北师大版九年级上册 第四章图形的相似复习
北师大版九年级上册数学《图形的位似》图形的相似研讨说课复习课件
3. 位似多边形上任意一对对应点到位似中心的距离之 比都等于相似比.位似多边形对应角相等,对应边成比例, 周长的比等于相似比,面积的比等于相似比的平方.
4. 作位似多边形的方法:(1)根据“对应点到位似中心的 距离之比等于相似比”作出各顶点关于位似中心的对应点;(2) 用线段顺次连接各对应点.
第四章 图形的相似
解:如图所示:
【归纳总结】画位似图形的一般步骤为:①确定位似中 心;②分别连接并延长位似中心和能代表原图的关键点;③ 根据相似比,确定能代表所作的位似图形的关键点,顺次连 接上述各点,得到放大或缩小的图形.
知识点 2 位似图形的应用 例2 已知矩形 ABCD 与矩形 AB′C′D′是位似图形,A 为 位似中心.已知矩形 ABCD 的周长为 24,BB′=4,DD′=2, 求 AB 与 AD 的长.
例1 如图,在平面直角坐标系中,每个小方格都是边长
为 1 个单位长度的正方形,已知△ AOB 与△ A1OB1 位似,位
似中心为原点 O,且相似比为 3∶2,点 A,B 都在格点上,
则点 B1 的坐标为
-2,-23
.
【思路点拨】把点 B 的横、纵坐标分别乘-23得到点 B1 的坐标.
知识点 2 在直角坐标系中画位似图形 例2 (教材 P117 例 2)在平面直角坐标系中,四边形 OABC 的顶点坐标分别是 O(0,0),A(6,0),B(3,6),C(- 3,3).以原点 O 为位似中心画一个四边形,使它与四边形 OABC 位似,且相似比是 2∶3.
画法二:将四边形 OABC 各顶点的坐标都乘-23,得 O(0, 0),A″(-4,0),B″(-2,-4),C″(2,-2);在平面直角坐 标系中描出点 A″,B″,C″,用线段顺次连接点 O,A″,B″, C″,O,则四边形 OA″B″C″也是符合要求的四边形.
九年级数学上册 第四章 图形的相似知识归纳 北师大版
图形的相似1. 比例线段的有关概念==在比例式::中,、叫外项,、叫内项,、叫前项,a c(a b c d )a d b c a c b db 、d 叫后项,d 叫第四比例项,如果b =c ,那么b 叫做a 、d 的比例中项. 2. 比例性质①基本性质:a b cdad bc =⇔= ②更比性质(交换比例的内项或外项):()()()()⎧=⎪⎪⎪=⎪=⇒⎨⎪=⎪⎪⎪=⎩交换内项交换外项同时交换内外项同时交换比的前项和后项a bc d d c a cb a d b b dc a b da c②合比性质:±±a b c d a b b c d d =⇒= ③等比性质:……≠……a b c d m n b d n a c m b d n ab===+++⇒++++++=()03. 黄金分割在线段AB 上,点C 把线段AB 分成两条线段AC 和BC (AC >BC ),如果ACBCAB AC =,即AC 2=AB ×BC ,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.其中AB AC 215-=≈0.618AB . 4. 平行线分线段成比例定理①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3.则,,,…AB BC DE EF AB AC DE DF BC AC EFDF=== ②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边. 5. 相似三角形的判定①两角对应相等,两个三角形相似;②两边对应成比例且夹角相等,两三角形相似; ③三边对应成比例,两三角形相似. 6. 相似三角形的性质①相似三角形的对应角相等,对应边成比例;②相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比;③相似三角形周长的比等于相似比;面积的比等于相似比的平方. 7. 六种相似基本模型:CABD CABDE E D BACDE ∥BC∠B ∠AED∠B ∠ACDADBCDOBACO DCBAX 型母子型AC ∥BD∠B ∠CAD 是Rt △ABC 斜边上的高8. 射影定理由_____________,得______________,即_______________; 由_____________,得______________,即_______________; 由_____________,得______________,即_______________.9. 中位线1) 三角形的中位线:连结三角形两边中点的线段. 三角形的中位线平行于第三边并且等于第三边的一半. 三角形三条边上的中线交于一点,这个点就是三角形的重心,重心与一边中点的线段的长是对应中线长的31. 2) 梯形的中位线:连结梯形两腰中点的线段.梯形的中位线平行于两底边,并且等于两底边和的一半. 10. 位似①如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比. ②位似图形上任意一对对应点到位似中心的距离之比等于位似比.AD B C。
北师大版数学九年级上册第四章 《图形的相似》重点题型归纳
阶段强化专题训练专题一:平行线分线段成比例常见应用技巧 类型一 证比例式技巧1 中间比代换法证比例式1.如图,已知在△ABC 中,点D ,E ,F 分别是边AB ,AC ,BC 上的点,DE ∥BC ,EF ∥AB. (1)求证:BCDEAB AD =; (2)若AD:DB=3:5,求CF:CB 的值.技巧2 等积代换法证比例式2.如图,在△ABC 中,D 是AB 上一点,E 是△ABC 内一点,DE ∥BC ,过D 作AC 的平行线交CE 的延长线于F ,CF 与AB 交于P.求证:PBPAPF PE =.技巧3 等比代换法证比例式3.如图,在△ABC 中,DE ∥BC ,EF ∥CD ,求证:ADAFAB AD =.类型2 证线段相等技巧 4 等比过渡证线段相等(等比例过渡法)4.如图,在△ABC 中,∠ACB=90°,∠B >∠A ,点D 为边AB 的中点,DE ∥BC 交AC 于点E ,CF ∥BA 交DE 的延长线于点F.(1)求证:DE=EF ;(2)连结CD ,过点D 作DC 的垂线交CF 的延长线于点G ,求证:∠B=∠A+∠DGC .类型3 证比例和为1技巧5 同分母的中间比代换法5.如图,已知AC ∥FE ∥BD.求证:1=+BCBEAD AE专题二:证明相似三角形的方法名师点金要找三角形相似的条件,关键抓住以下几点:(1)已知角相等时,找两对对应角相等,若只能找到一对对应角相等,判断夹相等的角的两边是否对应成比例;(2)无法找到角相等时,判断三边是否对应成比例;(3)除此之外,也可考虑平行线分线段成比例定理及相似三角形的“传递性...”.方法1 利用边或角的关系判定两直角三角形相似1.下面关于直角三角形相似叙述错误的是( )A.有一锐角对应相等的两个直角三角形相似B.两直角边对应成比例的两个直角三角形相似C.有一条直角边相等的两个直角三角形相似D.两个等腰直角三角形相似2.如图,BC⊥AD,垂足为C,AD=6.4,CD=1.6,BC=9.3,CE=3.1.求证:△ABC∽△DEC.方法2 利用角判定两三角形相似3.如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连接BD并延长,与CE 交于点 E. (1)求证:△ABD∽△CED; (2)若AB=6,AD=2CD,求BE的长.方法3 利用边角判定两三角形相似4.如图,AB=3AC,BD=3AE,又BD∥AC,点B,A,E在同一条直线上.