小问3详解】线段BC 的中点坐标为0226,22E ++⎛⎫⎪⎝⎭,即()1,4E ,故BC 边上的中线AE 所在直线方程为410441y x --=--,即43160x y +-=.14.已知1111ABCD A B C D -是正方体,点E 为11A B 的中点,点F 为11B C 的中点.(1)求证:1⊥BD EF ;(2)求平面EFC 与平面BFC 夹角的余弦值.(3)求点1C 到直线1BD 的距离.【答案】(1)证明过程见解析(2)23(3)3【解析】【分析】(1)建立空间直角坐标系,写出点的坐标,得到10BD EF ⋅=,求出垂直关系;(2)求出两平面的法向量,利用面面角的余弦夹角公式得到答案;(3)利用点到直线距离向量公式求出答案.【小问1详解】以D 为坐标原点,1,,DA DC DD 所在直线分别为,,x y z 轴,建立空间直角坐标系,设正方体棱长为2,则()()()()()12,2,0,0,0,2,2,1,2,1,2,2,0,2,0B D E F C ,故()()12,2,21,1,0220BD EF ⋅=--⋅-=-= ,故1BD EF ⊥uuu r uu u r ,所以1⊥BD EF ;【小问2详解】由图可知,平面BFC 的法向量为()0,1,0m =,设平面EFC 的法向量为(),,n x y z =,则()()()(),,1,1,00,,1,0,220n EF x y z x y n CF x y z x z ⎧⋅=⋅-=-+=⎪⎨⋅=⋅=+=⎪⎩ ,令1z =得2,2x y =-=-,故()2,2,1n =--,平面EFC 与平面BFC 夹角的余弦值为()()0,1,02,2,123441m nm n ⋅--⋅==⋅++;【小问3详解】()10,2,2C ,()12,2,2BD =-- ,()()()12,2,00,2,22,0,2C B =-=-,点1C 到直线1BD 的距离为()()22211112,0,22,2,264043444C B BD d C B BD ⎛⎫⎛⎫-⋅--⋅ ⎪=-=++- ⎪⎪++⎝⎭⎝⎭.15.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,2PA AB ==.(1)求证://AD 平面PBC ;(2)求直线BD 平面PCD 夹角的正弦值;(3)求点B 到平面PCD 的距离.【答案】(1)证明见解析(2)12(3【解析】【分析】(1)由线线平行得到线面平行即可证明;(2)由线面垂直得到线线垂直,建立空间直角坐标系,写出点的坐标,求出平面的法向量,由线面角的夹角向量公式求出直线BD 平面PCD 夹角的正弦值;(3)在(2)基础上,由点到平面距离向量公式求出答案.【小问1详解】因为底面ABCD 为正方形,所以//AD BC ,因为AD ⊄平面PBC ,⊂BC 平面PBC ,所以//AD 平面PBC ;【小问2详解】因为PA ⊥平面ABCD ,,AB AD ⊂平面ABCD ,所以,PA AB PA AD ⊥⊥,以A 为坐标原点,,,AB AD AP 所在直线分别为,,x y z 轴,建立空间直角坐标系,()()()()2,0,0,0,2,0,0,0,2,2,2,0B D P C ,设平面PCD 的法向量为 恈 恈 ,则()()()(),,2,2,22220,,0,2,2220m PC x y z x y z m PD x y z y z ⎧⋅=⋅-=+-=⎪⎨⋅=⋅-=-=⎪⎩ ,令1y =,则1,0z x ==,则()0,1,1m =,直线BD 平面PCD 夹角的正弦值为1cos ,2BD m BD m BD m⋅===⋅ ;【小问3详解】由(2)知,平面PCD 的法向量为()0,1,1m =,点B 到平面PCD 的距离为BC m m ⋅=== 16.如图,在四面体ABCD 中,AD⊥平面ABC ,点M 为棱AB 的中点,2,2AB AC BC AD ====.(1)证明:AC BD ⊥;(2)求平面BCD 和平面DCM 夹角的余弦值;(3)在线段BD 上是否存在一点P ,使得直线PC 与平面DCM 所成角的正弦值为6?若存在,求BP BD 的值;若不存在,请说明理由.【答案】(1)证明见解析(2)223(3)不存在,理由见解析【解析】【分析】(1)由勾股定理得AB AC ⊥,由AD ⊥平面ABC 得AD AC ⊥,从而AC ⊥平面ABD ,进而得出结论;(2)以A 为坐标原点,以,,AB AC AD 所在直线分别为,,x y z 轴,建立空间直角坐标系,求出平面BCD 与平面DCM 的法向量,利用向量夹角公式求解;(3)设()01BP BD λλ=≤≤,则BP BD λ= ,求得22,0(,2)P λλ-,设直线PC 与平面DCM 所成角为θ,由题意sin cos ,PC n PC n PC n θ⋅== ,列式求解即可.【小问1详解】∵2,AB AC BC ===,∴222AB AC BC +=,∴AB AC ⊥,∵AD ⊥平面ABC ,AC ⊂平面ABC ,∴AD AC ⊥,∵AB AD A ⋂=,,AB AD ⊂平面ABD ,∴AC ⊥平面ABD ,∵BD ⊂平面ABD ,∴AC BD ⊥.【小问2详解】以A 为坐标原点,以,,AB AC AD 所在直线分别为,,x y z轴,建立空间直角坐标系,则(0,0,0),(2,0,0),(0,2,0),(0,0,2),(1,0,0)A B C D M ,(2,2,0),(0,2,2),(1,2,0)BC CD CM =-=-=- ,设平面BCD 的法向量为111(,,)m x y z = ,由1111220220m BC x y m CD y z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,令11x =,则111,1==y z ,(1,1,1)m = ,设平面DCM 的法向量为222(,,)n x y z = ,由222222020n CD y z n CM x y ⎧⋅=-+=⎪⎨⋅=-=⎪⎩ ,令21y =,则222,1x z ==,(2,1,1)n = ,∴cos ,3m n m n m n ⋅=== ,∴平面BCD 和平面DCM夹角的余弦值为3.【小问3详解】设()01BP BDλλ=≤≤,则BP BD λ= ,设(,,)P x y z ,则()()2,,2,0,2x y z λ-=-,得22,0,2x y z λλ-=-==,∴22,0(,2)P λλ-,()22,2,2PC λλ=-- ,平面DCM 的法向量为(2,1,1)n = ,设直线PC 与平面DCM 所成角为θ,由题意,6sin cos ,6PC n PC n PC n θ⋅==== ,∴210λ+=,此方程无解,∴在线段BD 上是不存在一点P ,使得直线PC 与平面DCM 所成角的正弦值为66.。

江苏省扬州中学2024-2025学年高二上学期10月月考试题 数学(含答案)

江苏省扬州中学2024-2025学年高二上学期10月月考试题 数学(含答案)

2024—2025学年第一学期高二上10月自主学习效果评估数学试卷2024.10.08一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知,直线过定点,且与线段相交,则直线的斜率的取值范围是( )A B. C. 或 D. 或2. 若圆与圆相切,则()A. 6B. 3或6C. 9D. 3或93. 已知直线,,则过和的交点且与直线垂直的直线方程为( )A. B. C. D.4. 若点在圆内,则直线与圆C 的位置关系为( )A. 相交B. 相切C. 相离D. 不能确定5. 圆心为,且与直线相切的圆的方程为( )A. B. C. D.6. 已知圆上有四个点到直线的距离等于1,则实数的取值范围为( )A. B. C. D.7. 已知圆关于直线对称,则实数( ).()()2,02,3A B 、l ()1,2P AB l k 21k -≤≤112k -≤≤12k ≤-1k ≥2k ≤-1k ≥()2221:(4)0O x y r r ++=>222:(2)9O x y -+=r =1:10l x y -+=2:210l x y --=1l 2l 3450x y +-=3410x y --=3410x y -+=4310x y --=4310x y -+=(),P a b221Cx y +=:1ax by +=(2,1)M -2+1=0x y -22(2)(1)5x y -+-=22(2)(1)5x y -++=22(2)(1)25x y -++=22(2)(1)25x y -+-=224x y +=y x b =+b ()2,2-(()1--()1,1-22:330C x y mx y +-++=:0l mx y m +-=m =A 1或 B. 1 C. 3 D. 或38. 若圆与圆交于两点,则的最大值为( )A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.9. 若直线与圆交于两点,则( )A. 圆的圆心坐标为B. 圆的半径为3C. 当时,直线倾斜角为D. 的取值范围是10. 已知点在上,点,,则( )A. 点到直线的距离最大值是B. 满足的点有2个C. 过直线上任意一点作的两条切线,切点分别为,则直线过定点D. 的最小值为11. 设直线系(其中均为参数,),则下列命题中是真命题的是()A. 当时,存在一个圆与直线系中所有直线都相切B. 当时,若存在一点,使其到直线系中所有直线的距离不小于1,则C. 存在,使直线系中所有直线恒过定点,且不过第三象限D. 当时,坐标原点到直线系中所有直线的距离最大值为1三、填空题:本题共3小题,每小题5分,共15分..的3-1-22:(cos )(sin )1(02π)M x y θθθ-+-=≤<22:240N x y x y +--=A B 、tan ANB ∠344543:2cos 0l x y θ-⋅=22:10E x y +--=,A B E ()-E 1cos 2θ=l π4AB ⎡⎢⎣P 22:4O x y +=e ()3,0A ()0,4B P AB 125AP BP ⊥P AB O e ,M N MN 4,13⎛⎫ ⎪⎝⎭2PA PB +:cos sin 1m n M x y θθ+=,,m n θ{}02π,,1,2m n θ≤≤∈1,1m n ==M 2,1m n ==(),0A a M 0a ≤,m n M m n =M12. 已知直线,圆,写出满足“对于直线上任意一点,在圆上总存在点使得”的的一个值______.13. 已知二次函数与轴交于两点,点,圆过三点,存在一条定直线被圆截得弦长为定值,则该定值为__________.14. 如图,点C 是以AB 为直径的圆O 上的一个动点,点Q 是以AB 为直径的圆O 的下半个圆(包括A ,B 两点)上的一个动点,,则的最小值为___________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知直线与直线.(1)若,求m 的值;(2)若点在直线上,直线过点P ,且在两坐标轴上的截距之和为0,求直线的方程.16. 已知:及经过点的直线.(1)当平分时,求直线的方程;(2)当与相切时,求直线的方程.17. 如图,已知,直线.(1)若直线等分的面积,求直线的一般式方程;(2)若,李老师站在点用激光笔照出一束光线,依次由(反射点为)、(反射点为)反射后,光斑落在点,求入射光线的直线方程.的:1l x my =--22:6890O x y x y ++++=l A O B π2ABO ∠=m ()()223411y x m x m m =+---∈R x ,A B ()1,3CG ,,A B C l G ,3,2PB AB AB PB ⊥==1)3AP BA QC +⋅(()1:280l m x my ++-=2:40,R l mx y m +-=∈12l l //()1,P m 2l l l C e ()()22124x y -+-=()1,1P --l l C e l l C el (()(),0,0,12,0A BC (():20l k x y k k +--=∈R l ABC Vl (2,P P BC K AC I P PK18. 已知圆与直线相切于点,圆心在轴上.(1)求圆的标准方程;(2)若直线与圆交于两点,当数的值;(3)过点且不与轴重合的直线与圆相交于两点,为坐标原点,直线分别与直线相交于两点,记的面积为,求的最大值.19. 在数学中,广义距离是泛函分析中最基本概念之一.对平面直角坐标系中两个点和,记,称为点与点之间的“距离”,其中表示中较大者.(1)计算点和点之间的“距离”;(2)设是平面中一定点,.我们把平面上到点的“距离”为的所有点构成的集合叫做以点为圆心,以为半径的“圆”.求以原点为圆心,以为半径的“圆”的面积;(3)证明:对任意点.的M 340x -+=(M x M ()()():21174l m x m y m m +++=+∈R M ,P Q PQ =m M x M ,A B O ,OA OB 8x =,C D ,OAB OCD V V 12,S S 12S S ()111,P x y ()222,P x y 1212121212max ,11tx x y y PP x x y y ⎧⎫--⎪⎪=⎨⎬+-+-⎪⎪⎩⎭12t PP 1P 2P t -{}max ,p q ,p q ()1,2P ()2,4Q t -()000,P x y 0r >0P t -r 0P r t -O 12t -()()()111222333131223,,,,,,t t t P x y P x y P x y PP PP P P ≤+2024—2025学年第一学期高二上10月自主学习效果评估数学试卷2024.10.08一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】A【2题答案】【答案】D【3题答案】【答案】D【4题答案】【答案】C【5题答案】【答案】B【6题答案】【答案】B【7题答案】【答案】C【8题答案】【答案】D二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.【9题答案】【答案】BC【10题答案】【答案】BCD【11题答案】【答案】ABC三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】1(答案不唯一)【13题答案】【14题答案】【答案】四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1) (2)或【16题答案】【答案】(1) (2)或.【17题答案】【答案】(1; (2).【18题答案】【答案】(1) (2). (3).【19题答案】【答案】(1); (2)4;(3)证明见解析.3--1m =-10x y -+=20x y -=3210x y -+=1x =-51270x y --=170y +-=2100x -=22(4)16x y -+=23m =-1423。

