动物脑缺血模型建立.pptx

合集下载

脑缺血动物模型

脑缺血动物模型

脑缺血动物模型的制作目录一、简介二、前言三、脑缺血动物模型的分类四、脑缺血动物模型的制作1. 仪器和设备2. 四血管结扎全脑缺血模型3. 大脑中动脉结扎模型4. 光化学脑梗塞动物模型5. 自发性高血压鼠的脑卒中模型6. 血管内栓线技术的局灶脑缺血模型五、脑缺血模型的测量指标六、影响脑缺血损害的相关因素1. 脑缺血的程度2. 体温和脑温3. 麻醉4. 血液因素和其它七、参考文献一、简介一个生理上可控的和可复制的脑缺血动物模型是研究其病理机制和试验新的疗法所必需的。

本节介绍脑缺血动物模型的制作方法。

首先介绍脑缺血动物模型的分类,然后分别介绍几种常用脑缺血模型的制作,包括四血管结扎全脑缺血模型、大脑中动脉结扎和光化学梗塞局部脑缺血模型等。

同时,结合模型的应用,介绍缺血模型的测量指标和相关影响因素。

二、前言脑血管疾病是导致我国中老年人死亡的第一号疾病,也是世界性卫生战略研究重点之一。

在脑血管疾病中以缺血性疾病的发病率占据首位。

通常在轻度缺血/缺氧的情况,脑的补偿机制保护着中枢神经系统免受损伤,但当缺血程度加重时,便会发生不可逆的神经损害,导致系列的临床症状,甚至死亡。

临床上,脑血管意外、心肌梗塞、休克、新生儿窒息和脑外伤都可引起神经元的缺血性损害。

因此积极探讨脑缺血的损害机制及防治措施,具有重要的科学意义[1]。

一个生理上可控的和可复制的动物模型对于系统地、全面地研究脑缺血的病理生理过程和试验新的治疗方法是非常必要的。

首先,尽管临床上脑缺血的发病率很高,可以提供较多的病例。

但是,人类脑缺血是非常多样性的,其表现形势、病因和缺血区的解剖学定位,有着很大的不同。

这种多样性防碍了进行统计学分析和设置对照的可能性。

其次,精确的组织病理学分析、生物化学和生理学研究、常常需要侵入性的外科程序和直接的脑组织取样分析。

第三,发生在缺血性脑损伤早期事件的观察(几分钟甚至几秒钟),只能在实验动物身上才能做到。

最后,由于缺血是一种供血异常,血管因素在其中发挥了重要作用,而血管因素的改变无法用组织细胞培养或脑片孵育的方法来模拟。

大鼠局灶性脑缺血模型研究进展(ppt文档)

大鼠局灶性脑缺血模型研究进展(ppt文档)
此模型1990年由Benes[2]等首先报道 该实验是把双侧颈总动脉结扎后,将PE-50导管头端放置到大脑中动脉的
起始部,然后将血栓栓子从导管注入. 1997年Zhang[3]等学者用10μl动脉血和牛凝血酶作为血栓栓子建立该模
型 1998年Jiang[4]等学者也复制出该模型 1998年Kilic [5]等学者用2种长度(1.5mm和4mm)且富含纤维素的栓子注入
大鼠局灶性脑缺血 模型的研究进展


• 摘要
• 大鼠局灶性脑缺血模型
• 展望
• 参考文献
摘要
据世界卫生组织估计,发展中国家脑血管病的发生率 呈上升趋势。近三十年来,我国脑血管病的发生率、患病 率及其危险因素均呈不断上升趋势。预计到2030年,我国 新发生的脑血管病人,将由现在的每年180万上升到每年 540万。脑血管病的预防和治疗已刻不容缓。神经系统的 结构功能非常复杂,许多脑血管疾病的危险因素、病因和 发病机制尚在研究中,而动物模型是现代生物医学研究中 一个极为重要的实验方法和手段,它有助于人们更方便、 更有效地认识人类疾病的发生和发展规律,从而制定有效 的防治措施。
导管建立该模型 优点:模型建立效率高 缺点:非直视下进行,受栓子大小、数量、大鼠体重、操作熟练程度的影
响,脑血流降低程度、病灶大小、自发性再灌注程度及出血比率难以 控制。 适合:溶栓治疗的研究
急性血栓法MCAO脑缺血模型(二)
2002年Krueger[6]等学者将PE-50导管插至颈总动脉分叉部, 选用12个长约1.5mm的富含纤维素的栓子栓塞大脑中动脉 起始部,且在直视下观察Willis环。
②新配置的凝血酶在4℃保存24h,线样血栓在PBS缓冲液中
保留2-4h以上。这样制成的血栓弹性好,直径适中

脑缺血动物模型的制备方法

脑缺血动物模型的制备方法
• 水合氯醛和乌拉坦次之,但需要控 制温度以及保持通气。
• 苯巴比妥钠对体温和呼吸影响最大, 不太适合作这种模型。
3. 栓线的性能和深度:
• 栓线的粗细: • 栓线的性质: • 栓线插入的深度:
• 4. 体温和脑温: • 5. 梗死时间:
1、1.5 h无梗死灶, 2h只在基底节出现梗死灶; 4h面积增大; 12h面积趋于稳定; 24h的面积与2h无差异,但死亡率增加。
• 2.自发性脑卒中模型:
采用自发性高血压大鼠或通过 肾动脉狭窄或包裹肾脏的方法造成 动物肾性高血压,随着鼠龄的增长 而产生自发性脑卒中。
• 3. 椎基底动脉脑缺血模型:
将豚鼠麻醉,仰卧位固定。暴 露枕部颅底,手术显微镜下磨出一 个 57mm 的 骨 窗 , 游 离 基 底 动 脉 , 并穿一条“0”号丝线,其上方一个 重0.5g金属球,造成基底动脉血流 部分阻断,进而形成急性脑干缺血 模型。
• 1987 年 Dietrich 等 用 波 长 560nm 的光束经颅骨表面照射已经静脉 注射过光化学诱导剂玫瑰红B的 鼠脑的特定部位,复制出大脑皮 质血栓性梗死模型。
• 1.5 微栓子栓塞阻断法:
分离一侧的CCA、ECA、ICA,将 无菌干燥研碎筛滤的血凝块、炭素 颗粒、塑料颗粒等作为溶栓剂,由 ECA注入栓子后结扎ECA,开放CCA, 栓子由ICA进入MCA,造成以MCA供血 区脑组织损伤为主的缺血模型。
大 鼠 线脑 插底 入动 部脉 位环 及 拴
动物模型成功的标志:
• 清醒后出现同侧霍 纳氏征(Homer,瞳 孔缩小)、对侧肢 体瘫痪或向对侧旋 转、甚至是出现惊 厥。打开大鼠大脑 后可见阻塞侧的大 脑半球肿胀、苍白, 体积明显大于对侧。
• TTC(四氮唑红)染色:

急性脑缺血实验动物模型制作

急性脑缺血实验动物模型制作
Wasn等 [ t o 6 1 建立 了光 化学 法 诱 导脑 皮层 梗 首次 塞 的动物 模 型 . 法是 在 尾静 脉 注射 光 敏材 料荧 光 该
常用 的有两 血 管 闭塞 法[ 四血管 闭 塞 法[ 两 2 1 和 3 1 . 血管 闭塞 法 通过 夹 闭双 侧颈 总 动脉 ,同时结合 降压
动 物 脑缺 血 模 型 的 经验 , 以和 同行 们 交 流, 时为 基 础 性研 究提 供 更 稳 定 的模 型 制 作 方 法 . 同 关键词 : 实验 动 物 脑缺血 模 型
中图 分 类 号 : 9 — Q 53
文 献标 识码 : A
文章 编 号 :64 07 (0 8 4 O 6 一 4 l7 — 8 42 0 ) 一 OO 0 0
脑血管病 、 癌症 、 心血管病为现今人类死 亡率
最 高 的三 大疾 病 . 中脑 血 管病 发 病最 快 , 死 致 其 致 残率最 高, 居 三大疾 病 之首 . 位 因此 , 拟 临床 疾 病 , 模 制作较 为可 靠 的脑缺 血 动物模 型 , 系统研 究 其发 对 病 机 理 , 理 、 理 学 改变 , 病 生 以及 药 物 疗效 、 治措 防 施 等 , 有重 要指导 意义 . 都具
第 2 卷第 4 4 期
20 0 8年 8月
山西大 同大学学报( 自然科学版)
Ju a o hniD tn nvri( a rl c ne o r l f ax a gU i st N t a Si c) n S o e y u e
V0 . 4 No4 1 . . 2
Au .0 8 g2 0
性脑 缺 血研 究 .
价抗脑缺血药物的疗效等有价值. 但该模型不能在
清醒 动物 上 复制 , 法研 究 血 管狭 窄后 行 为学 的变 无

