基于模式识别的车牌定位算法研究-开题报告
[开题报告]车牌识别系统中定位算法的研究
![[开题报告]车牌识别系统中定位算法的研究](https://img.taocdn.com/s3/m/a75db7b3c77da26925c5b0a2.png)
毕业论文(设计)开题报告(含文献综述、外文翻译)题目车牌识别系统中定位算法的研究姓名黄泽学号3060433088专业班级06自动化1班指导教师崔家林分院信息科学与工程分院开题日期2010年 3 月25日第1章文献综述1.1 国内外现状汽车牌照识别技术(License Plate Recognition, LPR)是智能交通系统(ITS)的重要组成部分,多应用在电子计费领域。
LPR 系统是一个以特定目标为对象的专用计算机视觉系统,该系统能从一幅图像中自动提取车牌图像,自动分割字符,运用模式识别、人工智能技术,实时准确地自动识别出车牌的数字、字母及汉字字符,使得车辆的电脑化监控和管理成为现实。
常用的LPR 识别技术有IC卡识别技术、条形码识别技术和图像处理识别技术。
基于图像处理技术的LPR 系统无需在车上额外安装条形码或者IC卡,因而不必改造现有的车辆系统,相对其他两种识别技术来说适用面广,更容易普及[1]。
车牌识别技术作为交通管理自动化的重要手段和车辆检测系统的一个重要环节,该技术能经过图像抓拍、车牌定位、图像处理、字符分割、字符识别等一系列算法运算,识别出视野范围内的车辆牌照号码,它运用数字图像处理、模式识别、人工智能技术,对采集到的汽车图像进行处理的方法,能够实时准确地自动识别出车牌的数字、字母及汉字字符,并以计算机可直接运行的数据形式给出识别结果,使得车辆的电脑化监控和管理成为现实。
其在交通监视和控制中占有很重要的地位。
车牌识别技术的研究最早出现在20 世纪80 年代,这个阶段的研究没有形成完整的系统体系,而是就某一具体的问题进行研究,通常采用简单的图像处理方法来解决。
识别过程是使用工业电视摄像机( Industrial TV Camera) 拍下汽车的正前方图像,然后交给计算机进行简单处理,并且最终仍需要人工干预[2]。
从20 世纪90 年代初,国外的研究人员就已经开始了对车牌识别的相关研究,其中具有代表性的工作有:R.Mullot等开发的一种可以同时用于集装箱和普通车辆的车牌识别系统,该系统主要是利用文字的纹理在车辆图像中的共性进行定位与识别。
车牌识别算法开题报告
![车牌识别算法开题报告](https://img.taocdn.com/s3/m/a49970b8aff8941ea76e58fafab069dc502247b1.png)
车牌识别算法开题报告车牌识别算法开题报告摘要:车牌识别算法是一种基于计算机视觉技术的应用,它可以自动识别车辆的车牌信息。
本文将介绍车牌识别算法的研究背景和意义,并提出了研究的目标和方法。
通过对车牌识别算法的优化和改进,可以提高车牌识别的准确性和效率,为交通管理、车辆追踪等领域提供支持。
1. 引言车牌识别技术在交通管理、安防监控等领域具有广泛的应用前景。
传统的车牌识别方法主要基于模板匹配和特征提取,但在复杂的环境下容易受到光照、角度等因素的干扰,导致识别准确率低。
因此,研究车牌识别算法的优化和改进具有重要意义。
2. 研究目标本研究的目标是提高车牌识别算法的准确性和效率。
具体来说,我们将通过以下几个方面进行研究:- 提取车牌区域:使用图像处理技术,通过分析图像的颜色、纹理等特征,提取出车牌区域,减少干扰因素对识别结果的影响。
- 车牌字符分割:将车牌区域中的字符进行分割,以便后续的字符识别。
- 字符识别:使用机器学习算法,对分割后的字符进行识别,获取车牌的具体信息。
3. 研究方法本研究将采用以下方法来优化和改进车牌识别算法:- 深度学习模型:使用深度学习模型,如卷积神经网络(CNN),对车牌区域进行特征提取和分类,提高车牌识别的准确性。
- 数据增强:通过对车牌图像进行旋转、缩放、平移等操作,增加训练数据的多样性,提高模型的泛化能力。
- 多尺度检测:采用多尺度的滑动窗口方法,对图像进行多次检测,以适应不同尺寸的车牌。
- 字符识别算法:使用支持向量机(SVM)等机器学习算法,对分割后的字符进行训练和识别,提高字符识别的准确性。
4. 研究计划本研究将按照以下计划进行:- 数据收集:收集大量的车牌图像数据,包括不同角度、光照条件下的车牌图像。
- 数据预处理:对收集到的车牌图像进行预处理,包括去噪、增强等操作,以提高后续算法的效果。
- 车牌区域提取:使用图像处理技术,提取出车牌区域。
- 字符分割:对车牌区域中的字符进行分割。
车牌识别技术研究开题报告
![车牌识别技术研究开题报告](https://img.taocdn.com/s3/m/bb0cfbd66aec0975f46527d3240c844769eaa0c3.png)
车牌识别技术研究开题报告一、研究背景和意义随着汽车数量的快速增长和交通管理的要求不断提高,车辆识别技术日益成为一个重要研究领域。
车牌识别是在交通管理、违章监测、停车场管理、智能交通系统等方面具有广泛应用前景的一项技术。
车牌识别技术可以通过车牌与车主信息的关联,实现车辆的快速准确识别和信息管理,并有效提升交通管理和公共安全水平。
二、研究目标和内容本研究旨在深入探索和研究车牌识别技术的关键技术和方法,为实现车牌的自动识别和信息管理提供有效的解决方案。
具体研究内容包括以下几个方面:1. 车牌定位与分割技术:通过图像处理和模式识别等方法,实现对车辆图像中车牌位置的精确定位和分割,为后续的车牌识别提供基础。
取和判别分析,通过模式匹配和机器学习等方法实现车牌的准确识别。
3. 车牌信息管理和数据库设计:将识别出的车牌与车主信息进行关联,构建有效的车辆信息数据库,并研究车牌信息的查询和管理方法。
4. 实验验证和性能评价:通过实际数据采集和实验测试,验证所提方法的有效性和可行性,并对其性能进行评价和改进。
三、研究方法和步骤本研究将采用以下方法和步骤:1. 调研和理论分析:通过对车牌识别技术的相关文献和现有方法的调研,分析其原理和技术特点,为后续研究提供理论支持。
2. 数据采集和预处理:通过车载摄像头或公共摄像头采集车辆图像数据,并进行图像预处理,包括去噪、灰度化、二值化等操作。
3. 车牌定位与分割:采用图像处理算法,如边缘检测和形态学运算,对车辆图像进行定位和分割,提取出车牌图像。
如颜色、纹理和形状等特征,通过模式匹配或机器学习方法实现车牌的识别。
5. 车牌信息管理和数据库设计:将识别出的车牌与车主信息进行关联,构建完整的车辆信息管理系统,并设计合适的数据库结构和查询方式。