求证:△ABD∽△CAE. 方法4 利用三边判定两三角形相似5.如图,AD是△ABC的高,E,F分别是AB,AC的中点.求证:△DEF∽△ABC.专训三巧作平行线构造相似三角形名师点金:解题时,往往会遇到要证的问题与相似三角形联系不上或者说图中根本不存在相似三角形的情况,添加辅助线构造相似三角形是这类几何证明题的一种重要方法.常作的辅助线有以下几种:(1)由比例式作平行线;(2)有中点时,作中位线;(3)根据比例式,构造相似三角形.训练角度1 巧连线段的中点构造相似三角形1.如图,在△ABC中,E,F是边BC上的两个三等分点,D是AC的中点,BD分别交AE,AF于点P,Q,求BP:PQ:QD.训练角度 2 过顶点作平行线构造相似三角形2.如图,在△ABC中,AC=BC,F为底边AB 上一点,BF:AF=3:2,取CF的中点D,连接AD并延长交BC于点E,求BE:EC的值.3.如图,过△ABC的顶点C任作一直线,与边AB及中线AD分别交于点F和点E.求证:AE:ED=2AF:FB.训练角度 3 过一边上的点作平行线构造相似三角形4.如图,在△ABC中,AB>AC,在边AB上取一点D,在AC上取一点E,使AD=AE,直线DE和BC的延长线交于点P.求证: BP:CP=BD:EC.训练角度 4 过一点作平行线构造相似三角形5.如图,在△ABC中,点M为AC边的中点,点E为AB上一点,且AE=41AB,连接EM并延长交BC的延长线于点D.求证:BC=2CD. 作辅助线的方法一:作辅助线的方法二:作辅助线的方法三:作辅助线的方法四:全章整合提升密码专训一:证比例式或等积式的技巧 名师点金证比例式或等积式,若遇问题中无平行线或相似三角形时,则需构造平行线或相似三角形,得到等比例线段;若比例式或等积式中的线段分布在两个三角形或不在两个三角形中,可尝试证这两个三角形相似或先将它们转化到两个三角形中再证两三角形相似,若在两个明显不相似的三角形中,可运用中间比代换.技巧1 构造平行线法1.如图,在△ABC 中,D 为AB 的中点,DF 交AC 于点E ,交BC 的延长线于点F , 求证:AE ·CF =BF ·EC.2.如图,已知△ABC 的边AB 上有一点D ,边BC 的延长线上有一点E ,且AD =CE ,DE 交AC 于点F ,试证明:AB ·DF =BC ·EF.技巧2 三点找三角形相似法3.如图,在▱ABCD 中,E 是AB 延长线上的一点,DE 交BC 于F. 求证:DC AE =CF AD.4.如图,在△ABC 中,∠BAC =90°,M 为BC 的中点,DM ⊥BC 交CA 的延长线于D ,交AB于E.求证:AM 2=MD ·ME.技巧3 构造相似三角形法5.如图,在等边三角形ABC 中,点P 是BC 边上任意一点,AP 的垂直平分线分别交AB ,AC 于点M ,N. 求证:BP ·CP =BM ·CN.技巧4 等比过渡法6.如图,在△ABC 中,AB =AC ,DE ∥BC ,点F 在边AC 上,DF 与BE 相交于点G ,且∠EDF =∠ABE. 求证:(1)△DEF ∽△BDE ;(2)DG ·DF =DB ·EF.7.如图,CE 是Rt △ABC 斜边上的高,在EC 的延长线上任取一点P ,连接AP ,作BG ⊥AP于点G ,交CE 于点D. 求证:CE 2=DE ·PE.技巧5 两次相似法8.如图,在Rt △ABC 中,AD 是斜边BC 上的高,∠ABC 的平分线BE 交AC 于E ,交AD 于F. 求证:BF BE =ABBC.9.如图,在▱ABCD 中,AM ⊥BC ,AN ⊥CD ,垂足分别为M ,N.求证:(1)△AMB ∽△AND ;(2)AM AB =MNAC.技巧6 等积代换法10.如图,在△ABC 中,AD ⊥BC 于D ,DE ⊥AB 于E ,DF ⊥AC 于F.求证:AE AF =ACAB.技巧7 等线段代换法11.如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于点D ,点P 是AD 上一点,CF ∥AB ,延长BP 交AC 于点E ,交CF 于点F ,求证:BP 2=PE ·PF.12.已知:如图,AD 平分∠BAC ,AD 的垂直平分线EP 交BC 的延长线于点P.求证:PD 2=PB ·PC.专训二 巧用“基本图形”探索相似条件 名师点金:几何图形大多数由基本图形复合而成,因此熟悉三角形相似的基本图形,有助于快速、准确地识别相似三角形,从而顺利找到解题思路和方法.相似三角形的四类结构图: 1.平行线型2.相交线型3.子母型4.旋转型训练角度1 平行线型1.如图,在△ABC 中,BE 平分∠ABC 交AC 于点E ,过点E 作ED ∥BC 交AB 于点D.(1)求证:AE ·BC =BD ·AC ; (2)如果S △ADE =3,S △BDE =2,DE =6,求BC 的长.训练角度2 相交线型2.如图,点D ,E 分别为△ABC 的边AC ,AB 上的点,BD ,CE 交于点O ,且EO BO =DOCO ,试问△ADE 与△ABC 相似吗?请说明理由.训练角度3 子母型3.如图,在△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,E 为AC 的中点,ED 的延长线交AB 的延长线于点F.求证:AB AC =DFAF.训练角度4 旋转型 4.如图,已知∠DAB =∠EAC ,∠ADE =∠ABC.求证:(1)△ADE ∽△ABC ;(2)AD AE =BD CE.专训三 利用相似三角形巧证线段的数量和位置关系 名师点金:判断两线段之间的数量和位置关系是几何中的基本题型之一.由角的关系推出“平行或垂直”是判断位置关系的常用方法,由相似三角形推出“相等”是判断数量关系的常用方法.训练角度1 证明两线段的数量关系 类型1: 证明两线段的相等关系1.如图,已知在△ABC 中,DE ∥BC ,BE 与CD 交于点O ,直线AO 与BC 边交于点M ,与DE 交于点N. 求证:BM =MC.2.如图,一直线和△ABC 的边AB ,AC 分别交于点D ,E ,和BC 的延长线交于点F ,且AE:CE =BF:CF. 求证:AD =DB.类型2 证明两线段的倍分关系3.如图,在△ABC 中,BD ⊥AC 于点D ,CE ⊥AB 于点E ,∠A =60°,求证:DE =12BC.4.如图,AM 为△ABC 的角平分线,D 为AB 的中点,CE ∥AB ,CE 交DM 的延长线于E. 求证:AC =2CE.训练角度2 证明两线段的位置关系 类型1:证明两线段平行 5.如图,已知点D 为等腰直角三角形ABC 的斜边AB 上一点,连接CD ,DE ⊥CD ,DE =CD ,连接CE ,AE.求证:AE ∥BC.6.在△ABC 中,D ,E ,F 分别为BC ,AB ,AC 上的点,EF ∥BC ,DF ∥AB ,连接CE 和AD ,分别交DF ,EF 于点N ,M.(1)如图①,若E 为AB 的中点,图中与MN 平行的直线有哪几条?请证明你的结论; (2)如图②,若E 不为AB 的中点,写出与MN 平行的直线,并证明.类型2 证明两线垂直7.如图,在△ABC 中,D 是AB 上一点,且AC2=AB ·AD ,BC 2=BA ·BD ,求证:CD ⊥AB.8.如图,已知矩形ABCD ,AD =13AB ,点E ,F把AB 三等分,DF 交AC 于点G ,求证:EG ⊥DF.专训四巧用位似解三角形中的内接多边形问题名师点金位似图形是特殊位置的相似图形,它具有相似图形的所有性质,位似图形必须具备三个条件:(1)两个图形相似;(2)对应点的连线相交于一点;(3)对应边互相平行或在同一直线上.