大鼠脑缺血模型制作

大鼠脑缺血模型制作

大鼠脑缺血模型制作大鼠脑缺血是一种神经病理学状态,常用于研究脑缺血和再灌注相关的疾病,如中风和心脑血管疾病。

制作大鼠脑缺血模型可以帮助研究者深入了解脑缺血的机制,并探索治疗方法。

下面将介绍一种常用的大鼠脑缺血模型制作方法。

材料准备:1.正常健康的大鼠(约250-300g)2.异氟醚(用于麻醉大鼠)3.氧化氮(用于麻醉大鼠)4.0.9%氯化钠溶液(生理盐水,用于预先裂解血栓)5.弹簧夹(用于阻断大脑供血)6.血管夹(用于再灌注)7.生理盐水或PBS(用于清洗伤口和冲洗大脑)操作步骤:1.麻醉大鼠-以适当的浓度向氧化氮罩中送气,让大鼠吸入异氟醚麻醉。

-确定大鼠是否处于麻醉状态,如失去帕金森反射。

-为了确保大鼠的安全性和麻醉质量,要定期监测大鼠的许多生理参数,如呼吸频率、血氧饱和度和体温。

2.颅窗手术-将大鼠固定在手术台上,用5%碘伏消毒实验区域的皮肤。

-在头部进行剃发和消毒。

- 用手术刀在头部切开皮肤,在颅骨上切开一个直径约 1 cm的圆洞。

-清除头骨上的组织,暴露出颅骨。

-用电动开骨钻在颅骨上进行微抖动,直到打开一个圆洞。

通过控制速度和钻头的压力来避免损伤脑组织。

-用细钳将头皮撕开,暴露出脑膜。

3.制作脑缺血-用生理盐水或PBS洗涤脑膜,以确保大脑的清洁。

-用弹簧夹仔细阻断大脑的供血。

通常选择大脑的前动脉(MCA)或双侧MCA,使大脑区域发生缺血。

-检查大鼠是否出现神经功能缺陷,如软瘫、不对称性和意识丧失等。

-记录缺血时间,通常在20-30分钟之间。

-选择再灌注时间,通常是60分钟。

4.再灌注-在再灌注前,用生理盐水或PBS冲洗大脑。

通过防止缺血时间和再灌注时间的太长,以减少实验操作引起的伤害。

-用血管夹将阻断的血管解除,实现再灌注。

-观察大鼠是否恢复神经功能,例如排尿、动作和体位等。

-保持大鼠体温适宜,定期监测大鼠身体参数。

5.实验后处理-在实验结束后,用生理盐水或PBS冲洗伤口。

-给大鼠提供足够的水和食物,让其恢复。

全脑缺血再灌注动物模型建立方法

全脑缺血再灌注动物模型建立方法

全脑缺血再灌注动物模型建立方法引言全脑缺血再灌注是一种临床上常见的危重症,常见于心脏骤停、溺水等情况下,出现全脑缺血缺氧,随后通过复苏措施进行再灌注。

建立全脑缺血再灌注动物模型对于深入研究相关疾病的发病机制,评估治疗方法具有重要意义。

本文将介绍一种常用的全脑缺血再灌注动物模型的建立方法。

动物模型选择建立全脑缺血再灌注模型时,主要选择小鼠或大鼠作为实验动物。

一般情况下,小鼠更为常用,因其易于操作、成本较低,且其脑血管结构与人类相似,因此具有较高的可比性。

对于大鼠,其相对较大的体积能够更好地模拟人体情况,但操作相对较为复杂。

手术操作准备在进行全脑缺血再灌注动物模型的建立前,需要进行手术操作的准备工作。

首先需要进行动物的麻醉和固定,确保手术操作的安全性。

其次需要准备全脑缺血再灌注模型所需的仪器和设备,包括导管、监测仪器等。

在手术操作前,还需要对实验动物进行术前处理,包括禁食、定时给予抗生素等。

手术操作步骤1. 麻醉和固定:将实验动物置于麻醉箱内,使用合适的麻醉药物使其达到麻醉状态。

随后将其固定在手术台上,以确保手术操作的稳定性。

2. 手术部位暴露:在麻醉状态下,对实验动物进行皮肤消毒,随后进行手术部位的切开,暴露出颅骨表面。

3. 血管结扎:通过显微外科手术操作,对实验动物的颅骨表面的动脉和静脉进行结扎,以模拟全脑缺血的状态。

4. 缺血时间控制:根据实验设计的需要,控制全脑缺血的时间,一般为15至20分钟。

5. 再灌注:在全脑缺血一定时间后,通过解开血管结扎,使血液重新灌注至大脑。

6. 术后处理:对实验动物进行术后处理,包括给予液体、保暖、饲养等。

检测指标和评价方法建立全脑缺血再灌注模型后,需要对实验动物进行一系列的检测和评价,以评估其神经功能恢复情况。

常用的评价指标包括神经行为学评分、脑组织病理学检测、神经元凋亡检测、脑组织炎症因子检测等。

通过对这些指标的检测和评价,可以全面地评估全脑缺血再灌注模型的建立效果,为后续的实验研究提供可靠的依据。

缺血性脑卒中的动物模型完整版

缺血性脑卒中的动物模型完整版

缺血性脑卒中的动物模型HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】缺血性脑卒中研究中的动物模型想要进行一项基础研究,动物模型必不可少。

缺血性脑卒中研究如火如荼,动物模型也多种多样,有哪些常用的动物模型,以及它们各自的特点就成了研究人员在选择模型时十分关注的问题。

在缺血性卒中过程中,最终的梗死体积和神经功能预后受到多种因素的影响,例如缺血的持续时间、缺血的严重程度、侧枝循环、系统的血压以及梗死产生的原因和位置。

此外,年龄、性别和相对复杂的药物遗传背景也会对其产生影响。

因为卒中是如此复杂的一个疾病,因而动物模型也往往只能覆盖其中个别方面的特点。

虽然中风是一种复杂的疾病,但其存在一些共同的特点,这使得我们有机会用实验来模拟卒中的发生。

缺血性脑卒中的一个重要特点是进展,这也解释了缺血半暗带的存在。

当血流量降至基线值的15-20%以下时,只要几分钟就会产生不可逆的脑损伤核心,并且迅速相周围发展。

其周围的脑组织血流减少得相对较轻,所以此时神经功能缺失而组织结构却是完整的。

但如果脑血流不能恢复,那么这些所谓的半暗带组织就会被纳入梗死核心区。

最常用的一种模型是啮齿动物的线拴法大脑中动脉闭塞模型(MCA),方法是将普通的血管内缝线或特制的线拴放入大脑中动脉开口处,从而达到阻塞血管造成血流量减少的目的。

这种方法的优点是:不需要开颅的手术,并且通过拔出线拴的方法还可以达到在特定时间再通血管的目的,虽然瞬间的血管开通与人体一般的病理生理过程相去甚远,但与近来应用越来越广泛的机械取栓治疗的病理过程不谋而合。