6. 实验验证和性能评价:通过真实场景的数据采集和实验测试,验证所提方法的有效性和可行性,并对其性能进行评价和改进。
四、预期成果和创新点1. 高效准确的车牌识别算法:通过对车牌定位与分割、特征提取与识别等关键问题的研究,设计出高效准确的车牌识别算法。
汽车车牌识别系统研究--开题报告
![汽车车牌识别系统研究--开题报告](https://img.taocdn.com/s3/m/5168045078563c1ec5da50e2524de518974bd37f.png)
汽车车牌识别系统研究--开题报告汽车车牌识别系统研究开题报告一、选题背景随着社会的快速发展,汽车数量急剧增加,交通管理面临着巨大的挑战。
传统的人工车牌识别方式效率低下,容易出错,且难以满足大规模数据处理的需求。
因此,汽车车牌识别系统的研究具有重要的现实意义。
车牌识别系统作为智能交通系统的重要组成部分,能够自动识别车辆的车牌号码,实现车辆的快速通行、交通流量监测、违法车辆追踪等功能。
它不仅提高了交通管理的效率和准确性,还为智慧城市的建设提供了有力的技术支持。
二、研究目的本研究旨在开发一种高效、准确、稳定的汽车车牌识别系统,以满足实际应用中的需求。
具体目标包括:1、提高车牌识别的准确率,减少误识别和漏识别的情况。
2、缩短车牌识别的时间,提高系统的实时性。
3、增强系统对不同环境条件(如光照、天气、车牌污损等)的适应性。
4、降低系统的成本,提高其性价比,便于广泛推广应用。
三、研究内容1、车牌图像采集与预处理研究合适的图像采集设备和方法,确保获取清晰、高质量的车牌图像。
对采集到的车牌图像进行去噪、增强、倾斜校正等预处理操作,提高图像质量,为后续的识别工作奠定基础。
2、车牌定位算法探索有效的车牌定位方法,能够准确地从复杂的背景中定位出车牌区域。
考虑车牌的形状、颜色、纹理等特征,结合边缘检测、形态学处理等技术,提高车牌定位的准确性和鲁棒性。
3、字符分割算法研究如何将车牌上的字符准确地分割出来,为字符识别做好准备。
针对字符粘连、断裂等情况,采用合适的算法进行处理,确保字符分割的准确性。
4、字符识别算法比较不同的字符识别方法,如模板匹配、神经网络、支持向量机等,选择最适合的算法进行车牌字符识别。
对识别算法进行优化和改进,提高识别的准确率和速度。
5、系统性能评估与优化建立一套科学的系统性能评估指标,如准确率、召回率、识别时间等。
根据评估结果,对系统进行优化和改进,不断提高系统的性能。
四、研究方法1、文献研究法广泛查阅国内外相关文献,了解车牌识别系统的研究现状和发展趋势。
汽车牌照识别系统中的牌照定位方法研究的开题报告
![汽车牌照识别系统中的牌照定位方法研究的开题报告](https://img.taocdn.com/s3/m/a0049e45b42acfc789eb172ded630b1c58ee9b59.png)
汽车牌照识别系统中的牌照定位方法研究的开题报告一、选题背景随着社会的不断发展和城市化的加速推进,交通拥堵问题逐渐凸显,交通安全问题成为社会关注的焦点。
为了提高交通管理水平和交通安全性,各国都陆续推出了基于视频监控和图像识别技术的交通管理系统。
在这些系统中,车牌识别系统是一个非常重要的部分,能够准确地把车辆的识别信息传递给交通管理部门,帮助管理部门高效地进行交通管控、追踪违法行为等,有助于缓解拥堵、提升交通安全。
车牌识别系统中,牌照定位技术是其中的一个重要环节,其作用是对车辆牌照的位置进行定位和提取,从而为后续的牌照识别提供可靠的数据。
如何准确快速地实现牌照定位,是车牌识别系统设计的一个关键问题。
二、选题意义传统的车牌识别系统需要人工标注,然后才能进行车牌的识别,耗时、耗力。
而现代的车牌识别系统利用计算机视觉技术,能够实现自动化检测和识别车牌。
因此,车牌识别系统具有工作效率高、准确率高、操作简单等优点。
同时,车牌识别技术还广泛应用于人脸识别、安防监控、智能交通等领域。
本研究旨在探究车牌定位技术的具体实现方式,提升车牌识别系统的效率和准确性,为智能交通的发展做出贡献。
三、研究内容本研究的主要内容将包括以下几个方面:1.分析车牌定位的原理,综述目前国内外车牌定位技术的研究现状和应用情况。
2.设计和实现基于卷积神经网络的车牌定位系统,通过大量的样本数据训练和优化模型,实现车牌定位的自动化。
3.在模型搭建的过程中,选取几种不同的卷积神经网络结构进行比对,对比各种结构的优缺点和适用场景。
4.对比分析传统的车牌定位方法和基于卷积神经网络的车牌定位方法的优势和劣势,探究基于卷积神经网络的车牌定位方法的可行性。
5.根据实验结果,结合实际应用场景,对车牌定位系统进行性能评估和功能完善,提高系统的实用性和稳定性。
四、研究方法本研究将采用文献调研、算法设计、模型实现和实验分析等多种研究方法,具体步骤如下:1.通过查阅相关文献、研究报告等资料,全面了解车牌识别系统和牌照定位技术的发展现状和应用情况。
基于模糊理论的汽车牌照自动识别技术研究的开题报告
![基于模糊理论的汽车牌照自动识别技术研究的开题报告](https://img.taocdn.com/s3/m/4f92b9d480c758f5f61fb7360b4c2e3f572725d7.png)
基于模糊理论的汽车牌照自动识别技术研究的开题报告一、研究背景随着汽车数量的逐年增加,车辆管理成为城市交通管理的一个重要问题。
为了实现快速、准确、高效的车辆管理,汽车牌照自动识别技术应运而生。
汽车牌照自动识别技术已经广泛应用于城市道路、高速公路收费、停车场管理等多个领域,成为现代交通管理的重要工具。
在牌照自动识别技术中,模糊理论作为一种基本的数学工具,已经得到了广泛的应用。
二、研究目的和意义本文旨在研究基于模糊理论的汽车牌照自动识别技术,包括目标检测、字符分割、字符识别等方面,设计并实现一套完整的汽车牌照识别系统。
该系统可以实现对车辆型号、颜色、车牌号码等信息的准确识别和记录,为车辆管理人员提供更为便捷、高效的工作方式。
同时,本文的研究也可以为模糊理论在图像处理领域的应用提供借鉴和参考。
三、研究内容和方法1. 研究基于模糊理论的汽车牌照自动识别技术的理论基础和实现方法。
2. 研究目标检测、字符分割、字符识别等核心技术。
3. 设计并实现一套完整的汽车牌照识别系统,对系统进行测试和优化。
4. 对所设计的系统进行实际应用测试,并对测试结果进行分析和评价。
5. 总结本文的研究成果,提出本研究的不足之处和改进方向。
