2018年5月厦门九年级数学质检试题及答案
【数学答案】2018厦门5月初三质检考试
∴ OE=12PC.
∵ l∥AB,PC ⊥AB, ∴ PC=4. ∴ OE=2. ∴ 当 ME=2 时,点 M 与圆心 O 重合.…………………10 分 即 AD 为直径. 也即点 D 与点 P 重合. 也即此时圆与直线 PB 有唯一交点. 所以此时直线 PB 与该圆相切.…………………11 分
数学参考答案第 5 页共 8 页
∴ ∠ABC=12∠EAB=36°. …………………………8 分
E
A
B
C
D
F 图1
19.(本题满分 8 分) (1)(本小题满分 3 分)如图 2;…………………………3 分
l
.A
图2
数学参考答案第 1 页共 8 页
(2)(本小题满分 5 分) 解:设直线 l 的表达式为 y=kx+b(k≠0),…………………………4 分 由 m=2 得点 A(0,2), 把(0,2),(-3,4)分别代入表达式,得
∵ DE=AB,
∴ DE=DC.
∴ ∠DCE=∠DEC.…………………………4 分
∵ AB∥DC,
∴ ∠ABC=∠DCE. …………………………5 分
∴ ∠ABC=∠DEC.
…………………………6 分
又∵ AB=DE,BE=EB,
∴ △ABE≌△DEB. …………………………7 分
∴ AE=BD.
2018—2019学年度第一学期阶段检测九年级数学试题含答案
2018—2019学年度第一学期阶段检测九年级数学试题含答案注意事项:1.答卷前,请考生务必将自己的姓名、考号、考试科目及选择题答案涂写在答题卡上,并同时将学校、姓名、考号、座号填写在试卷的相应位置。
2.本试卷分为卷I (选择题)和卷II (非选择题)两部分,共120分。
考试时间为90分钟。
第Ⅰ卷(选择题 共45分)一、选择题(本大题共15小题,每小题3分,满分45分)1.方程x (x +1)=0的解是A. x =0B. x =1C. x 1=0,x 2=1D. x 1=0,x 2=-12.图中三视图所对应的直观图是3.用配方法解关于x 的一元二次方程x 2-2x -3=0,配方后的方程可以是A .(x -1)2=4B .(x +1)2=4C .(x -1)2=16D .(x +1)2=16 4.如果反比例函数x k y =的图像经过点(-3,-4),那么函数的图象应在 A .第一、三象限B .第一、二象限C .第二、四象限D .第三、四象限 5.若函数xm y =的图象在其所在的每一象限内,函数值y 随自变量x 的增大而增大,则m 的取值范围是 A .m >1B . m >0C . m <1D .m <0 6.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中ABC △相似的是B . A . B .C .D .A B7.如果两个相似三角形的相似比是1:2,那么这两个相似三角形的周长比是A .2:1B .1:C . 1:4D .1:2 8.一元二次方程2x 2 + 3x +5=0的根的情况是A .有两个不相等的实数B .有两个相等的实数C .没有实数根D .无法判断 9.如图是小明一天上学、放学时看到的一根电线杆的影子的俯视图,按时间先后顺序进行排列正确的是A .(1)(2)(3)(4)B .(4)(3)(1)(2)C .(4)(3)(2)(1)D .(2)(3)(4)(1) 10. 下列各点中,不在反比例函数xy 6-=图象上的点是 A .(-1,6) B .(-3,2) C .)12,21(- D .(-2,5)11.如右图,在△ABC 中,看DE ∥BC ,21=AB AD ,DE =4 cm ,则BC 的长为 A .8 cm B .12 cm C .11 cm D .10 cm12.下列结论不正确的是A .所有的矩形都相似B .所有的正方形都相似 11题图C .所有的等腰直角三角形都相似D .所有的正八边形都相似13.在函数y=xk (k<0)的图像上有A(1,y 1)、B(-1,y 2)、C(-2,y 3)三个点,则下列各式中正确的是A . y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 2<y 1D .y 2<y 3<y 114.如图所示的两个圆盘中,指针落在每一个数上的机会均等,则两个指针同时落在偶数上的概率是A.525 B.625C.1025 D.1925 14题图15.如图,正方形OABC 和正方形ADEF 的顶点A ,D ,C 在坐标轴上,点F 在AB 上,点B ,E 在函数1(0)y xx =>的图象上,则点E 的坐标是A .⎝⎭;B .⎝⎭C .⎝⎭;D .⎝⎭ 15题图第Ⅱ卷(非选择题 共75分)二、填空题(本大题共6小题,每小题3分,满分18分,把答案填在题中的横线上。
【初中市质检试卷】2018—2019学年(上)厦门市九年级质量检测数学试卷及答案
2018—2019学年(上)厦门市九年级质量检测数学(试卷满分:150分考试时间:120分钟)准考证号姓名座位号注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡. 2.答案必须写在答题卡上,否则不能得分. 3.可以直接使用2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.计算-5+6,结果正确的是A .1B .-1C .11D .-11 2.如图1,在△ABC 中,∠C =90°,则下列结论正确的是 A . AB =AC +BC B .AB =AC ·BC C .AB 2=AC 2+BC 2 D .AC 2=AB 2+BC 2 3.抛物线y =2(x -1)2-6的对称轴是A .x =-6B .x =-1C .x =12 D .x =14.要使分式1x -1有意义,x 的取值范围是A .x ≠0B .x ≠1C .x >-1D .x >1 5.下列事件是随机事件的是A .画一个三角形,其内角和是360°B .投掷一枚正六面体骰子,朝上一面的点数小于7 C.射击运动员射击一次,命中靶心D .在只装了红球的不透明袋子里,摸出黑球6.图2,图3分别是某厂六台机床十月份第一天和第二天生 产零件数的统计图.与第一天相比,第二天六台机床生产零件数的平均数与方差的变化情况是 A .平均数变大,方差不变B.平均数变小,方差不变C.平均数不变,方差变小D.平均数不变,方差变大7.地面上一个小球被推开后笔直滑行,滑行的距离s与时间t的函数关系如图4中的部分抛物线所示(其中P是该抛物线的顶点),则下列说法正确的是A.小球滑行6秒停止B.小球滑行12秒停止C.小球滑行6秒回到起点D.小球滑行12秒回到起点8.在平面直角坐标系xOy中,已知A(2,0),B(1,-1),将线段OA绕点O逆时针旋转,设旋转角为α(0°<α<135°).记点A的对应点为A1,若点A1与点B的距离为6,则α为A.30°B.45°C.60°D.90°9.点C,D在线段AB上,若点C是线段AD的中点,2BD>AD,则下列结论正确的是A.CD<AD-BDB.AB>2BDC.BD>ADD.BC>AD10.已知二次函数y=ax2+bx+c(a>0)的图象经过(0,1),(4,0).当该二次函数的自变量分别取x1,x2(0<x1<x2<4)时,对应的函数值为y1,y2,且y1=y2.设该函数图象的对称轴是x=m,则m的取值范围是A.0<m<1B.1<m≤2C.2<m<4D.0<m<4二、填空题(本大题有6小题,每小题4分,共24分)11.投掷一枚质地均匀的正六面体骰子,投掷一次,朝上一面的点数为奇数的概率是 .12.已知x=2是方程x2+ax-2=0的根,则a=.13.如图5,已知AB是⊙O的直径,AB=2,C,D是圆周上的点,且∠CDB=30°,则BC的长为 .14.我们把三边长的比为3∶4∶5的三角形称为完全三角形.记命题A:“完全三角形是直角三角形”.若命题B是命题A的逆命题,请写出命题B:;并写出一个例子(该例子能判断命题B是错误的): .15.已知AB 是⊙O 的弦,P 为AB 的中点,连接OA ,OP ,将△OP A 绕点O 逆时针旋转到△OQB . 设⊙O 的半径为1,∠AOQ =135°,则AQ 的长为 .16.若抛物线y =x 2+bx (b >2)上存在关于直线y =x 成轴对称的两个点,则b 的取值范围 是 .三、解答题(本大题有9小题,共86分) 17.(本题满分8分) 解方程x 2-3x +1=0.18.(本题满分8分)化简并求值:(1-2x +1)÷x 2-12x +2,其中x =2-1.19.(本题满分8分)已知二次函数y =(x -1)2+n ,当x =2时y =2.求该二次函数的解析式,并在平面直角坐标系中画出该函数的图象.20.(本题满分8分)如图6,已知四边形ABCD 为矩形.(1)请用直尺和圆规在边AD 上作点E ,使得EB =EC ; (保留作图痕迹)(2)在(1)的条件下,若AB =4,AD =6,求EB 的长.21.(本题满分8分)如图7,在△ABC 中,∠C =60°,AB =4.以AB 为直径画⊙O , 交边AC 于点D ,︵AD 的长为4π3.求证:BC 是⊙O 的切线.22.(本题满分10分)已知动点P 在边长为1的正方形ABCD 的内部,点P 到边AD ,AB 的距离分别为m ,n .(1)以A 为原点,以边AB 所在直线为x 轴,建立平面直角坐标系,如图8所示.当点P 在对角线AC上,且m =14时,求点P 的坐标;(2)如图9,当m ,n 满足什么条件时,点P 在△DAB 的内部?请说明理由.23.(本题满分10分)小李的活鱼批发店以44元/公斤的价格从港口买进一批2000公斤的某品种活鱼,在运 输过程中,有部分鱼未能存活.小李对运到的鱼进行随机抽查,结果如表一.由于市场调节,该品种活鱼的售价与日销售量之间有一定的变化规律,表二是近一段时间该批发店的销售记录. (1)请估计运到的2000公斤鱼中活鱼的总重量;(直接写出答案) (2)按此市场调节的规律,① 若该品种活鱼的售价定为52.5元/公斤,请估计日销售量,并说明理由; ② 考虑到该批发店的储存条件,小李打算8天内卖完这批鱼(只能卖活鱼),且 售价保持不变,求该批发店每日卖鱼可能达到的最大利润,并说明理由.表一表二24.(本题满分12分)已知P 是⊙O 上一点,过点P 作不过圆心的弦PQ ,在劣弧PQ 和优弧PQ 上分别有动点 A ,B (不与P ,Q 重合),连接AP ,BP . 若∠APQ =∠BPQ ,(1)如图10,当∠APQ =45°,AP =1,BP =22时,求⊙O 的半径;(2)如图11,连接AB ,交PQ 于点M ,点N 在线段PM 上(不与P ,M 重合),连接ON ,OP ,若∠NOP +2∠OPN =90°,探究直线.25.(本题满分14分)在平面直角坐标系xOy 中,点A (0,2),B (p ,q )在直线l 上,抛物线m 经过点 B ,C (p +4,q ),且它的顶点N 在直线l 上. (1)若B (-2,1),① 请在图12的平面直角坐标系中画出直线l 与抛物线m 的示意图;② 设抛物线m 上的点Q 的横坐标为e (-2≤e ≤0),过点Q 作x 轴的垂线,与直线l 交于点H .若QH =d ,当d 随 e 的增大而增大时,求e 的取值范围;(2)抛物线m 与y 轴交于点F ,当抛物线m 与x 轴有唯一 交点时,判断△NOF 的形状并说明理由.图10图112018—2019学年(上)厦门市九年级质量检测数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共6小题,每题4分,共24分)11.12. 12. -1. 13.1. 14.直角三角形是完全三角形;如:等腰直角三角形,或三边分别为5,12,13的三角形,或三边比为5∶12∶13的三角形等. 15.102. 16.b >3.三、解答题(本大题有9小题,共86分) 17.(本题满分8分)解:a =1,b =-3,c =1. △=b 2-4ac=5>0. ……………………………4分 方程有两个不相等的实数根 x =-b ±b 2-4ac 2a=3±52. ……………………………6分即x 1=3+52,x 2=3−52. ……………………………8分18.(本题满分8分)解:(1-2x +1)÷x 2-12x +2=(x +1-2x +1)·2x+2x 2-1 ……………………………2分=x -1x +1·2(x +1)(x+1)(x -1)……………………………5分 =2x +1……………………………6分 当x =2-1时,原式=22= 2 …………………………8分19.(本题满分8分)解:因为当x=2时,y=2.所以(2−1)2+n=2.解得n=1.所以二次函数的解析式为:y=(x−1)2+1…………………4分列表得:如图:…………………8分20.(本题满分8分)(1)(本小题满分3分)解:如图,点E即为所求.…………………3分(2)(本小题满分5分)解法一:解:连接EB,EC,由(1)得,EB=EC.∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=DC.∴△ABE≌△DCE. …………………6分E DC BAl∴ AE =ED =12AD =3. …………………7分在Rt △ABE 中,EB =AB 2+AE 2. ∴ EB =5. …………………8分解法二:如图,设线段BC 的中垂线l 交BC 于点F , ∴ ∠BFE =90°,BF =12BC .∵ 四边形ABCD 是矩形, ∴ ∠A =∠ABF =90°,AD =BC .在四边形ABFE 中,∠A =∠ABF =∠BFE =90°, ∴ 四边形ABFE 是矩形. …………………6分 ∴ EF =AB =4. …………………7分 在Rt △BFE 中,EB =EF 2+BF 2. ∴ EB =5. …………………8分21.(本题满分8分) 证明:如图,连接OD , ∵ AB 是直径且AB =4, ∴ r =2. 设∠AOD =n °, ∵ ︵AD 的长为4π3,∴ n πr 180=4π3.解得n =120 .即∠AOD =120° . ……………………………3分 在⊙O 中,DO =AO , ∴ ∠A =∠ADO .∴ ∠A =12(180°-∠AOD )= 30°. ……………………………5分∵ ∠C =60°,∴ ∠ABC =180°-∠A -∠C =90°. …………………………6分FEDCBAl即AB ⊥BC . ……………………………7分 又∵ AB 为直径,∴ BC 是⊙O 的切线. ……………………………8分 22.(本题满分10分)解(1)(本小题满分5分) 解法一:如图,过点P 作PF ⊥y 轴于F , ∵ 点P 到边AD 的距离为m . ∴ PF =m =14.∴ 点P 的横坐标为14. …………………1分由题得,C (1,1),可得直线AC 的解析式为:y =x . …………………3分 当x =14时,y =14 . …………………4分所以P (14,14). …………………5分解法二:如图,过点P 作PE ⊥x 轴于E ,作PF ⊥y 轴于F , ∵ 点P 到边AD ,AB 的距离分别为m ,n , ∴ PE =n ,PF =m .∴ P (m ,n ). …………………1分 ∵ 四边形ABCD 是正方形,∴ AC 平分∠DAB . …………………2分 ∵ 点P 在对角线AC 上,∴ m =n =14. …………………4分∴ P (14,14). …………………5分(2)(本小题满分5分)解法一:如图,以A 为原点,以边AB 所在直线为x 轴,建立平面直角坐标系.EF则由(1)得P (m ,n ). 若点P 在△DAB 的内部, 点P 需满足的条件是:①在x 轴上方,且在直线BD 的下方; ②在y 轴右侧,且在直线BD 的左侧. 由①,设直线BD 的解析式为:y =kx +b , 把点B (1,0),D (0,1)分别代入,可得直线BD 的解析式为:y =-x+1. ……………6分 当x =m 时,y =-m+1.由点P 在直线BD 的下方,可得n <-m+1. ……………7分 由点P 在x 轴上方,可得n >0 ……………8分 即0<n <-m+1.