椭圆的几何性质优质课件PPT
合集下载
椭圆的几何性质简单性质PPT课件
|x|≤ a,|y|≤ b
关于x轴、y轴成轴对称; 关于原点成中心对称
|x|≤ b,|y|≤ a
同前
(b,0)、(-b,0)、 (0,a)、(0,-a) (0 , c)、(0, -c) 同前 同前
对称性
顶点坐标 焦点坐标 半轴长 离心率 a、b、c的关 系
(a,0)、(-a,0)、 (0,b)、(0,-b) (c,0)、(-c,0) 长半轴长为a,短 半轴长为b. a>b
a2=b2+c2
同前
复习练习:
椭圆的长短轴之和为18,焦距为6,则椭圆的 标准方程为( C )
例题选讲:
例1、已知B、C是两个定点,︱BC︱=6, 且△ABC的周长等于16,求顶点A的轨迹方 程.
A
B
O
C
X
例2、已知椭圆C: , 的左右焦点 分别为F1,F2,P是椭圆的动点:
(1)求|PF1|· |PF2|的最大值;
+
=1的离心率为 0.5,则k=_____
5、
(±a,0) a b (-a,0) a+c
(0, ±b)
(a,0)
a-c
例3、2005年10月17日,神州六号载人飞船带着亿万中华儿 女千万年的梦想与希望,遨游太空返回地面。其运行的轨道 是以地球中心为一焦点的椭圆,设其近地点距地面m(km), 远地点距地面n(km),地球半径R(km),则载人飞船运行轨道 的短轴长为( D ) A. mn(km) B. 2mn(km)
复习:
标准方程
范围 对称性 顶点坐标 焦点坐标 半轴长 离心率 a、b、c的 关系
|x|≤ a,|y|≤ b
关于x轴、y轴成轴对称;关于原点成 中心对称 (a,0)、(-a,0)、(0,b)、(0,-b) (c,0)、(-c,0) 长半轴长为a,短半轴长为b. a>b
椭圆的几何性质ppt课件
的对称轴,坐标原点是对称中心. 椭圆的对称中
(3)顶点
在方程①中,令
= 0,得
轴有两个交点,可以记作
=−
作
或
1 (0,
− ),
交点,即
的顶点.
= ,可知椭圆
2 (0,
1, 2
和
=−
1(
或
− ,0),
与
). 因此,椭圆
= ,可知椭圆
2(
,0);令
与
= 0 ,得
轴也有两个交点,可以记
与它的对称轴共有 4 个
=− , = , =− , =
x
a 且 b
y
b ,这说明,椭圆
所围成的矩形内,如图所示.
(2)对称性
如果 ( , ) 是方程①的一组解,则不难看出,( − , ),( , − ),( − , − )
都是方程的解,这说明椭圆
因此,
轴、
心也称为椭圆的中心.
关于
轴是椭圆
轴、
轴、坐标原点对称,如图所示.
1 , 2 ,如图所示,这四个点都称为椭圆
注意到
1 2
椭圆的长轴,线段
=2 ,
1
而且椭圆的长轴长为 2
2
1 2
=2
,而且
>
> 0 ,所以线段
1 2
称为
称为椭圆的短轴. 显然,椭圆的两个焦点在它的长轴上,
,短轴长为 2 .
于是, ,
距为 2 ,则
分别是椭圆的半长轴长和半短轴长,如果设椭圆的焦
是椭圆的半焦距,由
轴上的椭圆是一致的,如图所示.
例 1 求下列方程表示的椭圆的长轴长、半短轴长、焦点坐标以及离心率:
《椭圆的简单几何性质》课件
B2
A1
F1
b
oc
a
A2
F2
B1
3、椭圆的顶点
x2 a2
b y2 2
1(ab0)
令 x=0,得 y=?,说明椭圆与 y轴的交点?
