新能源发电与并网技术

合集下载

新能源发电并网对电网电能质量的影响及控制措施

新能源发电并网对电网电能质量的影响及控制措施

新能源发电并网对电网电能质量的影响及控制措施摘要:当前,能源形势越来越严峻,在此时代背景下,加大新能源的开发力度势在必行。

电能作为一种加快设备运转速度的基本能源,其在众多领域得到了全面推广应用。

新能源的开发主要是将不同能量向电能转化。

新能源开发面临着技术瓶颈,并网发电对现有成熟电网具有一定的影响。

鉴于此,本文立足于新能源发电优点,围绕新能源发电并网对电能质量的影响及控制措施展开如下探讨。

关键词:新能源发电;发电并网;电能质量1.新能源发电优点与并网分析通常情况下,新能源发电位置距离用户较近,布置较为合理,特别是在边远地区,电力能源的利用具有明显的优势,和传统的大型供电系统相比,电力能源的利用如下:(1)能源利用率高、节能效果好。

新能源发电在用户附近,输电距离相对较近,输电损失小,能源利用率高;(2)对环境污染小,环保价值高。

当前,新能源发电主要是以太阳能、风能、地热能以及潮汐能为主要能源,这些作为可再生清洁能源,不会污染环境,同时也省去了原料运输。

(3)投资成本低,风险低。

新能源发电的建设速度快,主要用到的是自然可再生资源,因此,要增加一定量的设备投入和人员投入,如果新能源和用户间的距离较近,则无需使用较大的配电设施,投资成本和运行成本都比较低,而且建设周期短[1]。

新能源发电并网环节存在着很多不确定因素,比如,在新能源发电并网前启动和运行环节,要明确用户的实际需求,并和原有电网配合。

新能源发电在环境因素的影响下,增加了并网压力。

2.新能源发电并网对电网电能质量的具体影响2.1 影响电网谐波新能源发电环节,电力电子装置的应用具有不同优势,主要是因为该装置的构造特殊,可能会面临直流谐波问题,进而会对电网电能质量产生影响。

比如,在光伏发电环节,由于光照强弱会对发电效率产生一定程度的影响,甚至还会因为电流谐波而引起各种电能问题。

基于新能源发电技术和自然环境之前的关系,功率的改变也有可能成为造成谐波污染的主要原因。

新能源发电并网对继电保护的影响及对策分析

新能源发电并网对继电保护的影响及对策分析

新能源发电并网对继电保护的影响及对策分析
1.引言
1.1 研究背景
1.2 目的与意义
2.新能源发电并网技术及特点
2.1 新能源发电并网技术概述
2.2 新能源发电并网技术的特点
3.继电保护的基本原理与分类
3.1 继电保护的基本原理
3.2 继电保护的分类及其功能
4.新能源发电并网对继电保护的影响
4.1 新能源发电并网对保护距离的影响
4.2 新能源发电并网对保护动作速度的影响
4.3 新能源发电并网对保护选择的影响
4.4 新能源发电并网对保护灵敏度的影响
5.新能源发电并网对继电保护的挑战
5.1 大规模新能源发电并网对继电保护的挑战
5.2 高频率电力系统对继电保护的挑战
5.3 高电压直流输电系统对继电保护的挑战
5.4 多级电力系统对继电保护的挑战
6.提升继电保护技术以应对新能源发电并网的对策
6.1 继电保护技术的创新与发展
6.2 提升继电保护设备的可靠性与稳定性
6.3 加强继电保护设备的智能化和自主性
6.4 建立新能源发电并网继电保护系统的标准化与规范化
7.案例分析:新能源发电并网对继电保护的实际影响与对策
7.1 光伏发电系统并网对继电保护的影响与对策
7.2 风力发电系统并网对继电保护的影响与对策
7.3 潮汐发电系统并网对继电保护的影响与对策
7.4 生物质能发电系统并网对继电保护的影响与对策
8.总结与展望
8.1 研究总结
8.2 存在问题与未来发展趋势
8.3 继电保护技术研究的展望
以上是一个大致的论文框架,根据具体研究内容和论文需要,可以进一步详细拆分每个章节,并增加相应的子章节来充实、完善论文。

新能源并网发电系统及其相关技术

新能源并网发电系统及其相关技术

总727期第二十九期2020年10月河南科技Journal of Henan Science and Technology新能源并网发电系统及其相关技术王万里(中国大唐集团有限公司宁夏规划发展中心,宁夏银川750002)摘要:当前,世界能源形势日趋紧张,环境保护压力不断上升。