同理,由②可得0<m <-n+1. ……………9分所以m ,n 需满足的条件是:0<n <-m+1且0<m <-n+1. ……………10分解法二:如图,过点P 作PE ⊥AB 轴于E ,作PF ⊥AD 轴于F , ∵ 点P 到边AD ,AB 的距离分别为m ,n , ∴ PE =n ,PF =m .在正方形ABCD 中,∠ADB =12∠ADC =45°,∠A =90°.∴ ∠A =∠PEA =∠PF A =90°. ∴ 四边形PEAF 为矩形.∴ PE =F A =n . ……………6分 若点P 在△DAB 的内部, 则延长FP 交对角线BD 于点M .在Rt △DFM 中,∠DMF =90°-∠FDM =45°. ∴ ∠DMF =∠FDM . ∴ DF =FM . ∵ PF <FM ,∴ PF <DF ……………7分 ∴ PE+ PF =F A+ PF <F A+ DF .· PEFM即m+ n <1. ……………8分 又∵ m >0, n >0,∴ m ,n 需满足的条件是m+n <1且m >0且n >0. ……………10分23.(本题满分10分) 解:(1)(本小题满分2分)估计运到的2000公斤鱼中活鱼的总重量为1760公斤.……………2分 (2)①(本小题满分3分)根据表二的销售记录可知,活鱼的售价每增加1元,其日销售量就减少40公斤,所以按此变化规律可以估计当活鱼的售价定为52.5元/公斤时,日销售量为300公斤.……………………5分②(本小题满分5分)解法一:由(2)①,若活鱼售价在50元/公斤的基础上,售价增加x 元/公斤,则可估计日销售量在400公斤的基础上减少40x 公斤,设批发店每日卖鱼的最大利润为w ,由题得w =(50+x -2000×441760) (400-40x ) ……………………7分=-40x 2+400x=-40(x -5)2+1000.由“在8天内卖完这批活鱼”,可得8 (400-40x )≤1760,解得x ≤4.5. 根据实际意义,有400-40x ≥0;解得x ≤10. 所以x ≤4.5. ……………………9分 因为-40<0,所以当x <5时,w 随x 的增大而增大,所以售价定为54.5元/公斤,每日卖鱼可能达到的最大利润为990元.……………………10分解法二:设这8天活鱼的售价为x 元/公斤,日销售量为y 公斤,根据活鱼的售价与日销售量之间的变化规律,不妨设y =kx +b .由表二可知,当x =50时,y =400;当x =51时,y =360,所以⎩⎨⎧50k +b =40051k +b =360,解得⎩⎨⎧k =-40b =2400,可得y =-40x +2400.设批发店每日卖鱼的最大利润为w ,由题得w =(x -2000×441760) (-40x +2400) ……………………7分=-40x 2+4400x -120000 =-40(x -55)2+1000.由“在8天内卖完这批活鱼”,可得8 (-40x +2400)≤1760,解得x ≤54.5. 根据实际意义,有-40x +2400≥0;解得x ≤60. 所以x ≤54.5. ……………………9分 因为-40<0,所以当x <55时,w 随x 的增大而增大,所以售价定为54.5元/公斤,每日卖鱼可能达到的最大利润为990元.……………………10分24.(本题满分12分)(1)(本小题满分6分) 解:连接AB . 在⊙O 中,∵ ∠APQ =∠BPQ =45°,∴ ∠APB =∠APQ +∠BPQ =90°.…………1分 ∴ AB 是⊙O 的直径. ………………3分 ∴ 在Rt △APB 中,AB =AP 2+BP 2 ∴ AB =3. ………………5分 ∴ ⊙O 的半径是32. ………………6分(2)(本小题满分6分) 解:AB ∥ON .证明:连接OA ,OB ,OQ , 在⊙O 中,∵ ︵AQ =︵AQ ,︵BQ =︵BQ ,∴ ∠AOQ =2∠APQ ,∠BOQ =2∠BPQ .PQ又∵ ∠APQ =∠BPQ ,∴ ∠AOQ =∠BOQ . ……………7分 在△AOB 中,OA =OB ,∠AOQ =∠BOQ ,∴ OC ⊥AB ,即∠OCA =90°. ………………………8分 连接OQ ,交AB 于点C , 在⊙O 中,OP =OQ . ∴∠OPN =∠OQP .延长PO 交⊙O 于点R ,则有2∠OPN =∠QOR . ∵ ∠NOP +2∠OPN =90°,又∵ ∠NOP +∠NOQ +∠QOR =180°,∴ ∠NOQ =90°. ………………………11分 ∴ ∠NOQ +∠OCA =180°.∴ AB ∥ON . ………………………12分25.(本题满分14分) (1)①(本小题满分3分)解:如图即为所求…………………………3分②(本小题满分4分)解:由①可求得,直线l :y =12x +2,抛物线m :y =-14x 2+2.……………5分因为点Q 在抛物线m 上,过点Q 且与x 轴垂直的直线与l 交于点H ,所以可设点Q 的坐标为(e ,-14e 2+2),点H 的坐标为(e ,1e +2),其中(-2≤e ≤0).当-2≤e ≤0时,点Q 总在点H 的正上方,可得d =-14e 2+2-(12e +2) ……………6分=-14e 2-12e=-14(e +1)2+14.因为-14<0,所以当d 随e 的增大而增大时,e 的取值范围是-2≤e ≤-1.……………7分 (2)(本小题满分7分)解法一:因为B (p ,q ),C (p +4,q )在抛物线m 上, 所以抛物线m 的对称轴为x =p +2. 又因为抛物线m 与x 轴只有一个交点, 可设顶点N (p +2,0). 设抛物线的解析式为y =a (x -p -2)2. 当x =0时,y F =a (p+2)2.可得F (0,a (p+2)2). …………………9分 把B (p ,q )代入y =a (x -p -2)2,可得q =a (p -p -2)2. 化简可得q =4a ①. 设直线l 的解析式为y =kx +2,分别把B (p ,q ),N (p +2,0)代入y =kx +2,可得 q =kp +2 ②,及0=k (p +2)+2 ③ . 由①,②,③可得a =12+p .所以F (0,p +2).又因为N (p +2,0), …………………13分 所以ON=OF ,且∠NOF =90°.所以△NOF 为等腰直角三角形.…………………14分 解法二:因为直线过点A (0,2), 不妨设直线l :y =kx +2,因为B (p ,q ),C (p +4,q )在抛物线m 上,所以抛物线m 的对称轴为x =p +2.又因为抛物线的顶点N 在直线l :y =kx +2上, 可得N (p +2,k (p +2)+2).所以抛物线m :y =a (x -p -2)2+k (p +2)+2. 当x =0时,y =a (p +2)2+k (p +2)+2.即点F 的坐标是(0,a (p +2)2+k (p +2)+2). …………………9分 因为直线l ,抛物线m 经过点B (p ,q ),可得⎩⎨⎧kp +2=q 4a +k (p +2)+2=q, 可得k =-2a . 因为抛物线m 与x 轴有唯一交点,可知关于x 的方程kx +2=a (x -p -2)2+k (p +2)+2中,△=0. 结合k =-2a ,可得k (p +2)=-2.可得N (p +2,0),F (0, p +2). …………………13分 所以ON=OF ,且∠NOF =90°.所以△NOF 是等腰直角三角形. …………………14分。
2017—2018学年(上)厦门市九年级质量检测及答案
2017—2018学年(上)厦门市九年级质量检测数学(试卷满分:150分考试时间:120分钟)一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.下列算式中,计算结果是负数的是( )A .(-2)+7B .-1C .3×(-2)D .(-1)22.对于一元二次方程x 2-2x +1=0,根的判别式b 2-4ac 中的b 表示的数是( ) A .-2 B .2 C .-1 D .13.如图1,四边形ABCD 的对角线AC ,BD 交于点O ,E 是BC 边上的一点,连接AE ,OE , 则下列角中是△AEO 的外角的是( ) A .∠AEB B .∠AOD C .∠OEC D .∠EOC4.已知⊙O 的半径是3,A ,B ,C 三点在⊙O 上,∠ACB =60°, 则︵AB 的长是( )A .2πB .πC .32πD .12π5.某区25位学生参加魔方速拧比赛,比赛成绩如图2所示, 则这25个成绩的中位数是( ) A .11 B .10.5 C .10 D .66.随着生产技术的进步,某厂生产一件产品的成本从两年前的100元下降到现在的64元,求年平均下降率.设年平均下降率为x ,通过解方程得到一个根为1.8,则正确的解释是( )A .年平均下降率为80% ,符合题意B .年平均下降率为18% ,符合题意C .年平均下降率为1.8% ,不符合题意 D.年平均下降率为180% ,不符合题意 7.已知某二次函数,当x <1时,y 随x 的增大而减小;当x >1时,y 随x 的增大而增大,则该 二次函数的解析式可以是( ) A .y =2(x +1)2 B .y =2(x -1)2 C .y =-2(x +1)2D .y =-2(x -1)28.如图3,已知A ,B ,C ,D 是圆上的点,︵AD =︵BC ,AC ,BD 交于点E ,则下列结论正确的是( )A .AB =AD B .BE =CDC .AC =BD D .BE =AD 9.我国古代数学家祖冲之和他的儿子发展了刘徽的“割圆术”(即圆的内接正多边形边数不断 增加,它的周长就越接近圆周长),他们从圆内接正六边形算起,一直算到内接正24576边形,将圆周率精确到小数点后七位,使中国对圆周率的计算在世界上领先一千多年.依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是( )A .2.9B .3C .3.1D .3.1410.点M (n ,-n )在第二象限,过点M 的直线y =kx +b (0<k <1)分别交x 轴,y 轴于点A ,B .过点M 作MN ⊥x 轴于点N ,则下列点在线段AN 上的是( )A .((k -1)n ,0)B . ((k +3)n ,0) C . ((k +2)n ,0) D .((k +1)n ,0)ABDCE EODCBA图1图2学生数正确速 拧个数图3二、填空题(本大题有6小题,每小题4分,共24分)11.已知x =1是方程x 2-a =0的根,则a = .12.一个不透明盒子里装有4个除颜色外无其他任何差别的球,从盒子中随机摸出一个球,若 P (摸出红球)=14,则盒子里有 个红球.13.如图4,已知AB =3,AC =1,∠D =90°,△DEC 与△ABC 关于点C 成中心对称,则AE 的长是 .14.某二次函数的几组对应值如下表所示.若x 1<x 2<x 3<x 4<x 5, 则该函数图象的开口方向是 .15.P 是直线l 上的任意一点,点A 在⊙O 上.设OP 的最小值为m ,若直线l 过点A ,则m 与OA 的大小关系是 .16.某小学举办“慈善一日捐”演出,共有600张演出票,成人票价为60元,学生票价为20元.演出票虽未售完,但售票收入达22080元.设成人票售出x 张,则x 的取值范围是 . 三、解答题(本大题有9小题,共86分)17.(本题满分8分) 解方程x 2-4x =1.18.(本题满分8分)如图5,已知△ABC 和△DEF 的边AC ,DF 在一条直线上, AB ∥DE ,AB =DE ,AD =CF ,证明BC ∥EF .19.(本题满分8分)如图6,已知二次函数图象的顶点为P ,且与y 轴交于点A . (1)在图中再确定该函数图象上的一个点B 并画出; (2)若P (1,3),A (0,2),求该函数的解析式.如图7,在四边形ABCD 中,AB =BC ,∠ABC =60°,E 是CD 边上一点,连接BE ,以BE 为一边作等边三角形BEF .请用直尺在图中连接一条线段,使图中存在经过旋转可完全重合的两个三角形,并说明这两个三角形经过什么样的旋转可重合.21.(本题满分8分)某市一家园林公司培育出新品种树苗,为考察这种树苗的移植成活率,公司进行了统计, 结果如下表所示.现该市实施绿化工程,需移植一批这种树苗,若这批树苗移植后要有28.5万棵成活,则需一次性移植多少棵树苗较为合适?请说明理由.22.(本题满分10分)已知直线l 1:y =kx +b 经过点A (-12,0)与点B (2,5).(1)求直线l 1与y 轴的交点坐标;(2)若点C (a ,a +2)与点D 在直线l 1上,过点D 的直线l 2与x 轴的正半轴交于点E ,当AC =CD =CE 时,求DE 的长. F A B C D E 图7阅读下列材料:我们可以通过下列步骤估计方程2x 2+x -2=0的根所在的范围.第一步:画出函数y =2x 2+x -2的图象,发现函数图象是一条连续不断的曲线,且与x 轴的一个交点的横坐标在0,1之间.第二步:因为当x =0时,y =-2<0;当x =1时,y =1>0,所以可确定方程2x 2+x -2=0的一个根x 1所在的范围是0<x 1<1.第三步:通过取0和1的平均数缩小x 1所在的范围:取x =0+12=12,因为当x =12时,y <0,又因为当x =1时,y >0, 所以12<x 1<1.(1)请仿照第二步,通过运算,验证方程2x 2+x -2=0的另一个根x 2所在的范围是-2<x 2<-1;(2)在-2<x 2<-1的基础上,重复应用第三步中取平均数的方法,将x 2所在的范围缩小至m <x 2<n ,使得n -m ≤14.24.(本题满分11分)已知AB 是半圆O 的直径,M ,N 是半圆上不与A ,B 重合的两点,且点N 在︵MB 上. (1)如图8,MA =6,MB =8,∠NOB =60°,求NB 的长;(2)如图9,过点M 作MC ⊥AB 于点C ,P 是MN 的中点,连接MB ,NA ,PC ,试探究∠MCP ,∠NAB ,∠MBA 之间的数量关系,并证明.N MA B 图8在平面直角坐标系xOy 中,已知点A 在抛物线y =x 2+bx +c (b >0)上,且A (1,-1), (1)若b -c =4,求b ,c 的值;(2)若该抛物线与y 轴交于点B ,其对称轴与x 轴交于点C ,则命题“对于任意的一个k (0<k <1),都存在b ,使得OC =k ·OB .”是否正确?若正确,请证明;若不 正确,请举反例;(3)将该抛物线平移,平移后的抛物线仍经过(1,-1),点A 的对应点A 1为(1-m ,2b -1).当m ≥-32时,求平移后抛物线的顶点所能达到的最高点的坐标.2017—2018学年(上)厦门市九年级质量检测数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)题号 1 2 3 4 5 6 7 8 9 10选项 C A D A A D B C B D二、填空题(本大题共6小题,每题4分,共24分)11. 1. 12. 1.13.13.14.向下.15. m≤OA.16. 252<x≤368(x为整数)或253≤x≤368(x为整数)三、解答题(本大题有9小题,共86分)17.(本题满分8分)解:x2-4x+4=5.………………4分(x-2)2=5.由此可得x-2=±5.………………6分x1=5+2,x2=-5+2.………………8分18.(本题满分8分)证明:如图1,∵AB∥DE,∴∠BAC=∠EDF. ………………2分∵AD=CF,∴AD+DC=CF+DC.即AC=DF. ………………4分又∵AB=DE,∴△ABC≌△DEF.………………6分∴∠BCA=∠EFD.∴BC∥EF. ………………8分19.(本题满分8分)解:(1)如图2,点B即为所求. ………………3分(2)由二次函数图象顶点为P(1,3),可设解析式为y=a(x-1)2+3. ………………6分把A(0,2)代入,得a+3=2.解得a=-1. ………………7分所以函数的解析式为y=-(x-1)2+3. ………………8分图1F ABCDEA··P图2·B20.(本题满分8分)解:如图3,连接AF . ………………3分 将△CBE 绕点B 逆时针旋转60°,可与△ABF 重合. …………8分 21.(本题满分8分)解:由表格可知,随着树苗移植数量的增加,树苗移植成活率越来越稳定.