因此,虽然在模型的制作上存在一些问题,但仍是目前最广受认可的一种脑卒中动物模型。

另一种常用的方法是用各种方式直接地闭塞血管,分为永久地闭塞血管(如凝断)和暂时闭塞血管(如结扎),但大多都需要开颅的手术操作。

使用内皮素-1(一种强血管收缩剂)可以诱导短暂的局灶性脑缺血,其产生的病灶可以分布于脑组织任何位置,常常被用于制作腔隙性梗死的模型制作。

脑缺血动物模型研究共60页共62页文档

脑缺血动物模型研究共60页共62页文档

谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
55、 为 中 华 之 崛起而 读书。 ——周 恩来
1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。-戴尔.卡耐基喝起来是苦涩的,回味起来却有 久久不会退去的余香。
脑缺血动物模型研究共60页 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。

小鼠缺血模型

小鼠缺血模型

Angiogenic Factor AGGF1Promotes Therapeutic Angiogenesis in a Mouse Limb Ischemia ModelQiulun Lu1,Yihong Yao1,Yufeng Yao1,Shizhi Liu1,Yuan Huang1,Shan Lu1,Ying Bai1,Bisheng Zhou1, Yan Xu1,Lei Li1,Nan Wang1,Li Wang1,Jie Zhang1,Xiang Cheng2,Gangjian Qin3,Wei Ma4,Chengqi Xu1, Xin Tu1*,Qing Wang1,5*1Key Laboratory of Molecular Biophysics of the Ministry of Education,College of Life Science and Technology,Center for Human Genome Research,Cardio-X Institute, Huazhong University of Science and Technology,Wuhan,People’s Republic of China,2Institute of Cardiology,Union Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan,People’s Republic of China,3Feinberg Cardiovascular Research Institute,Northwestern University Feinberg School of Medicine,Chicago,Illinois,United States of America,4The First Hospital of Wuhan City,Wuhan,People’s Republic of China,5Center for Cardiovascular Genetics, Department of Molecular Cardiology,Lerner Research Institute,Cleveland Clinic,Cleveland,Ohio,United States of AmericaAbstractBackground:Peripheral arterial disease(PAD)is a common disease accounting for about12%of the adult population,and causes significant morbidity and mortality.Therapeutic angiogenesis using angiogenic factors has been considered to bea potential treatment option for PAD patients.In this study,we assessed the potential of a new angiogenic factor AGGF1fortherapeutic angiogenesis in a critical limb ischemia model in mice for PAD.Methods and Results:We generated a unilateral hindlimb ischemia model in mice by ligation of the right common iliac artery and femoral artery.Ischemic mice with intrasmuscular administration of DNA for an expression plasmid for human AGGF1(AGGF1group)resulted in increased expression of both AGGF1mRNA and protein after the administration compared with control mice with injection of the empty vector(control group).Color PW Doppler echocardiography showed that the blood flow in ischemic hindlimbs was significantly increased in the AGGF1group compared to control mice at time points of 7,14,and28days after DNA administration(n=9/group,P=0.049,0.001,and0.001,respectively).Increased blood flow in the AGGF1group was correlated to increased density of CD31-positive vessels and decreased necrosis in muscle tissues injected with AGGF1DNA compared with the control tissue injected with the empty vector.Ambulatory impairment was significantly reduced in the AGGF1group compared to the control group(P=0.004).The effect of AGGF1was dose-dependent.At day28after gene transfer,AGGF1was significantly better in increasing blood flow than FGF-2(P=0.034), although no difference was found for tissue necrosis and ambulatory impairment.Conclusions:These data establish AGGF1as a candidate therapeutic agent for therapeutic angiogenesis to treat PAD.Citation:Lu Q,Yao Y,Yao Y,Liu S,Huang Y,et al.(2012)Angiogenic Factor AGGF1Promotes Therapeutic Angiogenesis in a Mouse Limb Ischemia Model.PLoS ONE7(10):e46998.doi:10.1371/journal.pone.0046998Editor:Rajesh Gopalrao Katare,University of Otago,New ZealandReceived February20,2012;Accepted September11,2012;Published October23,2012Copyright:ß2012Lu et al.This is an open-access article distributed under the terms of the Creative Commons Attribution License,which permits unrestricted use,distribution,and reproduction in any medium,provided the original author and source are credited.Funding:This study was supported by the Fundamental Research Funds for the Central Universities(2010MS015,2011TS082),a grant from the State Key Laboratory of Freshwater Ecology and Biotechnology(2011FB16),a Hubei Province Natural Science Key Program(2008CDA047)and a Key Academic Program Leader Award of Wuhan City(200951830560),and the National Natural Science Foundation of China(81070106).The funders had no role in study design,data collection and analysis,decision to publish,or preparation of the manuscript.Competing Interests:The authors have declared that no competing interests exist.*E-mail:qkwang@(QW);xtu@(XT)IntroductionPeripheral arterial disease(PAD)is caused by atherosclerosis, which results in progressive narrowing and occlusion of the peripheral arteries and inhibits blood flow to the lower extremities [1,2].The prevalence of PAD is increasing in the modern aging society,and reaches about12%of the adult population[3,4].In the US,approximately8to12million people are affected with PAD[5].In Germany,the prevalence of PAD for women and men aged$65years was17%and20%,respectively[6].The clinical presentation of PAD may vary from being asymptomatic to presenting with a serious symptom of intermittent claudication[1,7].In severe cases,PAD significantly affects quality of life,and increases morbidity and mortality.Approximately25% patients with critical limb ischemia die in one year[8].Moreover,in patients with PAD the prevalence of coronary artery disease (CAD)is about46%to71%[1,9,10],and at least10%of them suffered cerebrovascular disease[1,2,11,12].The current treatment for PAD focuses on decreasing cardiovascular and cerebrovascular morbidity and mortality and on relieving PAD symptoms[13].Pharmacological treatments with lipid-lowering,antihypertensive,and antithrombotic medica-tion are used to prevent myocardial infarctions(MIs)and strokes [1,13].Some PAD patients may require leg amputation to relieve the unbearable pain and life-threatening situation.To avoid amputation or other serious prognosis,angioplasty,stenting and peripheral artery bypass surgeries are used to restore blood flow to the legs in some patients[1,13,14].However,PAD patients undergoing vascular surgeries had a significantly worse long-termprognosis than CAD patients with similar procedures [15].Furthermore,many PAD patients are not suitable candidates for interventional or revascularization surgeries.Therefore,therapeu-tic angiogenesis,i.e.promotion of angiogenesis and microcircula-tion using angiogenic factors,has been proposed as a new and potential treatment strategy for PAD patients in the last decade [16].The administration of angiogenic factors,either as naked plasmid DNA or recombinant proteins,may promote neovascu-larization,augment the collateral circulation,and enhance blood perfusion to ischemic tissues [16,17].Therapeutic angiogenesis forPAD made some progress,but also met some problems [16,18].Several angiogenic factors,for example,vascular endothelial growth factor A (VEGF),fibroblast growth factors (FGFs),hepatocyte growth factor (HGF),and platelet-derived growth factor (PDGF),have been tested to treat critical limb ischemia in PAD patients or in animal models.These studies provided encouraging results,however,therapeutic angiogenesis for PAD is considered to be still at its infancy and adverse effects in some cases occurred,including vascular leakage,transient edema,and hypotension with administration of VEGF and FGFs [19,20].InFigure 1.Successful overexpression of AGGF1mRNA and protein in skeletal muscle by gene transfer using a plasmid-based delivery system.A)Real time PCR analysis for expression of human AGGF1mRNA derived from an AGGF1expression plasmid injected into the gastrocnemius muscle in a mouse ischemic hindlimb model.The RT-PCR primers are specific to human AGGF1and not able to amplify the endogenous mouse AGGF1mRNA.Time points are in days after the injection of plasmid DNA.Injection of the empty vector DNA served as negative control.The data are shown as the amount of plasmid-derived human AGGF1mRNA normalized to control GAPDH levels.To avoid the contamination of plasmid DNA,RNA samples were treated with DNase.In addition,RT-PCR analysis with RNA samples without reverse transcription did not yield any product.B )Expression of AGGF1protein in gastrocnemius muscles by Western blot analysis at time points of 7,14,28days after plasmid DNA was injected.The anti-AGGF1antibody recognizes both human AGGF1derived from the injected plasmid and endogenous mouse AGGF1protein.C )The images from Western blot analysis in B )were scanned,quantified,and plotted.The intensity of AGGF1signal was normalized to the signal of control b -actin.D )Immunohistochemical analysis of the sections of ischemic hindlimb muscle from mice injected with an empty vector (Control)and with an AGGF1expression plasmid (AGGF1)with an anti-AGGF1antibody seven days later by injection of plasmid DNA.