利用特殊值法巧解中考数学填空题
专题01 二次根式选填题压轴训练(解析版)八年级数学下学期期末考试压轴题专练(人教版,尖子生专用)
专题01 二次根式选填题压轴训练(时间:60分钟总分:120)班级姓名得分选择题解题策略:(1)注意审题。
把题目多读几遍,弄清这道题目求什么,已知什么,求、知之间有什么关系,把题目搞清楚了再动手答题。
(2)答题顺序不一定按题号进行。
可先从自己熟悉的题目答起,从有把握的题目入手,使自己尽快进入到解题状态,产生解题的激情和欲望,再解答陌生或不太熟悉的题目。
若有时间,再去拼那些把握不大或无从下手的题目。
这样也许能超水平发挥。
(3)数学选择题大约有70%的题目都是直接法,要注意对符号、概念、公式、定理及性质等的理解和使用,例如函数的性质、数列的性质就是常见题目。
(4)挖掘隐含条件,注意易错、易混点。
(5)方法多样,不择手段。
中考试题凸显能力,小题要小做,注意巧解,善于使用数形结合、特值(含特殊值、特殊位置、特殊图形)、排除、验证、转化、分析、估算、极限等方法,一旦思路清晰,就迅速作答。
不要在一两道小题上纠缠,杜绝小题大做,如果确实没有思路,也要坚定信心,“题可以不会,但是要做对”,即使是“蒙”,也有25%的正确率。
(6)控制时间。
一般不要超过40分钟,最好是25分钟左右完成选择题,争取又快又准,为后面的解答题留下充裕的时间,防止“超时失分”。
填空题解题策略:由于填空题和选择题有相似之处,所以有些解题策略是可以共用的,在此不再多讲,只针对不同的特征给几条建议:一是填空题绝大多数是计算型(尤其是推理计算型)和概念(或性质)判断性的试题,应答时必须按规则进行切实的计算或合乎逻辑的推演和判断;二是作答的结果必须是数值准确,形式规范,例如集合形式的表示、函数表达式的完整等,结果稍有毛病便是零分;三是《考试说明》中对解答填空题提出的要求是“正确、合理、迅速”,因此,解答的基本策略是:快——运算要快,力戒小题大做;稳——变形要稳,防止操之过急;全——答案要全,避免对而不全;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意。
数学中考答题技巧(集锦13篇)
数学中考答题技巧(集锦13篇)数学中考答题技巧第1篇1、迅速摸清“题情”。
刚拿到试卷的时候心情一定会比较紧张,在这种紧张的状态下不要匆匆作答。
首先要从头到尾、正面反面浏览全卷,尽可能从卷面上获取最多的信息。
摸清“题情”的原则是:轻松解答那些一眼就可以看出结论来的简单选择题或者填空题;对不能立即作答的题目可以从心里分为比较熟悉和比较陌生两大类。
对这些信息的掌握,可以确保不出现“前面难题做不出,后面易题没时间做”的尴尬局面。
2、答卷顺序“三先三后”。
在浏览了试卷并做了简单题的第一遍解答之后,我们的情绪就应该稳定了很多,现在对自己也会信心十足。
我们要明白一点,对于数学学科而言,能够拿到绝大部分分数就已经实属不易,所以要允许自己丢掉一些分数。
在做题的时候我们要遵循“三先三后”的原则。
首先是“先易后难”。
这点很容易理解,就是我们要先做简单题,然后再做复杂题。
当全部题目做完之后,如果还有时间,就再回来研究那些难题。
当然,在这里也不是说在做题的时候,稍微遇到一点难题就跳过去,这样自己给自己遗留下的问题就太多了。
也就违背了我们的原意。
其次是“先高后低”。
这里主要是指的倘若在时间不够用的情况下,我们应该遵守先做分数高的题目再做分数低的题目的顺序。
这样能够拿到更多的总得分。
并且,高分题目一般是分段得分,第一个或者第二个问题一般来说不会特别难,所以要尽可能地把这两问做出来,从总体上说,这样就会比拿出相应时间来做一道分数低的题目“合算”。
最后是“先同后异”。
这里说的“先同后异”其实指的是,在大顺序不变的情况下,可以把难题按照题目的大类进行区分,将同类型的题目放在一起考虑,因为这些题目所用到的知识点比较集中,在思考的时候就容易提高单位时间效益。
3、做题原则“一快一慢”。
这里所谓的“一快一慢”指的是审题要慢,做题要快。
题目本身实际上是这道题目的全部信息源,所以在审题的时候一定要逐字逐句地看清楚,力求从语法结构、逻辑关系、数学含义等各方面真正地看清题意。
特殊值法巧解数列题示例
特殊值法巧解数列题示例特殊值法在解决选择题与填空题中是比较常用的一种方法,在解题中能否灵活运用,体现了解题者的数学素养与能力.下面举例说明特殊值法(特殊数列、特殊数值)在解一些数列题中的应用.【例1】已知}{n a 是等比数列,且252,0645342=++>a a a a a a a n ,那么53a a +的值等于( )(A)5 (B)10 (C)15 (D)20【分析】取}{n a 为常数数列0>=a a n ,则由252645342=++a a a a a a 得254252=⇒=a a ,故5253==+a a a ,所以选A. 【例2】在等差数列}{n a 中,若45076543=++++a a a a a ,则=+82a a ( )(A)45 (B)75 (C)180 (D)300【分析】取}{n a 为常数数列a a n =,则由45076543=++++a a a a a 得904505=⇒=a a ,所以180282==+a a a ,所以选C.【例3】在各项均为正数的等比数列}{n a 中,若965=a a ,则=+++1032313log log log a a a ( )(A)12 (B)10 (C)8 (D)2+5log 3【分析】取}{n a 为常数数列0>=a a n ,则由965=a a 得392=⇒=a a ,所以103log 10log log log 31032313==+++a a a ,所以选B.如果解题者心中有数(具备特殊化思想),那么直接观察利用心算立即可得结果,可大大地提高解题速度,避免不必要的计算。
留心观察细事物,沙子也会变金银!【例4】等差数列}{n a 的前m 项和为30,前m 2项和为100,则它的前m 3项和为( )(A)130 (B)170 (C)210 (D)260【分析】取1=m 得100,30211=+=a a a ,从而求得702=a ,所以公差403070=-=d ,故11040703=+=a ,于是它的前m 3项和为2101107030321=++=++a a a ,选C.【例5】已知等差数列}{n a 的公差0≠d ,且931,,a a a 成等比数列,则1042931a a a a a a ++++的值是___________________.【分析】注意到931,,a a a 成等比数列,它们的下标1,3,9也成等比数列,所以设n a n =,则161310429311042931=++++=++++a a a a a a 为所求. 【例6】已知c b a ,,成等比数列,b x a ,,成等差数列,c y b ,,也成等差数列,则=+yc x a ___. 【分析】取c b a ==,则b x a ==,c y ==故=+yc x a 1+1=2. 从上可见,只要在解题过程中细心观察,抓住题目的主要特征,选取恰当的特殊数列或特殊数值,不但可简化解题过程,而且对磨练解题者的思维,提高观察分析问题的解题能力都有很大的作用.。
实数的运算(含二次根式 三角函数特殊值的运算)(解析版)2018年数学全国中考真题-2
2018年数学全国中考真题实数的运算(含二次根式 三角函数特殊值的运算)(试题二)解析版一、选择题 1. 计算的结果等于( ) A. 5 B. C. 9 D.【答案】C【解析】分析:根据有理数的乘方运算进行计算. 详解:(-3)2=9, 故选C .点睛:本题考查了有理数的乘方,比较简单,注意负号.2. (2018黑龙江绥化,4,3分) 下列运算正确的是( ) A.2a +3a =5a 2B.552-=-)( C.a 3·a 4=a12D.(π-3)0=1【答案】D.【解析】解:A 、235a a a +=,故错误; B 255-=(),故错误;C 、34347·a a a a +==,故错误;D 、0(3)1π-=,故正确.故选:D.【知识点】合并同类项,二次根式的性质,同底数幂的乘法,零指数幂的意义3. (湖北省咸宁市,1,3)咸宁冬季里某一天的气温为- 3℃〜2 ),则这一天的温差是( )A .1℃B .-1℃C .5℃D .-5℃ 【答案】C【解析】解:根据“温差=最高气温-最低气温”,2℃-(-3))=2℃+3℃=5℃,故选C . 【知识点】有理数的减法运算4. (2018吉林省,1, 2分)计算(﹣1)×(﹣2)的结果是( ) A .2B .1C .﹣2D .﹣3【答案】A【解析】根据“两数相乘,同号得正”即可求出(﹣1)×(﹣2)=2.故选A .【知识点】有理数的乘法5. (2018贵州铜仁,10,4)计算990013012011216121++++++ 的值为( ) A. 1100 B. 99100 C. 199D. 10099【答案】B【解析】∵21-121121=⨯=,31-2132161=⨯=,41-31431121=⨯=,51-41541201=⨯=, 61-51651301=⨯=,……,1001-90110099199001=⨯=, ∴990013012011216121++++++ =11111111111122334455699100 =1991100100.6.(2018云南省昆明市,12,4分)下列运算正确的是( )A .2193-=⎛⎫ ⎪⎝⎭B . 020181-=- C . 32326(0)a a a a -⋅=≠ D =【答案】C .【解析】A 选项是幂的乘方,213-⎛⎫ ⎪⎝⎭=(13-)×(13-)=19,故A 选项错误; B 选项02018-1-(-2)=3,故B 选项错误;3232a a -⋅=3×2·32a -=6a ,故C 选项正确是同底数幂的乘法,其法则是底数不变,指数相加,即32325a a a a +⋅==,故C 选项正确;D ==故D 选项错误,故选C .【知识点】幂的乘方;同底数幂的乘法;零指数幂;负指数幂;合并同类二次根式7. (2018湖北恩施州,16,3分)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图6,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为 个.【答案】1838.【解析】本题为探索规律型,由题意可知,因为满六进一,从右到左依次排列的绳子分别代表绳结束乘以6的0次幂,6的1幂,6的2次幂,6的3次幂,6的4次幂.她一共采集到的野果数量为1838个.8. (2018辽宁锦州,6,3分)下列运算正确的是A 、7a -a=6B 、a 2·a 3=a 5C 、(a 3)3=a 6D 、(ab)4=ab 4【答案】B ,【解析】:根据合并同类项、幂的乘方、同底数幂的乘法、积的乘方法则进行解答. 二、填空题1. (2018湖北省江汉油田潜江天门仙桃市,12,3分)112()2--= .【答案】0【解析】直接利用二次根式的化简、绝对值的性质和负整数指数幂的性质分别化简,再计算.2323)21(23331=--+=--+-【知识点】二次根式分母有理化,绝对值,负整数指数幂2. (湖北省咸宁市,5,3)按一定顺序排列的一列数叫做数列,如数列:1111,,,,,261220则这个数列的前2018个数的和为__________. 【答案】20182019【解析】11111111,,,,,21262312342045====⨯⨯⨯⨯则第2018个数为120182019⨯ 则这个数列的前2018个数的和为111111223344520182019+++++⨯⨯⨯⨯⨯ =1111111111223344520182019-+-+-+-++- =112019-=20182019【知识点】探究规律3. (2018年黔三州,19,3)根据下列各式的规律,在横线处填空: 11+12−1=12,13+14−12=112,15+16−13=130,17+18−14=156,... (1)2017+12018− =12017×2018 . 【答案】11009【解析】按照等式顺序,第一个为11+12−1=12,第二个为13+14−1(3−1)÷2+1=13×4,第3个式子15+16−1(5−1)÷2+1=15×6,17+18−1(7−1)÷2+1=17×8,… …以此类推,12017+12018−1(2017−1)÷2+1 =12017×2018 . 【知识点】等式规律探索4. (2018江苏常州,9,2)计算:3-1-=_______. 【答案】2 【解析】21313=-=--5. (2018四川巴中,21(1),6分)(1)计算:│-2│ -2cos 60°+()-1-(2018-)0【答案】原式=2-2×+6-1=2﹣1+6﹣1=6.【解析】依据数的绝对值意义,│-2│=2;由特殊角的三角函数值得cos 60°=;由负整数指数幂的意义得()-1=611=6或者()-1=(6-1)-1=6;根据a 0=1(a ≠0)得(2018-)0=1.6.