黑龙江省哈尔滨市2024-2025学年高二上学期10月月考试题 数学含答案

黑龙江省哈尔滨市2024-2025学年高二上学期10月月考试题 数学含答案

哈尔滨市2024-2025学年度上学期十月学业阶段性评价考试高二数学学科考试试卷(答案在最后)(考试时间:120分钟满分150分)第Ⅰ卷(共58分)一、单选题(共8小题,每小题5分,每小题只有一个选项符合题意)1.在空间直角坐标系中,点()2,1,4-关于x 轴对称的点坐标是()A.()2,1,4-- B.()2,1,4 C.()2,1,4--- D.()2,1,4-2.若向量{}123,,e e e 是空间中的一个基底,那么对任意一个空间向量a,存在唯一的有序实数组(),,x y z ,使得:123a xe ye ze =++ ,我们把有序实数组(),,x y z 叫做基底{}123,,e e e 下向量a 的斜坐标.设向量p 在基底{},,a b c 下的斜坐标为()1,2,3-,则向量p 在基底{},,a b a b c +-下的斜坐标为()A.13,,322⎛⎫--⎪⎝⎭B.13,,322⎛⎫-- ⎪⎝⎭ C.13,,322⎛⎫-⎪⎝⎭ D.13,,322⎛⎫-⎪⎝⎭3.已知两条直线12:410,:20l ax y l x ay +-=++=,则“2a =”是“12l l //”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知平面α的一个法向量(2,2,1)n =--,点()1,3,0A -在平面α内,若点()2,1,P z -到α的距离为103,则z =()A.16B.4- C.4或16- D.4-或165.已知点()2,3A -,()3,2B --,若过点()1,1的直线与线段AB 相交,则该直线斜率的取值范围是()A.[)3,4,4⎛⎤-∞-+∞ ⎥⎝⎦B.(]3,4,4⎡⎫+∞⎪⎢⎣--⋃⎭∞C.3,44⎡⎤-⎢⎥⎣⎦D.34,4⎡⎤-⎢⎣⎦6.直线l 过点()2,3A ,则直线l 与x 轴、y 轴的正半轴围成的三角形的面积最小值为()A.9B.12C.18D.247.如图,在平行六面体ABCD A B C D -''''中,5,3,7AB AD AA ='==,60BAD ∠=︒,45BAA DAA ''∠=∠=︒,则AC '的长为()A. B.C.D.8.正三棱柱ABC ﹣A 1B 1C 1中,所有棱长均为2,点E ,F 分别为棱BB 1,A 1C 1的中点,若过点A ,E ,F 作一截面,则截面的周长为()A. B.C. D.2+二、多选题(共3小题,每小题有多个选项符合题意,全部选对的得6分,部分选对得得部分分,有选错的得0分)9.下列命题中正确的是()A.若向量,a b 满足0a b ⋅<,则向量,a b 的夹角是钝角B.若,,OA OB OC 是空间的一组基底,且232OD OA OB OC =-+,则,,,A B C D 四点共面C.若向量{},,a b c 是空间的一个基底,若向量m a c =+,则{},,a b m 也是空间的一个基底D.若直线l 的方向向量为(1,0,3)e = ,平面α的法向量为(2,0,2)n =-,则直线l 与平面α所成角的余弦值为5510.以下四个命题为真命题的是()A.过点()10,10-且在x 轴上的截距是在y 轴上截距的4倍的直线的方程为11542y x =-+B.直线()cos 20R x θθ+=∈的倾斜角的范围是π5π0,,π66⎡⎤⎡⎫⎪⎢⎢⎣⎦⎣⎭C.直线10x y +-=与直线2210x y ++=D.直线()()()1213m x m y m m -+-=-∈R 恒过定点()5,2-11.如图,在多面体ABCDES 中,SA ⊥平面ABCD ,四边形ABCD 是正方形,且//DE SA ,22SA AB DE ===,,M N 分别是线段,BC SB 的中点,Q 是线段DC 上的一个动点(含端点,D C ),则下列说法正确的是()A.不存在点Q ,使得NQ SB⊥B.存在点Q ,使得异面直线NQ 与SA 所成的角为60o C.三棱锥Q AMN -体积的最大值是23D.当点Q 自D 向C 处运动时,直线DC 与平面QMN 所成的角逐渐增大第Ⅱ卷(共92分)三、填空题(共3个小题,每小题5分)12.已知()()()1,1,0,0,3,0,2,2,2A B C ,则向量AB 在AC上的投影向量的坐标是______.13.当点()2,1P --到直线l :()()()131240x y λλλλ+++--=∈R 距离的最大值时,直线l 的一般式方程是______.14.离散曲率是刻画空间弯曲性的重要指标.设P 为多面体Γ的一个顶点,定义多面体Γ在点P 处的离散曲率为()122311112πP k k k Q PQ Q PQ Q PQ Q PQ -∅=-∠+∠++∠+∠ ,其中i Q (1i =,2,……,k ,3k ≥)为多面体Γ的所有与点P 相邻的顶点,且平面12Q PQ ,平面23Q PQ ,…,平面1k k Q PQ -和平面1k Q PQ 为多面体Γ的所有以P 为公共点的面.如图,四棱锥S ABCD -的底面ABCD 是边长为2的菱形,且2AC =,顶点S 在底面的射影O 为AC 的中点.若该四棱锥在S 处的离散曲率13S ∅=,则直线OS 与平面SAB 所成角的正弦值为___________.四、解答题(共5小题,总计77分,解答应写出必要的文字说明、证明过程或演算步骤)15.已知直线()():12360m a x a y a -++-+=,:230n x y -+=.(1)若坐标原点O 到直线m ,求a 的值;(2)当0a =时,直线l 过m 与n 的交点,且它在两坐标轴上的截距相反,求直线l 的方程.16.已知ABC V 的顶点()1,2,A AB 边上的中线CM 所在直线的方程为210,x y ABC +-=∠的平分线BH 所在直线的方程为y x =.(1)求直线BC 的方程和点C 的坐标;(2)求ABC V 的面积.17.如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,AC CD ==(1)求证:PD ⊥平面PAB .(2)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AMAP的值;若不存在,说明理由.18.已知两个非零向量a ,b ,在空间任取一点O ,作OA a = ,OB b =,则AOB ∠叫做向量a ,b 的夹角,记作,a b <> .定义a 与b 的“向量积”为:a b ⨯是一个向量,它与向量a ,b 都垂直,它的模sin ,a b a b a b ⨯=.如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PD ⊥底面ABCD ,4DP DA ==,E 为AD 上一点,AD BP ⨯=.(1)求AB 的长;(2)若E 为AD 的中点,求二面角P EB A --的余弦值;19.如图①所示,矩形ABCD 中,1AD =,2AB =,点M 是边CD 的中点,将ADM △沿AM 翻折到PAM △,连接PB ,PC ,得到图②的四棱锥P ABCM -,N 为PB 中点,(1)若平面PAM ⊥平面ABCD ,求直线BC 与平面PMB 所成角的大小;(2)设P AM D --的大小为θ,若π0,2θ⎛⎤∈ ⎥⎝⎦,求平面PAM 和平面PBC 夹角余弦值的最小值.哈尔滨市2024-2025学年度上学期十月学业阶段性评价考试高二数学学科考试试卷(考试时间:120分钟满分150分)第Ⅰ卷(共58分)一、单选题(共8小题,每小题5分,每小题只有一个选项符合题意)【1题答案】【答案】C【2题答案】【答案】D【3题答案】【答案】A【4题答案】【答案】C【5题答案】【答案】B【6题答案】【答案】B【7题答案】【答案】A【8题答案】【答案】B二、多选题(共3小题,每小题有多个选项符合题意,全部选对的得6分,部分选对得得部分分,有选错的得0分)【9题答案】【答案】BC【10题答案】【答案】BD【11题答案】【答案】CD第Ⅱ卷(共92分)三、填空题(共3个小题,每小题5分)【12题答案】【答案】111,,663⎛⎫ ⎪⎝⎭【13题答案】【答案】3250x y +-=【14题答案】【答案】1323-四、解答题(共5小题,总计77分,解答应写出必要的文字说明、证明过程或演算步骤)【15题答案】【答案】(1)14a =-或73a =-(2)370x y -=或120x y -+=【16题答案】【答案】(1)2310x y --=,51(,)77,(2)107.【17题答案】【答案】(1)证明见解析;(2)存在,AM AP 的值为14.【18题答案】【答案】(1)2(2)13-【19题答案】【答案】(1)π6;(2)11。