四、研究计划和进度安排1. 第一周:查阅相关文献并确定研究方法。
2. 第二周:学习和研究模糊理论在图像处理领域的应用。
3. 第三周:研究目标检测和字符分割等技术。
4. 第四周:研究字符识别等核心技术。
5. 第五周:系统设计和实现。
6. 第六周:系统测试和优化。
7. 第七周:实际应用测试,并对测试结果进行分析和评价。
8. 第八周:撰写研究论文和总结本研究的成果。
五、预期成果1. 设计的汽车牌照识别系统能够准确快速地识别车牌号码和车辆信息。
2. 研究并掌握基于模糊理论的汽车牌照自动识别技术的核心技术。
3. 提出并解决汽车牌照自动识别技术中出现的一些难点问题。
4. 探索和研究了模糊理论在图像处理领域的应用。
车牌识别算法研究开题报告
![车牌识别算法研究开题报告](https://img.taocdn.com/s3/m/31ad72c2f18583d048645968.png)
车牌识别算法研究开题报告本科毕业设计开题报告(2014届)论文题目车牌识别算法研究作者姓名指导教师学科(专业)软件工程1003所在学院计算机科学与技术学院提交日期2014年3月5日车牌识别算法研究一、选题的背景与意义1.1研究开发的目的随着汽车数量逐年增加,在我们面前的是大城市的交通压力。
怎么更好的进行交通管理,已经成为摆在我们面前的主要问题。
为了解决这个问题,研究机构,高等院校,已经形成了自己的交通监控,管理系统,这些系统通常包括车牌检测模块。
通过这些设备对车辆的信息的收集、提取到的交通数据,用于监测,管理和指挥交通。
车牌自动识别是车辆检测系统中的重要模块,是交通监测和控制的核心,是实现交通管理自动化的一个充分必要条件。
传统的识别技术(ECT,IC卡,条形码等)价格昂贵,设备复杂,操作繁琐,运动车牌自动识别技术不仅可以节省辅助的设备,还可以降低产品成本,提高车牌识别的速度。
识别的正确率和识别速度主要取决于识别算法的好坏。
所以,本课题的研究目标对基于灰度跳变和投影特征的方法进行改进,主要侧重于解决在不同光照环境下采集到的图像的车牌定位,同时对字符投影间隔距离进行合适的调整可以排除具有同字符投影特征类似的伪车牌区域的干扰,显著地提高车牌定位应用的实用性和准确性。
1.2国内外研究发展现状在20世纪70年代,外国就有车牌自动检测的系统,车牌自动化识别的技术自1988年以来就被用来检查被盗车辆,它已被广泛研究进行了,主要是通过分析车牌图像,提取相关信息获取相应的汽车车牌号码。
今天,该应用程序已经达到很高的水平。
我们的车牌自动化识别的研究比外国要起步晚,到八十年代末才有相应的研究出现。
由于车牌规格是不同的,不同的,不同的模型有不同的规格,尺寸和颜色,彩板太多,车牌号码不统一,难以车牌识别。
我国做得比较出色的产品是汉王眼,由中科院自动化研究所汉王公司研究开发。
也有一些文章的车牌自动识别,但主要是因为条件是不一样的,在有限的范围。
车牌识别论文开题报告
![车牌识别论文开题报告](https://img.taocdn.com/s3/m/3d2dcac4ed3a87c24028915f804d2b160b4e8633.png)
车牌识别论文开题报告车牌识别论文开题报告一、研究背景与意义车牌识别技术是计算机视觉领域的研究热点之一,其在交通管理、智能交通系统、车辆追踪等方面具有广泛的应用价值。
随着城市化进程的加快和车辆数量的急剧增长,传统的人工车牌识别方式已经无法满足实际需求。
因此,开发一种高效准确的车牌识别系统对于提高交通管理效率和智能交通系统的发展具有重要意义。
二、研究目标本论文旨在设计和实现一种基于深度学习的车牌识别系统,通过对车牌图像进行自动识别和分析,实现对车辆的快速准确识别,以提高交通管理和智能交通系统的效率。
三、研究内容1. 车牌图像预处理在车牌识别系统中,车牌图像的预处理是非常重要的一步。
本论文将探索不同的图像处理算法,如图像增强、去噪和图像分割等,以提高车牌图像的质量和准确性。
2. 车牌定位与分割车牌定位与分割是车牌识别系统的核心环节。
本论文将研究和设计一种基于深度学习的车牌定位与分割算法,以实现对车牌区域的准确提取和分割。
3. 车牌字符识别车牌字符识别是车牌识别系统中的关键环节。
本论文将探索不同的字符识别算法,如卷积神经网络(CNN)、循环神经网络(RNN)等,以实现对车牌字符的准确识别和分类。
4. 系统性能评估与优化本论文将通过大量的实验和测试,对设计的车牌识别系统进行性能评估,并针对性能较差的地方进行优化,以提高系统的准确性和鲁棒性。
四、研究方法本论文将采用深度学习算法作为主要的研究方法,结合图像处理和模式识别的技术,设计和实现一个高效准确的车牌识别系统。
具体方法包括但不限于:卷积神经网络、循环神经网络、图像增强、图像分割等。
五、研究预期结果1. 设计和实现一种基于深度学习的车牌识别系统;2. 提高车牌图像的质量和准确性;3. 实现对车牌区域的准确提取和分割;4. 实现对车牌字符的准确识别和分类;5. 提高系统的准确性和鲁棒性。
六、研究意义本论文的研究成果将具有以下意义:1. 提高交通管理的效率:通过快速准确地识别车辆的车牌信息,可以实现对交通违法行为的及时处理和管理,提高交通管理的效率。
车牌识别技术研究开题报告
![车牌识别技术研究开题报告](https://img.taocdn.com/s3/m/06e61a6e4a73f242336c1eb91a37f111f1850db0.png)
车牌识别技术研究开题报告摘要:车牌识别技术是一种基于计算机视觉和图像处理技术的应用,可以自动识别并提取车辆上的车牌信息。
随着交通管理的日益重要和车辆数量的不断增加,车牌识别技术应运而生。
本文将对车牌识别技术的研究进行探讨,包括其发展历程、相关技术原理、应用场景以及存在的问题和挑战。
通过对车牌识别技术的研究,我们可以为相关领域的研究和应用提供理论和技术支持。
一、引言车牌识别技术是近年来计算机视觉领域的研究热点之一,它与交通管理、车辆安全和智能交通系统等相关。
传统的车牌识别方法通常基于模板匹配、特征提取和机器学习等技术,但在复杂的实际应用场景中仍然存在一些问题。
近年来,随着深度学习技术的兴起,基于卷积神经网络的车牌识别方法取得了令人瞩目的成果。
在本文中,我们将对车牌识别技术的研究进行探讨,旨在提供理论和技术支持。
二、车牌识别技术的发展历程车牌识别技术的起源可以追溯到20世纪80年代,当时主要依靠传统的图像处理和模式识别技术。
随着计算机视觉和机器学习的发展,车牌识别技术在90年代取得了重要突破,尤其是在泛化能力和抗干扰能力方面。