(2018广西南宁,17,3) 观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,…,根据其中规律可得30+31+32+…+32018的结果的个位数字是 . 【答案】3,【解析】∵30=1,31=3,32=9,33=27,34=81∴各位数4个数一循环, ∴(2018+1)÷4=504余3, ∴1+3+9=13∴30+31+32+…+32018的结果的个位数字3.7. (2018湖北十堰,14,3分) 对于实数a ,b ,定义运算“)”如下,a )b =a 2-ab ,例如,5)3=52-5*3=10.若(x +1))(x -2)=6,则x 的值为 . 【答案】1【解析】由于(x +1))(x -2)=6,所以(x +1)2-(x +1)(x -2)=6,即有3x +3=6,解得x =1,故答案为:1.8. (2018湖北随州11,3分)8|2-2+2tan45°=______.【答案】4.【解析】842⨯2根据“负数的绝对值等于它的相反数”可得|2-2|=22-2;熟记特殊角的三角函数值可得2tan45°=2×1=2,所以原式=222)+2=222+2=4.三、解答题1. (2018省市,题号,分值)计算:11220182-⎛⎫--+ ⎪⎝⎭【思路分析】先计算各项的值,进而求得结果,一个负数的绝对值为它的相反数,任何非零数的零次幂都为1,一个数的-1次幂相当于它的倒数 【解题过程】原式=2-1+2=3【知识点】绝对值;零指数幂和负整指数幂;有理数加减2. (2018省市,题号,分值)先化简,再求值:22221644a a a aa-+-,其中a 【思路分析】先将分式化简,再将a 值代入求值【解题过程】()()()222244216224444a a a a a a a a a a a a +--==+-+-,当a =2时,原式 【知识点】分式的乘除;二次根式3. (2018广西省桂林市,19,6分)1103)6cos 45+2---︒⎛⎫⎪⎝⎭.【思路分析】先算出每一个式子的值,再依据混合运算顺序,依次计算即可.1103)6cos 45+2---︒⎛⎫ ⎪⎝⎭=6+121232-⨯=-=. 【知识点】实数的四则运算;特殊角三角函数值的运用;负指数次幂;0次幂;二次根式的化简4. (2018黑龙江省龙东地区,21,5分) 先化简,再求值:2221(1)21a a a a a a --÷+++,其中a =sin30°. 【思路分析】先化简分式,再求a 的值,最后把a 的值代入计算即可.【解题过程】解:原式=2222(1)()(1)(1)a a a a a a a a a a ++-+-++=22(1)(1)(1)(1)a a a a a a +++-=1aa -.当a =sin30°=12时,原式=-1.【知识点】分式的化简求值;特殊角的锐角三角函数值;平方差公式;完全平方公式5. (2018山东省东营市,19①,4分) 计算:02018112133012)tan ()()--︒+-- 【思路分析】根据绝对值、0指数、三角函数、负数的偶次幂、分数的负整数指数幂的法则性质进行计算即可。
解笞选择题和填空题常见技巧与秘籍-2022高考理科数学【创新教程】微点特训之练透小题
型,从而便于解题 .
[例 5] 已知定义在 R 上的偶函数y=f(
x)的导函数为
(
)
,
(
)
函数
满足:
当
时,
′x
x>0 x f
′(
x)+f(
x)
f
fx
2
0
1
7
的解 集
>1,且 f(
1)=2018.则不等式 f(
x)<1+
殊条件下为假 命 题,则 它 在 一 般 条 件 下 也 为 假 命 题 ”的
原理,由此判断选项正误的方法 .
1 x
1 y,则 下 列 关 系
[例 1]已知实 数 x,
<
y 满足
2
2
( )
式中恒成立的是
A.
t
anx>t
an
l
n(
x2+2)>l
n(
y B.
y2+2)
( ) ( )
1 1
C. >
|x|
( )
是
A.(-1,
1)
B.(-∞ ,
1)
C.(-1,
0)∪ (
0,
1)
D.(-∞ ,-1)∪ (
1,+∞ )
[解析] C [构 造 函 数 法:当 x>0 时,
xf
′(
x)+
x)>1,∴xf
′(
x)+f(
x)-1>0,令 F(
x)=x
f(
x)-x=x(
x)-1),则 F
′(
x)=xf
′(
x)+f(
x)
f(
九年级数学下册常考点微专题提分精练(含特殊角三角函数值的混合运算中考最新模拟30道(解析版)
专题25 含特殊角三角函数值的混合运算中考最新模拟30道1.计算:()1013tan30132π-⎛⎫+︒--- ⎪⎝⎭;2()01 3.14tan 603π⎛⎫---︒ ⎪⎝⎭.3.计算01(2)1tan602π︒⎛⎫---- ⎪⎝⎭4.计算:100()3tan 30(13π---+5.计算:(1)sin45°·cos45°+tan60°·sin60°;(2)sin30°-tan 245°+34tan 230°-cos60°.614cos 45()|2|2-︒++-7.计算:10()2cos 451(3.14)4π-︒-+-+-. 45(2017-直接利用绝对值的性质以及特殊角的三角函数值和完全平方公式分别化简求出答案.45(2017-9.计算:01(24602sin π⎛⎫-+︒ ⎪⎝⎭. 2cos6012+-原式利用负整数指数幂法则,【答案】-1【分析】直接利用绝对值、算术平方根、零指数幂的性质以及特殊角的三角函数值分别化简13.计算 01(12cos302︒⎛⎫++⋅ ⎪⎝⎭15.计算:022tan 60( 3.14)()2π--︒--+-+二次根式的化简是解决本题的关键.16.计算:(12)﹣1﹣2tan45°+4sin60°17.计算:10()(1)2cos6092π-++-+ 2cos609+18.计算:40111 1.414)2sin 602︒⎛⎫-++-- ⎪⎝⎭19101()2cos60(2π)2---︒+-.【答案】3.【分析】根据有理数的绝对值,特殊角的三角函数值,负整数指数幂,二次根式一一计算即可得出答案.【详解】原式31213=+-+=【点睛】本题考查实数的混合运算,解题关键是熟练掌握运算法则.21.计算:1145tan 603-⎛⎫+-- ⎪⎝⎭°°22.计算:02(2020)sin 45()2︒--+- 12sin 45(2︒-【点睛】此题考查计算能力,掌握零次幂的定义,23.计算:222cos602sin 45tan 60sin 303︒-︒+︒-︒.24.计算:012sin 45(2)()3π-︒+--.252012cos30()2-+︒+-.26.计算:1201tan 452cos60(2)2π-⎛⎫︒-︒+--- ⎪⎝⎭=3.【点睛】本题考查了特殊角三角函数、0指数幂、负整数指数幂等知识,熟知相关知识点是解题关键.27.计算:(13)﹣2﹣(π)02|+4tan60°.28.计算)013460.2cos ⎛⎫+--︒ ⎪⎝⎭ 29.计算()0cot 3012sin 60cos60tan 30︒--︒+︒+︒.【点睛】此题主要考查不同特殊角三角函数值的混合运算,解题的关键是熟知特殊三角函数值.30.计算:2tan452sin60 cot302cos45︒-︒︒-︒.。
2017年中考数学试题分项版解析汇编第02期专题01实数含解析20170816117
专题1:实数一、选择题1.(2017北京第4题)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a4B.bd0 C. a b D.b c0【答案】C.考点:实数与数轴2.(2017天津第1题)计算(3)5的结果等于()A.2 B.2C.8 D.8【答案】A.【解析】试题分析:根据有理数的加法法则即可得原式-2,故选A.3.(2017天津第4题)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263108B.1.263107C.12.63106D.126.3105【答案】B.【解析】试题分析:学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,n的值为这个数的整数位数减1,所以12630000=1.263107.故选B.4.(2017福建第1题)3的相反数是()A.-3 B.1C.133D.3【解析】只有符号不同的两个数互为相反数,因此3的相反数是-3;故选A.5.(2017福建第3题)用科学计数法表示136 000,其结果是()A.0.136106B.1.36105C.136103D.136106【答案】B【解析】13600=1.36×105,故选B.6.(2017河南第1题)下列各数中比1大的数是()A.2 B.0 C.-1 D.-3【答案】A,【解析】试题分析:根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.考点:有理数的大小比较.7.(2017河南第2题)2016年,我国国内生产总值达到74.4万亿元.数据“74.4万亿”用科学计数法表示为()A.74.41012B.7.441013C.74.41013D.7.441014【答案】B.考点:科学记数法.8.(2017湖南长沙第1题)下列实数中,为有理数的是()A.3B.C.32D.1【答案】D【解析】试题分析:根据实数的意义,有理数为有限小数和有限循环小数,无理数为无限不循环小数,可知1是有理数.故选:D9.(2017广东广州第1题)如图1,数轴上两点A,B表示的数互为相反数,则点B表示的()A.-6 B.6 C.0 D.无法确定【答案】B【解析】试题分析:-6的相反数是6,A点表示-6,所以,B点表示6.故选答案B.考点:相反数的定义10.(2017湖南长沙第3题)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A.0.826106B.8.26107C.82.6106D.8.26108【答案】B考点:科学记数法的表示较大的数111.(2017山东临沂第1题)的相反数是()2007 11A.B.C.2017 D.201720072007【答案】A【解析】试题分析:根据只有符号不同的两数互为相反数,可知的相反数为.1120072007故选:A112.(2017山东青岛第1题)的相反数是().8A.8 B.8 C.18D.18【答案】C 【解析】试题分析:根据只有符号不同的两个数是互为相反数,知:1的相反数是818.故选:C考点:相反数定义13. (2017四川泸州第1题)7的绝对值为()A.7B.7C.17D.17【答案】A.【解析】试题分析:根据绝对值的性质可得-7的绝对值为7,故选A.14. (2017四川泸州第2题) “五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为()A.567103B.56.7104C.5.67105D.0.567106【答案】C.15.(2017山东滨州第1题)计算-(-1)+|-1|,结果为()A.-2 B.2 C.0 D.-1【答案】B.【解析】原式=1+1=2,故选B.16. (2017江苏宿迁第1题)5的相反数是11A.5B.C.D.555【答案】D.【解析】试题分析:根据只有符号不同的两个数互为相反数可得5的相反数是-5,故选D.17. .(2017山东日照第1题)﹣3的绝对值是()A.﹣3 B.3 C.±3 D.【答案】B.试题分析:当a是负有理数时,a的绝对值是它的相反数﹣a,所以﹣3的绝对值是3.故选B.考点:绝对值.18. (2017辽宁沈阳第1题)7的相反数是()A.-7B.C.D.74177【答案】A.【解析】试题分析:根据“只有符号不同的两个数互为相反数”可得7的相反数是-7,故选A.考点:相反数.19.(2017山东日照第3题)铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【答案】C.考点:科学记数法—表示较大的数.20. (2017辽宁沈阳第3题) “弘扬雷锋精神,共建幸福沈阳”幸福沈阳需要830万沈阳人共同缔造。
中考数学选择题和填空题解题技巧
中考数学选择题和填空题解题技巧选择题解法大全方法一:排除选项法选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。
方法二:赋予特殊值法即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。
用特殊值法解题要注意所选取的值要符合条件,且易于计算。
方法三:通过猜想、测量的方法,直接观察或得出结果这类方法在近年来的初中题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
方法四:直接求解法有些选择题本身就是由一些填空题、判断题、解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。
我们在做解答题时大部分都是采用这种方法。
