2004年江苏高考数学卷(Word版)

合集下载

2004年高考.江苏卷.数学试题及答案

2004年高考.江苏卷.数学试题及答案

C1
(Ⅲ)求点 P 到平面 ABD1 的距离.
·O
A1
B1
·H
P
D 第 2页 (2共 6页)
A
C B
19.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损. 某投资人打算投资甲、乙两个项目. 根据预测,甲、乙项目可能的最大盈利率分别为 100
﹪和 50﹪,可能的最大亏损分别为 30﹪和 10﹪. 投资人计划投资金额不超过 10 万元,要 求确保可能的资金亏损不超过 1.8 万元. 问投资人对甲、乙两个项目各投资多少万元,才 能使可能的盈利最大?
设实数 a0,a,b 满足 f (a0 ) 0 和 b a λf (a) (Ⅰ)证明 λ 1 ,并且不存在 b0 a0 ,使得 f (b0 ) 0 ; (Ⅱ)证明 (b a0 ) 2 (1 λ2 )(a a0 ) 2 ; (Ⅲ)证明 [ f (b)]2 (1 λ2 )[ f (a)]2 .
先后抛掷 3 次,至少出现一次 6 点向上和概率是
(
)
(A) 5 216
(B) 25 216
(C) 31 216
(D) 91 216
10.函数 f (x) x 3 3x 1 在闭区间[-3,0]上的最大值、最小值分别是
(
)
(A)1,-1
(B)1,-17
(C)3,-17
(D)9,-19
11.设 k>1,f(x)=k(x-1)(x∈R) . 在平面直角坐标系 xOy 中,函数 y=f(x)的图象与 x 轴交于 A
M=N 成立的实数对(a,b)有
(
)
(A)0 个
(B)1 个
(C)2 个
(D)无数多个
二、填空题(4 分×4=16 分)

江苏省2004高考数学 名师整理真题分类汇编 选修系列

江苏省2004高考数学 名师整理真题分类汇编 选修系列

(十年高考)江苏省2004-2013年高考数学 名师整理真题分类汇编 选修系列一、选择填空题1.(江苏2006年5分)设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 ▲ 【答案】18。

【考点】线性规划问题。

【分析】画出可行域,得在直线22x y -=与直线1x y -=-的交点A(3,4)处,目标函数z 最大,最大值为18。

2.(江苏2007年5分)在平面直角坐标系xOy ,已知平面区域{(,)|1,A x y x y =+≤且0,0}x y ≥≥,则平面区域{(,)|(,)}B x y x y x y A =+-∈的面积为【 】 A .2 B .1 C .12 D .14【答案】B 。

【考点】简单线性规划的应用。

【分析】令u x y v x y =+⎧⎨=-⎩。

则100u u v u v ≤⎧⎪+≥⎨⎪-≥⎩。

作出区域是等腰直角三角形,可求出面积11221=⨯⨯=s 。

故选B 。

二、解答题1.(江苏2008年附加10分)选修4—1 几何证明选讲如图,设△ABC 的外接圆的切线AE 与BC 的延长线交于点E ,∠BAC 的平分线与BC 交于点D . 求证:2ED EB EC =⋅.【答案】证明:如图,∵AE 是圆的切线,∴ABC CAE ∠=∠。

又∵AD 是∠BAC 的平分线,∴BAD CAD ∠=∠。

∴ABC BAD CAE CAD ∠+∠=∠+∠。

BCEDA∵ADE ABC BAD ∠=∠+∠, DAE CAE CAD ∠=∠+∠, ∴ ADE DAE ∠=∠。

∴EA=ED。

∵ EA 是圆的切线,∴由切割线定理知,2EA EC EB =⋅。

而EA=ED ,∴2ED EB EC =⋅。

【考点】与圆有关的比例线段。

【分析】根据已知EA 是圆的切线,AC 为过切点A 的弦得两个角相等,再结合角平分线条件,从而得到△EAD 是等腰三角形,再根据切割线定理即可证得。

2004年高考.江苏卷.数学试题及答案

2004年高考.江苏卷.数学试题及答案

时间(小时) 2004年普通高等学校招生全国统一考试数学(江苏卷)一、选择题(5分×12=60分)1.设集合P={1,2,3,4},Q={R x x x ∈≤,2},则P ∩Q 等于( )(A){1,2} (B) {3,4} (C) {1} (D) {-2,-1,0,1,2}2.函数y=2cos 2x+1(x ∈R )的最小正周期为( ) (A)2π (B)π (C)π2 (D)π4 3.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 ( )(A)140种 (B)120种 (C)35种 (D)34种4.一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是( ) (A)33π100cm (B) 33π208cm (C) 33π500cm (D) 33π3416cm 5.若双曲线18222=-by x 的一条准线与抛物线x y 82=的准线重合,则双曲线离心率为 ( ) (A)2 (B)22 (C) 4 (D)246.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( )(A)0.6小时 (B)0.9小时 (C)1.0小时 (D)1.5小时7.4)2(x x +的展开式中x 3的系数是 ( )(A)6 (B)12 (C)24 (D)488.若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(-1,0)和(0,1),则 ( )(A)a=2,b=2 (B)a= 2 ,b=2 (C)a=2,b=1 (D)a= 2 ,b= 29.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上和概率是 ( )(A)5216 (B)25216 (C)31216 (D)9121610.函数13)(3+-=x x x f 在闭区间[-3,0]上的最大值、最小值分别是 ( )(A)1,-1 (B)1,-17 (C)3,-17 (D)9,-1911.设k>1,f(x)=k(x-1)(x ∈R ) . 在平面直角坐标系xOy 中,函数y=f(x)的图象与x 轴交于A点,它的反函数y=f -1(x)的图象与y 轴交于B 点,并且这两个函数的图象交于P 点. 已知四边形OAPB 的面积是3,则k 等于 ( )(A)3 (B)32 (C)43 (D)6512.设函数)(1)(R x xx x f ∈+-=,区间M=[a ,b](a<b),集合N={M x x f y y ∈=),(},则使M=N 成立的实数对(a ,b)有 ( )(A)0个 (B)1个 (C)2个 (D)无数多个二、填空题(4分×4=16分)13.二次函数y=ax 2+bx+c(x ∈R )的部分对应值如下表:则不等式ax +bx+c>0的解集是_______________________.14.以点(1,2)为圆心,与直线4x+3y-35=0相切的圆的方程是________________.15.设数列{a n }的前n 项和为S n ,S n =2)13(1-n a (对于所有n ≥1),且a 4=54,则a 1的数值是_______________________.16.平面向量,中,已知a =(4,-3)=1,且b a ⋅=5,则向量b =__________.三、解答题(12分×5+14分=74分)17.已知0<α<2π,tan 2α+cot 2α=25,求sin(3πα-)的值. 18.在棱长为4的正方体ABCD-A 1B 1C 1D 1中,O 是正方形A 1B 1C 1D 1的中心,点P 在棱CC 1上,且CC 1=4CP.(Ⅰ)求直线AP 与平面BCC 1B 1所成的角的大小(结果用反三角函数值表示);(Ⅱ)设O 点在平面D 1AP 上的射影是H ,求证:D 1H ⊥AP ; (Ⅲ)求点P 到平面ABD 1的距离.· B 1 P D A 1 C 1 D 1O H ·19.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目. 根据预测,甲、乙项目可能的最大盈利率分别为100﹪和50﹪,可能的最大亏损分别为30﹪和10﹪. 投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元. 问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?20.设无穷等差数列{a n }的前n 项和为S n .(Ⅰ)若首项=1a 32 ,公差1=d ,求满足2)(2k kS S =的正整数k ; (Ⅱ)求所有的无穷等差数列{a n },使得对于一切正整数k 都有2)(2k k S S=成立.21.已知椭圆的中心在原点,离心率为12,一个焦点是F (-m,0)(m 是大于0的常数). (Ⅰ)求椭圆的方程;(Ⅱ)设Q 是椭圆上的一点,且过点F 、Q 的直线l 与y 轴交于点M. =,求直线l 的斜率.22.已知函数))((R x x f ∈满足下列条件:对任意的实数x 1,x 2都有)]()()[()(λ2121221x f x f x x x x --≤-和2121)()(x x x f x f -≤-,其中λ是大于0的常数.设实数a 0,a ,b 满足 0)(0=a f 和)(λa f a b -=(Ⅰ)证明1λ≤,并且不存在00a b ≠,使得0)(0=b f ;(Ⅱ)证明20220))(λ1()(a a a b --≤-;(Ⅲ)证明222)]()[λ1()]([a f b f -≤.2004年普通高等学校招生全国统一考试数学(江苏卷)参考答案 一、选择题ABDCA BCADC BA二、填空题13、{2x x <-或3}x >14、22(1)(1)25x y -+-=15、216、43(,)55b =-三、解答题17、解:由题意可知4sin 5α=,sin()3πα∴-=18、解(1)arctan APB ∠=(2)略(319、解:10318x y x y +≤⎧⎨+≤⎩,设0.5z x y =+当46x y =⎧⎨=⎩时,z 取最大值7万元20、解:(1)4k =(2)100a d =⎧⎨=⎩或112a d =⎧⎨=⎩或110ad =⎧⎨=⎩21、解:(1)2222143x y m m +=(2)k =±或022、解:(1)不妨设12x x >,由[]2121212()()()()x x x x f x f x λ-≤-⋅-可知12()()0f x f x ->,()f x ∴是R 上的增函数∴不存在00b a ≠,使得0()0f b =又[]2212121212()()()()()x x x x f x f x x x λ-≤-⋅-≤-1λ∴≤(2)要证:222000()(1)()b a a a λ-≤--即证:2200()()2()()a a f a f a a a λ⎡⎤-+≤-⎣⎦(*) 不妨设0a a >,由[]2121212()()()()x x x x f x f x λ-≤-⋅-得00()()()f a f a a a λ-≥-,即0()()f a a a λ≥-,则2002()()2()f a a a a a λ-≥- (1) 由1212()()f x f x x x -≤-得00()()f a f a a a -≤- 即0()f a a a ≤-,则22200()()2()a a f a a a λλ⎡⎤-+≤-⎣⎦ (2) 由(1)(2)可得2200()()2()()a a f a f a a a λ⎡⎤-+≤-⎣⎦222000()(1)()b a a a λ∴-≤--(3)220[()]()f a a a ≤-,22220(1)[()](1)()f a a a λλ∴-≤--220[()]()f b b a ≤-又由(2)中结论222000()(1)()b a a a λ-≤--222[()](1)[()]f b f a λ∴≤-。

2004年高考数学江苏卷及答案

2004年高考数学江苏卷及答案
(A)6 (B)12 (C)24 (D)48
8.若函数 的图象过两点(-1,0)和(0,1),则( )
(A)a=2,b=2 (B)a= ,b=2 (C)a=2,b=1 (D)a= ,b=
9.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是( )
0
-4
-6
-6
-4
0
6
则不等式ax2+bx+c>0的解集是_______________________.
14.以点(1,2)为圆心,与直线4x+3y-35=0相切的圆的方程是________________.
15.设数列{an}的前n项和为Sn,Sn= (对于所有n≥1),且a4=54,则a1的数值是_______________________.
(A)3 (B) (C) (D)
12.设函数 ,区间M=[a,b](a<b),集合N={ },则使M=N成立的实数对(a,b)有( )
(A)0个(B)1个(C)2个(D)无数多个
二、填空题(4分×4=16分)
13.二次函数y=ax2+bx+c(x∈R)的部分对应值如下表:
x
-3
-2
-1
0
1
2
3
4
y
6
20.设无穷等差数列{an}的前n项和为Sn.
(Ⅰ)若首项 ,公差 ,求满足 的正整数k;
(Ⅱ)求所有的无穷等差数列{an},使得对于一切正整数k都有 成立.
21.已知椭圆的中心在原点,离心率为 ,一个焦点是F(-m,0)(m是大于0的常数). (Ⅰ)求椭圆的方程;(Ⅱ)设Q是椭圆上的一点,且过点F、Q的直线 与y轴交于点M.若 ,求直线 的斜率.