*,P ,0.05.doi:10.1371/journal.pone.0046998.g001addition,the efficacy of therapeutic angiogenesis may be limited by the few number of angiogenic factors available for selection. Therefore,it is crucial that new angiogenic factors should be identified and tested for treating PAD.AGGF1is a new angiogenic factor identified by our group through genetic analysis of a congenital vascular disorder called Klippel-Trenaunay syndrome(KTS)[21,22].AGGF1protein contains several functional domains,including a coiled-coil motif at the N-terminus,an OCtamer REpeat(OCRE)domain, a Forkhead-associated(FHA)domain,and a G-patch domain at the C-terminus.The specific functions of these domains are unknown.We have demonstrated that AGGF1promotes angio-genesis as potentially as VEGF in a chicken embryo angiogenesis assay[21].Recently,we reported that GATA1could regulate the expression of AGGF1through two GATA1binding sites in the promoter region of AGGF1[23].Knockdown of GATA1expression reduced AGGF1expression,which resulted in reduced endothelial capillary vessel formation in a matrigel vessel tube formation assay, and purified recombinant AGGF1protein can rescue the defect when added in the media[23].The angiogenic potential of AGGF1 prompted us to investigate whether therapeutic angiogenesis with administration of naked DNA for an AGGF1expression construct is capable of increasing blood flow in a mouse hindlimb ischemia model.ResultsSuccessful Expression of AGGF1by Administration of Naked Plasmid DNA into Gastrocnemius Muscle Previous reports by others demonstrated that the efficiency of gene transfer by direct injection of DNA for an expression plasmid was determined by the amount of plasmid DNA and the injection volume[24].An increase in injection volume and one site injection rather than separate injections at multiple sites resulted in higher transfection efficiencies.Therefore,we injected0.2mg of purified plasmid DNA in a0.15ml of volume for pcDNA3.1-AGGF1-FLAG(an expression construct for AGGF1)or control vector pcDNA3.1-FLAG into one site in the gastrocnemius muscle.At different time points,muscle tissue samples from ischemic and non-ischemic hindlimbs were harvested for real-time RT-PCR and Western blot analyses to measure the expression levels of AGGF1.As shown in Figure1A,human AGGF1mRNA in ischemic hindlimb tissues from mice injected with pcDNA3.1-AGGF1-FLAG increased dramatically compared with that from mice injected with control vector pcDNA3.1-FLAG one week after the injection of DNA(P,0.001).The expression of human AGGF1 remained high for two weeks after the injection,but decreased to a lower level four weeks after the injection(Figure1A).Similar results were obtained with Western blot analysis (Figure1B).For Western blot analysis,the anti-AGGF1antibody can also detect the endogenous mouse AGGF1protein in the mice injected with control vector pcDNA3.1-FLAG.Moreover,in-creased human AGGF1protein expression was found at the time points of seven days and fourteen days,but not at twenty-eight days in mice injected with pcDNA3.1-AGGF1-FLAG(Figure1B). Consistent with these results,immunohistochemistry analysis also showed higher AGGF1protein expression in tissues from mice injected with pcDNA3.1-AGGF1-FLAG than that from mice injected control vector pcDNA3.1-FLAG one week after the DNA injection(Figure1D).Together,these data suggest that direct injection of naked plasmid DNA for an AGGF1expression construct into gastrocne-mius muscles results in a successful high level of expression of both AGGF1mRNA and protein.Increased AGGF1Expression Stimulated an Increase of Blood Flow in the Ischemic HindlimbWe measured the change of blood flow in the hindlimb ischemia model using a high-resolution micro-ultrasound system.One day after surgery(ligation of arteries),the ratio of blood flow in the ischemic leg over that in the non-ischemic leg decreased sharply to 10%of the level before the surgery in mice injected with either pcDNA3.1-AGGF1-FLAG or control pcDNA3.1-FLAG (Figure2A,2C).In addition,the wave form of blood flow also changed dramatically and it was difficult to identify the pulse of blood flow after the surgery.After the ischemia was confirmed by micro-ultrasound,0.15ml of PBS containing0.2mg of purified DNA was injected into the gastrocnemius muscle close to the ligation site of the ischemic hindlimb.In mice injected with pcDNA3.1-AGGF1-FLAG,the ratio of blood flow of ischemic/nonischemic hindlimbs increased significantly one week after DNA injection(Figure2A,2C) compared to control mice injected with pcDNA3.1-FLAG (P,0.05,n=9).The increased blood flow in mice injected with pcDNA3.1-AGGF1-FLAG remained at the time point of two weeks.Four weeks after the injection of DNA,the blood flow was approximately2.29fold higher in mice injected with pcDNA3.1-AGGF1-FLAG than those injected with pcDNA3.1-FLAG (0.25660.017vs.0.11260.03;P=0.001,n=9).We compared the effect of AGGF1on blood flow to FGF-2, a potent angiogenic factor.The same amount of DNA for AGGF1 and FGF-2expression plasmids(200m g)was administered.Similar to AGGF1,FGF-2also strongly stimulated blood flow in mouse hindlimb ischemic models.No difference was observed7and14 days after gene transfer between the AGGF1group and FGF-2 group.However,at day28,AGGF1performed significantly better than FGF-2in stimulating blood flow in mouse hindlimb ischemic models(P=0.034).We then analyze the effect of different amounts of AGGF1 expression plasmid DNA on blood flow.As the amount of AGGF1 DNA increased from10m g to500m g,the blood flow increased (Figure2B).We also evaluated ischemic limb functions by scoring limb tissue necrosis and ambulatory impairment.Both scores decreased markedly in mice injected with pcDNA3.1-AGGF1-FLAG com-pared with those injected with pcDNA3.1-FLAG(tissue necrosis score in Figure3A and3B and ambulatory impairment score in Figure3C and3D).When compared to the same amount of FGF-2 expression plasmid DNA,AGGF1was as equally competent as FGF-2in inhibiting tissue necrosis and ambulatory impairment (Figure3A and3C).As the amount of AGGF1DNA increased from10m g to500m g,both the tissue necrosis score and ambulatory impairment were reduced(Figure3B and3D). Increased AGGF1Expression Inhibited Necrosis in the Ischemic HindlimbH&E histological staining was carried out for ischemic hindlimb muscle sections for both pcDNA3.1-AGGF1-FLAG and control pcDNA3.1-FLAG groups of mice7days after DNA injection.In the control mice,ischemic hindlimb muscle sections showed centralization of nuclei and many necrosed muscle fibers(Figure4), which indicated severe necrosis.However,in mice injected with pcDNA3.1-AGGF1-FLAG,centralized nuclei were less promi-nent,and the number of necrosed muscle fibers was highly reduced(Figure4).Overall,ischemic gastrocnemius muscle sections from mice with overexpression of AGGF1showed less gross tissue necrosis than that from mice without AGGF1 overexpression.Increased AGGF1Expression Induced Angiogenesis in the Ischemic HindlimbThe effect of overexpression of human AGGF1on angiogenesis was examined in the ischemic hindlimbs by immunostaining of gastrocnemius muscle sections with an