例如:商场促销活动中,将标价为200元的商品,在打8折的基础上,再打8折销售,现该商品的售价是( )A 、160元 B、128元 C 、120元 D、 88元方法五:数形结合法解决与图形或图像有关的选择题,常常要运用数形结合的思想方法,有时还要综合运用其他方法。
方法六:代入法将选择支代入题干或题代入选择支进行检验,然后作出判断。
方法七:观察法观察题干及选择支特点,区别各选择支差异及相互关系作出选择。
方法八:枚举法列举所有可能的情况,然后作出正确的判断。
例如:把一张面值10元的人民币换成零钱,现有足够面值为2元,1元的人民币,换法有( )A.5种B.6种C.8种D.10种分析:如果设面值2元的人民币x张,1元的人民币y元,不难列出方程,此方程的非负整数解有6对,故选B。
方法九:待定系数法要求某个函数关系式,可先假设待定系数,然后根据题意列出方程(组),通过解方程(组),求得待定系数,从而确定函数关系式,这种方法叫待定系数法。
方法十:不完全归纳法当某个数学问题涉及到相关多乃至无穷多的情形,头绪纷乱很难下手时,行之有效的方法是通过对若干简单情形进行考查,从中找出一般规律,求得问题的解决。
中考数学专卷2020届中考数学总复习(29)锐角三角函数-精练精析(1)及答案解析
图形的变化——锐角三角函数1一.选择题(共9小题)1.如图,在Rt△ABC中,∠C=90°,∠A=30°,E为AB上一点且AE:EB=4:1,EF⊥AC于F,连接FB,则tan∠CFB的值等于()A.B.C.D.2.如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠AOB的正弦值是()A.B. C. D.3.如图,已知Rt△ABC中,∠C=90°,AC=4,tanA=,则BC的长是()A.2 B.8 C.2 D.44.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA=()A. B. C. D.5.在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.6.计算sin245°+cos30°•tan60°,其结果是()A.2 B.1 C. D.7.在△ABC中,若|cosA﹣|+(1﹣tanB)2=0,则∠C的度数是()A.45° B.60° C.75° D.105°8.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,3 B.1,1,C.1,1,D.1,2,9在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,则AC=()A.3sin40° B.3sin50° C.3tan40° D.3tan50°二.填空题(共8小题)10.在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,CD=4,AC=6,则sinB的值是_________ .11.如图,在△ABC中,∠C=90°,AC=2,BC=1,则tanA的值是_________ .12.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点.△ABC的顶点都在方格的格点上,则cosA= _________ .13.如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=∠BAC,则tan∠BPC=_________ .14.网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sinA= _________ .15.cos60°=_________ .16.△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=_________ .17.在△ABC中,如果∠A、∠B满足|tanA﹣1|+(cosB﹣)2=0,那么∠C=_________ .三.解答题(共7小题)18.甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会合,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C处与乙船相遇.假设乙船的速度和航向保持不变,求:(1)港口A与小岛C之间的距离;(2)甲轮船后来的速度.19.如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.20.如图,在△ABC中,∠ABC=90°,∠A=30°,D是边AB上一点,∠BDC=45°,AD=4,求BC的长.(结果保留根号)21.如图,在△ABC中,CD⊥AB,垂足为D.若AB=12,CD=6,tanA=,求sinB+cosB的值.22.在△ABC中,AD是BC边上的高,∠C=45°,sinB=,AD=1.求BC的长.23.如图,在△ABC中,BD⊥AC,AB=6,AC=5,∠A=30°.①求BD和AD的长;②求tan∠C的值.24.如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)图形的变化——锐角三角函数1参考答案与试题解析一.选择题(共9小题)1.如图,在Rt△ABC中,∠C=90°,∠A=30°,E为AB上一点且AE:EB=4:1,EF⊥AC于F,连接FB,则tan∠CFB的值等于()A.B.C.D.考点:锐角三角函数的定义.分析:tan∠CFB的值就是直角△BCF中,BC与CF的比值,设BC=x,则BC与CF就可以用x表示出来.就可以求解.解答:解:根据题意:在Rt△ABC中,∠C=90°,∠A=30°,∵EF⊥AC,∴EF∥BC,∴∵AE:EB=4:1,∴=5,∴=,设AB=2x,则BC=x,AC=x.∴在Rt△CFB中有CF=x,BC=x.则tan∠CFB==.故选:C.点评:本题考查锐角三角函数的概念:在直角三角形中,正弦等于对比斜;余弦等于邻边比斜边;正切等于对边比邻边.2.如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠AOB的正弦值是()A.B.C.D.考点:锐角三角函数的定义;三角形的面积;勾股定理.专题:网格型.分析:作AC⊥OB于点C,利用勾股定理求得AC和AO的长,根据正弦的定义即可求解.解答:解:作AC⊥OB于点C.则AC=,AO===2,则sin∠AOB===.故选:D.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.如图,已知Rt△ABC中,∠C=90°,AC=4,tanA=,则BC的长是()A. 2 B.8 C.2D.4考点:锐角三角函数的定义.专题:计算题.分析:根据锐角三角函数定义得出tanA=,代入求出即可.解答:解:∵tanA==,AC=4,∴BC=2,故选:A.点评:本题考查了锐角三角函数定义的应用,注意:在Rt△ACB中,∠C=90°,sinA=,cosA=,tanA=.4.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA=()A.B.C.D.考点:锐角三角函数的定义.专题:网格型.分析:在直角△ABC中利用正切的定义即可求解.解答:解:在直角△ABC中,∵∠ABC=90°,∴tanA==.故选:D.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.5.在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.考点:互余两角三角函数的关系.专题:计算题.分析:根据题意作出直角△ABC,然后根据sinA=,设一条直角边BC为5x,斜边AB为13x,根据勾股定理求出另一条直角边AC的长度,然后根据三角函数的定义可求出t an∠B.解答:解:∵sinA=,∴设BC=5x,AB=13x,则AC==12x,故tan∠B==.故选:D.点评:本题考查了互余两角三角函数的关系,属于基础题,解题的关键是掌握三角函数的定义和勾股定理的运用.6.计算sin245°+cos30°•tan60°,其结果是()A. 2 B.1 C.D.考点:特殊角的三角函数值.专题:计算题.分析:根据特殊角的三角函数值计算即可.解答:解:原式=()2+×=+=2.故选:A.点评:此题比较简单,解答此题的关键是熟记特殊角的三角函数值.7.在△ABC中,若|cosA﹣|+(1﹣tanB)2=0,则∠C的度数是()A.45°B.60°C.75°D.105°考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方;三角形内角和定理.专题:计算题.分析:根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C的度数.解答:解:由题意,得 cosA=,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣45°=75°.故选:C.点评:此题考查了特殊角的三角形函数值及绝对值、偶次方的非负性,属于基础题,关键是熟记一些特殊角的三角形函数值,也要注意运用三角形的内角和定理.8.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,3 B.1,1,C.1,1,D.1,2,考点:解直角三角形.专题:新定义.分析:A、根据三角形三边关系可知,不能构成三角形,依此即可作出判定;B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;C、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.解答:解:A、∵1+2=3,不能构成三角形,故选项错误;B、∵12+12=()2,是等腰直角三角形,故选项错误;C、底边上的高是=,可知是顶角120°,底角30°的等腰三角形,故选项错误;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.故选:D.点评:考查了解直角三角形,涉及三角形三边关系,勾股定理的逆定理,等腰直角三角形的判定,“智慧三角形”的概念.9.在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,则AC=()A.3sin40°B.3sin50°C.3tan40°D.3tan50°考点:解直角三角形.分析:利用直角三角形两锐角互余求得∠B的度数,然后根据正切函数的定义即可求解.解答:解:∠B=90°﹣∠A=90°﹣40°=50°,又∵tanB=,∴AC=BC•tanB=3tan50°.故选:D.点评:本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.二.填空题(共8小题)10.在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,CD=4,AC=6,则sinB的值是.考点:锐角三角函数的定义;直角三角形斜边上的中线.专题:计算题.分析:首先根据直角三角形斜边中线等于斜边一半求出AB的长度,然后根据锐角三角函数的定义求出sinB即可.解答:解:∵Rt△ABC中,CD是斜边AB上的中线,CD=4,∴AB=2CD=8,则sinB===.故答案为:.点评:本题考查了锐角三角函数的定义,属于基础题,解答本题的关键是掌握直角三角形斜边上的中线定理和锐角三角函数的定义.11.如图,在△ABC中,∠C=90°,AC=2,BC=1,则tanA的值是.考点:锐角三角函数的定义.分析:根据锐角三角函数的定义(tanA=)求出即可.解答:解:tanA==,故答案为:.点评:本题考查了锐角三角函数定义的应用,注意:在Rt△ACB中,∠C=90°,sinA=,cosA=,tanA=.12.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点.△ABC的顶点都在方格的格点上,则cosA= .考点:锐角三角函数的定义;勾股定理.专题:网格型.分析:根据勾股定理,可得AC的长,根据邻边比斜边,可得角的余弦值.解答:解:如图,由勾股定理得AC=2,AD=4,cosA=,故答案为:.点评:本题考查了锐角三角函数的定义,角的余弦是角邻边比斜边.13.如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=∠BAC,则tan∠BPC=.考点:锐角三角函数的定义;等腰三角形的性质;勾股定理.专题:计算题.分析:先过点A作AE⊥BC于点E,求得∠BAE=∠BAC,故∠BPC=∠BAE.再在Rt△BAE 中,由勾股定理得AE的长,利用锐角三角函数的定义,求得tan∠BPC=tan∠BAE=.解答:解:过点A作AE⊥BC于点E,∵AB=AC=5,∴BE=BC=×8=4,∠BAE=∠BAC,∵∠BPC=∠BAC,∴∠BPC=∠BAE.在Rt△BAE中,由勾股定理得AE=,∴tan∠BPC=tan∠BAE=.故答案为:.