令 y=0,得 x=?说明椭圆与 x轴的交点? y
*顶点:椭圆与它的对称轴
B2 (0,b)
的四个交点,叫做椭圆的
顶点。
A1
*长轴、短轴:线段A1A2、 (-a,0)F1 B1B2分别叫做椭圆的长轴 和短轴。
x
找出a、b、c所表示的线段。B1
△B2F2O叫椭圆的特征三角形。
二、椭圆 x2 y2 1简单的几何性质
a2 b2
1、范围:
问题1:指出A1 、A2 、B1、B2 的坐标? 问题2:指出椭圆上点的横坐标的范围? 问题3:指出椭圆上点的纵坐标的范围? 结论:椭圆中 -a ≤ x ≤a, -b ≤ y ≤b. 椭圆落在x=± a, y= ± b组y 成的矩形中
b
a
oc
F2
B1 (0,-b)
A2(a,0)
a、b分别叫做椭圆的长半 轴长和短半轴长。
根据前面所学有关知识画出下列图形
(1)
x2 y2 1
25 16
(2) x2 y2 1 25 4
y
4 B2
3
2
A1
1
A2
-5 -4 -3 -2 --11 1 2 3 4 5 x
-2
-3
-4 B1
y
4
3 2
B2
A1
长半轴长为a,短半轴长为b. a>b e c a
c2 a2b2
标准方程 范围 对称性 顶点坐标 焦点坐标 半轴长 离心率
A1
F1
b
oc
a
A2
F2
B1
3、椭圆的顶点
x2 a2
b y2 2
1(ab0)
令 x=0,得 y=?,说明椭圆与 y轴的交点?
令 y=0,得 x=?说明椭圆与 x轴的交点? y
*顶点:椭圆与它的对称轴
B2 (0,b)
的四个交点,叫做椭圆的
顶点。
A1
*长轴、短轴:线段A1A2、 (-a,0)F1 B1B2分别叫做椭圆的长轴 和短轴。
x
找出a、b、c所表示的线段。B1
△B2F2O叫椭圆的特征三角形。
二、椭圆 x2 y2 1简单的几何性质
a2 b2
1、范围:
问题1:指出A1 、A2 、B1、B2 的坐标? 问题2:指出椭圆上点的横坐标的范围? 问题3:指出椭圆上点的纵坐标的范围? 结论:椭圆中 -a ≤ x ≤a, -b ≤ y ≤b. 椭圆落在x=± a, y= ± b组y 成的矩形中
b
a
oc
F2
B1 (0,-b)
A2(a,0)
a、b分别叫做椭圆的长半 轴长和短半轴长。
根据前面所学有关知识画出下列图形
(1)
x2 y2 1
25 16
(2) x2 y2 1 25 4
y
4 B2
3
2
A1
1
A2
-5 -4 -3 -2 --11 1 2 3 4 5 x
-2
-3
-4 B1
y
4
3 2
B2
A1
长半轴长为a,短半轴长为b. a>b e c a
c2 a2b2
标准方程 范围 对称性 顶点坐标 焦点坐标 半轴长 离心率
椭圆的简单几何性质PPT优秀课件
∠PF1F2=75°,∠PF2F1=15°,则椭圆的离心率为(A
(A) 6
3
(B) 2
2
(C) 3
2
(D) 2
3
2. P 为椭圆 x2 y2 1上任意一点,F1、F2 是焦点, 43
则∠F1PF2 的最大值是 60 .
6
椭圆的简单几何性质(二)
一、知识学习 复习几何性质 本课小结
二、例题分析 思考1
F1(0, -c),F2(0, c) (c a2 b2 )
c e (0 e 1)
a
8
学习小结:
1.利用椭圆的几何性质求椭圆的标准方程,
先确定焦点位置,然后用待定系数法求 a 与
b 的值;
2.椭圆的标准方程还可以设成 mx2+ny2=1
(m>0,n>0,m≠n);
3.利用椭圆的几何性质解题必须始终贯彻数
椭圆的简单几何性质(一)
一、知识学习
本课小结
二、例题分析 例1(见课本)
三、课堂练习(课本 P52 练习 1、2)
作业:课本 P53 3⑴ 、4⑵ 1
椭圆的简单几何性质(一)
椭圆的标准方程
图形
A1
x2 y2
a2
yB
b2
1(a b 0)
线段 A1 A2 叫做长轴
2M
线段 B1B2 叫做短轴
F1 o
F2 A
x
2
焦点
B1
