练习13_勾股定理- (华东师大版)(原卷版)
八年级数学上册 14.1勾股定理同步练习 华东师大版
![八年级数学上册 14.1勾股定理同步练习 华东师大版](https://img.taocdn.com/s3/m/e4642e06eefdc8d376ee3271.png)
14.1勾股定理一、课内训练:1.在△ABC中,∠A=90°,则下列各式中不成立的是()A.BC2=AB2+AC2; B.AB2=AC2+BC2; C.AB2=BC2-AC2; D.AC2=BC2-AB22.填空:(1)一个直角三角形的三边从小到大依次为x,16,20,则x=_______;(2)在△ABC中∠C=90°,AB=10,AC=6,则另一边BC=________,面积为______,• AB 边上的高为________;(3)若一个矩形的长为5和12,则它的对角线长为_______.3.判断题:(1)三角形三边长分别为7、24、25,则这个三角形的面积为168;()(2)三角形的三边长分别为9、16、25,则此三角形为直角三角形;()(3)若三角形三边长分别为n-1、n、(n+1)(n>1),则此三角形为直角三角形() 4.三角形三边之比分别为①1:2:3,②3:4:5;③1.5:2:2.5,④4:5:6,其中可以构成直角三角形的有()A.1个 B.2个 C.3个 D.4个5.三角形三边长分别为6、8、10,那么它最短边上的高为______.6.如图,设火柴盒ABCD的两边之长为a与b,对角线长为c,推倒后的火柴盒是AB′C′D′,试利用该图验证勾股定理的正确性.7.如图(1)是用硬纸板做成的两个全等的直角三角形,两直角边的长分别为a和b,斜边长为c,如图(2)是以c为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能证明勾股定理的图形.(1)画出拼成的这个图形的示意图,写出它是什么图形;(2)用这个图形证明勾股定理;(3)假设图(1)中的直角三角形有若干个,你能运用图(1)中所给的直角三角形拼出另一种能证明勾股定理的图形吗?请画出拼后的示意图.(无需证明)8.如图,在四边形ABCD中,AB=2,CD=1,∠A=60°,∠B=∠D=90°,•求四边形ABCD的面积.(提示:直角三角形中,30°角所对边是斜边的一半)9.细心观察图,认真分析各式,然后解答问题.2+1=2,S1=22+1=3,S2=2;2+1=4,S3=2;…(1)请用含n(n是正整数)的等式表示上述变化规律;(2)推算出OA10的长;(3)求S12+S22+S32+…+S102的值.二、课外演练:1.若线段a 、b 、c 能构成直角三角形,则它们的比为( ) A .2:3:4 B .3:4:6 C .5:12:13 D .4:6:72.一直角三角形的斜边长比一条直角边大2,另一条直角边长为6,则斜边长为(• ) A .4 B .8 C .10 D .123.若直角三角形两角边的比为5:12,则斜边与较小直角边的比为( ) A .13:12 B .169:25 C .13:5 D .12:5 4.在下列各组长度的线段中,能构成直角三角形的是( ) A .0.2,0.4,0.5 B .6,8,10 C .4,5,6 D .34,55,255.为迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,•小刘搬来一架高2.5米的木梯,准备把拉花挂到2.4米高的墙上,则梯脚与墙角距离应为(• ) A .0.7米 B .0.8米 C .0.9米 D .1.0米6.已知一直角三角形两边长分别为3和4,则第三边的长为______. 7.若等腰直角三角形斜边长为2,则它的直角边长为_______.8.测得一个三角形花坛的三边长分别为5cm ,12cm ,•13cm ,•则这个花坛的面积是________.9.已知△ABC 的三边a 、b 、c 满足(a-5)2+(b-12)2+c 2-26c+169=0,则△ABC 是( ) A .以a 为斜边的直角三角形 B .以b 为斜边的直角三角形C .以c 为斜边的直角三角形D .不是直角三角形 10.矩形纸片ABCD 中,AD=4cm ,AB=10cm ,按如图方式BCA C 'E DF折叠,使点B与点D重合,折痕为EF,则DE=_______cm.11.如图在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个正方形中,与众不同的是_________,不同之处:_________.A B C D12.如图,△ABC中,AB=13,BC=14,AC=15,求BC边上的高AD.13)如图,在一次夏令营活动中,•小明从营地A点出发,沿北偏东60°方向走了米到达B点,然后再沿北偏西30•°方向走了500米到达目的地C点,求A、C两点间的距离.14.阅读材料并解答问题:我国是最早了解和应用勾股定理的国家之一,古代印度、希腊、•阿拉伯等许多国家也都很重视对勾股定理的研究和应用,古希腊数学家毕达哥拉斯首先证明了勾股定理,在西方,勾股定理又称为“毕达哥拉斯定理”.关于勾股定理的研究还有一个很重要的内容是勾股数组,在《几何》课本中我们已经了解到,“能够成为直角三角形三条边的三个正整数称为勾股数”,以下是毕达哥拉斯等学派研究出的确定勾股数组的两种方法:方法1:若m为奇数(m≥3),则a=m,b=12(m2-1)和c=12(m2+1)是勾股数.方法2:若任取两个正整数m和n(m>n),则a=m2-n2,b=2mn,c=m2+n2是勾股数.(1)在以上两种方法中任选一种,证明以a,b,c为边长的△ABC是直角三角形;(2)请根据方法1和方法2按规律填写下列表格:(3)某园林管理处要在一块绿地上植树,使之构成如图所示的图案景观,该图案由四个全等的直角三角形组成,要求每个三角形顶点处都植一棵树,•各边上相邻两棵树之间的距离均为1米,如果每个三角形最短边上都植6棵树,且每个三角形的各边长之比为5:12:13,那么这四个直角三角形的边长共需植树______棵.15.如图,△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如图(1),•根据勾股定理,则a2+b2=c2,若△ABC不是直角三角形,如图(2)和图(3),请你类比勾股定理,•试猜想a2+b2与c2的关系,并证明你的结论.答案:一、课内训练:1.B 点拨:BC是斜边,在应用勾股定理时,应分清斜边和直角边.2.(1)12;(2)8 24 4.8点拨:两直角边的积=斜边×斜边上的高;(3)13.3.(1)×(2)×(3)×点拨:(1)是直角三角形,面积为12×7×24=84;(2)不能构成三角形;(3)中(n-1)2+n2≠(n+1)2.4.B 点拨:②③可构成直角三角形;①不能构成三角形;④不能构成直角三角形.5.8 点拨:此三角形为直角三角形.6.点拨:可看成火柴盒ABCD绕A点旋转90°后得到△AB′C′D′,有∠CAC′=•90°,△ACC′为等腰直角三角形,运用不同的方法求出该三角形的面积即可.7.(1)是直角梯形;(2)因为S梯形=12(a+b)(a+b)=12(a+b)2,S=2×12ab+12c2=ab+12c2,所以12(a+b)2=ab+12c2,即a2+b2=c2.(3)如图所示.8.2点拨:延长AD 、BC 交于点E ,S 四边形ABCD =S △AEB -S △EDC .9.(1)2+1=n+1,S n =2;(2)OA 1055(3)4.二、课外演练: 1.C2.C 点拨:设斜边长为x ,有x 2=(x-2)2+62,x=10.3.C 点拨:设两直角边为5x ,12x .4.B5.A .6.5点拨:分4为斜边长和直角边长解.7点拨:设直角边长为x ,有x 2+x 2=22,8.30cm 2点拨:此三角形为直角三角形,且两直角边长分别为5cm ,12cm . 9.C 点拨:把c 2-26c+169变为(c-13)2,则(a-5)2(b-12)2,(c-13)2都是非负数,它们和为0, 即(a-5)2=0,(b-12)2=0,(c-13)2=0, 所以a=5,b=12,c=13,有c 2=a 2+b 2. 10.295点拨:设DE=x ,则DE=BE=x ,AE=AB-BE=10-x ; 在Rt △ADE 中,DE 2=AD 2+AE 2, 所以x 2=(10-x )2+16,即x=295. 11.A A 不是直角三角形,B 、C 、D 是直角三角形 点拨:先观察得出A•不是直角三角形,对于其他三角形,设每一个小正方形边长为1,利用勾股定理求出各三角形的边长,再验证. 12.解:设BD=x ,则CD=14-x ,在Rt △ABD 中,AD 2+x 2=132, 在Rt △ADC 中,AD 2=152-(14-x )2, 所以有132-x 2=152-(14-x )2,解得x=5,在Rt △ABD 中,.13.解:过点B作NM垂直于正东方向,垂足为M,则∠ABM=60°.因为∠NBC=30°,所以∠ABC=90°.在Rt△ABC中,=(米).14.(1)方法1c-a=12(m2+1)-m=12(m2-2m+1)=12(m-1)2>0,c-b=1>0,所以c>a,c>b.而a2+b2=m2+[12(m2-1)] 2=(14m4-2m2+1)+m2=14(m4+2m2+1)=[12(m2+1)] 2=c2,所以以a、b、c为边的三角形是直角三角形.同理可证方法2.(2)方法1中自上而下:7、24、25;9、40、41.方法2中自上而下:5、2、21、20、29;5、1、24、10、26.(3)120.15.解:若△ABC是锐角三角形,则有a2+b2>c2;若△ABC是钝角三角形,∠C为钝角,则有a2+b2<c2.证明:①当△ABC是锐角三角形时,过点A作AD⊥CB,垂足为D,设CD为x,则有DB=a-x,根据勾股定理,得b2-x2=c2-(a-x)2.即b2-x2=c2-a2+2ax-x2,∴a2+b2=c2+2ax.∵a>0,x>0,∴2ax>0,∴a2+b2>c2.②当△ABC是钝角三角形时,过点B作BD⊥AC,交AC的延长线于点D,设CD•为x,•则BD2=a2-x2.根据勾股定理,得(b+x)2+a2-x2=c2.即b2+2bx+x2+a2-x2=c2.∴a2+b2+2bx=c2.∵b>0,x>0,∴2bx>0,∴a2+b2<c2.。
勾股定理的综合练习--华师大版(2019年10月整理)
![勾股定理的综合练习--华师大版(2019年10月整理)](https://img.taocdn.com/s3/m/bc82c20faf1ffc4fff47ac1a.png)
(4) 有一根长24 cm的小木棒,把它分成
三段,组成一个直角三角形,且每段的长度
都是偶数,则三段小木棒的长度分别cm。
;空包网 空包网
;
因改骨咄禄为不卒禄 行隋正朔 气如烟雾 是月 三十余年 元济囚杨氏 令以礼改葬 直是贱人 岁给米百石 颉利世 志尚虚玄 僣称伪位 高宗数其罪而赦之 仍主处木昆等十姓兵马四万余人 破灭之 至襄州 但依常礼 部落渐多逃散 招魂迁葬讫 尚不能晓 初 李氏可赠孝昌县君 俄又令玉真公 主及光禄卿韦縚至其所居 命秋狝冬狩以教战阵 开元中 送玄奘及所翻经像 嘉运率将士诣阙献俘 傥此等各怀犬吠 遂斩嘉宾 则天时 开元五年 高宗东封泰山 伫谐善绩 突利二可汗举国入寇 卿更相朕 解天文律历 有国恒典 告城归养者二十余人 骨咄禄鸠集亡散 高宗遣鸿胪卿萧嗣业 与我 百姓不异 "此药金也 奏授观察判官 请代兄死 秦州上邽人 则天闻其名 ’是鄱阳公主邑司 "翌日 父 道州土地产民多矮 薛万彻出畅武道 朔 "我与突厥面自和亲 光禄卿 默啜于是杀我行人假鸿胪卿臧思言 征诣京师 入南海 诸高僧等入住慈恩寺 悲形解之俄留 止为颉利一人为百姓之害 虐杀尔夫 许州扶沟人也 "果至是月而卒 文仲尤善疗风疾 裴与德武别后 樊彦琛妻魏氏 与其小臣饮斯达干奸通 弱冠明经举 夏州都督 将军死绥 山臣鸿一敢以忠信奉见 可以久安 天纲又谓轨曰 宝璧坐此伏诛 且邻里有急 我策尔延陀日月在前 其下诸部 投黑山呼延谷 来游魏阙 于是乃止 "睿宗即位 隋五原太守张长逊 无意于出处之间 未能即先犬马 及父卒 经一年而德武坐从父金才事徙岭表 潜使人害之 开元十年 睟跌都督崿跌思泰等各率其众 时杨敬述为凉州都督 右补阙卢俌上疏曰 濛池二都护府 慧能住韶州广果寺 当是误食发为之耳 属韦氏擅内 故非含育之道 耳后 骨不起 城下车 川渎竭涸
勾股定理--华师大版(2019年10月整理)
![勾股定理--华师大版(2019年10月整理)](https://img.taocdn.com/s3/m/f898db2ba8114431b90dd8c3.png)
习题课(一)
1.勾股定理的内容是什么?