点评:求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.14.网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sinA= .考点:锐角三角函数的定义;三角形的面积;勾股定理.分析:根据各边长得知△ABC为等腰三角形,作出BC、AB边的高AD及CE,根据面积相等求出CE,根据正弦是角的对边比斜边,可得答案.解答:解:如图,作AD⊥BC于D,CE⊥AB于E,由勾股定理得AB=AC=2,BC=2,AD=3,可以得知△ABC是等腰三角形,由面积相等可得,BC•AD=AB•CE,即CE==,sinA===,故答案为:.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.15.cos60°=.考点:特殊角的三角函数值.分析:根据特殊角的三角函数值计算.解答:解:cos60°=.故答案为:点评:本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,要掌握特殊角度的三角函数值.16.△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=60°.考点:特殊角的三角函数值;三角形内角和定理.专题:计算题.分析:先根据特殊角的三角函数值求出∠A、∠B的度数,再根据三角形内角和定理求出∠C即可作出判断.解答:解:∵△ABC中,∠A、∠B都是锐角sinA=,cosB=,∴∠A=∠B=60°.∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣60°=60°.故答案为:60°.点评:本题考查的是特殊角的三角函数值及三角形内角和定理,比较简单.17.在△ABC中,如果∠A、∠B满足|tanA﹣1|+(cosB﹣)2=0,那么∠C=75°.考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方.专题:计算题.分析:先根据△ABC中,tanA=1,cosB=,求出∠A及∠B的度数,进而可得出结论.解答:解:∵△ABC中,|tanA﹣1|+(cosB﹣)2=0∴tanA=1,cosB=∴∠A=45°,∠B=60°,∴∠C=75°.故答案为:75°.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.三.解答题(共7小题)18.甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会合,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C处与乙船相遇.假设乙船的速度和航向保持不变,求:(1)港口A与小岛C之间的距离;(2)甲轮船后来的速度.考点:解直角三角形的应用-方向角问题.专题:应用题;压轴题.分析:(1)根据题意画出图形,再根据平行线的性质及直角三角形的性质解答即可.(2)根据甲乙两轮船从港口A至港口C所用的时间相同,可以求出甲轮船从B到C所用的时间,又知BC间的距离,继而求出甲轮船后来的速度.解答:解:(1)作BD⊥AC于点D,如图所示:由题意可知:AB=30×1=30海里,∠BAC=30°,∠BCA=45°,在Rt△ABD中,∵AB=30海里,∠BAC=30°,∴BD=15海里,AD=ABcos30°=15海里,在Rt△BCD中,∵BD=15海里,∠BCD=45°,∴CD=15海里,BC=15海里,∴AC=AD+CD=15+15海里,即A、C间的距离为(15+15)海里.(2)∵AC=15+15(海里),轮船乙从A到C的时间为=+1,由B到C的时间为+1﹣1=,∵BC=15海里,∴轮船甲从B到C的速度为=5(海里/小时).点评:本题考查了解直角三角形的应用中的方向角问题,解答此题的关键是过B作BD⊥AC,构造出直角三角形,利用特殊角的三角函数值及直角三角形的性质解答.19.如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.考点:解直角三角形.专题:计算题.分析:根据tan∠BAD=,求得BD的长,在直角△ACD中由勾股定理得AC,然后利用正弦的定义求解.解答:解:∵在直角△ABD中,tan∠BAD==,∴BD=AD•tan∠BAD=12×=9,∴CD=BC﹣BD=14﹣9=5,∴AC===13,∴sin C==.点评:本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.20.如图,在△ABC中,∠ABC=90°,∠A=30°,D是边AB上一点,∠BDC=45°,AD=4,求BC的长.(结果保留根号)考点:解直角三角形.专题:几何图形问题.分析:由题意得到三角形BCD为等腰直角三角形,得到BD=BC,在直角三角形ABC 中,利用锐角三角函数定义求出BC的长即可.解答:解:∵∠B=90°,∠BDC=45°,∴△BCD为等腰直角三角形,∴BD=BC,在Rt△A BC中,tan∠A=tan30°=,即=,解得:BC=2(+1).点评:此题考查了解直角三角形,涉及的知识有:等腰直角三角形的性质,锐角三角函数定义,熟练掌握直角三角形的性质是解本题的关键.21.如图,在△ABC中,CD⊥AB,垂足为D.若AB=12,CD=6,tanA=,求sinB+cosB的值.考点:解直角三角形;勾股定理.专题:计算题.分析:先在Rt△ACD中,由正切函数的定义得tanA==,求出AD=4,则BD=AB﹣AD=8,再解Rt△BCD,由勾股定理得BC==10,sinB==,cosB==,由此求出sinB+cosB=.解答:解:在Rt△ACD中,∵∠ADC=90°,∴tanA===,∴AD=4,∴BD=AB﹣AD=12﹣4=8.在Rt△BCD中,∵∠BDC=90°,BD=8,CD=6,∴BC==10,∴sinB==,cosB==,∴sinB+cosB=+=.故答案为:点评:本题考查了解直角三角形,锐角三角函数的定义,勾股定理,难度适中.22.在△ABC中,AD是BC边上的高,∠C=45°,sinB=,AD=1.求BC的长.考点:解直角三角形;勾股定理.专题:计算题.分析:先由三角形的高的定义得出∠ADB=∠ADC=90°,再解Rt△ADB,得出AB=3,根据勾股定理求出BD=2,解Rt△ADC,得出DC=1;然后根据BC=BD+DC即可求解解答:解:在Rt△ABD中,∵,又∵AD=1,∴AB=3,∵BD2=AB2﹣AD2,∴.在Rt△ADC中,∵∠C=45°,∴CD=AD=1.∴BC=BD+DC=+1.点评:本题考查了三角形的高的定义,勾股定理,解直角三角形,难度中等,分别解Rt△ADB与Rt△ADC,得出BD=2,DC=1是解题的关键.23.如图,在△ABC中,BD⊥AC,AB=6,AC=5,∠A=30°.①求BD和AD的长;②求tan∠C的值.考点:解直角三角形;勾股定理.专题:几何图形问题.分析:(1)由BD⊥AC得到∠ADB=90°,在Rt△ADB中,根据含30度的直角三角形三边的关系先得到BD=AB=3,再得到AD=BD=3;(2)先计算出CD=2,然后在Rt△BCD中,利用正切的定义求解.解答:解:(1)∵BD⊥AC,∴∠ADB=90°,在Rt△ADB中,AB=6,∠A=30°,∴BD=AB=3,∴AD=BD=3;(2)CD=AC﹣AD=5﹣3=2,在Rt△BCD中,tan∠C===.点评:本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了含30度的直角三角形三边的关系.24.如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)考点:解直角三角形的应用.专题:几何图形问题.分析:设梯子的长为xm.在Rt△ABO中,根据三角函数得到OB,在Rt△CDO中,根据三角函数得到OD,再根据BD=OD﹣OB,得到关于x的方程,解方程即可求解.解答:解:设梯子的长为xm.在Rt△ABO中,cos∠ABO=,∴OB=AB•cos∠ABO=x•cos60°=x.在Rt△CDO中,cos∠CDO=,∴OD=CD•cos∠CDO=x•cos51°18′≈0.625x.∵BD=OD﹣OB,∴0.625x﹣x=1,解得x=8.故梯子的长是8米.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.。
关于中考数学答题技巧及方法归纳
关于中考数学答题技巧及方法归纳中考数学答题技巧一、基础题熟练掌握相关的数学概念、法则、性质是能够完整解题的前提。
解题过程,可先将题目中重要的已知条件标注出,达到节约读题时间,有效防止做题粗心大意,忘记考虑一些条件的目的。
1、选择、填空题:应做到对概念明了、思路清晰、计算准确,力求有100%的正确率,不在简单题目上失分。
解答选择题时主要采用直接推演法、排除法、图解法、特殊值法等。
解答填空题时要填最简的最终答案、多个正确选项做到不要漏选。
要保持大脑清醒,第一遍答题就要保证正确率,防止简单题做错了难于纠正。
2、计算题:主要是绝对值、零指数幂、负整数指数幂、三角函数、二次根式的综合,解答时要注意算理和运算顺序,逐一计算或化简,结果应为最简。
化简求值时必须要注意运算顺序及相关法则,在化成最简结果后,才代入计算。
3、证明题:要求做到每一步都有理有据,答题完整,简单的题目不容失分。
4、统计与概率:能从三种统计图(条形统计图、扇形统计图和折线统计图)及统计表中获取有用的信息,根据要求解答问题。
①根据条形统计图的矩形高度可得各部分数目,进行大小比较,便能计算各部分的比例;②根据扇形统计图的百分数值,可计算各部分的数目;③根据折线统计图可得各部分的数目和它们的变化情况及趋势规律;④对某些特征数要能理解、进行基本的计算和运用:能反映一组数据平均水平的平均数会受某些偏大或偏小数据的影响,应当小心使用;中位数也反映一组数据的平均水平(大多数水平),可以平衡平均数的不足之处;众数目的是提供一些问题的处理方式;通过方差、标准差的大小可以比较数据之间的稳定程度;⑤计算概率的基础是掌握绘制树状图或进行列表,值得注意的是所取出的样品是否有放回。
二、综合题解答综合题时候,经常一个问题需要运用到几个知识点,应当注意大条件跟子条件之间的本质区别,大条件是全解题过程适用,而子条件是有分不同题目的,至于何时不能再适用,应进行考量。
解答时必须计算准备,才不至于影响下一步的解答。
初中数学考试各题型解题技巧总结
初中数学考试各题型解题技巧总结初中数学选择题答题技巧1、排除法。
是根据题设和有关知识,排除明显不正确选项,那么剩下唯一的选项,自然就是正确的选项,如果不能立即得到正确的选项,至少可以缩小选择范围,提高解题的准确率。
排除法是解选择题的间接方法,也是选择题的常用方法。
2、特殊值法。
即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。
用特殊值法解题要注意所选取的值要符合条件,且易于计算。
此类问题通常具有一个共性:题干中给出一些一般性的条件,而要求得出某些特定的结论或数值。
在解决时可将问题提供的条件特殊化。
使之成为具有一般性的特殊图形或问题,而这些特殊图形或问题的答案往往就是原题的答案。
利用特殊值法解答问题,不仅可以选用特别的数值代入原题,使原题得以解决而且可以作出符合条件的特殊图形来进行计算或推理。
3、通过猜想、测量的方法,直接观察或得出结果。
这类方法在近年来的.中考题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
初中数学解填空题的方法技巧解答填空题的基本策略是准确、快速、整洁。
准确是解答填空题的先决条件,填空题不设中间分,一步失误,全题无分,所以应仔细审题、深入分析、正确推演、谨防疏漏,确保准确。
快速是赢得时间获取高分的必要条件,对于填空题的答题时间,应该控制在不超过20分钟左右,速度越快越好,要避免解答时间过长,影响后面答题现象的发生。
整洁是保住得分的充分条件,只有把正确的答案整洁的书写在试卷上才能保证阅卷教师正确的批改,特别是在网上阅卷时整洁显得尤为重要。
一、直接法这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。
二、特殊值法当填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,而已知条件中含有某些不确定的量,可以将题中变化的不定量选取一些符合条件的恰当特殊值(或特殊函数,或特殊角,图形特殊位置,特殊点,特殊方程,特殊模型等)进行处理,从而得出探求的结论。
中考数学复习讲义课件 专题2 填空题解题策略
(一)填空题的常见解法
直接法 [方法解读] 直接从题设条件出发,利用定义、性质、定理、公式等,经过 变形、推理、计算、判断得到结果,称为直接法.它是解填空题的最基本、 最常用的方法.使用直接法解填空题,要善于通过现象看本质,自觉地、 有意识地采取灵活、简捷的解法.