F1(-c,0),F2(c,0)
(c
a2 b2 )
范围
a ≤ x≤a ,b≤ y ≤b
对称性 关于 y 轴对称 、关于 x 轴对称 、关于原点对称
顶点 离心率
动画
椭圆的几何性质优秀课件公开课
切线斜率与法线斜率互为相反数的倒数。
3
切线、法线与椭圆关系
切线、法线都与椭圆在切点处有且仅有一个公共 点。
应用举例:求解相关问题
求给定点的切线方程
给定椭圆上一点,求该点的切线方程。
求给定斜率的切线方程
给定椭圆的方程和切线的斜率,求切线的 方程。
求椭圆与直线的交点
利用切线、法线解决最值问题
给定椭圆和直线的方程,求它们的交点坐 标。
加空间的变化和美感。
椭圆在物理学中的应用
天体运动轨道
椭圆是描述天体运动轨道的重要几何形状之一, 如行星绕太阳的轨道就是椭圆形的。
光学性质
椭圆的光学性质也被广泛应用于物理学中,如椭 圆形的透镜、反射镜等。
电磁学
在电磁学中,椭圆也被用于描述电场和磁场的分 布。
椭圆在工程学中的应用
机械工程
01
椭圆在机械工程中应用广泛,如椭圆形的齿轮、轴承等机械零
工程学
在工程学中,椭圆也经常被用来描述一些物体的形状或运动轨迹。例如,一些机械零件的 截面形状就是椭圆形的;在航空航天领域,飞行器的轨道也可能是椭圆形的。
数学及其他领域
在数学领域,椭圆作为一种重要的几何图形,经常被用来研究一些数学问题。此外,在物 理学、经济学等其他领域,椭圆也有着广泛的应用。
02
从椭圆外一点向椭圆引切线,切线长 相等。这个定理在解决与椭圆切线有 关的问题时非常有用。
03
椭圆上点与焦点关系
点到两焦点距离之和为定值
椭圆上任意一点到两 个焦点的距离之和等 于椭圆的长轴长。
通过该性质,可以推 导出椭圆的其他几何 性质。
这是椭圆定义的基础 ,也是椭圆最基本的 几何性质之一。
点到两焦点距离差与长轴关系
3
切线、法线与椭圆关系
切线、法线都与椭圆在切点处有且仅有一个公共 点。
应用举例:求解相关问题
求给定点的切线方程
给定椭圆上一点,求该点的切线方程。
求给定斜率的切线方程
给定椭圆的方程和切线的斜率,求切线的 方程。
求椭圆与直线的交点
利用切线、法线解决最值问题
给定椭圆和直线的方程,求它们的交点坐 标。
加空间的变化和美感。
椭圆在物理学中的应用
天体运动轨道
椭圆是描述天体运动轨道的重要几何形状之一, 如行星绕太阳的轨道就是椭圆形的。
光学性质
椭圆的光学性质也被广泛应用于物理学中,如椭 圆形的透镜、反射镜等。
电磁学
在电磁学中,椭圆也被用于描述电场和磁场的分 布。
椭圆在工程学中的应用
机械工程
01
椭圆在机械工程中应用广泛,如椭圆形的齿轮、轴承等机械零
工程学
在工程学中,椭圆也经常被用来描述一些物体的形状或运动轨迹。例如,一些机械零件的 截面形状就是椭圆形的;在航空航天领域,飞行器的轨道也可能是椭圆形的。
数学及其他领域
在数学领域,椭圆作为一种重要的几何图形,经常被用来研究一些数学问题。此外,在物 理学、经济学等其他领域,椭圆也有着广泛的应用。
02
从椭圆外一点向椭圆引切线,切线长 相等。这个定理在解决与椭圆切线有 关的问题时非常有用。
03
椭圆上点与焦点关系
点到两焦点距离之和为定值
椭圆上任意一点到两 个焦点的距离之和等 于椭圆的长轴长。
通过该性质,可以推 导出椭圆的其他几何 性质。
这是椭圆定义的基础 ,也是椭圆最基本的 几何性质之一。
点到两焦点距离差与长轴关系
椭圆的简单几何性质ppt课件
探究 离心率对椭圆形状的影响
a=1.81
c=1.2
a=1.81
c=1.5
c
=0.66
a
c
=0.83
a
离心率越大,椭圆越扁
离心率越小,椭圆越圆
c
a 2 b2
b2
e与a,b的关系: e
1 2
2
a
a
a
离心率反映
椭圆的扁平
程度
焦点的位置
焦点在x轴上
y
图形
标准
方程
范围
对称性
顶点坐标
轴长
焦点坐标
a
b
a 2 b 2 1,
消去y,得关于x的一元二次方程.