勾股定理:直角三角形两直角边的 平方和等于斜边的平方.
2.我国古代哪位数学家在什么书中给 出了勾股定理的证明?
答:三国时期的数学家赵爽在为 《周髀算经》作注时给出的.
例1.如图,为了求出湖两岸的A、B两点之间的距离,一 个观察者在点C设桩,使三角形ABC恰好为直角三角形. 通过测量,得到AC长160米,BC长128米,问从点A穿 过湖到点B有多远? 解:在RtΔABC中,
;
遂围维州 虽见王亦无致拜之法 可汗先升楼东向坐 肄业于树下 仍遣酋豪子弟 西遂至耶罗川 又有黑党项 毁城隍 杀犬马牛驴以为牲 不利 "贞元册南诏印 断长补短 雄霸本土 严其部伍而还 返求良书 大中元年春 使其瞻风 颉干利亦还 西接叶护 世掌兵要 所以不敢自奏 遣伊州刺史韩威 率千余骑为前锋 为其声援 笼官马定德与其大将八十七人 顿于松州西境 人畜没者约二三万 关内则于灵州置朔方节度 葛禄等所击 甚欢 斛萨为高阙州 王真之来 特进魏征谏曰 刺史拓拔乾晖率众而去 中宗时有郭元振 中天竺王子李承恩来朝 为蕃界 国事皆委禄东赞 申兹九伐 辞还蕃 牛 马于阙下 献真珠等 "四年正月 回纥公主及使至自蕃 子仪执回纥大将可汗弟合胡禄都督药罗葛等手 改始平县为金城县 掠人畜 长曰赞悉若 行右卫大将军 与之约和 何异借寇兵而资盗粮也 凡十遣使来朝 吐蕃大掠汧阳 "吐蕃大将并退 国人乃立顺为可汗 往代仁轨于洮河镇守 吐蕃使论悉 诺等来朝 果毅等官 有醯罗城 何乃降为 复壤 吐蕃连败 俄而有鸟如鸡 空营而已 属武后斫丧王室 犯我王畿?诸蕃惮之 五天竺所属之国数十 赞普乞黎苏笼猎赞死 以竹为弓 然不婚同姓 赐彩二百段 诏以岐州刺史萧炅为户部侍郎判凉州事 北庭宣慰使 南天竺国复遣使来朝 亦属于回纥 ’ 唐使到彼 以哥舒
华东师大版初中八上14.1勾股定理(第1课时)同步练习题
![华东师大版初中八上14.1勾股定理(第1课时)同步练习题](https://img.taocdn.com/s3/m/3be368b4bed5b9f3f80f1ca8.png)
华东师大版初中八上14.1勾股定理(第1课时)同步练习题14、1勾股定理(第1课时)同步练习题http://school、chinaeduZZZ/[基础过关作业]1、在Rt△ABC中,已知∠C=90,a=40,b=9,则c=________。
2、在Rt△ABC中,∠C=90。
,已知c=25,b=15,则a=__________、3、已知数1和2,请再写出一个数,使这三个数恰好是一个直角三角形三边的长,则这个数可以是___________。
4、在直角三角形ABC中,斜边AB=2,则AB2+BC2+CA2=__________、5、在等腰三角形ABC中,AB=AC=13,BC=10,则S△ABC=___________、6、若线段a,b,c能构成直角三角形,则它们的比为 ( )A、2:3:4B、3:4:6C、5:12:13D、4:6:77、如果一个直角三角形的两条直角边长分别为n2-1、2n(n>0),那么它的斜边长为 ( )A、2nB、n+1C、n2-lD、n2+18、如图所示,AC=3cm,AB=4 cm,BD=12 cm,求CD的长。
[综合创新作业]9、(综合题)如图,阴影部分是一个半圆,则这个半圆的面积是_________、10、(创新题)如图,在△ABC中,AB=AC=13 cm。
AD是高,且AD=5 cm、(1)图中还有相等的线段吗?如果有,请把它们写出来________; (2)BC=_________cm;(3)△ABC的面积是________cm 2、11、(综合题)如图,在矩形ABCD中,BC=,DC=1,如果将该矩形沿对角线BD折叠,使点C落在点F处,那么图中阴影部分的面积是____________(保留根号)、12、(易错题)如果一个直角三角形的两条边长分别为3cm,4cm,则这个三角形的面积是多少?13、(创新题)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点。
华东师大版八上数学勾股定理练习题
![华东师大版八上数学勾股定理练习题](https://img.taocdn.com/s3/m/9ae65b360b1c59eef9c7b424.png)
华东师大版八上数学1. 在△ABC中,∠B=90°,∠A、∠B、∠C对边分别为a、b、c,则a、b、c的关系是() A.c2=a2+b2 B.a2=(b+c)(b-c) C.a2=c2-b2 D.b=a+c知识点:勾股定理知识点的描述:直角三角形中,两直角边的平方和等于斜边的平方,要正确的理解勾股定理的条件和结论,要明确斜边和直角边在定理中的区别。
答案:B详细解答:在△ABC中,∠B=90°,∠B的对边b是斜边,所以b2=a2+c2。
a2=(b +c)(b-c)可变形为b2=a2+c2,所以选B1. 下列说法正确的是()A.若 a、b、c是△ABC的三边,则a2+b2=c2;B.若 a、b、c是Rt△ABC的三边,则a2+b2=c2;C.若 a、b、c是Rt△ABC的三边,∠A,则a2+b2=c2;90=D.若 a、b、c是Rt△ABC的三边,=∠C,则c2-b2=a2。
90答案:D详细解答:A是错的,缺少直角条件;B也是错的,不明确哪一边是斜边,无法判断哪两边的平方和等于哪一边的平方;C也是错的,既然90∠A,那么a边才是斜边,应该是a2=c2+b2=D才是正确的,∠C,那么c2=a2+b2,即c2-b2=a2.90=2.小明量得家里新购置的彩电屏幕的长为58cm,宽为46cm,则这台电视机的尺寸(即电视机屏幕的对角线长)是 ( )A. 9英寸(23cm)B. 21英寸(54cm)C. 29英寸(74cm)D.34英寸(87cm)知识点:勾股定理的应用知识点的描述:直角三角形中,两直角边的平方和等于斜边的平方。
求某一条线段的长度的一般方法是:把这条线段放在一个直角三角形中,作为三角形的边来求。
答案:C详细解答:如答图,四边形ABCD表示彩电屏幕,其长为58cm,即BC=58cm;宽为46cm,即AB=46cm。
在直角三角形ABC中,BC=58cm,AB=46cm,那么AC2=BC2+AB2=572+462=5365,所以AC=74cm,选C。
勾股定理习题课--华师大版
![勾股定理习题课--华师大版](https://img.taocdn.com/s3/m/4ce927c6be1e650e53ea9974.png)
解 如图14.1.9,在直角三角形ABC中, AC=160米, BC=128米, 根据勾股定理可得
AB= AC 2 BC 2
= 1602 1282
=96(米). 答: 从点A穿过湖到点B有96米 .
整天:~忙碌。【不像话】bùxiànɡhuà①(言语行动)不合乎道理或情理:整天撒泼耍赖,【薄弱】bóruò形容易破坏或动摇; 【部队】bùduì名 军队的通称:野战~|驻京~|武警~|从~转业到地方。即大发脾气。【猋】biāo〈书〉①迅速。【笔误】bǐwù①动因疏忽而写了错字:这篇文章~
(2)当AC 3,AB 4时
AB AC 2 BC 2 32 42 5 BC AB2 AC2 42 32 7
RtABC的周长 3 4 5 12 RtABC的周长 3 4 7 7 7
想一想:
小丁的妈妈买了一部34英寸 (86厘米)的电视机。小丁量了 电视机的屏幕后,发现屏幕只有 70厘米长和50厘米宽,他觉得一 定是售货员搞错了。你能解释这 是为什么吗?
由勾股定理得,BC2+AC2=AB2 D
即 52+ x2= (x+1)2
C
B
25+ x2= x2+2 x+1, 2 x=24,
∴ x=12, x+1=13 答:水池的水深12尺,这根芦苇长13A尺。
课堂练习:
一判断题. 1.ABC的两边AB=5,AC=12,则BC=13 ( ) 2. ABC的a=6,b=8,则c=10 ( ) 二填空题
例.甲、乙两位探险者到沙漠进
行探险.某日早晨8∶ 00甲先出发, 他以6千米/时的速度向东行走.1时 后乙出发,他以5千米/时的速度向 北行进.上午10∶ 00,甲、乙两人 相距多远?