当移植总数为10000时, 成活率为0.950,于是可以估计树苗移植成活率为0.950. ………………3分 则该市需要购买的树苗数量约为28.5÷0.950=30(万棵).答:该市需向这家园林公司购买30万棵树苗较为合适. ………………8分22.(本题满分10分)(1)(本小题满分5分)解:把A (-12,0),B (2,5)分别代入y =kx +b ,可得解析式为y =2x +1. ……………… 3分 当x =0时,y =1.所以直线l 1与y 轴的交点坐标为(0,1). ……………… 5分(2)(本小题满分5分)解:如图4,把C (a ,a +2)代入y =2x +1,可得a =1. ……………… 6分 则点C 的坐标为(1,3).∵ AC =CD =CE ,又∵ 点D 在直线AC 上,∴ 点E 在以线段AD 为直径的圆上.∴ ∠DEA =90°. ……………… 8分过点C 作CF ⊥x 轴于点F ,则 CF =y C =3. ……………… 9分 ∵ AC =CE , ∴ AF =EF 又∵ AC =CD ,∴ CF 是△DEA 的中位线.∴ DE =2CF =6. ……………… 10分 23.(本题满分11分) (1)(本小题满分4分)解:因为当x =-2时,y >0;当x =-1时,y <0,所以方程2x 2+x -2=0的另一个根x 2所在的范围是-2<x 2<-1. ……………… 4分(2)(本小题满分7分)解:取x =(-2)+(-1)2=-32,因为当x =-32时,y >0,又因为当x =-1时,y =-1<0,所以-32<x 2<-1. ……………… 7分F A B CDE 图3取x =(-32)+(-1)2=-54,因为当x =-54时,y <0,又因为当x =-32时,y >0,所以-32<x 2<-54. ……………… 10分又因为-54-(-32)=14,所以-32<x 2<-54即为所求x 2 的范围. ……………… 11分24.(本题满分11分)(1)(本小题满分5分)解:如图5,∵ AB 是半圆O 的直径,∴ ∠M =90°. ………………1分在Rt △AMB 中,AB =MA 2+MB 2 ………………2分 ∴ AB =10.∴ OB =5. ………………3分 ∵ OB =ON ,又∵ ∠NOB =60°,∴ △NOB 是等边三角形. ………………4分 ∴ NB =OB =5. ………………5分 (2)(本小题满分6分) 证明:方法一:如图6,画⊙O ,延长MC 交⊙O 于点Q ,连接NQ ,NB . ∵ MC ⊥AB , 又∵ OM =OQ ,∴ MC =CQ . ………………6分 即 C 是MN 的中点 又∵ P 是MQ 的中点,∴ CP 是△MQN 的中位线. ………………8分 ∴ CP ∥QN .∴ ∠MCP =∠MQN .∵ ∠MQN =12∠MON ,∠MBN =12∠MON ,∴ ∠MQN =∠MBN .∴ ∠MCP =∠MBN . ………………10分 ∵ AB 是直径,∴ ∠ANB =90°. ∴ 在△ANB 中,∠NBA +∠NAB =90°. ∴ ∠MBN +∠MBA +∠NAB =90°.即 ∠MCP +∠MBA +∠NAB =90°. ………………11分图5∵ P 是MN 中点, 又∵ OM =ON ,∴ OP ⊥MN , ………………6分 且 ∠MOP =12∠MON .∵ MC ⊥AB ,∴ ∠MCO =∠MPO =90°. ∴ 设OM 的中点为Q , 则 QM =QO =QC =QP .∴ 点C ,P 在以OM 为直径的圆上. ………………8分 在该圆中,∠MCP =∠MOP =12∠MQP .又∵ ∠MOP =12∠MON ,∴ ∠MCP =12∠MON .在半圆O 中,∠NBM =12∠MON .∴ ∠MCP =∠NBM . ………………10分 ∵ AB 是直径,∴ ∠ANB =90°. ∴ 在△ANB 中,∠NBA +∠NAB =90°. ∴ ∠NBM +∠MBA +∠NAB =90°.即 ∠MCP +∠MBA +∠NAB =90°. ………………11分25.(本题满分14分) (1)(本小题满分3分)解:把(1,-1)代入y =x 2+bx +c ,可得b +c =-2, ………………1分 又因为b -c =4,可得b =1,c =-3. ………………3分 (2)(本小题满分4分)解:由b +c =-2,得c =-2-b . 对于y =x 2+bx +c ,当x =0时,y =c =-2-b .抛物线的对称轴为直线x =-b2.所以B (0,-2-b ),C (-b2,0).因为b >0,所以OC =b2,OB =2+b . ………………5分当k =34时,由OC =34OB 得b 2=34(2+b ),此时b =-6<0不合题意.所以对于任意的0<k <1,不一定存在b ,使得OC =k ·OB . ………………7分(3)(本小题满分7分)图7方法一:由平移前的抛物线y =x 2+bx +c ,可得y =(x +b 2)2-b 24+c ,即y =(x +b 2)2-b 24-2-b .因为平移后A (1,-1)的对应点为A 1(1-m ,2b -1)可知,抛物线向左平移m 个单位长度,向上平移2b 个单位长度.则平移后的抛物线解析式为y =(x +b 2+m )2-b 24-2-b +2b . ………………9分即y =(x +b 2+m )2-b 24-2+b .把(1,-1)代入,得(1+b 2+m )2-b 24-2+b =-1.(1+b 2+m )2=b 24-b +1.(1+b 2+m )2=(b2-1)2.所以1+b 2+m =±(b2-1).当1+b 2+m =b2-1时,m =-2(不合题意,舍去);当1+b 2+m =-(b2-1)时,m =-b . ………………10分因为m ≥-32,所以b ≤32.所以0<b ≤32. ………………11分所以平移后的抛物线解析式为y =(x -b 2)2-b 24-2+b .即顶点为(b 2,-b 24-2+b ). ………………12分设p =-b 24-2+b ,即p =-14 (b -2)2-1.因为-14<0,所以当b <2时,p 随b 的增大而增大.因为0<b ≤32,所以当b =32时,p 取最大值为-1716. ………………13分此时,平移后抛物线的顶点所能达到的最高点坐标为(34,-1716). ………………14分方法二:因为平移后A (1,-1)的对应点为A 1(1-m ,2b -1)可知,抛物线向左平移m 个单位长度,向上平移2b 个单位长度.y =(x +b 2)2-b 24+c ,即y =(x +b 2)2-b 24-2-b . 则平移后的抛物线解析式为y =(x +b 2+m )2-b 24-2-b +2b . ………………9分 即y =(x +b 2+m )2-b 24-2+b . 把(1,-1)代入,得(1+b 2+m )2-b 24-2+b =-1. 可得(m +2)(m +b )=0.所以m =-2(不合题意,舍去)或m =-b . ………………10分因为m ≥-32,所以b ≤32. 所以0<b ≤32. ………………11分 所以平移后的抛物线解析式为y =(x -b 2)2-b 24-2+b . 即顶点为(b 2,-b 24-2+b ). ………………12分 设p =-b 24-2+b ,即p =-14(b -2)2-1. 因为-14<0,所以当b <2时,p 随b 的增大而增大. 因为0<b ≤32, 所以当b =32时,p 取最大值为-1716. ………………13分 此时,平移后抛物线的顶点所能达到的最高点坐标为(34,-1716). ………………14分。
2018_2019学年(上)厦门市数学九年级质量检测
-b ± b 2-4ac 2ax 2018—2019 学年(上)厦门市九年级质量检测数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同.可参照评分量表的要求相应评分.一、选择题(本大题共 10 小题.每小题 4 分.共 40 分)二、填空题(本大题共 6 小题.每题 4 分.共 24 分)111.2.12. -1. 13.1. 14. 直角三角形是完全三角形;如:等腰直角三角形.或三边分别为 5,12,13 的三角形.或三边比为 5∶12∶13 的三角形等.2 16.b >3.三、解答题(本大题有 9 小题.共 86 分) 17.(本题满分 8 分)解:a =1.b =-3.c =1.△=b 2-4ac=5>0 ............................ 4 分 方程有两个不相等的实数根x =6 分 即x x 12,== ............ 8 分18. (本题满分 8 分)原式x +1-2 2x+2 =( x +1 )· 2-1 ........................ 2 分x -1 2(x +1)= · .................................... 5 分 x +1 = 2x +1(x+1)(x -1)……………………………6 分 当 x = 2-1 时.原式= 2= 2 ............................ 8 分2ElEFl19.(本题满分 8 分)解:因为当 x =2 时.y =2. 所以 (2−1)2 +n =2. 解得 n =1.所以二次函数的解析式为:y =(x −1)2 +1 .......... 4 分列表得:如图:.................... 8 分20.(本题满分 8 分)(1)(本小题满分 3 分) 解:如图.点 E 即为所求 ............... 3 分AD(2)(本小题满分 5 分)解法一:BC解:连接 EB .EC . 由(1)得.EB =EC . ∵ 四边形 ABCD 是矩形.∴ ∠A =∠D =90°.AB =DC .∴ △ABE ≌△DCE .................. 6 分∴ AE =ED 1 =2AD=3 ......................... 7 分 在 Rt△ABE 中.EB = AB 2+AE 2.∴ EB =5 ................. 8 分AD解法二:如图.设线段 BC 的中垂线 l 交 BC 于点 F .∴ ∠BFE =90°.BF 1.BC=2BC ∵ 四边形 ABCD 是矩形.∴ ∠A =∠ABF =90°.AD =BC .在四边形 ABFE 中.∠A =∠ABF =∠BFE =90°. ∴ 四边形 ABFE 是矩形 ................... 6 分 ∴ EF =AB =4 .................... 7 分 在 Rt△BFE 中.EB = EF 2+BF 2.∴ EB =5 ...................... 8 分21.(本题满分 8 分) 证明:如图.连接 OD .∵ AB 是直径且 AB =4. ∴ r =2. 设∠AOD =n °.∵ ︵ 4π AD 的长为 3 .∴nπr 4π180= 3 .解得 n =120 .即∠AOD =120° ........................... 3 分在⊙O 中.DO =AO . ∴ ∠A =∠ADO .∴ ∠A 1180°-∠AOD )= 30° ......................... 5 分=2( ∵ ∠C =60°.∴ ∠ABC =180°-∠A -∠C =90° ........................ 6 分 即 AB ⊥BC ............................ 7 分 又∵ AB 为直径.∴ BC 是⊙O 的切线 ........................... 8 分 22.(本题满分 10 分)解(1)(本小题满分 5 分)解法一:如图.过点 P 作 PF ⊥y 轴于 F . ∵ 点 P 到边 AD 的距离为 m .∴ PF =m 1∴ 点 P=4. 1…………………1 分的横坐标为4.由题得.C (1.1).可得直线 AC 的解析式为:y =x . ................. 3 分x 1 1当x =4时.y =4 . ...................... 4 分所以 P 1 1…………………5 分(4.4).FE解法二:如图.过点 P 作 PE ⊥x 轴于 E .作 PF ⊥y 轴于 F . ∵ 点 P 到边 AD .AB 的距离分别为 m .n . ∴ PE =n .PF =m . ∴ P (m .n ). ................ 1 分 ∵ 四边形 ABCD 是正方形.∴ AC 平分∠DAB . ................. 2 分 ∵ 点 P 在对角线 AC 上.∴ m =n 1…………………4 分=4. ∴ P 1 1(4.4). ......................... 5 分(2)(本小题满分 5 分)解法一:如图.以 A 为原点.以边 AB 所在直线为 x 轴.建立平面直角坐标系. 则由(1)得 P (m .n ).若点 P 在△DAB 的内部. 点 P 需满足的条件是:①在 x 轴上方.且在直线 BD 的下方; ②在 y 轴右侧.且在直线 BD 的左侧. 由①.设直线 BD 的解析式为:y =kx +b . 把点 B (1.0).D (0.1)分别代入.可得直线 BD 的解析式为:y =-x+1. ........... 6 分 当 x =m 时.y =-m+1. 由点 P 在直线 BD 的下方.可得 n <-m+1. .............. 7 分 由点 P 在 x 轴上方.可得 n >0 .............. 8 分即 0<n <-m+1. 同理.由②可得 0<m <-n+1. ................ 9 分 所以 m .n 需满足的条件是:0<n <-m+1 且 0<m <-n+1. .............. 10 分解法二:如图.过点 P 作 PE ⊥AB 轴于 E .作 PF ⊥AD 轴于 F . ∵ 点 P 到边 AD .AB 的距离分别为 m .n . ∴ PE =n .PF =m .1在正方形 ABCD 中.∠ADB =2∠ADC =45°.∠A =90°. ∴ ∠A =∠PEA =∠PFA =90°. ∴ 四边形 PEAF 为矩形.∴ PE =FA =n ........................ 6 分 若点 P 在△DAB 的内部.则延长 FP 交对角线 BD 于点 M .在 Rt△DFM 中.∠DMF =90°-∠FDM =45°. ∴ ∠DMF =∠FDM . ∴ DF =FM . ∵ PF <FM .FP · EM∴PE+ PF=FA+ PF<FA+ DF.即m+ n<1 ............................ 8 分又∵m>0. n>0.∴m.n 需满足的条件是m+n<1 且m>0 且n>0. ................ 10 分23.(本题满分 10 分)解:(1)(本小题满分2 分)估计运到的2000 公斤鱼中活鱼的总重量为1760 公斤.......... 2分(2)①(本小题满分 3 分)根据表二的销售记录可知.活鱼的售价每增加 1 元.其日销售量就减少 40 公斤.所以按此变化规律可以估计当活鱼的售价定为52.5 元/公斤时.日销售量为300 公斤................ 5 分②(本小题满分 5 分)解法一:由(2)①.若活鱼售价在 50 元/公斤的基础上.售价增加x 元/公斤.则可估计日销售量在400 公斤的基础上减少 40x 公斤.设批发店每日卖鱼的最大利润为w.由题得w=(50+x 2000×44-40x) ................... 7 分-1760 ) (400=-40x2+400x=-40(x-5)2+1000.由“在8 天内卖完这批活鱼”.可得8 (400-40x)≤1760.解得x≤4.5.根据实际意义.有 400-40x≥0;解得x≤10.所以x≤4.5........................ 9 分因为-40<0.所以当x<5 时.w 随x 的增大而增大.所以售价定为54.5 元/公斤.每日卖鱼可能达到的最大利润为990 元................ 10 分解法二:设这 8 天活鱼的售价为x 元/公斤.日销售量为y 公斤.根据活鱼的售价与日销售量之间的变化规律.不妨设y=kx+b.