山东省淄博七中2024-2025学年高二(上)月考数学试卷(10月份)(含答案)

山东省淄博七中2024-2025学年高二(上)月考数学试卷(10月份)(含答案)

2024-2025学年山东省淄博七中高二(上)月考数学试卷(10月份)一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.在空间直角坐标系中,点(−2,1,4)关于x 轴的对称点的坐标为( )A. (−2,1,−4)B. (−2,−1,−4)C. (2,1,−4)D. (2,−1,4)2.甲、乙两人下棋,甲获胜的概率为15,和棋的概率为12,则乙不输的概率为( )A. 45B. 310C. 12D. 153.对于空间任意一点O 和不共线的三点A 、B 、C ,有如下关系:→OP =16→OA +13→OB +12→OC ,则( )A. 四点O ,A ,B ,C 必共面B. 四点P 、A 、B 、C 必共面C. 四点O 、P 、B 、C 必共面D. 五点O 、P 、A 、B ,C 必共面4.如图,正方体ABCD−A′B′C′D′中,E 是棱BC 的中点,G 是棱DD′的中点,则异面直线GB 与B′E 所成的角为( )A. 120°B. 90°C. 60°D. 30°5.如图,在四面体OABC 中,M ,N 分别是OA ,BC 的中点,则MN =( )A. 12OB +12OC−12OA B. 12OA−12OC−12OB C. 12OB +12OC +12OAD. 12OA +12OC−12OB6.已知随机事件A ,B 满足P(A)=13,P(B)=34,P(A ∪B)=56,则P(A ∩B)=( )A. 116B. 18C. 316D. 147.已知正方体ABCD−A 1B 1C 1D 1的棱长为1,若点P 满足AP =35AB +13AD +14AA 1,则点P 到直线AB 的距离为( )A. 25144B. 512C. 1320D.105158.已知直线l 的方向向量为u =(1,−2,2),则向量a =(−1,1,2)在直线l 上的投影向量坐标为( )A. (13,−23,23)B. (−13,13,23)C. (−19,19,29)D. (19,−29,29)二、多选题:本题共3小题,共18分。

2024-2025学年山东省枣庄市枣庄三中高二(上)第一次月考数学试卷(含答案)

2024-2025学年山东省枣庄市枣庄三中高二(上)第一次月考数学试卷(含答案)

2024-2025学年山东省枣庄三中高二(上)第一次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.直线3x− 3y +1=0的倾斜角是( )A. 30°B. 60°C. 120°D. 135°2.设x ,y ∈R ,向量a =(x,1,1),b =(1,y,1),c =(2,−4,2),且a ⊥c ,b //c ,则|a +b |=( ).A. 2 2 B. 10 C. 3 D. 43.如图,在60°二面角的棱上有两点A 、B ,线段AC 、BD 分别在这个二面角的两个面内,并且都垂直于棱AB ,若AB =4,AC =6,BD =6,则线段CD 的长为( )A. 29B. 10C. 2 31D. 2 134.如图,M ,N 分别是四面体OABC 的边OA ,BC 的中点,P ,Q 是MN 的三等分点,且OA =a ,OB =b ,OC=c ,则向量OQ 可表示为( )A. 13a +16b +16c B. 1a +13b +1c C. 1a +13b +1c D. 16a +16b +13c5.在下列条件中,使M 与A ,B ,C 一定共面的是( )A. OM =OA−OB−OCB. OM =15OA +13OB +12OCC. MA +MB +MC =0D. OM +OA +OB +OC =06.若m 、n 为实数,则“m =−1”是“直线x +my−2=0与直线x−y +n =0平行”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件7.已知点A(2,−3),B(−3,−2).若直线l :mx +y−m−1=0与线段AB 无公共点,则实数m 的取值范围是( )A. (−34,4)B. (15,+∞)C. (−∞,−34]∪[4,+∞)D. [−4,34]8.将边长为 22的正方形ABCD 沿对角线BD 折成直二面角A−BD−C ,则下列结论不正确的是( )A. AC ⊥BDB. △ACD 是等边三角形C. 点B 与平面ACD 的距离为 23 D. AB 与CD 所成的角为60°二、多选题:本题共3小题,共18分。

浙江省宁波市2024-2025学年高二上学期第一次月考数学试卷含答案

浙江省宁波市2024-2025学年高二上学期第一次月考数学试卷含答案

2026届高二数学秋季月考卷第一期(答案在最后)考试范围:大部分学校已经学习过的内容:考试时间:120分钟:满分:150分注意事项:1.答题前填写好自已的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知向量()2,4a =,()1,1b =- ,则2a b -=A.()5,7 B.()5,9 C.()3,7 D.()3,9【答案】A 【解析】【详解】因为2(4,8)a =,所以2(4,8)(1,1)a b -=--=(5,7),故选A.考点:本小题主要考查平面向量的基本运算,属容易题.2.已知直线12:320,:310l x y l x ay -+=--=,若12l l ⊥,则实数a 的值为()A.1B.12C.12-D.1-【答案】D 【解析】【分析】对a 进行分类讨论,代入121k k =-g 求解即可.【详解】当0a =时,直线1:320l x y -+=的斜率113k =,直线2:310l x ay --=的斜率不存在,此时两条直线不垂直;当0a ≠时,直线1:320l x y -+=的斜率113k =,直线2:310l x ay --=的斜率23k a=,因为12l l ⊥,所以121k k =-g ,所以13113a a⨯==-,解得:1a =-.故选:D.3.已知m 是实常数,若方程22240x y x y m ++++=表示的曲线是圆,则m 的取值范围为()A.(),20-∞ B.(),5-∞ C.()5,+∞ D.()20,+∞【答案】B 【解析】【分析】由方程表示的曲线为圆,可得出关于实数m 的不等式,解出即可.【详解】由于方程22240x y x y m ++++=表示的曲线为圆,则222440m +->,解得5m <.因此,实数m 的取值范围是(),5-∞.故选:B.【点睛】本题考查利用圆的一般方程求参数,考查计算能力,属于基础题.4.设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是()A.若a b ,与α所成的角相等,则∥B.若a αβ∥,b∥,αβ∥,则∥C.若a b a b αβ⊂⊂ ,,,则αβ∥D.若a b αβ⊥⊥,,αβ⊥,则a b ⊥r r【答案】D 【解析】【详解】试题分析:A 项中两直线a b ,还可能相交或异面,错误;B 项中两直线a b ,还可能相交或异面,错误;C 项两平面αβ,还可能是相交平面,错误;故选D.5.直线3y kx =+与圆()()22324x y -+-=相交于M 、N 两点,若MN =,则k 等于()A.0B.23-C.23-或0 D.34-或0【答案】D 【解析】【分析】求出MN 到圆心的距离和圆心(3,2)到直线3y kx =+的距离,即可求出k 的值.【详解】由题意,∵MN =,∴MN 到圆心的距离为1=,∴圆心(3,2)到直线3y kx =+的距离为:1=,即229611k k k ++=+.解得:0k =或34-,故选:D.6.过点()1,3P 作直线l ,若l 经过点(),0A a 和()0,B b ,且,a b 均为正整数,则这样的直线l 可以作出(),A.1条B.2条C.3条D.无数条【答案】B 【解析】【分析】假设直线截距式方程,代入已知点坐标可得,a b 之间关系,根据,a b 为正整数可分析得到结果.【详解】,a b 均为正整数,∴可设直线:1x yl a b+=,将()1,3P 代入直线方程得:131a b+=,当3b =时,10a =,方程无解,3331333b b a b b b -+∴===+---,a *∈N ,303b ≠-,33b *∴∈-N ,31b ∴-=或33b -=,44b a =⎧∴⎨=⎩或62b a =⎧⎨=⎩,即满足题意的直线l 方程有2条.故选:B.7.已知长方体1111ABCD A B C D -中,12AA AB ==,若棱AB 上存在点P ,使得1D P PC ⊥,则AD 的取值范围是()A.[)1,2 B.(C.(]0,1 D.()0,2【答案】C 【解析】【分析】建立空间直角坐标系,设AD a =,求出1D P 、CP,利用10D P CP ⋅= ,求出a 的范围.【详解】解:如图建立坐标系,设(0)AD a a =>,(02)AP x x =<<,则(),,2P a x ,()0,2,2C ,()10,0,0D ,∴()1,,2D P a x = ,(),2,0CP a x =-,1D P PC ⊥ ,∴10D P CP ⋅=,即2(2)0a x x +-=,所以a =,当02x <<时,所以(]2(1)10,1x --+∈,所以(]0,1a ∈.故选:C .8.已知点P 在直线3y x =--上运动,M 是圆221x y +=上的动点,N 是圆22(9)(2)16x y -+-=上的动点,则PM PN +的最小值为()A.13B.11C.9D.8【答案】D 【解析】【分析】根据圆的性质可得5PM PN PO PC +≥+-,故求PM PN +的最小值,转化为求PC PO +的最小值,再根据点关于线对称的性质,数形结合解.【详解】如图所示,圆22(9)(2)16x y -+-=的圆心为()9,2C ,半径为4,圆221x y +=的圆心为()0,0O ,半径为1,可知44,11PC PN PC PO PM PO -≤≤+-≤≤+,所以5PM PN PO PC +≥+-,故求PM PN +的最小值,转化为求PC PO +的最小值,设()0,0O 关于直线3y x =--的对称点为G ,设G 坐标为(),m n ,则1322nm n m ⎧=⎪⎪⎨⎪=--⎪⎩,解得33m n =-⎧⎨=-⎩,故()3,3G --,因为PO PG =,可得13PO PC PG PC GC +=+≥=,当,,P G C 三点共线时,等号成立,所以PM PN +的最小值为1358-=.故选:D.二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.)9.三条直线0x y +=,0x y -=,3x ay +=构成三角形,则a 的值不能为()A.1B.2C.1-D.-2【答案】AC【解析】【分析】由三条直线可构成三角形可知,直线3x ay +=不经过两条直线的交点,且与两条直线任意一条不平行.【详解】直线0x y +=与0x y -=都经过原点,而无论a 为何值,直线3x ay +=总不经过原点,因此,要满足三条直线构成三角形,只需直线3x ay +=与另两条直线不平行,所以1a ≠±.故选:AC.10.正方体1111ABCD A B C D -中,下列结论正确的是()A.直线1AD 与直线11A C 所成角为3π B.直线1AD 与平面ABCD 所成角为3πC.二面角1D AB D --的大小为4π D.平面11AB D ⊥平面11B D C【答案】AC 【解析】【分析】选项A :先判断出1AD 与11A C 所成角即为1AC B ,利用1ABC 为正三角形,即可判断;选项B :1AD 与平面ABCD 所成角为14DAD π∠=,即可判断;选项C :二面角1D AB D --的平面角为14DAD π∠=,即可判断;选项D :设1111D B AC O = ,连结,,AO CO AC ,可以判断出AOC ∠即为二面角11A B D C --的平面角.在三角形ACO 中,求出各边长,可以判断出90AOC ∠≠︒,即可判断.【详解】选项A :先判断出1AD 与11A C 所成角即为1BC 与11A C 所成角,1ABC 为正三角形,所以该角为3π;故A 正确.选项B :1AD 与平面ABCD 所成角为14DAD π∠=;故B 错误.选项C :二面角1D AB D --的平面角为14DAD π∠=;故C 正确.选项D :设1111D B AC O = ,连结,,AO CO AC ,因为11AD AB =,所以11AO B D ⊥.同理可证:11CO B D ⊥,所以AOC ∠即为二面角11A B D C --的平面角。