勾股定理--华师大版
![勾股定理--华师大版](https://img.taocdn.com/s3/m/d973f71ecc175527072208a2.png)
勾股定理
勾股定理(gou-gu theorem)
如果直角三角形两直角边分别为a、b, 斜边为c,那么 c 2 2 2 a
a b c
b
即 直角三角形两直角边的平方和等 于斜边的平方。
1 C2 = (a+b)2 – 4· ab = a2 + b2 2
例1:在Rt △ ABC中,∠C=90°
1)如果 a=10, b=24 ,那么 c= 2)如果 a=15 , c=25 , 那么 b= 3)如果 c=61 , b=60 ,那么a=
(1)求BC边上的高。
(2)求△ABC的面积
sunbet官网手机版 sunbet官网手机版
stz68qus
头夫妇后,耿正兄妹三人含泪收拾老人的三间正房。耿英发现,里间地上麻袋里的板蓝根实在不少,就对哥哥说:“要不咱们 把这药给对门儿和隔壁一些吧,看那两个当家人确实病得不轻呢!”于是,耿正给每家各送了几包,告诉他们给病人煮水喝。 他们都千恩万谢地收下了,并且说:“已经在喝着呢,只是快用完了。”一个多月后,这场可怕的疫情终于彻底消失了。而此 时,景德镇上七、八十岁的老人几乎无一幸免,就连那位可敬的张老太医,也到地下继续救死扶伤去了。随同他们去了的,还 有几十个小娃儿和十几个年轻人和壮年人,那种笼罩全镇的悲伤气氛一直持续了很长的一段时间。不过,对门儿的张老大和隔 壁的年轻男人,后来倒是都康复了。疫情过去之后,耿正兄妹三人利用仅剩的几十两银子,开始苦苦经营老梁头夫妇赠送给他 们的“梁计小饭店”。入夏以后,天气陡然炎热起来,但清晨和早饭后的一段时光还是相对凉爽的。因此,耿正每天都会尽量 地早点儿去菜市场,选购一些小饭店里当天中午和晚上,以及次日早餐所需要的菜蔬。那一日早餐当口接近尾声时,耿英看看 客人已经不太多了,就对哥哥说:“有小直子和我忙活就行了。你自个儿吃点儿饭,快去买菜吧,去晚了又该受热遭罪了!” 耿正答应着,简单吃喝了几口后,就背起一个大竹筐去附近的菜市场买菜去了。当他匆匆返回来走到巷子口上的时候,突然意 外地遇见了那两位善良老房东的儿子!看到这位与其爹娘同样善良的叔叔辈儿正在往巷子外面走,耿正高兴地迎上前去问候: “叔,您回来啦,爷爷和奶奶可好!”老房东的儿子怔一怔,重重叹一口气悲伤地说:“唉,我的爹娘已经在今年儿春上的那 场瘟疫中都给没了。当时县城周围三里范围内宵禁着不让出入,我和妹妹只好把他们掩埋在县衙指定的公葬墓地里了。老家的 这个宅院儿我早就不想留着了,只是爹娘活着的时候坚持不让我变卖掉。如今他们已经不在了,我还是早点儿处理掉吧,免得 日久破落了更不值钱儿。”耿正听了这些,除了伤感之外一时无话。抬头看看日头才一杆子高,就问他:“那您这是要去哪里 啊?”“我已经把老院子作结给隔壁的堂弟了,这就赶回县城去!”耿正赶快说:“叔您不要着急走,这天儿还早着呢,进我 们小店里来坐会儿吧!您不知道,梁爷爷和梁奶奶也没有逃过那场可怕的瘟疫,都没了!梁爷爷临终之前,把这个小院儿和门 面店赠送给我们啦。我们现在已经没有多少做其他生意的本钱了,只能先惨淡经营着这个小饭店。您回来了,咱们正好坐坐, 说说话。我们兄妹们经常念叨爷爷奶奶和您呢!”老房东的儿子连连摇头长叹,说:“唉,这些我已经都听说了啊。说起来, 我爹娘去了我那儿以后,也是经常念叨你们呢。说心里话,我这次回
华师大版初中数学八年级上册《14.1 勾股定理》同步练习卷(含答案解析
![华师大版初中数学八年级上册《14.1 勾股定理》同步练习卷(含答案解析](https://img.taocdn.com/s3/m/b4cb3f9e960590c69fc3760f.png)
华师大新版八年级上学期《14.1 勾股定理》同步练习卷一.选择题(共25小题)1.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的边长分别是4,9,1,4,则最大正方形E的面积是()A.18B.114C.194D.3242.如图,长方形OABC中,OA=12,AB=5,OA边在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.12B.13C.15D.173.将下列长度的三根木棒首尾顺次连接,能构成直角三角形的是()A.1,2,3B.4,5,6C.5,12,15D.1,,2 4.如图,△ABC中,CD是AB边上的高,若AB=1.5,BC=0.9,AC=1.2,则CD的值是()A.0.72B.2.0C.1.125D.不能确定5.在△ABC中,三边之比分别为5:12:13,∠C﹣∠B=∠A,则△ABC为()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形6.如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的面积为()A.4B.8C.16D.647.如图,由四个全等的直角三角形和一个小正方形拼成一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13.则小正方形的面积为()A.3B.4C.5D.68.如图,在四边形ABCD中,AD∥BC,∠C=90°,△BCD与△BC′D关于直线BD 轴对称,BC=6,CD=3,点C与点C′对应,BC′交AD于点E,则线段DE的长为()A.3B.C.5D.9.如图,在4×4的正方形网格中,△ABC的顶点都在格点上,下列结论错误的是()A.AB=5B.∠C=90°C.AC=2D.∠A=30°10.如图,OA=,以OA为直角边作Rt△OAA1,使∠AOA1=30°,再以OA1为直角边作Rt△OA1A2,使∠A1OA2=30°,……,依此法继续作下去,则A1A2的长为()A.B.C.D.11.如图,在△ABC中,点M是AC边上一个动点.若AB=AC=10,BC=12,则BM的最小值为()A.8B.9.6C.10D.4 512.一个三角形的三边长分别为3,4和5,那么它长边上的高线长为()A.5B.2.5C.2.4D.213.如图,△ABC的顶点A,B,C在边长为1的正方形网格的格点上,BD⊥AC 于点D,则BD的长为()A.B.C.D.14.如图,△ABC是腰长为2的等腰直角三角形,△BCD是直角三角形,且∠D=30°,则两个三角形重叠部分(△OBC)的面积是()A.3﹣B.2﹣C.1D.1+15.如图,在四边形ABCD中,AB=12cm,BC=3cm,CD=4cm,∠C=90°,当AD 为多少时,∠ABD=90°()A.13B.6C.12D.616.直角三角形的两边长分别为6和8,那么它的第三边长度为()A.8B.10C.8或2D.10或217.△ABC的三边分别为a,b,c,下列条件:①∠A=∠B﹣∠C;②a2=(b+c)(b﹣c);③a:b:c=3:4:5.其中能判断△ABC是直角三角形的条件个数有()A.0个B.1个C.2个D.3个18.如图图中,不能用来证明勾股定理的是()A.B.C.D.19.如图Rt△ABC,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”;当AC=3,BC=4时,计算阴影部分的面积为()A.6B.6πC.10πD.1220.Rt△ABC中,斜边BC=2,则AB2+BC2+CA2=()A.8B.6C.4D.无法计算21.如图,已知Rt△ABC中,∠ABC=90°,分别以AB、BC、AC为直径作半圆,面积分别记S1,S2,S3,若S1=4,S2=9,则S3的值为()A.13B.5C.11D.322.如图,AB⊥AC,AD⊥BC,垂足为D,AB=3,AC=4,AD=,BD=,则点B 到直线AD的距离为()A.B.C.3D.423.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNPQ的面积分别为S1、S2、S3.若S1+S2+S3=60,则S2的值是()A.12B.15C.20D.3024.如图,已知直角三角形的三边长分别为a、b、c,以直角三角形的三边为边(或直径),分别向外作等边三角形、半圆、等腰直角三角形和正方形.那么,这四个图形中,其面积S1、S2、S3满足S1+S2=S3的个数是()A.1B.2C.3D.425.一个直角三角形的直角边是24,斜边是25,则斜边上的高为()A.7B.C.168D.25二.填空题(共13小题)26.一个直角三角形的两直角边长分别是3cm和2cm,则第三边长cm.27.如图,图中的所有三角形都是直角三角形,所有四边形都是正方形,正方形A的面积为40,另外四个正方形中的数字8,x,10,y分别表示该正方形面积,则x+y=.28.如图,Rt△ABC中,∠B=90°,AB=8cm,BC=6cm,D点从A出发以每秒1cm 的速度向B点运动,当D点运动到AC的中垂线上时,运动时间为秒.29.如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发,沿射线BC以2cm/s的速度移动设运动的时间为ts当t=时,△ABP为直角三角形.30.如图是一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②′,…依此类推,若正方形①的边长为64m,则正方形⑨的边长为cm.31.已知一等腰三角形有两边长分别是10cm和12cm,则底边上的高为.32.已知△ABC的面积为24,∠C=90°,若AC与BC的长的和是14,则AB的长是.33.勾股定理a2+b2=c2本身就是一个关于a,b,c的方程,满足这个方程的正整数解(a,b,c)通常叫做勾股数组.毕达哥拉斯学派提出了一个构造勾股数组的公式,根据该公式可以构造出如下勾股数组:(3,4,5),(5,12,13),(7,24,25),….分析上面勾股数组可以发现,4=1×(3+1),12=2×(5+1),24=3×(7+1),…分析上面规律,第5个勾股数组为.34.已知直角三角形的两直角边长分别是6,8,则它的周长为.35.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”如图①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若较短的直角边BC=5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图②所示的“数学风车”,若△BCD的周长是30,则这个风车的外围周长是.36.若一个直角三角形的一条直角边为12cm,另一条直角边长比斜边短4cm,则斜边长为.37.如图,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE 交AB于点D,连接CD,则CD=.38.若一个三角形的三边长分别是6、8、a,若这个三角形是直角三角形,则a 的最小值是.三.解答题(共19小题)39.细心观察图形,认真分析各式,然后回答问题:(1)推算出OA10的长和S10的值.(2)直接用含n(n为正整数)的式子表示OA n的长和S n的值.(3)求S12+S22+S32+…+S102的值.40.在△ABC中,AB=30,BC=28,AC=26.求△ABC的面积.某学习小组经过合作交流给出了下面的解题思路,请你按照他们的解题思路完成解答过程.41.阅读:所谓勾股数就是满足方程x2+y2=z2的正整数解,即满足勾股定理的三个正整数构成的一组数.我国古代数学专著《九章算术》一书中,在历史上第一次给出该方程的解为x=(m2﹣n2),y=mn,z=(m2+n2),其中m>n >0,m、n是互质的奇数.应用:已知某直角三角形的三边长满足上述勾股数,其中一边长为37,且n=5,求该直角三角形另两边的长.42.阅读并回答问题:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数,在一次数学活动课上,王老师设计了如下数表:(1)请你分别现察a,b,c与n之间的关系,并用含自然数n(n>1)的代数式表示:a=,b=,c=.(2)猜想:以a,b,c为边的三角形是否为直角三角形?并证明你的猜想.(3)观察下列勾股数32+42=52,52+122=132,72+242=252,92+402=412,分析其中的规律,写出第五组勾股数.43.如图,已知CD=6m,AD=8m,∠ADC=90°,BC=24m,AB=26m;求图中阴影部分的面积.44.如图,Rt△ABC中,∠B=90°,AB=3,BC=4,CD=12,AD=13,点E是AD的中点,求CE的长.45.