由表二可知.当x=50 时.y=400;当x=51 时.y=360.50k+b=400所以.51k+b=360k=-40解得.b=2400可得y=-40x+2400.设批发店每日卖鱼的最大利润为w.由题得w=(x 2000×44-40x+2400) .................... 7 分-) (1760=-40x2+4400x-120000AP 2+BP 2由“在 8 天内卖完这批活鱼”.可得 8 (-40x +2400)≤1760.解得 x ≤54.5.根据实际意义.有-40x +2400≥0;解得 x ≤60. 所以 x ≤54.5 ...................... 9 分因为-40<0.所以当 x <55 时.w 随 x 的增大而增大. 所以售价定为 54.5 元/公斤.每日卖鱼可能达到的最大利润为 990 元 ................ 10 分24.(本题满分 12 分) (1)(本小题满分 6 分) 解:连接 AB . 在⊙O 中. ∵ ∠APQ =∠BPQ =45°.∴ ∠APB =∠APQ +∠BPQ =90° .......... 1 分∴ AB 是⊙O 的直径 ................. 3 分∴ 在 Rt△APB 中.AB = ∴ AB =3 ...................... 5 分∴ ⊙O 3 的半径是2.………………6 分(2)(本小题满分 6 分) 解:AB ∥ON .证明:连接 OA .OB .OQ . 在⊙O 中.PQ︵ ︵ ︵ ︵ ∵ AQ =AQ .BQ =BQ .∴ ∠AOQ =2∠APQ .∠BOQ =2∠BPQ . 又∵ ∠APQ =∠BPQ .∴ ∠AOQ =∠BOQ ........................ 7 分 在△AOB 中.OA =OB .∠AOQ =∠BOQ .∴ OC ⊥AB .即∠OCA =90° ........................ 8 分 连接 OQ .交 AB 于点 C . 在⊙O 中.OP =OQ .∴ ∠OPN =∠OQP .延长 PO 交⊙O 于点 R .则有 2∠OPN =∠QOR . ∵ ∠NOP +2∠OPN =90°.又∵ ∠NOP +∠NOQ +∠QOR =180°.∴ ∠NOQ =90° ............................. 11 分 ∴ ∠NOQ +∠OCA =180°.∴ AB ∥ON .................................. 12 分. .y=2+p25.(本题满分 14 分) 4 l(1)①(本小题满分 3 分)3解:如图即为所求…………………………3 分②(本小题满分 4 分)解:由①可求得.直线 l :y1+2.抛物线 m :y 1 2+2 .......... 5 分 =2x =-4x因为点 Q 在抛物线 m 上.过点 Q 且与 x 轴垂直的直线与 l 交于点 H .所以可设点 Q 的坐标为(e 1 2+2).点 H 的坐标为(e 1+2).其中(-2≤e ≤0)..-4e 当-2≤e ≤0 时.点 Q 总在点 H 的正上方.可得. e d 1 2 1 =-4e +2-(2e +2) ......... 6 分 1 2 1 =-4e -2e 1 2 1 =- (e +1) + . 4 4 1 因为-4<0.所以当 d 随 e 的增大而增大时.e 的取值范围是-2≤e ≤-1 .......... 7 分(2)(本小题满分 7 分)解法一: 因为 B (p .q ).C (p +4.q )在抛物线 m 上.所以抛物线 m 的对称轴为 x =p +2.又因为抛物线 m 与 x 轴只有一个交点. 可设顶点 N (p +2.0).设抛物线的解析式为 y =a (x -p -2)2. 当 x =0 时.y F =a (p+2)2.可得 F (0.a (p+2)2). ....................... 9 分 把 B (p .q )代入 y =a (x -p -2)2.可得 q =a (p -p -2)2. 化简可得 q =4a ①. 设直线 l 的解析式为 y =kx +2. 分别把 B (p .q ).N (p +2.0)代入 y =kx +2.可得 q =kp +2 ②.及 0=k (p +2)+2 ③ .由①.②.③可得 a 1 .所以 F (0.p +2). 又因为 N (p +2.0). ................ 13 分 所以 ON=OF .且∠NOF =90°.所以△NOF 为等腰直角三角形. ............. 14 分. .解法二:因为直线过点A(0.2).不妨设线l:y=kx+2.因为B(p.q).C(p+4.q)在抛物线m 上.所以抛物线m 的对称轴为x=p+2.又因为抛物线的顶点N 在直线l:y=kx+2 上.可得N(p+2.k(p+2)+2).所以抛物线m:y=a (x-p-2)2+k(p+2)+2.当x=0 时.y=a(p+2)2+k(p+2)+2.即点F 的坐标是(0.a(p+2)2+k(p+2)+2)............... 9 分因为直线l.抛物线m 经过点B(p.q).可得kp+2=q.4a+k(p+2)+2=q可得k=-2a.因为抛物线m 与x 轴有唯一交点.可知关于x 的方程kx+2=a (x-p-2)2+k(p+2)+2 中.△=0.结合k=-2a.可得k(p+2)=-2.可得N(p+2.0).F(0. p+2).................... 13 分所以ON=OF.且∠NOF=90°.所以△NOF 是等腰直角三角形 .................. 14 分. .。
2018年初中数学联赛试题及答案
2018年初中数学联赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分42分,每小题7分)1.设二次函数2222a ax x y ++=的图象的顶点为A ,与x 轴的交点为C B ,.当△ABC 为等边三角形时,其边长为 ( )A.6.B.22.C.32.D.23. 【答】C.由题设知)2,(2a a A --.设)0,(1x B ,)0,(2x C ,二次函数的图象的对称轴与x 轴的交点为D ,则222212212122444)(||a a a x x x x x x BC =⨯-=-+=-=.又BC AD 23=,则22223|2|a a ⋅=-,解得62=a 或02=a (舍去).所以,△ABC 的边长3222==a BC .2.如图,在矩形ABCD 中,BAD ∠的平分线交BD 于点E ,1AB =,15CAE ∠=︒,则BE =( ). B.22. C.12-.1.【答】D.延长AE 交BC 于点F ,过点E 作BC 的垂线,垂足为H .由已知得︒=∠=∠=∠=∠45HEF AFB FAD BAF ,1==AB BF , ︒=∠=∠30ACB EBH .设x BE =,则2xHE HF ==,23x BH =. 因为HF BH BF +=,所以2231xx +=,解得13-=x .所以 13-=BE .3.设q p ,均为大于3的素数,则使2245q pq p ++为完全平方数的素数对),(q p 的个数为( ) A.1. B.2. C.3. D.4.【答】B.设22245m q pq p =++(m 为自然数),则22)2(m pq q p =++,即pq q p m q p m =++--)2)(2(.由于q p ,为素数,且q q p m p q p m >++>++2,2,所以21m p q --=,2m p q pq ++=,从而0142=---q p pq ,即9)2)(4(=--q p ,所以(,)(5,11)p q =或(7,5).所以,满足条件的素数对),(q p 的个数为2.4.若实数b a ,满足2=-b a ,4)1()1(22=+--ab b a ,则=-55b a ( )A.46.B.64.C.82.D.128. 【答】C.由条件4)1()1(22=+--ab b a 得04223322=-+----b a ab b a b a ,即 0]3))[((]4)[(2)(22=+--++---ab b a b a ab b a b a ,又2=-b a ,所以0]34[2]44[22=+++-ab ab ,解得1=ab .所以222()26a b a b ab +=-+=,332()[()3]14a b a b a b ab -=--+=,82)())((22332255=---+=-b a b a b a b a b a .5.对任意的整数y x ,,定义xy y x y x -+=@,则使得(@)@(@)@x y z y z x +(@)@z x y +0=的整数组),,(z y x 的个数为 ( )A.1.B.2.C.3.D.4.【答】D.z xy y x z xy y x z xy y x z y x )()(@)(@)@(-+-+-+=-+=xyz zx yz xy z y x +---++=,由对称性,同样可得xyz zx yz xy z y x x z y +---++=@)@(,xyz zx yz xy z y x y x z +---++=@)@(.所以,由已知可得 0=+---++xyz zx yz xy z y x ,即1)1)(1)(1(-=---z y x . 所以,z y x ,,为整数时,只能有以下几种情况:⎪⎩⎪⎨⎧-=-=-=-,11,11,11z y x 或⎪⎩⎪⎨⎧=--=-=-,11,11,11z y x 或⎪⎩⎪⎨⎧=-=--=-,11,11,11z y x 或⎪⎩⎪⎨⎧-=--=--=-,11,11,11z y x 所以,)0,2,2(),,(=z y x 或)2,0,2(或)2,2,0(或)0,0,0(,故共有4个符合要求的整数组.6.设20501202012019120181++++=M ,则M1的整数部分是 ( ) A.60. B.61. C.62. D.63.【答】B.因为3320181⨯<M ,所以335613320181=>M . 又)205012032120311()203012019120181(+++++++= M83230134520205011320301=⨯+⨯>, 所以13451185611345832301=<M ,故M1的整数部分为61.二、填空题:(本题满分28分,每小题7分)1.如图,在平行四边形ABCD 中,AB BC 2=,AB CE ⊥于E ,F 为AD 的中点,若︒=∠48AEF ,则=∠B _______.【答】84︒. 设BC 的中点为G ,连结FG 交CE 于H ,由题设条件知FGCD 为菱形. 由DC FG AB ////及F 为AD 的中点,知H 为CE 的中点. 又AB CE ⊥,所以FG CE ⊥,所以FH 垂直平分CE ,故 ︒=∠=∠=∠=∠48AEF EFG GFC DFC . 所以︒=︒⨯-︒=∠=∠84482180FGC B .2.若实数y x ,满足2154133=+++)(y x y x ,则y x +的最大值为 . 【答】3.由2154133=+++)(y x y x 可得22115()()()42x y x xy y x y +-+++=,即 22115()()42x y x xy y +-++=. ①令k y x =+,注意到2222131()04244y x xy y x y -++=-++>,故0>=+k y x .又因为22211()344x xy y x y xy -++=+-+,故由①式可得3115342k xyk k -+=,所以kk k xy 3215413-+=. 于是,y x ,可看作关于t 的一元二次方程032154132=-++-kk k kt t 的两根,所以 3211542()403k k k k+-∆=--⋅≥, 化简得 0303≤-+k k ,即0)103)(3(2≤++-k k k ,所以30≤<k . 故y x +的最大值为3.B3.没有重复数字且不为5的倍数的五位数的个数为 . 【答】21504.显然首位数字不能为0,末位不能为0和5.当首位数字不为5时,则首位只能选0,5之外的8个数.相应地个位数只能选除0,5及万位数之外的7个数,千位上只能选万位和个位之外的8个数,百位上只能选剩下的7个数,十位上只能选剩下的6个数.所以,此时满足条件的五位数的个数为1881667878=⨯⨯⨯⨯个.当首位数字为5时,则个位有8个数可选,依次千位有8个数可选,百位有7个数可选, 十位有6个数可选.所以,此时满足条件的五位数的个数为26886788=⨯⨯⨯个.所以,满足条件的五位数的个数为21504268818816=+(个).4.已知实数c b a ,,满足0a b c ++=,2221a b c ++=,则=++abcc b a 555 .【答】52. 由已知条件可得21)]()[(212222-=++-++=++c b a c b a ca bc ab ,abc c b a 3333=++,所以 555c b a ++)]()()([))((332332332333222b a c c a b c b a c b a c b a +++++-++++= 2222223[()()()]abc a b a b a c a c b c b c =-+++++)(3222222a c b b c a c b a abc +++=abc abc abc ca bc ab abc abc 25213)(3=-=+++=.所以 25555=++abc c b a .第一试(B)一、选择题:(本题满分42分,每小题7分) 1.满足1)1(22=-++x x x 的整数x 的个数为 ( )A.1.B.2.C.3.D.4. 【答】C.当02=+x 且012≠-+x x 时,2-=x . 当112=-+x x 时,2-=x 或1=x . 当112-=-+x x 且2+x 为偶数时,0=x . 所以,满足条件的整数x 有3个.2.已知123123,,()x x x x x x <<为关于x 的方程323(2)0x x a x a -++-=的三个实数根,则22211234x x x x -++= ( )A.5.B.6.C.7.D.8.【答】A.方程即0)2)(1(2=+--a x x x ,它的一个实数根为1,另外两个实数根之和为2,其中必有一根小于1,另一根大于1,于是2,1312=+=x x x ,故2221123313113114()()412()41x x x x x x x x x x x x -++=+-++=-++312()15x x =++=.3.已知点E ,F 分别在正方形ABCD 的边CD ,AD 上,CE CD 4=,FBC EFB ∠=∠,则 =∠ABF tan ( )A.21. B.53. C.22. D.23. 【答】B.不妨设4=CD ,则3,1==DE CE .设x DF =,则x AF -=4,92+=x EF .作EF BH ⊥于点H .因为AFB FBC EFB ∠=∠=∠,BHF BAF ∠=︒=∠90,BF 公共,所以△BAF ≌△BHF ,所以4==BA BH .由BCE DEF BEF ABF ABCD S S S S S ∆∆∆∆+++=四边形得14213219421)4(421422⋅⋅+⋅⋅++⋅⋅+-⋅⋅=x x x , 解得58=x .所以5124=-=x AF ,53tan ==∠AB AF ABF .4.=( )A.0.B.1.C.2.D.3.【答】B.令y =0y ≥,且29x y =-=1y =或6y =,从而可得8x =-或27x =.检验可知:8x =-是增根,舍去;27x =是原方程的实数根. 所以,原方程只有1个实数根.5.设c b a ,,为三个实数,它们中任何一个数加上其余两数之积的2017倍都等于2018,则这样的三元数组),,(c b a 的个数为 ( )A.4.B.5.C.6.D.7. 【答】B.由已知得, 20182017=+bc a ,20182017=+ac b ,20182017=+ab c ,两两作差,可得0)20171)((=--c b a ,0)20171)((=--a c b ,0)20171)((=--b a c .E由0)20171)((=--c b a ,可得 b a =或20171=c . (1)当c b a ==时,有020*******=-+a a ,解得1=a 或20172018-=a . (2)当c b a ≠=时,解得20171==b a , 201712018-=c . (3)当b a ≠时,20171=c ,此时有:201712018,20171-==b a ,或20171,201712018=-=b a . 