吉林省2024-2025学年高二上学期第一次月考数学试卷含答案

吉林省2024-2025学年高二上学期第一次月考数学试卷含答案

2024—2025学年上学期高二年级数学学科阶段验收考试试卷(答案在最后)考试时间:90分钟满分:120分命题人:一、单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若随机试验的样本空间为{}Ω0,1,2=,则下列说法不正确的是()A.事件{}1,2P =是随机事件B.事件{}0,1,2Q =是必然事件C.事件{}1,2M =--是不可能事件D.事件{}1,0-是随机事件【答案】D 【解析】【分析】根据随机事件,必然事件,不可能事件的概念判断即可.【详解】随机试验的样本空间为{}Ω0,1,2=,则事件{}1,2P =是随机事件,故A 正确;事件{}0,1,2Q =是必然事件,故B 正确;事件{}1,2M =--是不可能事件,故C 正确;事件{}1,0-是不可能事件,故D 错误.故选:D2.已知点()1,0A ,(1,B -,则直线AB 的倾斜角为()A.5π6B.2π3C.π3 D.π6【答案】B 【解析】【分析】由两点坐标求出斜率,由倾斜角与斜率的关系即可求【详解】0tan 11AB k α-===--,()0,πα∈,故直线AB 的倾斜角2π3α=.故选:B3.投壶是从先秦延续至清末的汉民族传统礼仪和宴饮游戏,在春秋战国时期较为盛行.如图为一幅唐朝的投壶图,甲、乙、丙是唐朝的三位投壶游戏参与者,假设甲、乙、丙每次投壶时,投中的概率均为0.6且投壶结果互不影响.若甲、乙、丙各投壶1次,则这3人中至少有2人投中的概率为()A.0.648B.0.432C.0.36D.0.312【答案】A 【解析】【分析】由独立事件概率乘法公式可得.【详解】记甲、乙、丙投中分别即为事件123,,A A A ,由题知()()()()()()1231230.6,0.4P A P A P A P A P A P A ======,则3人中至少有2人投中的概率为:()()()()123123123123P P A A A P A A A P A A A P A A A =+++320.630.60.40.648=+⨯⨯=.故选:A.4.设,A B 是一个随机试验中的两个事件,且()()()131,,+252P A P B P A B ===,则()P AB =()A.13B.15C.25D.110【答案】D 【解析】【分析】先利用和事件的概率公式求出()P AB ,然后利用()()()P AB P A P AB =-求解即可.【详解】因为1()2P A =,3()5P B =,所以()251,()2P A P B ==,又()()()()()122512P A B P A P B P AB P AB +=+-=+-=,所以()25P AB =,所以()()()1102512P P P A AB A B ==-=-.故选:D.5.若()2,2,1A ,()0,0,1B ,()2,0,0C ,则点A 到直线BC 的距离为()A.5B.5C.5D.5【答案】A 【解析】【分析】由题意得()2,2,0BA = ,()2,0,1BC =-,再根据点线距离的向量公式即可求解.【详解】()2,2,0BA = ,()2,0,1BC =- ,则BA 在BC上的投影向量的模为BA BC BC⋅= 则点A 到直线BC5=.故选:A.6.某乒乓球队在长春训练基地进行封闭式集训,甲、乙两位队员进行对抗赛,每局依次轮流....发球,连续赢2个球者获胜,通过分析甲、乙过去对抗赛的数据知,甲发球甲赢的概率为23,乙发球甲赢的概率为14,不同球的结果互不影响,已知某局甲先发球.则该局打4个球甲赢的概率为()A.13B.16C.112 D.524【答案】C 【解析】【分析】由于连胜两局者赢,则可写出四局的结果,计算即可.【详解】由于连胜两局者赢,甲先发球可分为:该局:第一个球甲赢、第二个球乙赢、第三个球甲赢、第四个球甲赢,则概率为22133231441⨯⨯⨯=;故选:C.7.据史书记载,古代的算筹是由一根根同样长短和粗细的小棍制成,如图所示,据《孙子算经》记载,算筹记数法则是:凡算之法,先识其位,一纵十横,百立千僵,千十相望,万百相当.即在算筹计数法中,表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推.例如⊥‖表示62,=T 表示26,现有6根算筹,据此表示方式任意表示两位数(算筹不剩余且个位不为0),则这个两位数不小于50的概率为()A.13B.12C.23D.35【答案】B 【解析】【分析】根据6根算筹,分为五类情况:51,42,33,24,15+++++,逐一分类求解满足要求的两位数,即可求解概率.【详解】根据题意可知:一共6根算筹,十位和个位上可用的算筹可以分为51,42,33,24,15+++++一共五类情况;第一类:51+,即十位用5根算筹,个位用1根算筹,那十位可能是5或者9,个位为1,则两位数为51或者91;第二类:42+,即十位用4根算筹,个位用2根算筹,那十位可能是4或者8,个位可能为2或者6,故两位数可能42,46,82,86;第三类:33+,即十位用3根算筹,个位用3根算筹,那么十位可能是3或者7,个位可能为3或者7,故两位数可能是33,37,73,77;第四类:24+,即十位用2根算筹,个位用4根算筹,那么十位为2或6,个位可能为4或者8,则该两位数为24或者28或者64或者68,第五类:15+,即十位用1根算筹,个位用5根算筹,那十位是1,个位为5或者9,则两位数为15或者19;综上可知:用6根算筹组成的满足题意的所有的两位数有:15,19,24,28,33,37,42,46,51,64,68,73,77,82,86,91共计16个,则不小于50的有:51,64,68,73,77,82,86,91共计8个,故概率为81=162,故选:B.8.正三棱柱111ABC A B C -中,12,3,AB AA O ==为BC 的中点,M 为棱11B C 上的动点,N 为棱AM上的动点,且MN MOMO MA=,则线段MN 长度的取值范围为()A.4⎡⎫⎢⎣⎭B.,27⎢⎣⎦C.34747⎢⎣⎦D.【答案】B 【解析】【分析】根据正三棱柱建立空间直角坐标系,设动点坐标,结合线线关系求线段MN 的表达式,利用函数求最值即可.【详解】因为正三棱柱11ABC A B C -中,O 为BC 的中点,取11B C 中点Q ,连接OQ ,如图,以O 为原点,,,OC OA OQ 为,,x y z轴建立空间直角坐标系,则()()((110,0,0,,1,0,,1,0,O A B C -,因为M 是棱11B C上一动点,设(M a ,且[1,1]a ∈-,所以(()0OM OA a ⋅=⋅=,则OA OM ⊥,因为ON AM ⊥,且MN MOMO MA=所以在直角三角形OMA 中可得:~OMN AMO 即222MO MN MA===,于是令tt =∈,2233tt t t-==-,t ∈,又符合函数3=-y t t 为增增符合,所以在t ∈上为增函数,所以当t =min 32t t ⎛⎫-== ⎪⎝⎭,即线段MN 长度的最小值为62,当t =时,max 37t t ⎛⎫-== ⎪⎝⎭,即线段MN长度的最大值为7,故选:B.【点睛】关键点睛:1.找到~OMN AMO ,再利用函数单调性求出最值.2.建系,设出动点(M a ,利用空间向量法求出ON AM ⊥,再结合线线关系求线段MN 的表达式,利用函数求最值即可.二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列命题中正确的是()A.若表示两个空间向量的有向线段的终点不同,则这两个向量可能相等;B.在所有棱长都相等的直平行六面体1111ABCD A B C D -中,BD ⊥平面11ACC A ;C.对于空间三个非零向量,,a b c,一定有()()a b c a b c ⋅⋅=⋅⋅r r r r r r 成立;D.在棱长为2的正方体1111ABCD A B C D -中,点,M N 分别是棱11A D ,AB 的中点,则异面直线MD 与NC 所成角的余弦值为25.【答案】ABD 【解析】【分析】由相等向量的概念即可判断选项A ,利用线面垂直的判定定理证明即可判断选项B ,由数量积的性质即可判断选项C ,建立空间直角坐标系利用向量的坐标即可计算异面直线MD 与NC 所成角的余弦值判断选项D.【详解】若表示两个空间向量的有向线段的终点不同,而当两向量方向和长度相等时,这两个向量相等;故A 正确;在所有棱长都相等的直平行六面体1111ABCD A B C D -中,即直棱柱1111ABCD A B C D -中底面为菱形,因为BD AC ⊥,1AA ⊥平面ABCD ,BD ⊂平面ABCD ,所以1AA BD ⊥,又1AA AC A = ,所以BD ⊥平面11ACC A ;故B 正确;对于空间三个非零向量,,a b c ,有()a b c c λ⋅⋅= ,()a b c a μ⋅⋅=,所以不一定有()()a b c a b c ⋅⋅=⋅⋅成立,故C错误;建立如图所示的空间直角坐标系,则()0,0,0D ,()1,0,2M ,()2,1,0N ,()0,2,0C ,所以()1,0,2DM = ,()2,1,0NC =-,所以2cos ,5DM NC ==-,所以异面直线MD 与NC 所成角的余弦值为25,故D 正确.故选:ABD.10.连续抛掷一枚质地均匀的骰子两次,用数字x 表示第一次抛掷骰子的点数,数字y 表示第二次抛掷骰子的点数,用(),x y 表示一次试验的结果.记事件A =“7x y +=”,事件B =“3x ≤”,事件C =“()21N xy k k *=-∈”,则()A.()14P C =B.A 与B 相互独立C.A 与C 为对立事件D.B 与C 相互独立【答案】AB 【解析】【分析】用列举法列出所有可能结果,再结合互斥事件、对立事件、相互独立事件及古典概型的概率公式计算可得.【详解】依题意依次抛掷两枚质地均匀的骰子,基本事件总数为6636⨯=个;其中事件A =“7x y +=”包含的样本点有:()1,6,()2,5,()3,4,()4,3,()5,2,()6,1共6个;事件C =“()*21Nxy k k =-∈”,包含的样本点有:()1,1,()3,3,()5,5,()1,3,()1,5,()3,1,()3,5,()5,1,()5,3共9个,事件B =“3x ≤”,包含的样本点有:()1,1,()1,2,()1,3,()1,4,()1,5,()1,6,()2,1,()2,2,()2,3,()2,4,()2,5,()2,6,()3,1,()3,2,()3,3,()3,4,()3,5,()3,6共18个,对于A ,()91364P C ==,故A 正确;对于B ,事件AB 包含的样本点有()1,6,()2,5,()3,4共3个,所以()()()6118131,,3663623612P A P B P AB ======,所以()()()P A P B P AB =,所以A 与B 相互独立,故B 正确;对于C ,A C U 包含的样本点个数满足691536+=<,所以A 与C 不为对立事件,故C 错误;对于D ,事件BC 包含的样本点有:()1,1,()1,3,()1,5,()3,1,()3,3,()3,5,共6个,而()14P C =,()12P B =,()61366P BC ==,从而()()()1816P P P BC B C ≠==,所以B 与C 不相互独立,故D 错误.故选:AB.11.