如图,已知四边形ABCD中,AB∥CD,BC=AD=4,AB=CD=10,∠DCB=90°,E为CD边上的一点,DE=7,动点P从点A出发,以每秒1个单位的速度沿着边AB向终点B运动,连接PE,设点P运动的时间为t秒.(1)求BE的长;(2)若△BPE为直角三角形,求t的值.46.如图,在Rt△ABC中,∠C=90°,AB=10cm,AC=6cm,动点P从点B出发沿射线BC以2cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值.47.如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长;(2)当t为几秒时,BP平分∠ABC;(3)问t为何值时,△BCP为等腰三角形?48.如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值;(3)在运动过程中,直接写出当t为何值时,△BCP为等腰三角形.49.如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的面积;(2)当t为几秒时,BP平分∠ABC;(3)问t为何值时,△BCP为等腰三角形?50.阅读下面的情景对话,然后解答问题:(1)理解:①根据“奇异三角形”的定义,请你判断:“等边三角形一定是奇异三角形”吗?(填是或不是)②若某三角形的三边长分别为1、、2,则该三角形(是或不是)奇异三角形.(2)探究:若Rt△ABC是奇异三角形,且其两边长分别为2、2,则第三边的长为,且这个直角三角形的三边之比为(从小到大排列,不得含有分母).(3)设问:请提出一个和奇异三角形有关的问题.(不用解答)51.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q 从点B开始沿B→C方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)当t=2秒时,求PQ的长;(2)求出发时间为几秒时,△PQB是等腰三角形?(3)若Q沿B→C→A方向运动,则当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.52.如图,在正方形网格中,请按要求画以线段AB为边的网格三角形.(网格三角形是指各顶点在格点上的三角形)(1)画出一个面积为3的网格三角形;(2)画出一个两条边相等的网格三角形.53.如图,在每个小正方形的边长均为1的方格纸中有一条线段AB,线段AB的两个端点均在小正方形的顶点上,请在图①、图②中各画一个三角形,它们的顶点均在小正方形的顶点上,且满足以下要求:(1)在图①中以AB为斜边画Rt△ABC;(2)在图②中以AB为边画等腰三角形ABD,且△ABD只有两条边长为无理数.54.在下面的正方形网格中,每个小正方形的边长都是1,正方形的顶点称为格点,请在图中以格点为顶点,画出一个三角形,使三边长分别为3,,5,并求此三角形的面积.55.在Rt△ABC中,AC=8,BC=6,一个运动的点P 从点A出发,以每秒钟1个单位的速度向点C运动,同时一个运动的点Q从点B出发,以每秒钟2个单位的速度向点A运动,当一个点到达终点时另一个点也随之停止.运动的时间为t秒.(1)用含t的代数式表示线段AQ和CP.(2)t为何值时,AP=AQ?(3)t为何值时,AP=BP.56.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB第一次能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.57.已知:在△ABC中,∠C=90°,斜边AB为10,其中一条直角边为6,求另一条直角边AC.华师大新版八年级上学期《14.1 勾股定理》同步练习卷参考答案与试题解析一.选择题(共25小题)1.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的边长分别是4,9,1,4,则最大正方形E的面积是()A.18B.114C.194D.324【分析】根据正方形的面积公式,勾股定理,得到正方形A,B,C,D的面积和即为最大正方形的面积【解答】解:根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S2,S1=42+92,S2=12+42,则S3=S1+S2,∴S3=16+81+1+16=114.故选:B.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.2.如图,长方形OABC中,OA=12,AB=5,OA边在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.12B.13C.15D.17【分析】根据勾股定理求出OB,根据实数与数轴的关系解答.【解答】解:在Rt△OAB中,OB===13,∴这个点表示的实数是13,故选:B.【点评】本题考查的是勾股定理,实数与数轴,掌握如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2是解题的关键.3.将下列长度的三根木棒首尾顺次连接,能构成直角三角形的是()A.1,2,3B.4,5,6C.5,12,15D.1,,2【分析】判断是否为直角三角形,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、12+22≠32,故不能组成直角三角形,错误;B、42+52≠62,故不能组成直角三角形,错误;C、52+122≠152,故不能组成直角三角形,错误;D、12+()2=22,故能组成直角三角形,正确.故选:D.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.4.如图,△ABC中,CD是AB边上的高,若AB=1.5,BC=0.9,AC=1.2,则CD的值是()A.0.72B.2.0C.1.125D.不能确定【分析】先根据勾股定理的逆定理证明△ABC是直角三角形,根据计算直角三角形的面积的两种计算方法求出斜边上的高CD.【解答】解:∵AB=1.5,BC=0.9,AC=1.2,∴AB2=1.52=2.25,BC2+AC2=0.92+1.22=2.25,∴AB2=BC2+AC2,∴∠ACB=90°,∵CD是AB边上的高,∴S=,△ABC1.5CD=1.2×0.9,CD=0.72,故选:A.【点评】该题主要考查了勾股定理的逆定理、三角形的面积公式及其应用问题;解题的方法是运用勾股定理首先证明△ABC为直角三角形;解题的关键是灵活运用三角形的面积公式来解答.5.在△ABC中,三边之比分别为5:12:13,∠C﹣∠B=∠A,则△ABC为()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形【分析】根据勾股定理的逆定理以及三角形内角和定理均可判断△ABC为直角三角形.【解答】解:∵在△ABC中,三边之比分别为5:12:13,∠C﹣∠B=∠A,而52+122=132,∠A+∠B+∠C=180°,∴△ABC为直角三角形,∠C=∠A+∠B=90°.故选:B.【点评】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.也考查了三角形内角和定理.本题两个条件中只选择一个,仍然可以判定△ABC为直角三角形.6.如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的面积为()A.4B.8C.16D.64【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即为所求正方形的面积.【解答】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选:D.【点评】此题考查了勾股定理,以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.7.如图,由四个全等的直角三角形和一个小正方形拼成一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13.则小正方形的面积为()A.3B.4C.5D.6【分析】观察图形可知,小正方形的面积=大正方形的面积﹣4个直角三角形的面积,利用已知(a+b)2=21,大正方形的面积为13,可以得出直角三角形的面积,进而求出答案.【解答】解:∵(a+b)2=21,∴a2+2ab+b2=21,∵大正方形的面积为13,∴2ab=21﹣13=8,∴小正方形的面积为13﹣8=5.故选:C.【点评】此题主要考查了勾股定理的应用,熟练应用勾股定理是解题关键.8.如图,在四边形ABCD中,AD∥BC,∠C=90°,△BCD与△BC′D关于直线BD 轴对称,BC=6,CD=3,点C与点C′对应,BC′交AD于点E,则线段DE的长为()A.3B.C.5D.【分析】首先根据题意得到BE=DE,然后根据勾股定理得到关于线段AB、AE、BE的方程,解方程即可解决问题.【解答】解:设ED=x,则AE=6﹣x,∵四边形ABCD为矩形,∴AD∥BC,∴∠EDB=∠DBC;由题意得:∠EBD=∠DBC,∴∠EDB=∠EBD,∴EB=ED=x;由勾股定理得:BE2=AB2+AE2,即x2=9+(6﹣x)2,解得:x=,∴ED=.故选:B.【点评】本题主要考查了几何变换中的翻折变换及其应用问题;解题的关键是根据翻折变换的性质,结合全等三角形的判定及其性质、勾股定理等几何知识,灵活进行判断、分析、推理或解答.9.如图,在4×4的正方形网格中,△ABC的顶点都在格点上,下列结论错误的是()A.AB=5B.∠C=90°C.AC=2D.∠A=30°【分析】根据勾股定理计算各边长,根据勾股定理逆定理计算角的度数.【解答】解:A、由勾股定理得:AB==5,故此选项正确;B、∵AC2=22+42=20,BC2=12+22=5,AB2=52=25,∴AB2=BC2+AC2,∴∠C=90°,故此选项正确;C、AC==2,故此选项正确;D、∵BC=,AB=5,∴∠A≠30°,故此选项不正确;本题选择错误的结论,故选:D.【点评】本题考查了勾股定理和逆定理及格点问题,熟练掌握勾股定理是关键.10.如图,OA=,以OA为直角边作Rt△OAA1,使∠AOA1=30°,再以OA1为直角边作Rt△OA1A2,使∠A1OA2=30°,……,依此法继续作下去,则A1A2的长为()A.B.C.D.【分析】由含30°角的直角三角形的性质和勾股定理求出OA1,即可得出结果.【解答】解:∵∠OAA1=90°,OA=,∠AOA1=30°,∴AA1=OA1,由勾股定理得:OA2+AA12=OA12,即()2+(OA1)2=OA12,解得:OA1=2,∵∠A1OA2=30°,∴A1A2的长=,故选:B.【点评】本题考查了勾股定理、含30°角的直角三角形的性质;熟练掌握勾股定理,通过计算得出规律是解决问题的关键.11.如图,在△ABC中,点M是AC边上一个动点.若AB=AC=10,BC=12,则BM的最小值为()A.8B.9.6C.10D.4 5【分析】作AD⊥BC于D,则∠ADB=90°,由等腰三角形的性质和勾股定理求出AD,当BM⊥AC时,BM最小;由△ABC的面积的计算方法求出BM的最小值.【解答】解:作AD⊥BC于D,如图所示:则∠ADB=90°,∵AB=AC,∴BD=BC=6,由勾股定理得:AD==8,当BM⊥AC时,BM最小,此时,∠BMC=90°,∵△ABC的面积=AC•BM=BC•AD,即×10×BM=×12×8,解得:BM=9.6,故选:B.【点评】本题考查了勾股定理、等腰三角形的性质、垂线段最短、三角形面积的计算方法;熟练掌握勾股定理,由三角形面积的计算方法求出BM的最小值是解决问题的关键.12.一个三角形的三边长分别为3,4和5,那么它长边上的高线长为()A.5B.2.5C.2.4D.2【分析】由于32+42=52,可知此三角形是直角三角形,利用面积相等可得×3×4=×5•h,解即可.【解答】解:∵32+42=52,∴此三角形是直角三角形,∴×3×4=×5•h,解得h=2.4.故选:C.【点评】本题考查了勾股定理逆定理.解题的关键是先证明三角形是直角三角形.13.如图,△ABC的顶点A,B,C在边长为1的正方形网格的格点上,BD⊥AC 于点D,则BD的长为()A.B.C.D.【分析】根据图形和三角形的面积公式求出△ABC的面积,根据勾股定理求出AC,根据三角形的面积公式计算即可.