几何图形初步PPT

合集下载

《几何图形初步认识》课件

《几何图形初步认识》课件

几何图形在生活中的应用
建筑学
建筑设计、施工图绘制 等都离不开几何图形。
工程学
机械零件设计、工程结 构分析等需要运用几何
知识。
艺术
雕塑、绘画等艺术形式 中,几何图形也是重要
的创作元素。
日常生活
生活中的许多物品,如 桌子、椅子、门窗等, 都是几何图形的具体应
用。
02
平面几何图形
圆形
总结词
完美的对称性,只有一条对称轴
圆柱体
总结词
由两个平行圆面和一个侧面组成,侧面 是一条弯曲的线段。
VS
详细描述
圆柱体是一个三维图形,由一个顶部的圆 面、一个底部的圆面和一个连接它们的侧 面组成。侧面是一条从顶部圆心到底部圆 心的弯曲线段,其形状类似于一个椭圆。
圆锥体
总结词
有一个圆形底面和一个侧面组成,侧面由一条曲线围绕底面圆心而成。
03
立体几何图形
正方体
总结词
具有六个面,每个面都是正方形,对 角线相等。
详细描述
正方体是一个特殊的长方体,它的六 个面都是正方形,并且所有面的面积 都相等。正方体的对角线长度也相等 ,并且是所有棱长的√3倍。
球体
总结词
所有点距离球心等距,表面积与体积的计算公式。
详细描述
球体是一个三维图形,其中所有点都位于一个中心点(即球 心)的距离相等。球体的表面积和体积有特定的计算公式, 对于半径为r的球体,其表面积S=4πr²,体积V=(4/3)πr³。
《几何图形初步认识》ppt课件
目 录
• 几何图形简介 • 平面几何图形 • 立体几何图形 • 几何图形的性质与特点 • 几何图形的周长、面积和体积计算 • 实践与应用:生活中的几何图形

几何图形(39张PPT)数学

几何图形(39张PPT)数学

第6章 图形的初步知识
6.1 几何图形
学习目标 1.在具体情况中认识立方体、长方体、圆柱体、圆锥体、球体,并能理解和描述它们的某些特征,进一步认识点、线、面、体,体验几何图形是怎样从实际情况中抽象出来的.2.了解几何图形、立体图形与平面图形的概念.掌握重点 认识常见几何体并能描述它们的某些特征.突破难点 体验几何图形与现实生活中图形的关系,区分立体图形与平面图形.

返回
解 立方体由6个面围成,它们都是平的;圆柱由3个面围成,其中有2个平的,1个曲的.解 圆柱的侧面和两个底面相交成2条线,它们都是曲的.解 立方体有8个顶点,经过每个顶点有3条线段(棱).
典例精析
例1 (教材补充例题)如图所示的图形.平面图形有_____________;立体图形有_____________.
答案
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
①,②,⑥
③,④

②,③,⑤
①,④,⑥
19
13.如图是一个三棱柱,观察这个三棱柱,请回答下列问题:(1)这个三棱柱共有多少个面?(2)这个三棱柱一共有多少条棱?(3)这个三棱柱共有多少顶点?
解 这个三棱柱共有5个面.解 这个三棱柱一共有9条棱.解 这个三棱柱共有6个顶点.
C
解析 观察图形可知,其中一面、两面、三面涂色的小正方体的个数分别为x1=6,x2=12,x3=8,则x1-x2+x3=2.故选C.
1
2
3
4
5
6
7
8
9
10
11
12

几何图形初步认识PPT课件

几何图形初步认识PPT课件

2021
19
练习:
2.如图,你能看到哪些立体图形?
(第2题)
(第3题)
3.如图,你能看到哪些平面图形?
2021
20
常见图形的归类
立 体 图 形
几 何 图 形平
面 图 形
柱 圆柱

三棱柱
棱柱 四棱柱:(长方体、正方
体五棱等柱)

六棱柱

……
锥 圆锥 三棱锥

四棱锥
棱锥 五棱锥
六棱锥
台 圆台 …… 体 棱台
正面
左面
2021
上面
34
练一练:
从正面、左面、上面 看这个由正方体组合成的 立体图形各能得到什么平 面图形?
从正面看
从左面看
2021
从上面看
35
练一练:分别从正面、左面、上面观察下面的立体图 形,各能得到什么平面图形?
立体图形
正面
左面
上面
2021
36
分别从正面、左面、上面看一个由若干个正方体组成的立 体图形,得到的平面图形如下图所示,你能搭出这个立体图形吗? 动手试试看!
第四章 几何图形初步
4.1.1立体图形和平面图形(1)
2021
1
学习目标:
1.可以从简单实物的外形中抽象出几何图形,并 了解立体图形与平面图形的区别;
2.会判断一个几何图形是立体图形还是平面图形, 能准确识别棱柱与棱锥.
学习重点: 立体图形和平面图形的概念.
学习难点: 从实物的外形中抽象出几何图形.
2021
48
练习1. 将正确答案的序号填在横线上:
圆柱的展开图是—(—4—) ;圆锥的展开图是——(—6—);