anti-CD31antibody four weeks after DNA injection (Figure 5A).The density of CD31-positive vessels was significantly higher in mice injected with pcDNA3.1-AGGF1-FLAG than control pcDNA3.1-FLAG group of mice (0.93460.413/mm 2vs.0.53860.388/mm 2,P ,0.01)(Figure 5B).In addition,the number of CD31-positive vessels in fibers was also markedly increased in mice injected with pcDNA3.1-AGGF1-FLAG than the control group of mice withpcDNA3.1-FLAG injection (439.26250.1vs.172.56109.4,P ,0.05)(Figure 5C).These data suggest that overexpression of human AGGF1induces angiogenesis in ischemic gastrocnemius muscles.To exclude the possibility that increased angiogenesis in gastrocnemius muscle sections was related to VEGF ,we carried out real time RT-PCR analysis for mouse VEGF using RNA samples isolated from gastrocnemius muscle tissues.No significant difference was found for the expression level of VEGF in tissues injected with AGGF1expression plasmid DNA and with an empty vector DNA (Figure6).Figure 2.Effects of gene transfer for human AGGF1by intramuscular administration of plasmid DNA on blood flow in a mouse ischemic hindlimb model.A )Injection of AGGF1plasmid DNA increased blood flow compared to injection of DNA for an empty vector (control).FGF-2plasmid DNA was used as a positive control.The right femoral artery was ligated to mimic unilateral hindlimb ischemia.One group of ischemic mice received DNA for a human AGGF1expression plasmid,and the other group received DNA for a control empty plasmid one day after the ligation surgery.The ratio of blood flow in the ischemic leg over that in the nonischemic limb at the indicated time points (in days)was plotted.The blood flow was measured by high resolution microultrasound.B )Dose-response curve of blood flow for varying amounts of AGGF1plasmid DNA.C )Representative images from micro-ultrasound.R,ischemic leg undergone surgery and ligation;L,leg undergone mock surgery.*,P ,0.05for comparing AGGF1vs control at the same time point;#,P ,0.05for comparing FGF2vs control at the same time point;w ,P ,0.05for comparing AGGF1vs FGF2at the same time point.doi:10.1371/journal.pone.0046998.g002DiscussionThe data in the present study indicate that gene transfer by administration of plasmid DNA for an AGGF1expression construct promotes blood flow and improves hindlimb muscle microcirculation in a mouse model of PAD induced by ligation of both common iliac artery and femoral artery (Figure 2).Further studies showed that increased blood flow in the ischemic limb correlated with increased density of CD31-positive vessels and reduced tissue necrosis (Figures 3,4,5).Critical limb ischemia is the most advanced stage of PAD,and is always associated with severe atherosclerosis.Atherosclerosis in peripheral arteries decreases blood flow and oxygen supply to the muscle tissue of limbs and toes,which may result in tissue necrosis due to hypoxia.This study is the first to investigate the potential of AGGF1as a new strategy for therapeutic angiogenesis for critical limb ischemia.Our data indicate that AGGF1can serve as a novel therapeutic agent for the treatment of critical limb ischemia as increased AGGF1expression in skeletal muscles enhanced limbfunction,increased blood flow,and healed ischemic ulcers in a mouse hindlimb ischemia model.For gene transfer involved in therapeutic angiogenesis,several delivery methods are used.Administration of purified recombi-nant proteins achieved some positive results,but short half-life of proteins and long-term toxicity with repeated injections may cause system toxicity.Infection with adenoviruses with the target gene is effective in achieving stable and long-term expression,but may induce adverse immune reactions.Davis et al [25]reported that injection of naked plasmid DNA appeared to be better for overexpressing a target gene in skeletal muscles than viral vectors because skeletal muscle cells were able to take plasmid DNA up.Thus,direct injection of plasmid DNA into skeletal muscle tissues has become an alternative to achieve a high level of gene transfer to avoid significant disadvantages with injection of a protein and an adenoviral vector.The data in the present study again showed that direct injection of DNA for an AGGF1expression plasmid successfully overexpressed AGGF1in the ischemic tissues (Figure 1).Two recent clinical trials,HGF-STAT and TALISMAN201utilized aplasmid-Figure 3.Effects of gene transfer for human AGGF1by intramuscular administration of plasmid DNA on tissue necrosis and ambulatory impairment in a mouse ischemic hindlimb model.A )Effect of overexpression of human AGGF1on tissue necrosis.FGF-2plasmid DNA was used as a positive control.Empty vector DNA was used as negative control (control).B )Dose-response curve of tissue necrosis with varying amounts of AGGF1plasmid DNA.C )Effect of overexpression of human AGGF1on ambulatory impairment.FGF-2plasmid DNA was used as a positive control.Empty vector DNA was used as negative control (control).The scores of ambulatory impairment reflected the functional recovery of hindlimb ischemia after surgeries.D )Dose-response curve of ambulatory impairment with varying amounts of AGGF1plasmid DNA.Data are shown as mean 6SEM (n =9mice for each group).*,P ,0.05.doi:10.1371/journal.pone.0046998.g003based angiogenic gene delivery system for HGF and FGF-1,respectively,and achieved some encouraging results (improved transcutaneous oxygen measurements TcPO2in the HGF case and a reduced risk of major amputation and death in the FGF-1case)[26,27].More clinical trials are needed to replicate these findings.Similarly,future clinical studies for therapeutic angiogenesis using AGGF1with a plasmid-based gene delivery system are needed to unequivocally establish the efficacy of AGGF1treatment for PAD.Tsurumi et al showed that administration of naked plasmid DNA encoding VEGF increased regional blood flow to the transfected thigh muscle and distal lower limb muscle by 1.5-fold in a rabbit ischemic hindlimb model [28].Hiraoka et al.reported that in a rat model of hindlimb ischemia,injection of VEGF plasmid DNA increased blood flow by about 30%[24].Taniyama et al.showed that injection of naked HGF plasmid DNA into skeletal muscle resulted in a 70%increase in blood flow in a rat model of hindlimb ischemia three weeks after the injection [29].We demonstrated that injection of naked plasmid DNA for an AGGF1expression construct resulted in a 2.29-fold increase in blood flow (Figure 2).Furthermore,our parallel comparison analysis found that AGGF1was significantly better than FGF-2in stimulating blood flow 28days after gene transfer (P =0.034),although no significant difference was found for day 7and day 14(Figure 2).Therefore,AGGF1appears to be an excellent choice for therapeutic angiogenesis for critical limb ischemia.Some side effects were uncovered in previous studies involving therapeutic angiogensis for treating limb ischemia in PAD using VEGF and FGFs.The major adverse effects include increased vascular permeability (resulting in vascular leakage)and transient edema [19,20].In contrast to VEGF,AGGF1is required for maintaining the vascular integrity because adult heterozygous AGGF1+/2knockout mice showed increased vascular permeability in an assay using Evan’s blue dye [30].During the AGGF1treatment in a hindlimb ischemic mouse model for PAD,we did not observe any edema.However,future studies are needed to determine whether a larger dose of AGGF1DNA injection may result in side effects of edema or other undesirable abnormalities in major organs such as the heart,livers,kidneys,lungs and other organs.A long-standing question about the mode of action of AGGF1during angiogenesis is whether it acts by an autocrine or paracrine mechanism [21,31].Because the AGGF1proteinisFigure 4.Histological examinations of muscle tissues.A )Ischemic hindlimb muscle sections from ischemic mice showed severe necrosis 7days after injection of empty vector DNA.B )Ischemic