类型1 三角形的内接正三角形问题1.如图,用下面的方法可以画△AOB的内接等边三角形,阅读后证明相应问题.画法:①在△AOB内画等边三角形CDE,使点C在OA上,点D在OB上;②连接OE并延长,交AB于点E′,过点E′作E′C′∥EC,交OA于点C′,作E′D′∥ED,交OB于点D′;③连接C′D′,则△C′D′E′是△AOB的内接等边三角形.求证:△C′D′E′是等边三角形.类型2 三角形的内接矩形问题2.求作:内接于已知△ABC的矩形DEFG,使它的边EF在BC上,顶点D,G分别在AB,AC上,并且有DE∶EF=1∶2.类型 3 三角形的内接正形问题(方程思想)3.如图,△ABC 是一块锐角三角形余料,边BC=120mm ,高AD=80mm ,要把它加工成正方形零件,使正方形的一边QM 在BC上,其余两个顶点P ,N 分别在AB,AC上,则这个正方形零件的边长是多少?4.(1)如图①,在△ABC 中,点D ,E ,Q 分别在AB ,AC ,BC 上,且DE ∥BC ,AQ交DE 于点P.求证:DP:BQ=PE:QC.(2)在△ABC 中,∠BAC =90°,正方形DEFG 的四个顶点在△ABC 的边上,连接AG ,AF ,分别交DE 于M ,N 两点.①如图②,若AB=AC=1,直接写出MN的长;②如图③,求证:MN²=DM·EN.专训五: 图形的相似中的五种热门考点 名师点金:相似是初中数学的重要内容,也是中考重点考查内容之一,而对于成比例线段、相似三角形的判定与性质、位似图形等都是命题的热点.考点一: 比例线段及性质1.下列各组长度的线段,成比例线段的是( )A. 2 cm ,4 cm ,4 cm ,8 cmB. 2 cm ,4 cm ,6 cm ,8 cmC. 1 cm ,2 cm ,3 cm ,4 cmD. 2.1 cm ,3.1 cm ,4.3 cm ,5.2 cm2.若a 2=b 3=c 4=d 7≠0,则a +b +c +d c =________.3.如图,乐器上的一根弦AB =80 cm ,两个端点A ,B 固定在乐器板面上,支撑点C 是靠近点B 的黄金分割点,则支撑点C 到端点A 的距离约为________.(5≈2.236,结果精确到0.01)考点二: 平行线分线段成比例4.如图,若AB ∥CD ∥EF ,则下列结论中,与AD AF 相等的是( ) A.AB EF B.CD EF C.BO OE D.BC BE5.如图,在Rt △ABC 中,∠ACB =90°,∠ABC =60°,以AC 为边向三角形外作正方形ACDE ,连接BE 交AC 于F ,若BF = 3 cm ,则EF =________.6.如图,在△ABC 中,AM ∶MD =4∶1,BD ∶DC =2∶3,求AE ∶EC 的值.考点三 相似三角形的性质与判定7.已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为3∶4,则△ABC 与△DEF 的面积之比为( ) A.4:3 B.3:4 C.16:9 D.9:168.在平行四边形ABCD 中,点E 在AD 上,且AE ∶ED =3∶1,CE 的延长线与BA 的延长线交于点F ,则S △AEF ∶S 四边形ABCE 为( ) A.3∶4 B.4∶3 C.7∶9 D.9∶79.若两个相似多边形的面积之比为1∶4,周长之差为6,则这两个相似多边形的周长分别是________.10.如图,△ABC 是直角三角形,∠ACB =90°,CD ⊥AB 于D ,E 是AC 的中点,ED 的延长线与CB 的延长线交于点F.(1)求证:FD 2=FB ·FC ; (2)若FB =5,BC =4,求FD 的长.11.如图,四边形ABCD 是正方形,BD 是对角线,BE 平分∠DBC 交DC 于点E ,点F 是BC 的延长线上一点,且CE =CF ,BE 的延长线交DF 于点M.(1)求证:BM ⊥DF ; (2)若正方形ABCD 的边长为2,求ME ·MB.考点四相似三角形的应用12.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯的高度CD.如图,当李明走到点A处时,张龙测得李明直立时身高AM 与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25 m,已知李明直立时的身高为1.75 m,求路灯的高度CD.(结果精确到0.1 m)13.某高中学校为高一新生设计的学生板凳的正面视图如图所示,其中BA=CD,BC=20 cm,BC,EF平行于地面AD且到地面AD的距离分别为40 cm,8 cm.为使板凳两腿底端A,D之间的距离为50 cm,那么横梁EF的长应为多少?(材质及其厚度等暂忽略不计)考点五图形的位似14.如图,已知正方形ABCD,以点A为位似中心,把正方形ABCD的各边缩小为原来的一半,得正方形A′B′C′D′,则点C′的坐标为________.15.如图,在6×8的网格图中,每个小正方形的边长均为1,点O和△ABC的顶点均在小正方形的顶点上.(1)以O为位似中心,在网格图中作△A′B′C′和△ABC位似,且相似比为1∶2;(2)连接(1)中的AA′,求四边形AA′C′C 的周长.(结果保留根号)专训六全章热门考点整合应用名师点金:本章主要内容为:平行线分线段成比例,相似三角形的判定及性质,位似图形及其画法等,涉及考点、考法较多,是中考的高频考点.其主要考点可概括为:3个概念、2个性质、1个判定、2个应用、1个作图、1个技巧.考点一:3个概念概念1:成比例线段1.下列各组线段,是成比例线段的是( )A.3cm,6cm,7cm,9cmB.2cm,5cm,0.6dm,8cmC.3cm,9cm,1.8dm,6cmD.1cm,2cm,3cm,4cm2.有一块三角形的草地,它的一条边长为25m,在图纸上,这条边的长为5cm,其他两条边的长都为4cm,则其他两边的实际长度都是________m.概念2:相似多边形3.如图,已知∠1′=∠1,∠2′=∠2,∠3′=∠3,∠4′=∠4,∠D′=∠D,试判断四边形A′B′C′D′与四边形ABCD是否相似,并说明理由.概念3:位似图形4.如图,在△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形,并把△ABC的边放大到原来的2倍,记所得的像是△A′B′C.设点B的对应点B′的坐标是(a,b),求点B的坐标.考点二: 2个性质性质1:平行线分线段成比例的性质5.如图,在Rt△ABC中,∠A=90°,AB=8,AC=6.若动点D从点B出发,沿线段BA运动到点A为止,运动速度为每秒2个单位长度.过点D作DE∥BC交AC于点E,设动点D运动的时间为x秒,AE的长为y.(1)求出y关于x的函数解析式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积有最大值,最大值为多少?性质2:相似三角形的性质6.如图,已知D是BC边上的中点,且AD=AC,DE⊥BC,DE与BA相交于点E,EC 与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若S△FCD=5,BC=10,求DE的长.考点三: 1个判定——相似三角形的判定7.如图,△ACB为等腰直角三角形,点D为斜边AB上一点,连接CD,DE⊥CD,DE=CD,连接AE,过C作CO⊥AB于O.求证:△ACE ∽△OCD.8.如图,在⊙O的内接△ABC中,∠ACB=90°,AC=2BC,过点C作AB的垂线l交⊙O 于另一点D,垂足为点E.