《几何图形初步——直线、射线、线段》数学教学PPT课件(4篇)

《几何图形初步——直线、射线、线段》数学教学PPT课件(4篇)

直线公理
经过两点有一条直线,并且只有一条直线。 (两点确定一条直线。)
直线、线段、射线的表示
用两个大写字母表示; 用一个小写字母表示。
直线的表示
A
B
直线AB
线段的表示
A
B
线段AB
射线的表示
O
A
射线OA
l
直线l
a
线段a
l
射线l
1、如何比较两个人的身高? 我身高1.53米, 比你高3厘米。
目测法
我身高1.5米。
(1) 经过点 O 的三条线段 a,b,c; (2) 线段 AB,CD 相交于点 B.
解:(1)
a b
O c
A (2) C
B
D
针对训练
1、判断:
(1)射线是直线的一部分。 (2)线段是射线的一部分。 (3)画一条射线,使它的长度为3cm。 (4)线段AB和线段BA是同一条线段。 (5)射线OP和射线PO是同一条射线。 (6)如图,画一条线段ab。
解:(1) E
F
C
(2)
A
l
二 射线、线段
类比学习
问题1 类比直线的表示方法,想一想射线该如何表示?
O
A
d
1. 射线用它的端点和射线上的另一点来表示 ( 表示端 点的字母必须写在前面 ) 或用一个小写字母表示 记作: 射线 OA ( 或射线d )
思考: 射线 OA 与射线 AO 有区别吗
问题2 类比直线的表示方法,想一想线段该如何表示?
a
b
(√) (√ )
(× )
(√ )
(× ) (× )
2、用适当语句表述图中点与直线的关系

c

《几何图形》图形认识初步PPT课件 图文

《几何图形》图形认识初步PPT课件  图文
鲁迅写作的勤奋也是出了名的。为了工 作他常 常工作 到深夜 ,点燃 一支烟 便又来 了工作 激情。 二、鲁迅是一个性格非常刚强的人
小时候的鲁迅就十分的要强,事事总想 走在别 人的前 面。鲁 迅成年 后,他 的性格 变得更 加刚强 ,从他 的文章 中,从 他面对 敌人的 迫害不 惧怕中 ,从他 与批评 他的人 的针锋 相对中 ,我们 都可以 看出他 的性格 。 在鲁迅病重期间,他写个一篇关于自己 身后事 的文章 ,其中 有一句 话说, “让他 们记恨 去,我 一个都 不原谅 !”这 句话就 是鲁迅 刚强性 格的绝 好体现 。 三、鲁迅是一个正义的、富有民族气节 的、忧 国忧民 的人
十七、所有的深爱都是秘密,所有的深 情都只 为你。 你是我 期待又 矛盾的 梦想, 抓住却 不能拥 抱的风 ,想喝 又怕醉 的酒。
十八、注定要在一起的人,晚点也真的 没关系 。愿你 能在人 海茫茫 中,和 你的命 中注定 撞个满 怀,所 爱之人 最后成 为你的 爱人。
十九、一个人对你好很容易,喜欢你也 很容易 ,重要 的是坚 持,一 个人和 你在一 起的时 候对你 好,是 喜欢你 ,但是 你们没 有在一 起,他 还对你 好,那 是真的 爱你。
到城雕
从古剪代纸 到现代 从长城 到立交 从植物 到动物
从2008北京奥运
• 对于生活中的各种各样的物体,数学中关注的是 1、它们的 形状 (如方的、圆的等);
2、 大小 (如长度、面积、体积等); 3、 位置 (如相交、垂直、平行等)。
它们的颜色、重量、材料等则是其他学科所关注。
4.1.1 几何图形
只看棱、顶点等到局部,得到的是 线段、点等
图形间的联系
以下立体图形的表面包含哪些平面图形?
长方体
六棱柱

41几何图形初步-江西省南昌市第二中学七年级数学上册课件(共55张PPT)

41几何图形初步-江西省南昌市第二中学七年级数学上册课件(共55张PPT)