mice injected with AGGF1plasmid DNA showed much less necrosis and retained intact muscle 7days after injection of DNA.C )Enlarged image for a section from A ).D )Enlarged image for a section from B ).doi:10.1371/journal.pone.0046998.g004expressed and secreted by endothelial cells,we suggested that AGGF1may act by an autocrine mode,however,we also stated that a paracrine mode of action was possible because AGGF1was highly expressed in vascular smooth muscle cells [21].In the present study we show that overexpression of AGGF1in skeletal muscle cells can apparently promote strong angiogenesis (Figure 5).The data strongly suggest that AGGF1is able to act by a paracrine mechanism.The molecular mechanism by which AGGF1promotes angiogenesis remains to be further explored.Decreased expression of AGGF1resulted in massive apoptosis of endothelial cells,whereas recombinant AGGF1can rescue this abnormality when coated onto wells of culture plates [23].Similar results were obtained for endothelial cell migration [23].Thus,AGGF1promotes angiogenesis by acting as a surviving factor for endothelial cells or by promoting endothelial cell migration.We have shown that AGGF1interactswith TWEAK [21],which promotes angiogenesis as potently as VEGF and FGF-2[32].TWEAK acts by binding to its receptor fibroblast-growth factor inducible 14(Fn14).Thus,AGGF1may promote angiogenesis by interacting with TWEAK.Alternatively,AGGF1may have its own receptor during angiogenesis.Future studies can focus on identifying the receptor for AGGF1and the detailed molecular signaling mechanism involved in AGGF1-mediated angiogenesis.In conclusion,the data in this study suggest that gene transfer using AGGF1naked plasmid DNA significantly increases blood flow by promoting angiogenesis and inhibiting tissue necrosis in a mouse model of critical hindlimb ischemia for PAD.Therapeutic angiogenesis with AGGF1may be beneficial to patients with not only PAD,but also other ischemic conditions such as ischemic heart disease,MIs,andstrokes.Figure 5.Overexpression of human AGGF1stimulated angiogenesis in a mouse hindlimb ischemia model.A )Representative images of sections of ischemic hindlimb muscles immunostained with an anti-CD31antibody 7,14,or 28days after injection of AGGF1plasmid DNA or empty vector DNA (control).B )Quantification of density of CD-31-positive vessels per mm 2in ischemic muscles 28days after injection of DNA.C )The number of CD-31-positive vessels per muscular fiber 28days after injection of DNA.*,P ,0.05.doi:10.1371/journal.pone.0046998.g005Materials and MethodsAnimals and a Hindlimb Ischemic ModelMale C57BL/6mice were obtained from the Animal Facility at Wuhan University Zhong Nan Hospital.Animal care and experimental procedures were approved by the Ethics Committee of College of Life Science and Technology,Huazhong University of Science and Technology.Male mice at the age of 10–12weeks were used.The hindlimb ischemic model was created as described previously [33,34].The mice were anesthetized with an intraperitoneal injection of sodium pentobarbital (50mg/kg).After incision of the skin in the inguinal region,the femoral artery was separated from the femoral vein and nerve.Both common iliac artery and femoral artery in the right side were tightly ligated with 6/0Ethilon sutures.Subsequently,the skin incision was closed by sutures.The arteries at the left side were not ligated and served as control.Gene TransferThe cDNA for human AGGF1was obtained using RT-PCR analysis with total RNA samples from HeLa cells (ATCC).The PCR product was digested with BamH I and Not I designed into the PCR primers,and cloned into vector pcDNA3.1-FLAG,resulting in a mammalian expression construct for AGGF1(pcDNA3.1-AGGF1-FLAG).The entire insert in the AGGF1expression construct was sequenced and verified.The expression plasmid for FGF-2was developed as for AGGF1.One day after the ischemia surgery,0.15ml of 1.33m g/m l DNA (200m g)for either pcDNA3.1-AGGF1-FLAG or pcDNA3.1-FLAG was injected into the gastrocnemius muscle close to the ligation site of the right ischemic hindlimb [24,35,36].Mice were sacrificed at various time points after the injection and characterized.Blood Flow AnalysisThe blood flow in both legs was measured using a Vevo 2100High-Resolution Microultrasound System (Visualsonics Inc,Tor-onto,Canada)immediately before the ischemic surgery and at different time points of postoperative days 1,8,15,22and 29.The Microultrasound System allows for repeated,noninvasive and quantitative measurements of the blood flow of the certain sites of the artery.The surgical outcome of limb ischemia at the right leg,but not the left leg,was confirmed by the Microultrasound System.The mice were anesthetized with 1%isoflurane,placed on a heat pad,and kept at 37u C to minimize data variations caused by fluctuating body temperatures.Excess hairs were removed by depilatory cream from the urite to the limb before analysis [37].Physical Examinations of Tissue Necrosis and Ambulatory ImpairmentTissue necrosis was scored as described [38].‘‘0’’was for no necrosis,‘‘1’’for necrosis of one toe,‘‘2’’for necrosis of two or more toes ‘‘3’’for necrosis of the foot,‘‘4’’for necrosis of the leg,and ‘‘5’’for autoamputation of the entire leg.The severity of ambulatory impairment was assessed by using the following scale as described [38,39].‘‘0’’was for normal response (plantar/toe flexion in response to tail traction),‘‘1’’for plantar but not toe flexion,‘‘2’’for no plantar or toe flexion,‘‘3’’for dragging of foot,and ‘‘4’’for spontaneous movement of non-ischemic hindlimb.Physical examinations of both tissue necrosis and ambulatory impairment were performed by an observer who was blinded to treatments.Quantitative Real-time PCR AnalysisTotal RNA samples were extracted from gastrocnemius muscles using TRIzol (Invitrogene),precipitated with isopropanol,and treated with RQ1RNase-Free DNase (Promega)to eliminate DNA contamination.The synthesis of the first-strand cDNA was performed using M-MLV Reverse Transcriptase (Promega).Real-time RT-PCR analysis was performed using the FastStart Universal SYBR Green Master (Roch)and a 7900HT Fast Real-Time PCR System (ABI).The sequences for RT-PCR primers are 59-GATCAAGG-CAGTCAAAATGGCA-39(sense)and 59-CCTCCTTACT-TAGTGTTGGACCA-39(antisense)for AGGF1,59-AGGTCGGTGTGAACGGATTTG-39(sense)and 59-TGTA-GACCATGTAGTTGAGGTCA-39(antisense)for glyceralde-hyde 3-phosphate dehydrogenase (GAPDH),and 59-TGCACC-CACGACAGAAGGAGAGC-39(sense)and 59-CGGCACACAGGACGGCTTGAAG-39(antisense)for mouse VEGFA.GAPDH served as an internal standard.The data were analyzed using 22gg Ct relative expression quantity as described [40].Western Blotting AnalysisIschemic and non-ischemic calf muscles were weighed,homog-enized,and centrifuged in RIPA buffer containing protease and phosphatase inhibitor cocktails (Roche Diagnostics).A 20m g of total protein extracts was separated on 10%SDS-PAGE gels,and transferred to nitrocellulose membranes (Millipore).The mem-branes were blocked with 4%milk powder,washed with TBST,and incubated with a polyclonal anti-AGGF1antibody or a control anti-b -actin antibody (Proteintech)overnight at 4u C.The membranes were washed with TBST and incubated with peroxidase-conjugated anti-rabbit IgG (Sigma)as a secondary antibody.The membranes were washed with TBST,and de-veloped using Supersignal Chemiluminescence Substrate system (Pierce).The protein signal was imaged and analyzed using ChemiDoc XRS(BioRad).Figure 6.Overexpression of human AGGF1in a mouse hindlimb ischemia model does not affect the expression level of VEGF .Seven days after delivery of AGGF1expression plasmid DNA (empty vector as control),mice were sacrificed and gastrocnemius muscle tissues were excised and used for isolation of total RNA and follow-up real time RT-PCR analysis of the mouse VEGF gene.Note that VEGF expression did not show any difference between AGGF1and control (P .0.05).doi:10.1371/journal.pone.0046998.g006。