在棱长为1的正方体1111ABCD A B C D -中,P 为棱1BB 上一点,且12B P PB =,Q 为正方形11BB C C 内一动点(含边界),则下列说法中正确的是()A.若1D Q ∥平面1A PD ,则动点Q 的轨迹是一条长为3的线段B.存在点Q ,使得1D Q ⊥平面1A PD C.三棱锥1Q A PD -的最大体积为518D.若12D Q =,且1D Q 与平面1A PD 所成的角为θ,则sin θ【答案】ACD 【解析】【分析】在111,BC CC 取点,E F ,使得1112,2C E B E C F CF ==,证得平面//DEF 平面1A PD ,进而得到1//D Q 平面1A PD ,可判定A 正确;以1D 为原点,建立空间直角坐标系,求得平面1A PD 的一个法向量(3,2,3)m =-,根据1D Q m λ= ,得出矛盾,可判定B 不正确;利用向量的数量积的运算及三角形的面积公式,求得16A PD S =,在求得点Q 到平面1A PD的最大距离max d =,结合体积公式,可判定C 正确;根据题意,求得点点Q 的轨迹,结合线面角的公式,求得11(,1,)22Q 时,取得最大值,进而可判定D 正确.【详解】对于A 中,如图所示,分别在111,BC CC 取点,E F ,使得1112,2C E B E C F CF ==,可得1//EF B C ,因为11//A D B C ,所以1//EF A D ,因为1A D ⊂平面1A PD ,EF ⊄平面1A PD ,所以//EF 平面1A PD ,又由11//D F A P ,且1A P ⊂平面1A PD ,1D F ⊄平面1A PD ,所以1//D F 平面1A PD ,又因为1EF D F F ⋂=,且1,EF D F ⊂平面DEF ,所以平面//DEF 平面1A PD ,且平面DEF ⋂平面11BCC B EF =,若1//D Q 平面1A PD ,则动点Q 的轨迹为线段EF ,且223EF =,所以A 正确;对于B 中,以1D 为原点,以11111,,D A D C D D 所在的直线分别为,,x y z 轴,建立空间直角坐标系,如图所示,可得12(1,0,0),(0,0,1),(1,1,)3A D P ,则112(1,0,1),(0,1,)3A D A P =-= ,设(,1,)(01,01)Q x z x z ≤≤≤≤,可得1(,1,)D Q x z =,设(,,)m a b c = 是平面1A PD 的一个法向量,则110203m A D a c m A P b c ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取3c =,可得3,2z b ==-,所以(3,2,3)m =-,若1D Q ⊥平面1A PD ,则1//D Q m,所以存在R λ∈,使得1D Q m λ= ,则3[0,1]2x z ==-∉,所以不存在点Q ,使得1D Q ⊥平面1A PD ,所以B 错误;对于C 中,由112(1,0,1),(0,1,3A D A P =-=,可得1111132,33A D A P A D A P ==⋅=,则11cos ,A D A P =11sin ,A D A P = ,所以111111sin 2236A PD S A D A P DA P =⋅∠=⨯ ,要使得三棱锥1Q A PD -的体积最大,只需点Q 到平面1A PD 的距离最大,由1(1,1,)AQ x z =- ,可得点Q 到平面1A PD的距离1)5A Q m d x z m ⋅==+-,因为01,01x z ≤≤≤≤,所以当0x z +=时,即点Q 与点1C重合时,可得max d =,所以三棱锥1Q A PD -的最大体积为111533618A PD S =⋅=,所以C 正确;对于D 中,在正方体中,可得11D C ⊥平面11BCC B ,且1C Q ⊂平面11BCC B ,所以111D C C Q ⊥,则12C Q ==,所以点Q 的轨迹是以1C为圆心,以2为半径的圆弧,其圆心角为π2,则1(,0,)C Q x z =,所以12C Q == ,即2212x z +=,又由1(,1,)D Q x z =,设1D Q 与平面1A PD 所成的角θ,所以111sin cos ,m D Q m D Q m D Qθ⋅===,因为2212x z +=,可得222()2()x z x z +≤+,当且仅当x z =时,等号成立,所以1x z +≤,即12x z ==时,1D Q 与平面1A PD 所成的角最大值,sin θ=D 正确.故选:ACD.【点睛】方法点睛:求解立体几何中的动态问题与存在性问题的策略:1、解答方法:一般时根据线面平行,线面垂直的判定定理和性质定理,结合圆或圆锥曲线的定义推断出动点的轨迹,有时也可以利用空间向量的坐标运算求出动点的轨迹方程;2、对于线面位置关系的存在性问题,首先假设存在,然后再该假设条件下,利用线面位置关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论,则否定假设;3、对于探索性问题用向量法比较容易入手,一般先假设存在,设出空间点的坐标,转化为代数方程是否有解的问题,若由解且满足题意则存在,若有解但不满足题意或无解则不存在,同时,用已知向量来表示未知向量,一定要结合图形,以图形为指导思想是解答此类问题的关键.三、填空题:本大题共3小题,每小题5分,第14题第一个空2分,第二个空3分,共15分.12.已知()3,2,1a =- ,()2,1,2b =r,当()()2ka b a b +⊥- 时,实数k 的值为____________.【答案】6【解析】【分析】由题意依次算得22,,a b a b ⋅ 的值,然后根据()()2ka b a b +⊥-列方程即可求解.【详解】因为()3,2,1a =-,()2,1,2b = ,所以()2294114,4149,3221126a ba b =++==++=⋅=⋅+⋅+-⋅=,因为()()2ka b a b +⊥-,所以()()()()22221214186122120ka b a b ka b k a b k k k +⋅-=-+-⋅=-+-=-=,解得6k =.故答案为:6.13.柜子里有3双不同的鞋子,分别用121212,,,,,a a b b c c 表示6只鞋,从中有放回地....取出2只,记事件M =“取出的鞋是一只左脚一只右脚的,但不是一双鞋”,则事件M 的概率是____________.【答案】13【解析】【分析】列举法写出试验的样本空间,根据古典概型的概率公式直接可得解.【详解】设111,,a b c 表示三只左鞋,222,,a b c 表示三只右鞋,则从中有放回取出2只的所有可能为:()()()()()()111211121112,,,,,,,,,,,a a a a a b a b a c a c ()()()()()()212221222122,,,,,,,,,,,a a a a a b a b a c a c ()()()()()()111211121112,,,,,,,,,,,b a b a b b b b b c b c ()()()()()()212221222122,,,,,,,,,,,b a b a b b b b b c b c ()()()()()()111211121112,,,,,,,,,,,c a c a c b c b c c c c ()()()()()()212221222122,,,,,,,,,,,c a c a c b c b c c c c ,共计36种,其中满足取出的鞋一只左脚一只右脚,但不是一双鞋的有12种,()121363P M ∴==.故答案为:13.14.已知正四面体ABCD 的棱切球1T (正四面体的中心与球心重合,六条棱与球面相切)的半径为1,则该正四面体的内切球2T 的半径为______;若动点,M N 分别在1T 与2T 的球面上运动,且满足MN x AB y AC z AD =++,则2x y z ++的最大值为______.【答案】①.3②.26+【解析】【分析】第一空:将正四面体ABCD 放入正方体中,由等体积法可知,只需求出正四面体的表面积以及体积即可列式求解该正四面体的内切球2T 的半径;第二空:由不等式可知,()maxmin222MN x y z AT MN x y z x y z AT AT AT++++≤++==≤,只需求出max MN 、minAT 即可.【详解】第一空:连接,AD EF ,设交点为M ,则M 是AD 中点,如图所示,将正四面体ABCD 放入正方体中,由对称性可知正方体中心就是正四面体ABCD 的中心,设正方体棱长为2a ,则棱切球球心到正四面体ABCD 的六条棱的距离都等于a ,设正四面体ABCD 的棱切球1T 的半径为1r ,所以11r a ==,正方体棱长为2,AD =,而正四面体ABCD 的体积为1182224222323A BCD V -⎛⎫=⨯⨯-⨯⨯⨯⨯⨯=⎪⎝⎭,正四面体ABCD的表面积为(21422A BCD S -=⨯⨯⨯=设该正四面体的内切球2T 的半径为r,则由等体积法可知,1833⨯=,解得33r =;第二空:取任意一点T ,使得()22x y z AT MN xAB y AC z AD xAO y AC z AD ++==++=++,所以点T 在面OCD 内(其中O 是AB 中点),所以()13213x y z AT MN r r ++=≤+=+,而点A 到平面OCD 的距离为d AO ==所以()1232226x y z AT x y z x y z AT+++++≤++=≤+,等号成立当且仅当2x y z ++是正数且,T O重合且13MN =+ ,综上所述,2x y z ++的最大值为26+.故答案为:33,2626+.【点睛】关键点点睛:第二空的关键是得出()maxmin222MN x y z AT MN x y z x y z AT AT AT++++≤++==≤,由此即可顺利得解.四、解答题:本大题共4小题,共47分.解答应写出文字说明,证明过程或演算步骤.15.如图,在三棱柱111ABC A B C -中,,M N 分别是111,A B B C 上的点,且1112,2A M MB B N NC ==.设1,,AB a AC b AA c ===.(1)试用,,a b c 表示向量MN;(2)若11190,60,1BAC BAA CAA AB AC AA ∠=∠=∠====,求异面直线MN 与AC 的夹角的余弦值.【答案】(1)122333a b c-++(2)11【解析】【分析】(1)由空间向量的基本定理求解即可;(2)先用基向量,,a b c 表示AC 与MN ,然后求解MN 与AC 以及数量积MN AC ⋅,然后计算夹角的余弦值即可.【小问1详解】由图可得:()()1111111112123333MN MB BB B N A B AA B C AB AA AA AC AB=++=++=-++- 1122122333333AB AC AA a b c =-++=-++.【小问2详解】由(1)可知122333MN a b c =-++ ,因为11190,60,1BAC BAA CAA AB AC AA ∠=∠=∠====,所以0a b ⋅=,12a c ⋅= ,12b c ⋅= ,2222212214444814424110333999999999999MN a b c a b c a b a c b c ⎛⎫=-++=++-⋅-⋅+⋅=++--+= ⎪⎝⎭ ,所以113MN = ,AC b = ,1AC =,212212221·133333333MN AC a b c b a b b c b ⎛⎫⋅=-++=-⋅++⋅=+= ⎪⎝⎭所以cos ,11MN AC MN AC MN AC⋅==,所以异面直线MN 与AC的夹角的余弦值为11.16.