A
B
C
D
新知讲解 “坚”在下,“就”在后,“胜”和“利”在哪里?
坚 持就 是
“胜”在上,“利”在前.
胜 一个多面体的展开图中,在同一直线上的相邻

的三个线框中,首尾两个线框是立体图形中相对的
两个面.
练习1如图是一个立方体纸盒的展开图,使展开图沿虚线折叠成正
方体后相对面上的两个数互为相反数,求:a=
例题2 画如图所示物体的俯视图,正确的是
例题3如图,是一个几何体从正面、左面、上面看得到的平面图形,下
列说法错误的是 ( )
A.这是一个棱锥
B.这个几何体有4个面
C.这个几何体有5个顶点
D.这个几何体有8条
练习1 图中三视图对应的正三棱柱是( )
练习2 (1)由大小相同的小立方块搭成的几何体如图1,请在图 2的方
几何世界欢迎你
几何图形初步
几何图形 直线、射线、线段
生活中的立体图形 立体图形探究 三视图 展开图
三线认识 点线面的计数问题
两个公理 线段计算问题

角的认识
观察与思考
问题1 说一说下面这些几何图形有什么共同特点?
这些几何图形的各部分不都在同一平面内,它 们是立体图形.
做一做
1. 图中实物的形状对应哪些立体图形?把相应的实 物与图形用线连接起来.
二 立体图形的展开图 新知讲解 将一个正方体的表面沿某些棱剪开,能展成哪些平面图形?
友情提示: 沿着棱剪 展开后是一 个平面图形
正方体的展开图 新知讲解
1
2
34
5
6
7
8
9
10
11
思考: 这些正方体展开的展开图有没有什么规律? 哪几号展开图可以分为一类,为什么?

几何图形(PPT)全面版

几何图形(PPT)全面版
4.1几何图形
创设情境,引入新知
北京
金字塔—埃及
生活中各种不同的图形
自主预习
我们周围的物体,如果只注意它们的形状、 大小和位置,而不考虑它们的其它性质,就得 到各种几何图形。这就是几何研究的对象。
我们之前已经学习过哪些常见基本几何图形?
类似地观察罐头、足球或篮球的外形,可以得 圆柱、球、圆等.长方体、圆柱、球、长(正)方 形、圆、线段、点等,以及小学学过的三角形、四 边形等,都是从物体外形中得出的.
从实物中抽象出的各种图形统称为几何图形.
自主预习 从刚才多姿多彩的图形世界中, 我 们抽象出来的几何图形有:
三角形
长方形
正方体
圆柱
长方体

五边形
圆锥
圆形
正方形
四棱锥
圆台 棱台
常见的立体图形
有些几何图形(如长方体、正方体、圆柱、圆锥、球等) 的各部分不都在同一平内,这样的几何图形叫做立体图形.
长方体
正方体
圆柱

圆锥
圆台
常见的平面图形
有些几何图形(如线段、角、三角形、长方形、圆等) 的各部分都在同一平内,这样的几何图形叫做平面图形.
三角形
长方形
五边形
圆形
正方形
课本练习,寻找熟悉的平面图形?
六边形
认识一下棱柱和棱锥: 你能再举出一些棱柱、棱锥的实例吗?
六棱柱
四棱锥
三棱柱
图4.1- 4中实物的形状对应哪些立体图形?把相应 的实物与图形用线连接起来.
正方体 球
六棱柱
圆锥 长方体
四棱锥
自主探究
思考:
这些常见的几何体又是由最基本 的元素构成的,那么究竟是哪些基本的元 素呢?

人教七年级数学上册《几何图形初步》课件(共42张PPT)

人教七年级数学上册《几何图形初步》课件(共42张PPT)

如下图:OC是∠AOB的平分线,则有 ∠AOC=∠BOC= ∠AOB ∠AOB=2 ∠AOC= 2∠BOC
类似地,还有角的三等分线等。 通过折纸作角的平分线
4.余角和补角
(1)概念 如果两个角的和等于90°(直角),就说这两个角
互为余角。如∠3=35°,∠4=55°,那么∠3和∠4互为余角