江苏卷2004年

江苏卷2004年

2004年江苏省高考数学试卷一、选择题(共12小题,每小题5分,满分60分)1. (2004•江苏)设集合{P =1,2,3,4},{|2Q x x =≤,}x R ∈,则PQ =A.{3,4}B.{1,2}C.{1}D.{-1,-2,0,1,2} 2. (2004•江苏)函数22cos 1()y x x R =+∈的最小正周期为 A.2π B.π C.2π D.4π3. (2004•江苏)从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有A.140种B.120种C.35种D.34种4. (2004•江苏)一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是A.31003cm πB.32083cm πC.35003cm πD.33cm 5. (2004•江苏)若双曲线22218x y b-=的一条准线与抛物线28y x =的准线重合,则双曲线的离心率为B. C.4 D.6. (2004•江苏)某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示.根据条形图可得这50名学生这一天平均每人的课外阅读时间为A.0.6小时B.0.9小时C.1.0小时D.1.5小时7. (2004•江苏)4(2x +的展开式中3x 的系数是A.6B.12C.24D.488. (2004•江苏)若函数log ()(0a y x b a =+>,1)a ≠的图象过两点(1-,0)和(0,1),则A.2a =,2b =B.a =2b =C.2a =,1b =D.a =b =9. (2004•江苏)将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是 A.5216B.25216 C.31216 D.9121610. (2004•江苏)函数3()31f x x x =-+在闭区间[3-,0]上的最大值、最小值分别是A.1,-1B.1,-17C.3,-17D.9,-1911. (2004•江苏)设1k >,()(1)()f x k x x R =-∈.在平面直角坐标系xOy 中,函数()y f x =的图象与x 轴交于A 点,它的反函数1()y f x -=的图象与y 轴交于B 点,并且这两个函数的图象交于P 点.已知四边形OAPB 的面积是3,则k 等于A.3B.32C.43D.65 12. (2004•江苏)设函数()()1x f x x R x=-∈+,区间[M a =,]()b a b <,集合N = {|()y y f x =,}x M ∈,则使M N =成立的实数对(a ,)b 有A.1个B.2个C.3个D.无数多个二、填空题(共4小题,每小题4分,满分16分) 13. (2004•江苏)二次函数2x ﹣3 ﹣2 ﹣1 0 1 2 3 4 y 6 0 ﹣4 ﹣6 ﹣6 ﹣4 06 则不等式的解集是________.14. (2004•江苏)以点(1,2)为圆心,与直线43350x y +-=相切的圆的方程是_____.15. (2004•江苏)设数列{}n a 的前n 项和为n S ,1(31)2n n a S -=(对于所有1n ≥),且454a =,则1a 的数值是_________.16. (2004•江苏)平面向量a ,b 中,若(4a =,3)-,1b =,且a ▪5b =,则向量b =__. 三、解答题(共6小题,满分12×5+14=74分)17. (2004•江苏)已知02πα<<,5tan cot 222αα+=,求sin()3πα-的值. 18. (2004•江苏)在棱长为4的正方体1111ABCD A BC D -中,O 是正方形1111A B C D 的中心,点P 在棱1CC 上,且14CC CP =.⑴求直线AP 与平面11BCC B 所成的角的大小(结果用反三角函数值表示);⑵设O 点在平面1D AP 上的射影是H ,求证:1D H AP ⊥;⑶求点P 到平面1ABD 的距离.19. (2004•江苏)制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损分别为30%和10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?20. (2004•江苏)设无穷等差数列{}n a 的前n 项和为n S . ⑴若首项132a =,公差1d =,求满足22()k k S S =的正整数k ; ⑵求所有的无穷等差数列{}n a ,使得对于一切正整数k 都有22()k k S S =成立. 21. (2004•江苏)已知椭圆的中心在原点,离心率为12,一个焦点是(F m -,0)(m 是大于0的常数).⑴求椭圆的方程;⑵设Q 是椭圆上的一点,且过点F ,Q 的直线l 与y 轴交于点M .若2MQ QF =,求直线l 的斜率.22. (2004•江苏)已知函数()()f x x R ∈满足下列条件:对任意的实数1x ,2x 都有2121212()()[()()]x x x x f x f x λ-≤--和1212()()f x f x x x -≤-,其中λ是大于0的常数,设实数0a ,a ,b 满足0()0f a =和()b a f a λ=-.⑴证明1λ≤,并且不存在00b a ≠,使得0()0f b =;⑵证明22200()(1)()b a a a λ-≤--;⑶证明222[()](1)[()]f b f a λ≤-.2004年江苏省高考数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2004•江苏)设集合P={1,2,3,4},Q={x||x﹣1|≤2,x∈R},则P∩Q等于()A.{3,4} B.{1,2} C.{1,2,3} D.{1,2,3,4}【分析】先求出集合P和Q,然后再求P∩Q.【解答】解:∵P={1,2,3,4},Q={x||x﹣1|≤2,x∈R}={x|﹣1≤x≤3,x∈R},∴P∩Q={1,2,3}.故选C.【点评】本题考查集合的运算,解题时要注意不重复、不遗漏.2.(5分)(2004•江苏)函数y=2cos2x+1(x∈R)的最小正周期为()A.B.πC.2πD.4π【分析】把函数y=2cos2x+1(x∈R)化为一个角的一个三角函数的形式,求出周期即可.【解答】解:函数y=2cos2x+1=cos2x+2它的最小正周期为:=π,故选B【点评】本题考查三角函数的周期性及其求法,是基础题.3.(5分)(2004•江苏)从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有()A.140种B.120种C.35种D.34种【分析】从7个人中选4人共C74种选法,本题不可能只有女生这种情况,去掉不合题意的只有男生的选法C44就可得有既有男生,又有女生的选法.【解答】解:∵7人中任选4人共C74种选法,去掉只有男生的选法C44,就可得有既有男生,又有女生的选法C74﹣C44=34.故选D.【点评】排列与组合问题要区分开,若题目要求元素的顺序则是排列问题,排列问题要做到不重不漏,有些题目带有一定的约束条件,解题时要先考虑有限制条件的元素.4.(5分)(2004•江苏)一平面截一球得到直径是6cm的圆面,球心到这个平面的距离是4cm,则该球的体积是()A.B.C.D.【分析】利用条件:球心到这个平面的距离是4cm、截面圆的半径、球的半径、求出球的半径,然后求出球的体积.【解答】解:一平面截一球得到直径是6cm的圆面,就是小圆的直径为6,又球心到这个平面的距离是4cm,所以球的半径是:5cm所以球的体积是:故选C.【点评】本题考查球的体积,考查计算能力,是基础题.5.(5分)(2004•江苏)若双曲线的一条准线与抛物线y2=8x的准线重合,则双曲线离心率为()A.B.C.4 D.【分析】根据抛物线方程可求得抛物线的准线方程即双曲线的准线方程,进而求得c,最后根据离心率公式求得答案.【解答】解:由抛物线y2=8x,可知p=4,∴准线方程为x=﹣2,对于双曲线准线方程为x=﹣=﹣2∴2c=a2=8c=4∴e==故选A【点评】本题主要考查了双曲线的简单性质.求离心率的关键是求得a和c的关系.6.(5分)(2004•江苏)某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示.根据条形图可得这50名学生这一天平均每人的课外阅读时间为()A.0.6小时B.0.9小时C.1.0小时D.1.5小时【分析】根据样本的条形图可知,将所有人的学习时间进行求和,再除以总人数即可.【解答】解:==0.9,故选B.【点评】本小题主要考查样本的条形图的知识和分析问题以及解决问题的能力,属于基础题.7.(5分)(2004•江苏)(2x+)4的展开式中x3的系数是()A.6 B.12 C.24 D.48【分析】利用二项展开式的通项公式求出展开式的第r+1项,令x的指数为3,求出展开式中x3的系数.【解答】解:展开式的通项为=令解得r=2故展开式中x3的系数是4×C42=24故选项为C【点评】本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.8.(5分)(2004•江苏)若函数y=loga(x+b)(a>0,a≠1)的图象过两点(﹣1,0)和(0,1),则()A.a=2,b=2 B.a=3,b=2 C.a=2,b=1 D.a=2,b=3【分析】将两点代入即可得到答案.【解答】解:∵函数y=loga(x+b)(a>0,a≠1)的图象过两点(﹣1,0)和(0,1),∴loga(﹣1+b)=0,loga(0+b)=1∴a=2,b=2故选A.【点评】本题主要考查已知对数图象过一直点求解析式的问题.这里将点代入即可得到答案.9.(5分)(2004•江苏)将一颗质地均匀的骰子先后抛掷3次,至少出现一次6点向上的概率是()A. B. C. D.【分析】事件“至少出现一次6点向上”的对立事件是“出现0次6点向上的概率”,由此借助对立事件的概率进行求解.【解答】解:∵事件“至少出现一次6点向上”的对立事件是“出现0次6点向上的概率”,∴至少出现一次6点向上的概率p=1﹣=1﹣=.故选D.【点评】本题考查n次独立重复试验中恰好发生k次的概率,解题时要注意对立事件概率的合理运用.10.(5分)(2004•江苏)函数f(x)=x3﹣3x+1在闭区间[﹣3,0]上的最大值、最小值分别是()A.1,﹣1 B.1,﹣17 C.3,﹣17 D.9,﹣19【分析】求导,用导研究函数f(x)=x3﹣3x+1在闭区间[﹣3,0]上的单调性,利用单调性求函数的最值.【解答】解:f′(x)=3x2﹣3=0,x=±1,故函数f(x)=x3﹣3x+1[﹣3,﹣1]上是增函数,在[﹣1,0]上是减函数又f(﹣3)=﹣17,f(0)=1,f(1)=﹣1,f(﹣1)=3.故最大值、最小值分别为3,﹣17;故选C.【点评】本题考点是导数法求函数最值.此类解法的步骤是求导,确定极值点,研究单调性,求出极值与区间端点的函数值,再比较各数的大小,选出最大值与最小值.11.(5分)(2004•江苏)设k>1,f(x)=k(x﹣1)(x∈R).在平面直角坐标系xOy 中,函数y=f(x)的图象与x轴交于A点,它的反函数y=f﹣1(x)的图象与y轴交于B点,并且这两个函数的图象交于P点.已知四边形OAPB的面积是3,则k等于()A.3 B.C.D.【分析】先根据题意画出图形,由于互为反函数的两个函数的图象关于y=x对称,从而两个函数的图象交于P点必在直线y=x上.且A,B两点关于y=x对称,利用四边形OAPB的面积=AB×OP,求得P(3,3)从而求得k值.【解答】解:根据题意画出图形,如图.由于互为反函数的两个函数的图象关于y=x对称,所以这两个函数的图象交于P点必在直线y=x上.且A,B两点关于y=x对称,∴AB⊥OP∴四边形OAPB的面积=AB×OP=×OP=3,∴OP=3.