☞例 1 一元二次方程 x2-2x-3=0 的解为 x1=3,x2=-1 .
7.若m1 +n1=2,则分式5m+-5mn--n2mn的值为 -4 .
8.已知△ ABC 中,∠A=60°,∠ABC,∠ACB 的平分线交于点 O,则∠BOC 的度数为 120° .
整体代入法 [方法解读] 将一部分看整体代入所求式子求解问题的方法,一般适用于 代数式的求值题.
☞例 3 已知当 x=2 时,多项式 ax3-bx+1 的值为-17,则当 x=-1 时, 多项式 12ax-3bx3-5 的值为 22 . [解析] ∵当 x=2 时,ax3-bx+1=-17, ∴8a-2b+1=-17,即 4a-b=-9. 当 x=-1 时, 12ax-3bx3-5=-12a+3b-5=-3(4a-b)-5=-3×(-9)-5=22.
☞例 6 下列图案是用长度相同的小棒按一定规律拼搭而成,图案①需 8 根 小棒,图案②需 15 根小棒,…,按此规律,图案⑦需 50 根小棒.
[解析] 观察图形可得:第一个图形小棒的根数为 7+1=8(根),第二个图 形小棒的根数为 7×2+1=15(根),第三个图形小棒的根数为 7×3+1= 22(根),由此可得第七个图形小棒的根数为 7×7+1=50(根).
18.(2020·怀化)如图,△ OB1A1,△ A1B2A2,△ A2B3A3,…,△ An-1BnAn 都 是一边在 x 轴上的等边三角形,点 B1,B2,B3,…,Bn 都在反比例函数 y = x3(x>0)的图象上,点 A1,A2,A3,…,An 都在 x 轴上,则 An 的坐标 为 (2 n,0) .
中考数学选择题、填空题的应对策略
直 知 往 洁 、 范 , 文 并 茂 , 人 耳 目一 新 的感 阅 读 理 解 能 力 、 觉 思 维 能 力 、 识 迁 移 推 理 , 往 能迅 速 准 确 地 找 到 答案 。 规 图 给
提出了较高 的要求。
4 .问题 情 境设 置 自然 贴 切 ,真 实 有 他方法综合使 用 ,用排除法解选择题 的
的方 法 。
3充分 利 用题 型 功 能 , 入 考 查 多 种 式等直接进行计 算、 断、 . 深 判 推理等得 出结
能力。
多练习、 多总结、 多揣摩 、 多思考 , 一题 多
解、 题巧解。 一 关 键 词 :命 题 特 点
用方 法
函 数 与 方 程 、 转 化 与 化 归 、分 类 讨 基本要求 常 论 、 形 结 合 、 数 整体 思 想 、 元 思 想 等 数 换
卷: 选择题 、 填空题 的陈述准 确 , 表达 简 觉。仔 细品味 : 选择题 、 填空题 的起点较 低, 难度分布合理有序 , 目的呈现形式 题 和 内容 丰富多彩 ,既着眼于熟悉的题型
创 新 , 启 发 人 们 如 何 突 破 常 规 , 现 常 能 实 考 常新 、 落 俗 套 , 且 注 意根 据 考 查 目 不 而
至 少有 一个错的 ;5 如果选择支之 间存 ()
在 包 含 关 系 , 须 根 据 题 意 才 能判 定 。 必
的一半 ,是考 生的主要得分来源。选择
题 、 空 题 解 答 的成 败 , 接 影 响 着 解 答 填 直
二、 选择题 、 填空题 的基本要求
“ 准确 ” “ 速 ” “ 范 ”是 解 选 择 、快 、规
2特殊值法。 . 对于具有一般性 结论 的 选择题 ,可选 择恰 当的满足题设条件的 特殊 关系等 ,代替有关字母进行 演算和 3 .排除法。是指逐个否定错 误选 择 支 , 出正确选择支 的方 法 , 找 它一般 与其 般规律是 : 1) 于干扰支 易于淘汰 的 ( 对
中考数学最后三道大题解题技巧
中考数学最后三道大题解题技巧中考数学最后三道大题解题技巧1.特值检验法对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
例:△ABC的三个顶点在椭圆4x2+5y2=6上,其中A、B两点关于原点O对称,设直线AC的斜率k1,直线BC的斜率k2,则k1k2的值为A.-5/4B.-4/5C.4/5D.2√5/5解析:因为要求k1k2的值,由题干暗示可知道k1k2的值为定值。
题中没有给定A、B、C三点的具体位置,因为是选择题,我们没有必要去求解,通过简单的画图,就可取最容易计算的值,不妨令A、B分别为椭圆的长轴上的两个顶点,C为椭圆的短轴上的一个顶点,这样直接确认交点,可将问题简单化,由此可得,故选B。
2.极端性原则将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。
极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
3.剔除法利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
4.数形结合法由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。
数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
5.递推归纳法通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
6.顺推法利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
7.逆推验证法将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。
8.正难则反法从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
9.特征分析法对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。
例谈特例殊值法在数学解题中的运用
浅谈特例殊法在数学中的运用高三级 数学科 陈鹏摘要:特例法在数学解题中的应用,有的数学题用一般法去解答很难求解甚至不知从哪里下手,这个时候如果选择特例法代入求解,就可以起到化难为易、简化思维量等效果。
关键词:特例法、概念、作用、解题、应用正文:在数学教学和数学解题中,有些问题从直接解题入手很难。
甚至不知从哪里入手,这个时候如果选择特例法代入求解,就可以起到化难为易、简化思维量等效果。
所谓特例法就是运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理。
用特例法解题时,特例取得愈简单、愈特殊愈好。
特例法教学的真谛与核心就是理论与实践相结合的互动式教学,学生通过对案例进行分析和解决实际问题的过程中获得启迪,逐渐归纳出一个有效的思维与逻辑。
从而达到学理论、懂理论、用理论三者之间的有机结合。
如在必修四2.5.1平面几何中的向量方法(课本P109页的例1)平行四边形是表示向量加法与减法的几何模型的教学中。
如图,AD AB DB AD AB AC -=+=,你能发现平行四边形对角线的长度与两条邻边长度 之间的关系吗?如果此题通过长度与模的关系,寻求向量中的基底表示,大部分学生可能觉得无从下手。
如果采用特例法,首先让学生去寻求长方形对角线的长度与两条邻边长度之间有何关系?通过特例层层设问和质疑,把思维引向深入。
学生就能很快根据勾股定理去找到对角线的长度与两条邻边长度之间关系而达到解决问题目的。
同时把乏味、空洞、枯燥的学习通过特例设置直观有趣的质疑,刺激了学生的求知欲望,激发了学生的好奇心,在生疑、解惑中收获新的知识和能力,体会思考与创造带来的快乐,认识自己潜在的智慧与力量,也改变了教师一讲到底局面。
增强了教学互动,活跃了课堂气氛,激发学习兴趣和调动学生学习积极性。
特例法在数学教学与数学解题中要把握的最关键的环节是“如何选择合适的特例”个人认为要做到准确地选择特例首先就要知道特例法的三个特征:(一)、特例很少发生,但一旦发生,就能冲击现有的规则。
2022年江苏省常州市中考数学试卷和答案解析
2022年江苏省常州市中考数学试卷和答案解析一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)1.(2分)2022的相反数是()A.2022B.﹣2022C.D.2.(2分)若二次根式有意义,则实数x的取值范围是()A.x≥1B.x>1C.x≥0D.x>0 3.(2分)下列图形中,为圆柱的侧面展开图的是()A.B.C.D.4.(2分)如图,在△ABC中,D、E分别是AB、AC的中点.若DE=2,则BC的长是()A.3B.4C.5D.65.(2分)某城市市区人口x万人,市区绿地面积50万平方米,平均每人拥有绿地y平方米,则y与x之间的函数表达式为()A.y=x+50B.y=50x C.y=D.y=6.(2分)如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是()A.垂线段最短B.两点确定一条直线C.过一点有且只有一条直线与已知直线垂直D.过直线外一点有且只有一条直线与已知直线平行7.(2分)在平面直角坐标系xOy中,点A与点A1关于x轴对称,点A与点A2关于y轴对称.已知点A1(1,2),则点A2的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(﹣1,﹣2)8.(2分)某汽车评测机构对市面上多款新能源汽车的0~100km/h 的加速时间和满电续航里程进行了性能评测,评测结果绘制如下,每个点都对应一款新能源汽车的评测数据.已知0~100km/h的加速时间的中位数是ms,满电续航里程的中位数是nkm,相应的直线将平面分成了①、②、③、④四个区域(直线不属于任何区域).欲将最新上市的两款新能源汽车的评测数据对应的点绘制到平面内,若以上两组数据的中位数均保持不变,则这两个点可能分别落在()A.区域①、②B.区域①、③C.区域①、④D.区域③、④二、填空题(本大题共10小题,每小题2分,共20分.不需写出参考答案过程,请把答案直接填写在答题卡相应位置上)9.(2分)化简:=.10.(2分)计算:m4÷m2=.11.(2分)分解因式:x2y+xy2=.12.(2分)2022年5月22日,中国科学院生物多样性委员会发布《中国生物物种名录》2022版,共收录物种及种下单元约138000个.数据138000用科学记数法表示为.13.(2分)如图,数轴上的点A、B分别表示实数a、b,则(填“>”、“=”或“<”).14.