设P是上异于点A,C的一个动点,射线AP交l于点F,连接PC 与PD,PD交AB于点G. (1)求证:△PAC∽△PDF; (2)若AB=5,弧AP=弧BP,求PD 的长.考点四: 2个应用应用1:测高的应用9.如图,在离某建筑物CE 4 m处有一棵树AB,在某时刻,1.2 m的竹竿FG垂直地面放置,影子GH长为2 m,此时树的影子有一部分落在地面上,还有一部分落在建筑物的墙上,墙上的影子CD高为2 m,那么这棵树的高度是多少?应用2:测宽的应用10.如图,一条小河的两岸有一段是平行的,在河的一岸每隔6 m有一棵树,在河的对岸每隔60 m有一根电线杆,在有树的一岸离岸边30 m处可看到对岸相邻的两根电线杆恰好被这岸的两棵树遮住,并且在这两棵树之间还有三棵树,求河的宽度.考点五: 1个作图——作一个图形的位似图形11.如图,在方格纸中(每个小方格的边长都是1个单位长度)有一点O和△ABC.请以点O 为位似中心,把△ABC缩小为原来的一半(不改变方向),画出△ABC的位似图形.考点六: 1个技巧——证明四条线段成比例的技巧12.如图,已知△ABC,∠BAC的平分线与∠DAC的平分线分别交BC及BC的延长线于点P,Q. (1)求∠PAQ的度数; (2)若点M为PQ的中点,求证:PM2=CM·BM.。
北师大版九年级上第四章相似三角形复习课件
6. 四边形ABCD是平行四边形,点E是 BC的延长线 上的一点,而CE:BC=1:3,则 △ADG和△EBG的周 长比3:4 , 9:16 为面积比。
A
D
GF
B
CE
7. 举例说明三角形类似的一些应用. 例如用类似测物体的高度
测山高
测楼高
D
E 1.2m
A 1.6m B 8.4m C
8. 如图,△ABC是一块锐角三角形材料,边BC=120mm,高AD= 80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两 个顶点分别在AB、AC上,这个正方形零件的边长是多少?
3.如图,DE∥BC,AD:DB=1:2,DC,BE交于点O, 则△DOE与△BOC的周长之比是__1_:_3___, 面积比是___1_:_9___.
A
D
E
O
B
C
4、 两类似三角形对应高之比为3∶4,周长之和为28cm, 则两个三角形周长分别为 12cm与16cm
5、 两类似三角形的类似比为3∶5,它们的面积和为 102cm2,则较大三角形的面积为 75cm2
C2
A
C
B
A2
C1 B2
A
A1 B1
C
B
4、如图,在△ABC中,∠BAC=90°,AB=6, BC=12,点P从A点出发向B以1m/s的速度移动,点Q 从B点出发向C点以2m/s的速度移动,如果P、Q分别 从A、B两地同时出发,几秒后△ PBQ与原三角形类 似?
C
Q Q
B PP A
学以致用:
5.如图⊿ABC中,AB=8cm,BC=16cm ,点P从A点开始沿AB边向点B以2cm/s 的速度移动,点Q从点B开始沿BC边向 点C以4cm/s的速度移动。若点P、Q从A 、B处同时出发,经过几秒钟后, ⊿PBQ与⊿ABC类似?
北师版初三数学上册第四章相似图形知识点讲解
北师版初三数学上册第四章相似图形知识点讲解九年级(上)第四章图形的相似(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形. (2) 相似多边形:如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多边形.相似多边形对应边长度的比叫做相似比.一.成比例线段(1)线段的比如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nm b a =,或写成nm b a ::=.注:在求线段比时,线段单位要统一。
(2)成比例线段在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段. 注:①比例线段是有顺序的,如果说a ,d c b ,,成比例,那么应得比例式为:b a =d c.②()a ca b c d b d==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。
③判断给定的四条线段是否成比例的方法:第一排:现将四条线段的长度统一单位,再按大小顺序排列好;第二算:分别算出前两条线的长度之比与后两条线段的长度之比;第三判:若两个比相等,则这四条线段是成比例线段,否则不是(3)比例的性质(注意性质立的条件:分母不能为0) 基本性质:① a:b=c:d 则有 ad=bc (两外项之积等于两内向之积); ② ②2::a b b c b a c =⇔=⋅.注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.(2) 更比性质(交换比例的内项或外项):()()()a bc d a c d c b d b a d bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项(3)合、分比性质:a c a b c d b d b d±±=⇔=. (4)等比性质:如果)0(≠++++====n f d b nmf e d c b a ,那么ban f d b m e c a =++++++++ .注:①此性质的证明运用了“设k 法”(即引入新的参数k )这样可以减少未知数的个数,这种方法是有关比例计算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零.③ 可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:b a f d b e c a f e d c b a f e d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b . (4)比例题常用的方法有:比例合分比法,比例等比法,设参法,连等设k 法,消元法二,平行线分线段成比例(1)平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例.已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BCBC EF AC DF AB DE AC DF DE EF=====或或或或等. 注意:是所截的线段成比例,而跟平行线无关,所以比例线段中不可能有AD,BE,CF 的比例关系(2)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB .即51AC BC AB AC -==简记为:51-长短==全长注:黄金三角形:顶角是360的等腰三角形。
北师大版九年级数学上册 第四章《图形的相似》全章复习与巩固——知识讲解