∴P(3,3)代入f(x)=k(x﹣1)得:k=故选B.【点评】本题主要考查反函数,反函数是函数知识中重要的一部分内容.对函数的反函数的研究,我们应从函数的角度去理解反函数的概念,从中发现反函数的本质,并能顺利地应用函数与其反函数间的关系去解决相关问题.12.(5分)(2004•江苏)设函数,区间M=[a,b](a<b),集合N={y|y=f(x),x∈M},则使M=N成立的实数对(a,b)有()A.1个B.2个C.3个D.无数多个【分析】由题设知对于集合N中的函数f(x)的定义域为[a,b],对应的f(x)的值域为N=M=[a,b].由函数,知f(x)是增函数.故N=,由此能导出使M=N成立的实数对(a,b)的个数.【解答】解:∵x∈M,M=[a,b],则对于集合N中的函数f(x)的定义域为[a,b],对应的f(x)的值域为N=M=[a,b].又∵,故当x∈(﹣∞,+∞)时,函数f(x)是增函数.故N=,由N=M=[a,b]得或或,故选C.【点评】本题考查集合相等的概念,解题时要注意绝对值的性质和应用.二、填空题(共4小题,每小题4分,满分16分)【分析】由表可得二次函数的零点,可设其两根式,然后代入一点求得解析式,即可得到不等式ax2+bx+c>0的解集.【解答】解:由表可设y=a(x+2)(x﹣3),又∵x=0,y=﹣6,代入知a=1.∴y=(x+2)(x﹣3)∴ax2+bx+c=(x+2)(x﹣3)>0得x>3或x<﹣2.故答案为:{x|x>3或x<﹣2}【点评】本题为基础题,考查了一元二次不等式与二次函数的关系,在解题时注意题目要求不等式的解集.14.(4分)(2004•江苏)以点(1,2)为圆心,与直线4x+3y﹣35=0相切的圆的方程是(x﹣1)2+(y﹣2)2=25 .【分析】先求圆心到直线4x+3y﹣35=0的距离,再求出半径,即可由圆的标准方程求得圆的方程.【解答】解:以点(1,2)为圆心,与直线4x+3y﹣35=0相切,圆心到直线的距离等于半径,即:所求圆的标准方程:(x﹣1)2+(y﹣2)2=25故答案为:(x﹣1)2+(y﹣2)2=25【点评】本题考查圆的标准方程,直线与圆相切,是基础题.15.(4分)(2004•江苏)设数列{an}的前n项和为Sn,Sn=(对于所有n≥1),且a4=54,则a1的数值是 2 .【分析】根据a4=S4﹣S3把Sn=代入,即可求得a4=27a1,进而求得a1【解答】解:设数列{an}的前n项和为Sn,Sn=(对于所有n≥1),则a4=S4﹣S3=,且a4=54,则a1=2故答案为2【点评】本题主要考查了数列的求和问题.属基础题.16.(4分)(2004•江苏)平面向量,中,若=(4,﹣3),||=1,且•=5,则向量= (,﹣)【分析】由,=(4,﹣3),||=1,得到cos<>=1,所以同向,所以,即可获得答案【解答】解:∵||=5;∴cos<>=;∴同向;∴故答案为()【点评】本题考查向量数量积以及向量共线的灵活运用,对提高学生的思维能力有很好的训练三、解答题(共6小题,满分74分)17.(12分)(2004•江苏)已知0<α<,tan+cot=,求sin(α﹣)的值.【分析】根据tan+cot=求得sinα的值,进而根据α的范围求得cosα的值,最后根据两角和公式求得答案.【解答】解:由已知tan+cot==,得sinα=.∵0<α<,∴cosα==.∴sin(α﹣)=sinα•cos﹣cosα•sin=×﹣×=(4﹣3).【点评】本题主要考查了两角和公式的化简求值.再利用三角函数基本关系式时要特别留意角的范围,确定函数值的正负.18.(12分)(2004•江苏)在棱长为4的正方体ABCD﹣A1B1C1D1中,O是正方形A1B1C1D1的中心,点P在棱CC1上,且CC1=4CP.(Ⅰ)求直线AP与平面BCC1B1所成的角的大小(结果用反三角函数值表示);(Ⅱ)设O点在平面D1AP上的射影是H,求证:D1H⊥AP;(Ⅲ)求点P到平面ABD1的距离.【分析】本题宜建立空间坐标系,用空间向量来解决求线面角证线线垂直,求点到面距离.(Ⅰ)由题设条件,连接AC,即可得出AP与平面BCC1B1所成的角为∠PAC,求出线的方向向量与面的法向量,用公式求出线面角的正弦.(Ⅱ)由图形及题设条件可以证得AP⊥面D1OH,由线面垂直证得母线线垂直,求出两线.(Ⅲ)用向量法求点到面的距离,求线段对应的向量在面的法向量的投影的长度即可.【解答】解:建立如图的空间坐标系,由已知D(0,0,0),A(4,0,0),C(0,4,0),D(0,0,4),B(4,4,0)(1)如图,连接PB,由正方体的性质知∠APB即为所求的线面角,∵CC1=4CP∴CP=1,由勾股定理知BP=,∴tan∠APB===∴(2)证明:由已知OH⊥面APD1,∴OH⊥AP,连接B1D1,由于O是上底面的中心,故O∈B1D1,由正体的性质知B1D1⊥面AC1,又AP⊂面AC1,∴B1D1⊥AP又B1D1∩OH=0∴AP⊥面D1OH,∴D1H⊥AP(3)如图=(0,4,0),=(﹣4,0,4)=(﹣4,4,1)令面ABD1的法向量为=(x,y,z)故有,即令x=1,则z=1,故=(1,0,1)故点P到面面ABD1的距离d==点P到面面ABD1的距离为【点评】本考点是立体几何,对三个问题其中前两个问题用几何法证明较易,故采用了几何法,而第三个问题点到面的垂线段不易做出,故采用了向量法求点到面的距离,在做题时应根据题目的条件灵活选用解题的方法.19.(12分)(2004•江苏)制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损分别为30%和10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?【分析】设投资人对甲、乙两个项目各投资x和y万元,列出x和y的不等关系及目标函数z=x+0.5y.利用线性规划或不等式的性质求最值即可.【解答】解:设投资人对甲、乙两个项目各投资x和y万元,则,设z=x+0.5y=0.25(x+y)+0.25(3x+y)≤0.25×10+0.25×18=7,当即时,z取最大值7万元答:投资人对甲、乙两个项目分别投资4万元和6万元时,才能使可能的盈利最大.【点评】本题考查线性规划的应用问题,利用不等式的性质求最值问题,考查对信息的提炼和处理能力.20.(12分)(2004•江苏)设无穷等差数列{an}的前n项和为Sn.(Ⅰ)若首项a1=,公差d=1.求满足的正整数k;(Ⅱ)求所有的无穷等差数列{an},使得对于一切正整数k都有成立.【分析】(Ⅰ),由得,又k是正整数,所以k=4.(Ⅱ)设数列的公差为d,则在中分别取k=1,2得,由此能求出只有3个满足条件的无穷等差数列.【解答】解:(Ⅰ)∵首项a1=,公差d=1.∴,由得,即,∵k是正整数,∴k=4.…(5分)(Ⅱ)设数列的公差为d,则在中分别取k=1,和k=2得,即由①得a1=0或a1=1,当a1=0时,代入②得d=0或d=6.若a1=0,d=0则本题成立;若a1=0,d=6,则an=6(n ﹣1),由S3=18,(S3)2=324,S9=216知S9≠(S3)2,故所得数列不符合题意;当a1=1时,代入②得4+6d=(2+d )2,解得d=0或d=2.若a=1,d=0则an=1,Sn=n 从而成立;若a1=1,d=2,则an=2n ﹣1,Sn=n2, 从而成立.综上所述,只有3个满足条件的无穷等差数列:①an=0; ②an=1;③an=2n ﹣1.【点评】本题考查等差数列的性质和应用,具体涉及到等差数列的前n 项和公式和通项公式的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化21.(12分)(2004•江苏)“五一”期间,我市某街道办事处举行了“迎全运,促和谐”(单位:厘米)2 厘米2.【分析】先计算出身高的平均数,再根据方差的公式计算.【解答】解:这五个数的平均数是=180,依据方差的计算公式可得这五个数的方差是: S2=[(178﹣180)2+(180﹣180)2+(182﹣180)2+(181﹣180)2+(179﹣180)2], =×10=2(cm2).故答案为:2.【点评】本题考查了方差的知识,方差(英文Variance )用来度量随机变量和其数学期望(即均值)之间的偏离程度.一些同学对方差的公式记不准确或计算粗心而出现错误.22.(14分)(2004•江苏)已知函数f (x )(x ∈R )满足下列条件:对任意的实数x1,x2都有λ(x1﹣x2)2≤(x1﹣x2)[f (x1)﹣f (x2)]和|f (x1)﹣f (x2)|≤|x1﹣x2|,其中λ是大于0的常数,设实数a0,a ,b 满足f (a0)=0和b=a ﹣λf (a ) (Ⅰ)证明λ≤1,并且不存在b0≠a0,使得f (b0)=0;(Ⅱ)证明(b﹣a0)2≤(1﹣λ2)(a﹣a0)2;(Ⅲ)证明[f(b)]2≤(1﹣λ2)[f(a)]2.【分析】(Ⅰ)要证明λ≤1,并且不存在b0≠a0,使得f(b0)=0,由已知条件λ(x1﹣x2)2≤(x1﹣x2)[f(x1)﹣f(x2)]和|f(x1)﹣f(x2)|≤|x1﹣x2|合并,可以直接得出λ≤1,再假设有b0≠a0,使得f(b0)=0,根据已知判断出矛盾即得到不存在b0≠a0,使得f(b0)=0.(Ⅱ)要证明(b﹣a0)2≤(1﹣λ2)(a﹣a0)2;把不等式两边(b﹣a0)2和(1﹣λ2)(a﹣a0)2分别用题中的已知等式化为同一的函数值得形式,再证明不等式成立即可.(Ⅲ)要证明[f(b)]2≤(1﹣λ2)[f(a)]2,先将f(b)化为f(b)﹣f(a)+f (a)的形式,利用已知条件对f(b)﹣f(a)+f(a)作进一步变形整理,可证得不等式成立.【解答】证明:(Ⅰ)任取x1,x2⊂R,x1≠x2,则由λ(x1﹣x2)2≤(x1﹣x2)[f(x1)﹣f(x2)]①和|f(x1)﹣f(x2)|≤|x1﹣x2|②可知λ(x1﹣x2)2≤(x1﹣x2)[f(x1)﹣f(x2)]≤|x1﹣x2|•|f(x1)﹣f(x2)|≤|x1﹣x2|2,从而λ≤1.假设有b0≠a0,使得f(b0)=0,则由①式知0<λ(a0﹣b0)2≤(a0﹣b0)[f(a0)﹣f(b0)]=0矛盾.∴不存在b0≠a0,使得f(b0)=0.(Ⅱ)由b=a﹣λf(a)③可知(b﹣a0)2=[a﹣a0﹣λf(a)]2=(a﹣a0)2﹣2λ(a﹣a0)f(a)+λ2[f(a)]2④由f(a0)=0和①式,得(a﹣a0)f(a)=(a﹣a0)[f(a)﹣f(a0)]≥λ(a﹣a0)2⑤由和②式知,[f(a)]2=[f(a)﹣f(a0)]2≤(a﹣a0)2⑥由⑤、⑥代入④式,得(b﹣a0)2≤(a﹣a0)2﹣2λ2(a﹣a0)2+λ2(a﹣a0)2=(1﹣λ2)(a﹣a0)2即不等式(b﹣a0)2≤(1﹣λ2)(a﹣a0)2得证.(Ⅲ)由③式可知[f(b)]2=[f(b)﹣f(a)+f(a)]2=[f(b)﹣f(a)]2+2f(a)[f(b)﹣f(a)]+[f(a)]2≤(b﹣a)2﹣2•[f(b)﹣f(a)]+[f(a)]2(用②式)=λ2[f(a)]2﹣(b﹣a)[f(b)﹣f(a)]+[f(a)]2≤λ2[f(a)2﹣•λ•(b﹣a)2+[f(a)]2(用①式)=λ2[f(a)]2﹣2λ2[f(a)]2+[f(a)]2=(1﹣λ2)[f(a)]2【点评】题目中涉及了八个不同的字母参数a,b,a0,b0,x,x1,x2,λ以及它们的抽象函数值f(x).参数量太多,让考生们在短时间内难以理清头绪.因而解决问题的关键就在于“消元”﹣﹣把题设条件及欲证关系中的多个参数量转化为某几个特定变量来表示,有一定的计算量需要同学们注意.参与本试卷答题和审题的老师有:zlzhan;qiss;涨停;wsj1012;minqi5;wdnah;xintrl;733008;snowwhite;zhwsd;lvp80;wdlxh;yhx01248;zhiyuan(排名不分先后)菁优网2017年5月17日。