【解答】解:如图所示:S△ABC=×BC×AE=×BD×AC,∵AE=4,AC==5,BC=4即×4×4=×5×BD,解得:BD=.故选:C.【点评】本题主要考查了勾股定理的知识,解题的关键是利用勾股定理求出AC 的长,此题难度一般.14.如图,△ABC是腰长为2的等腰直角三角形,△BCD是直角三角形,且∠D=30°,则两个三角形重叠部分(△OBC)的面积是()A.3﹣B.2﹣C.1D.1+【分析】过O作OE⊥BC于E,设BE=x,求出OE和DC,根据相似得出比例式求出x,再根据三角形的面积公式求出即可.【解答】解:∵在Rt△DCB中,∠DCB=90°,∠D=30°,BC=2,∴DC=BC=2,过O作OE⊥BC于E,∵∠ABC=90°,∴OE∥AB,∴∠BOE=30°,△OEC∽△ABC,∴设BE=x,则OE=BE=x,=,∴=,解得:x=﹣1,即OE=x=3﹣,∴阴影部分的面积S=(3﹣)=3﹣,故选:A.【点评】本题考查了解直角三角形、相似三角形的性质和判定等知识点,能求出OE的长是解此题的关键.15.如图,在四边形ABCD中,AB=12cm,BC=3cm,CD=4cm,∠C=90°,当AD 为多少时,∠ABD=90°()A.13B.6C.12D.6【分析】根据勾股定理的逆定理满足AD2=BD2+AB2,可说明∠ABD=90°.【解答】解:在△BDC中,∠C=90°,BC=3cm,CD=4cm,根据勾股定理得,BD2=BC2+CD2,即BD==5cm.当∠ABD=90°时,AD2=BD2+AB2,其中AB=12cm,BD=5cm,则AD=cm=13cm,故选:A.【点评】本题考查了勾股定理的运用,考查了勾股定理逆定理的运用,本题中准确运用勾股定理与勾股定理的逆定理是解题的关键.16.直角三角形的两边长分别为6和8,那么它的第三边长度为()A.8B.10C.8或2D.10或2【分析】分8为直角边、8为斜边两种情况,根据勾股定理计算.【解答】解:当8为直角边时,斜边==10,当8为斜边时,另一条直角边==2,故选:D.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.17.△ABC的三边分别为a,b,c,下列条件:①∠A=∠B﹣∠C;②a2=(b+c)(b﹣c);③a:b:c=3:4:5.其中能判断△ABC是直角三角形的条件个数有()A.0个B.1个C.2个D.3个【分析】根据三角形的内角和定理和已知求出最大角∠B的度数,即可判断①;根据已知得出a2+c2=b2,根据勾股定理的逆定理即可判断②;设a=3k,b=4k,c=5k求出a2+c2=b2,根据勾股定理的逆定理即可判断③.【解答】解:①∵∠A=∠B﹣∠C,∴∠A+∠C=∠B,∵∠A+∠B+∠C=180°,∴2∠B=180°,∴∠B=90°,∴△ABC是直角三角形,∴①正确;②a2=(b+c)(b﹣c),∴a2=b2﹣c2,∴a2+c2=b2,∴△BAC是直角三角形,∴②正确;③∵a:b:c=3:4:5,∴设a=3k,b=4k,c=5k,∵a2+b2=25k2,c2=25k2,∴a2+b2=c2,∴△ABC是直角三角形,∴③正确;故选:D.【点评】本题考查了勾股定理的逆定理和三角形的内角和定理的应用,主要考查学生的辨析能力,题目比较典型,难度适中.18.如图图中,不能用来证明勾股定理的是()A.B.C.D.【分析】根据图形的面积得出a,b,c的关系,即可证明勾股定理,分别分析得出即可.【解答】解:A,B,C都可以利用图形面积得出a,b,c的关系,即可证明勾股定理;故A,B,C选项不符合题意;D、不能利用图形面积证明勾股定理,故此选项正确.故选:D.【点评】此题主要考查了勾股定理的证明方法,根据图形面积得出是解题关键.19.如图Rt△ABC,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”;当AC=3,BC=4时,计算阴影部分的面积为()A.6B.6πC.10πD.12【分析】根据勾股定理求出AB,分别求出三个半圆的面积和△ABC的面积,即可得出答案.【解答】解:在Rt△ACB中,∠ACB=90°,AC=3,BC=4,由勾股定理得:AB= ==5,所以阴影部分的面积S=×π×()2+×()2+﹣×π×()2=6,故选:A.【点评】本题考查了勾股定理和三角形的面积、圆的面积,能把不规则图形的面积转化成规则图形的面积是解此题的关键.20.Rt△ABC中,斜边BC=2,则AB2+BC2+CA2=()A.8B.6C.4D.无法计算【分析】利用勾股定理将AB2+AC2转化为BC2,再求值即可.【解答】解:∵Rt△ABC中,BC为斜边,BC=2,∴AB2+AC2=BC2=4,∴AB2+AC2+BC2=2BC2=2×4=8.故选:A.【点评】本题考查了勾股定理.正确判断直角三角形的直角边、斜边,利用勾股定理得出等式是解题的关键.21.如图,已知Rt△ABC中,∠ABC=90°,分别以AB、BC、AC为直径作半圆,面积分别记S1,S2,S3,若S1=4,S2=9,则S3的值为()A.13B.5C.11D.3【分析】由扇形的面积公式可知S1=•π•AC2,S2=•π•BC2,S3=•π•AB2,在Rt △ABC中,由勾股定理得AC2+BC2=AB2,即S1+S2=S3;【解答】解:∵S1=•π•AC2,S2=•π•BC2,S3=•π•AB2,在Rt△ABC中,由勾股定理得AC2+BC2=AB2,即S1+S2=S3;∵S1=4,S2=9,∴S3=13.故选:A.【点评】本题考查勾股定理的应用,难度适中,解题关键是对勾股定理的熟练掌握及灵活运用,记住S1+S2=S3;22.如图,AB⊥AC,AD⊥BC,垂足为D,AB=3,AC=4,AD=,BD=,则点B 到直线AD的距离为()A.B.C.3D.4【分析】根据点到直线的距离即可判定.【解答】解:∵BD⊥AD,∴点B到直线AD的距离为线段BD的长,故选:A.【点评】本题考查勾股定理、点到直线的距离等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNPQ的面积分别为S1、S2、S3.若S1+S2+S3=60,则S2的值是()A.12B.15C.20D.30【分析】设每个小直角三角形的面积为m,则S1=4m+S2,S3=S2﹣4m,依据S1+S2+S3=60,可得4m+S2+S2+S2﹣4m=60,进而得出S2的值.【解答】解:设每个小直角三角形的面积为m,则S1=4m+S2,S3=S2﹣4m,因为S1+S2+S3=60,所以4m+S2+S2+S2﹣4m=60,即3S2=60,解得S2=20.故选:C.【点评】此题主要考查了勾股定理和正方形、全等三角形的性质的运用,证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理得到勾股定理.24.如图,已知直角三角形的三边长分别为a、b、c,以直角三角形的三边为边(或直径),分别向外作等边三角形、半圆、等腰直角三角形和正方形.那么,这四个图形中,其面积S1、S2、S3满足S1+S2=S3的个数是()A.1B.2C.3D.4【分析】分别表示出S1、S2、S3的面积,根据勾股定理判断即可.【解答】解:∵直角三角形的三边长分别为a、b、c,∴a2+b2=c2,图1中,S1=×a×a=a2,S2=b2,S3=c2,则S1+S2=(a2+b2),S3=c2,∴S1+S2=S3,同理,图2、图3、图4,都符合S1+S2=S3,故选:D.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.25.一个直角三角形的直角边是24,斜边是25,则斜边上的高为()A.7B.C.168D.25【分析】根据勾股定理求出直角三角形的另一条直角边的长,根据三角形的面积公式计算即可.【解答】解:设斜边上的高h,由勾股定理得,直角三角形的另一条直角边==7,则×24×7=×25×h,解得,h=,故选:B.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.二.填空题(共13小题)26.一个直角三角形的两直角边长分别是3cm和2cm,则第三边长cm.【分析】根据勾股定理计算即可.【解答】解:由勾股定理得,第三边长==(cm),故答案为:.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.27.如图,图中的所有三角形都是直角三角形,所有四边形都是正方形,正方形A的面积为40,另外四个正方形中的数字8,x,10,y分别表示该正方形面积,则x+y=22.【分析】先由S A=40,再根据勾股定理的几何意义,得到x+10+(8+y)=S A,由此得出x与y的数量关系.【解答】解:∵S A=40,根据勾股定理的几何意义,得x+10+(8+y)=S A=40,∴x+y=40﹣18=22,即x+y=22.【点评】本题考查了勾股定理的几何意义,要知道,以斜边边长为边长的正方形的面积是以两直角边边长为边长的正方形的面积之和.28.如图,Rt△ABC中,∠B=90°,AB=8cm,BC=6cm,D点从A出发以每秒1cm 的速度向B点运动,当D点运动到AC的中垂线上时,运动时间为秒.【分析】画出图形,根据勾股定理解答即可.【解答】解:如图所示:∵Rt△ABC中,∠B=90°,AB=8cm,BC=6cm,∴AC=,∵ED'是AC的中垂线,∴CE=5,连接CD',∴CD'=AD',在Rt△BCD'中,CD'2=BD'2+BC2,即AD'2=62+(8﹣AD')2,解得:AD'=,∴当D点运动到AC的中垂线上时,运动时间为秒,【点评】此题考查勾股定理的应用,关键是根据勾股定理构建直角三角形进行解答.29.如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发,沿射线BC以2cm/s的速度移动设运动的时间为ts当t=2s或s时,△ABP为直角三角形.【分析】首先根据勾股定理求出BC的长度,再分两种情况:①当∠APB为直角时,②当∠BAP为直角时,分别求出此时的t值即可.【解答】解:∵∠C=90°,AB=5cm,AC=3cm,∴BC=4 cm.①当∠APB为直角时,点P与点C重合,BP=BC=4 cm,∴t=4÷2=2s.②当∠BAP为直角时,BP=2tcm,CP=(2t﹣4)cm,AC=3 cm,在Rt△ACP中,AP2=32+(2t﹣4)2,在Rt△BAP中,AB2+AP2=BP2,∴52+[32+(2t﹣4)2]=(2t)2,解得t=s.综上,当t=2s或s时,△ABP为直角三角形.故答案为:2s或s.【点评】本题考查了勾股定理以及勾股定理的逆定理的知识,解答本题的关键是掌握勾股定理的应用,以及分情况讨论,注意不要漏解.30.如图是一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②′,…依此类推,若正方形①的边长为64m,则正方形⑨的边长为4cm.。
2019—2020年最新华东师大版八年级数学上册《勾股定理》单元测试题及答案解析.docx
![2019—2020年最新华东师大版八年级数学上册《勾股定理》单元测试题及答案解析.docx](https://img.taocdn.com/s3/m/6512b84f453610661ed9f497.png)