故这样的三元数组),,(c b a 共有5个.6.已知实数b a ,满足15323=+-a a a ,55323=+-b b b ,则=+b a ( ) A.2. B.3. C.4. D.5.【答】A.有已知条件可得 2)1(2)1(3-=-+-a a ,2)1(2)1(3=-+-b b ,两式相加得33(1)2(1)(1)2(1)0a a b b -+-+-+-=,因式分解得22(2)[(1)(1)(1)(1)2]0a b a a b b +-----+-+=. 因为02)1(43)]1(21)1[(2)1()1)(1()1(2222>+-+---=+-+----b b a b b a a , 所以 02=-+b a ,因此 2=+b a .二、填空题:(本题满分28分,每小题7分)1.已知r q p ,,为素数,且pqr 整除1-++rp qr pq ,则=++r q p _______. 【答】10. 设11111pq qr rp k pqr p q r pqr++-==++-,由题意知k 是正整数,又2,,≥r q p ,所以23<k ,从而1=k ,即有pqr rp qr pq =-++1,于是可知r q p ,,互不相等.当r q p <<≤2时, qr rp qr pq pqr 31<-++=,所以3<q ,故2=q .于是222qr qr q r =++1-,故3)2)(2(=--r q ,所以32,12=-=-r q ,即5,3==r q ,所以,)5,3,2(),,(=r q p .再由r q p ,,的对称性知,所有可能的数组(,,)p q r 共有6组,即(2,3,5),)3,5,2(,)5,2,3(,)2,5,3(,)3,2,5(,)2,3,5(.于是10=++r q p .2.已知两个正整数的和比它们的积小1000,若其中较大的数是完全平方数,则较小的数为 . 【答】8.设这两个数为)(,22n m n m >,则 100022-=+n m n m ,即2(1)(1)1001m n --=.又100110011143791117713=⨯=⨯=⨯=⨯,所以 2(1,1)m n --=(1001,1)或(143,7)或(91,11)或(77,13),验证可知只有)7,143()1,1(2=--n m 满足条件,此时8,1442==n m .3.已知D 是△ABC 内一点,E 是AC 的中点,6AB =,10BC =,BCD BAD ∠=∠,ABD EDC ∠=∠,则=DE .【答】4.延长CD 至F ,使DC DF =,则AF DE //且AF DE 21=,所以ABD EDC AFD ∠=∠=∠,故D B F A ,,,四点共圆,于是BCD BAD BFD ∠=∠=∠,所以10==BC BF ,且FC BD ⊥,故90FAB FDB ∠=∠=︒.又6=AB ,故861022=-=AF ,所以421==AF DE .4.已知二次函数)504()12(2222++++++=n m x n m x y 的图象在x 轴的上方,则满足条件的正整数对),(n m 的个数为 .【答】15.因为二次函数的图象在x 轴的上方,所以0)504(4)]12(2[222<++-++=∆n m n m ,整理得49424<++n m mn ,即251)12)(1(<++n m .因为n m ,为正整数,所以25)12)(1(≤++n m . 又21≥+m ,所以22512<+n ,故5≤n . 当1=n 时,3251≤+m ,故322≤m ,符合条件的正整数对),(n m 有7个;当2=n 时,51≤+m ,故4≤m ,符合条件的正整数对),(n m 有4个;当3=n 时,7251≤+m ,故718≤m ,符合条件的正整数对),(n m 有2个; 当4=n 时,9251≤+m ,故917≤m ,符合条件的正整数对),(n m 有1个;当5=n 时,11251≤+m ,故1114≤m ,符合条件的正整数对),(n m 有1个.综合可知:符合条件的正整数对),(n m 有7+4+2+1+1=15个.第二试 (A )一、(本题满分20分)设d c b a ,,,为四个不同的实数,若b a ,为方程011102=--d cx x 的根,d c ,为方程011102=--b ax x 的根,求d c b a +++的值.解 由韦达定理得10a b c +=,10c d a +=,两式相加得)(10c a d c b a +=+++.……………………5分因为a 是方程011102=--d cx x 的根,所以011102=--d ac a ,又c a d -=10,所以010111102=-+-ac c a a . ① ……………………10分类似可得 010111102=-+-ac a c c . ② ……………………15分 ①-②得 0)121)((=-+-c a c a .因为c a ≠,所以121=+c a ,所以1210)(10=+=+++c a d c b a . ……………………20分二、(本题满分25分)如图,在扇形OAB 中,︒=∠90AOB ,12=OA ,点C 在OA 上,4=AC ,点D 为OB 的中点,点E 为弧AB 上的动点,OE 与CD 的交点为F .(1)当四边形ODEC 的面积S 最大时,求EF ;(2)求DE CE 2+的最小值.解 (1)分别过E O ,作CD 的垂线,垂足为N M ,. 由8,6==OC OD ,得10=CD .所以)(21EN OM CD S S S ECD OCD +⋅=+=∆∆ 6012102121=⨯⨯=⋅≤OE CD , ……………………5分 当DC OE ⊥时,S 取得最大值60.此时,536108612=⨯-=-=OF OE EF . ……………………10分 (2)延长OB 至点G ,使12==OB BG ,连结GE GC ,. 因为21==OG OE OE OD ,EOG DOE ∠=∠,所以△ODE ∽△OEG ,所以21=EG DE ,故DE EG 2=.……………………20分所以108824222=+=≥+=+CG EG CE DE CE ,当G E C ,,三点共线时等号成立.故DE CE 2+的最小值为108. ……………………25分C三、(本题满分25分)求所有的正整数n m ,,使得22233)(n m n m n m +-+是非负整数.解 记22233)(n m n m n m S +-+=,则22222)(3)()(]3))[((nm mn n m mn n m n m n m mn n m n m S +-+-+=+--++=. 因为n m ,为正整数,故可令pqn m mn =+,q p ,为正整数,且1),(=q p . 于是 22223)(3)(pq pq n m p q p q n m S +-+=--+=.因为S 为非负整数,所以2|q p ,又1),(=q p ,故1=p ,即mn n m |)(+. ①……………………10分所以nm mn n n m n +-=+2是整数,所以2|)(n n m +,故n m n +≥2,即n m n ≥-2. 又由0≥S ,知02233≥-+n m n m . ② 所以n m m n m m n m n 2223223)(≥-=-≥,所以m n ≥.由对称性,同理可得n m ≥,故n m =. ……………………20分 把n m =代入①,得m |2,则2≥m .把n m =代入②,得0243≥-m m ,即2≤m . 故2=m .所以,满足条件的正整数n m ,为2=m ,2=n . ……………………25分第二试 (B )一、(本题满分20分)若实数c b a ,,满足59)515151)((=-++-++-+++b a c a c b c b a c b a ,求)111)((cb ac b a ++++的值.解 记x c b a =++,y ca bc ab =++,z abc =,则)616161()515151)((cx b x a x x b a c a c b c b a c b a -+-+-=-++-++-+++abc x ca bc ab x c b a x ca bc ab x c b a x x 216)(36)(6)](36)(123[232-+++++-+++++-=23(936)536216x x y x xy z-+=-+-, ……………………10分结合已知条件可得23(936)95362165x x y x xy z -+=-+-,整理得z xy 227=.所以 227)111)((==++++z xy c b a c b a . ……………………20分二、(本题满分25分)如图,点E 在四边形ABCD 的边AB 上,△ABC 和△CDE 都是等腰直角三角形,AC AB =,DC DE =.(1)证明:BC AD //;(2)设AC 与DE 交于点P ,如果︒=∠30ACE ,求PEDP. 解 (1)由题意知45ACB DCE ∠=∠=︒,BC =,EC =,所以DCA ECB ∠=∠,AC DCBC EC=,所以△ADC ∽△BEC ,故DAC ∠= 45EBC ∠=︒,所以ACB DAC ∠=∠,所以BC AD //.……………………10分(2)设x AE =,因为︒=∠30ACE ,可得x AC 3=,2CE x =,DE DC ==.因为90EAP CDP ∠=∠=︒,EPA CPD ∠=∠,所以△APE ∽△DPC ,故可得DPC APE S S ∆∆=21. ……………………15分 又223x S S S ACE APE EPC ==+∆∆∆,2x S S S CDE DPC EPC ==+∆∆∆,于是可得 2)32(x S DPC -=∆,2)13(x S EPC -=∆. ……………………20分所以2131332-=--==∆∆EPC DPC S S PE DP . ……………………25分 三、(本题满分25分)设x 是一个四位数,x 的各位数字之和为m ,1+x 的各位数字之和为n ,并且m 与n 的最大公约数是一个大于2的素数.求x .解 设abcd x =,由题设知m 与n 的最大公约数),(n m 为大于2的素数.若9≠d ,则1+=m n ,所以(,)1m n =,矛盾,故9=d . ……………………5分 若9≠c ,则891-=-+=m m n ,故(,)(,8)m n m =,它不可能是大于2的素数,矛盾,故9=c .……………………10分若9=b ,显然9≠a ,所以269991-=---+=m m n ,故(,)(,26)13m n m ==,但此时可得13≥n ,363926>≥+=n m ,矛盾. ……………………15分若9≠b ,则17991-=--+=m m n ,故(,)m n (,17)17m ==,只可能34,17==m n . ……………………20分 于是可得8899=x 或9799. ……………………25分。
2018年福建省中考数学试题及答案(A卷)
2018年福建省中考数学试题及答案(A卷)6C.60" 1).8(⼫10. U 紂关⼋的尤⼆次//?(<>令I ),+ 2肛? (? >1 )⼆0 伽个相專的实数根■下列⽹斯正绳的⾜A 1 ?⾜不⾜关九的⽅程⼋H 的恨B.0 ⼀定不是关l x 的y/Wr>加+ "0的根C I fil-1祁是X F X 的⽅桎? ? bx …0的IHI )I 和⼀I 不都是关丁?■的⽅粹,? In ? ”“的根数学(A)试题⼀?选择越:本題共W ⼩超?毎⼩理4分■共40分?在每⼩题给岀的四个选项中?只有⼀项是符合题⽬要求的. I.在实8U-3|.?2.O E 中?嚴⼩的数绘 B. -2 I). 7T 2.篥⼏何体的:觇图如国所⽰?则诙⼏何体⼼ A. MttC.⽒⽅体3.⼘?列制I 数中?能作为⼀个三fflJB 三边边长的定俯视图 C.2.3.44.⼘施边形的内⾓和为360。
?則n ⽢T 1).6 5?如亂等边V ⾓形AM :中.讥处?垂⾜为〃?点E 住线段M)h. £AW ;=45°.W ⼄等⼲B. 30。
C.45° 1).60° 6.段押曲枚质地旳匀的散i ?骰『的六个⾎I ?分别刘仆1到6的点数?则⼘列爭卄为融机⼬件的⾜ A.两枚骰⼦向1?-?⽽的点数之和⼤于I b. ⽹枚骰尹向I ⾯的点数之和等r Ic. 两枚in ⼦向I : ?⾯的点数之和⼤F 12l>. (W 枚骰尹向上仙的点数之和零于12 7.已知刚⽫卄3?则以下对m 的估◎⽌确的是 \. 2 < w < 3 II. 3 < m < 4 C. 4 < ni < 5 I). 5 < m < 6&找Fl 古?代数学著作(增删( .、记载?绳索址¥⼴问题:-条竿⼦⽷索?索⽐V rK 托?折回索⼦却城竿?却⽐竿⼦知⼀托⼴兀⼤怠从现有根节和■条滝尿川涌斎上朮¥?縄索⽐竿尺5尺⾎陳将绳索村半折后⾋去械竿?就⽐竿俎5尺.尺?竿长)尺?则符的⽅程纽址第II 卷⼆填空题:本题共6⼩题,毎⼩题J分?共24分.⼭计妹:俘⼘2 ___________ ?12. M X种您品所律的知it備分别为J20J34?120?119?126」20?118.124?则这细数据的众数为______ ?13. 如图⾎△椒:中?⼄ACB=90°NB=6.D是4〃的中点■則..a ?的解集为_ ?—2 >015?把两个屈样⼈⼩的仟45⾓的油尺按如图所⽰的⽅式放冷?其中⼀个淌尺的税⾓顶点⽿刃?个的rtft 151点重介TA/1JDJ 7个悦⾓顶点H.C.Dfy同 F 缄h 若-1?=J2 t wiJ ro=16. a(ll¥l?f 诙」—/n 与d 曲线⼚丄Hl 交^A.IiM.IM://x UllJCZS 轴?则△仙:⾯枳的最⼩值为三岸答趣:本题共9⼩臥共恥分?離答应写出⽂宇说明、证明过稈或演算步骤. 门?(肚⼩也满分"分)IK.(本⼩题橋分8分)如图.⼝磁〃的席⾓线AC^UD相交F点O上P过点O IL与AD/C分别郴交TZU J.求叫Mi”:19?(⾐⼩题膺分8分)化化简?⼭求仏(如巴"⼘〃“疗,?\ m / m20. (4-⼩题摘分8分)求证?郴似三也形对炖边上的中线之⽐写FHI似⽐.耍求:J银掩绘出的△磁及线段?IJT.⼄"{ Z..V-⼄」)?以钱我为⼀边?⾂给出的国形上⽤尺规作出ZUWC.使ffAATTCSAMC?不骂柞法,保0作2农已有的国旬上內出⼀组对■应⼬线■并据此坊出已知、求证杓任明过牌.21. (1-⼩題满分X分)如图■在IUZM3C中.Z.C=90°Jfl= IO,4C=&线段W由线段\B烧点A按逆时针⽅向⿅转90。
2018年厦门初三质检数学试卷+答案
………………1 分
又因为 b-c=4,可得 b=1,c=-3.
………………3 分
(2)(本小题满分 4 分)
解:由 b+c=-2,得 c=-2-b.
对于 y=x2+bx+c,
当 x=0 时,y=c=-2-b.
抛物线的对称轴为直线 x=-b2.
所以 B(0,-2-b),C(-b2,0). 因为 b>0,
由平移前的抛物线 y=x2+bx+c,可得
y=(x+b2)2-b42+c,即 y=(x+b2)2-b42-2-b.
因为平移后 A(1,-1)的对应点为 A1(1-m,2b-1) 可知,抛物线向左平移 m 个单位长度,向上平移 2b 个单位长度.
则平移后的抛物线解析式为 y=(x+b2+m)2-b42-2-b+2b.
解:如图 4,把 C(a,a+2)代入 y=2x+1,可得 a=1. ……………… 6 分
则点 C 的坐标为(1,3).
x C
∵ AC=CD=CE,
yD
又∵ 点 D 在直线 AC 上,
y
∴ 点 E 在以线段 AD 为直径的圆上.
B
∴ ∠DEA=90°.
……………… 8 分
过点 C 作 CF⊥x 轴于点 F,
(1)(本小题满分 5 分) 解:如图 5,∵ AB 是半圆 O 的直径,
M N
∴ ∠M=90°.
………………1 分
在 Rt△AMB 中,AB= MA2+MB2 ………………2 分
∴ AB=10.
∴ OB=5.
………………3 分
A
O
B
图5
∵ OB=ON,
又∵ ∠NOB=60°,
∴ △NOB 是等边三角形.