2004年江苏省高考数学试卷

2004年江苏省高考数学试卷

2004年江苏省高考数学试卷一、选择题(共12小题,每小题5分,满分60分)1.(★★★★)设集合P={1,2,3,4},Q={x||x-1|≤2,x∈R},则P∩Q等于()A.{3,4}B.{1,2}C.{1,2,3}D.{1,2,3,4}2.(★★★★)函数y=2cos 2x+1(x∈R)的最小正周期为()A.B.πC.2πD.4π3.(★★★★)从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有()A.140种B.120种C.35种D.34种4.(★★★★)一平面截一球得到直径是6cm的圆面,球心到这个平面的距离是4cm,则该球的体积是()A.B.C.D.5.(★★★★)若双曲线的一条准线与抛物线y 2=8x的准线重合,则双曲线离心率为()A.B.C.4D.6.(★★★★)某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示.根据条形图可得这50名学生这一天平均每人的课外阅读时间为()A.0.6小时B.0.9小时C.1.0小时D.1.5小时7.(★★★★)(2x+ )4的展开式中x 3的系数是()A.6B.12C.24D.488.(★★★★)若函数y=log a(x+b)(a>0,a≠1)的图象过两点(-1,0)和(0,1),则()A.a=2,b=2B.a=3,b=2C.a=2,b=1D.a=2,b=39.(★★★★)将一颗质地均匀的骰子先后抛掷3次,至少出现一次6点向上的概率是()A.B.C.D.10.(★★★)函数f(x)=x 3-3x+1在闭区间-3,0上的最大值、最小值分别是()A.1,-1B.1,-17C.3,-17D.9,-1911.(★★)设k>1,f(x)=k(x-1)(x∈R).在平面直角坐标系xOy中,函数y=f(x)的图象与x轴交于A点,它的反函数y=f -1(x)的图象与y轴交于B点,并且这两个函数的图象交于P点.已知四边形OAPB的面积是3,则k等于()A.3B.C.D.12.(★★★)设函数,区间M=a,b(a<b),集合N={y|y=f(x),x∈M},则使M=N成立的实数对(a,b)有()A.1个B.2个C.3个D.无数多个二、填空题(共4小题,每小题4分,满分16分)13.(★★★★)二次函数y=ax 2+bx+c(x∈R)的部分对应值如表:则不等式ax 2+bx+c>0的解集是 {x|x>3或x<-2} .x-3-2-101234y60-4-6-6-40614.(★★★★)以点(1,2)为圆心,与直线4x+3y-35=0相切的圆的方程是(x-1)2+(y-2)2=25 .2215.(★★★)设数列{a n}的前n项和为S n,S n= (对于所有n≥1),且a 4=54,则a 1的数值是 2 .16.(★★)平面向量,中,若=(4,-3),| |=1,且•=5,则向量= (,- )三、解答题(共6小题,满分74分)17.(★★★★)已知0<α<,tan +cot = ,求sin(α- )的值.18.(★★★)在棱长为4的正方体ABCD-A 1B 1C 1D 1中,O是正方形A 1B1C 1D 1的中心,点P在棱CC1上,且CC1=4CP.(Ⅰ)求直线AP与平面BCC 1B 1所成的角的大小(结果用反三角函数值表示);(Ⅱ)设O点在平面D 1AP上的射影是H,求证:D 1H⊥AP;(Ⅲ)求点P到平面ABD 1的距离.19.(★★★)制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损分别为30%和10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?20.(★★★)设无穷等差数列{a n}的前n项和为S n.(Ⅰ)若首项a 1= ,公差d=1.求满足的正整数k;(Ⅱ)求所有的无穷等差数列{a n},使得对于一切正整数k都有成立.21.(★★)“五一”期间,我市某街道办事处举行了“迎全运,促和谐”中青年篮球友谊赛.获得男子篮球冠军球队的五名主力队员的身高如下表:(单位:厘米)则该队主力队员身高的方差是 2 厘米2.号码4791023身高17818018218117922.(★★)已知函数f(x)(x∈R)满足下列条件:对任意的实数x 1,x 2都有λ(x 1-x 2)2≤(x1-x 2)f(x 1)-f(x 2)和|f(x 1)-f(x 2)|≤|x 1-x 2|,其中λ是大于0的常数,设实数a 0,a,b满足f(a 0)=0和b=a-λf(a)(Ⅰ)证明λ≤1,并且不存在b 0≠a 0,使得f(b 0)=0;(Ⅱ)证明(b-a 0)2≤(1-λ2)(a-a 0)2;(Ⅲ)证明f(b)2≤(1-λ2)f(a)2.。

2004年高考理科数学全国卷(word版含答案)

2004年高考理科数学全国卷(word版含答案)

2004年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k n P k(1-P)n -k一、选择题 :本大题共12小题,每小题6分,共60。

1.(1-i)2·i= ( )A .2-2iB .2+2iC .-2D .2 2.已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b |= ( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( )A .y=x 2-2x +2(x <1) B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1) 5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-42 6.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )A .( IA)∪B=IB .( IA)∪( I B)=I C .A ∩( IB)=φD .( I A)∪( I B)=I B 7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点 球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径为P ,则||2PF = ( )A .23 B .3C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l的斜率的取值范围是( )A .[-21,21] B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象 ( )A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH 的表面积为T ,则S T等于( )A .91B .94 C .41 D .31 11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为 ( )A .12513 B .12516 C .12518 D .12519 12.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P 的轨迹方程为 .15.已知数列{a n},满足a1=1,a n=a1+2a2+3a3+…+(n-1)a n-1(n≥2),则{a n}的通项1, n=1,a n= ,n≥2.16.已知a、b为不垂直的异面直线,α是一个平面,则a、b在α上的射影有可能是 .①两条平行直线②两条互相垂直的直线③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是(写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数xx xxxxf2sin2cossincossin)(2 24 4-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A、B、C、D四部热线电话,已知某一时刻电话A、B占线的概率均为0.5,电话C、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望.19.(本小题满分12分)已知,R a ∈求函数axe x xf 2)(=的单调区间.20.(本小题满分12分)如图,已知四棱锥 P—ABCD,PB⊥AD侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD 与底面ABCD所成的二面角为120°.(I)求点P到平面ABCD的距离,Array(II)求面APB与面CPB所成二面角的大小.21.(本小题满分12分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125=求a 的值.22.(本小题满分14分)已知数列1}{1 a a n 中,且 a 2k =a 2k -1+(-1)K,a 2k+1=a 2k +3k, 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.2004年普通高等学校招生全国统一考试理科数学(必修+选修I )参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分.解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37.P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2P(ξ=4)= 0.52×0.42=0.04于是得到随机变量ξ的概率分布列为:19.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分.解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.(II )当,02,02,02>-<>+>x ax ax x a 或解得由时 由.02,022<<-<+x aax x 解得 所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a2)内为增函数,在区间(-a2,+∞)内为减函数. 20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE. ∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=GA 于是有所以θ的夹角BC GA PB BC PB GA ,.⊥⋅⊥于是,772||||cos -=⋅=BC GA θ 所以所求二面角的大小为772arccos-π . 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1.于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23. 21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a a a a e (II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x PB PA =-=-∴=由此得 由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a aa x a a x a a x 所以由得消去所以22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分.解:(I )a 2=a 1+(-1)1=0,a 3=a 2+31=3.a 4=a 3+(-1)2=4,a 5=a 4+32=13,所以,a 3=3,a 5=13.(II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k ,所以a 2k+1-a 2k -1=3k +(-1)k ,同理a 2k -1-a 2k -3=3k -1+(-1)k -1,……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)],由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231--++k ka 2k = a 2k -1+(-1)k=2123+k (-1)k -1-1+(-1)k =2123+k (-1)k =1. {a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121-⨯-+-+n n 当n 为偶数时,.121)1(2322-⨯-+=nnn a。