如图,在正四棱柱1111ABCD A B C D -中,122AA AB ==,,E F 分别为1BB ,1CC的中点.(1)证明:1A F ∥平面CDE ;(2)求三棱锥1A CDE -的体积;(3)求直线1A E 与平面CDE 所成的角.【答案】(1)证明过程见解析(2)16(3)π6【解析】【分析】(1)借助正四棱柱的性质可建立空间直角坐标系,求出空间向量1A F与平面CDE 的法向量后,借助空间向量计算即可得;(2)求出空间向量1A E与平面CDE 的法向量后,借助空间向量夹角公式计算即可得直线1A E 与平面CDE 所成的角的正弦值,进一步求得三棱锥的高以及底面积即可得解.(3)由(2)可知直线1A E 与平面CDE 所成的角的正弦值,从而即可得解.【小问1详解】在正四棱柱1111ABCD A B C D -中,AB ,AD ,1AA 两两垂直,且122AA AB ==,以A 为坐标原点,AB ,AD ,1AA 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则()1,1,0C ,()0,1,0D ,()10,0,2A.因为E ,F 分别为11,BB CC 的中点,所以()1,0,1E ,()1,1,1F ,则()1,0,0CD =- ,()0,1,1CE =- ,()11,1,1A F =-,设平面CDE 的法向量为(),,m x y z = ,则00CD m CE m ⎧⋅=⎪⎨⋅=⎪⎩,即00x y z -=⎧⎨-+=⎩,令1y =,则有0x =,1z =,即()0,1,1m =,因为()11011110A F m ⋅=⨯+⨯+-⨯= ,所以1A F m ⊥ ,又1⊄A F 平面CDE ,所以1//A F 平面CDE ;【小问2详解】由(1)可知,()11,0,1A E =-,1111cos ,2A E m A E m A E m⋅==-,所以1A E 与平面CDE 所成角的正弦值为12.注意到1A E =所以点1A 到平面CDE122=,而()1,0,0CD =- ,()0,1,1CE =-,从而0CD CE =⋅,1,CD CE == 所以CD CE ⊥,三角形CDE的面积为1122⨯=,所以三棱锥1A CDE -的体积为113226⨯⨯=;【小问3详解】由(2)可知,1A E 与平面CDE 所成角的正弦值为12,所以直线1A E 与平面CDE 所成的角为π6.17.2023年10月31日,东北师大附中以“邂逅数学之美,闪耀科技之光”为主题的第17届科技节在自由、青华两校区开幕.在科技节中数学教研室组织开展了“送书券”活动.该活动由三个游戏组成,每个游戏各玩一次且结果互不影响.连胜两个游戏可以获得一张书券,连胜三个游戏可以获得两张书券.游戏规则如下表:游戏一游戏二游戏三箱子中球的颜色和数量大小质地完全相同的红球4个,白球2个(红球编号为“1,2,3,4”,白球编号为“5,6”)取球规则取出一个球有放回地依次取出两个球不放回地依次取出两个球获胜规则取到白球获胜取到两个红球获胜编号之和不超过m 获胜(1)分别求出游戏一,游戏二的获胜概率;(2)甲同学先玩了游戏一,当m 为何值时,接下来先玩游戏三比先玩游戏二获得书券的概率更大.【答案】(1)13,49(2)m 可能取值为7,8,9,10,11【解析】【分析】(1)利用列举法,结合古典概型的概率公式即可得解;(2)利用互斥事件与独立事件的概率公式求得先玩游戏二与先玩游戏三获得书券的概率,从而得到游戏三获胜的概率,由此得解.【小问1详解】设事件A 表示“游戏一获胜”,B 表示“游戏二获胜”,C 表示“游戏三获胜”,游戏一中取出一个球的样本空间为{}1Ω1,2,3,4,5,6=,则()1Ω6n =,()2n A =,()2163P A ∴==,所以游戏一获胜的概率为13.游戏二中有放回地依次取出两个球的样本空间(){}21Ω,,Ωx y x y =∈,则()2Ω36n =,而(){}{},,1,2,3,4B x y x y =∈,所以()16n B =,()164369P B ∴==,所以游戏二获胜的概率为49.【小问2详解】设M 表示“先玩游戏二,获得书券”,N 表示“先玩游戏三,获得书券”,则M ABC ABC ABC =⋃⋃,且ABC ,ABC ,ABC 互斥,,,A B C 相互独立,()()()()()P M P ABC ABC ABC P ABC P ABC P ABC ∴=⋃⋃=++()()()()()()()()()11P A P B P C P A P B P C P A P B P C ⎡⎤⎡⎤=-+-+⎣⎦⎣⎦()()()1424141393939P C P C P C ⎡⎤=⨯-+⨯+⨯⎣⎦()482727P C =+,则N AC B ACB ACB =⋃⋃,且,AC B ACB ACB 互斥,,,A B C 相互独立,()P N =()()()()P ACB ACB ACB P ACB P ACB P ACB ⋃⋃=++()()()()()()()()()11P A P C P B P A P C P B P A P C P B ⎡⎤⎡⎤=-+-+⎣⎦⎣⎦()()()152414393939P C P C P C =⨯⨯+⨯⨯+⨯⨯()1727P C =,若要接下来先玩游戏三比先玩游戏二获得书券的概率更大,则()()P N P M >,即()()1748272727P C P C >+,解得()49P C >,设游戏三中两次取球的编号和为X ,则()26113C 15P X ===,()26114C 15P X ===,()26225C 15P X ===,()26226C 15P X ===,()26337C 15P X ===,()26228C 15P X ===,()26229C 15P X ===,()261110C 15P X ===,()261111C 15P X ===,所以当3m =时,()()143159P C P X ===<,不合题意;当4m =时,()()()2434159P C P X P X ==+==<,不合题意;当5m =时,()()()()44345159P C P X P X P X ==+=+==<,不合题意;当6m =时,()()()()()643456159P C P X P X P X P X ==+=+=+==<,不合题意;当7m =时,()()()()()()9434567159P C P X P X P X P X P X ==+=+=+=+==>,符合题意;所以当7m ≥时,都有()49P C >,所以符合题意的m 的取值有7,8,9,10,11.18.球面三角学是研究球面三角形的边、角关系的一门学科.如图,球O 的半径为R ,A 、B 、C 为球面上的三点,设a O 表示以O 为圆心,且过B 、C 的圆,劣弧BC 的长度记为a ,同理,圆b O ,c O 的劣弧AC 、AB 的长度分别记为b ,c ,曲面ABC (阴影部分)叫做球面三角形.如果二面角,,C OA B A OB C B OC A ------的大小分别为,,αβγ,那么球面三角形的面积为()2++πABC S R αβγ=- 球面.(1)若平面OAB 、平面OAC 、平面OBC 两两垂直,求球面三角形ABC 的面积;(2)若平面三角形ABC 为直角三角形,AC BC ⊥,设1AOC θ∠=,2BOC θ∠=,3AOB θ∠=.①求证:123cos cos cos 1θθθ+-=;②延长AO 与球O 交于点D ,若直线DA ,DC 与平面ABC 所成的角分别为ππ,43,,(0,1]BE BD λλ=∈,S 为AC 的中点,T 为BC 的中点.设平面OBC 与平面EST 的夹角为θ,求cos θ的最大值及此时平面AEC 截球O 的面积.【答案】(1)2π2R (2)①证明见解析;②cos 5θ=,253π78R 【解析】【分析】(1)根据题意结合相应公式分析求解即可;(2)①根据题意结合余弦定理分析证明;②建系,利用空间向量求线面夹角,利用基本不等式分析可知点E ,再利用空间向量求球心O 到平面AEC 距离,结合球的性质分析求解.【小问1详解】若平面,,OAB OAC OBC 两两垂直,有π2αβγ===,所以球面三角形ABC 面积为()22ππ2ABC S R R αβγ=++-= 球面.【小问2详解】①证明:由余弦定理有:2222122222222232cos 2cos 2cos AC R R R BC R R R AB R R R θθθ⎧=+-⎪=+-⎨⎪=+-⎩,且222AC BC AB +=,消掉2R ,可得123cos cos cos 1θθθ+-=;②由AD 是球的直径,则,AB BD AC CD ⊥⊥,且AC BC ⊥,CD BC C ⋂=,,CD BC ⊂平面BCD ,所以AC ⊥平面BCD ,且BD ⊂平面BCD ,则AC BD ⊥,且AB AC A ⋂=,,AB AC ⊂平面ABC ,可得BD ⊥平面ABC ,由直线DA ,DC 与平面ABC 所成的角分别为ππ,43,所以ππ,43DAB DCB ∠=∠=,不妨先令R =,则2AD AB BD BC AC =====,由AC BC ⊥,AC BD ⊥,BC BD ⊥,以C 为坐标原点,以CB ,CA 所在直线为x ,y 轴,过点C 作BD 的平行线为z 轴,建立如图空间直角坐标系,设(,BE t t =∈,则())()0,2,0,,0,0,0,A B C D ,可得()20,1,0,,0,02S T ⎛⎫ ⎪ ⎪⎝⎭,)26,,1,22E t O ⎛⎫ ⎪ ⎪⎝⎭,则),22CB CO ⎛⎫== ⎪ ⎪⎝⎭,,1,0,22ST TE t ⎛⎫⎛⎫=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭设平面OBC 法向量()111,,m x y z =,则11110022m CB m CO x y z ⎧⋅==⎪⎨⋅=++=⎪⎩,取12z =-,则110y x ==,可得()2m =- ,设平面EST 法向量()222,,n x y z =,则222202202n ST x y n TE x tz ⎧⋅=-=⎪⎪⎨⎪⋅=+=⎪⎩,取2x =,则22,1y t z ==-,可得),,1n t =- ,因为cos cos ,m n m n m n θ⋅======,令(]1,1,13m m=+∈,则()2218mt t-==,可得()2221888293129621218m mt m mm mm+===≤=+-+--+-+,当且仅当3,m t==取等.则cosθ5=,此时点E,可得CE=,()0,2,0CA=,设平面AEC中的法向量(),,k x yz=,则20k CE zk CA y⎧⋅==⎪⎨⎪⋅==⎩,取1x=,则0,y z==-,可得(1,0,k=-,可得球心O到平面AEC距离为AO kdk⋅==设平面AEC截球O圆半径为r,则2225326r R d=-=,所以截面圆面积为225353πππ2678r R==.【点睛】方法点睛:1.利用空间向量求线面角的思路:直线与平面所成的角θ主要通过直线的方向向量与平面的法向量的夹角ϕ求得,即sin cosθϕ=.2.利用空间向量求点到平面距离的方法:设A为平面α内的一点,B为平面α外的一点,n为平面α的法向量,则B到平面α的距离AB ndn⋅=.。