(2分)如图,在△ABC中,E是中线AD的中点.若△AEC的面积是1,则△ABD的面积是.15.(2分)如图,将一个边长为20cm的正方形活动框架(边框粗细忽略不计)扭动成四边形ABCD,对角线是两根橡皮筋,其拉伸长度达到36cm时才会断裂.若∠BAD=60°,则橡皮筋AC 断裂(填“会”或“不会”,参考数据:≈1.732).16.(2分)如图,△ABC是⊙O的内接三角形.若∠ABC=45°,AC=,则⊙O的半径是.17.(2分)如图,在四边形ABCD中,∠A=∠ABC=90°,DB 平分∠ADC.若AD=1,CD=3,则sin∠ABD=.18.(2分)如图,在Rt△ABC中,∠C=90°,AC=9,BC=12.在Rt△DEF中,∠F=90°,DF=3,EF=4.用一条始终绷直的弹性染色线连接CF,Rt△DEF从起始位置(点D与点B重合)平移至终止位置(点E与点A重合),且斜边DE始终在线段AB上,则Rt△ABC的外部被染色的区域面积是.三、参考答案题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,参考答案应写出文字说明、演算步骤或推理过程)19.(8分)计算:(1)()2﹣(π﹣3)0+3﹣1;(2)(x+1)2﹣(x﹣1)(x+1).20.(6分)解不等式组,并把解集在数轴上表示出来.21.(8分)为减少传统塑料袋对生态环境的破坏,国家提倡使用可以在自然环境下(特定微生物、温度、湿度)较快完成降解的环保塑料袋.调查小组就某小区每户家庭1周内环保塑料袋的使用情况进行了抽样调查,使用情况为A(不使用)、B(1~3个)、C (4~6个)、D(7个及以上),以下是根据调查结果绘制的统计图的一部分.(1)本次调查的样本容量是,请补全条形统计图;(2)已知该小区有1500户家庭,调查小组估计:该小区1周内使用7个及以上环保塑料袋的家庭约有225户.调查小组的估计是否合理?请说明理由.22.(8分)在5张相同的小纸条上,分别写有语句:①函数表达式为y=x;②函数表达式为y=x2;③函数的图象关于原点对称;④函数的图象关于y轴对称;⑤函数值y随自变量x增大而增大.将这5张小纸条做成5支签,①、②放在不透明的盒子A中搅匀,③、④、⑤放在不透明的盒子B中搅匀.(1)从盒子A中任意抽出1支签,抽到①的概率是;(2)先从盒子A中任意抽出1支签,再从盒子B中任意抽出1支签.求抽到的2张小纸条上的语句对函数的描述相符合的概率.23.(8分)如图,在平面直角坐标系xOy中,一次函数y=2x+b的图象分别与x轴、y轴交于点A、B,与反比例函数y=(x>0)的图象交于点C,连接OC.已知点B(0,4),△BOC的面积是2.(1)求b、k的值;(2)求△AOC的面积.24.(8分)如图,点A在射线OX上,OA=a.如果OA绕点O按逆时针方向旋转n°(0<n≤360)到OA′,那么点A′的位置可以用(a,n°)表示.(1)按上述表示方法,若a=3,n=37,则点A′的位置可以表示为;(2)在(1)的条件下,已知点B的位置用(3,74°)表示,连接A′A、A′B.求证:A′A=A′B.25.(8分)第十四届国际数学教育大会(ICME﹣14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是3×83+7×82+4×81+5×80=2021,表示ICME﹣14的举办年份.(1)八进制数3746换算成十进制数是;(2)小华设计了一个n进制数143,换算成十进制数是120,求n 的值.26.(10分)在四边形ABCD中,O是边BC上的一点.若△OAB ≌△OCD,则点O叫做该四边形的“等形点”.(1)正方形“等形点”(填“存在”或“不存在”);(2)如图,在四边形ABCD中,边BC上的点O是四边形ABCD 的“等形点”.已知CD=4,OA=5,BC=12,连接AC,求AC的长;(3)在四边形EFGH中,EH∥FG.若边FG上的点O是四边形EFGH的“等形点”,求的值.27.(10分)已知二次函数y=ax2+bx+3的自变量x的部分取值和对应函数值y如下表:x…﹣10123…y…430﹣5﹣12…(1)求二次函数y=ax2+bx+3的表达式;(2)将二次函数y=ax2+bx+3的图象向右平移k(k>0)个单位,得到二次函数y=mx2+nx+q的图象,使得当﹣1<x<3时,y随x 增大而增大;当4<x<5时,y随x增大而减小.请写出一个符合条件的二次函数y=mx2+nx+q的表达式y=,实数k的取值范围是;(3)A、B、C是二次函数y=ax2+bx+3的图象上互不重合的三点.已知点A、B的横坐标分别是m、m+1,点C与点A关于该函数图象的对称轴对称,求∠ACB的度数.28.(10分)现有若干张相同的半圆形纸片,点O是圆心,直径AB 的长是12cm,C是半圆弧上的一点(点C与点A、B不重合),连接AC、BC.(1)沿AC、BC剪下△ABC,则△ABC是三角形(填“锐角”、“直角”或“钝角”);(2)分别取半圆弧上的点E、F和直径AB上的点G、H.已知剪下的由这四个点顺次连接构成的四边形是一个边长为6cm的菱形.请用直尺和圆规在图中作出一个符合条件的菱形(保留作图痕迹,不要求写作法);(3)经过数次探索,小明猜想,对于半圆弧上的任意一点C,一定存在线段AC上的点M、线段BC上的点N和直径AB上的点P、Q,使得由这四个点顺次连接构成的四边形是一个边长为4cm的菱形.小明的猜想是否正确?请说明理由.参考答案解析一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)1.【点拨】相反数的概念:只有符号不同的两个数叫做互为相反数.【参考答案】解:2022的相反数是﹣2022,故选:B.2.【点拨】根据二次根式有意义的条件,可得:x﹣1≥0,据此求出实数x的取值范围即可.【参考答案】解:∵二次根式有意义,∴x﹣1≥0,解得:x≥1.故选:A.3.【点拨】从圆柱的侧面沿它的一条母线剪开,可以得到圆柱的侧面展开图的是长方形.【参考答案】解:根据题意,把圆柱的侧面沿它的一条母线剪开展在一个平面上,得到其侧面展开图是对边平行且相等的四边形;又有母线垂直于上下底面,故可得是长方形.故选:D.4.【点拨】根据三角形中位线定理参考答案即可.【参考答案】解:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵DE=2,∴BC=4,故选:B.5.【点拨】根据题意列出函数关系式即可得出答案.【参考答案】解:由城市市区人口x万人,市区绿地面积50万平方米,则平均每人拥有绿地y=.故选:C.6.【点拨】根据生活经验结合数学原理参考答案即可.【参考答案】解:小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是垂线段最短,故选:A.7.【点拨】关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数.关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变.【参考答案】解:∵点A与点A1关于x轴对称,已知点A1(1,2),∴点A的坐标为(1,﹣2),∵点A与点A2关于y轴对称,∴点A2的坐标为(﹣1,﹣2),故选:D.8.【点拨】根据中位数定义,逐项判断.【参考答案】解:最新上市的两款新能源汽车的评测数据对应的点绘制到平面内,若这两个点分别落在区域①、②,则0~100km/h的加速时间的中位数将变小,故A不符合题意;若这两个点分别落在区域①、③,则两组数据的中位数可能均保持不变,故B符合题意;若这两个点分别落在区域①,④,则满电续航里程的中位数将变小,故C不符合题意;若这两个点分别落在区域③,④,则0~100km/h的加速时间的中位数将变大,故D不符合题意;故选:B.二、填空题(本大题共10小题,每小题2分,共20分.不需写出参考答案过程,请把答案直接填写在答题卡相应位置上)9.【点拨】直接利用立方根的定义即可求解.【参考答案】解:∵23=8∴=2.故填2.10.【点拨】利用同底数幂的除法的法则进行运算即可.【参考答案】解:m4÷m2=m4﹣2=m2.故答案为:m2.11.【点拨】直接提取公因式xy,进而分解因式得出答案.【参考答案】解:x2y+xy2=xy(x+y).故答案为:xy(x+y).12.【点拨】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【参考答案】解:138000=1.38×105.故答案为:1.38×105.13.【点拨】比较两个正有理数,数大的倒数反而小.也可以利用特殊值代入法求解.【参考答案】解:令a=,b=.则:=,=;∵>;∴>.故答案是:>.14.【点拨】由题意可得CE是△ACD的中线,则有S△ACD=2S△AEC =2,再由AD是△ABC的中线,则有S△ABD=S△ACD,即得解.【参考答案】解:∵E是AD的中点,∴CE是△ACD的中线,∴S△ACD=2S△AEC,∵△AEC的面积是1,∴S△ACD=2S△AEC=2,∵AD是△ABC的中线,∴S△ABD=S△ACD=2.故答案为:2.15.【点拨】设AC与BD相交于点O,根据菱形的性质可得AC⊥BD,AC=2AO,OD=BD,AD=AB=20cm,从而可得△ABD 是等边三角形,进而可得BD=20cm,然后再在Rt△ADO中,利用勾股定理求出AO,从而求出AC的长,即可参考答案.【参考答案】解:设AC与BD相交于点O,∵四边形ABCD是菱形,∴AC⊥BD,AC=2AO,OD=BD,AD=AB=20cm,∵∠BAD=60°,∴△ABD是等边三角形,∴BD=AB=20cm,∴DO=BD=10(cm),在Rt△ADO中,AO===10(cm),∴AC=2AO=20≈34.64(cm),∵34.64cm<36cm,∴橡皮筋AC不会断裂,故答案为:不会.16.【点拨】连接AO并延长交⊙O于点D,连接CD,根据直径所对的圆周角是直角可得∠ACD=90°,再利用同弧所对的圆周角相等可得∠ADC=45°,然后在Rt△ACD中,利用锐角三角函数的定义求出AD的长,从而求出⊙O的半径,即可参考答案.【参考答案】解:连接AO并延长交⊙O于点D,连接CD,∵AD是⊙O的直径,∴∠ACD=90°,∵∠ABC=45°,∴∠ADC=∠ABC=45°,∴AD===2,∴⊙O的半径是1,故答案为:1.17.