进入21世纪,随着深度学习技术的兴起,基于卷积神经网络的车牌识别方法取得了巨大的进步和发展。
三、车牌识别技术的原理车牌识别技术的基本原理包括图像预处理、车牌定位、字符分割和字符识别等步骤。
首先,对输入的图像进行预处理,包括灰度化、滤波和增强等操作,以提高后续处理的效果。
然后,通过车牌定位算法,确定图像中的车牌位置。
接下来,使用字符分割算法将车牌中的字符单独分割出来。
最后,利用字符识别算法对分割后的字符进行识别,提取并输出车牌上的字符信息。
四、车牌识别技术的应用场景车牌识别技术广泛应用于交通管理、治安监控和智能交通系统等领域。
在交通管理中,车牌识别技术可以用于违章抓拍和车辆管理;在治安监控中,车牌识别技术可以用于车辆实时监控和犯罪侦测;在智能交通系统中,车牌识别技术可以用于车辆通行记录和收费系统。
车牌识别技术研究开题报告
![车牌识别技术研究开题报告](https://img.taocdn.com/s3/m/147ea58a8762caaedc33d407.png)
研究方法:通过对车牌识别技术的了解,掌握与车牌定位相关的技术方法、与字符分割相关的技术方法、与字符识别相关的技术方法,然后通过查阅大量的相关资料达到本课题的研究目的。
技术路线:基于MATLAB的车牌识别技术的流程通常包括车辆图像采集,图像预处理,图像定位和字符分割,字符识别四个步骤。
内容
本课题是基于MATLAB的车牌图像处理技术研究,汽车牌照识别技术主要包括车牌定位、车牌字符分割和车牌字符识别三部分:
①车牌定位,通过分析车牌图像的特征,定位出图像中的车牌位置。
②车牌字符分割,对定位好的图像中的车牌位置进行字符分割。
③车牌字符识别,对分割出来的车牌字符加以识别,获得文字形式的车牌。
进度
2013.8-2013.9.24,完成选题。
2013.9.25-2013.10.4,了解课题的基本知识收集资料,写好开题报告。
2013.10.5-2013.11.5,完成车牌图片的预处理和定位分割,理清论文思路。
2013.11.6-2013.12.6,完成牌照字符的识别,和写好论文。
2013.12.7-2013.12.8,对论文和毕业设计进行最后检查。
进入20世纪90年代后,车牌识别的系统化研究开始起步。典型的如A.S.Johnson等提出车辆牌照的识别系统分为图像分割、特征提取和模板构造、字符识别等三部分,完成车辆牌照的识别。R.A.Lotufo使用视觉字符识别技术分析所获得的图像,首先在二值化图像中找到车牌,然后用边界跟踪技术提取字符特征,再利用统计最邻近分类器与字符库中的字符比较,得出一个或几个车牌候选号码,再对这些号码进行核实检查,确定是否为该车牌号码,最终确定车牌号码。这个时期的应用在识别正确率方面有所突破,但还没有考虑识别实时性的要求,识别速度有待进一步提高。从80年代中期开始,ARGUS英国Alphatech公司就开始了名为RAUS的车牌识别系统的研制。ARGUS的车牌识别系统的识别时间为100毫秒,通过ARGUS的车速可高达每小时100英里。还有Hi-Tech公司的See/Car system,新加坡Optasia公司的VLPRS等。另外日本、加拿大、德国等发达国家都有适用于本国的车牌识别系统。
车牌识别技术研究的开题报告
![车牌识别技术研究的开题报告](https://img.taocdn.com/s3/m/abe71b33a517866fb84ae45c3b3567ec112ddc41.png)
车牌识别技术研究的开题报告一、选题意义随着社会的发展,交通系统逐渐向数字化和智能化方向迈进,而现代化道路交通管理离不开车辆信息的高效采集和分析。
车牌识别技术作为智能交通系统中基础的技术之一,已经成为车辆信息采集的主要方法,具有广泛的应用价值。
车牌识别技术的发展不仅可以提高城市道路交通的安全性、交通流畅性和管理效率,而且对于防范和打击交通违法犯罪、提高治安管理水平以及便民服务等方面也有很大的推动作用。
二、研究目标本论文旨在针对车牌识别技术的关键技术研究展开深入探讨,重点利用深度学习等先进技术,提出高效准确的车牌识别算法,为实现车辆信息的快速识别和管理提供技术支持。
三、主要内容(1)车牌识别技术的研究现状和发展趋势;(2)深度学习等先进技术在车牌识别中的应用与分析;(3)采用卷积神经网络对车牌进行特征提取与识别的方法;(4)系统实现与测试分析。
四、研究思路(1)首先,对车牌识别技术的研究现状和发展趋势进行详细介绍,分析车牌识别技术的关键问题和挑战;(2)其次,结合深度学习技术,提出基于卷积神经网络的车牌识别算法;(3)然后,利用TensorFlow等开源深度学习框架实现车牌识别系统,并对其进行实验和测试;(4)最后,对实验结果进行分析和总结,提出未来的研究方向和优化改进的建议。
五、研究难点(1)车牌识别算法的设计问题;(2)车牌图像的提取和预处理问题;(3)车牌识别系统的实时性要求;(4)对复杂场景下车牌的识别能力。
六、研究方法(1)文献调研:通过阅读相关文献,了解车牌识别技术的发展现状和创新点;(2)算法设计:针对现有车牌识别算法的不足,提出基于深度学习的车牌识别算法,进行分析和优化;(3)系统实现:基于开源深度学习框架完成车牌识别系统的开发和实现;(4)系统测试:对车牌识别系统进行实验和测试,评估其性能和准确度。
七、预期结果(1)提出基于卷积神经网络的车牌识别算法,准确率达到90%以上;(2)搭建车牌识别系统,能够处理图像数量较大、品质较差的车牌数据;(3)对比不同算法的优缺点,为今后的研究提供借鉴。
车辆牌照识别系统关键技术研究的开题报告
![车辆牌照识别系统关键技术研究的开题报告](https://img.taocdn.com/s3/m/2b338922c381e53a580216fc700abb68a982adf3.png)
车辆牌照识别系统关键技术研究的开题报告一、选题背景及意义车辆牌照识别系统(Automatic License Plate Recognition,ALPR)是一种基于计算机视觉技术开发的能够自动获取并识别车辆牌照信息的系统。
该系统具有广泛的应用前景,包括交通管理、安防监控、停车场管理等领域。
在交通管理领域,该系统能够通过牌照信息获取车辆的行驶路线、违规行驶情况等信息,有助于交通管理部门监测道路交通状况、实施交通规范,并对违规行驶行为进行处罚。
在安防监控领域,该系统能够通过识别车牌获取车辆的入出场时间、地点等信息,有助于维护公共安全和治安秩序。
在停车场管理领域,该系统能够通过识别车牌实现自动计费、快捷进出停车场等功能。