2
2
相交
当Δ>0时,方程有两个不同解,直线与椭圆_____;
y
当Δ=0时,方程有两个相同解,直线与椭圆_____;
相切
B(x2,y2)
相离
当Δ<0时,方程无解,直线与椭圆_____.
A(x1,y1)
3.弦长公式
设直线l与椭圆的两个交点分别为A(x1,y1),B(x2,y2).
x12
y12
2 1
2
a
b
2
2
x
y
2 2 1
b2
a2
两式相减得:
y1 y1
b2 x1 x2
b2 x0
2
2
x1 x2
a y1 y1
a y0
k AB
2
2
【典例 2】已知椭圆 C:2 + 2=1(a>b>0)的左焦点为 F,过点 F 的直线 x-y+ 2=0 与椭
a=1.81
c=1.2
a=1.81
c=1.5
c
=0.66
a
c
=0.83
a
离心率越大,椭圆越扁
离心率越小,椭圆越圆
c
a 2 b2
b2
e与a,b的关系: e
1 2
2
a
a
a
离心率反映
椭圆的扁平
程度
焦点的位置
焦点在x轴上
y
图形
标准
方程
范围
对称性
顶点坐标
轴长
焦点坐标
a
b
a 2 b 2 1,
消去y,得关于x的一元二次方程.
2
2
相交
当Δ>0时,方程有两个不同解,直线与椭圆_____;
y
当Δ=0时,方程有两个相同解,直线与椭圆_____;
相切
B(x2,y2)
相离
当Δ<0时,方程无解,直线与椭圆_____.
A(x1,y1)
3.弦长公式
设直线l与椭圆的两个交点分别为A(x1,y1),B(x2,y2).
x12
y12
2 1
2
a
b
2
2
x
y
2 2 1
b2
a2
两式相减得:
y1 y1
b2 x1 x2
b2 x0
2
2
x1 x2
a y1 y1
a y0
k AB
2
2
【典例 2】已知椭圆 C:2 + 2=1(a>b>0)的左焦点为 F,过点 F 的直线 x-y+ 2=0 与椭
椭圆的几何性质 课件(52张)
c 的等量关系.
[解] 设椭圆的方程为ax22+by22=1(a>b>0),焦点坐标为 F1(-c, 0),F2(c,0).
依题意设 A 点坐标为-c,ba2, 则 B 点坐标为-c,-ba2, ∴|AB|=2ab2.
由△ABF2 是正三角形得 2c= 23×2ab2, 即 3b2=2ac. 又∵b2=a2-c2,∴ 3a2- 3c2-2ac=0, 两边同除以 a2 得 3×ac2+2×ac- 3=0, 解得 e=ac= 33.
心率 e=ac=35,两个焦点分别是 F1(-3,0)和 F2(3,0),椭圆的四个 顶点是 A1(-5,0),A2(5,0),B1(0,-4)和 B2(0,4).
1.已知椭圆的方程讨论性质时,若不是标准形式的先化成标准 形式,再确定焦点的位置,进而确定椭圆的类型.
2.焦点位置不确定的要分类讨论,找准 a 与 b,正确利用 a2= b2+c2 求出焦点坐标,再写出顶点坐标.
NO.3 当堂达标·夯基础
1.椭圆x92+1y62 =1 的离心率(
)
A.
7 4
B.196
C.13
A [a2=16,b2=9,c2=7,
设 A 点坐标为(0,y0)(y0>0), 则 B 点坐标为-2c,y20, ∵B 点在椭圆上,∴4ca22+4yb202=1,
解得 y20=4b2-ba2c22, 由△AF1F2 为正三角形得 4b2-ba2c22=3c2, 即 c4-8a2c2+4a4=0, 两边同除以 a4 得 e4-8e2+4=0, 解得 e= 3-1.
∠F1F2P=120°,∴|PF2|=|F1F2|=2c,∠PF2B=60°.∵|OF2|=c,∴ 点 P 的坐标为(c+2ccos 60°,2csin 60°),即点 P(2c, 3c).∵点 P
[解] 设椭圆的方程为ax22+by22=1(a>b>0),焦点坐标为 F1(-c, 0),F2(c,0).