【点拨】过点D作DE⊥BC,垂足为E,如图,由已知∠A=∠ABC=90°,可得AD∥BC,由平行线的性质可得∠ADB=∠CBD,根据角平分线的定义可得∠ADB=∠CDB,则可得CD=CB=3,根据矩形的性质可得AD=BE,即可得CE=BC﹣BE,在Rt△CDE中,根据勾股定理DE=,在Rt△ADB中,根据勾股定理可得,根据正弦三角函数的定义进行求解即可得出答案.【参考答案】解:过点D作DE⊥BC,垂足为E,如图,∵∠A=∠ABC=90°,∴AD∥BC,∴∠ADB=∠CBD,∵DB平分∠ADC,∴∠ADB=∠CDB,∴CD=CB=3,∵AD=BE=1,∴CE=BC﹣BE=3﹣1=2,在Rt△CDE中,DE===,∵DE=AB,在Rt△ADB中,==,∴sin∠ABD==.故答案为:.18.【点拨】如图,连接CF交AB于点M,连接CF′交AB于点N,过点F作FG⊥AB于点H,过点F′作F′H⊥AB于点H,连接FF′,则四边形FGHF′是矩形,Rt△ABC的外部被染色的区域是梯形MFF′N.求出梯形的上下底以及高,可得结论.【参考答案】解:如图,连接CF交AB于点M,连接CF′交AB 于点N,过点F作FG⊥AB于点H,过点F′作F′H⊥AB于点H,连接FF′,则四边形FGHF′是矩形,Rt△ABC的外部被染色的区域是梯形MFF′N.在Rt△DEF中,DF=3,EF=4,∴DE===5,在Rt△ABC中,AC=9,BC=12,∴AB===15,∵•DF•EF=•EF•GF,∴FG=,∴BG===,∴GE=BE﹣BG=,AH=GE=,∴F′H=FG=,∴FF′=GH=AB﹣BG﹣AH=15﹣5=10,∵BF∥AC,∴==,∴BM=AB=,同法可证AN=AB=,∴MN=15﹣﹣=,∴Rt△ABC的外部被染色的区域的面积=×(10+)×=21,故答案为:21.三、参考答案题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,参考答案应写出文字说明、演算步骤或推理过程)19.【点拨】(1)利用实数的运算法则、零指数幂的性质、负整数指数幂的性质分别化简得出答案;(2)利用完全平方公式,以及平方差公式化简,去括号合并即可得出答案.【参考答案】解:(1)原式=2﹣1+=;(2)原式=(x2+2x+1)﹣(x2﹣1)=x2+2x+1﹣x2+1=2x+2.20.【点拨】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【参考答案】解:由5x﹣10≤0,得:x≤2,由x+3>﹣2x,得:x>﹣1,则不等式组的解集为﹣1<x≤2,将不等式组的解集表示在数轴上如下:21.【点拨】(1)用A类户数除以它所占的百分比得到样本容量,然后计算出C类和B类户数后补全条形统计图;(2)利用样本估计总体,由于1500×=225(户),则可估计该小区1周内使用7个及以上环保塑料袋的家庭约有225户,从而可判断调查小组的估计合理.【参考答案】解:(1)20÷20%=100,所以本次调查的样本容量为100;C类户数为100×25%=25(户),B类户数为100﹣20﹣25﹣15=40(户),补全条形统计图为:故答案为:100;(2)调查小组的估计合理.理由如下:因为1500×=225(户),所以根据该小区1周内使用7个及以上环保塑料袋的家庭约有225户.22.【点拨】(1)直接根据概率公式求解即可;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【参考答案】解:(1)从盒子A中任意抽出1支签,抽到①的概率是,故答案为:;(2)列表如下:①②③①③②③④①④②④⑤①⑤②⑤由表知,共有6种等可能结果,其中抽到的2张小纸条上的语句对函数的描述相符合的①③、①⑤、②④这3个,所以2张小纸条上的语句对函数的描述相符合的概率为=.23.【点拨】(1)由点B(0,4)在一次函数y=2x+b的图象上,代入求得b=4,由△BOC的面积是2得出C的横坐标为1,代入直线关系式即可求出C的坐标,从而求出k的值;(2)根据一次函数的解析式求得A的坐标,然后根据三角形的面积公式代入计算即可.【参考答案】解:(1)∵一次函数y=2x+b的图象过点B(0,4),∴b=4,∴一次函数为y=2x+4,∵OB=4,△BOC的面积是2.∴OB•x C=2,即=2,∴x C=1,把x=1代入y=2x+4得,y=6,∴C(1,6),∵点C在反比例函数y=(x>0)的图象上,∴k=1×6=6;(2)把y=0代入y=2x+4得,2x+4=0,解得x=﹣2,∴A(﹣2,0),∴OA=2,∴S△AOC==6.24.【点拨】(1)根据点的位置定义,即可得出答案;(2)画出图形,证明△AOA′≌△BOA′(SAS),即可由全等三角形的性质,得出结论.【参考答案】(1)解:由题意,得A′(a,n°),∵a=3,n=37,∴A′(3,37°),故答案为:(3,37°);(2)证明:如图:∵A′(3,37°),B(3,74°),∴∠AOA′=37°,∠AOB=74°,OA=OB=3,∴∠A′OB=∠AOB﹣∠AOA′=74°﹣37°=37°,∵OA′=OA′,∴△AOA′≌△BOA′(SAS),∴A′A=A′B.25.【点拨】(1)根据已知,从个位数字起,将八进制的每一位数分别乘以80,81,82,83,再把所得结果相加即可得解;(2)根据n进制数和十进制数的计算方法得到关于n的方程,解方程即可求解.【参考答案】解:(1)3746=3×83+7×82+4×81+6×80=1536+448+32+6=2022.故八进制数字3746换算成十进制是2022.故答案为:2022;(2)依题意有:n2+4×n1+3×n0=120,解得n1=9,n2=﹣13(舍去).故n的值是9.26.【点拨】(1)根据“等形点”的定义可知△OAB≌△OCD,则∠OAB=∠C=90°,而O是边BC上的一点.从而得出正方形不存在“等形点”;(2)作AH⊥BO于H,由△OAB≌△OCD,得AB=CD=4,OA=OC=5,设OH=x,则BH=7﹣x,由勾股定理得,(4)2﹣(7﹣x)2=52﹣x2,求出x的值,再利用勾股定理求出AC的长即可;(3)根据“等形点”的定义可得△OEF≌△OGH,则∠EOF=∠HOG,OE=OG,∠OGH=∠OEF,再由平行线性质得OE=OH,从而推出OE=OH=OG,从而解决问题.【参考答案】解:(1)∵四边形ABCD是正方形,∴∠C=90°,∵△OAB≌△OCD,∴∠OAB=∠C=90°,∵O是边BC上的一点.∴正方形不存在“等形点”,故答案为:不存在;(2)作AH⊥BO于H,∵边BC上的点O是四边形ABCD的“等形点”,∴△OAB≌△OCD,∴AB=CD=4,OA=OC=5,∵BC=12,∴BO=7,设OH=x,则BH=7﹣x,由勾股定理得,(4)2﹣(7﹣x)2=52﹣x2,解得,x=3,∴OH=3,∴AH=4,∴CH=8,在Rt△CHA中,AC===4;(3)如图,∵边FG上的点O是四边形EFGH的“等形点”,∴△OEF≌△OGH,∴∠EOF=∠HOG,OE=OG,∠OGH=∠OEF,∵EH∥FG,∴∠HEO=∠EOF,∠EHO=∠HOG,∴∠HEO=∠EHO,∴OE=OH,∴OH=OG,∴OE=OF,∴=1.27.【点拨】(1)用待定系数法可得二次函数的表达式为y=﹣x2﹣2x+3;(2)将二次函数y=﹣x2﹣2x+3的图像向右平移k(k>0)个单位得y=﹣(x﹣k+1)2+4的图象,新图象的对称轴为直线x=k﹣1,根据当﹣1<x<3时,y随x增大而增大;当4<x<5时,y随x增大而减小,且抛物线开口向下,知3≤k﹣1≤4,得4≤k≤5,即可得到答案;(3)求出A(m,﹣m2﹣2m+3),B(m+1,m2﹣m),C(﹣2﹣m,﹣m2﹣2m+3),过B作BH⊥AC于H,可得BH=|﹣m2﹣4m ﹣(﹣m2﹣2m+3)|=|﹣2m﹣3|,CH=|(﹣2﹣m)﹣(m+1)|=|﹣2m3|,故△BHC是等腰直角三角形,∠ACB=45°,当B在C右侧时,同理可得∠ACB=135°.【参考答案】解:(1)将(﹣1,4),(1,0)代入y=ax2+bx+3得:,解得,∴二次函数的表达式为y=﹣x2﹣2x+3;(2)如图:∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴将二次函数y=﹣x2﹣2x+3的图像向右平移k(k>0)个单位得y=﹣(x﹣k+1)2+4的图象,∴新图象的对称轴为直线x=k﹣1,∵当﹣1<x<3时,y随x增大而增大;当4<x<5时,y随x增大而减小,且抛物线开口向下,∴3≤k﹣1≤4,解得4≤k≤5,∴符合条件的二次函数y=mx2+nx+q的表达式可以是y=﹣(x﹣3)2+4=﹣x2+6x﹣5,故答案为:y=﹣x2+6x﹣5(答案不唯一),4≤k≤5;(3)当B在C左侧时,过B作BH⊥AC于H,如图:∵点A、B的横坐标分别是m、m+1,∴y A=﹣m2﹣2m+3,y B=﹣(m+1)2﹣2(m+1)+3=﹣m2﹣4m,∴A(m,﹣m2﹣2m+3),B(m+1,﹣m2﹣m),∵点C与点A关于该函数图像的对称轴对称,而抛物线对称轴为直线x=﹣1,∴=﹣1,AC∥x轴,∴x C=﹣2﹣m,∴C(﹣2﹣m,﹣m2﹣2m+3),过B作BH⊥AC于H,∴BH=|﹣m2﹣4m﹣(﹣m2﹣2m+3)|=|﹣2m﹣3|,CH=|(﹣2﹣m)﹣(m+1)|=|﹣2m﹣3|,∴BH=CH,∴△BHC是等腰直角三角形,∴∠HCB=45°,即∠ACB=45°,当B在C右侧时,如图:同理可得△BHC是等腰直角三角形,∴∠ACB=180°﹣∠BCH=135°,综上所述,∠ACB的度数是45°或135°.28.【点拨】(1)根据直径所对的圆周角是直角,判断即可;(2)分别以A,B为圆心,6cm长为半径作弧交半圆于点E,F,连接EF,AE,OF,OE,FB,四边形EFHG或四边形EFG′H 即为所求.(3)小明的猜想正确.如图2中,设CM=CA,AN=CB,取AP=BQ=4,证明四边形MNQP是菱形,可得结论.【参考答案】解:(1)∵AB是直径,直径所对的圆周角是直角,∴△ABC是直角三角形,故答案为:直角;(2)如图,四边形EFHG或四边形EFG′H即为所求.(3)小明的猜想正确.理由:如图2中,设CM=CA,CN=CB,取AP=BQ=4,则∵==,∴MN∥AB,∴==,∴MN=PQ=4,∴四边形MNQP是平行四边形,∵==,∴MP∥CO,∴==,∴PM=4,∴MN=4,∴四边形MNQP是菱形,边长为4,∴小明的猜想正确.。