2004年高考数学试题(全国4文)及答案

2004年高考数学试题(全国4文)及答案

2004年高考试题全国卷Ⅳ文科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率 P n (k)=C k n P k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的1.设集合U={0,1,2,3,4,5},集合M={0,3,5},N={1,4,5},则M ∩(N C U )= ( )A .{5}B .{0,3}C .{0,2,3,5}D . {0,1,3,4,5} 2.函数)(2R x e y x∈=的反函数为( )A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.正三棱柱侧面的一条对角线长为2,且与底面成45°角,则此三棱柱的体积为 ( )A .26B .6C .66 D .36 4. 函数)1()1(2-+=x x y 在1=x 处的导数等于 ( )A .1B .2C .3D .45.为了得到函数xy )31(3⨯=的图象,可以把函数xy )31(=的图象( )A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度 6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 ( )A .160B .180C .200D .2207.已知函数kx y x y ==与41log 的图象有公共点A ,且点A 的横坐标为2,则k ( )A .41-B .41 C .21-D .21 8.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆 C 的方程为( )A .03222=--+x y xB .0422=++x y x球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π其中R 表示球的半径C .03222=-++x y xD .0422=-+x y x9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有 ( )A .210种B .420种C .630种D .840种 10.函数))(6cos()3sin(2R x x x y ∈+--=ππ的最小值等于( )A .-3B .-2C .-1D .-511.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=BC=23,则球心到平面ABC 的距离为A .1B .2C .3D .212.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b = ( )A .231+ B .31+C .232+ D .32+第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上 13.8)1(xx -展开式中5x 的系数为 .14.已知函数)0(sin 21>+=A Ax y π的最小正周期为3π,则A= . 15.向量a 、b 满足(a -b )·(2a +b )=-4,且|a |=2,|b |=4,则a 与b夹角的余弦值等于 .16.设y x ,满足约束条件:⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值. 18.(本小题满分12分)已知数列{n a }为等比数列,.162,652==a aC(Ⅰ)求数列{n a }的通项公式;(Ⅱ)设n S 是数列{n a }的前n 项和,证明.1212≤⋅++n n n S S S 19.(本小题满分12分)已知直线1l 为曲线22-+=x x y 在点(1,0)处的切线,2l 为该曲线的另一条切线,且.21l l ⊥(Ⅰ)求直线2l 的方程;(Ⅱ)求由直线1l 、2l 和x 轴所围成的三角形的面积.20.(本小题满分12分)某同学参加科普知识竞赛,需回答3个问题.竞赛规则规定:答对第一、二、三问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响.(Ⅰ)求这名同学得300分的概率; (Ⅱ)求这名同学至少得300分的概率. 21.(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°.(Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD. 22.(本小题满分14分)双曲线)0,1(12222>>=-b a by a x 的焦距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和.54c s ≥求双曲线的离心率e 的取值范围.2004年高考试题全国卷4文科数学(必修+选修Ⅰ)参考答案一、选择题1—12 B C A D D B A D B C A B二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.28 14.23 15.21- 16.2 三、解答题17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等 基础知识和基本技能.满分12分.解:αααααααπα2cos 2cos sin 2)cos (sin 2212cos 2sin )4sin(++=+++.)cos (sin cos 4)cos (sin 2ααααα++=当α为第二象限角,且415sin =α时41cos ,0cos sin -=≠+ααα, 所以12cos 2sin )4sin(+++ααπα=.2cos 42-=α18.(本小题主要考查等比数列的概念、前n 项和公式等基础知识,考查学生综合运用基础知识进行运算的能力.满分12分. 解:(I )设等比数列{a n }的公比为q ,则a 2=a 1q, a 5=a 1q 4.依题意,得方程组⎩⎨⎧=1626411q a q a 解此方程组,得a 1=2, q=3.故数列{a n }的通项公式为a n =2·3n -1. (II ) .1331)31(2-=--=n n n S .1,113231332313231)33(3212122222122222212≤⋅=+⋅-+⋅-≤+⋅-++-=⋅++++++++++++n n n n n n n n n n n n n n n n S S S S S S 即19.本小题主要考查导数的几何意义,两条直线垂直的性质以及分析问题和综合运算能力.满分12分. 解:y ′=2x +1.直线l 1的方程为y=3x -3.设直线l 2过曲线y=x 2+x -2上 的点B (b, b 2+b -2),则l 2的方程为y=(2b+1)x -b 2-2因为l 1⊥l 2,则有2b+1=.32,31-=-b 所以直线l 2的方程为.92231--=x yy图1(II )解方程组⎪⎩⎪⎨⎧--=-=92231,33x y x y 得⎪⎪⎩⎪⎪⎨⎧-==.25,61y x 所以直线l 1和l 2的交点的坐标为).25,61(-l 1、l 2与x 轴交点的坐标分别为(1,0)、)0,322(-. 所以所求三角形的面积 .12125|25|32521=-⨯⨯=S20.本小题主要考查相互独立事件同时发生的概率和互斥事件有一个发生的概率的计算方法,应用概率知识解决实际问题的能力.满分12分. 解:记“这名同学答对第i 个问题”为事件)3,2,1(=i A i ,则 P (A 1)=0.8,P (A 2)=0.7,P (A 3)=0.6. (Ⅰ)这名同学得300分的概率P 1=P (A 12A A 3)+P (1A A 2A 3)=P (A 1)P (2A )P (A 3)+P (1A )P (A 2)P (A 3) =0.8×0.3×0.6+0.2×0.7×0.6=0.228. (Ⅱ)这名同学至少得300分的概率P 2=P 1+P (A 1A 2A 3)=0.228+P (A 1)P (A 2)P (A 3)=0.228+0.8×0.7×0.6=0.564.21.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析 问题能力.满分12分. 解:(Ⅰ)如图1,取AD 的中点E ,连结PE ,则PE ⊥AD. 作PO ⊥平面在ABCD ,垂足为O ,连结OE.根据三垂线定理的逆定理得OE ⊥AD ,所以∠PEO 为侧面PAD 与底面所成的二面角的平面角,由已知条件可知∠PEO=60°,PE=6,所以PO=33,四棱锥P —ABCD 的体积V P —ABCD =.963334831=⨯⨯⨯(Ⅱ)解法一:如图1,以O 为原点建立空间直角坐标系.通过计算可得P (0,0,33),A (23,-3,0),B (23,5,0),D (-23,-3,0) 所以).0,8,34(),33,3,32(--=--= 因为,002424=++-=⋅BD PA 所以PA ⊥BD.解法二:如图2,连结AO ,延长AO 交BD 于点F.能过计算可得EO=3,AE=23,又知AD=43,AB=8,得.ABADAE EO =所以 Rt △AEO ∽Rt △BAD. 得∠EAO=∠ABD.所以∠EAO+∠ADF=90° 所以 AF ⊥BD.因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA ⊥BD.22.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分. 解:直线l 的方程为1=+bya x ,即 .0=-+ab a y b x 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离221)1(ba ab d +-=,同理得到点(-1,0)到直线l 的距离222)1(ba ab d ++=.222221cabb a ab d d s =+=+= 由,542,54c c ab c s ≥≥得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即解不等式,得.5452≤≤e 由于,01>>e 所以e 的取值范围是 .525≤≤e。

2004年高考数学试题(全国2理)及答案

2004年高考数学试题(全国2理)及答案

2004年高考试题全国卷Ⅱ理科数学(必修+选修Ⅱ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. (1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3}(2)542lim 221-+-+→x x x x n =(A )21 (B )1 (C )52 (D )41 (3)设复数ω=-21+23i ,则1+ω=(A )–ω (B )ω2 (C )ω1-(D )21ω(4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1 (5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是 (A )-6π (B )6π (C )-12π (D )12π(6)函数y =-e x 的图象(A )与y =e x 的图象关于y 轴对称 (B )与y =e x 的图象关于坐标原点对称(C )与y =e -x 的图象关于y 轴对称 (D )与y =e -x 的图象关于坐标原点对称 (7)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为 (A )31 (B )33 (C )32 (D )36 (8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有(A )1条 (B )2条 (C )3条 (D )4条 (9)已知平面上直线l 的方向向量)53,54(-=e,点O (0,0)和A (1,-2)在l 上的射影分别是O 1和A 1,则11A O =λe ,其中λ= (A )511 (B )-511 (C )2 (D )-2 (10)函数y =x cos x -sin x 在下面哪个区间内是增函数(A )(2π,23π) (B )(π,2π) (C )(23π,25π) (D )(2π,3π)(11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π (B )2π(C )π (D )2π(12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为ξ0 1 2 P(14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120则z =3x +2y 的最大值是 .(15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 .(16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱,其中,真命题的编号是 (写出所有真命题的编号). 三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高. (18)(本小题满分12分)已知8个球队中有3个弱队,以抽签方式将这8个球队分为A 、B 两组,每组4个.求 (Ⅰ)A 、B 两组中有一组恰有两个弱队的概率; (Ⅱ)A 组中至少有两个弱队的概率. (19)(本小题满分12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2+S n (n =1,2,3,…).证明: (Ⅰ)数列{nS n}是等比数列; (Ⅱ)S n +1=4a n .(20)(本小题满分12分) .如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90o ,AC =1,CB =2,侧棱AA 1=1,侧面AA 1B 1B 的两条对角线交点为D ,B 1C 1的中点为M . (Ⅰ)求证:CD ⊥平面BDM ;(Ⅱ)求面B 1BD 与面CBD 所成二面角的大小.(21)(本小题满分12分) 给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点.(Ⅰ)设l 的斜率为1,求OA 与OB 夹角的大小;(Ⅱ)设=AF λ,若λ∈[4,9],求l 在y 轴上截距的变化范围. (22)(本小题满分14分)已知函数f (x )=ln(1+x )-x ,g (x )=x ln x .(1)求函数f (x )的最大值;(2)设0<a <b ,证明:0<g (a )+g (b )-2g (2ba +)<(b -a )ln2.2004年高考试题全国卷2 理科数学(必修+选修Ⅱ)答案:一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A (3)C (4)C (5)A (6)D (7)B (8)B (9)D (10)B (11)B (12)C 二、填空题:本大题共4小题,每小题4分,共16分. (13)0.1,0.6,0.3 (14)5 (15)21x 2+y 2=1 (16)②④ 17.(I)证明:∵sin(A+B)=53,sin(A-B)=51∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A ⎪⎪⎩⎪⎪⎨⎧==⇒51sin cos 52cos sin B A B A ⇒2tan tan =B A ,∴B A tan 2tan =. (II)解:∵2π<A+B<π, 53)sin(=+B A , ∴54)cos(-=+B A , 43)tan(-=+B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得01tan 4tan 22=--B B 解得262tan ±=B ,因为B 为锐角,所以262tan +=B ,∴B A tan 2tan = =2+6设AB 上的高为CD ,则AB=AD+DB=623tan tan +=+CDB CD A CD ,由AB=3得CD=2+6 故AB 边上的高为2+618.(I) 解:有一组恰有两支弱队的概率762482523=C C C(II)解:A 组中至少有两支弱队的概率21481533482523=+C C C C C C 19.(I )证: 由a 1=1,a n+1=nn 2+S n (n=1,2,3,…), 知a 2=112+S 1=3a 1,224212==a S , 111=S ,∴21212=S S又a n+1=S n+1-S n (n=1,2,3,…),则S n+1-S n =nn 2+S n (n=1,2,3,…),∴nS n+1=2(n+1)S n , 211=++nS n S n n (n=1,2,3,…).故数列{nSn }是首项为1,公比为2的等比数列A'(II )解:由(I )知,)2(14111≥-∙=+-+n n Sn S n n ,于是S n+1=4(n+1)·11--n S n =4a n (n 2≥)又a 2=3S 1=3,则S 2=a 1+a 2=4=4a 1,因此对于任意正整数n ≥1都有S n+1=4a n .20.解法一:(I)如图,连结CA 1、AC 1、CM ,则CA 1=2, ∵CB=CA 1=2,∴△CBA 1为等腰三角形, 又知D 为其底边A 1B 的中点,∴CD ⊥A 1B , ∵A 1C 1=1,C 1B 1=2,∴A 1B 1=3, 又BB 1=1,∴A 1B=2,∵△A 1CB 为直角三角形,D 为A 1B 的中点,CD=21A 1B=1,CD=CC 1 又DM=21AC 1=22,DM=C 1M ,∴△CDN ≌△CC 1M ,∠CDM=∠CC 1M=90°,即CD ⊥DM , 因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM(II)设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F , 则FG ∥CD ,FG=21CD ∴FG=21,FG ⊥BD.由侧面矩形BB 1A 1A 的对角线的交点为D,知BD=B 1D=21A 1B=1, 所以△BB 1D 是边长为1的正三角形,于是B 1G ⊥BD ,B 1G=23, ∴∠B 1GF 是所求二面角的平面角 又B 1F 2=B 1B 2+BF 2=1+(22)2=23.∴cos ∠B 1GF=332123223)21()23(222121221-=∙∙-+=∙-+FGG B F B FG G B即所求二面角的大小为π-arccos33 解法二:如图以C 为原点建立坐标系 (I):B(2,0,0),B 1(2,1,0),A 1(0,1,1),D(22,21,21), M(22,1,0),=CD (22,21,21),=B A 1(2,-1,-1), =DM (0,21,-21),,0,01=∙=∙DM CD B A CD∴CD ⊥A 1B,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线, 所以CD ⊥平面BDM(II):设BD 中点为G ,连结B 1G ,则G ),41,41,423(=(-22,21,21),=G B 1),41,43,42(--∴01=∙G B BD ,∴BD ⊥B 1G ,又CD ⊥BD ,∴与G B 1的夹角θ等于所求二面角的平面角, cos .3311-==θ 所以所求二面角的大小为π-arccos33 21.解:(I )C 的焦点为F(1,0),直线l 的斜率为1,所以l 的方程为y=x-1.将y=x-1代入方程y 2=4x ,并整理得x 2-6x+1=0.设A(x 1,y 1),B(x 2,y 2),则有x 1+x 2=6,x 1x 2=1,OB OA ∙=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=2x 1x 2-(x 1+x 2)+1=-3.41]16)(4[||||21212122222121=+++=+∙+=∙x x x x x x y x y x OB OAcos<OB OA ,.41413||||-=∙OB OA 所以OA 与OB 夹角的大小为π-arccos41413. 解:(II)由题设知AF FB λ=得:(x 2-1,y 2)=λ(1-x 1,-y 1),即⎩⎨⎧-=-=-)2()1()1(11212 y y x x λλ由 (2)得y 22=λ2y 12, ∵y 12=4x 1,y 22=4x 2,∴x 2=λ2x 1 (3)联立(1)(3)解得x 2=λ.依题意有λ>0. ∴B(λ,2λ)或B(λ,-2λ),又F(1,0),得直线l 的方程为(λ-1)y=2λ(x-1)或(λ-1)y=-2λ(x-1) 当λ∈[4,9]时,l 在y 轴上的截距为12-λλ或-12-λλ由12-λλ=1212-++λλ,可知12-λλ在[4,9]上是递减的, ∴≤4312-λλ34≤,-≤34-12-λλ43-≤ 直线l 在y 轴上截距的变化范围是]34,43[]43,34[ --22.(I)解:函数f(x)的定义域是(-1,∞),'f (x)=111-+x.令'f (x)=0,解得x=0,当-1<x<0时, 'f (x)>0,当x>0时,'f (x)<0,又f(0)=0,故当且仅当x=0时,f(x)取得最大值,最大值是0(II)证法一:g(a)+g(b)-2g(2b a +)=alna+blnb-(a+b)ln 2b a +=a ba bb b a a +++2ln 2ln .由(I)的结论知ln(1+x)-x<0(x>-1,且x ≠0),由题设0<a<b,得021,02<-<->-bba a ab ,因此a a b a a b b a a 2)21l n (2ln-->-+-=+,bba b b a b a b 2)21ln(2ln -->-+-=+. 所以a b a b b b a a +++2ln 2ln >-022=---ba ab . 又,22b b a b a a +<+ a b a b b b a a +++2ln 2ln <a .2ln )(2ln )(2ln 2ln a b ba ba b b a b b b b a -<+-=+++ 综上0<g(a)+g(b)-2g(2ba +)<(b-a)ln2.(II)证法二:g(x)=xlnx,1ln )('+=x x g ,设F(x)= g(a)+g(x)-2g(2xa +),则.2ln ln )]'2([2)(')('xa x x a g x g x F +==+-=当0<x<a 时,0)('<x F 因此F(x)在(0,a)内为减函数当x>a 时,0)('>x F 因此F(x)在(a,+∞)上为增函数从而,当x=a 时,F(x)有极小值F(a)因为F(a)=0,b>a,所以F(b)>0,即0<g(a)+g(b)-2g(2ba +).设G(x)=F(x)-(x-a)ln2,则).ln(ln 2ln 2ln ln )('x a x xa x x G +-=-+-=当x>0时,0)('<x G ,因此G(x)在(0,+∞)上为减函数,因为G(a)=0,b>a,所以G(b)<0.即g(a)+g(b)-2g(2ba +)<(b-a)ln2.。