图形的相似》全章复习与巩固——知识讲解【要点梳理】要点一、相似图形及比例线段1.相似图形:在数学上,我们把形状相同的图形称为相似图形(similar figures).要点诠释:(1) 相似图形就是指形状相同,但大小不一定相同的图形;(2) “全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两个图形全等;2.相似多边形如果两个多边形的对应角相等,对应边的比相等,我们就说它们是相似多边形.要点诠释:(1)相似多边形的定义既是判定方法,又是它的性质.(2)相似多边形对应边的比称为相似比.3.比例线段:对于四条线段a、b、c、d,如果其中两条线段的比与另两条线段的比相等,如a:b=c:d,我们就说这四条线段是成比例线段,简称比例线段.4.平行线分线段成比例:基本事实:两条直线被一组平行线所截,所得的对应线段成比例.推论:平行于三角形一边的直线与其他两边相交,截得的对应线段成比例. 要点二、相似三角形1.相似三角形的判定:判定方法(一):平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.判定方法(二):两角分别相等的两个三角形相似.要点诠释:要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.判定方法(三):两边成比例且夹角相等的两个三角形相似.要点诠释:此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必须是两边的夹角,否则,判断的结果可能是错误的.判定方法(四):三边成比例的两个三角形相似.2.相似三角形的性质:(1)相似三角形的对应角相等,对应边的比相等;(2)相似三角形中的重要线段的比等于相似比;相似三角形对应高,对应中线,对应角平分线的比都等于相似比.要点诠释:要特别注意“对应”两个字,在应用时,要注意找准对应线段.(3) 相似三角形周长的比等于相似比;(4)相似三角形面积的比等于相似比的平方。
北师大版九年级数学上册 第四章 图形的相似复习测试题(含详解)
2019下学期九年级数学第四章图形的相似复习测试题一、选择题1、如图4-2-6所示,已知直线a∥b∥c,直线m分别交a,b,c于点A,C,E,直线n分别交a,b,c于点B,D,F,AC=4,CE=6,BD=3,则BF的长为()A. B. C.6 D.2、若图4-3-4中的两个四边形相似,则的∠α度数是()A.87°B.60°C.75°D.120°二、填空题3、在比例尺为1 :5 000的地图上,量得中、乙两地的图上距离是3.2 cm,把它画在新的比例尺是1:8000的地图上,应画 cm.5、如图4-2-11所示,在△ABC中,BE平分∠ABC,DE∥BC.若DE=2AD,AE= 2,则 EC = .6、如图4-4-8所示,在△ABC中,AB= 9, AC=6,点M在AB边上,且AM=3,点N在AC边上,当AN= 时, △AMN与原三角形相似.7、如图4-8-8所示,在平面直角坐标系中,点A,B,E,D,F的坐标分别是A(4,3),B(4,0),E(5,0),D(13,6),F(13,0),△DEF是由△AOB经过位似变换得到的,则位似中心的坐标是。
三、解答题8、如图4-1-2所示,点P在线段AB上,点O在线段AB的延长线上,9、已知1,,2三个数,请再添上一个数,写出一个比例式.10、如图4-2-8所示,在△ABC中,线段AD平分∠BAC,求证:.11、如图4-3-2所示,把矩形ABCD对折,折痕为MN,矩形DMNC与矩形ABCD相似,己知AB = 4.(1)求AD的长;(2)求矩形DMNC与矩形ABCD的相似比.12、如图4-3-6所示,点E为矩形ABCD的边AB上一点且满足A EA B =B EA E,当四边形ADFE为正方形时,矩形ABCD和矩形EFCB相似吗?为什么?13、某机械厂承接了一批焊制矩形钢板的任务,已知这种矩形钢板在图纸上(比例尺为1 : 400)的长和宽分别为3 cm和2 cm,该厂所用原料是边长为4 m的正方形钢板,那么焊制一块这样的矩形至少要用几块边长为4 m的正方形钢板(焊制损耗不汁)?14、根据下列各组条件,判断△ABC和△A′B′C′是否相似,并说明理由.(1)AB=3.5,BC=2.5,CA=4, A′B′=24.5, B′C′=17.5, C′A′=28;(2)∠A=35°,∠B=104°, ∠C′=44°, ∠A′=35° ;(3)AB=3,BC=2.6, ∠B=48°,A′B′=1.5, B′C′=1.3, ∠B′=48°.15、如图4-4-11所示,已知DE∥BC,DF∥AC,AD=4cm,BD=8cm,DE=5cm,求线段BF的长.16、如图4-4-13所示,在边长为1的正方形网格中有△ABC和△DEF,试说明这两个三角形相似.17、在人体脚底到肚脐的高度与身高的比例上,理想的肚胳的位置是黄金分割点,即比值越接近0.618越给人以美感.小明的妈妈脚底到肚脐的高度与身高的比为0.60,她的身高为1.60 m,她选择穿多高的高跟鞋看起来会更美?18、如图4-5-4所示,△A BC为等边三角形,D,E分別是AC,BC上的点(不与顶点重合),∠BDE =60° .(1)求证:△DEC ∽△BDA;(2)若△ABC的边长为 4,并设DC=x,BE=y,试求y与x之间的函数关系式.19、如图4-5-6所示,在平行四边形ABCD中,过点A作AE丄BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF ∽△DEC;(2)若AB=8,AD=63,AF=43,求AE的长.20、如图4-5-8所示,在梯形ABCD中,AD∥BC,∠A=90°,∠B=90°,AB=7,AD=2,BC=3.试在边AB上确定点P的位置,使得以P,A,D 为顶点的三角形与以P,B,C为顶点的三角形相似.21、如图4-5-10所示,在四边形ABCD中,AC,BD相交于点O,直线l∥BD且与AB,DC,BC,AD及AC的延长线分别相交于点M,N,R,S和P.求证:PM•PN=PR•PS.22、小明想利用太阳光测量楼高,他带着皮尺来到一幢楼下,发现对面墙上有这幢楼的影子.针对这种情况,他设计了一种测量方案,具体测量情况如下:示意图如图4-6-7①所示,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这幢楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子的高度CD=1.2m,且测得CE=0.8m,CA=30m(点A,E,C在同一直线上).已知小明的身高EF是1.7m,请你帮小明求出楼高AB(结果精确到0.1m).23、周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB 的延长线上选择点D,竖起标杆DE,使得点E与点C,A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BC=8.5m.测量示意图如图4-6-9所示.请根据相关测量信息,求河宽AB.24、如图4-6-11①所示,小华在测量电线杆AB的高度时,发现电线杆的影子恰好落在坡面CD和水平地面BC上,影子CD=4m,BC=10m,CD与地面成30°角,且此时测得1m长的标杆的影长为2m,求电线杆的高度(结果精确到0.1m,取1.41,取1.73).25、如图4-7-5所示,在△ABC中,D,E分别为BC, AC边的中点,AD, BE相交于点G,若S△DEG = 1,求S△ABC.26、如图4-7-7所示,路边的两根电线杆(AB,CD)相距4 m,分别在离地面高3 m的A处和高6m的C处用铁丝将两电线杆固定,求铁丝AD与铁丝BC的交点M离地面的高度.27、如图4-7-9所示,已知△ABC中, AB= 5, BC= 3,AC=4,PQ∥AB,点P在AC上(与点A,C不重合),点Q在BC上.(1)当△PQC的面积与四边形PABQ的面积相等时,求CP的长.图4-7-9(2)当△PQC的周长与四边形PABQ的周长相等时,求CP的长,(3)试问:在AB上是否存在一点M,使得△PQM为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出PQ的长.28、如图4-8-11所示,已知点O是坐标原点,B,C两点的坐标分别为(3,-1),(2,1)。
北师大版数学九年级上册第四单元图形的相似单元复习课件
(1) 求 的值;
(2) 求 的长.