………………9 分
2018年初中数学联赛试题及答案详解
2018年初中数学联赛试题及答案详解说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第 二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答 不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相 应的分数.第一试(A)一、选择题:(本题满分42分,每小题7分)1.设二次函数2222a y x ax =++的图象的顶点为A ,与x 轴的交点为B ,C .当ABC △为等边三角形时,其边长为()A ..D . 【答】C.由题设知2(,)2a A a --,设(,0),(,0)B x C x ,二次函数的图象的对称轴与x 轴的交点为D ,则12||BC x x =-==又AD =,则2||2a -=26a =或20a =(舍去)所以△ABC 的边长BC ==. 2.如图,在矩形ABCD 中,BAD ∠的平分线交BD 于点E ,115AB CAE =∠=︒,,则BE =()A B C 1D 1 【答】D.延长AE 交BC 于点F ,过点E 作BC 的垂线,垂足为H .由已知得∠BAF = ∠F AD = ∠AFB = ∠HEF =45︒,BF =AB =1,∠EBH = ∠ACB =30︒.设BE =x ,则HF =HE =2x,BH =.因为BF=BH+HF ,所以12x=+,解得1BE x =. 3.设p q ,均为大于3的素数,则使2254p pq q ++为完全平方数的素数对(p ,q )的个数为()A .1B .2C .3D .4 答案:B设22254p pq q m ++=(m 为自然数),则22(2)p q pq m ++=,即(2)(2)m p q m p p pq --++= 由于p ,q 为素数,且2,2m q p p m q p q ++>++>,所以21m q p --=,2m q p pq ++=,从而2410pq p p ---=,即(4)(2)9p q --=,所以(p ,q )=(5,11)或(7,5).所以,满足条件的素数对(p ,q )的个数为2. 4.若实数a ,b 满足2a b -=,()()22114a b ba-+-=,则55a b -=()A .46B .64C .82D .128【答】C.由条件()()22114a b ba-+-=得22332240a b a b ab a b ----+-=,即22()2[()4]()[()3]0a b a b ab a b a b ab ---++--+=又2a b -=,所以22[44]2[43]0ab ab -+++=,解得1ab =,所以222()26a b a b ab +=-+=33255223322()[()3]14,()()()82a b a b a b ab a b a b a b a b a b -=--+=-=+---=. 5.对任意的整数x ,y ,定义@x y x y xy =+-,则使得()()@@@@x y z y z x ++()@@0z x y =的整数组(x ,y ,z )的个数为() A .1B .2C .3D .4 答案:D()()()(@@@)x y z x y xy z x y xy z x y xy z x y z xy yz zx xyz =+-=+-+-+-=++---+,由对称性,同样可得()()@@@@.y z x x y z xy yz zx xyz z x y x y z xy yz zx xyz =++---+=++---+,所以,由已知可得0111 1.()()()x y z xy yz zx xyz x y z ++---+=---=-,即所以,x,y,z 为整数时,只能有以下几种情况: 111111x y z -=⎧⎪-=⎨⎪-=-⎩,或111111x y z -=⎧⎪-=-⎨⎪-=⎩,或111111x y z -=-⎧⎪-=⎨⎪-=⎩或111111x y z -=-⎧⎪-=-⎨⎪-=-⎩所以,(x ,y ,z )=(2,2,0)或(2,0,2)或(0,2,2)或(0,0,0),故共有4个符合要求的整数组. 6.设11112018201920202050M =++++,则1M的整数部分是() A .60B .61C .62D .63 答案:B 因为1120185336120183333M M <⨯⇒>= 又111111()()201820192030203120322050M =+++++++11134513202030205083230>⨯+⨯=所以18323011856113451345M <=,故的整数部分为61.二、填空题:(本题满分28分,每小题7分)7.如图,在平行四边形ABCD 中,2BC AB CE AB =⊥,于E ,F 为AD 的中点,若AEF ∠48=︒,则B ∠=. 【答】84°.设BC 的中点为G ,连结FG 交CE 于H ,由题设条件知FGCD 为菱形由AB ∥FG ∥DC 及F 为AD 的中点,知H 为CE 的中点. 又CE ⊥AB ,所以CE ⊥FG ,所以FH 垂直平分CE ,故∠DF =∠GFC =∠EFG =∠AEF =48°.所以∠B =∠FGC =180248=84-⋅8.若实数x y ,满足()3311542x y x y +++=,则x y +的最大值为.【答】3.由3115()42x y x y 3+++=可得22115()()()42x y x xy y x y +-+++=,即22115()()42x y x xy y +-++=令x y k +=,注意到2222131()04244y x xy y x y -++=-++>,故0x y k +=>又因为22211()344x xy y x y xy -++=+-+,故由①式可得3115342k xyk k -+=,所以3115423k k xy k+==于是,x ,y 可看作关于t 的一元二次方程321154203k k t kt k+=-+=的两根,所以 化简得3211542()403k k k k+=∆=--⋅≥,化简得3300k k +-≤,即2(3)(310)003k k k k -++≤⇒<≤ 故x + y 的最大值为3.思路:从目标出发,判别式法,因式分解 9.没有重复数字且不为5的倍数的五位数的个数为.【答】21504.显然首位数字不能为0,末位不能为0和5.当首位数字不为5时,则首位只能选0,5之外的8个数.相应地个位数只能选除0,5及万位数之外的7个数,千位上只能选万位和个位之外的8个数,百位上只能选剩下的7个数,十位上只能选剩下的6个数.所以,此时满足条件的五位数的个数为87876⨯⨯⨯⨯=18816个.当首位数字为5时,则个位有8个数可选,依次千位有8个数可选,百位有7个数可选,十位有6个数可选.所以,此时满足条件的五位数的个数为8876⨯⨯⨯=2688个.所以,满足条件的五位数的个数为18816+2688=21504(个).10. 已知实数a b c ,,满足0a b c ++=,2221a b c ++=,则555a b c abc++=.答案:52由已知条件可得222233311[()()],322ab bc ac a b c a b c a b c abc ++=++-++=-++=,所以555222333233233233()()[()()()]a b c a b c a b c a b c b a c c a b ++=++++-+++++ 2222222222223[()()()]3()abc a b a b a c a c b c b c abc a b c a c b b c a =-+++++=+++3()abc abc ab bc ca =+++.所以55552a b c abc ++=第一试(B)一、选择题:(本题满分42分,每小题7分) 1.满足()2211x x x ++-=的整数x 的个数为()A .1B .2C .3D .4 答案:C当20x +=且210x x +-≠时,2x =- 当211x x +-=时,2x =-或1x = 当211x x +-=-且2x +为偶数时0x = 所以,满足条件的整数x 有3个 2.已知123x x x ,,(123x x x <<)为关于x 的方程()32320x x a x a -++-=的三个实数根,则22211234x x x x -++=()A .5B .6C .7D .8解析:方程即2(1)(2)0x x x a --+=,它的一个实数根为1,另外两个实数根之和为2,其中必有一根小于1,另一根大于1,于是2131,2x x x =+=,故222112331311314()()412()15x x x x x x x x x x x -++=+-++=++=3. 已知点E F ,分别在正方形ABCD 的边CD ,AD 上,4CD CE EFB FBC =∠=∠,,则t an ABF ∠=()A .12B .35C D 解析:不妨设4CD =,则1,3CE DE ==设DF x =,则4,AF x EF =-作BH EF ⊥与点H ,因为,90,EFB FBC AFB BAF BHF BF ∠=∠=∠∠==∠公共,所以BAF BHF ∆≅∆,所以4BH BA ==由ABF BEF DEF BCE ABCD S S S S S ∆∆∆∆=+++四边形得2111144(4)43412222x x =⋅⋅-+⋅⋅⋅+⋅⋅,解得85x =所以1245AF x =-=,3tan 5AF ABF AB ∠==.4.=()A .0B .1C .2D .3解析:令y =0y ≥,且29x y =- 解得1,6y or y ==,从而8x =-或27x =检验可知:8x =-是增根,舍去;27x =是原方程的实数根. 所以,原方程只有1个实数根.5.设a ,b ,c 为三个实数,它们中任何一个数加上其余两数之积的2017倍都等于2018,则这样的三元数组(a ,b ,c )的个数为() A .4B .5C .6D .7解析:由已知得,201720182017201820172018a bc b ac c ab +=+=+=,,,两两作差,可得12017012()()()(0170120170)(.)()a b c b c a c a b --=--=--=,,由120()()170a b c --=,可得1,2017a b or c ==(1)当a b c ==时,有2201720180a a +-=,解得a =1,或20182017a =-(2)当a b c =≠时,解得12017a b ==,120182017c =- (3)当a b ≠时,12017c =,此时有:12017a =,120182017b =-,或120182017a =-,12017b = 故这样的三元数组(a ,b ,c )共有5个. 6.已知实数a ,b 满足3232351355a a a b b b -+=-+=,,则a b +=()A .2B .3C .4D .5【答】A.有已知条件可得331212()()()(1212)a a b b -+-=--+-=,,两式相加得33121121()()()()0a a b b -+-+-+-=,因式分解得22211()[()()()2()11]0a b a a b b +-----+-+=因为2222()()()()[13111121(1)(1)4(202)a a b b a b b ----+-+=---+-+>所以20a b +-=,因此2a b +=.二、填空题:(本题满分28分,每小题7分) 7.已知p q r ,,为素数,且pqr 整除1pq qr rp ++-,则p q r ++=.【答】10. 设11111pq qr rp k pqr p q r pqr ++-==++-,由题意知k 是正整数,又,,2p q r ≥,所以32k <而1k =,即有1pq qr rp pqr ++-=,于是可知,,p q r 互不相等. 当2p q r ≤<<时,13pqr pq qr rp qr =++-<,所以3q <,故2q =. 于是2221qr qr q r =++-故2)23()(q r --=,所以21,23q r -=-=,即3,5q r ==,所以,()(),,2,3,5p q r =. 再由 ,,p q r 的对称性知,所有可能的数组( ,,p q r )共有6组,即()()()()()() 2,3,5?2,5,33,2,53,5,25,2,35,3,2.,,,,, 于是10p q r ++=. 8.已知两个正整数的和比它们的积小1000,若其中较大的数是完全平方数,则较小的数为.【答】8.设这两个数为22),(m n m n >,则221000m n m n +=-,即2()110(101)m n --= 又100110011143791117713=⨯=⨯=⨯=⨯,所以()21,1()1001,1m n --=或(143,7)或 (91,11)(77,13),验证可知只有()21,(1143,)7m n --=满足条件,此时2144,8m n ==. .9.已知D 是ABC △内一点,E 是AC 的中点,610AB BC BAD BCD ==∠=∠,,,EDC ∠=ABD ∠,则DE =.【答】4.1//2CD F DF DC DE AF DE AF ==延长至,使,则且 ,,,AFD EDC ABD A F B D ∠=∠=∠所以,故四点共圆,于是10BFD BAD BCD BF BC BD FC ∠=∠=∠==,所以,且⊥, 90.FAB FDB ∠=∠=︒故6AB AF =又,故,所以14.2DE AF ==已知二次函数()()222221450y x m n x m n =++++++的图象在x 轴的上方,则满足条件的正整数对(m ,n)的个数为. 解析:16.因为二次函数的图象在x 轴的上方,所以222[()](22)144500m n m n ∆=++-++<,整理得 42449mn m n ++<,即()(5122)11m n ++<.因为,m n 为正整数,所以()(122.)15m n <++ 又12m +≥,所以25212n +<,故5n ≤. 当n=1时,1m +253≤,故223m ≤,符合条件的正整数对(m,n)有8个;当n=2时,1m +5≤,故m ≤4,符合条件的正整数对(m,n)有4个; 当n=3时,1m +257≤,故187m ≤,符合条件的正整数对(m,n)有1个;当n=4时,1m +259≤,故179m ≤,符合条件的正整数对(m,n)有1个;当n=5时,1m +2511≤,故1411m ≤,符合条件的正整数对(m,n)有1个综合可知:符合条件的正整数对(m,n)有8421116++++=个第二试(A)一、(本题满分20分)设a ,b ,c ,d 为四个不同的实数,若a ,b 为方程210110x cx d --=的根, c ,d 为方程2100x ax b --=的根,求a b c d +++的值.解由韦达定理得1010a b c c d a +=+=,,两式相加得1)0(a b c d a c +++=+.因为a 是方程210110x cx d --=的根,所以210110a ac d --=,又10d a c =-,所以 211011100.a a c ac -+-=①类似可得211011100.c c a ac -+-=② ①-②得)((1210)a c a c -+-=因为a c ≠,所以121a c +=,所以(11210)0a b c d a c +++=+=.二、(本题满分25分)如图,在扇形OAB 中,9012AOB OA ∠=︒=,,点C 在OA 上,4AC =, 点D 为OB 的中点,点E 为弧AB 上的动点,OE 与CD 的交点为F . (1)当四边形ODEC 的面积S 最大时,求EF ; (2)求2CE DE +的最小值.解 (1)分别过O ,E 作CD 的垂线,垂足为M ,N . 由6,8OD OC ==,得10CD =.所以(111101260222)DOCD DECD S S S CD OM EN CD OE =+=⨯+≤⨯=⋅⋅=当OE DC ⊥时,S 取得最大值60.683612=105EF OE OF ⋅=-=-此时,212,.OB G BG OB GC GE ==()延长至点,使,连结因为1,2OD OE DOE EOG OE OG ==∠=∠,所以ODE OEG ∽,所以12DE EG =故2EG DE =,所以2CE DE CE EG CG +=+≥==C ,E ,G 三点共线时等号成立2CE DE +故的最小值为三、(本题满分25分)求所有的正整数m ,n ,使得()33222m n m n m n +-+是非负整数.解:记()33222m n m n S m n +-=+,则()2222332222()[()3]3()()m n m n mn m n m n m n mn mn S m n m n m n m n m n ++--+-⎛⎫===+-- ⎪+++⎝⎭+,,(,?,,1).mnm n p q p q p q m n==+因为为正整数,故可令为正整数,且 于是222233()()q q pq q S m n m n p p p +=+--=+-因为S 是非负整数,所以2|p q ,11()() .|p q p m n mn ==+,又,故,即①所以2n mn n m n m n=-++是整数,所以2()|m n n +,故2n m n ≥+,即2n m n -≥ 332200.S m n m n +-≥≥又由,知②3223222³(.)n m n m m n m m n n m --≥≥=≥所以,所以³m n m n =由对称性,同理可得,故34|2 2.20 2.m n m m m n m m m =≥=≥-≤把代入①,得,则把代入②,得,即 2.m =故,2 2.m n m n ==所以,满足条件的正整数为,第二试(B)一、(本题满分20分)若实数a ,b ,c 满足()11195555a b c a b c b c a c a b ⎛⎫++++= ⎪+-+-+-⎝⎭,求()111a b c a b c ⎛⎫++++⎪⎝⎭的值. 解:a b c x ab bc ca y abc z ++=++==记,,,则()111111555666a b c x a b c b c a c a b x a x b x c ⎛⎫⎛⎫++++=++⎪ ⎪+-+-+----⎝⎭⎝⎭22323[312()36()](936)6()36()216536216x x a b x ab bc ca x x y x a b c x ab bc ca x abc x xy z -+++++-+==++++++--+- 结合已知条件可得23(936)95362165x x y x xy z -+=-+-,整理得272xy z = 所以()111272xy a b c a b c z⎛⎫++++== ⎪⎝⎭.二、(本题满分25分)如图,点E 在四边形ABCD 的边AB 上,ABC △和CDE △都是等腰直角三 角形,AB AC DE DC ==,. (1)证明:AD BC ∥;(2)设AC 与DE 交于点P ,如果30ACE ∠=︒,求DPPE.145,,ACB DCE BC EC ∠=∠=︒解()由题意知,所以,AC DCDCA ECB BC EC∠=∠=,所以ADC BEC ∆∆∽,故45DAC EBC ∠=∠=,所以DAC ACB ∠=∠,所以AD BC ∥(2)设AE x =,因为30ACE ∠=,可得,2,AC CE x DE DC ====因为90,EAP CDP EPA CPD ∠=∠=∠=∠,所以APE DPC ∆∆∽,故可得12APE DPC S S ∆∆=又22,=EPC APE AEC EPC DPC CDE S S S x S S S x ∆∆∆∆∆∆+==+=,于是可得2(2DPC S x ∆=,21)EPC S x ∆=所以DPC EPC S DP PE S ∆∆===三、(本题满分25分)设x 是一个四位数,x 的各位数字之和为1m x +,的各位数字之和为n ,并 且m 与n 的最大公约数是一个大于2的素数.求x . ( ,.) 2x m n m n =解设与的最大公约数为大于的素数91,19(.)d n m m n d ≠=+==若,则,所以,矛盾,故()(9198,,829.)c n m m m n m c ≠=+-=-==若,则,故,它不可能是大于的素数,矛盾,故991()(99926,, 2613)b a n m m m n m =≠=+---=-==若,显然,所以,故,但此时可得13263936.n m n ≥=+≥>,,矛盾若9199()()17,,171717,34b n m m m n m n m ≠=+--=-====,则,故,只可能 88999799.x =于是可得或。