因此,研究车辆牌照识别系统的关键技术,有助于推动该领域的发展,提高系统的识别率和准确率,满足社会的需求。
二、研究内容和方法本研究旨在探究车辆牌照识别系统的关键技术。
具体研究内容和方法如下:1. 车辆牌照区域的提取技术。
该技术是车辆牌照识别系统的关键之一,需要通过对车辆图像的处理,对牌照区域进行定位和提取。
2. 车牌字符分割技术。
该技术是识别车牌字符的前提,需要对车牌图像进行预处理,将车牌上的字符进行分割,以便后续的识别工作。
3. 车牌字符识别技术。
该技术是车辆牌照识别系统的核心部分,需要通过对车牌字符进行识别,获取车牌上的文字信息。
4. 系统综合效能的评估。
对开发的车辆牌照识别系统进行综合效能评估,包括识别率、准确率、速度等指标,以便优化系统性能。
本研究将采用文献调研、实验研究和数据分析等方法进行。
三、预期成果和意义本研究预计取得的成果如下:1. 设计并开发一套高效的车辆牌照识别系统,提高识别率和准确率,满足社会日益增长的需求。
2. 研究车辆牌照识别系统的关键技术,包括车牌区域提取、车牌字符分割和字符识别等技术,并对不同技术方案进行比较和分析,为后续的研究提供参考。
3. 对车辆牌照识别系统进行综合效能评估,以便优化系统性能,提高识别准确率和效率。
车牌识别方法研究开题报告
![车牌识别方法研究开题报告](https://img.taocdn.com/s3/m/55591e1af11dc281e53a580216fc700abb68529a.png)
车牌识别方法研究开题报告1. 引言车牌识别是计算机视觉领域中的重要应用之一,它可以通过图像处理和模式识别技术自动识别车辆的车牌信息。
车牌识别技术在交通管理、安防监控、智能停车场等领域有着广泛的应用前景。
本研究旨在探索车牌识别的相关方法,提高车牌识别算法的准确率和鲁棒性。
2. 研究背景车牌识别一直是计算机视觉领域的研究热点之一。
传统的车牌识别方法主要基于图像处理技术和模式匹配算法,但由于车牌图像复杂多变、光照条件不一致、噪声干扰等因素的影响,传统方法在实际场景中存在一定的识别误差和鲁棒性不足的问题。
为了提高车牌识别的准确率和鲁棒性,近年来,研究者们提出了许多新的方法和算法。
3. 研究目标和意义本研究的主要目标是探索车牌识别的相关方法,提高车牌识别算法的准确率和鲁棒性。
具体而言,我们将通过以下几个方面来实现目标:1.分析和比较不同的车牌识别方法,包括传统方法和深度学习方法。
2.研究车牌图像的预处理技术,包括图像去噪、图像增强和图像分割等方面的方法。
3.探索基于深度学习的车牌识别算法,包括卷积神经网络(CNN)和循环神经网络(RNN)等网络结构。
4.实验评估不同方法在真实场景中的性能,并分析其优缺点。
通过研究和比较不同的车牌识别方法,本研究有望为车牌识别算法的改进提供思路和方法,为实际应用场景中的车牌识别问题提供准确、高效的解决方案。
4. 研究方法和步骤为了达到研究目标,本研究将采取以下方法和步骤:4.1 数据收集和预处理我们将收集包括不同地区、不同时间和不同光照条件下的车牌图像数据集。
在数据预处理阶段,我们将对图像进行去噪、增强和分割等处理,以提高后续算法的准确性。
4.2 传统方法的实现与比较我们将实现一些常用的传统车牌识别方法,如基于颜色特征的车牌定位、基于形状特征的字符分割和基于模式匹配的字符识别等。
通过对比实验分析这些方法的准确率和鲁棒性。
4.3 深度学习方法的实现与比较我们将探索基于深度学习的车牌识别方法,如基于卷积神经网络的端到端车牌识别和基于循环神经网络的车牌字符识别。
车牌自动识别系统的算法研究的开题报告
![车牌自动识别系统的算法研究的开题报告](https://img.taocdn.com/s3/m/49bc8d5e974bcf84b9d528ea81c758f5f71f2966.png)
车牌自动识别系统的算法研究的开题报告一、选题背景和意义在大多数城市,交通拥堵已成为一个普遍的问题。
尤其在城市中心地区,停车位的供不应求已经成为一个日益加剧的问题。
为了解决这个问题,许多城市已经开始引入车牌自动识别技术。
这项技术可以自动识别车辆的牌照,并将这些数据用于车辆管理、道路规划以及收费等。
这项技术无疑可以提高城市的运行效率,提高生活质量。
因此,本文选取车牌自动识别系统的算法研究为论题。
旨在探讨如何利用计算机视觉和图像处理技术来实现车牌自动识别。
二、研究目的和内容本文的主要目的在于研究车牌自动识别系统的算法,并探讨如何利用图像处理和计算机视觉技术来实现。
具体内容包括以下几个方面:1. 深入研究车牌自动识别技术的原理、技术流程及算法。
2. 探讨车牌自动识别技术存在的问题和挑战。
3. 分析车牌自动识别系统中各种算法的优缺点,并比较它们的性能。
4. 提出一种基于深度学习的车牌自动识别算法,并与传统方法进行比较。
三、研究方法和流程本文将采用以下方法和流程:1. 文献综述:通过查阅相关文献,了解车牌自动识别技术的研究现状和发展趋势,并分析不同的算法及其性能。
2. 原理分析:对车牌自动识别技术的原理及其各种算法进行深入分析。
3. 系统设计:根据原理分析,设计一种基于深度学习的车牌自动识别算法,并对其进行实验验证。
4. 实验验证:通过实验对所提出的算法进行验证,并与传统方法进行性能比较。
四、研究计划和进度安排本文的研究计划安排如下:1. 第一周:查阅相关文献,了解车牌自动识别技术的研究现状。
2. 第二周:深入分析车牌自动识别技术的原理及其各种算法。
3. 第三周:根据原理分析,设计一种基于深度学习的车牌自动识别算法。
4. 第四周至第七周:进行实验验证,并对所提出的算法进行性能比较。
5. 第八周:整理所有数据资料,准备论文的初稿。
6. 第九周至第十五周:撰写论文,包括摘要、引言、文献综述、理论分析、实验验证、结论等。
车牌定位技术的研究的开题报告
![车牌定位技术的研究的开题报告](https://img.taocdn.com/s3/m/3113986b2bf90242a8956bec0975f46527d3a735.png)
车牌定位技术的研究的开题报告一、选题背景及研究意义随着城市化进程不断加快,车辆数量越来越庞大,而人工停车位管理难以满足现代社会的需求。
此外,各种交通违规行为同样也不断增加,给城市交通秩序带来一定的挑战。
因此,研究基于车牌定位技术的车辆管理系统已经成为提高城市交通管理效率、优化交通资源配置的一个重要途径。
车牌定位技术,是一种用图像处理技术在车辆行驶过程中扫描车牌进行识别和记录的方法。