如果两个角的和等于180°(平角),就说这两个角互 为补角。如下图∠1+∠2=180°,则∠1和∠2互为补角
同理分别规定出“西北” 、“西南”方向。
(1)方位角的表示 ----------通常先写北或南,再写偏东还是偏西 。例如:“北偏东35°”;“ 南偏西60°”等。
(2)方位角的应用
经常用于航空、航海、测绘中,领航员常用地图和罗盘进 行方位角的测定。
在下图中,射线OA、射线OB、射线OC、射线OD分别表示
3.角的四种表示方法
表示方法
图标
用三个大写的字母
A
表示
B
C
用一个顶点的字母 表示
o
用希腊字母表示
α
用一个数字表示
1
记法
注意事项
ABC 顶点字母在中间
o
顶点处只有 一个角时
α 在靠近顶点处
画弧线, 注上数字 或希腊字母 1
4.角的符号 用“ ” 表示 5.角的分类
小于号是“< ”
锐角: 大于0度而小于90度的角
4.线段的大小和比较
度量法
(1)线段的长短比较 叠合法
(2)线段的中点
把一条线段分成两条相等线段的点,叫做这条线段的中 点。
例如:点B是线段AC的中点
...
则有: AB=BC= AC
ABC

人教版七年级数学几何图形初步课件

人教版七年级数学几何图形初步课件
详细描述
圆锥体的侧面是一个曲面,其高就是底面和顶面 之间的距离。圆锥体的表面积和体积的计算公式 是 A = πrl + πr^2 和 V = (1/3)πr^2h,其中 r 是底面的半径,l 是母线长,h 是高。
04 几何图形的变换与运动
平移与旋转
平移
平移是一种在平面内将图形沿某一方向移动一定距离而不改变其形状和大小的位 置变换。平移不改变图形的形状、大小和方向,只改变图形的位置。在平面内, 将一个图形沿某个方向移动一定的距离,这种图形运动称为平移。
圆柱体体积
圆柱体的体积等于其底面积和高度的乘积。例如,一个底面 半径为r厘米,高为h厘米的圆柱体,其体积为π×r^2×h立方 厘米。
06 实践与应用
生活中的几何图形
总结词
了解生活中的几何图形
详细描述
通过观察生活中的物品,如桌子、椅子、窗户、门等,了解它们的几何形状,如矩形、圆形、三角形等。
设计创意作品
详细描述
通过这些公式,我们可以计算出给定边长的 立方体的体积和表面积。
D
球体
总结词
球体是一个三维空间中所有点与固定点等距的几何体。
总结词
球体的中心是其最中心的点,也是任意点到球心的距离都 相等的点。
详细描述
球体的表面是一个连续的曲面,由无数个圆周组成。球体 的表面积和体积的计算公式是 A = 4πr^2 和 V = (4/3)πr^3,其中 r 是球的半径。
角的概念
角是具有公共端点的两 条射线组成的图形,分 为锐角、直角和钝角。
直线的相交
通过不同的直线相交, 可以得到不同种类的角 ,如对顶角、同位角、 内错角等。
角的度量单位
角的度量单位是度(° ),通过量角器可以测 量角的度数。