2024-2025学年湖州市高二数学上学期第一次月考试卷及答案解析

2024-2025学年湖州市高二数学上学期第一次月考试卷及答案解析

2024-2025学年湖州市高二数学上学期第一次月考试卷(试卷满分150分,考试用时120分钟)2024.10一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1.已知直线l 经过()1,4A -,()1,2B 两点,则直线l 的倾斜角为()A .π6B .π4C .2π3D .3π42.已如点()1,1,0A ,()1,0,2B -,()0,2,0C 都在平面α内,则平面α的一个法向量的坐标可以是()A .()2,2,3B .11,1,2⎛⎫- ⎪⎝⎭C .31,1,2⎛⎫- ⎪⎝⎭D .()2,2,1--3.直线240ax y ++=与直线(1)20x a y +-+=平行,则a 的值为()A .2a =B .0a =C .1a =-D .1a =-或2a =4.在四面体OABC 中,,,OA a OBb OCc === ,点M 在OA 上,且2OM MA =,N 为BC 中点,则MN =()A .121232a b c-+ B .211322a b c-++C .111222a b c+- D .221332a b c++5.已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程是()A .x 2+(y +1)2=1B .x 2+y 2=1C .(x +1)2+y 2=1D .x 2+(y -1)2=16.已知函数为22,0()e ln(1),0xx ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是()A .(,0]-∞B .[1,0]-C .[1,1]-D .[0,)+∞7.直线:10l ax y ++=与连接(2,3),(3,2)A B -的线段相交,则a 的取值范围是()A .[1,2]-B .[2,)(,1)+∞-∞- C .[2,1](2,3)- D .(,2][1,)-∞-+∞ 8.若直线1y kx =-与曲线243y x x =-+-恰有两个公共点,则实数k 的取值范围是()A .4,3⎛⎫+∞ ⎪⎝⎭B .41,3⎡⎫⎪⎢⎣⎭C .41,3⎡⎤⎢⎥⎣⎦D .40,3⎛⎫ ⎪⎝⎭二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选得部分分,有选错的得0分.9.下列说法中,正确的有()A .过点(1,2)P 且在x 轴,y 轴截距相等的直线方程为30x y +-=B .直线2y kx =-在y 轴的截距是2C .直线10x +=的倾斜角为30°D .过点(5,4)且倾斜角为90°的直线方程为50x -=10.已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则()A.点P 到直线AB 的距离小于10B.点P 到直线AB 的距离大于2C.当PBA ∠最小时,PB =D.当PBA ∠最大时,PB =11.如图,在四棱锥S ABCD -中,底面ABCD 是正方形,SA ⊥平面ABCD ,SA AB =,,O P 分别是,AC SC 的中点,M 是棱SD 上的动点,则下列说法中正确的是()A .OM AP⊥B .存在点M ,使//OM 平面SBCC .存在点M ,使直线OM 与AB 所成的角为30︒D .点M 到平面ABCD 与平面SAB 的距离和为定值三、填空题:本题共3小题,每小题5分,共15分12.过点()1,1且与直线230x y -+=垂直的直线方程为.13.直线20x y +-=分别与x 轴,y 轴交于A ,B 两点,点P 在圆221(2)(1)2x y ++-=上,则ABP 面积的取值范围是___________.14.为了测量一斜坡的坡度,小明设计如下的方案:如图,设斜坡面β与水平面α的交线为l ,小明分别在水平面α和斜坡面β选取A B ,两点,且7AB =,A 到直线l 的距离13AA =,B 到直线l 的距离14B B =,11A B =,则该斜坡的坡度是.四.解答题:本小题共5题,共77分。

2024-2025学年北京市海淀区首都师大附中高二(上)第一次月考数学试卷(含答案)

2024-2025学年北京市海淀区首都师大附中高二(上)第一次月考数学试卷(含答案)

2024-2025学年北京市海淀区首都师大附中高二(上)第一次月考数学试卷一、单选题:本题共10小题,每小题4分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知z i =i−1,则|z|=( )A. 0B. 1C. 2D. 22.如图,在平行六面体ABCD−A 1B 1C 1D 1中,AB −AD −AA 1=( )A. −AC 1B. A 1CC. D 1BD. −DB 13.已知A(2,−3,−1),B(−6,5,3),则AB 的坐标为( )A. (−8,8,−4)B. (−8,8,4)C. (8,−8,4)D. (8,−8,−4)4.如图,已知正方体ABCD−A′B′C′D′的棱长为1,AA′⋅DB′=( )A. 1B. 2C. 3D. −15.设n 1,n 2分别是平面α,β的法向量,其中n 1=(1,y,−2),n 2=(x,−2,1),若α//β,则x +y =( )A. −92B. −72C. 3D. 726.已知直线l 1的方向向量为u =(0,0,1),直线l 2的方向向量为v =(0, 3,−1),则直线l 1与l 2所成角的度数为( )A. 30°B. 60°C. 120°D. 150°7.已知n 为平面α的一个法向量,a 为直线l 的方向向量,则“a ⊥n ”是“l//α”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8.已知点O 、A 、B 、C 为空间不共面的四点,且向量a =OA +OB +OC ,向量b =OA +OB−OC ,则与a 、b 不能构成空间基底的向量是( )A. OA B. OB C. OC D. OA 或OB9.在空间直角坐标系Oxyz 中,点A(2,1,1)在坐标平面Oxz 内的射影为点B ,且关于y 轴的对称点为点C ,则B ,C 两点间的距离为( )A. 17 B. 3 2 C. 2 5 D. 2110.如图,在棱长为1的正四面体(四个面都是正三角形)ABCD 中,M ,N 分别为BC ,AD 的中点,则直线AM和CN 夹角的余弦值为( )A. 23B. 34C. 12D. 23二、填空题:本题共5小题,每小题4分,共20分。

2024-2025学年湖南省邵阳市邵东一中高二(上)第一次月考数学试卷(含答案)

2024-2025学年湖南省邵阳市邵东一中高二(上)第一次月考数学试卷(含答案)