该技术可以自动地快速准确地识别车牌,实现车牌号码和车辆信息的自动化管理,极大地提高了车辆管理效率。
因此,本研究将重点探究车牌定位技术的相关技术原理、关键算法和实现方案,以期为城市交通管理从业者提供参考。
二、研究内容和目标1.研究车牌定位技术的相关原理,包括车牌定位的基本过程、发展历程和未来发展趋势。
2.通过调查现有车牌定位技术的算法和应用,分析其特点和优缺点。
3.对车辆图像中的车牌信息进行识别,深入探究车牌定位算法的设计思路、方法和实现方案,并分析其精度和稳定性。
4.搭建车牌识别系统的原型,进行算法实现和系统测试,验证相关算法的效果和可行性。
5.绘制车牌定位技术应用的流程图和系统架构图,为城市交通管理从业者提供可视化操作指南。
三、研究方法1.文献资料法。
通过阅读相关文献,了解车牌定位技术的相关理论和应用,明确研究内容和目标。
2.调研法。
通过对现有车牌定位技术的调研,对其算法和应用进行分析比较,确定研究重点和方向。
3.仿真实验法。
基于车辆图像数据集进行基础算法的实现和验证,在此基础上,结合实际场景中车辆图像数据和环境因素,分析优化分析算法。
4.系统集成法。
根据车牌定位技术的应用场景,绘制系统框架和流程图,搭建车牌识别系统的原型,并进行算法实现和系统测试,验证相关算法的效果和可行性。
四、论文结构1.引言介绍车牌定位技术的背景和研究意义,阐述研究内容和目标,分析研究方法和构思论文结构。
2.文献综述详细介绍车牌定位技术的相关理论、算法和应用,对现有技术进行调研和分析,明确研究重点和方向。
车牌识别开题报告
![车牌识别开题报告](https://img.taocdn.com/s3/m/713fcf49b42acfc789eb172ded630b1c58ee9b13.png)
车牌识别开题报告引言车牌识别技术是当代计算机视觉领域的重要研究方向之一。
随着交通问题的日益严峻以及车辆数量的不断增加,车牌识别系统的需求也越来越迫切。
车牌识别系统主要通过图像处理和模式识别算法,自动地从一幅图像或视频中识别出车辆的车牌号码。
在实际应用中,车牌识别系统被广泛应用于车辆管理、交通违规抓拍、智能停车场等领域。
本文旨在探讨车牌识别技术的研究背景、问题描述和研究目标。
首先介绍车牌识别技术的发展背景和相关应用,然后分析车牌识别系统存在的问题,最后确定研究目标为设计一个高效准确的车牌识别系统。
背景车牌识别技术早在上世纪90年代就开始研究,经历了几十年的发展,取得了显著的进展。
随着计算机性能的提升和深度学习算法的兴起,车牌识别技术在准确性和效率方面都有了巨大的提升。
车牌识别技术在交通管理、安防领域等有着广泛的应用。
在交通管理中,车牌识别系统可以实现车辆的自动识别和统计,方便交通管理部门进行交通流量监控和违规抓拍。
在安防领域中,车牌识别系统可以用于找到犯罪嫌疑车辆的运动轨迹,为犯罪调查提供重要线索。
问题描述尽管车牌识别技术有很多应用,但是目前仍然存在一些问题需要解决。
1.复杂背景干扰问题:车牌识别系统在野外环境中容易受到复杂背景的干扰,例如树木、建筑物等。
这些背景干扰会导致车牌识别的准确性降低。
2.光照变化问题:在不同的光照条件下,车牌的亮度和对比度会发生变化。
光照变化会对车牌识别的准确性产生较大的影响。
3.车牌变形问题:由于车辆在行驶过程中受到各种因素的影响,车牌可能发生变形,例如扭曲、遮挡等。
这些车牌变形问题也会降低车牌识别系统的准确性。
4.实时性要求问题:在交通管理和安防领域,对车牌识别系统的实时性要求较高。
因此,车牌识别系统需要在较短的时间内对车牌进行识别和处理。
研究目标基于以上问题描述,本文的研究目标是设计一个高效准确的车牌识别系统。
具体的研究内容如下:1.背景去除和图像增强:针对复杂背景干扰和光照变化问题,我们将研究并实现一种有效的图像处理算法,用于去除背景噪声并增强车牌图像质量。
车牌识别 开题报告
![车牌识别 开题报告](https://img.taocdn.com/s3/m/24af229429ea81c758f5f61fb7360b4c2e3f2a3c.png)
车牌识别开题报告车牌识别开题报告一、背景介绍车牌识别技术是指通过计算机视觉和模式识别技术,对车辆上的车牌进行自动识别和提取。
随着交通管理和安全需求的不断增加,车牌识别技术成为了智能交通系统中的重要组成部分。
本文将对车牌识别技术的发展、应用和挑战进行探讨。
二、发展历程车牌识别技术起源于上世纪90年代,最初是由人工进行车牌识别,但效率低下且容易出错。
随着计算机技术的不断进步,车牌识别技术逐渐实现了自动化。
早期的车牌识别系统主要基于模板匹配和特征提取算法,但由于车牌的多样性和复杂性,这些方法往往无法达到较高的准确率。
随着深度学习技术的兴起,卷积神经网络(CNN)被广泛应用于车牌识别领域。
CNN可以通过学习大量车牌样本,自动提取车牌的特征,并实现高准确率的车牌识别。
此外,还有一些基于端到端的车牌识别系统,如基于循环神经网络(RNN)的方法,可以直接从车牌图像中提取文本信息。
三、应用领域车牌识别技术在各个领域都有广泛的应用。
在交通管理方面,车牌识别可以用于违章监控、交通流量统计和智能停车场管理等。
在安防领域,车牌识别可以用于车辆追踪、盗窃车辆识别和恐怖分子追踪等。
此外,车牌识别还可以应用于智能支付系统、智能门禁系统和智能物流等领域。
四、挑战与未来发展尽管车牌识别技术取得了很大的进展,但仍然存在一些挑战。
首先,车牌的多样性和复杂性使得车牌识别系统容易受到光照、遮挡和变形等因素的影响。
其次,车牌识别技术在大规模场景下的实时性和准确性仍然有待提高。
此外,隐私保护也是一个需要关注的问题,如何在车牌识别过程中保护个人隐私是一个重要的研究方向。
未来,车牌识别技术有望在以下几个方面得到进一步发展。
首先,随着深度学习技术的不断发展,车牌识别的准确率将进一步提高。
其次,随着计算机硬件的不断提升,车牌识别系统的实时性将得到改善。
此外,随着人工智能和大数据技术的发展,车牌识别技术将与其他技术相结合,实现更广泛的应用。
总结:车牌识别技术在智能交通系统和安防领域中发挥着重要作用。
基于模式识别的车牌定位算法研究-开题报告
![基于模式识别的车牌定位算法研究-开题报告](https://img.taocdn.com/s3/m/f7fc717127284b73f24250e4.png)
安徽建筑工业学院电子与信息工程学院本科毕业设计(论文)开题报告课题名称:基于模式识别的图像处理算法研究——基于模式识别的车牌定位算法研究专业:电子信息工程班级:08电子①班学生姓名:陈宇栋学号:08205010127指导教师:填表日期:2012年3月5日安徽建筑工业学院电子与信息工程学院二○一一年十二月制表说明1.抓好毕业设计(论文)的开题报告是保证毕业设计(论文)质量的一个重要环节。