2004高考数学试题(江苏)及答案

2004高考数学试题(江苏)及答案

)2004年普通高等学校招生江苏卷数学试题一、选择题(5分×12=60分)1.设集合P={1,2,3,4},Q={R x x x ∈≤,2},则P ∩Q 等于 ( )(A){1,2} (B) {3,4} (C) {1} (D) {-2,-1,0,1,2}2.函数y=2cos 2x+1(x ∈R )的最小正周期为 ( )(A)2π(B)π (C)π2 (D)π43.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 ( )(A)140种 (B)120种 (C)35种 (D)34种4.一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是 ( )(A)33π100cm (B) 33π208cm (C) 33π500cm (D) 33π3416cm5.若双曲线18222=-by x 的一条准线与抛物线x y 82=的准线重合,则双曲线离心率为 ( ) (A)2 (B)22 (C) 4 (D)246.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( ) (A)0.6小时 (B)0.9小时 (C)1.0小时 (D)1.5小时7.4)2(x x +的展开式中x 3的系数是 ( )(A)6 (B)12 (C)24 (D)488.若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(-1,0)和(0,1),则(A)a=2,b=2 (B)a= 2 ,b=2 (C)a=2,b=1 (D)a= 2 9.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,3次,至少出现一次6点向上和概率是 ( )(A)5216 (B)25216 (C)31216 (D)9121610.函数13)(3+-=x x x f 在闭区间[-3,0]上的最大值、最小值分别是 ( ) (A)1,-1 (B)1,-17 (C)3,-17 (D)9,-1911.设k>1,f(x)=k(x-1)(x ∈R ) . 在平面直角坐标系xOy 中,函数y=f(x)的图象与x 轴交于A 点,它的反函数y=f -1(x)的图象与y 轴交于B 点,并且这两个函数的图象交于P 点. 已知四边形OAPB 的面积是3,则k 等于 ( )(A)3 (B)32 (C)43 (D)6512.设函数)(1)(R x xxx f ∈+-=,区间M=[a ,b](a<b),集合N={M x x f y y ∈=),(},则使M=N 成立的实数对(a ,b)有 ( )(A)0个 (B)1个 (C)2个 (D)无数多个 二、填空题(4分×4=16分)13.二次函数y=ax 2+bx+c(x ∈R )的部分对应值如右表:则不等式ax 2+bx+c>0的解集是_____________________.14.以点(1,2)为圆心,与直线4x+3y-35=0相切的圆的方程是________________.15.设数列{a n }的前n 项和为S n ,S n =)13(1-n a (对于所有n ≥1),且a 4=54,则a 1的数值是_______________________.16.平面向量b a ,中,已知=(4,-3)=1,且⋅=5,则向量=__________. 三、解答题(12分×5+14分=74分)17.已知0<α<2π,tan 2α+cot 2α=25,求sin(3πα-)的值.18.在棱长为4的正方体ABCD-A 1B 1C 1D 1中,O 是正方形A 1B 1C 1D 1的中心,点P 在棱CC 1上,且CC 1=4CP.(Ⅰ)求直线AP 与平面BCC 1B 1所成的角的大小(结果用反三角函数值表示); (Ⅱ)设O 点在平面D 1AP 上的射影是H ,求证:D 1H ⊥AP ; (Ⅲ)求点P 到平面ABD 1的距离.19.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100﹪和50﹪,可能的最大亏损分别为30﹪和10﹪. 投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元. 问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大? 20.设无穷等差数列{a n }的前n 项和为S n .(Ⅰ)若首项=1a 32 ,公差1=d ,求满足2)(2k kS S =的正整数k ;(Ⅱ)求所有的无穷等差数列{a n },使得对于一切正整数k 都有2)(2k kS S =成立.21.已知椭圆的中心在原点,离心率为12 ,一个焦点是F (-m,0)(m 是大于0的常数). (Ⅰ)求椭圆的方程;(Ⅱ)设Q 是椭圆上的一点,且过点F 、Q 的直线l 与y 轴交于点M. =,求直线l 的斜率. 22.已知函数))((R x x f ∈满足下列条件:对任意的实数x 1,x 2都有)]()()[()(λ2121221x f x f x x x x --≤-和2121)()(x x x f x f -≤-,其中λ是大于0的常数.设实数a 0,a ,b 满足0)(0=a f 和)(λa f a b -=(Ⅰ)证明1λ≤,并且不存在00a b ≠,使得0)(0=b f ; (Ⅱ)证明20220))(λ1()(a a a b --≤-; (Ⅲ)证明222)]()[λ1()]([a f b f -≤.· B 1P A C D A 1 C 1D 1 BO H·2004年普通高等学校招生江苏卷数学试题参考答案一、选择题:ABDCA BCADC BA 二、填空题;13、{2x x <-或3}x >; 14、22(1)(1)25x y -+-=; 15、2; 16、43(,)55b =-。

2004年高考理科数学全国卷(word版含答案)

2004年高考理科数学全国卷(word版含答案)

2004年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k n P k(1-P)n -k一、选择题 :本大题共12小题,每小题6分,共60。