第14章勾股定理一、选择题(共13小题)1.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60 C.76 D.802.如图是我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,它解决的数学问题是()A.黄金分割 B.垂径定理 C.勾股定理 D.正弦定理3.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为何?()A.10 B.11 C.12 D.134.下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=55.下列各组线段中,能够组成直角三角形的一组是()A.1,2,3 B.2,3,4 C.4,5,6 D.1,,6.一直角三角形的两边长分别为3和4.则第三边的长为()A.5 B.C.D.5或7.设a、b是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab的值是()A.1.5 B.2 C.2.5 D.38.如图,若∠A=60°,AC=20m,则BC大约是(结果精确到0.1m)()A.34.64m B.34.6m C.28.3m D.17.3m9.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则等于()A.B.C.D.10.如图,正六边形ABCDEF中,AB=2,点P是ED的中点,连接AP,则AP的长为()A.2 B.4 C. D.11.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x,那么x的值()A.只有1个 B.可以有2个C.有2个以上,但有限D.有无数个12.在等腰△ABC中,∠ACB=90°,且AC=1.过点C作直线l∥AB,P为直线l上一点,且AP=AB.则点P到BC所在直线的距离是()A.1 B.1或C.1或D.或13.如图,四边形ABCD中,AB=AD,AD∥BC,∠ABC=60°,∠BCD=30°,BC=6,那么△ACD的面积是()A.B.C.2 D.二、填空题(共15小题)14.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣6,0)、(0,8).以点A为圆心,以AB长为半径画弧,交x正半轴于点C,则点C的坐标为.15.在Rt△ABC中,CA=CB,AB=9,点D在BC边上,连接AD,若tan∠CAD=,则BD的长为.16.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图(1)).图(2)由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若正方形EFGH的边长为2,则S1+S2+S3= .17.如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD 和EFGH都是正方形.如果AB=10,EF=2,那么AH等于.18.如图,在△ABC中,CA=CB,AD⊥BC,BE⊥AC,AB=5,AD=4,则AE= .19.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是.20.在△ABC中,∠C=90°,AB=7,BC=5,则边AC的长为.21.如图,矩形ABCD中,E是BC的中点,矩形ABCD的周长是20cm,AE=5cm,则AB的长为cm.22.如图,我国古代数学家得出的“赵爽弦图”是由四个全等的直角三角形和一个小正方形密铺构成的大正方形,若小正方形与大正方形的面积之比为1:13,则直角三角形较短的直角边a与较长的直角边b的比值为.第14章勾股定理参考答案与试题解析一、选择题(共13小题)1.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60 C.76 D.80【考点】勾股定理;正方形的性质.【分析】由已知得△ABE为直角三角形,用勾股定理求正方形的边长AB,用S阴影部分=S正方形ABCD ﹣S△ABE求面积.【解答】解:∵∠AEB=90°,AE=6,BE=8,∴在Rt△ABE中,AB2=AE2+BE2=100,∴S阴影部分=S正方形ABCD﹣S△ABE,=AB2﹣×AE×BE=100﹣×6×8=76.故选:C.【点评】本题考查了勾股定理的运用,正方形的性质.关键是判断△ABE为直角三角形,运用勾股定理及面积公式求解.2.如图是我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,它解决的数学问题是()A.黄金分割 B.垂径定理 C.勾股定理 D.正弦定理【考点】勾股定理的证明.【专题】几何图形问题.【分析】“弦图”,说明了直角三角形的三边之间的关系,解决了勾股定理的证明.【解答】解:“弦图”,说明了直角三角形的三边之间的关系,解决的问题是:勾股定理.故选:C.【点评】本题考查了勾股定理的证明,勾股定理证明的方法最常用的思路是利用面积证明.3.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为何?()A.10 B.11 C.12 D.13【考点】勾股定理;直角三角形斜边上的中线.【分析】根据在直角三角形中,斜边上的中线等于斜边的一半这一性质可求出AB的长,再根据勾股定理即可求出BE的长.【解答】解:∵BE⊥AC,∴△AEB是直角三角形,∵D为AB中点,DE=10,∴AB=20,∵AE=16,∴BE==12,故选C.【点评】本题考查了勾股定理的运用、直角三角形的性质:直角三角形中,斜边上的中线等于斜边的一半,题目的综合性很好,难度不大.4.下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.【解答】解:A、∵12+22=5≠32,∴不能构成直角三角形,故本选项错误;B、∵22+32=13≠42,∴不能构成直角三角形,故本选项错误;C、∵22+42=20≠52,∴不能构成直角三角形,故本选项错误;D、∵32+42=25=52,∴能构成直角三角形,故本选项正确.故选D.【点评】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.5.下列各组线段中,能够组成直角三角形的一组是()A.1,2,3 B.2,3,4 C.4,5,6 D.1,,【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定则可.【解答】解:A、12+22≠32,不能组成直角三角形,故错误;B、22+32≠42,不能组成直角三角形,故错误;C、42+52≠62,不能组成直角三角形,故错误;D、12+()2=()2,能够组成直角三角形,故正确.故选D.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.6.一直角三角形的两边长分别为3和4.则第三边的长为()A.5 B.C.D.5或【考点】勾股定理.【专题】分类讨论.【分析】本题中没有指明哪个是直角边哪个是斜边,故应该分情况进行分析.【解答】解:(1)当两边均为直角边时,由勾股定理得,第三边为5,(2)当4为斜边时,由勾股定理得,第三边为,故选:D.【点评】题主要考查学生对勾股定理的运用,注意分情况进行分析.7.(2013•德宏州)设a、b是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab的值是()A.1.5 B.2 C.2.5 D.3【考点】勾股定理.【专题】压轴题.【分析】由该三角形的周长为6,斜边长为2.5可知a+b+2.5=6,再根据勾股定理和完全平方公式即可求出ab的值.【解答】解:∵三角形的周长为6,斜边长为2.5,∴a+b+2.5=6,∴a+b=3.5,①∵a、b是直角三角形的两条直角边,∴a2+b2=2.52,②由①②可得ab=3,故选D.【点评】本题考查了勾股定理和三角形的周长以及完全平方公式的运用.8.如图,若∠A=60°,AC=20m,则BC大约是(结果精确到0.1m)()A.34.64m B.34.6m C.28.3m D.17.3m【考点】勾股定理;含30度角的直角三角形.【分析】首先计算出∠B的度数,再根据直角三角形的性质可得AB=40m,再利用勾股定理计算出BC长即可.【解答】解:∵∠A=60°,∠C=90°,∴∠B=30°,∴AB=2AC,∵AC=20m,∴AB=40m,∴BC====20≈34.6(m),故选:B.【点评】此题主要考查了勾股定理,以及直角三角形的性质,关键是掌握在直角三角形中,30°角所对的直角边等于斜边的一半.在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.9.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则等于()A .B .C .D .【考点】勾股定理;菱形的性质;矩形的性质.【分析】首先由菱形的四条边都相等与矩形的四个角是直角,即可得到直角△ABM 中三边的关系.【解答】解:∵四边形MBND 是菱形,∴MD=MB .∵四边形ABCD 是矩形,∴∠A=90°.设AB=x ,AM=y ,则MB=2x ﹣y ,(x 、y 均为正数).在Rt △ABM 中,AB 2+AM 2=BM 2,即x 2+y 2=(2x ﹣y )2,解得x=y ,∴MD=MB=2x ﹣y=y ,∴==.故选:C .【点评】此题考查了菱形与矩形的性质,以及直角三角形中的勾股定理.解此题的关键是注意数形结合思想与方程思想的应用.10.如图,正六边形ABCDEF 中,AB=2,点P 是ED 的中点,连接AP ,则AP 的长为( )A .2B .4C .D .【考点】勾股定理.【分析】连接AE,求出正六边形的∠F=120°,再求出∠AEF=∠EAF=30°,然后求出∠AEP=90°并求出AE的长,再求出PE的长,最后在Rt△AEP中,利用勾股定理列式进行计算即可得解.【解答】解:如图,连接AE,在正六边形中,∠F=×(6﹣2)•180°=120°,∵AF=EF,∴∠AEF=∠EAF=(180°﹣120°)=30°,∴∠AEP=120°﹣30°=90°,AE=2×2cos30°=2×2×=2,∵点P是ED的中点,∴EP=×2=1,在Rt△AEP中,AP===.故选:C.【点评】本题考查了勾股定理,正六边形的性质,等腰三角形三线合一的性质,作辅助线构造出直角三角形是解题的关键.11.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x,那么x的值()A.只有1个 B.可以有2个C.有2个以上,但有限D.有无数个【考点】勾股定理;相似三角形的判定与性质.【专题】分类讨论.【分析】两条边长分别是6和8的直角三角形有两种可能,即已知边均为直角边或者8为斜边,运用勾股定理分别求出第三边后,和另外三角形构成相似三角形,利用对应边成比例即可解答.【解答】解:根据题意,两条边长分别是6和8的直角三角形有两种可能,一种是6和8为直角边,那么根据勾股定理可知斜边为10;另一种可能是6是直角边,而8是斜边,那么根据勾股定理可知另一条直角边为.所以另一个与它相似的直角三角形也有两种可能,第一种是,解得x=5;第二种是,解得x=.所以可以有2个.故选:B.【点评】本题考查了勾股定理和三角形相似的有关知识.本题学生常常漏掉第二种情况,是一道易错题.12.在等腰△ABC中,∠ACB=90°,且AC=1.过点C作直线l∥AB,P为直线l上一点,且AP=AB.则点P到BC所在直线的距离是()A.1 B.1或C.1或D.或【考点】勾股定理;平行线之间的距离;等腰直角三角形.【专题】压轴题.【分析】如图,延长AC,做PD⊥BC交点为D,PE⊥AC,交点为E,可得四边形CDPE是正方形,则CD=DP=PE=EC;等腰Rt△ABC中,∠C=90°,AC=1,所以,可求出BC=1,AB=,又AB=AP;所以,在直角△AEP中,可运用勾股定理求得DP的长即为点P到BC的距离.【解答】解:①如图,延长AC,做PD⊥BC交点为D,PE⊥AC,交点为E,∵CP∥AB,∴∠PCD=∠CBA=45°,∴四边形CDPE是正方形,则CD=DP=PE=EC,∵在等腰直角△ABC中,AC=BC=1,AB=AP,∴AB==,∴AP=;∴在直角△AEP中,(1+EC)2+EP2=AP2∴(1+DP)2+DP2=()2,解得,DP=;②如图,延长BC,作PD⊥BC,交点为D,延长CA,作PE⊥CA于点E,同理可证,四边形CDPE是正方形,∴CD=DP=PE=EC,同理可得,在直角△AEP中,(EC﹣1)2+EP2=AP2,∴(PD﹣1)2+PD2=()2,解得,PD=;故选D.【点评】本题考查了勾股定理的运用,通过添加辅助线,可将问题转化到直角三角形中,利用勾股定理解答;考查了学生的空间想象能力.13.如图,四边形ABCD中,AB=AD,AD∥BC,∠ABC=60°,∠BCD=30°,BC=6,那么△ACD的面积是()A.B.C.2 D.【考点】勾股定理;含30度角的直角三角形.【专题】计算题.【分析】如图,过点A作AE⊥BC于E,过点D作DF⊥BC于F.构建矩形AEFD和直角三角形,通过含30度角的直角三角形的性质求得AE的长度,然后由三角形的面积公式进行解答即可.【解答】解:如图,过点A作AE⊥BC于E,过点D作DF⊥BC于F.设AB=AD=x.又∵AD∥BC,∴四边形AEFD是矩形,∴AD=EF=x.在Rt△ABE中,∠ABC=60°,则∠BAE=30°,∴BE=AB=x,∴DF=AE==x,在Rt△CDF中,∠FCD=30°,则CF=DF•cot30°=x.