为了加强对毕业设计(论文)的过程管理,规范毕业设计(论文)的开题报告,特印发此表。
2.毕业生一般应在毕业设计前期准备过程中,通过文献调研,主动跟指导教师讨论,完成毕业设计(论文)的开题报告。
3.此表经过指导教师和有关人员签字后,一份由指导教师保存,一份交院教学办公室。
4.毕业生在毕业设计(论文)答辩时,必须提交这份毕业设计(论文)开题报告。
填写选题依据和设计方案,力求简练,若表中栏目不够填写,可另加附页。
一、简表学生简况姓名陈宇栋性别男出生年月1988-08入学时间2008-09学号08205010127专业电子信息工程班级08电子①班课题名称基于模式识别的图像处理算法研究子课题基于模式识别的车牌定位算法研究课题来源纵向课题类型计算机软件设计研究(设计)内容随着计算机和人工智能技术的发展,模式识别在图像处理中的应用日益广泛,智能交通工具在世界范围内引起重视,而车牌识别系统是智能交通工具的重要组成部分,该系统可以记录十字路口违章车辆,实现高速公路、收费路口、停车场等地的收费。
车牌识别系统包括从图像的采集到预处理,再到车牌区域的定位和字符的分割,最后对分割出的字符进行识别的一系列过程。
本次毕业设计主要对汽车牌照识别系统进行处理研究,借助于Visual C++编程环境运行在相应的硬件平台上,利用数字图像模式识别技术实现对汽车牌照的自动识别。
按照模式识别系统组成,完成汽车牌照自动识别技术包括车牌预处理、车牌特征提取和车牌识别等功能,完成相应的算法研究。
车牌识别开题报告
![车牌识别开题报告](https://img.taocdn.com/s3/m/0e8c09a6172ded630b1cb69c.png)
研究阶段二(2015年3月9日——2015年4月26日)
①分析整个系统的二次开发代码构架;
②对每一个功能模块,通过具体的操作步骤,实现系统的所有功能。
研究阶段三(2015年4月27日——2015年5月29日)
①系统实现、优化、调试阶段
②论文终稿
五、拟查阅的主要参考文献
[1]李贞培,李平,郭新宇等. 三种基于GDI+的图像灰度化实现方法[J].计算机技术与发展,2009,19(7).
[6]邹星. 车牌识别中的图像提取和分割算法[J].重庆工学院学报(自然科学版)2009(08).
[7]李战明,徐锦钢. 车牌识别系统中的车牌图像预处理研究[J]2008(08).
[8]何铁军,张宁,黄卫. 车牌识别算法的研究与实现[J].公路交通技术.2006(08).
[9]冯慧娜.车牌识别系统中车辆定位与字符分割技术的研究[D].电子科技大学 2010.
(2)图像预处理
图像预处理过程需要把图像转换成便于定位的二值化图像。需要经过图像灰度化、图像增强、边缘提取、二值化操作。
(3)车牌定位
车牌定位方法的出发点是利用车牌区域的特征来判断车牌,将车牌区域从整幅车牌图像中分割出来。车牌自身具有许多的固有特征,这些特征对于不同的国家是不同的。
(4)字符分割
字符的分割要求能够准确地定位字符边界,进而将车牌内的所有字符
3.设计目标:
车牌识别系统是图像处理和模式识别技术研究的热点,应用也越来越普遍。车牌识别主要包括以下三个主要步骤:车牌定位,车牌字符分割,车牌字符识别。近年来,许多学者对其进行了较为深入的研究和探讨,提出了基于纹理特征、颜色信息和运用数学工具的车牌定位法,基于投影分析、连通域分析的字符分割方法和基于模板匹配、神经网络等的字符识别方法。根据国内外汽车牌照的字符特征,对近年来出现的车牌识别方法进行综述,在现有方法的基础上,取其优点,结合数学工具,提高系统的速度和精度。
车牌定位识别算法研究的开题报告
![车牌定位识别算法研究的开题报告](https://img.taocdn.com/s3/m/58227f6bec630b1c59eef8c75fbfc77da3699741.png)
车牌定位识别算法研究的开题报告一、选题背景车牌识别技术是计算机视觉领域中的重要研究方向之一,其应用范围涵盖了智能交通、安防监控、车辆管理等多个领域。
其中,车牌定位算法作为车牌识别的重要前置环节,其准确性和鲁棒性对整个车牌识别系统的性能影响非常大。
二、研究内容本文将以车牌定位算法为研究对象,深入探究基于深度学习的车牌定位算法的优化方法和应用。
具体研究内容如下:1. 调研已有的车牌定位算法,对比各算法的优缺点,确定待研究的算法。
2. 基于卷积神经网络(CNN)和循环神经网络(RNN)等深度学习算法,构建针对车牌定位的神经网络模型。
3. 探究数据增强方法对车牌定位算法性能的影响,设计针对该算法的数据增强方案。
4. 提出基于深度学习的车牌定位算法的优化方案,并在数据集上进行实验验证。
5. 在实际应用场景中,测试车牌定位算法的鲁棒性和准确性。
三、研究意义车牌定位算法是车牌识别系统的重要前置环节,其准确性和鲁棒性对整个识别系统的性能影响非常大。
本文对基于深度学习的车牌定位算法进行了研究和优化,其主要意义在于:1. 提高车牌识别系统的准确性和鲁棒性。
2. 为智能交通、车辆管理等领域提供更加先进的技术支持。
3. 推进深度学习在计算机视觉领域的应用和发展。
四、研究方法本文主要采用以下研究方法:1. 调研文献,了解已有的车牌定位算法,并分析各算法的优缺点。
2. 基于Python编程语言,使用深度学习框架TensorFlow构建车牌定位算法模型。
3. 使用数据增强技术提高数据集的多样性,增强模型的泛化能力。
4. 在各种实验条件下,对模型进行训练和测试,并对结果进行评估和分析。
5. 针对实际应用场景进行模型的优化和调整。
五、预期结果1. 基于深度学习的车牌定位算法在测试数据集上的准确率将大于90%。
2. 采用本文提出的数据增强方案,可显著提高算法的鲁棒性和准确性。
3. 针对实际应用场景进行优化调整后,算法可应用于实际的车牌识别系统中,提高整个系统的性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安徽建筑工业学院电子与信息工程学院本科毕业设计(论文)开题报告
课题名称:基于模式识别的图像处理算法研究
——基于模式识别的车牌定位算法研究专业:电子信息工程
班级:08电子①班
学生姓名:陈宇栋
学号:08205010127
指导教师:
填表日期:2012年3月5日
安徽建筑工业学院电子与信息工程学院