脑缺血动物模型建立的研究进展

脑缺血动物模型建立的研究进展

脑缺血动物模型建立的研究进展田兆华1刘柏炎2郑东升1(1广州市白云区中医医院内二科广东广州 510470)(2湖南中医药大学中医内科实验室湖南长沙 410007)随着现代社会压力的增大及饮食结构的改变,脑血管疾病逐渐成为人类发病率最高的疾病之一。

因此,制作较为可靠的脑缺血动物模型,并进行相关的实验研究,对预防及治疗脑血管疾病具有重要的意义。

1 实验动物选择大鼠是公认的建立脑缺血模型的首选动物之一,这是因为:大鼠品种多,易于饲养,价格低廉,脑血管解剖和生理机能接近于人类;而且生命力较强,易施低温固定技术和组织生化分析。

2 全脑缺血模型2.1 两血管闭塞法 Smith等[1]通过夹闭双侧颈总动脉(CCA)合并低血压以减少脑血流量,造成急性脑缺血的方式建立全脑缺血模型。

脑组织缺血程度可以通过测定脑血流量(CBF)反映出来。

对于探讨人类缺血性脑损伤的发病规律,评价抗脑缺血药物的疗效等有价值。

但其无法研究血管狭窄后行为学的变化;而且脑缺血时限长,有时导致脑缺血后抽搐、癫痫等并发症的发生。

2.2三动脉阻断法通过结扎延髓腹侧面上的基低动脉,通过双侧CCA的关闭和开放实现全脑缺血再灌流。

该法成功率高,缺血指标的观察明确简单,可通过阻断CCA时间的长短控制脑缺血的程度。

被认为是至今为止较理想的全脑缺血再灌流的动物模型。

该模型广泛用于脑缺血的药物及方法的研究。

2.3 四血管闭塞法 Pulsinelli等[2]在1979年通过阻断双侧CCA及椎动脉血流成功建立了四血管闭塞法大鼠全脑缺血模型。

其可以明确检验缺血是否成功,可进行再灌流损伤的研究。

但手术较复杂,实验操作的熟练程度直接影响实验效果。

2.4 其它如颅内加压法、颈部加压法、断头法、低氧法及胸内血管夹闭法等,但这些方法都有不同程度的局限性,一般在实验研究中较少使用。

3 局灶性脑缺血模型3.1 开颅法 Tamura等[3]采用分离近端大脑中动脉(MCA),电凝或用手术丝线结扎MCA,造成脑梗塞,是目前公认的标准MCA闭塞模型。

脑供血动脉栓塞动物模型制作方法讨论

脑供血动脉栓塞动物模型制作方法讨论

应导 致 造 模 失败 ;另 3例 2 4小 时 复查 C T栓 塞 成功 ,4 8 小 时 复查 药 物治 疗 及 溶 栓治 疗 中发挥 作 用 ,因此 ,此种 方 法 制作 的 脑栓 塞 C T血 栓再 通 ,考 虑 失败 原 因 为血 栓形 成 不稳 定 ,脑 血 管再 灌 注 ,
未形 成 栓 塞 。手 术切 开 栓 塞法 制 作成 功 率 为 0 %( 0 / 1 0),失败 主 要原 因为 ,主 血管 纤 细 ,走 行 大 异 于人 脑 血 管 ,并 且 受 限 于试 验 用猪 体 位等 原 因 ,均未 分离 出 咽升 动脉 。 3 讨 论 3 . 1 介入 栓 塞法 动 物模 型可 作为 研究 脑栓 塞 的理 想模 型 [ 5 t 。
与I 临床 上 血 栓 性脑 梗 塞 的 病理 过 程 相 近 ,特 别适 于 血 栓 效应 和溶 血 栓疗 效 观 察 研 究 。缺 点 :需 要 有 专 门 的血 管造 影 机 ,要求 条 件 较高 。 此 种方 法制 作猪 大 脑 中动脉 脑梗 塞 模型 成功 率高 , 操 作简 便 ,
综 上 所述 ,选 择家 猪 作 为 实验 对 象 ,我 们 认 为介 入 法 制作 猪
治 疗脑 栓 塞 技 术 提供 一 种 良好 的疾 病模 型 。 介人 法 制作 的脑 栓 塞
及头 部 C T扫 描所 得影 响结 果 作为 评价 模型 制作 成 功 的标准 。据此 脑 供血 动 脉 栓 塞模 型 成 功率 高 ,可重 复 性 强 ,可 以为介 入 下 溶栓
利 用 此方 法 可 成 功 制作 咽 升 动脉 脑 栓 塞 动物 模 型 ,制 作模 型
观察 再 灌流 损伤 的局 部脑 栓 塞缺 血模 型 。缺 点 : ( 1 ) 栓 塞时 限 长 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