1.(1-i)2·i= ( )A .2-2iB .2+2iC .-2D .2 2.已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b |= ( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( )A .y=x 2-2x +2(x <1) B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1) 5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-42 6.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )A .( IA)∪B=IB .( IA)∪( I B)=I C .A ∩( IB)=φD .( I A)∪( I B)=I B 7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点 球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径为P ,则||2PF = ( )A .23 B .3C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l的斜率的取值范围是( )A .[-21,21] B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象 ( )A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH 的表面积为T ,则S T等于( )A .91B .94 C .41 D .31 11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为 ( )A .12513 B .12516 C .12518 D .12519 12.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P 的轨迹方程为 .15.已知数列{a n},满足a1=1,a n=a1+2a2+3a3+…+(n-1)a n-1(n≥2),则{a n}的通项1, n=1,a n= ,n≥2.16.已知a、b为不垂直的异面直线,α是一个平面,则a、b在α上的射影有可能是 .①两条平行直线②两条互相垂直的直线③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是(写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数xx xxxxf2sin2cossincossin)(2 24 4-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A、B、C、D四部热线电话,已知某一时刻电话A、B占线的概率均为0.5,电话C、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望.19.(本小题满分12分)已知,R a ∈求函数axe x xf 2)(=的单调区间.20.(本小题满分12分)如图,已知四棱锥 P—ABCD,PB⊥AD侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD 与底面ABCD所成的二面角为120°.(I)求点P到平面ABCD的距离,Array(II)求面APB与面CPB所成二面角的大小.21.(本小题满分12分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125=求a 的值.22.(本小题满分14分)已知数列1}{1 a a n 中,且 a 2k =a 2k -1+(-1)K,a 2k+1=a 2k +3k, 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.2004年普通高等学校招生全国统一考试理科数学(必修+选修I )参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分.解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37.P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2P(ξ=4)= 0.52×0.42=0.04于是得到随机变量ξ的概率分布列为:19.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分.解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.(II )当,02,02,02>-<>+>x ax ax x a 或解得由时 由.02,022<<-<+x aax x 解得 所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a2)内为增函数,在区间(-a2,+∞)内为减函数. 20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE. ∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=GA 于是有所以θ的夹角BC GA PB BC PB GA ,.⊥⋅⊥于是,772||||cos -=⋅=BC GA θ 所以所求二面角的大小为772arccos-π . 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1.于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23. 21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a a a a e (II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x PB PA =-=-∴=由此得 由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a aa x a a x a a x 所以由得消去所以22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分.解:(I )a 2=a 1+(-1)1=0,a 3=a 2+31=3.a 4=a 3+(-1)2=4,a 5=a 4+32=13,所以,a 3=3,a 5=13.(II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k ,所以a 2k+1-a 2k -1=3k +(-1)k ,同理a 2k -1-a 2k -3=3k -1+(-1)k -1,……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)],由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231--++k ka 2k = a 2k -1+(-1)k=2123+k (-1)k -1-1+(-1)k =2123+k (-1)k =1. {a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121-⨯-+-+n n 当n 为偶数时,.121)1(2322-⨯-+=nnn a。

2004年江苏高考物理数学试卷及答案

2004年江苏高考物理数学试卷及答案

2004年江苏高考物理数学试卷及答案物理:一、选择题(每小题3分,满分24分)1、下列现象中,由于光的反射形成的是()A.月光下的人影B.池塘的水底看起来比实际的浅C.拱桥在平静湖水中的倒影D.玻璃三棱镜分解了的太阳光2、下列物态变化中属于放热现象的是哪一组()①初春,冰封的湖面解冻②盛夏,旷野里雾的形成③深秋,路边的小草上结了一层霜④严冬,冰冻的衣服逐渐变干、A.①②B.②③C.③④D.①④3、下列说法中,正确的是()A.验电器的工作原理是同种电荷相互排斥B.宇航员在月球上无法用电磁波来通信C.只有镜面反射遵循光的反射定律D.只有凸透镜能成等大的像4、下列说法错误的是()A.并联电路的干路电流等于各支路电流之和B.使用精密仪器和改进实验方法可以避免误差C.用安培定则可判断通电螺线管的极性D.1kWh=3。

6×106J5、潜水员逐渐从水里浮出水面的过程中,他受到的浮力()A.逐渐增大B.逐渐减小C.始终不变D.先增大后不变6、能说明将电能转化为机械能的是()A.钻木取火B.水蒸气将塞子冲出C.通电导体在磁场中受力D.焦耳定律实验7、相向而行的甲、乙两物体的s﹣t图像,下列说法正确的是()A.相遇时两物体通过的路程均为100mB.0﹣30s内甲、乙均做匀速直线运动C.甲的运动速度为10m/sD.甲、乙是同时出发的8、小雅同学在做电学实验时,不小心将电压表和电流表的位置互换了,如果此时将开关闭合,则()A.两表都可能被烧坏B.两表都不会被烧坏C.电流表不会被烧坏D.电压表不会被烧坏,电流表可能被烧坏二、填空题(每小题2分,满分20分)9、人的眼睛像一架照相机,物体经晶状体成像与视网膜上,对于近视眼患者而言,远处物体成的像位于视网膜(),可佩戴()透镜矫正。

10、滑冰运动员在训练中通过弯道时的情景,这一过程中她们的运动状态()(选填“改变”或“不变”);运动员穿的速滑冰鞋的冰刀表面要光滑、平整是为了()。

2004年全国高考数学试题(全国卷理科word版)

2004年全国高考数学试题(全国卷理科word版)

2004年全国高考数学(人教版)试题(理科)一、选择题(每小题5分,共60分)1、设集合(){}R y R x y x y x M ∈∈=+=,,1,22,(){}R y R x y x y x N ∈∈=-=,,0,2,则集合N M 中元素的个数为( )A 、1B 、2C 、3D 、42、函数2sin x y =的最小正周期是( ) A 、 2π B 、 π C 、π2 D 、π4 3、设数列{}n a 是等差数列,且6,682=-=a a ,n S 是数列{}n a 的前n 项和,则( )A 、54S S <B 、54S S =C 、56S S >D 、56S S =4、圆0422=-+x y x 在点)3,1(P 处的切线方程为( )A 、023=-+y xB 、043=-+y xC 、043=+-y xD 、023=+-y x5、函数)1(log 221-=x y 的定义域为( )A 、[)(]2,11,2 --B 、)2,1()1,2( --C 、[)(]2,11,2 --D 、)2,1()1,2( --6、设复数z 的辐角的主值为32π,虚部为3,则2z =( ) A 、i 322-- B 、i 232-- C 、i 32+ D 、i 232+7、设双曲线的焦点在x 轴上,两条渐近线为x y 21±=,则该双曲线的离心率=e ( ) A 、5 B 、 5 C 、25 D 、45 8、不等式311<+<x 的解集为( )A 、()2,0B 、())4,2(0,2 -C 、()0,4-D 、())2,0(2,4 --9、正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为( )A 、322B 、2C 、32D 、324 10、在△ABC 中,AB=3,BC=13,AC=4,则边AC 上的高为( )A 、223B 、233 C 、23 D 、3311、设函数⎪⎩⎪⎨⎧≥--<+=1,141,)1()(2x x x x x f ,则使得1)(≥x f 的自变量x 的取值范围为( ) A 、(][]10,02, -∞- B 、(][]1,02, -∞- C 、(][]10,12, -∞- D 、[)[]10,10,2 -12、将4名教师分配到3所中学任教,每所中学至少1名,则不同的分配方案共有( )A 、12种B 、24种C 、36种D 、48种二、填空题(每小题4分,共16分)13、用平面α截半径为R 的球,如果球心到平面α的距离为2R ,那么截得小圆的面积与球的表面积的比值为 .14、函数x x y cos 3sin +=在区间⎥⎦⎤⎢⎣⎡2,0π上的最小值为 . 15、已知函数)(x f y =是奇函数,当0≥x 时,13)(-=x x f ,设)(x f 的反函数是)(x g y =,则=-)8(g .16、设P 是曲线)1(42-=x y 上的一个动点,则点P 到点)1,0(的距离与点P 到y 轴的距离之和的最小值为 .三、解答题(6道题,共76分)17、(12分)已知α为锐角,且21tan =α,求ααααα2cos 2sin sin cos 2sin -的值。

2004年高考.江苏卷.数学试题及答案

2004年高考.江苏卷.数学试题及答案

时间(小时) 2004年普通高等学校招生全国统一考试数学(江苏卷)一、选择题(5分×12=60分)1.设集合P={1,2,3,4},Q={R x x x ∈≤,2},则P ∩Q 等于( )(A){1,2} (B) {3,4} (C) {1} (D) {-2,-1,0,1,2}2.函数y=2cos 2x+1(x ∈R )的最小正周期为( ) (A)2π (B)π (C)π2 (D)π4 3.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 ( )(A)140种 (B)120种 (C)35种 (D)34种4.一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是( ) (A)33π100cm (B) 33π208cm (C) 33π500cm (D) 33π3416cm 5.若双曲线18222=-by x 的一条准线与抛物线x y 82=的准线重合,则双曲线离心率为 ( ) (A)2 (B)22 (C) 4 (D)246.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( )(A)0.6小时 (B)0.9小时 (C)1.0小时 (D)1.5小时7.4)2(x x +的展开式中x 3的系数是 ( )(A)6 (B)12 (C)24 (D)488.若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(-1,0)和(0,1),则 ( )(A)a=2,b=2 (B)a= 2 ,b=2 (C)a=2,b=1 (D)a= 2 ,b= 29.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上和概率是 ( )(A)5216 (B)25216 (C)31216 (D)9121610.函数13)(3+-=x x x f 在闭区间[-3,0]上的最大值、最小值分别是 ( )(A)1,-1 (B)1,-17 (C)3,-17 (D)9,-1911.设k>1,f(x)=k(x-1)(x ∈R ) . 在平面直角坐标系xOy 中,函数y=f(x)的图象与x 轴交于A点,它的反函数y=f -1(x)的图象与y 轴交于B 点,并且这两个函数的图象交于P 点. 已知四边形OAPB 的面积是3,则k 等于 ( )(A)3 (B)32 (C)43 (D)6512.设函数)(1)(R x xx x f ∈+-=,区间M=[a ,b](a<b),集合N={M x x f y y ∈=),(},则使M=N 成立的实数对(a ,b)有 ( )(A)0个 (B)1个 (C)2个 (D)无数多个二、填空题(4分×4=16分)13.二次函数y=ax 2+bx+c(x ∈R )的部分对应值如下表:则不等式ax+bx+c>0的解集是_______________________.14.以点(1,2)为圆心,与直线4x+3y-35=0相切的圆的方程是________________.15.设数列{a n }的前n 项和为S n ,S n =2)13(1-n a (对于所有n ≥1),且a 4=54,则a 1的数值是_______________________.16.平面向量,中,已知=(4,-3)=1,且⋅=5,则向量=__________.三、解答题(12分×5+14分=74分)17.已知0<α<2π,tan 2α+cot 2α=25,求sin(3πα-)的值. 18.在棱长为4的正方体ABCD-A 1B 1C 1D 1中,O 是正方形A 1B 1C 1D 1的中心,点P 在棱CC 1上,且CC 1=4CP.(Ⅰ)求直线AP 与平面BCC 1B 1所成的角的大小(结果用反三角函数值表示);(Ⅱ)设O 点在平面D 1AP 上的射影是H ,求证:D 1H ⊥AP ; (Ⅲ)求点P 到平面ABD 1的距离.19.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损. 某投资人打算投资甲、乙两个项目. 根据预测,甲、乙项目可能的最大盈利率分别为100· B 1 P A CD A 1 C 1 D 1BO H ·﹪和50﹪,可能的最大亏损分别为30﹪和10﹪. 投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元. 问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?20.设无穷等差数列{a n }的前n 项和为S n .(Ⅰ)若首项=1a 32 ,公差1=d ,求满足2)(2k kS S =的正整数k ; (Ⅱ)求所有的无穷等差数列{a n },使得对于一切正整数k 都有2)(2k k S S=成立.21.已知椭圆的中心在原点,离心率为12,一个焦点是F (-m,0)(m 是大于0的常数). (Ⅰ)求椭圆的方程;(Ⅱ)设Q 是椭圆上的一点,且过点F 、Q 的直线l 与y 轴交于点M. =,求直线l 的斜率.22.已知函数))((R x x f ∈满足下列条件:对任意的实数x 1,x 2都有)]()()[()(λ2121221x f x f x x x x --≤-和2121)()(x x x f x f -≤-,其中λ是大于0的常数.设实数a 0,a ,b 满足 0)(0=a f 和)(λa f a b -=(Ⅰ)证明1λ≤,并且不存在00a b ≠,使得0)(0=b f ;(Ⅱ)证明20220))(λ1()(a a a b --≤-;(Ⅲ)证明222)]()[λ1()]([a f b f -≤.2004年普通高等学校招生全国统一考试数学(江苏卷)参考答案一、选择题ABDCA BCADC BA二、填空题13、{2x x <-或3}x >14、22(1)(1)25x y -+-=15、216、43(,)55b =-三、解答题17、解:由题意可知4sin 5α=,sin()3πα∴-=18、解(1)APB ∠=(2)略(319、解:10318x y x y +≤⎧⎨+≤⎩,设0.5z x y =+ 当46x y =⎧⎨=⎩时,z 取最大值7万元20、解:(1)4k =(2)100a d =⎧⎨=⎩或112a d =⎧⎨=⎩或110a d =⎧⎨=⎩21、解:(1)2222143x y m m +=(2)k =±或022、解:(1)不妨设12x x >,由[]2121212()()()()x x x x f x f x λ-≤-⋅-可知12()()0f x f x ->,()f x ∴是R 上的增函数∴不存在00b a ≠,使得0()0f b = 又[]2212121212()()()()()x x x x f x f x x x λ-≤-⋅-≤-1λ∴≤(2)要证:222000()(1)()b a a a λ-≤--即证:2200()()2()()a a f a f a a a λ⎡⎤-+≤-⎣⎦(*) 不妨设0a a >,由[]2121212()()()()x x x x f x f x λ-≤-⋅- 得00()()()f a f a a a λ-≥-,即0()()f a a a λ≥-,则2002()()2()f a a a a a λ-≥- (1)由1212()()f x f x x x -≤-得00()()f a f a a a -≤- 即0()f a a a ≤-,则22200()()2()a a f a a a λλ⎡⎤-+≤-⎣⎦ (2)由(1)(2)可得2200()()2()()a a f a f a a a λ⎡⎤-+≤-⎣⎦222000()(1)()b a a a λ∴-≤--(3)220[()]()f a a a ≤-,22220(1)[()](1)()f a a a λλ∴-≤-- 220[()]()f b b a ≤-又由(2)中结论222000()(1)()b a a a λ-≤--222[()](1)[()]f b f a λ∴≤-。