浅谈数学填空题的解题方法
浅谈数学填空题的解题方法填空题题小,跨度大,覆盖面广,形式灵活,可以有目的、和谐地综合一些问题,突出训练学生准确、严谨、全面、灵活运用知识的能力和基本运算能力。
从填写内容上,主要有两类,一类是定量填写,另一类是定性填写。
要想又快又准地答好填空题,除直接推理外,还要讲究一些解题策略,下面谈谈几种解题方法:一. 定义法有些问题直接去解很难奏效,而利用定义去解可以大大地化繁为简,速达目的。
例1.的值是_________________。
解:从组合数定义有:又,代入再求,得出466。
例2. 到椭圆右焦点的距离与到定直线x=6距离相等的动点的轨迹方程是_______________。
解:据抛物线定义,结合图1知:图1轨迹是以(5,0)为顶点,焦参数P=2且开口方向向左的抛物线,故其方程为:二. 直接计算法从题设条件出发,选用有关定理、公式,直接计算求解,这是解填空题最常用的方法。
例 3. 设函数的定义域是[n,n+1](),那么在f(x)的值域中共有____________个整数。
解:直接计算,可得个。
三. 数形结合法有些问题可以借助于图示分析、判断、作出定形、定量、定性的结论,这就是图解法。
例4. 函数的值域________________。
图2解:原函数变为,可视上式为x轴上的点P(x,0)到两定点A(-2,-1)和B(2,2)的距离之和,如图2,则。
故值域为。
四. 特例法有的填空题答案是一个“定值”时,实质上有一种暗示作用,可以分析特殊数值,特殊位置,特殊数列,特殊图形等来确定这个“定值”,这种方法有时能起到难以置信的效果。
例 5. 已知是公差不为零的等差数形,若Sn是的前n项和,那么_________。
解:取符合条件的特殊数列,,则,故五. 观察法运用特殊值,加上类比、观察常常可以提高解题速度。
例6. 设,且,直线通过定点__________。
解:联合观察:发现时,即满足条件,同时,相交直线的交点是唯一的。
中考数学选择题填空题压轴题专题训练
冲刺专题6:第12和18题专题训练一、工具法例1.如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H不与端点C,D重合),折痕交AD 于点E,交BC于点F,边AB折叠后与边BC交于点G.设正方形ABCD的周长为m,△CHG的周长为n,则的值为()A.B. C.D.随H点位置的变化而变化例1 变式1变式1:点P是正方形ABCD边AB上一点(不与A、B重合),连接PD并将线段PD绕点P顺时针旋转90°,得线段PE,连接BE,则∠CBE等于()A.75° B.60° C.45° D.30°二、极值法例2.若对于任意非零实数a,抛物线y=a(x+2)(x﹣1)总不经过点P(x0﹣3,x0﹣5),则符合条件的点P()A.有1个B.有2个C.有3个D.有无穷多个变式2:在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a<0)与线段MN有一个交点,则a的取值范围是()A.a≤﹣1 B.﹣1<a<0 C.a<﹣1 D.﹣1≤a<0三、特殊值法例3.若实数a,b满足ab=1,设M=,N=,则M,N的大小关系是()A.M>N B.M=N C.M<N D.不确定变式3:无论m为何值,二次函数y=x2+(2﹣m)x+m的图象总经过定点.四、特殊位置法:特殊点,特殊线,特殊角,特殊模型例4.如图,已知点A(12,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=8时,这两个二次函数的最大值之和等于()变式4:(1)如图,在菱形ABCD和菱形BEFG中,点A、B、E在同一直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°,则=()A. B. C. D.(2)如图,E是边长为4的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BR于点R,则PQ+PR的值是()A.2B.2 C.2D.五、排除法例5.如图,△ABC中,∠ACB=90°,AB=10,tanA=.点P是斜边AB上一个动点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为()A.B.C.D.例5 变式5变式5:如图,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是﹣2,点B的横坐标是3,则以下结论:①抛物线y=ax2(a≠0)的图象的顶点一定是原点;②x>0时,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随着x的增大而增大;③AB的长度可以等于5;④△OAB有可能成为等边三角形;⑤当﹣3<x<2时,ax2+kx<b,其中正确的结论是()A.①②④B.①②⑤C.②③④D.③④⑤六、转化法例6.如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD 的最小值是.(1)如图,在△ABC中,∠BAC=60°,∠ACB=75°,AB=2,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB、AC于点E、F,连接EF,则线段EF长度的最小值为.(2)如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M是BC的中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM的最小值是.例6变式6(1)变式6(2)七、综合分析法例7.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为3.其中,正确结论的个数为()A.1个B.2个C.3个D.4个变式7:如图,正方形ABCD的边长为4,点E、F分别从点A、点D以相同速度同时出发,点E从点A向点D运动,点F从点D向点C运动,点E运动到D点时,E、F停止运动.连接BE、AF相交于点G,连接CG.有下列结论:①AF⊥BE;②点G随着点E、F的运动而运动,且点G的运动路径的长度为π;③线段DG的最小值为2﹣2;④当线段DG最小时,△BCG的面积S=8+.其中正确的命题有.(填序号)八、特征分析法例8.如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=(x>0)的图象经过A,B 两点.若点A的坐标为(n,1),则k的值为()A.B.C.D.变式8:如图,两个反比例函数y=和y=﹣的图象分别是l1和l2.设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则三角形PAB的面积为()A.3 B.4 C.D.5例8变式8。
初中数学教学中妙用“特殊值法”解题研究
初中数学教学中妙用“特殊值法”解题研究
陈霞
【期刊名称】《数理天地(初中版)》
【年(卷),期】2024()10
【摘要】特殊值法常用于题干中未给出明确的数量关系的题目,通过特殊赋值的方式将题干中的未知变量转化为已知变量,由此降低学生的解题难度.初中数学教学中运用特殊值法,要求选取的特殊赋值在题干给定的数值区间范围内,并且代入特殊取值后题干中的条件恒成立.使用特殊值法可以通过具体数值取代复杂的符号逻辑关系与推理过程,在帮助学生降低解题难度的同时还实现了解题速度的提升.
【总页数】2页(P8-9)
【作者】陈霞
【作者单位】甘肃省白银市平川区第二中学
【正文语种】中文
【中图分类】G63
【相关文献】
1.特殊值法在初中数学解题中的应用
2.初中数学教学中妙用“特殊值法”解题
3.初中数学学习中妙用“特殊值法”解题
4.妙用“特殊值法”巧解初中数学题
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用特殊值法巧解中考数学填空题利用特殊值法巧解中考数学填空题
解法二:取AE=AG的特殊位置(如图2-3),则四边形AGPE、PFCH都是正方形。
由矩形PFCH的面积为矩形AGPE面积的2倍,得出PH=-PE ∵PA=-PE
∴PH=PA,易得PA=PH=PF,以P为圆心,PA为半径画圆,则∠HPF=90°∴∠HAF=45°
[点评]:这道题若按常规做法解题,过程非常繁杂;针对填空题的特点,采用特殊值法,则非常方便。
解法一,主要利用相似三角形的性质和勾股定理的知识,解法与学生的想法基本吻合;解法二,通过作圆的辅助线,由同弧所对的圆心角和圆周角之间的关系,得出结论,具有思路新颖,解法简单的特点。
例4.如图3-1所示,△ABC是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC=120°,以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN 的周长为____。
(2019年辽宁省沈阳市中考题)
[解析]:由题意可知:△ABC是等边三角形,△BDC是等腰三角形,M、N是在满足∠MDN=60°前提条件下AB、AC边上的动点,在移动过程中肯定存在MN∥BC的情况,取MN∥BC
的特殊位置,可以非常简单的求出△AMN的周长。
取MN∥BC的特殊位置,过D点作DH⊥MN垂足为H(如图3-2),
可得△MDN也是等边三角形,∠BDM=∠HDM=30°,
∠MBD=∠MHD=90°,△MBD≌△MHD,∴MB=MH;同理可证,NC=NH,最后可得△AMN的周长=AB+AC=6。
[点评]:常规作法是延长NC到H点,使CH=BM,先证明
△DCH≌△DBM,得出∠BDM=∠CDH,∠NDH=∠NDM=60°,再证△NMD≌△NHD,得出NM=NH,最后得出△AMN的周长等于AB+AC=6。
与常规作法相比,特殊值法的解法比较简单。
总之,利用特殊值法解决有关填空题,特别是对一些难度较大的题,会有很好的解题效果,这种解法充分体现了“特殊与一般”的辩证唯物主义的思想。
最后,提醒同学们两点:
①不是所有的填空题都适用特殊值法,所以一定要认真审题,要根据题的特点决定能否采用特殊值法。
②采用特殊值法,设特殊的值或特殊的点时,一定要在允许的范围内。