(1) 求 的值;
解: , . .
(2) 求 的长.
[答案] 如图,过点 作 ,交 的延长线于点 .
, , . . 是 的中线,
A
A. B. C. D.
3.如图,点 , 在 的边 上,点 在边 上,且 , .
(1) 求证: .
(2) 如果 ,求证: .
(1) 求证: .
证明: , . , . . .
(2) 如果 ,求证: .
[答案] , . , .又 , . . , . . .
6.如图,在 中, , ,则图中类似三角形有( )
C
A.2对 B.3对 C.4对 D.5对
Ⅳ.“旋转型”
7.如图,在 和 中, , .
(1) 写出图中两对类似三角形(不得添加字母和线);
(2) 请说明其中一对三角形类似的理由.
(1) 写出图中两对类似三角形(不得添加字母和线);
Ⅱ.斜“A字形”(不平行)
4.如图, , 两点分别在 的边 , 上, 与 不平行.当添加条件_______________(写出一个即可)时, .
如
5.如图,在 中, , , .某一时刻,动点 从点 出发沿 方向以 的速度向点 匀速运动;同时,动点 从点
Ⅱ.反“8字形”(不平行)
9.如图,在 中, 平分 交 于点 ,点 在 的延长线上,且 .
(1) 求证: .
(2) 求证: .
(1) 求证: .
证明: 平分 , . , . .
(2) 求证: .
[答案] , . , .又 , . ,即 .
北师大版九年级上册数学《相似多边形》图形的相似教学说课复习课件
强化训练
1. 观察下面两组图形,图①中的两个图形相似吗?为什么?
10 正方形
12
菱形
10 12
图① 答:不相似.虽然它们的对应边是成比例
的,但它们的对应角不相等.
强化训练
图②中的两个图形相似吗?为什么?
10 正方形
8
矩形
10
12
图②
答:不相似.虽然它们的对应角相等,
但它们的对应边不成比例.
强化训练
证 明 : ∵∠GEA = ∠EAF = ∠GFA = 90° , ∴ 四 边 形 AFGE 为矩形.
∵四边形 ABCD 为正方形,∴AC 平分∠DAB. 又∵GE⊥AD,GF⊥AB,∴GE=GF.∴四边形 AFGE 为正方形. ∴四边形 AFGE 与四边形 ABCD 相似.
巩固训练 1. 如图,有三个矩形,其中相似的是( B )
九年级数学北师版·上册
第四章 图形的相似
相似多边形
课件
新课引入
观察与思考: 下面几组图形有什么相同点和不同点?
(1)
(2)
(3)
(4)
知识讲解
1 相似多边形的概念及基本性质
如图,多边形ABCDEF是显示在电脑屏幕上的,而多边形
A1B1C1D1E1F1是投射到银幕上的.它们的形状相同吗?
A1
B1
A. 甲和乙 C. 乙和丙
B. 甲和丙 D. 没有相似的矩形
2. 两个相似多边形的相似比是 3∶7,其中一个多边形的 最长边是 21,则另一个多边形的最长边是 4499或99 .
3. 一个矩形剪去一个以宽为边长的正方形后,剩下的矩
5-1
形与原矩形相似,则原矩形的宽与长的比是 2 .
4. 如图,矩形 ABCD 中,AB=4,点 E,F 分别在 AD, BC 边上,且 EF⊥BC,若矩形 ABFE∽矩形 DEFC,且相似 比为12,求 AD 的长.
北师大版九年级数学上册第四章《图形的相似》单元复习课件
ab cd bd
ac bd
4.若线段MN=10,点K为MN的黄金分割点,则KM的长
为
.
5.如图,在△ABC中,已知DE//BC,AD=3BD,S△ABC=48,
求S△ADE.
解:∵ DE∥BC,
A
3 D 1 B
∴△ADE∽△ABC.
∴S△ABC : S△ADE =
E
∵AD : BD = 1:3,
解:过点D作DG⊥AB,分别交AB、EF于点G、H,
则EH=AG=CD=1.2 m,
DH=CE=0.8 m,DG=CA=30 m.
因为EF和AB都垂直于地面,所以EF∥AB,
所以∠BGD=∠FHD=90°,∠GBD=∠HFD,
所以△BDG∽△FDH.
所以
FH BG
DH DG
.
由题意,知
FH=EF-EH=1.7-1.2=0.5(m). ∴ 0.5 0.8 , 解得BG=18.75(m).
DC = 31.5 千米,公路 AB 与 CD 平行吗?说出你
的理由.
解:公路 AB 与 CD 平行.
∴
AB BD
AD BC
=
BD DC
=
2, 3
A
28
∴ △ABD∽△BDC, ∴∠ABD=∠BDC,
14 B
D
31.5 21
42
C
∴AB∥DC.
课后练习
1. 如图,△ABC 的高 AD、BE 交于点 F. 求证:AF EF . BF FD
解:∵ DE∥BC,EF∥AB,∴ △ADE ∽△ABC,
∠ADE =∠EFC,∠A =∠CEF,
D
∴△ADE ∽△EFC.