最新-厦门市九年级下数学质检试题及答案
2018年厦门市初中总复习教学质量检测数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡. 2.答案必须写在答题卡上,否则不能得分. 3.可以直接使用2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.计算-1+2,结果正确的是A . 1B . -1C . -2D . -3 2.抛物线y =ax 2+2x +c 的对称轴是A . x =-1aB . x =-2aC . x =1aD . x =2a3.如图1,已知四边形ABCD ,延长BC 到点E ,则∠DCE 的同位角是A . ∠AB . ∠BC . ∠DCBD .∠D4.某初中校学生会为了解2017年本校学生人均课外阅读量,计划开展抽样调查.下列抽样调查方案中最合适的是A .到学校图书馆调查学生借阅量B .对全校学生暑假课外阅读量进行调查C .对初三年学生的课外阅读量进行调查D .在三个年级的学生中分别随机抽取一半学生进行课外阅读量的调查 5.若967×85=p ,则967×84的值可表示为A . p -1B . p -85C . p -967D .8584p 6. 如图2,在Rt△ACB 中,∠C =90°,∠A =37°,AC =4,则BC 的长约为(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) A . 2.4 B . 3.0 C . 3.2 D . 5.07. 在同一条直线上依次有A ,B ,C ,D 四个点,若CD -BC =AB ,则下列结论正确的是 A . B 是线段AC 的中点 B . B 是线段AD 的中点 C . C 是线段BD 的中点 D . C 是线段AD 的中点8. 把一些书分给几名同学,若 ;若每人分11本则不够. 依题意,设有x 名同学, 可列不等式9x +7<11x ,则横线上的信息可以是 A .每人分7本,则可多分9个人 图1E DC B A图2 ABCB. 每人分7本,则剩余9本C .每人分9本,则剩余7本D. 其中一个人分7本,则其他同学每人可分9本9. 已知a ,b ,c 都是实数,则关于三个不等式:a >b ,a >b +c ,c <0的逻辑关系的表述,下列正确的是A . 因为a >b +c ,所以a >b ,c <0B . 因为a >b +c ,c <0,所以a >bC . 因为a >b ,a >b +c ,所以c <0D . 因为a >b ,c <0,所以a >b +c 10. 据资料,我国古代数学家刘徽发展了测量不可到达的物体的高度的“重差术”,如:通过下列步骤可测量山的高度PQ (如图3):(1)测量者在水平线上的A 处竖立一根竹竿,沿射线QA 方向走到M 处,测得山顶P 、竹竿顶点B 及M 在一条直线上;(2)将该竹竿竖立在射线QA 上的C 处,沿原方向继续走到N 处,测得山顶P ,竹竿顶点D 及N 在一条直线上;(3)设竹竿与AM ,CN 的长分别为l ,a 1,a 2,可得公式: PQ =d ·la 2-a 1+l .则上述公式中,d 表示的是A .QA 的长B . AC 的长 C .MN 的长D .QC 的长 二、填空题(本大题有6小题,每小题4分,共24分)11.分解因式: m 2-2m = .12.投掷一枚质地均匀的正六面体骰子,向上一面的点数为奇数的 概率是 .13.如图4,已知AB 是⊙O 的直径,C ,D 是圆上两点,∠CDB =45°,AC =1,则AB 的长为 .14. A ,B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运30kg ,A 型机器人搬运900kg 所用时间与B 型机器人搬运600kg 所用时间相等.设B 型机器人每小时 搬运x kg 化工原料,根据题意,可列方程__________________________. 15.已知a +1=20002+20012,计算:2a +1= .16.在△ABC 中,AB =AC .将△ABC 沿∠B 的平分线折叠,使点A 落在BC 边上的点D 处, 设折痕交AC 边于点E ,继续沿直线DE 折叠,若折叠后,BE 与线段DC 相交,且交点不 与点C 重合,则∠BAC 的度数应满足的条件是 .三、解答题(本大题有9小题,共86分)17.(本题满分8分)解方程:2(x -1)+1=x .18.(本题满分8分)如图5,直线EF 分别与AB ,CD 交于点A ,C ,若AB ∥CD , E AB图4B图3CB平分∠ACD,∠EAB=72°,求∠ABC的度数.19.(本题满分8分)如图6,平面直角坐标系中,直线l经过第一、二、四象限,点A(0,m)在l上.(1)在图中标出点A;(2)若m=2,且l过点(-3,4),求直线l的表达式.20.(本题满分8分)如图7,在□ABCD中,E是BC延长线上的一点,且DE=AB,连接AE,BD,证明AE=BD.21.(本题满分8分)某市的居民交通消费可分为交通工具、交通工具使用燃料、交通工具维修、市内公共交通、城市间交通等五项.该市统计局根据当年各项的权重及各项价格的涨幅计算当年居民交通消费价格的平均涨幅. 2017年该市的有关数据如下表所示.(1)求p的值;(2)若2017年该市的居民交通消费相对上一年价格的平均涨幅为1.25%,求m的值.22.(本题满分10分)如图8,在矩形ABCD中,对角线AC,BD交于点O,(1)AB=2,AO=5,求BC的长;(2)∠DBC=30°,CE=CD,∠DCE<90°,若OE=22BD,求∠DCE的度数.l图6图7E AB CD图8OAB CDE23.(本题满分11分)已知点A ,B 在反比例函数y =6x (x >0)的图象上,且横坐标分别为m ,n ,过点A ,B 分别向y 轴、x 轴作垂线段,两条垂线段交于点C ,过点A ,B 分别作AD ⊥x 轴于D ,作BE ⊥y 轴于E.(1)若m =6,n =1,求点C 的坐标;(2)若m (n -2)=3,当点C 在直线DE 上时,求n 的值.24.(本题满分11分)已知AB =8,直线l 与AB 平行,且距离为4,P 是l 上的动点,过点P 作PC ⊥AB 交线段AB 于点C ,点C 不与A ,B 重合,过A ,C ,P 三点的圆与直线PB 交于点D . (1)如图9,当D 为PB 的中点时,求AP 的长;(2)如图10,圆的一条直径垂直AB 于点E ,且与AD 交于点M .当ME 的长度最大时,判断直线PB 是否与该圆相切?并说明理由.25.(本题满分14分)已知二次函数y =ax 2+bx +t -1,t <0, (1)当t =-2时,① 若函数图象经过点(1,-4),(-1,0),求a ,b 的值;② 若2a -b =1,对于任意不为零的实数a ,是否存在一条直线y =kx +p (k ≠0),始终与函数图象交于不同的两点?若存在,求出该直线的表达式;若不存在,请说明理由.(2)若点A (-1,t ),B (m ,t -n )(m >0,n >0)是函数图象上的两点,且S △AOB =12n -2 t ,当-1≤x ≤m 时,点A 是该函数图象的最高点,求a 的取值范围.图9 A l C B DP 图10 l A M E C B D P2018年厦门市九科教学质量检测数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)11. m (m -2). 12. 12. 13. 2. 14. 900x +30=600x .15. 4001. 16.100°<∠BAC <180°. 三、解答题(本大题有9小题,共86分)17.(本题满分8分)解:2x -2+1=x .…………………………4分 2x -x =2-1.…………………………6分 x =1.…………………………8分18.(本题满分8分)解法一:如图1∵ AB ∥CD ,∴ ∠ACD =∠EAB =72°.…………………………3分 ∵ CB 平分∠ACD , ∴ ∠BCD =12∠ACD =36°. …………………………5分∵ AB ∥CD ,∴ ∠ABC =∠BCD =36°. …………………………8分 解法二:如图1∵ AB ∥CD ,∴ ∠ABC =∠BCD . …………………………3分 ∵ CB 平分∠ACD ,∴ ∠ACB =∠BCD . …………………………5分 ∴ ∠ABC =∠ACB .∵ ∠ABC +∠ACB =∠EAB , 图1FE ABC D∴ ∠ABC =12∠EAB =36°. …………………………8分19.(本题满分8分) (1)(本小题满分3分)如图2;…………………………3分(2)(本小题满分5分)解:设直线l 的表达式为y =kx +b (k ≠0),…………………………4分 由m =2得点A (0,2), 把(0,2),(-3,4)分别代入表达式,得⎩⎨⎧b =2,-3k +b =4.可得⎩⎪⎨⎪⎧b =2,k =-23 .…………………………7分所以直线l 的表达式为y =-23x +2. …………………………8分20.(本题满分8分)证明:如图3∵ 四边形ABCD 是平行四边形,∴ AB ∥DC ,AB =DC .………………………… 2分 ∵ DE =AB , ∴ DE =DC .∴ ∠DCE =∠DEC .…………………………4分 ∵ AB ∥DC ,∴ ∠ABC =∠DCE . …………………………5分∴ ∠ABC =∠DEC . …………………………6分 又∵ AB =DE ,BE =EB ,∴ △ABE ≌△DEB . …………………………7分 ∴ AE =BD . …………………………8分21.(本题满分8分)(1)(本小题满分3分)解:p =1-(22%+13%+5%+26%)…………………………2分 l图2.A图3EA B C D=34%. …………………………3分 (2)(本小题满分5分) 解:由题意得22%×1.5%+13%×m %+5%×2%+34%×0.5%+26%×1%22%+13%+5%+34%+26%=1.25%. …………………7分解得m =3. …………………………8分22.(本题满分10分)(1)(本小题满分4分)解:如图4∵四边形ABCD 是矩形,∴ ∠ABC =90°,AC =2AO =25.………………………2分 ∵ 在Rt △ACB 中,∴ BC =AC 2-AB 2 ………………………3分=4.………………………4分 (2)(本小题满分6分)解:如图4∵ 四边形ABCD 是矩形,∴ ∠DCB =90°,BD =2OD ,AC =2OC ,AC =BD . ∴ OD =OC =12BD .∵ ∠DBC =30°,∴ 在Rt △BCD 中,∠BDC =90°-30°=60°, CD =12BD .∵ CE =CD ,∴ CE =12BD .………………………6分∵ OE =22BD , ∴ 在△OCE 中,OE 2=12BD 2.图4OABCDE又∵ OC 2+CE 2=14BD 2+14BD 2=12BD 2,∴ OC 2+CE 2=OE 2.∴ ∠OCE =90∵ OD =OC ,∴ ∠OCD =∠∴ ∠DCE =∠23.(本题满分11分)(1)(本小题满分解:因为当m =6又因为n =1, 所以C (1,1)(2)(本小题满分解:如图5所以A (m ,6m ),B 所以D (m ,0),E 设直线DE 把D (m ,0),E (.………………………7分因为点C 在直线所以把C (n ,6m )代入把m =2n 代入m (n -2)=3,得2n (n -2)=3.,………………………9分 解得n =2±102.………………………10分因为n >0,所以n =2+102.………………………11分24.(本题满分11分)(1)(本小题满分5分)解法一:如图6,∵ PC ⊥AB , ∴ ∠ACP =90°.∴ AP 是直径.…………………2分∴ ∠ADP =90°. …………………3分 Al C BDPB C A D E图5即AD ⊥PB .又∵ D 为PB 的中点,∴ AP =AB =8.…………………5分解法二:如图7,设圆心为O ,PC 与AD 交于点N ,连接OC ,OD .∵ ︵CD =︵CD ,∴ ∠CAD =12∠COD ,∠CPD =12∠COD .∴ ∠CAD =∠CPD .…………………1分∵ ∠ANC =∠PND ,又∵ 在△ANC 和△PND 中,∠NCA =180°-∠CAN -∠ANC , ∠NDP =180°-∠CPN -∠PND ,∴ ∠NCA =∠NDP . …………………2分 ∵ PC ⊥AB ,∴ ∠NCA =90°.∴ ∠NDP =90°. …………………3分 即AD ⊥PB .又∵ D 为PB 的中点,∴ AP =AB =8.…………………5分(2)(本小题满分6分)解法一:当ME 的长度最大时,直线PB 与该圆相切. 理由如下:如图8,设圆心为O ,连接OC ,OD . ∵ ︵CD =︵CD ,∴ ∠CAD =12∠COD ,∠CPD =12∠COD .∴ ∠CAD =∠CPD .又∵ PC ⊥AB ,OE ⊥AB , ∴ ∠PCB =∠MEA =90°.∴ △MEA ∽△BCP . …………………7分O ·图7Al C BDPN图8l AM EC BD PO ·∴ ME BC =AE PC.∵ OE ⊥AB , 又∵ OA =OC , ∴ AE =EC .设AE =x ,则BC =8-2x .由ME BC =AE PC ,可得ME =-12(x -2)2+2.…………………8分 ∵ x >0,8-2x >0, ∴ 0<x <4. 又∵ -12<0,∴ 当x =2时,ME 的长度最大为2.…………………9分 连接AP ,∵ ∠PCA =90°, ∴ AP 为直径.∵ AO =OP ,AE =EC , ∴ OE 为△ACP 的中位线. ∴ OE =12PC .∵ l ∥AB ,PC ⊥AB , ∴ PC =4. ∴ OE =2.∴ 当ME =2时,点M 与圆心O 重合.…………………10分 即AD 为直径.也即点D 与点P 重合.也即此时圆与直线PB 有唯一交点.所以此时直线PB 与该圆相切.…………………11分解法二:当ME 的长度最大时,直线PB 与该圆相切. 理由如下:如图8,设圆心为O ,连接OC ,OD . ∵ OE ⊥AB , 又∵ OA =OC , ∴ AE =EC .设AE =x ,则CB =8-2x . l AMEC BD PO ·∵ ︵CD =︵CD ,∴ ∠CAD =12∠COD ,∠CPD =12∠COD . ∴ ∠CAD =∠CPD .又∵ PC ⊥AB ,OE ⊥AB ,∴ ∠PCB =∠MEA =90°.∴ △MEA ∽△BCP . …………………7分∴ ME BC =AE PC. 可得ME =-12(x -2)2+2.…………………8分 ∵ x >0,8-2x >0,∴ 0<x <4.又∵ -12<0, ∴ 当x =2时,ME 的长度最大为2.…………………9分连接AP ,∵ AE =x =2,∴ AC =BC =PC =4.∵ PC ⊥AB ,∴ ∠PCA =90°,∴ 在Rt △ACP 中,∠P AC =∠APC =45°.同理可得∠CPB =45°.∴ ∠APB =90°.即AP ⊥PB . …………………10分又∵ ∠PCA =90°,∴ AP 为直径.∴ 直线PB 与该圆相切.…………………11分25.(本题满分14分)(1)(本小题满分7分)①(本小题满分3分)解:当t =-2时,二次函数为y =ax 2+bx -3.把(1,-4),(-1,0)分别代入y =ax 2+bx -3,得⎩⎨⎧a +b -3=-4,a -b -3=0.…………………………1分 解得⎩⎨⎧a =1,b =-2.所以a =1,b =-2.…………………………3分②(本小题满分4分)解法一:因为2a -b =1,所以二次函数为y =ax 2+(2a -1)x -3.所以,当x =-2时,y =-1;当x =0时,y =-3.所以二次函数图象一定经过(-2,-1),(0,-3).…………………………6分设经过这两点的直线的表达式为y =kx +p (k ≠0),把(-2,-1),(0,-3)分别代入,可求得该直线表达式为y =-x -3.…………7分 即直线y =-x -3始终与二次函数图象交于(-2,-1),(0,-3)两点.解法二:当直线与二次函数图象相交时,有kx +p =ax 2+(2a -1)x -3.整理可得ax 2+(2a -k -1)x -3-p =0.可得△=(2a -k -1)2+4a (3+p ).…………4分若直线与二次函数图象始终有两个不同的交点,则△>0.化简可得4a 2-4a (k -p -2)+(1+k )2>0.因为无论a 取任意不为零的实数,总有4a 2>0,(1+k )2≥0所以当k -p -2=0时,总有△>0.………………………6分可取p =1,k =3.对于任意不为零的实数a ,存在直线y =3x +1始终与函数图象交于不同的两点.…………7分(2)(本小题满分7分)解:把A (-1,t )代入y =ax 2+bx +t -1,可得b =a -1.………………………8分 因为A (-1,t ),B (m ,t -n )(m >0,n >0),又因为S △AOB =12n -2t ,所以12[(-t )+(n -t )](m +1)-12×1×(-t )-12×(n -t )m =12n -2t . 解得m =3.………………………10分所以A (-1,t ),B (3,t -n ).因为n >0,所以t >t -n .当a >0时,【二次函数图象的顶点为最低点,当-1≤x ≤3时,若点A 为该函数图象最高点,则y A ≥y B 】,分别把A (-1,t ),B (3,t -n )代入y =ax 2+bx +t -1,得t =a -b +t -1,t -n =9a +3b +t -1.因为t >t -n ,所以a -b +t -1>9a +3b +t -1.可得2a +b <0.即2a +(a -1)<0.解得a <13. 所以0<a <13. 当a <0时,由t >t -n ,可知:【若A ,B 在对称轴的异侧,当-1≤x ≤3时,图象的最高点是抛物线的顶点而不是点A ;若A ,B 在对称轴的左侧,因为当x ≤-b 2a时,y 随x 的增大而增大,所以当-1≤x ≤3时,点A 为该函数图象最低点;若A ,B 在对称轴的右侧,因为当x ≥-b 2a时,y 随x 的增大而减小,所以当-1≤x ≤3时,若点A 为该函数图象最高点,则】-b 2a≤-1. 即-a -12a≤-1. 解得a ≥-1.所以-1≤a <0.………………………13分综上,0<a <13或-1≤a <0.………………………14分。