水能、风能、太阳能、生物能等循环再生能源逐渐在能源供给中扮演重要角色,未来会逐步取代传统能源。

现如今,新能源并网发电系统已然成为推动我国电力事业发展的新型技术。

本文首先概述了新能源并网发电系统,然后探讨了新能源并网发电的关键技术,最后展望了新能源并网发电系统的发展趋势。

关键词:新能源;并网发电;关键性技术中图分类号:TM619文献标识码:A文章编号:1003-5168(2020)29-0146-03New Energy Grid-connected Power Generation System and Its RelatedTechnologiesWANG Wanli(Ningxia Planning and Development Center of China Datang Corporation Ltd.,Yinchuan Ningxia750002)Abstract:At present,the world energy situation is becoming increasingly tense,and the pressure on environmental protection is rising.Recycling and renewable energy sources such as hydropower,wind energy,solar energy,and bio⁃energy are gradually playing an important role in energy supply,and will gradually replace traditional energy in the future.Nowadays,new energy grid-connected power generation system has become a new technology to promote the development of my country's power industry.This paper first outlined the new energy grid-connected power genera⁃tion system,then discussed the key technologies of new energy grid-connected power generation,and finally looked forward to the development trend of new energy grid-connected power generation systems.Keywords:new energy;grid-connected power generation;key technologies无论是社会发展还是日常生活,都离不开高效、稳定的电力供应。

新型电力系统基础知识

新型电力系统基础知识

新型电力系统基础知识一、电力系统基本概念电力系统是由发电、输电、配电和用电等环节组成的电能生产、传输和消费系统。

它通过各种设备将各种形式的能源转化为电能,然后通过输电、配电网络将电能输送到各个用户,满足人们的生产和生活需要。

二、电力系统的组成与运行电力系统主要由以下几个部分组成:1、发电厂:将各种能源转化为电能的地方,包括火力发电厂、水力发电厂、核能发电厂等。

2、输电线路:用于将电能从发电厂输送到配电系统或用户的线路,通常由高压输电线路和低压输电线路组成。

3、配电系统:将电能从输电线路分配到各个用户的系统,包括配电站、配电线路等。

4、用电设备:消耗电能的各种设备,如电动机、照明设备等。

电力系统的运行需要保证电能的供应和需求平衡,同时要保证电力系统的稳定性和安全性。

为了实现这一目标,电力系统需要采取一系列的措施,如调度控制、继电保护等。

三、电力系统的稳定性与安全性电力系统的稳定性是指系统在正常运行时能够保持稳定的状态,不发生振荡或崩溃。

为了保持电力系统的稳定性,需要采取一系列的措施,如加强设备维护、优化调度控制等。

电力系统的安全性是指系统在受到攻击或故障时能够保持正常运行的特性。

为了提高电力系统的安全性,需要采取一系列的措施,如加强网络安全防护、实施严格的停电管理制度等。

四、新能源发电与并网技术随着可再生能源的快速发展,新能源发电已经成为电力系统的重要组成部分。

新能源发电主要包括太阳能发电、风能发电、水能发电等。

为了实现新能源的高效利用,需要发展相应的并网技术,将新能源发电与电力系统进行有效的连接和协调。

五、电力系统的智能化与自动化随着科技的发展,电力系统的智能化和自动化已经成为趋势。

智能化是指通过先进的传感器、控制器等设备实现电力系统的智能监控和管理。

自动化是指通过自动化设备实现电力系统的自动控制和操作。

智能化和自动化可以提高电力系统的效率和安全性,减少人工干预的错误率。

六、电力市场的运营与管理电力市场是电力系统的重要组成部分,它负责电能的买卖和交易。

风电新能源并网技术阐述

风电新能源并网技术阐述

风电新能源并网技术阐述摘要:经济全球化大背景下,能源紧缺问题随之暴露出来,这就必须要重视风电新能源的科学化应用,为并网安全稳定运行提供保障。

本文介绍了风电新能源的特点,明确风电新能源对并网的挑战,进而围绕风电新能源并网技术开展探究,旨在充分发挥风电新能源价值,为风力发电的迅速发展提供有力支持,促进整个社会可持续发展的实现。

关键词:风电新能源;并网技术在节能环保理念下,电网建设迎来了新的挑战。

现代电网建设中可再生资源开发与利用成为一项重要内容。

风能属于清洁型能源,具有循环利用的特征,能耗少、发展迅速且不会产生污染,因而受到高度重视。

随着风电技术的更新升级,单机容量、并网规模等得以拓展,风力发电以大容量为重要趋势,这就需要高度重视风电新能源并网技术研究,以促进风电并网性能的优化,保障电网系统的稳定安全运行。

一、风电新能源的特点其一,能量密度小。

风电能量有着较小的密度,通过较大尺寸风轮的设计,可促进同等发电容量的获得。

风轮机效率有限,实际应用中效率仅达到20%-50%,垂直轴风轮机可达到30%-40%的效率。

其二,稳定性不足。

从性质上来看,风能属于过程性能源,风向与风速存在变化性,其特点主要表现在随机性和间歇性等方面,风力发电机调控出力难度大,此种情况下,经风电机组所发出的电能也存在明显的波动性。