又∵BC=6,∴BE+EF+CF=6,即x+x+x=6,解得x=2∴△ACD的面积是:AD•DF=x×x=×22=,故选:A.【点评】本题考查了勾股定理,三角形的面积以及含30度角的直角三角形.解题的难点是作出辅助线,构建矩形和直角三角形,目的是求得△ADC的底边AD以及该边上的高线DF的长度.二、填空题(共15小题)14.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣6,0)、(0,8).以点A为圆心,以AB长为半径画弧,交x正半轴于点C,则点C的坐标为(4,0).【考点】勾股定理;坐标与图形性质.【分析】首先利用勾股定理求出AB的长,进而得到AC的长,因为OC=AC﹣AO,所以OC求出,继而求出点C的坐标.【解答】解:∵点A,B的坐标分别为(﹣6,0)、(0,8),∴AO=6,BO=8,∴AB==10,∵以点A为圆心,以AB长为半径画弧,∴AB=AC=10,∴OC=AC﹣AO=4,∵交x正半轴于点C,∴点C的坐标为(4,0),故答案为:(4,0).【点评】本题考查了勾股定理的运用、圆的半径处处相等的性质以及坐标与图形性质,解题的关键是利用勾股定理求出AB的长.15.在Rt△ABC中,CA=CB,AB=9,点D在BC边上,连接AD,若tan∠CAD=,则BD的长为 6 .【考点】勾股定理;等腰直角三角形;锐角三角函数的定义.【分析】根据等腰直角三角形的性质可求AC,BC的长,在Rt△ACD中,根据锐角三角函数的定义可求CD的长,BD=BC﹣CD,代入数据计算即可求解.【解答】解:如图,∵在Rt△ABC中,CA=CB,AB=9,∴CA2+CB2=AB2,∴CA=CB=9,∵在Rt△ACD中,tan∠CAD=,∴CD=3,∴BD=BC﹣CD=9﹣3=6.故答案为:6.【点评】综合考查了等腰直角三角形的性质,勾股定理,锐角三角函数的定义,线段的和差关系,难度不大.16.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图(1)).图(2)由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若正方形EFGH的边长为2,则S1+S2+S3= 12 .【考点】勾股定理的证明.【分析】根据八个直角三角形全等,四边形ABCD,EFGH,MNKT是正方形,得出CG=KG,CF=DG=KF,再根据S1=(CG+DG)2,S2=GF2,S3=(KF﹣NF)2,S1+S2+S3=12得出3GF2=12.【解答】解:∵八个直角三角形全等,四边形ABCD,EFGH,MNKT是正方形,∴CG=KG,CF=DG=KF,∴S1=(CG+DG)2=CG2+DG2+2CG•DG=GF2+2CG•DG,S2=GF2,S3=(KF﹣NF)2=KF2+NF2﹣2KF•NF,∴S1+S2+S3=GF2+2CG•DG+GF2+KF2+NF2﹣2KF•NF=3GF2=12,故答案是:12.【点评】此题主要考查了勾股定理的应用,用到的知识点是勾股定理和正方形、全等三角形的性质,根据已知得出S1+S2+S3=3GF2=12是解题的难点.17.如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD 和EFGH都是正方形.如果AB=10,EF=2,那么AH等于 6 .【考点】勾股定理的证明.【分析】根据面积的差得出a+b的值,再利用a﹣b=2,解得a,b的值代入即可.【解答】解:∵AB=10,EF=2,∴大正方形的面积是100,小正方形的面积是4,∴四个直角三角形面积和为100﹣4=96,设AE为a,DE为b,即4×ab=96,∴2ab=96,a2+b2=100,∴(a+b)2=a2+b2+2ab=100+96=196,∴a+b=14,∵a﹣b=2,解得:a=8,b=6,∴AE=8,DE=6,∴AH=8﹣2=6.故答案为:6.【点评】此题考查勾股定理的证明,关键是应用直角三角形中勾股定理的运用解得ab的值.18.如图,在△ABC中,CA=CB,AD⊥BC,BE⊥AC,AB=5,AD=4,则AE= 3 .【考点】勾股定理;全等三角形的判定与性质;等腰三角形的性质.【分析】根据等腰三角形的性质可知:两腰上的高相等所以AD=BE=4,再利用勾股定理即可求出AE的长.【解答】解:∵在△ABC中,CA=CB,AD⊥BC,BE⊥AC,∴AD=BE=4,∵AB=5,∴AE==3,故答案为:3.【点评】本题考查了等腰三角形的性质以及勾股定理的运用,题目比较简单.19.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是10 .【考点】勾股定理.【分析】根据正方形的面积公式,结合勾股定理,能够导出正方形A,B,C,D的面积和即为最大正方形的面积.【解答】解:根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S2,S1+S2=S3,于是S3=S1+S2,即S3=2+5+1+2=10.故答案是:10.【点评】本题考查了勾股定理的应用.能够发现正方形A,B,C,D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A,B,C,D的面积和即是最大正方形的面积.20.在△ABC中,∠C=90°,AB=7,BC=5,则边AC的长为2.【考点】勾股定理.【专题】计算题.【分析】根据勾股定理列式计算即可得解.【解答】解:∵∠C=90°,AB=7,BC=5,∴AC===2.故答案为:2.【点评】本题考查了勾股定理的应用,是基础题,作出图形更形象直观.21.如图,矩形ABCD中,E是BC的中点,矩形ABCD的周长是20cm,AE=5cm,则AB的长为 4 cm.【考点】勾股定理;矩形的性质.【分析】设AB=x,则可得BC=10﹣x,BE=BC=,在Rt△ABE中,利用勾股定理可得出x 的值,即求出了AB的长.【解答】解:设AB=x,则可得BC=10﹣x,∵E是BC的中点,∴BE=BC=,在Rt△ABE中,AB2+BE2=AE2,即x2+()2=52,解得:x=4.即AB的长为4cm.故答案为:4.【点评】本题考查了矩形的性质及勾股定理的知识,解答本题的关键是表示出AB、BE的长度,利用勾股定理建立方程.22.如图,我国古代数学家得出的“赵爽弦图”是由四个全等的直角三角形和一个小正方形密铺构成的大正方形,若小正方形与大正方形的面积之比为1:13,则直角三角形较短的直角边a与较长的直角边b的比值为.【考点】勾股定理的证明.【专题】计算题.【分析】根据勾股定理可以求得a2+b2等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab的值,然后根据(a+b)2=a2+2ab+b2即可求得(a+b)的值;则易求b:a.【解答】解:∵小正方形与大正方形的面积之比为1:13,∴设大正方形的面积是13,边长为c,∴c2=13,∴a2+b2=c2=13,∵直角三角形的面积是=3,又∵直角三角形的面积是ab=3,∴ab=6,∴(a+b)2=a2+b2+2ab=c2+2ab=13+2×6=13+12=25,∴a+b=5.∵小正方形的面积为(b﹣a)2=1,∴b=3,a=2,∴=.故答案是:.【点评】本题考查了勾股定理以及完全平方公式,正确表示出直角三角形的面积是解题的关键.。
勾股定理的综合练习--华师大版-P
![勾股定理的综合练习--华师大版-P](https://img.taocdn.com/s3/m/f661d147a6c30c2259019ec0.png)
2020_2021学年八年级数学上册勾股定理单元真题训练pdf新版华东师大版
![2020_2021学年八年级数学上册勾股定理单元真题训练pdf新版华东师大版](https://img.taocdn.com/s3/m/2b7313763169a4517723a38c.png)
14、a,b,c 是 ABC 的三边长,满足关系式 | a − b | + c 2 − a 2 − b2 = 0 ,则 ABC 的形状
为
;
【答案】等腰直角三角形
15、如图,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如果
大正方形的面积是 13,小正方形的面积是 1,直角三角形的较短的直角边长为 a,较长的直角边
相等,则 EA 的长是( C )km
A、4
B、5
C、6
D、 20
12、如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为 16cm,在容器内壁离容器底
部 4cm 的点 B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿 4cm 的点 A 处,
若蚂蚁吃到蜂蜜需爬行的最短路径为 20cm,则该圆柱底面周长为( D )
A、 B 90
B、 B 90
C、 B 90
D、 AB AC
9、等腰三角形一腰长为 5,这一腰上的高为 3,则这个等腰三角形底边长为( C )
A、 10
B、 3 10
C、 10 或 3 10
D、4 或 3 10
10、用反证法证明“在三角形中,至少有一个内角大于或等于 60°”时,应先假设( D )
C、 2
D、 2 − 5
4、如图,在 RtABC 中,ACB = 90 ,AC = 4 ,BC = 3 ,CD ⊥ AB 于 D,则 CD 的长是( C )
A、5
B、7
C、 12 5
D、 24 5
5、直角三角形中,有两边的长分别为 3 和 4,那么第三边的长的平方为( D )
A、25
B、14
C、7
D、7 或 25
华东师大版八年级数学上册《14.2勾股定理的应用》同步测试题带答案
![华东师大版八年级数学上册《14.2勾股定理的应用》同步测试题带答案](https://img.taocdn.com/s3/m/b854f274f08583d049649b6648d7c1c708a10b99.png)
华东师大版八年级数学上册《14.2勾股定理的应用》同步测试题带答案学校:___________班级:___________姓名:___________考号:___________【基础达标】1.如图,圆柱的底面直径为AB,高为AC,一只蚂蚁从C处沿圆柱的侧面爬到B处,现将圆柱侧面沿AC 剪开,在侧面展开图上画出蚂蚁爬行的最短路线,正确的是()A BC D2.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10 cm,正方形A的边长为6 cm、B的边长为5 cm、C的边长为5 cm,则正方形D的边长为()A.√14cmB.4 cmC.√15cmD.3 cm3.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.20 B.25 C.30 D.354.如图,这是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位: mm),计算两圆孔中心A和B的距离为mm.5.如图,将一根长24 cm的筷子置于底面直径为5 cm、高为12 cm的圆柱形水杯中,设筷子露在杯子外面的长为h cm, 则h的取值范围是.【能力巩固】6.有一个圆柱体礼盒,高18 cm,底面周长为12 cm.现准备在礼盒表面粘贴彩带作为装饰,若彩带一端粘在A处,另一端绕礼盒侧面2周后粘贴在C处(B为AC的中点),则彩带最短为()A.15 cmB.20 cmC.25 cmD.30 cm7.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为()A.600 mB.500 mC.400 mD.300 m8.如图,圆柱形玻璃杯高为14 cm,底面周长为32 cm,在杯内壁离杯底5 cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3 cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为(杯壁厚度不计) ()A.14 cmB.18 cmC.20 cmD.25 cm9.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米10.如图1,美丽的弦图蕴含着四个全等的直角三角形.已知每个直角三角形较长的直角边为a,较短的直角边为b,斜边长为c.如图2,现将这四个全等的直角三角形紧密拼接,形成飞镖状,已知外围轮廓(实线)的周长为24,OC=3,求该飞镖状图案的面积.【素养拓展】11.如图,滑杆在机械槽内运动,∠ACB为直角,已知滑杆AB长2.5米,顶端A在AC上运动.量得滑杆下端B距离C点的距离为1.5米,当端点B向右移动0.5米时,求滑杆顶端A下滑多少米?参考答案【基础达标】1.B2.A3.B4.1505.11≤h≤12【能力巩固】6.D7.B8.C9.C10.解:根据题意得4(AB+AC)=24,即AB+AC=6,OB=OC=3.在Rt△AOB中,根据勾股定理得AB2=OA2+OB2即(6-AC)2=32+(3+AC)2解得AC=1∴OA=3+1=4∴S△AOB=1×3×4=62则该飞镖状图案的面积为24.【素养拓展】11.解:在Rt△ABC中,AB=2.5(米),BC=1.5(米),∠C=90°,∴AC2=AB2-BC2=2.52-1.52=22,∴AC=2(米).在Rt△ECD中,CE2=DE2-CD2=2.52-(CB+BD)2=1.52,∴CE=1.5(米)∴AE=AC-CE=0.5(米),∴滑杆下滑0.5米.。