依题意设 A 点坐标为-c,ba2, 则 B 点坐标为-c,-ba2, ∴|AB|=2ab2.
由△ABF2 是正三角形得 2c= 23×2ab2, 即 3b2=2ac. 又∵b2=a2-c2,∴ 3a2- 3c2-2ac=0, 两边同除以 a2 得 3×ac2+2×ac- 3=0, 解得 e=ac= 33.
心率 e=ac=35,两个焦点分别是 F1(-3,0)和 F2(3,0),椭圆的四个 顶点是 A1(-5,0),A2(5,0),B1(0,-4)和 B2(0,4).
1.已知椭圆的方程讨论性质时,若不是标准形式的先化成标准 形式,再确定焦点的位置,进而确定椭圆的类型.
2.焦点位置不确定的要分类讨论,找准 a 与 b,正确利用 a2= b2+c2 求出焦点坐标,再写出顶点坐标.
NO.3 当堂达标·夯基础
1.椭圆x92+1y62 =1 的离心率(
)
A.
7 4
B.196
C.13
A [a2=16,b2=9,c2=7,
设 A 点坐标为(0,y0)(y0>0), 则 B 点坐标为-2c,y20, ∵B 点在椭圆上,∴4ca22+4yb202=1,
解得 y20=4b2-ba2c22, 由△AF1F2 为正三角形得 4b2-ba2c22=3c2, 即 c4-8a2c2+4a4=0, 两边同除以 a4 得 e4-8e2+4=0, 解得 e= 3-1.
∠F1F2P=120°,∴|PF2|=|F1F2|=2c,∠PF2B=60°.∵|OF2|=c,∴ 点 P 的坐标为(c+2ccos 60°,2csin 60°),即点 P(2c, 3c).∵点 P
椭圆的简单几何性质(共29张)-完整版PPT课件
x2 y2 1(a b 0) a2 b2 -a ≤ x≤ a, - b≤ y≤ b
x2 b2
y2 a2
1(a
b
0)
-a ≤ y ≤ a, - b≤ x ≤ b
对称性
关于x轴、y轴成轴对称;关于原点成中心对称
顶点坐标
焦点坐标 半轴长
离心率
a、b、c 的关系
(a,0)、(-a,0)、 (0,b)、(0,-b)
则|PayF22 1|=bx22a+(1eya0>,b>|P0F)2同|=下理a焦:-eya点c02P。F为2其x0F中1a,c|P上F1焦|、点|P为FF2|叫2,焦P0半(径x0.,y0)为椭圆上一点,
c a2
PF2
( a
c
x0 ) a ex0
本堂检测
练习:P42 T2、3、5
D 1.椭圆
即离心率是反映椭圆扁平程度的一个量。
结论:离心率越大,椭圆越扁; 离心率越小,椭圆越接近圆。
思考:当e=0时,曲线是什么?
当e=1时曲线又是什么?
[3]e与a,b的关系:
e c a
a2 b2 a2
b2 1 a2
内容升华
两个范围,三对称 四个顶点,离心率
定义 标准方程
与两个定点F1、F2 的距离的和等于常数(大于 |F1F2|)
c
三、椭圆的焦半径公式
已知椭圆 x2 a2
y2 b2
1(a
b 0)上一点P的横坐标是x0 ,
F1、F2分 别 是 椭 圆
PF1 a ex0 , PF2
的 左 、 右 焦点
a ex0。
,
且e为
离
心率
Y
,
则
《椭圆的几何性质》课件
椭圆的焦点性质
1 焦距定理
椭圆上任意一点到两个焦点的距离之和等于长轴的长度。
2 焦点到直线的距离
椭圆上任意一点到直线的距离与其与两个焦点的距离相等。
3 焦点到任一点距离之和
焦点到椭圆上任意一点距离之和等于长轴的长度。
椭圆的切线
1
切点和法线垂直于切线。
2
切线的斜率和方程
总结
1 椭圆的定义及特点
椭圆是由两个焦点和常距 离点的连线构成的几何形 态。
2 椭圆的焦点、切线和
双曲线性质
椭圆具有焦点性质,切线 和双曲线也与椭圆有所关 联。
3 椭圆的应用和意义
椭圆在工程、艺术和日常 生活中扮演着重要的角色, 具有广泛的应用和意义。