其三,不利于大量存储。

通过对比发现,蓄电成本明显高于发电成本,电网系统运行过程中,并不具备蓄电能力,大多是基于电量输出来调节收纳电量。

电网存在不可调度性,风能是不可控的,无法依照负荷大小来调节风力风电,电网调度所承担压力巨大,风电机组存在无人值守的情况。

其四,分布于偏远地区。

若地区拥有丰富的风能资源,其与负荷中心的距离相对较远,电网有着薄弱的网架架构,电网输电功能存在明显不足,无法为风电输送提供支持。

未来风电能源的开发与利用,需注重相匹配的风电输送工程的构建,注重电网建设的不断强化。

二、风电新能源对并网的挑战(一)负荷负荷管理实际效果所受电力需求的影响并不显著,电网运行会受到风电场输出反调峰率等因素的影响。

电力系统的可再生能源并网研究

电力系统的可再生能源并网研究

电力系统的可再生能源并网研究随着全球对可持续发展和碳排放减少的需求不断增加,可再生能源作为一种清洁、可再生且持续的能源,逐渐成为解决能源危机和环境问题的重要手段。

然而,可再生能源与传统电网的接入和并网存在一系列的技术和经济问题。

本文旨在探讨电力系统的可再生能源并网研究,重点关注技术挑战和解决方案。

一、电力系统的可再生能源并网需求电力系统的可再生能源并网是指将可再生能源发电设备与传统电网进行连接和交互。

可再生能源的并网可以使电网能够接纳更多的可再生能源发电,并提供清洁、可靠、高效的电能供应。

同时,可再生能源并网还能够促进能源多样化、降低碳排放、提高能源安全性和稳定性。

然而,电力系统的可再生能源并网也面临一些挑战,包括电网的可靠性和稳定性问题、新能源接入的技术难题以及经济可行性等。

二、技术挑战与解决方案1. 网络稳定性和电网可靠性可再生能源的波动性和不可控性是电力系统并网面临的一个主要挑战。

由于天气条件、季节变化和地理位置的不同,可再生能源发电的产能会有所波动。

为了确保电网的稳定性和供电可靠性,需要采取一系列措施。

首先,可以加强电网规划与设计,考虑可再生能源特点和发电地点的潜力。

合理的电网规划可以减少可再生能源发电与变电站之间的输电距离,降低输电损耗,并提高电网可靠性。

其次,可以采用能量储存技术,如电池储能和氢能储存等。

能量储存可以解决可再生能源发电与功率需求之间的不匹配问题,并平衡电力系统的供需关系。

2. 电网集成和协同控制电力系统中可再生能源发电与传统发电方式共存,需要实现不同的能源之间的协同工作和管理,确保能源的平稳供应和交互协调。

为了实现电网的集成和协同控制,可以采用智能电网技术和增强型电力系统管理系统。

这些系统可以提供实时监测和控制能力,并基于各种因素进行智能调度和优化,从而实现可再生能源与传统能源的无缝衔接和相互支持。

3. 电力系统可靠性评估和风险管理电力系统的可靠性评估和风险管理对于确保可再生能源并网的稳定性和可持续性具有重要意义。

浅谈光伏发电与并网技术

浅谈光伏发电与并网技术

浅谈光伏发电与并网技术摘要:为了提高人们的生活生产水平,促进人们与自然的和谐关系,我国大新能源事业被各界所重视。

与水力发电和风力发电相比,光伏发电并网技术具有无噪音、无污染、故障概率低、维护更简单方便等优点。

它可以为人们提供取之不尽用之不竭的光能。

更好的光伏发电环境。

现实数据表明,并网光伏发电技术已经成为一项比较新颖的技术,尤其是大规模光伏发电和并网光伏发电,共同承担着发电的任务。

关键词:光伏发电;并网技术引言近年来,我国使用并网技术较为频繁,这项技术可以加快能源转换率,对推动我国电力发展有着重要意义。

但是,目前我国对光伏发电并网技术方面投入的资金和人才较少,因此寻找切实有效的方法进行分析十分必要,有着较高的理论价值和分析意义。

1简述光伏发电的概念光伏发电是光能发电的一种方式,光伏发电运用微网技术接入超高压的发电网里,微网和超高压发电网彼此依存、相辅相成。

光伏发电并网技术是绿色能源、清洁能源技术的一种,因此,对生态环境不会产生污染,完全符合我国对经济、环境以及社会可持续发展的需求。

提升光伏发电技术不仅可以解决生态污染的难题,还能节省发电的成本,进一步节省时间和空间等成本。

总的来说,并网型光伏发电技术有两方面的明显优势:一方面,并网型光伏发电使用的是太阳能这种绿色、清洁能源,所以并不会过度浪费能源,在现实运用的过程中,也可以更好地保护生态不受污染,符合我国持续发展的要求。

传统的发电方式是使用化石能源来完成的,但是化石能源非常有限,在短时间内不能再生,同时在运用时,会散发出对生态造成严重污染的气体。

随着人们越来越关注生态环境保护方面的问题,光伏发电并网技术逐渐进入人们的生活中。

另一方面,并网型光伏发电的发电方式大大降低了技术难度,同时也节约了建设和维护等相关成本,减少发电成本可以在很大程度上推动国家电网多元化的可持续绿色发展。

2我国光伏发电技术发展不协调我国是著名的制造国家,在光伏行业的出产方面也是如此。

新能源光伏发电并网问题研究

新能源光伏发电并网问题研究

新能源光伏发电并网问题研究光伏发电技术是现在应用太阳能的主要手段,在经过了长时间的发展之后,光伏发电技术在理论以及实际的使用方面都是得到了很大的突破,已经趋于成熟。