2024-2025学年湖南省邵阳市邵东一中高二(上)第一次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.直线x−y +2=0的倾斜角为( )A. 30°B. 45°C. 60°D. 120°2.已知两条直线l 1与l 2不重合,则“l 1与l 2的斜率相等”是“l 1与l 2平行”的( )A. 充要条件B. 必要不充分条件C. 充分不必要条件D. 既不充分也不必要条件3.若向量a =(2,0),b =(3,1),则向量a 在向量b 上的投影向量为( )A. 3 105 B. (95,35) C. (3 105, 105) D. (5,1)4.如图所示,空间四边形OABC 中,OA =a ,OB =b ,OC =c ,点M 在OA 上,且OM =2MA ,N 为BC 的中点,MN =x a +y b +z c ,则x 、y 、z 分别为( )A. 12,−23,12B. −23,12,12C. 12,12,−23D. 23,23,−125.到直线l :x +2y−1=0的距离为 5的点的坐标是( )A. (−1,0) B. (−1,3) C. (4,1) D. (6,−2)6.直线2x−y +3=0关于直线x−y +2=0对称的直线方程是( )A. x−2y +3=0B. x−2y−3=0C. x +2y +1=0D. x +2y−1=07.公元前3世纪,古希腊数学家阿波罗尼斯结合前人的研究成果,写出了经典之作《圆锥曲线论》,在此著作第七卷《平面轨迹》中,有众多关于平面轨迹的问题,例如:平面内到两定点距离之比等于定值(不为1)的动点轨迹为圆.后来该轨迹被人们称为阿波罗尼斯圆.已知平面内有两点A(−1,0)和B(2,1),且该平面内的点P 满足|PA |=2|PB |,若点P 的轨迹关于直线mx +ny−2=0(m,n >0)对称,则2m +5n的最小值是( )A. 10B. 20C. 30D. 408.如图,棱长为2的正方体ABCD−A 1B 1C 1D 1中,P 为线段B 1D 1上动点(包括端点).①三棱锥P−A 1BD 中,点P 到面A 1BD 的距离为定值2 33②过点P 且平行于面A 1BD 的平面被正方体ABCD−A 1B 1C 1D 1截得的多边形的面积为2 3③直线PA 1与面A 1BD 所成角的正弦值的范围为[ 33, 63] ④当点P 为B 1D 1中点时,三棱锥P−A 1BD 的外接球表面积为11π以上命题为真命题的个数为( )A. 1B. 2C. 3D. 4二、多选题:本题共3小题,共18分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宁夏育才中学2012~2013学年第一学期高二年级月考试卷数学考试答题卷(试卷满分150 分,考试时间为120 分钟) 命题人:王红霞答题说明:1.考生应把学校、考场、考号、姓名写在密封线以内,密封线以外的无效。

2.请用钢笔、中型笔或圆珠笔把答案写在答题卡的横线上。

一.二.选择题二.填空题13 14.15. ,16. 三.解答题17题18题19题20题21题22题宁夏育才中学2012~2013学年第一学期高二年级数学月考试卷(试卷满分150 分,考试时间为120 分钟) 命题人:王红霞一.一.选择题(每题5分,共60分)1.算法:S1 输入nS2 判断n是否是2,若n=2,则n满足条件,若n>2,则执行S3S3 依次从2到n一1检验能不能整除n,若不能整除n, 则n满足条件,满足上述条件的n是( )A.质数B.奇数C.偶数D.约数开始输入 输出 是 是 否 否PRINT a ,b2.右面的程序框图,如果输入三个实数a ,b ,c ,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的( ) A .c x > B .x c > C .c b > D .b c >3.将两个数8,17a b ==交换,使17,8a b ==,下面语句正确一组是 ( )A. B. C. D. 4.已知7163=209×34+57209=57×,57=38×l+19, 38=19×2。

根据上述系列等式,确定7163和209的最大公约数是( ). A .57 B .3 C .19 D .2 5.下列说法中,正确的是( ). A .数据5,4,4,3,5,2的众数是4 B .一组数据的标准差是这组数据的方差的平方 C .数据2,3,4,5的标准差是数据4,6,8,10的标准差的一半 D .频率分布直方图中各小长方形的面积等于相应各组的频数 6.容量为100的样本数据,按从小到大的顺序分为8组,如下表:第三组的频数和频率分别是 ( ) A. 14和 C. 141和D. 31和1417. 某校有行政人员、教学人员和教辅人员共200人,其中教学人员与教辅人员的比为101,行政人员有24人,采取分层抽样容量为50的样本,那么行政人员应抽取的数为( )A. 3B. 4C. 6D. 8 8. 从932人中抽取一个样本容量为100的样本,采用系统抽样的方法则必须从这932人中剔除( )人 A 、16 B 、24 C 、32 D 、48 9. 将数()430012转化为十进制数为( ) A. 524 B. 774 C. 256 D. 26010. 计算机执行下面的程序段后,输出的结果是( )A .1,3B .4,1C .0,0D .6,011.从甲、乙两班分别任意抽出10名学生进行英语口语测验,其测验成绩的方差分别为S 12= ,S 22=26.26,( ). A .甲班10名学生的成绩比乙班10名学生的成绩整齐 B .乙班10名学生的成绩比甲班10名学生的成绩整齐 C .甲、乙两班10名学生的成绩一样整齐 D .不能比较甲、乙两班10名学生成绩的整齐程度12. 如右图,右边的程序框图所进行的求和运算是( )A . 12 + 14 + 16 +…+ 120B .1 + 13 + 15 +…+ 119C .1 + 12 + 14 +…+ 118 D. 12 + 12 2 + 12 3 +…+ 12 10 组号 1 2 3 4 5 6 7 8 频数 10 13 x 14 15 13 12 9 a=bc=b b=a b=aa=c c=b s = 0,n = 2 n <21是 否 s = s + 1n n = n + 2 输出s二.填空题(每题5分,共20分)13. 用秦九韶算法计算多项式654323567983512)(x x x x x x x f ++++-+=在4-=x 时的值时,2V 的值为14. 下面是一个算法的流程图,当输入的值为3时,输出的结果为15. 随机抽取某产品n 件,测得其长度分别为12,,,n a a a L ,则下图所示的程序框图输出的s = ,s 表示的样本的数字特征是 .16. 已知样本9,10,11,,x y 的平均数是10,标准差是2,则xy = 第15题三.解答题(共70分,请写出必要的解题步骤)17(10分)用辗转相除法求156,126的最大公约数,并用更相减损术证明18(12分)对自行车运动员甲、乙两人进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:甲 27 38 30 37 35 31 乙33 29 38 34 28 36 试判断选谁参加某项重大比赛更合适 19(12分)写出计算1+2+3+…+100的值的程序框图,并写出算法语句.(要求用循环结构)20(12分)从甲乙两班各随机的抽取10名学生,他们的数学成绩如下:甲班 76 7482 96 66 76 78 72 52 68 乙班 86 84 62 7678 92 82 74 88 85 画出茎叶图并分析两个班学生的数学学习情况。

21(12分)为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得的数据整理后画出频率分布直方图(如下图),已知图中从左到右的前三个小组的频率分别是,,.第一小组的频数是5.(1) 求第四小组的频率和参加这次测试的学生人数; (2) 在这次测试中,学生跳绳次数的中位数落在第几小组内(3) 参加这次测试跳绳次数在100次以上为优秀, 试估计该校此年级跳绳成绩的优秀率是多少22(14分)某工厂有工人1000名,其中250名工人参加过短期培训(称为A 类工人),另外750名工人参加过长期培训(称为B 类工人).现用分层抽样方法(按A类,B 类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).(Ⅰ)A 类工人中和B 类工人各抽查多少工人 (Ⅱ)从A 类工人中抽查结果和从B 类工人中的抽查结果分别如下表1和表2 表1:生产能力分组人数4 85 3 表2: 生产能力分组 人数6 y 36 18(1)先确定x,y 的值,再在答题纸上完成频率分布直方图。

就生产能力而言,A 类工人中个体间的差异程度与B 类工人中个体间的差异程度哪个更小(不用计算,可通过观察直方图直接回答结论)(2)分别估计A 类工人和B 类工人生产能力的平均数,并估计该工厂工人生产能力的平均数(同一组中的数据用该区间的中点值作代表)。

宁夏育才中学2012~2013学年第一学期高二年级数学月考试卷答案一.选择题二.填空题=(a1+a2+…+an)/n 平均值 三.解答题 =126*1+30 126=30*4+6 30=6*5156与126的最大公约数是6 (更相减损术略) 18. 甲x =33,乙x =3325.下面程序的作用是求100991651431211⨯+⋅⋅⋅+⨯+⨯+⨯的值 i=1sum=0DOsum=sum+ LOOP UNTIL 频率 组距 次数第14题 开始y=x 2-1y=2x 2+2 x<5 N 输出S Y输入x 结束347s 2=甲>337s 2=乙,乙的成绩比甲稳定,应选乙参加比赛更合适 19.i=1 0 S=0 WHILE i ≤100S=S+i i=i+l WEND PRINT SEND 20.乙班的数学学习成绩更好一些,更稳定。

21. (1) 第四小组的频率=1-++=,因为率为,所以参加这次测试的学生人数为5=50(人).(2) 50=15,50=20,50=10,则第一、第二、第三、第四小组的频数分别为5,15,20,10.所以学生跳绳次数的中位数落在第三小组内.(3) 跳绳成绩的优秀率为(+)100%=60%.22. (Ⅰ)A 类工人中和B 类工人中分别抽查25名和75名。

(Ⅱ)(ⅰ)由485325x ++++=,得5x =, 6361875y +++=,得15y =。

频率分布直方图如下从直方图可以判断:B 类工人中个体间的差异程度更小。

(ii ) 485531051151251351451232525252525A x =⨯+⨯+⨯+⨯+⨯=, 6153618115125135145133.875757575B x =⨯+⨯+⨯+⨯=, A 类工人生产能力的平均数,B 类工人生产能力的平均数以及全厂工人生产能力的平均数的估计值分别为123,和.甲 茎 乙 2 5 8 6 6 2 2 8 6 4 6 7 6 8 4 2 8 6 4 2 8 5692以下无正文仅供个人用于学习、研究;不得用于商业用途。

толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях.For personal use only in study and research; not for commercial use.Nur für den persönlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden.Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.。

相关文档
最新文档