切线的斜率可以通过椭圆的参数表示,方程可以通过切点和斜率求得。
3
切线和弦的交点和中垂线
切线和椭圆上任意一条弦的交点在椭圆的中垂线上。
椭圆的双曲线性质
椭圆与双曲线的区别
椭圆的焦点在内部,离心率小 于1;双曲线的焦点在外部,离 心率大于1。
双曲线的基本形态
双曲线具有两个分离的曲线臂, 曲线臂的形状类似于打开的喇 叭。
双曲线的焦点和离心 率
双曲线也有焦点和离心率的概 念,但与椭圆略有不同。
椭圆的应用
椭圆在工程中的应用
椭圆在艺术中的运用
椭圆形状可以应用于桥梁设计, 提供更好的结构支持和负载分散。
椭圆形状在艺术作品中常用于创 造平衡、和谐和美感的效果。
椭圆在日常生活中的例子
行星轨道、椭圆形家具等都是椭 圆在日常生活中的例子。
《椭圆的几何性质》PPT 课件
欢迎来到《椭圆的几何性质》PPT课件!在本课程中,我们将深入研究椭圆的 几何性质,涵盖定义、基本形态、焦点性质、切线、双曲线性质、应用等内 容。让我们一起开始这个精彩的学习之旅吧。
椭圆的简单几何性质ppt课件
研究直线与椭圆的位置关系的思路方法
1.研究直线与椭圆的位置关系,可联立直线与椭圆的方程,消元后用 判别式讨论. 2.求直线被椭圆截得的弦长,一般利用弦长公式,对于与坐标轴平行 的直线,直接求交点 坐标即可求解. 3.有关弦长的最值问题,可以运用二次函数性质、一元二次方程的判 别式、基本不等式等来求解.
m
4
4.已知椭圆 C :
x2 a2
y2 b2
1(a
b
0) 的左、右焦点分别为 F1 ,F2
,A
15 2
,
1 2
在椭圆
B C 上,且 AF1 AF2 ,则椭圆 C 的长轴长为( )
A. 5
B. 2 5
C. 5 或 3
D.2 5 或2 3
解析:由 AF1
AF2 ,得
OA
1 2
F1F2
,所以c
3.1.2 椭圆的简单几何性质
学习目标
01 掌握椭圆的范围、对称点、顶点、离心率等简单性质 02 能 利 用 椭 圆 的 简 单 性 质 求 椭 圆 方 程 03 能 用 椭 圆 的 简 单 性 质 分 析 解 决 有 关 问 题 04 理 解 数 形 结 合 思 想
学习重点
椭圆的几何性质
学习重点
y2 b2
1 (a
b
0) 的长半轴长为
a,半焦距为
c.利
y
用信息技术,保持长半轴长 a 不变,改变椭圆的半焦距
c,可以发现,c 越接近 a,椭圆越扁平.类似地,保持 c
O
x
不变,改变 a 的大小,则 a 越接近 c,椭圆越扁平;而
当 a,c 扩大或缩小相同倍数时,椭圆的形状不变.
这样,利用c和a这两个量,可以刻画椭圆的扁平程度.
椭圆的简单几何性质:课件一(15张PPT).ppt
是长轴顶点, 是短轴顶点 解:(1)P是长轴顶点,Q是短轴顶点 是长轴顶点 轴上. 故a=3,b=2,焦点在 轴上. , ,焦点在x轴上 x2 y2 即椭圆的方程为 + =1 9 4 (2)a=10,离心率 /a=0.6 离心率c/
x2 y2 + =1 故c=6,b=8.若焦点在x轴上,则 64 , .若焦点在 轴上, 100 轴上 x2 y2 =1 若焦点在y轴上 轴上, 若焦点在 轴上,则 + 64 100
对称轴:x轴、y轴 对称轴: 轴 轴 对称中心: 对称中心:原点
(±a,0) (0,±b) (0,±a) (±b,0) ± ± ± ±
c e = ,0 < e < 1 a
求椭圆16x2+25y2=400的长轴和短轴的 求椭圆 的长轴和短轴的 离心率、焦点和顶点的坐标. 长、离心率、焦点和顶点的坐标.
2
2
比较下列每组中椭圆的形状, 比较下列每组中椭圆的形状, 哪一个更圆,为什么? 哪一个更圆,为什么?
x2 y2 2 2 (1)9x + y = 36, + = 1; 16 12 1 第一个椭圆的离心率 = 2 2 第二个椭圆的离心率 = e2 e1
e1>e2,所以第二个椭圆比较圆. 所以第二个椭圆比较圆.