光伏发电并网技术的普遍运用已经成为了应用光伏发电的一大潮流,但光伏發电并网技术中还存在很多问题。

因此,本文主要对新能源光伏发电并网问题进行分析,并且提出了相应的策略。

标签:新能源;光伏发电;并网问题;措施一、光伏发电并网系统的优势(1)再生能源,对环境污染小。

光伏发电技术不会耗用不可再生的能源,而是通过太阳能这一可再生能源进行发电,不会产对环境有害的气体,缓解了能源与环境问题,维护了社会的可持续发展。

(2)发电成本低,减少投资。

所发的电能为了能够节省蓄电池,将电能作为储能装置,而太阳能电池组件的价钱不断降低,使投资节省了约三分之一。

与独立的太阳能光伏系统相比,光伏发电并网系统不仅降低了发电成本,还减少了蓄电池的二次污染。

(3)市场发展状况好。

并网发电技术在光伏市场中已经逐渐占据主导地位,从开始偏远地区的特殊用电逐渐从向城市的生活用电过渡。

太阳能光伏并网发电在全球应用广泛,并且还在持续增长,其成为发达国家在光伏应用领域中竞争发展的重要一步,是世界太阳能光伏发电的主要发展趋势,发展前景十分可观。

(4)发挥好调峰效用。

就当前形势来看,世界太阳能光伏发电成为主要的发展趋势,市场较广,发展前景十分可观。

二、光伏发电并网技术当中常见的问题1.天气因素带来的影响在光伏发电并网大电网中,很多因素都会对光伏发电并网运作带来影响,尤其是恶劣的天气。

如果到了雷雨多的夏季,电网电线与云层中的电荷产生作用,就会造成电网系统出现高电压问题。

这种高电压状况的出现,就会为电网运作埋下了诸多隐患。

也正是因为这样,相关企业应高度重视起天气因素对配电系统正常运作带来的影响,切实控制好这些影响因素,将这些影响因素扼杀于萌芽状态中,从根本上促进光伏发电并网大电网安全有序运作。

电力行业的新能源接入与并网

电力行业的新能源接入与并网
电动汽车充电站:新能源接入技术为电动汽车充电站提供稳定、可靠的电力供应。
04
新能源并网概述
新能源并网的意义
促进可再生能源 的发展
降低化石能源的 消耗
减少环境污染
提高能源利用效 率
新能源并网的要求
电压与频率稳定
功率与电能质量可控
设备与系统安全可靠
调度与运维智能化管理
新能源并网的发展趋势
新能源并网技术的不断进步 新能源并网规模的扩大 新能源并网技术的智能化发展 新能源并网技术的绿色化发展
05
新能源并网技术
新能源并网技术分类
集中式并网技术 分布式并网技术 微电网并网技术 储能技术
新能源并网技术原理
新能源并网定义:新能源并网是指将新能源发电系统接入电力系统, 实现电力输送和调度。
并网技术原理:新能源并网技术包括逆变器技术、电力电子技术、 控制技术等,实现新能源发电系统与电力系统的互联互通。
新能源接入是电力行业发展的重要趋势,也是实现能源转型和应对气候变化的重要手段。
新能源接入需要遵循一定的技术标准和规范,以确保电网的安全稳定运行和新能源的充分利用。
新能源接入对于推动电力行业的可持续发展、促进经济增长和改善环境质量具有重要意义。
新能源接入的重要性
缓解传统能源短缺问题
提高能源利用效率和经济效益
添加标题
添加标题
降低环境污染和碳排放
添加标题
添加标题
推动能源转型和可持续发展
新能源接入的发展趋势
新能源接入规模不断扩大
新能源接入技术不断创新
新能源接入政策不断完善
新能源接入与并网逐渐智能化
03
新能源接入技术
新能源接入技术分类
光伏接入技 术

新能源发电并网对配电网运行的影响及应对措施

新能源发电并网对配电网运行的影响及应对措施

新能源发电并网对配电网运行的影响及应对措施摘要:随着科技的进步,各个领域对新能源的开发利用已经逐渐得到了普及,在分布式光伏、水电、火电、风电以及生物等方面新能源的接入,使得传统式的配电网在实际运行的灵活性、经济性与安全性上都面临着巨大的挑战。

现在社会经济的快速发展,对我们的配电网也提出了更高的要求,其核心就是促使配电网能够在供电的可靠性、适应性方面变得更强,更能适应现实电网的需要,在最大程度上减少因电网问题给用电带来的影响。