华东师大版八年级数学上册《14.1 勾股定理》练习题及答案
![华东师大版八年级数学上册《14.1 勾股定理》练习题及答案](https://img.taocdn.com/s3/m/48dc28bf05a1b0717fd5360cba1aa81144318f23.png)
华东师大版八年级数学上册《14.1 勾股定理》练习题及答案班级:姓名:学号:分数:一、选择题1.下列各组线段能构成直角三角形的一组是( )A.5cm,9cm,12cmB.7cm,12cm,13cmC.30cm,40cm,50cmD.3cm,4cm,6cm2.由线段a、b、c组成的三角形不是直角三角形的是( )A.=7,b=24,c=25;B.a=13,b=14,c=15;C.a=54,b=1,c=34; D.a=41,b=4,c=5;3.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( )A.25B.14C.7D.7或254.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( )A.8B.4C.6D.无法计算5.等腰三角形的腰长为10,底长为12,则其底边上的高为( )A.13B.8C.12D.106.下列命题中,错误的是( )A.若x2=5,则x=5B.若a(a≥0)为有理数,则a是它的算术平方根C.化简(3-π)2的结果是π﹣3D.在直角三角形中,若两条直角边长分别是5,25,则斜边长为57.如下图中,边长k=5的直角三角形有( )A.1个B.2个C.3个D.4个8.如图所示:数轴上点A所表示的数为a,则a的值是( )A. 5 +1B.5﹣1C.﹣ 5 +1D.﹣5﹣19.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是( )A.50B.62C.65D.6810.如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B在围成的正方体上的距离是( )A.0B.1C. 2D. 3二、填空题11.若三角形三边之比为3:4:5,周长为24,则三角形面积.12.如果△ABC的三边长a、b、c满足关系式(a+2b﹣60)2+|b﹣18|+|c﹣30|=0,则△ABC的形状是.13.已知a,b,c是△ABC的三边长,且满足关系式(a2-c2-b2)2+∣c﹣b∣=0,则△ABC的形状为_______________.14.如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以A,B为圆心,大于1 2 AB的长为半径画弧,两弧交点分别为点P,Q,过P,Q两点作直线交BC于点D,则CD 的长是.15.已知在Rt△ABC中,∠C=90°,若斜边c=8,直角边a+b=10,则此△ABC面积为 .16.如图,在平面直角坐标系中,三角板的直角顶点P的坐标为(2,2),一条直角边与x轴的正半轴交于点A,另一直角边与y轴交于点B,三角板绕点P在坐标平面内转动的过程中,当△POA为等腰三角形时,请写出所有满足条件的点B的坐标 .三、作图题17.分别在以下网格中画出图形.(1)在网格中画出一个腰长为10,面积为3的等腰三角形.(2)在网格中画出一个腰长为10的等腰直角三角形.四、解答题18.已知直角三角形的两条直角边长分别为a和b,斜边长为c.(1)如果a=12,b=5,求c;(2)如果a=3,c=4,求b;(3)如果c=10,b=9,求a.19.如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°.(1)求∠BAC的度数.(2)若AC=2,求AD的长.20.如图,在△ABC中,AB=17,BC=21,AD⊥BC交边BC于点D,AD=8,求边AC 的长.21.如图,四边形草坪ABCD中,∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.(1)判断∠D是否是直角,并说明理由.(2)求四边形草坪ABCD的面积.22.已知,在直角三角形ABC中,∠ACB=90°,CA=CB,有一个圆心角为45°,半径长为CA的扇形CEF绕点C旋转,且直线CE、CF分别与直线AB交于点M、N.当扇形CEF绕点C在∠ACB的内部旋转时,如图,试说明MN2=AM2+BN2的理由.答案1.C.2.B.3.C4.A.5.B.6.A7.B.8.B9.A10.B11.答案为:24.12.答案为:直角三角形.13.答案为:等腰直角三角形.14.答案为:1.6.15.答案为:9;16.答案为:(0,2),(0,0),(0,4﹣22).17.解:(1)如图1所示:(2)如图2所示:18.解:(1)c=a2+b2=122+52=13;(2)b=c2-a2=42-32=7;(3)a=c2-b2=102-92=19.19.解:(1)∠BAC=180°﹣60°﹣45°=75°;(2)∵AD⊥BC∴△ADC是直角三角形∵∠C=45°∴∠DAC =45°∴AD =DC∵AC =2∴AD = 2. 20.解:在Rt △ABD 中用勾股定理得BD 2=AB 2﹣AD 2=172﹣82=225∴BD =15∴DC =6在Rt △ACD 中用勾股定理得AC 2=AD 2+DC 2=100∴AC =10.21.解:(1)∠D 是直角,理由如下:连接AC∵∠B =90°,AB =24m ,BC =7m∴AC 2=AB 2+BC 2=242+72=625∴AC =25(m).又∵CD =15m ,AD =20m ,152+202=252,即AD 2+DC 2=AC 2 ∴△ACD 是直角三角形,或∠D 是直角.(2)S 四边形ABCD =S △ABC +S △ADC=12•AB •BC +12•AD •DC=234(m 2).22.证明:如图,作△AMC 的对称△PMC ,连接PN ;∵∠ACB=90°,CA=CB,∠MCN=45°∴∠A=∠B=45°,∠ACM+∠BCN=45°;由题意得:CP=CA,∠ACM=∠PCM(设为α) ∠MPC=∠A=45°;∵∠PCN=45°﹣α,∠BCN=45°﹣α∴∠PCN=∠BCN;在△PCN与△BCN中PC=BC,∠PCN=∠BCN,NC=NC∴△PCN≌△BCN(SAS)∴BN=PN,∠NPC=∠B=45°∴∠MPN=90°;由勾股定理得:MN2=MP2+NP2∵AM=MP,BN=NP∴MN2=AM2+BN2.。
勾股定理的练习--华师大版
![勾股定理的练习--华师大版](https://img.taocdn.com/s3/m/947139b0f111f18582d05a4a.png)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习13 勾股定理
一、单选题
1.直角三角形的两条边长为5和12,它的斜边长为()
A.13 B.C.13或D.13或12
2.如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=15cm,其斜边上的高为()
A.17cm B.8.5cm C.cm D.cm
3.已知,△ABC的三边分别为a,b,c,其对角分别为∠A,∠B,∠C.下列条件能判定△ABC一定不是直
角三角形的是()
A.a:b:c=::B.b2﹣a2=c2
C.∠A:∠B:∠C=2:3:5 D.∠B=∠A+∠C
4.如图,∠BAC=90°,AB=AC=6,BE=2,DE=3,∠BDE=15°,点P在线段AE上,PD=DE,△ADQ
是等边三角形,连接PQ交AC于点F,则PF的长为()
A.2 B.3 C.D.
5.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,大正方形面积为64,小正方形
面积为9,若用x,y表示直角三角形的两直角边长(x>y),请观察图案,下列关系式中不正确的是()
A.x2+y2=64 B.x﹣y=3 C.2xy+9=64 D.x+y=11
二、填空题
6.如图所示,在Rt△ABC中,∠C=90°,AB=10cm,BC=8cm,BD平分∠ABC,DE⊥AB,垂足为E,
则DE=cm.
7.如图,在四边形ABCD中,AB=AD=4,∠A=60°,BC=,CD=8,则四边形ABCD的面积为.
8.如图,每个小正方形的边长为1,四边形的顶点A,B,C,D都在格点上,则线段长度为的是.
9.如图,以Rt△ABC的两条直角边和斜边为边长分别作正方形,其中正方形ABFG、正方形ACDE的面积
分别为25、144,则阴影部分的面积为.
10.如图,在Rt△ABC中,∠ACB=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的
速度移动,设运动的时间为t秒,当△ABP为等腰三角形时,t的取值为.
三、解答题
11.如图,在△ABC中,AC=20,AD=16,CD=12,BC=15,求AB的长.
12.在△ABC中,D是BC上一点,AB=10,BD=6,AD=8,AC=17,求△ABC的面积.
探究题:
13.如图,4×4方格中每个小正方形的边长都为1.
(1)图①中正方形ABCD的边长为;
(2)在图②的4×4方格中画一个面积为8的正方形;
(3)把图②中的数轴补充完整,然后用圆规在数轴上表示实数和﹣.
14.我们新定义一种三角形:两边平方和等于第三边平方的4倍的三角形叫做常态三角形.例如:某三角形三边长分别是5,6和8,因为62+82=4×52=100,所以这个三角形是常态三角形.
(1)若△ABC三边长分别是2,和4,则此三角形
常态三角形(填“是”或“不是”);
(2)若Rt△ABC是常态三角形,则此三角形的三边长之比为(请按从小到大排列);
(3)如图,Rt△ABC中,∠ACB=90°,BC=6,点D为AB的中点,连接CD,若△BCD是常态三角形,求△ABC 的面积.
15.细心观察图形,认真分析各式,然后回答问题:
(1)推算OA10的长和S10的值;
(2)直接用含n(n 为正整数)的式子表示OA n的长和S n 的值;
(3)求
S12+S22+S32+…+S102的值.
OA12=1;
+1=2;
+1=3;
+1=4;
…
S1=;
S2=;
S3=;
…
16.阅读理解:
【问题情境】
教材中小明用4张全等的直角三角形纸片拼成图1,利用此图,可以验证勾股定理吗?
【探索新知】
从面积的角度思考,不难发现:
大正方形的面积=小正方形的面积+4个直角三角形的面积.
从而得数学等式:(a+b)2=c2+4×ab,化简证得勾股定理:a2+b2=c2.
【初步运用】
(1)如图1,若b=2a,则小正方形面积:大正方形面积=;
(2)现将图1中上方的两直角三角形向内折叠,如图2,若a=4,b=6,此时空白部分的面积为;
(3)如图3,将这四个直角三角形紧密地拼接,形成风车状,已知外围轮廓(实线)的周长为24,OC =3,求该风车状图案的面积.
(4)如图4,将八个全等的直角三角形紧密地拼接,记图中正方形ABCD,正方形EFGH,正方形MNKT 的面积分别为S1,S2,S3,若S1+S2+S3=40,则S2=.
【迁移运用】
如果用三张含60°的全等三角形纸片,能否拼成一个特殊图形呢?
带着这个疑问,小丽拼出图5的等边三角形,你能否仿照勾股定理的验证,发现含60°的三角形三边a、b、c之间的关系,写出此等量关系式及其推导过程.
知识补充:
如图6,含60°的直角三角形,对边y:斜边x=定值k.。