《角的概念》几何图形初步PPT课件

《角的概念》几何图形初步PPT课件

探究新知
学生活动二 【一起探究】 角的表示方法
如图,还能把∠AOB 1. 用三个大写字母表示,如: ∠AOB
记作∠O 吗?为A什么? 或∠BOA;
(注意必须把顶点字母放在中间)
C
或用一个大写字母表示,如:∠O ;
O
B
当两个或两个以上的角共用一个顶点
时,不能用一个大写字母表示.
探究新知
2. 用一个数字表示, 如∠1;
想一想 如图,射线 OA 绕点 O 旋转,当终止位置 OB 和
起始位置 OA 成一条直线时,形成什么角?继续旋转, OB 和 OA 重合时,又形成什么角?
终边
B
O
始边 A(B)
平角
周角
巩固练习
判断下列哪些图形是角.
(√ )
( ×)
(√ )
(√)
巩固练习
下列说法正确的是 ( D ) A. 平角是一条直线 B. 一条射线是一个周角 C. 两条射线组成的图形叫做角 D. 两边成一直线的角是平角
角的度量
度、分、秒
1°=60′,1′=60″
课堂小结
方位角
北 西北
45° 45°
西
45°45°
西南 南
东北 八 大 方
东位
东南
课后作业 完成课后练习题.
探究新知
学生活动三 【一起探究】 角的度量
怎么知道这个角的大小? 角的度量工具:量角器
探究新知
我们常用量角器量角,度、
分、秒是常用的角的度量单位.
把一个周角 360等分,每一份就
是 1 度的角,记作1°;把 1 度
的角 60 等分,每一份叫做1 分的 1周角= 360 °;1平角= 180 °.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主讲人:XXXX
时间:20xx.4.4
前言
学习目标
1、比较两个角的大小,理解角的和差关系。 2、通过动手操作,学会借助三角板拼出不同度数的角。 3、认识角的平分线及角的等分线。
重点难点
重点:学会比较两个角的大小。 难点:认识角的平分线及角的等分线。
知识点回顾(比较线段长短)
试比较线段AB,CD的长短?
主讲人:XXXX
时间:20xx.4.4
A’
A
O(O’)
∠AOB < ∠A’O’B’
B(B’)
O(O’)
A(A’)
∠AOB = ∠A’O’B’
B(B’)
O(O’)
∠AOB > ∠A’O’B’
A A’
B(B’)
角的和差关系
你能通过三角板画出75°、15°的角吗?
45°
A
C
A
30°
C
15°
75°
O
BO
B
∠AOB=∠AOC+∠COB=75° ∠AOC=∠AOB-∠COB=15°
A.OA
B.OB
C.OC
D.OD
版权声明
感谢您下载XXXX网平台上提供的PPT作品,为了您和XXXX以及原创作者的利益,请勿复制、 传播、销售,否则将承担法律责任!XXXX将对作品进行维权,按照传播下载次数进行十倍 的索取赔偿!
1. 在XXXX出售的PPT模板是免版税类(RF: Royalty-Free)正版受《中国人民共和国著作法》和《世界版权公约》的保护,作品的所有 权、版权和著作权归XXXX所有,您下载的是PPT模板素材的使用权。
A
B
C
D
方法一:度量法 (分别用刻度尺测量线段AB、线段CD的长度,再进行比较。)
方法二:叠合法 (点A与点C重合,观察点B与点C、D之间的位置)
A
B
C
D
= 线段AB____线段CD
A
B
>
C 线段AB____线段CD D
A
C 线段AB__>__线段CD
B D
比较角的大小
试比较∠AOB、∠A’O’B’的大小?
A
C
O
B
角三等分线
AC D
O
B
射线OC、OD是∠AOB的三等分线
练一练
A
B
已知∠ABC=90°,∠DBC=53°17′,求∠ABD
D C
解: ∠ABD = ∠ABC - ∠ DBC =90 °- 53°17′ = 89°60′ - 53°17′ = 36°43′
练一练
把一个平角7等分,每一份是多少度(精确到分)? 解: 180°÷7 = (175°+5°) ÷7 = 25°+ 300′ ÷7 ≈ 25°43′
方形纸片DEFG的对边上,若AC平分∠BAE,则∠DAB的度数是( )
A.100° B.150° C.130°
【详解】 ∵AC平分∠BAE ∴∠BAC=∠CAE=30° ∵∠DAB+∠BAC+∠CAE=180° ∴∠DAB=120°故选D
D.120°
随堂测试
3.如图所示,可以是图中某个角的角平分线的射线是( )
2. 不得将XXXX的PPT模板、PPT素材,本身用于再出售,或者出租、出借、转让、分销、 发布或者作为礼物供他人使用,不得转授权、出卖、转让本协议或者本协议中的权利。
LOGO
第四章 几何图形初步
感谢各位的仔细聆听
人教版 数学(初中) (七年级 上)
Please Enter Your Detailed Text Here, The Content Should Be Concise And Clear, Concise And Concise Do Not Need Too Much Text
随堂测试
1.22°20′×8等于( ).
A.178°20′
B.178°40′
C.176°16′
D.178°30′
【详解】 22°×8=176°,20′×8=160′=2°40′, 故22°20′×8=176°+2°40′=178°40′ 故选B.
随堂测试
2.如图,小聪把一块含有30°角的直角三角尺ABC的两个顶点A,C放在长
LOGO
第四章 几何图形初步
人教版 数学(初中) (七年级 上)
Please Enter Your Detailed Text Here, The Content Should Be Concise And Clear, Concise And Concise Do Not Need Too Much Text
你能通过三角板画出150°,135°,120°的角吗?
角平分线
纸上画一个任意度数的角(小于180°),将纸对折,将角的两边重合,观察∠AOC和∠COB 与∠AOB的关系?
A
C
∠AOC=∠COB ∠AOB= ∠AOC+∠COB
∠AOB= 2∠AOC=2∠COB NhomakorabeaO
B
角平分线
从一个角的顶点出发,把这个角分成相等的两个角的射线叫这个角的平分线。
A’ A
O
B
O’
B’
方法一:度量法 (分别用量角器测量∠AOB、∠A’O’B’的大小,再进行比较。)
比较角的大小
试比较∠AOB、∠A’O’B’的大小?
A
A

尝试画出∠AOB = ∠A’O’B’,
O
B
O’
方法二:叠合法
B
∠AOB > ∠A’O’B’的情况?

(点O与点O’重合,点B与点B’重合,观察点A与点A’ 的位置)
相关文档
最新文档