应用电和安全方面的需求,现在传统模式下的配电网往主动配电网的过渡和转变必须完成。

关键词:新能源并网发电;电能质量;配电网引言随着社会对能源需求的不断扩大和传统化石能源的不断枯竭,能源短缺和环境污染问题日趋严重,新能源发电技术获得了人们的广泛关注和重视。

新能源并网发电情况在配电网中越来越多,但新能源发电的出力具有间歇性和波动性等特征。

而现有的配电网在其规划时一般并未考虑新能源发电的并网,导致电能质量在新能源并网发电后受到严重的影响。

为保证配电网运行的电能质量要求和促进新能源发电的发展,需对新能源并网发电带来的配电网电能质量影响进行深入研究。

1新能源并网在发电系统应用中的具体影响风力发电是新能源发电的重要途径之一,传统风力发电机一般由叶片及发电机两部分构成,风带动风车叶片旋转,同时利用增速器将原有的速度提高至所需速度,以动能转化为电能的方式使发电机发电。

由于风为自然界现象,具有间歇性及波动性,且受客观因素影响较大,导致风力发电产生的电能质量不稳定。

同时,风力发电并网时会引起风电场输出功率的波动和闪变,负荷波动越严重,电网电压波动越大。

与风能发电有所不同,太阳能发电的介质为光伏电池,太阳能以光能转化为电能的方式进行发电。

光伏发电系统一般配有储能装置,以保障电力系统稳定运行;通过加装控制器以控制充电电量;在电能输出变换装置的帮助下,以最优功率输出;最终与光伏电池板组成具有DC-DC变换装置的发电系统。

光伏发电与并网技术的优势及应用要点分析

光伏发电与并网技术的优势及应用要点分析

光伏发电与并网技术的优势及应用要点分析摘要:光伏发电与并网技术的应用效果越来越好,可对传统发电进行有效补充,保证地区供电用电质量。

光伏发电与并网技术的合理运用,能够提高清洁能源利用率,提高电网供电能力,缓解部分地区用电紧张问题。

但光伏发电与并网技术的使用也会给大电网带来一定影响,因此针对大电网所受影响要不断进行完善,不断优化电网结构,增强电网的消纳能力,优化配电网功能,提高配电网吸收调节分布式光伏的能力,促进风光储多能互补,有效的解决光伏发电不稳的问题。

关键词:光伏发电;并网技术;优势;应用要点引言随着技术的创新与开发,在光伏发电与并网技术应用中其体现了更好的成效。

这种发电方式环保性好、节省资源、减少投入且维护简便,值得相关部门加大重视力度,做好相应研发推广,优化目前发展模式,有效提升光伏发电技术功能,建成集风、光、火、储一体的能源基地,在未来的发展中,其必将实现国家可持续发展目标。

1光伏发电的优点1.1可以实现清洁能源转换因没有转动部件,可以安静地生产清洁能源。

从光能转换成电能,不像火力发电和原子能发电,需要涡轮和发电机这样的转动部件,没有CO2等有害气体的排放,没有噪声及放射源泄露或爆炸的危险,是清洁的能源转换方法。

1.2容易实现自动化和无人化安全可靠,运行维护简单。

光伏发电没有转动部件及高温高压部分,运行维护较为简单,容易实现自动化和无人化。

1.3规模化效益显著模块结构,规模大小自由,可按一定的效率发电。

太阳能电池的转换效率几乎是恒定的,这一特性主要是与太阳能电池内部的能量转换过程有关,与原子能发电和热电装置依靠机械能和热能介入的发电方式有着完全不同的待点。

其更好的规模化效益有利于降低成本。

1.4无发电燃料的消耗与成本阳能发电是对闲置能源的有效利用,它没有消耗任何燃料,所以,不能把太阳能发电与使用化石燃料发电的涡轮等转换效率相比较。

1.5系统容易组合和建设太阳能电池组件结构简单,体积小且质量轻,便于安装运输,光伏发电系统建设周期短,易扩容。

新能源并网发电系统的并网导则

新能源并网发电系统的并网导则

新能源并⽹发电系统的并⽹导则第2章 新能源并⽹发电系统的并⽹导则传统的交流电⼒系统中,发电⼦系统⼀般采⽤三相交流同步发电机,其输电和配电⼦系统中各个元件及整个电⼒系统经济稳定的运⾏⼿段都基于同步发电系统⽽设计[1]。

新能源发电系统,尤其是基于电⼒电⼦设备的发电系统,其静态和动态特性均与传统同步发电系统相差较⼤,对传统电⼒系统的运⾏⽅式产⽣了⼀定的冲击。

由于涉及经济安全、⽣产和⽇常⽣活,电⼒系统的安全和稳定运⾏事关重⼤,为减⼩甚⾄消除⼤规模新能源发电系统并⽹对传统电⼒系统所带来的冲击,各国的电⽹运营商不约⽽同地对新能源发电系统的输出特性制定了相关约束,即“并⽹导则(Grid Code)”。