2004年高考数学试题——全国卷I.理科

2004年高考数学试题——全国卷I.理科

1 2
B.
1 2

3
C.-
1 2

3
D.
1 2
+
3
第Ⅱ卷(非选择题 共 90 分)
二、填空题:本大题共 4 小题,每小题 4 分,共 16 分.把答案填在题中横线上.
13.不等式|x+2|≥|x|的解集是
.
14.由动点 P 向圆 x2+y2=1 引两条切线 PA、PB,切点分别为 A、B,∠APB=60°,则动点 P 的轨迹方程
欢迎下载!!!
2004 年高考试题全国卷Ⅰ 理科数学(必修+选修Ⅱ)
本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分. 共 150 分. 考试时间 120 分钟.
第 I 卷(选择题 共 60 分)
参考公式:
如果事件 A、B 互斥,那么
P(A+B)=P(A)+P(B)
如果事件 A、B 相互独立,那么
P(A·B)=P(A)·P(B)
如果事件 A 在一次试验中发生的概率是 P,那么
n 次独立重复试验中恰好发生 k 次的概率
Pn(k)=C
k n
Pk(1-P)n-k
球的表面积公式
S=4 R 2
其中 R表示球的半
径,
球的体积公式
4 V= 3
R3 ,
其中 R 表示球的半径
一、选择题 :本大题共 12 小题,每小题 6 分,共 60奎奎奎奎奎
二、填空题:本大题共 4 小题,每小题 4 分,共 16 分.把答案填在题中横线上.
13.{x|x≥-1} 14.x2+y2=4
n! 15. 2
16.①②④三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分 12 分.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2004年江苏高考数学卷(Word 版)2004年普通高等学校招生全国统一考试数学(江苏卷)一、选择题(5分×12=60分)1.设集合P={1,2,3,4},Q={R x≤,2},则x∈xP∩Q等于( ) (A){1,2} (B) {3,4} (C) {1}(D) {-2,-1,0,1,2}2.函数y=2cos2x+1(x∈R)的最小正周期为( )(A)π(B)π(C)π22(D)π43.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有( )(A)140种(B)120种(C)35种(D)34种4.一平面截一球得到直径是6cm的圆面,球心到这个平面的距离是4cm,则该球的体第 2 页共 13 页第 3 页 共 13 页积是( )(A)33π100cm (B) 33π208cm (C)33π500cm (D)33π3416cm5.若双曲线18222=-b y x 的一条准线与抛物线xy82=的第 4 页 共 13 页人数(人) 时间(小时)20 10 515 (A)2(B)22 (C) 4(D)246.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( )(A)0.6小时 (B)0.9小时 (C)1.0小时 (D)1.5小时第 5 页 共 13 页7.4)2(x x +的展开式中x 3的系数是( )(A)6 (B)12 (C)24 (D)488.若函数)1,0)((log ≠>+=a a b x y a的图象过两点(-1,0)和(0,1),则 ( ) (A)a=2,b=2 (B)a= 2 ,b=2(C)a=2,b=1 (D)a= 2 ,b= 2 9.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上和概率是 ( ) (A)5216 (B)25216第 6 页 共 13 页(C)31216 (D)91216 10.函数13)(3+-=x xx f 在闭区间[-3,0]上的最大值、最小值分别是 ( )(A)1,-1 (B)1,-17 (C)3,-17 (D)9,-1911.设k>1,f(x)=k(x-1)(x ∈R) . 在平面直角坐标系xOy 中,函数y=f(x)的图象与x 轴交于A 点,它的反函数y=f -1(x)的图象与y 轴交于B 点,并且这两个函数的图象交于P 点. 已知四边形OAPB 的面积是3,则k 等于 ( )(A)3 (B)32 (C)43(D)6512.设函数)(1)(R x x x x f ∈+-=,区间M=[a ,b](a<b),集合N={M x x f y y ∈=),(},则使M=N 成立的实第 7 页 共 13 页数对(a ,b)有( )(A)0个 (B)1个 (C)2个 (D)无数多个 二、填空题(4分×4=16分)13.二次函数y=ax 2+bx+c(x ∈R)的部分对应值如下表:则不等式ax 2+bx+c>0的解集是_______________________.14.以点(1,2)为圆心,与直线4x+3y-35=0相切的圆的方程是________________.15.设数列{a n }的前n 项和为S n ,S n =2)13(1-na (对于所有n ≥1),且a 4=54,则a 1的数值是_______________________.16.平面向量,中,已知a =(4,-3)b =1,且ba ⋅=5,则向量b =__________.x -3 -2 -1 0 1 2 3 4 y 6 0 -4 -6 -6 -4 0 6第 8 页 共 13 页三、解答题(12分×5+14分=74分)17.已知0<α<2π,tan 2α+cot 2α=25,求sin(3πα )的值.18.在棱长为4的正方体ABCD-A 1B 1C 1D 1中,O 是正方形A 1B 1C 1D 1的中心,点P 在棱CC 1上,且CC 1=4CP.(Ⅰ)求直线AP 与平面BCC 1B 1所成的角的大小(结果用反三角函数值表示);(Ⅱ)设O 点在平面D 1AP 上的射影是H ,求证:D 1H ⊥AP ;(Ⅲ)求点P 到平面ABD 1的距离.19.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损. 某投资人打算投资甲、乙两个项目. 根据预测,甲、乙项目可能的最大盈利率分别为· B 1P ACDA1C1D 1BO H·第 9 页 共 13 页100﹪和50﹪,可能的最大亏损分别为30﹪和10﹪. 投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元. 问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?20.设无穷等差数列{a n }的前n 项和为S n . (Ⅰ)若首项=1a 32,公差1=d ,求满足2)(2k k S S=的正整数k ;(Ⅱ)求所有的无穷等差数列{a n },使得对于一切正整数k 都有2)(2k k S S =成立.21.已知椭圆的中心在原点,离心率为12,一第 10 页 共 13 页个焦点是F (-m,0)(m 是大于0的常数). (Ⅰ)求椭圆的方程;(Ⅱ)设Q 是椭圆上的一点,且过点F 、Q的直线l 与y 轴交于点M. QF MQ =,求直线l 的斜率.22.已知函数))((R x x f ∈满足下列条件:对任意的实数x 1,x 2都有)]()()[()(λ2121221x f x f x x x x --≤-和2121)()(x x x f x f -≤-,其中λ是大于0的常数.设实数a 0,a ,b 满足 0)(0=a f 和)(λa f a b -=(Ⅰ)证明1λ≤,并且不存在0a b ≠,使得0)(0=b f ;(Ⅱ)证明2022))(λ1()(a a a b --≤-;(Ⅲ)证明222)]()[λ1()]([a f b f -≤.2004年普通高等学校招生全国统一考试(江苏卷)参考答案一、 选择题ABDCA BCADC BA 二、填空题 13、{2x x <-或3}x > 14、22(1)(1)25x y -+-=15、2 16、43(,)55b =-r三、解答题17、解:由题意可知4sin 5α=, 433sin()310πα-∴-= 18、解(1)41717APB ∠=(2)略(332219、解:10318x y x y +≤⎧⎨+≤⎩,设0.5z x y =+ 当46x y =⎧⎨=⎩时,z 取最大值7万元 20、解:(1)4k =(2)10a d =⎧⎨=⎩或112a d =⎧⎨=⎩或110a d =⎧⎨=⎩21、解:(1)2222143x y m m +=(2)26k =±或022、解:(1)不妨设12x x >,由[]2121212()()()()x x x x f x f x λ-≤-⋅-可知12()()0f x f x ->,()f x ∴是R 上的增函数∴不存在0ba ≠,使得0()0f b =又[]2212121212()()()()()x x x x f x f x x x λ-≤-⋅-≤-Q 1λ∴≤(2)要证:222()(1)()b a a a λ-≤--即证:2200()()2()()a a f a f a a a λ⎡⎤-+≤-⎣⎦(*)不妨设0a a >,由[]2121212()()()()x x x x f x f x λ-≤-⋅-得0()()()f a f a a a λ-≥-, 即0()()f a a a λ≥-,则2002()()2()f a a a a a λ-≥-(1)由1212()()f x f x x x -≤-得0()()f a f a a a -≤-即0()f a a a ≤-,则22200()()2()a a f a a a λλ⎡⎤-+≤-⎣⎦(2)由(1)(2)可得2200()()2()()a a f a f a a a λ⎡⎤-+≤-⎣⎦222000()(1)()b a a a λ∴-≤--(3)220[()]()f a a a ≤-Q ,2222(1)[()](1)()f a a a λλ∴-≤--220[()]()f b b a ≤-Q又由(2)中结论222000()(1)()b a a a λ-≤--222[()](1)[()]f b f a λ∴≤-。

相关文档
最新文档