临床表现
早期:缺血性症状,多表现为局灶 神经功能缺损 晚期:出血性症状,多表现为脑室 内出血,脑室旁出血
2.发病特点
3.发病原因:
3.发病特点
正常人群中每1000人每年发病为0.31~ 0.64人,中老年人比较常见。随着年龄的 增长发病率呈指数递增,75岁以上年发病 率达每1000人2.93。
(4)大鼠脑缺血模型
二血管阻断法 全脑缺血模型: 四动脉阻断法
三动脉阻断法
栓塞法 栓线法 局灶性脑缺血(MCAO)模型 光化学法、 开颅法
四动脉阻断法
戊巴比妥钠腹腔麻醉, 腹卧固定大鼠,颈后正中切开 , 暴露第一颈椎的两侧 翼板小孔, 用单极电凝针插入其中 ,烧灼双侧推动脉 , 使之永久闭塞 ,24 h后 再仰卧位 , 局麻喉部 , 在喉头与胸骨间 3 cm处正中切口 ,分离暴露二侧CCA , 手术缝合线打活结 结扎 , 阻断两侧 CCA使缺血 30 min , 松开活结 ,造成大鼠 全脑缺血再灌流模型。
二.动物脑缺血模型
• 1986年,Koizumi等首先采用血管内栓塞堵 塞脑中动脉开口建立大鼠局灶性脑缺血模 型(MCAO)。 • 1989年,Longa等采用血管内栓线阻塞法制 备该模型。 • 之后发展了双侧颈总动脉结扎法、开颅机 械闭塞法、微栓子栓塞阻断法、化学刺激 诱导血栓性闭塞法、光化学诱导血栓形成 法等。
1.脑缺血动物模型分类:
A.根据动物种类分类:
可分为猩猩,猴子,狗,猫,猪,兔子,大鼠,小鼠等脑缺血模 型。
B.根据缺血范围分类:
全脑缺血和局灶性缺血。
完全阻断或骤然降低大脑 的血流,造成全脑缺血。 暂时广泛地影响各个脑区, 病理改变发生在易损区。
全脑缺血模型 :
永久性闭塞
局灶性脑缺血:
暂时性脑缺血(再灌注)
优点: 该法手术简单, 失败率低,模拟了临床上休克、心功能不全、脑血管严重狭窄或 阻塞合 并血液低灌流 引起的脑循环障碍 缺点: 脑缺血时限长,有时导致脑缺血后抽搐、癫痫等并发症的发生 由于全身低血压严重干扰其他器官的 血供及实验结果模型不能在清醒动物进行, 无法进行神经行为的观察 适用: 探讨不完全性脑缺血对能量代射的影响,缺血性脑损伤的发病 机理、 评价抗脑缺血药物的疗效
光化学法:
制备:动物静脉内注入光敏剂虎红酸钠,用立体定位仪在特定的脑区照射一 定波长的冷光源(500-600 nm),从而激活微血管内的凝血机制,刺激发光 化学反应的单线态氧, 直接损伤血管内皮细胞而诱导血栓形成。 引起光照局部形成血栓。适用于一些溶栓药物的脑保护作用的研究。
优点:该法手术创伤小, 动物易长时间存活血栓形成过程与人类相似可选择皮层
梗塞部位
缺点: 较早地导致终末动脉及微血管永久性闭塞 ,不利于扩血管及促进侧支循环 作用的研究 适用:慢性脑缺血研究抗血小板, 抗血栓等药物及内皮细胞保护等的动物实验研 究
开颅法
制备:颞下部开颅,分离近端MCA,夹闭、电凝或用手术 丝线结扎MCA,造成脑梗塞,是目前公认的标准MCA闭 塞模型。在大鼠耳眼连线中点开口, 分离颞肌, 剪断颧弓 , 在颧弓根前方颅骨钻孔, 于大脑上、 下静脉间11-0外科无 伤缝合线结扎MCA ,造成MCA支配区局灶性脑缺血模型。 优点:实验条件较恒定,缺血效果可靠 以大脑皮层、尾状核缺血最明显,最接近人类脑卒中 是迄今应用最广泛的经典性局灶脑缺血模型 缺点:于阻断MCA的手术难度较大,需显微外科手术技术 但可能形成脑脊液漏 对操作过多的血管可能影响缺血后的侧支循环 适用:脑缺血后长期的神经功能缺损及介入治疗和康复策略的研究 同时进行生理、 生化、病理形态及神经病学等指标的观察
缺血性脑血管病 ( I CVD) 约占全部脑血管 病的 80%, 具有发病率、致残率、病死率 高的特点 , 已成为严重危害人类健康的疾 病之一。由于临床研究的种种限制 , 脑缺 血动物模型已成为研究脑血管病损伤机制 和防治措施不可缺少的工具。因此 , 建立 最接近人类脑缺血的理想动物模型 , 具有 重要意义。
(3)完全性卒中 突然出现中度以上程度的局部神经功能障 碍,于数小时内达到高峰,并且稳定而持续 的存在。以后症状可能时轻时重,但总的趋 势是无进步。其症状和体征包括偏瘫、偏盲、 失语以及感觉障碍,随闭塞的动脉不同症状 各异。主要是颈内动脉闭塞、大脑中动脉闭 塞和脑动脉多发性狭窄。
烟雾病
烟雾病是原发性颈内动脉末端狭窄、闭塞以及脑底 出现异常血管扩张网所致的脑出血性或缺血性疾病。 此病首先由日本学者提出,因脑底的异常血管网在 脑血管造影上似“烟雾状”或“朦胧状”而得名。
三动脉阻断法
经麻醉动物颈正中切口,分离双侧CCA备用,剪去枕骨腹侧面 部分颅骨,用5-0丝线结扎延髓腹侧面上的基底动脉,通过双 侧CCA的关闭和开放实现全脑缺血再灌注。模型的成功与否通 过脑电图翻正反射进行验证。 优点:成功率高,缺血指标的观察明确简单,脑缺血程度可控。
大脑中动脉( MCA)是人群脑卒中的多发部位,MCA闭塞 (Middle cerebral artery occlusion, MCAO)模型被 普遍认为是局灶性脑缺血的标准动物模型,
2.不同动物脑缺血模型制备(1)非人灵长Fra bibliotek动物(eg:猴)
局部缺血模型
优点:脑解剖,生理特征,对药物反应和代 谢都和人类相似 缺点:价格昂贵,不易饲养,来源困难等。
(2)兔脑缺血模型
特点:兔的颅内主要供血动脉为颈内动脉,且颅内外血管间没有吻合网,脑内血管间的 端-端吻合发达程度与人脑类似,兔大脑中动脉主干阻断后, 侧支循环对大脑中动脉供血 区的代偿供血作用很小 ,有利于梗死模型重复、 稳定的建立。 适用:形态学,及影像学研究
n 短暂性脑缺血发作(TIA) n 局灶性脑缺血导致突发短暂的可逆性
神经功能障碍:
v v v v
发作持续数min, 通常30min恢复。 超过2h者, 常遗留轻微神经功能缺损。 CT\MRI大多正常。 24h内恢复 。
发病原因 TIA的发生是由于脑血流量下降或微小栓子 栓塞了脑动脉所致。
脑梗死(CI)
(5)小鼠
1.蒙古沙土鼠全脑缺血模型 :由于该动物大 脑基底动脉环的畸形,当双侧颈动脉结扎阻 断脑血供后椎动脉不能代偿,而造成全脑缺 血。
• 其中啮齿类动物因价格便宜、来源充足、 制作模型方法简单、存活率高、脑血管解 剖和生理特点与人接近,被广泛用作脑缺 血及缺血再灌注模型;
栓塞法
将栓塞剂,由颈外动脉(ECA)注入栓子后结扎,开放CCA,栓子由颈内 动脉(ICA)进入MCA,造成以MCA供血区脑组织损伤为主的缺血模型。 材料:同源血凝快 ,碳素颗粒 ,塑料颗粒,花生四烯酸钠
优点:可选材料多样,较好模拟脑栓塞 缺点:由于栓子的随机性, 无法预测栓塞的部位与大小缺血不一 , 不利于神经症状 和脑组织定量分析,不能再通与人类卒中差异较大 适用:血栓形成过程的研究溶栓治疗的观察(尤其是人血凝块栓塞者更有使用价值)
制备:
(3)小型猪脑缺血模型
特点: 其灰白质的分布, 以及脑形态学发展的演变 和神经系统发育的一系列演变也和人脑相似 小型猪具有手术耐受性好的优点 适用: 脑血管病的基础研究 影像学研究(DSA,MRI-DWI,MRI-PWI) 动态观察溶栓治疗、神经保护药物疗效监测 实用的但未广泛应用

脑血管与人有较大差异,且颈内-外动脉间 有非常丰富的吻合网,单根颅内动脉阻塞很 难形成稳定的脑梗死灶
¢ 是缺血性卒中(ischemic stroke)的总称
µ
脑血液供应障碍引起缺血\缺氧, 导致 局限性脑组织缺血性坏死&脑软化 。
Ø Ø
包括脑血栓形成\腔隙性梗死&脑栓塞等。 约占全部脑卒中的70%。
缺血再灌注
再灌注时间窗(time window) 脑梗死区血流再通后脑组织损伤可恢复的有效时间。 脑血流再通超过此时间窗可产生 再灌注损伤(reperfusion damage)。 脑缺血超早期治疗时间窗在6h之内。
临床症状
(1)可逆 性神经功能障碍 发病似卒中,出现的神经功能障碍较轻, 24小时以后逐渐恢复,一般在1~3周内, 功能完全恢复。脑内可 有小范围的脑梗 灶。 (2)发展性卒中 卒中症状逐渐发展,在几小时,几天,几 周甚至几个月内呈阶梯状或稳步恶化,常 于6小时至数日内达到高峰。脑血管造影常 显示颈内动脉或大脑中动脉闭塞。
线栓法:
制备:通过颈内动脉插入颅内动脉,阻塞大脑中动脉的分叉入口处血流, 造成大脑中动脉血供支配脑区的缺血。可将尼龙线取出,造成缺血脑区 血流的再灌注。此模型主要用于局部脑缺血再灌注神经元损伤的病理机 制。
优点: 急慢性局灶性缺血模型较理想的观察脑缺血再灌流损伤模型 缺点: 结扎枕、甲状腺上、咽升、舌、上颌外和翼腭动脉需要一定手术技巧 , 实质上是一种栓塞性卒中,与人类常见卒中仍有差异 适用: 该模型模拟了人类缺血性脑血管病的永久性及暂时性局灶性脑缺血的各种状 态, 在评价再灌流的作用及药物疗效时, 具有说服力。
动物脑缺血模型建立
2015.12.15
Ø主要内容:
一.人类脑缺血疾病:
1.概述: 短暂性脑缺血发作 ( 俗称 "小中风") 是由 于大脑特定部位的血液供应暂时受到阻碍, 致使产生了神经系统的功能障碍。一般持 续时间少于24小时
脑缺血性疾病的临床分类
Ø 1:短暂性脑缺血发作 Ø 2:脑梗死 Ø 3:烟雾病
优点:检验缺血是否成功的指标明确 并能进行灌注实验 海马损伤明显,可显示记忆功能的减退 缺点:操作较复杂,椎动脉和脊管前动脉间的交通支存在个体差异较大,操 作的熟练程度直接影响实验效果 适用:该模型用于特殊领域的研究
二血管阻断法
闭双侧颈总动脉(CCA)合并低血压以减少脑血流量,造成急性脑缺 血。 单纯结扎双侧 CCA而不降低血压 , 则不足以使脑血流量(CBF) 降低至缺血和能量代谢紊乱的程度
相关文档
最新文档