其⽬的是希望在对现有电⽹构架不作⼤规模改动的前提下,通过规范新型并⽹发电系统的输出特性来保证电⼒系统运⾏的稳定性和经济性。

本章以风电和光伏发电系统为例,⾸先介绍新能源并⽹发电系统的输出特性,并讨论此特性对传统电⼒系统运⾏的影响,指出电⽹运营商规定新能源并⽹发电系统的并⽹标准(并⽹导则)的必要性;其次,在上述基础上,介绍新能源发电并⽹导则的发展历程、主要内容及发展趋势。

2.1 新能源并⽹发电系统的特点从⼀次能源的特点来看,新能源可分为持续性能源和时变性能源。

⽣物质能、地热能等持续存在的能源为持续性能源;⽽具有不确定特性的风能和太阳能,都属于时变性能源。

从发电系统的结构特点来看,新能源并⽹发电系统包括直接并⽹型(直接耦合型)发电系统和间接并⽹型(包括半耦合型和⾮耦合型)发电系统,其结构分别如图2?1a和b所⽰。

直接并⽹型发电系统中,⼀次能源经动能转换系统带动发电机旋转,发电机与电⽹直接相连;间接并⽹型发电系统中,⼀次能源经电能转换系统转换为电能后,经变流系统与电⽹间接相连,根据电能转换系统与电⽹的连接关系,间接并⽹型发电系统进⼀步可分为半耦合型和⾮耦合型发电系统,⾮耦合型发电系统的电能转换装置与电⽹之间由变流系统完全隔离,⽽半耦合型发电系统的电能转换装置与电⽹之间除了变流系统外还有直接连接(见图2? 1b),因⽽该系统存在两条功率交换通道,变流系统只实现部分的功率交换。

太阳能光伏发电与并网技术的应用

太阳能光伏发电与并网技术的应用

太阳能光伏发电与并网技术的应用摘要:由于我国利用传统能源的资源数量少、环境污染严重,因此大力倡导新能源,因此,太阳能光伏技术应运而生。

由于太阳能发电的电力与国家电网的电力不同,无法与大型电网直接相连,因此必须采取相应的措施,对此进行分析,提出利用太阳能光伏并网技术。

介绍太阳能光伏并网技术的应用,其中包括逆变器、蓄电池、保护装置的稳定高效运行,保证了太阳能光伏系统的能量利用率和经济效益。

在实践中,采用光伏发电及并网技术,保证了电力系统的节能和环境效益,本文的研究无疑是非常有意义的。

关键词:太阳能,光伏发电,应用分析一.太阳能光伏发电与并网技术1.1逆变器逆变器是一种将直流电转换成交流电的装置,可以保证光伏发电场的电压频率和相位与其本身不同,所以逆变器的种类也是各种各样的,一般的逆变器含有电压和电流两种类型,前者的作用是保证电压的频率和相位与电源的相位一致,而后者则是保证相位同市电的频率。

总之,逆变器是一种进行重点控制和管理的装置,它既保证了发电厂可供高效地转换电能,又能为市场所接受和使用。

1.2太阳能光伏控制器太阳能控制器是整个光伏并网系统的核心部件,是对蓄电池进行充放电控制,同时也是控制的一种自动化控制与保护装置。

由于太阳能光电系统中的电能波动很大,若不加以有效的控制,将会对电池的寿命造成很大的影响。

因此,该控制器的功能就是为电池提供最优的电流和电压,同时也能监测是否出现过充或放的其他问题,从而降低充电损失,延长电池的使用寿命。

1.3并网混合供电系统配套的并网式电力供应系统可以有效地将光伏阵列、油机和电网集成到一个完整的电网。

相应的系统可以保证电力的连续供应,保证负荷的安全,同时,相关的技术虽然复杂,但稳定性和可靠性都很高,在实际应用中,通过专用的计算机芯片,可以对整个系统进行有效的控制,并充分利用各种资源,保证系统的稳定运行。

同时,在目前的并网混合电力系统中,可对蓄电池进行充电,以提高能源利用效率。

新能源并网技术要求

新能源并网技术要求

二、风电幵网技术要求
2、规范性引用文件
GB/T 12325 电能质量 供电电压偏差 GB/T 12326 电能质量 电压波劢和闪发 GB/T 14549 电能质量 公用电网谐波 GB/T 15945 电能质量 电力系统频率偏差 GB/T 15543 电能质量 三相电压丌平衡 国家电力监管委员会令第5号 电力二次系统安全防护规定 DL/T 1040 电网运行准则
二、风电幵网技术要求
3、术语和定义
风电场幵网点 point of connection of wind farm 风电场升压站高压侧母线戒节点。 风电机组/风电场低电压穿越 low voltage ride through of wind turbine/wind farm 当电力系统事故戒扰劢引起幵网点电压跌落时,在一定的电压跌落 范围和时间间隔内,风电机组/风电场能够保证丌脱网连续运行。
备,以确保风电场合格的电能质量。
二、风电幵网技术要求
12、风电场仿真模型和参数
风电场仿真模型 • 风电场开収商应提供可用亍电力系统仿真计算的风电机组、风电 场汇集线路及风电机组/风电场控制系统模型及参数,用亍风电 场接入电力系统的规划设计及调度运行。 风电场应跟踪其各个元件模型和参数的发化情冴,幵随时将最新 情冴反馈给电力系统调度机构。
収电
输电
配电
用电
新能源、分布式发电与接入电网要求

新能源与分布式发电特征?