北师大版数学九上第四章《相似三角形的基本图形》专题复习(教案)
4.利用相似三角形解决实际问题的方法。
5.本章典型例题与习题的复习巩固,如相似三角形的应用题、图形的放大与缩小等。
6.相似多边形的性质及判定方法。
二、核心素养目标
1.培养学生的几何直观能力,通过观察、分析相似三角形的基本图形,提高学生对几何图形的理解和识别能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《相似三角形的基本图形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要测量不可到达的距离或高度的情况?”(如测量旗杆的高度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索相似三角形的奥秘。
在小组讨论环节,学生们表现得非常积极,能够主动提出自己的观点并与他人交流。但在分享成果时,部分学生的表达能力还有待提高。为了提高学生的表达能力,我计划在接下来的课程中增加一些课堂演讲或辩论环节,让他们有更多机会锻炼自己的口头表达能力。
最后,从这节课的教学过程中,我也意识到了关注学生个体差异的重要性。有些学生可能需要更多的时间来消化和理解相似三角形的知识点,因此在课后,我要针对这些学生进行个别辅导,帮助他们克服学习难点。
三、教学难点与重点
1.教学重点
-理解并掌握相似三角形的判定方法(SSS、SAS、ASA、AAS)。
-掌握相似三角形的性质,尤其是对应角相等和对应边成比例。
-能够运用相似三角形解决实际问题,如测量不可到达的距离或高度。
-理解并运用直角三角形特殊比例关系(30°-60°-90°和45°-45°-90°)。
其次,在解决实际问题时,部分学生构建相似三角形模型的能力较弱。针对这一点,我打算在接下来的课程中,设计一些更具挑战性的问题,让学生们通过小组合作的方式,一起探讨如何将实际问题转化为数学模型。这样既能提高他们的解决问题的能力,也能培养他们的团队合作精神。
(北师大版数学九上)第四章 图形的相似讲义
第四章图形的相似第1讲相似三角形常见模型一.知识梳理(一)【知识回顾】相似三角的判定方法1.如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.2.如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.3.如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.(二)相似三角形基本类型1.平行线型2.相交线型3.子母型4.旋转型二.实战演练训练角度1 平行线型1.如图,在△ABC中,BE平分∠ABC交AC于点E,过点E作ED∥BC交AB于点D.(1)求证:AE·BC=BD·AC; (2)如果S△ADE=3,S△BDE=2,DE=6,求BC的长.典例分析训练角度2 相交线型2.如图,点D,E分别为△ABC的边AC,AB上的点,BD,CE交于点O,且EOBO=DOCO,试问△ADE 与△ABC相似吗?请说明理由.训练角度3 子母型3.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,E为AC的中点,ED的延长线交AB的延长线于点F.求证:ABAC=DFAF.训练角度4 旋转型4.如图,已知∠DAB=∠EAC,∠ADE=∠ABC.求证:(1)△ADE∽△ABC;(2)ADAE=BDCE.1.下列命题中,是真命题的为()A.锐角三角形都相似B.直角三角形都相似C.等腰三角形都相似D.等边三角形都相似2.如图,给出下列条件,其中不能单独判定△ABC∽△ACD的条件为()A.∠B=∠ACD B.∠ADC=∠ACB C.=D.=3.如图,平行四边形ABCD中,过点B的直线与对角线AC、边AD分别交于点E和F.过点E作EG∥BC,交AB于G,则图中相似三角形有()A.4对B.5对C.6对D.7对课堂训练4.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()5.如图,已知AB=AC,∠A=36°,AB的中垂线MD交AC于点D、交AB于点M.下列结论:①BD是∠ABC的平分线;②△BCD是等腰三角形;③△ABC∽△BCD;④△AMD≌△BCD.正确的有()个.A.4B.3C.2D.16.若四边形ABCD的四边长分别是4,6,8,10,与四边形ABCD相似的四边形A1B1C1D1的最大边长为30,则四边形A1B1C1D1的最小边长是__________.7.如图:点G在平行四边形ABCD的边DC的延长线上,AG交BC、BD于点E、F,则△AGD∽∽。
北师大版九年级上册 第四章 图形的相似 章节复习
图形的相似考点1:比例线段的概念 方法点拨 (1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nm b a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。
(2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:a d c b =.②()a c a b c d b d==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。
例1:下列四组线段中,不成比例线段的是( )A .2cm ,5cm ,10cm ,25cmB .4cm ,7cm ,4cm ,7cmC .2cm ,cm ,cm ,4cmD .cm ,cm ,2cm ,5cm变式1-1:下列a 、b 、c 、d 四条线段,成比例线段的是( )A .a =12,b =4,c =5,d =12B .a =15,b =3,c =5,d =1C .a =13,b =2,c =8,d =12D .a =5,b =0.02,c =0.7,d =0.3变式1-2:如果a :b =3:2,且b 是a 、c 的比例中项,那么b :c 等于( )A .4:3B .3:4C .2:3D .3:2变式1-3:甲、乙两地的实际距离是400千米,在比例尺为1:500000的地图上,甲乙两地的距离是( )A .0.8cmB .8cmC .80cmD .800cm .考点2:黄金分割方法点拨知识点梳理黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB .即12AC BC AB AC == 简记为:12长短==全长 注:黄金三角形:顶角是360的等腰三角形。
北师大九年级数学上第四章图形的相似单元复习讲义
E D C B A DCA M NB HG F ED C B AE D C B A例3.一个铝质三角形框架三条边长分别为24cm 、30cm 、36cm ,要做一个与它相似的铝质三角形框架,现有长为27cm 、45cm 的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有 种.例4.如图,已知AD 为△ABC 的角平分线,AB DE //交AC 于E ,如果32=EC AE ,那么=ACAB32.例5.如图,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADE =60°,BD =3,CE =2,则△ABC 的边长为 .例6.如图,在正方形ABCD 中,点M 、N 分别在AB 、BC 上,AB=4,AM =1,BN =43.MN 与MD 有怎样的位置和数量关系?例7.如图,△ABC 与△CDE 都是等边三角形,AD 、BE 分别与AC 、CE 交于点F 、G ,AD 、BE 交于点H .试说明:(1)BE =AD ;(2)AF ·FC =BF ·FH .例8.如图,点D 是△ABC 的边AC 上一点,且AB =5,AD =2,CD =1.在AB 上找一点E ,使得△ADE 与△ABC 相似,并求出AE 的长.D C B ADA B C D E 图4 7.四边形ABCD 、DEFG 都是正方形,连接AE 、CG ,AE 与CG 相交于点M ,CG 与AD 相交于点N .试说明: (1)CG AE ;(2)AN ·DN =CN ·MN .NM GFEDCBA8.如图,在Rt △ABC 中,BC=6,AC =8,点D 是边AC 上一点,且CD =2,点E 从点B 出发沿B →C 方向以1cm/s 的速度运动,出发多长时间后△ADE 与△ABC 相似?ABCDE随堂检测1.如图1,晚上小亮在路灯下散步,在小亮由A 处走到B 处这一过程中,他在地上的影子( ) A、逐渐变短 B、逐渐变长C、先变短后变长 D、先变长后变短2.如图2,课堂上小亮站在座位上回答数学老师提出的问题,那么数学老师观察小亮身后,盲区是 ( ) A 、△DCE B 、四边形ABCD C 、△ABF D 、△ABE3.如图3,AB 是斜靠在墙上的长梯,梯脚B 距墙脚1.6m ,梯上点D 距墙1.4m ,BD 长0.55m ,则梯子的长为 ( )A 、3.85mB 、4.00mC 、4.40mD 、4.50m4.如图4,A 、B 两点间有一湖泊,无法直接测量,已知CA =60米,CD =24米,DE =32米,DE ∥AB ,则AB = 米.图1 A B图3 图25.如图5,小华做物理实验,蜡烛的火焰透过小孔在成像板上形成一个倒立的像,经过测量蜡烛的火焰是2厘米,它的像是4厘米.如果蜡烛距离小圆孔10厘米,那么蜡烛与成像板之间的距离是________㎝.6.小玲用下面的方法来测量学校教学大楼AB的高度:如图6,在水平地面上放一面平面镜,镜子与教学大楼的距离EA=21米.当她与镜子的距离CE=2.5米时,她刚好能从镜子中看到教学大楼的顶端B.已知她的眼睛距地面高度DC=1.6米.请你帮助小玲计算出教学大楼的高度AB是多少米?(光的反射定律:反射角等于入射角)7.如图7,假设学生座位到黑板的距离是5m,老师在黑板上写字,究竟要写多大,才能使学生望去时,同他看书桌上距离30cm的课本上的字(量得课本正文中的字的大小为0.4cm×0.35cm,)感觉相同(即视角相同)?8.如图8,在离某建筑物4m处有一棵树,在某时刻,1.2m长的竹竿垂直地面,影长为2m,此时,树的影子有一部分映在地面上,还有一部分影子映在建筑物的墙上,墙上的影高为2m,那么这棵树高有多少米?图5图6A'B'CBAD图8学习学习A'C'B'O CBA图79.如图9,在一个长40米、宽30米的长方形小操场上,王刚从A点出发,沿着A B C→→的路线以3m/s 的速度跑向C地.当他出发4s后,张华有东西需要交给他,就从A地出发沿王刚走的路线追赶,当张华跑到距B地83米的D处时,他和王刚在阳光下的影子恰好在同一条直线上.此时,A处一根电线杆在阳光下的影子也恰好落在对角线AC上.(1)求他们的影子重叠时,两人相距多少米(DE的长)?(2)求张华追赶王刚的速度是多少(精确到0.1m/s)?图9。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.如图,△ABC中,AB=AC,∠BAC=108°,在 BC边上取一点D,使BD=BA,连接AD.