二○一一年十二月制表
说明
1.抓好毕业设计(论文)的开题报告是保证毕业设计
(论文)质量的一个重要环节。
为了加强对毕业设计(论文)的过程管理,规范毕业设计(论文)的开题报告,特印发此表。
2.毕业生一般应在毕业设计前期准备过程中,通过文
献调研,主动跟指导教师讨论,完成毕业设计(论文)的开题报告。
3.此表经过指导教师和有关人员签字后,一份由指导
教师保存,一份交院教学办公室。
4.毕业生在毕业设计(论文)答辩时,必须提交这份
毕业设计(论文)开题报告。
填写选题依据和设计方案,力求简练,若表中栏目不够填写,可另加附页。
一、简表
学生简况
姓名陈宇栋性别男出生年月1988-08入学时间2008-09学号08205010127专业电子信息工程班级08电子①班
课题名称基于模式识别的图像处理算法研究
子课题基于模式识别的车牌定位算法研究
课题来源纵向课题
类型计算机软件设计
研究(设计)内容
随着计算机和人工智能技术的发展,模式识别在图像处理中的应用日益广泛,智能交通工具在世界范围内引起重视,而车牌识别系统是智能交通工具的重要组成部分,该系统可以记录十字路口违章车辆,实现高速公路、收费路口、停车场等地的收费。
车牌识别系统包括从图像的采集到预处理,再到车牌区域的定位和字符的分割,最后对分割出的字符进行识别的一系列过程。
本次毕业设计主要对汽车牌照识别系统进行处理研究,借助于Visual C++编程环境运行在相应的硬件平台上,利用数字图像模式识别技术实现对汽车牌照的自动识别。
按照模式识别系统组成,完成汽车牌照自动识别技术包括车牌预处理、车牌特征提取和车牌识别等功能,完成相应的算法研究。
对采集的车牌图像进行预处理包括图像灰度化、二值化、灰度拉伸及边缘提取等过程,并且过滤图像噪声使图像区域特征明显,根据区域特征确定车牌区域。
车牌字符分割可以采用车牌区域纵向灰度投影的方式进行字符区域识别和分割实现。
最后进行车牌分割字符图像归一化,将分割好的字符图像通过系数变换得到高度、宽度均相等的图像,以方便特征提取,提高识别的准确率,实现车牌的识别。
二、选题依据
1.阐述该选题的研究意义,分析跟该课题有关的国内外研究概况和发展趋势。
基于模式识别的图像处理是图像识别领域重要的研究和发展方向之一。
基于图像的车辆牌照自动识别是计算机视觉与模式识别技术在智能交通领域的重要应用,是实现交通管理智能化的重要环节。
车辆牌照识别技术可应用于道路交通监控、交通事故现场勘察、交通违章自动纪录、高速公路自动收费系统、停车场自动安全管理、小区智能化管理等方面,具有巨大的经济价值。
汽车牌照相当于汽车的身份证,是在公共场合确定汽车身份的直接凭证。
我国交通管理部门对汽车牌照的样式制定了严格的规范,这些规范将为车牌自动识别技术的实现提供重要的识别依据。
基于图像处理的车牌识别技术的研究在外国起步比较早,在美国、意大利、德国、以色列、新加坡等国家,现在已经有比较成熟的产品投入使用,如美国的AUTOSCOF2003系统、以色列的Hi-Tech公司研制的See/CarSystem、德国西门子公司的ARTEM7S系统、新加坡的Optasa公司研制的VLPRS等车牌识别系统。
近几年,国内也有许多公司以及科研机构进行这方面的研究,并且有一些实用产品,这些产品的车牌识别率都在70%以上,但是对环境要求较高,在全天候的条件下,都存在识别精度不高,识别时间长等特点,车牌识别技术还存在很大的发展空间,许多工作还需更进一步的探索。
2. 国内外主要参考文献(列出作者、论文名称、期刊名称、出版年月)。
[1] 朱秀昌刘峰胡栋,数字图像处理与图像通信,北京邮电大学出版社,2008年修订版;
[2] 冯伟兴唐墨贺波,VC++数字图像模式识别技术详解,机械工业出版社,2010年7月;
[3] 刘海波沈晶郭耸,VC++数字图像处理技术详解[M].,机械工业出版社,2010;
[4] 卢春雨张长水,基于区域特征的快速人脸检测法[J],清华大学学报:自然科学版;
[5] 梁路宏艾海舟,基于多模板匹配的单人脸检测[J].中国图象图形学报:A辑;
[6] Ai H Z, Liang L H, Xu G Y. A general framework for face detection. In: Tan Tie-Niu, Shi Yuan-Chun, Gao Wen eds. In: Proc the 3rd Conference on Multimodal Interfaces, Lecture Notes in Computer Science, 1948, Berlin: Springer-Verlag,,2000. 119-126;
[7] 李洪亮侯朝桢周绍生,一种高效的改进粒子群优化算法[J],计算机工程与应用,2008,44(1):14-16,30;
[8] 段海滨王道波于秀芬,几种新型仿生优化算法的比较研究[J].计算机仿真,2007,24(3):169-172,253;
[9] L李孟歆吴成东基于分级网络的车牌字符识别算法,计算机应用研究.2009,26(5),1703-1705.
三、设计方案
拟采用的研究方法,技术路线,实验方案的可行性分析。
一个完整的汽车牌照识别系统的工作过程主要分为三个研究阶段:一是车牌定位,实现牌照子图像的精确定位算法(用来确定车牌在整个图像中的相对位置);二是车牌字符分割,提取车牌特征;三是对分割出的车牌字符图像进行识别的一系列过程。
图像处理对软件平台并没有特别的要求,系统所有算法均在Visual C++ 6.0软件开发平台下,利用数字图像模式识别技术实现对汽车牌照的识别
另外,本人是电子信息工程专业,对数字图像处理有着扎实的基础,并已通过全国计算机二级,有一定的编程能力,指导老师邵慧老师也是长期从事图像处理和图像通信的研究方向,有着丰富的研究经验,给整个算法改进进行合理的规划,另外我院计算机软件和电视原理实验室的软硬件资源,为毕业设计提供了良好的环境。
四、工作进度的大致安排
第一阶段前期准备,阅读C++语言相关知识,查找和本课题有关的相关文献期刊,完成开题报告。
第二阶段课题研究阶段,在指导老师的带领下,编写算法,通过实验,软件仿真,验证算法,并改进算法,以其达到更好的实验效果。
第三阶段论文撰写阶段。
第四阶段论文答辩阶段。
五、设计成果
1、了解模式识别的图像处理的工作原理
2、对相关算法进行设计和改进,运用VC++软件编程环境实现对车牌识别的要求
3、进行实验数据、结果分析、总结
4、撰写毕业论文、PPT
指导教师意见
指导教师签名:日期:
院教学工作委员会意见
主任签名:日期:。