波动性 发电技术 分布特性
影响其他电源 电压控制、电能质量、稳定性 丌同亍常规电源

新能源及分布式电源接入系统后

丌应当降低整个电力系统供电的可靠性和
整个系统运行的安全稳定性。

新能源并网发电系统的关键技术和发展趋势

新能源并网发电系统的关键技术和发展趋势

新能源并网发电系统的关键技术和发展趋势摘要:近年来,我国的能源紧缺问题逐渐凸显出来,新能源的开发与利用逐渐受到人们的关注,其不仅代表着一个国家的经济发展水平,同时也是一个国家先进技术的具体象征。

要发展我国的电力事业,就必须给予新能源并网发电系统足够的重视。

基于此,文章简单地讲解了新能源发电系统的一些关键技术,并对其发展趋势做出了合理预测。

关键词:新能源;并网发电;关键技术1新能源并网发电系统概述1.1分布式新能源发电技术分析分布式发电又被称为分布式供能或分散式发电,通常是指以新能源或可再生能源为核心的小型发电装置布置在负荷附近区域的发电方式。

同时,新能源想实现较优质的供电服务,就必须结合储能技术和分布式发电技术进行供电。

目前较为常见的新能源及可再生能源包括水能、太阳能、风能、海洋能、地热能、以及生物质能等几类,参考国内外的新能源技术研发成果,风力发电、燃烧电池、以及太阳能光伏发电,是当前电气工程的主要研究领域和方向。

其中,风力发电技术,就是利用风能带动机组运动,进行电力生产的发电技术。

就风力发电机组而言,其在并网运行过程中,需严苛控制电网频率与发电机输出频率相一致,以确保并网运行的安全性和可靠性。

风力发电技术主要分为两类,一类是恒速恒频风力发电,主要采用主动失速调节或失速调节的发电机设备,一类是变速恒频风力发电,主要配置异步感应发电机。

相比较而言,变速恒频发电技术可最大限度的捕捉、利用风能,并且转速运行范围相对宽松,调节系统更加灵活,是目前主流的风力发电技术;太阳能光伏发电技术,即在半导体材料光电效应基础上,直接将太阳能转化电力能源的技术。

目前,光伏发电系统主要分为并网光伏发电系统和独立光伏发电系统两类;燃料电池技术,该技术多以燃料电池的方式呈现,即直接将储存在氧化剂和燃料中的化学能快速转化为电能的一种发电装置,多具有排气干净、燃料多样、噪声小等特点。

1.2微网基本概念分析对于以新能源或可再生能源为主的分布式电源并网系统而言,通过微网的协调控制,可在微网内实现并网过程中各类负面问题的科学解决,从而降低分布式电源并网对电网整体造成的干扰和扰动。

新能源并网技术及其对电力系统的影响研究

新能源并网技术及其对电力系统的影响研究

新能源并网技术及其对电力系统的影响研究随着全球范围内对环境问题的日益关注,新能源的开发和利用成为了当今世界的热门话题。

而新能源的并网技术则是实现新能源大规模应用的关键所在。

本文将探讨新能源并网技术的发展趋势以及其对电力系统的影响。

一、新能源并网技术的发展随着生态环境保护要求的提高,传统的能源模式已经无法满足能源需求,因此新能源的广泛应用成为了必然趋势。

而新能源并网技术则是确保新能源能够稳定地接入电力系统的重要手段。

1.1 分布式发电技术传统的能源中心供应模式面临的问题,如能源消耗和能源分布不均,导致新能源的并网技术得到加速发展。

分布式发电技术使得电力系统从集中供应转变为分散供应,将新能源生成电量与传统电力系统实现良好的互动。

1.2 储能技术新能源的不稳定性使得能源供应成为一个难题,而储能技术的发展极大地改善了这一情况。

通过将电能储存起来,可以在能源供应不足或过剩时进行调节,从而保持电力系统的稳定运行。

二、新能源并网技术对电力系统的影响新能源并网技术的引入对电力系统的影响是多方面的,既有积极的一面,也有一些挑战需要克服。

2.1 节约能源与降低碳排放新能源的大规模应用使得我们能够更好地利用可再生能源,减少对传统能源的依赖,从而实现能源的节约与环境的保护。

同时,新能源的发电过程中产生的碳排放也大幅度降低,有助于应对全球变暖问题。

2.2 能源供应的可靠性和安全性提高新能源的并网技术可以通过多样性分散能源供应,提高电力系统的可靠性和安全性。

相对于传统的中心供应模式,分布式发电技术能够使得电力系统更加稳定,并有助于防止能源供应中的单点故障。

2.3 电力系统规划与运行的挑战然而,新能源并网技术也带来了一定的电力系统规划与运行方面的挑战。

由于新能源的不稳定性,对系统较高的可调度性要求使得系统规划与运行需要更加精细化。

同时,新能源的大规模接入也需要对电力系统的运行进行全面优化,以实现最佳的供需匹配。

三、新能源并网技术的未来发展方向为了进一步优化新能源的并网技术,并解决当前面临的挑战,有以下几个方向值得关注:3.1 智能化技术的应用通过引入智能化技术,可以使得电力系统更加智能化、自动化地进行运行与控制。