求下列椭圆的焦点坐标: 求下列椭圆的焦点坐标:
x y 2 2 (1) + = 1; (2)2 x + y = 8. 100 36
(1)a=10,b=6,c=8, 焦点在 轴, , , , 焦点在x轴 (1) 焦点(-8 焦点 ,0),(8,0); , ;
x2 y2 (2)先化为标准方程 (2)先化为标准方程 + =1 4 8 a= 22 ,b=4,c=2, 焦点在y轴 , , 焦点在 轴, 焦点(0 焦点 ,-2),(0,2). , .
x2 y2 + =1 故c=6,b=8.若焦点在x轴上,则 64 , .若焦点在 轴上, 100 轴上 x2 y2 =1 若焦点在y轴上 轴上, 若焦点在 轴上,则 + 64 100
对称轴:x轴、y轴 对称轴: 轴 轴 对称中心: 对称中心:原点
(±a,0) (0,±b) (0,±a) (±b,0) ± ± ± ±
c e = ,0 < e < 1 a
求椭圆16x2+25y2=400的长轴和短轴的 求椭圆 的长轴和短轴的 离心率、焦点和顶点的坐标. 长、离心率、焦点和顶点的坐标.
2
2
比较下列每组中椭圆的形状, 比较下列每组中椭圆的形状, 哪一个更圆,为什么? 哪一个更圆,为什么?
x2 y2 2 2 (1)9x + y = 36, + = 1; 16 12 1 第一个椭圆的离心率 = 2 2 第二个椭圆的离心率 = e2 e1
e1>e2,所以第二个椭圆比较圆. 所以第二个椭圆比较圆.
求下列椭圆的焦点坐标: 求下列椭圆的焦点坐标:
x y 2 2 (1) + = 1; (2)2 x + y = 8. 100 36
(1)a=10,b=6,c=8, 焦点在 轴, , , , 焦点在x轴 (1) 焦点(-8 焦点 ,0),(8,0); , ;
x2 y2 (2)先化为标准方程 (2)先化为标准方程 + =1 4 8 a= 22 ,b=4,c=2, 焦点在y轴 , , 焦点在 轴, 焦点(0 焦点 ,-2),(0,2). , .
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
①椭圆是封闭曲线,既是轴对称图形又 是 中心对称图形,它的对称轴 是X轴、Y轴, 对称中心是坐标原点。
②椭圆的特征值是:a、b、c、e,其关系是: a2=b2+c2(a>b>0),e=c/a。
③椭圆的离心率反映了椭圆的
“扁平”程度,e越大椭圆越扁,e越小椭 圆越圆。
2021/02/01
6
小结:
本节课用代数的方法讨论了椭圆的几何 性质,注意从“数”和“形”两方面去 理解。
其它 圆锥曲线,如圆,双曲线,抛物线 的几何性质亦可类比去讨论。
2021/02/01
7
Thank you
感谢聆听 批评指导
汇报人:XXX 汇报日期:20XX年XX月XX日
感谢您的观看!本教学内容具有更强的时代性和丰富性,更适合学习需要和特点。为了 方便学习和使用,本文档的下载后可以随意修改,调整和打印。欢迎下载!
椭圆的几何性质
1.引入:
对于一条曲线从哪些方面刻画其特征? 现在我们以焦点在ⅹ轴上的椭圆为例讨论:
方程:
x2 a2
+
y2 b2
=1
2021/02/01
2
2.归纳:
①.依据方程和实数的性质可知x、y的 取值范围,在方程中在x、y的位置上 用- x、- y代换,方程不变,反映了椭 圆的对称性。 ②.从椭圆方程可计算出顶点坐标、焦 点坐标、离心率、准线方程。
2021/02/01
8
点评:上面用代数的方法归纳了椭圆 的几何性质,借助椭圆的图形亦可从 几何的角度得到验证。
2021/02/01
3
3.学生阅读课本理解并记忆椭 圆的几何性质。 (教师巡视,进行个别指导)
2021/02/01
4
4.归纳:学生口答,教师点拨、 剖析。
(对可能出现的问题,及时进 行矫正)
2021/02/01