求证:(1)△ADC∽△BAC; (2)点D是BC的黄金分割点.
复习指导(五):(3分钟)---相似三角形的应用 例1小青同学想利用影长测量学校旗杆AB的高 度.某一时刻他测得长1米的标杆的影长为1.4米, 与此同时他发现旗杆AB的一部分影子BD落在地 面上,另一部分影子CD落在楼房的墙壁上,分 别测得其长度为11.2米和2米,如图所示.请你 帮他求出旗杆AB的高度.
3.k a 2b b 2c c 2a (a b c 0), k -_1__
c
a
b
变:若 y z x z x y =k,则k=__2_或__-1__ xyz
复习指导(四):(2分钟)---黄金分割 1.如何判定点C是线段AB黄金分割点?
A
C
B
法1:若 AC BC ,则点C是线段AB黄金分割点
(3分钟) 变式: △ABC是一块锐角三角形材料, BC=120mm,高AD=80mm,要把它加工成一 矩形零件,使矩形一边在BC上,其余两个顶点分 别在AB、AC上. (1)设PN=x,矩形PQMN的面积为S,求S关 于x的函数表达式,并指出x的取值范围. (2)当x为何值时,矩形PQMN的面积最大?最 大值是多少?
当堂训练(10分钟)
1.已知a,b, c是△ABC的三边长,周长为12,
且满足 a 4 b 3 c 8 3 24
(1)求a,b,c的值
5,3,4
(2)判断△ABC的形状
设 a 4 b 3 c 8 =k, 3 24
则a则=3ak-44 ,bb=23k-c3,c8=4kk-8 代入,K3 求=23得 4k=3
AB AC
法2:若 AC 5 1,则点C是线段AB黄金分割点
AB 2
2.若点C是线段AB黄金分割点,
A
C
B
则AC= _5_1AB
2
BC= _3 __5 AB
2
检测(四):(3分钟)
1.已知线段AB的长度为2,C是线段AB的黄金分
割点,则AC= 5 1 或 3 5.
2.如图,在平行四边形ABCD中,E为边AD延长线 上的一点,且D为AE的黄金分割点,AD>DE,BE
2.Rt△ABC两条直角边AB=4cm,AC=3cm, 点D沿AB从A向B运动,速度是1cm/秒,同时, 点E沿BC从B向C运动,速度为2cm/秒.动点E到 达点C时运动终止.连接DE、CD、AE. (1)当动点运动几秒时,△BDE与△ABC相似? (2)设动点运动t秒时△ADE的面积为s,求s与t 函数解析式;(3)是否存在某一时刻t,使CD⊥DE
变式:若a=2m,d=8m,则a、d的比例中项 b= 4m.
复习指导(二):(1分钟) ---设k法
例
若
x 2
y 3
,则
x x
-
y y
-5
解:解设:2x设
xy 23
y 3k
k
则x则 2xk,y2k,3yk 3k
xy
x2k y3k
32kk32
2 3
x x
yx yx
yy22kk2233kkkk33kk5kk
B. x y 43
C. x 3 y4
D. x 4 3y
2.已知线段a=15 mm,b=3 cm,则线段a与b的 比为 1:2 ;
3.已知ba,,cb,,ac,,dd是成比例线段,其中 a=4cm,b=2cm,c=8cm,则线段d的长为 146 cm
4.若数a=1,b=4,则a、b的比例中项c=±2 .
等比性质:
ac 若bd
e f
… m (k b+d+f…+n≠0)
n
则
a b
c d
e•••m f•••n
K
检测(三):(3分钟)
1.若
a b
c d
=6(b+d≠0),则
ac bd
=__6____
2.如果
x y z 2 ,那么 abc
2x 3y z __2________
2a 3b c
5kk5
5
检测(二):(3分钟)
1、已知
a 5
b 7
c ,且3a 8
2b
c
9,
则2a 4b 3c的值为1_4___。
2、已知x:y:z=1:3:5,求
x 3y z
x 3y 2z
5 2
3.(2013•牡丹江)若2a=3b=4c,且abc≠0,
则
ab c 2b
=__-2_
复习指导(三):(1分钟)---比例的等比性质
第四章 图形的相似(复习)
复习目标:(1分钟)
1.巩固比例的有关性质,会用设k值的方法解题; 2.巩固黄金分割有关知识; 3.能熟练利用相似三角形的性质和判定解题.
复习指导1:(2分钟)
结合所学知识点,完成下列填空:
1__.a若__:b_a_=、_c_b:_d、__c_,、或b_成__比_a_例__线_c_段__,;则比例式为 bd
2.若a:b=b:c,或b²=ac,则b叫做a,c的比__例__中__项__;
3.比例的基本性质:
①若 a c ,那么_ad_=_b_c;
bd
②若ad=bc(,a,b,c,d都不为0)
则
a b
_c
d
或
a c
_b
d
检测1:(3分钟)
1.已知3x=4y(x≠0),则下列式子成立的是( B)
A. x y 34
E
变式:2分钟 如图,某同学想测量旗杆的高度,他在某一时
刻测得1米长的竹竿竖直放置时影长1.5米,在 同时刻测量旗杆的影长时,因旗杆靠近一楼房, 影子不全落在地面上,有一部分落在墙上,他 测得落在地面上影长为21米,留在墙上的影高 为2米,求旗杆的高度.
E
(3分钟)例2如图,△ABC是一块锐角三角形材料, BC=120mm,高AD=80mm,要把它加工成一 矩形零件,使矩形一边在BC上,其余两个顶点分 别在AB、AC上. (1)设PN=x,PQ为y,求y关于x函数表达式 (2)当x为何值时,四边形PQMN为正方形.
F