新能源发电与并网技术

新能源发电与并网技术

新能源发电与并网技术引言:随着全球能源需求的不断增长和环境问题的日益突出,新能源发电成为了人们关注的焦点。

新能源发电技术的发展与应用对于实现可持续发展和减少对传统能源的依赖具有重要意义。

而新能源发电与并网技术的结合更是推动可再生能源行业发展的关键。

一、新能源发电技术的发展1. 太阳能发电技术太阳能发电技术利用太阳能转化为电能,其主要方式包括光伏发电和太阳热发电。

光伏发电利用光伏电池将太阳能直接转化为电能,而太阳热发电则是利用太阳能集中加热工质,再通过蒸汽驱动发电机发电。

随着太阳能电池技术和太阳热发电技术的不断进步,太阳能发电成为了最为成熟的新能源发电技术之一。

2. 风能发电技术风能发电技术利用风力驱动风力发电机转动,通过发电机将机械能转化为电能。

风能发电具有资源丰富、无污染、可再生等特点,成为了新能源发电的重要组成部分。

随着风力发电机技术的不断改进和风能资源的开发利用,风能发电已经成为了全球最具规模的可再生能源之一。

二、新能源并网技术的意义1. 实现新能源的大规模利用新能源发电技术的发展虽然取得了很大的进步,但由于其受天气和地理条件的限制,单个新能源发电站的发电能力有限。

通过并网技术,可以将多个新能源发电站连接在一起,形成一个大规模的发电系统,实现新能源的大规模利用。

2. 提高电网的稳定性和可靠性新能源发电具有波动性和间歇性的特点,这给电网的稳定性和可靠性带来了挑战。

通过并网技术,可以将新能源发电与传统能源发电相结合,实现能源的平衡调配,提高电网的稳定性和可靠性。

三、新能源并网技术的挑战与解决方案1. 电网规划与建设新能源发电的大规模并网需要进行电网规划和建设,包括电网的输电线路和变电站的建设。

同时,还需要考虑新能源发电站与电网之间的连接方式和技术要求,确保电能的安全传输和稳定供应。

2. 预测与调度新能源发电的波动性和间歇性给电网的运行带来了不确定性。

通过建立新能源发电的预测模型和调度策略,可以准确预测新能源发电的产能,并合理调度电网的运行,以满足电力需求。

新能源并网与控制技术

新能源并网与控制技术

风速
(a)正常运行
图3定桨距风力机的气动特性
(b)高于额定
失速调节叶片的攻角沿轴向由根部向叶尖逐渐减少, 因 而根部叶面先进入失速, 随风速增大, 失速部分向叶尖处扩 展, 原先已失速的部分, 失速程度加深, 未失速的部分逐渐 进入失速区, 从而使输入功率保持在额定功率附近。
2.1.3叶尖扰流器 叶尖扰流器如图所示。当
风力机正常运行时, 在液压系统 的作用下, 叶尖扰流器与桨叶主 体部分紧密地合为一体, 组成完 整的桨叶, 当风力机需要脱网停 机时, 液压系统按控制指令将叶 尖扰流器释放并使之旋转90° 形成阻尼板, 实施空气动力刹车。
图4叶尖扰流器结构
2.2 设定桨距角改变最大输出功率
根据定桨距风力机的特点, 应 优先考虑提高低风速段的功率系 数, 合理利用高风速时的失速特 性。为此可通过设定桨距的桨距角 (安装角)来实现上述控制策略。 图5是一组200kw定桨距风力发电 机的功率曲线。可见在高风速区, 不同的桨距角对最大输出功率的影 响是较大的。根据实践经验, 节距 角越小, 气流在桨叶上的失速点越 高, 其最大功率也越高。反之, 其 最大功率就可降下来。
整个系统运行的安全稳定性。
二、风电并网技术要求与控制技术
1.风电场有功功率 ➢ 基本要求 ➢ 具备参与电力系统调频、调峰和备用的能力。 ➢ 风电场应配置有功功率控制系统, 具备有功功率调节
能力。 ➢ 当风电场有功功率在总额定出力的20%以上时, 场内
所有运行机组应能够实现有功功率的连续平滑调节, 并能够参与系统有功功率控制。
一、风电、光伏、电源并网标准概况
基本要求: 保证负荷(用户)正常供电,可靠性。 保证系统安全稳定(发生故障时,系统不发生大停电事故) 需要满足以下约束条件 电网具有足够输电能力; 电压范围正常; 系统安全及稳定性需保证;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档