2018-2019学年(上)厦门市数学九年级质量检测
-b ± b 2-4ac 2ax 2018—2019 学年(上)厦门市九年级质量检测数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共 10 小题,每小题 4 分,共 40 分)二、填空题(本大题共 6 小题,每题 4 分,共 24 分)111.2.12. -1. 13.1. 14. 直角三角形是完全三角形;如:等腰直角三角形,或三边分别为 5,12,13 的三角形,或三边比为5∶12∶13 的三角形等.16.b >3.三、解答题(本大题有 9 小题,共 86 分) 17.(本题满分 8 分)解:a =1,b =-3,c =1. △=b 2-4ac=5>0 ......................................................... 4 分 方程有两个不相等的实数根x =6 分 即 ............. 8 分18. (本题满分 8 分)原式 x +1-2 2x+2 =( x +1 )· 2-1 ................................................... 2 分x -1 2(x +1)= · .................................... 5 分 x +1 = 2 x +1(x+1)(x -1)……………………………6 分 当 x = 2-1 时,原式= 2= 2 ......................................................... 8 分2ElEFl19.(本题满分 8 分)解:因为当 x =2 时,y =2. 所以 (2−1)2 +n =2. 解得 n =1.所以二次函数的解析式为:y =(x −1)2 +1 ........................... 4 分列表得:如图:.......................................... 8 分20.(本题满分 8 分)(1)(本小题满分 3 分)解:如图,点 E 即为所求 .............. 3 分AD(2)(本小题满分 5 分)解法一:BC解:连接 EB ,EC , 由(1)得,EB =EC . ∵ 四边形 ABCD 是矩形,∴ ∠A =∠D =90°,AB =DC . ∴ △ABE ≌△DCE ................................... 6 分∴ AE =ED 1 =2AD=3 .................................................... 7 分 在 Rt △ABE 中,EB = AB 2+AE 2. ∴ EB =5 ................................... 8 分AD解法二:如图,设线段 BC 的中垂线 l 交 BC 于点 F ,∴ ∠BFE =90°,BF 1.BC=2BC ∵ 四边形 ABCD 是矩形,∴ ∠A =∠ABF =90°,AD =BC .在四边形 ABFE 中,∠A =∠ABF =∠BFE =90°, ∴ 四边形 ABFE 是矩形 .................. 6 分 ∴ EF =AB =4 ....................................... 7 分 在 Rt △BFE 中,EB = EF 2+BF 2. ∴ EB =5 ............................................. 8 分21.(本题满分 8 分)证明:如图,连接 OD ,∵ AB 是直径且 AB =4, ∴ r =2.设∠AOD =n °,∵ ︵ 4π AD 的长为 3 ,∴nπr 4π 180= 3 .解得 n =120 .即∠AOD =120° .......................... 3 分 在⊙O 中,DO =AO ,∴ ∠A =∠ADO .∴ ∠A 1180°-∠AOD )= 30° ........................ 5 分=2( ∵ ∠C =60°,∴ ∠ABC =180°-∠A -∠C =90° ....................... 6 分 即 AB ⊥BC ....................................................... 7 分 又∵ AB 为直径,∴ BC 是⊙O 的切线 ........................... 8 分 22.(本题满分 10 分)解(1)(本小题满分 5 分)解法一:如图,过点 P 作 PF ⊥y 轴于 F , ∵ 点 P 到边 AD 的距离为 m .∴ PF =m 1∴ 点 P=4. 1…………………1 分的横坐标为4.由题得,C (1,1),可得直线 AC 的解析式为:y =x . ............................... 3 分x 1 1当x =4时,y =4 . ...................... 4 分所以 P 1 1…………………5 分(4,4).F解法二:如图,过点 P 作 PE ⊥x 轴于 E ,作 PF ⊥y 轴于 F , ∵ 点 P 到边 AD ,AB 的距离分别为 m ,n , ∴ PE =n ,PF =m . ∴ P (m ,n ). ................................ 1 分 ∵ 四边形 ABCD 是正方形,∴ AC 平分∠DAB . ................ 2 分 ∵ 点 P 在对角线 AC 上,∴ m =n 1…………………4 分=4. ∴ P 1 1(4,4). .................................................. 5 分(2)(本小题满分 5 分)解法一:如图,以 A 为原点,以边 AB 所在直线为 x 轴,建立平面直角坐标系. 则由(1)得 P (m ,n ).若点 P 在△DAB 的内部,点 P 需满足的条件是:①在 x 轴上方,且在直线 BD 的下方; ②在 y 轴右侧,且在直线 BD 的左侧. 由①,设直线 BD 的解析式为:y =kx +b , 把点 B (1,0),D (0,1)分别代入,可得直线 BD 的解析式为:y =-x+1. ........... 6 分 当 x =m 时,y =-m+1. 由点 P 在直线 BD 的下方,可得 n <-m+1. ............ 7 分 由点 P 在 x 轴上方,可得 n >0 .............. 8 分 即 0<n <-m+1. 同理,由②可得 0<m <-n+1. .............. 9 分所以 m ,n 需满足的条件是:0<n <-m+1 且 0<m <-n+1. ............ 10 分解法二:如图,过点 P 作 PE ⊥AB 轴于 E ,作 PF ⊥AD 轴于 F , ∵ 点 P 到边 AD ,AB 的距离分别为 m ,n , ∴ PE =n ,PF =m .1在正方形 ABCD 中,∠ADB =2∠ADC =45°,∠A =90°. ∴ ∠A =∠PEA =∠PFA =90°.∴ 四边形 PEAF 为矩形.∴ PE =FA =n .................................................. 6 分 若点 P 在△DAB 的内部,则延长 FP 交对角线 BD 于点 M .在 Rt △DFM 中,∠DMF =90°-∠FDM =45°. ∴ ∠DMF =∠FDM . ∴ DF =FM . ∵ PF <FM ,FP · EM∴PE+ PF=FA+ PF<FA+ DF.即m+ n<1 ........................................................ 8 分又∵m>0,n>0,∴m,n 需满足的条件是m+n<1 且m>0 且n>0. .............. 10 分23.(本题满分10 分)解:(1)(本小题满分2 分)估计运到的2000 公斤鱼中活鱼的总重量为1760 公斤........... 2分(2)①(本小题满分 3 分)根据表二的销售记录可知,活鱼的售价每增加1 元,其日销售量就减少40 公斤,所以按此变化规律可以估计当活鱼的售价定为52.5 元/公斤时,日销售量为300 公斤................. 5 分②(本小题满分5 分)解法一:由(2)①,若活鱼售价在 50 元/公斤的基础上,售价增加x 元/公斤,则可估计日销售量在400 公斤的基础上减少40x 公斤,设批发店每日卖鱼的最大利润为w,由题得w=(50+x 2000×44 -40x) ....................................... 7 分-1760 ) (400=-40x2+400x=-40(x-5)2+1000.由“在8 天内卖完这批活鱼”,可得8 (400-40x)≤1760,解得x≤4.5.根据实际意义,有400-40x≥0;解得x≤10.所以x≤4.5 ................................................. 9分因为-40<0,所以当x<5 时,w 随x 的增大而增大,所以售价定为54.5 元/公斤,每日卖鱼可能达到的最大利润为990 元................ 10 分解法二:设这8 天活鱼的售价为x 元/公斤,日销售量为y 公斤,根据活鱼的售价与日销售量之间的变化规律,不妨设y=kx+b.由表二可知,当x=50 时,y=400;当x=51 时,y=360,⎧50k+b=400所以⎨,⎩51k+b=360⎧k=-40解得⎨,⎩b=2400可得y=-40x+2400.设批发店每日卖鱼的最大利润为w,由题得w=(x 2000×44 -40x+2400) ......................................... 7 分-1760 ) (=-40x2+4400x-120000AP 2+BP 2由“在 8 天内卖完这批活鱼”,可得 8 (-40x +2400)≤1760,解得 x ≤54.5.根据实际意义,有-40x +2400≥0;解得 x ≤60. 所以 x ≤54.5 ............................................. 9 分因为-40<0,所以当 x <55 时,w 随 x 的增大而增大, 所以售价定为 54.5 元/公斤,每日卖鱼可能达到的最大利润为 990 元 ................ 10 分24.(本题满分 12 分) (1)(本小题满分 6 分) 解:连接 AB . 在⊙O 中,∵ ∠APQ =∠BPQ =45°,∴ ∠APB =∠APQ +∠BPQ =90° ........ 1 分 ∴ AB 是⊙O 的直径 ................. 3 分∴ 在 Rt △APB 中,AB = ∴ AB =3 ............................................. 5 分∴ ⊙O 3 的半径是2.………………6 分(2)(本小题满分 6 分) A解:AB ∥ON .证明:连接 OA ,OB ,OQ , 在⊙O 中,Q︵ ︵ ︵ ︵ ∵ AQ =AQ ,BQ =BQ ,∴ ∠AOQ =2∠APQ ,∠BOQ =2∠BPQ . 又∵ ∠APQ =∠BPQ ,∴ ∠AOQ =∠BOQ ............................................. 7 分 在△AOB 中,OA =OB ,∠AOQ =∠BOQ ,∴ OC ⊥AB ,即∠OCA =90° ..................... 8 分 连接 OQ ,交 AB 于点 C , 在⊙O 中,OP =OQ .∴ ∠OPN =∠OQP .延长 PO 交⊙O 于点 R ,则有 2∠OPN =∠QOR . ∵ ∠NOP +2∠OPN =90°,又∵ ∠NOP +∠NOQ +∠QOR =180°,∴ ∠NOQ =90° ............................ 11 分 ∴ ∠NOQ +∠OCA =180°. ∴ AB ∥ON ................................................................... 12 分y=2+p25.(本题满分 14 分) (1)①(本小题满分 3 分)解:如图即为所求…………………………3 分②(本小题满分 4 分)解:由①可求得,直线 l :y1 +2,抛物线 m :y 1 2+2 ..................... 5 分 =2x =-4x因为点 Q 在抛物线 m 上,过点 Q 且与 x 轴垂直的直线与 l 交于点 H ,所以可设点 Q 的坐标为(e 1 2+2),点 H 的坐标为(e 1+2),其中(-2≤e ≤0).,-4e 当-2≤e ≤0 时,点 Q 总在点 H 的正上方,可得, e d 1 2 1 =-4e +2-(2e +2) ....................... 6 分 1 2 1 =-4e -2e 1 2 1 =- (e +1) + . 4 4 1因为-4<0,所以当 d 随 e 的增大而增大时,e 的取值范围是-2≤e ≤-1 ..................... 7 分(2)(本小题满分 7 分)解法一: 因为 B (p ,q ),C (p +4,q )在抛物线 m 上,所以抛物线 m 的对称轴为 x =p +2. 又因为抛物线 m 与 x 轴只有一个交点, 可设顶点 N (p +2,0).设抛物线的解析式为 y =a (x -p -2)2. 当 x =0 时,y F =a (p+2)2.可得 F (0,a (p+2)2). .............................................. 9 分 把 B (p ,q )代入 y =a (x -p -2)2,可得 q =a (p -p -2)2. 化简可得 q =4a ①. 设直线 l 的解析式为 y =kx +2, 分别把 B (p ,q ),N (p +2,0)代入 y =kx +2,可得 q =kp +2 ②,及 0=k (p +2)+2 ③ .由①,②,③可得 a 1.所以 F (0,p +2).又因为 N (p +2,0), .............................. 13 分 所以 ON=OF ,且∠NOF =90°.所以△NOF 为等腰直角三角形. ............. 14 分解法二:因为直线过点A(0,2),不妨设线l:y=kx+2,因为B(p,q),C(p+4,q)在抛物线m 上,所以抛物线m 的对称轴为x=p+2.又因为抛物线的顶点N 在直线l:y=kx+2 上,可得N(p+2,k(p+2)+2).所以抛物线m:y=a (x-p-2)2+k(p+2)+2.当x=0 时,y=a(p+2)2+k(p+2)+2.即点F 的坐标是(0,a(p+2)2+k(p+2)+2). ............................. 9 分因为直线l,抛物线m 经过点B(p,q),可得⎧kp+2=q⎨,⎩4a+k(p+2)+2=q可得k=-2a.因为抛物线m 与x 轴有唯一交点,可知关于x 的方程kx+2=a (x-p-2)2+k(p+2)+2 中,△=0.结合k=-2a,可得k(p+2)=-2.可得N(p+2,0),F(0,p+2). ................................. 13 分所以ON=OF,且∠NOF=90°.所以△NOF 是等腰直角三角形.................. 14 分。
2018年5月厦门九年级数学质检试题及答案
2018 年厦门市初中总复习教课质量检测数学(试卷满分:150分考试时间:120 分钟)准考据号姓名座位号注意事项:1.全卷三大题,25 小题,试卷共 4 页,还有答题卡.2.答案一定写在答题卡上,不然不可以得分.3.能够直接使用2B 铅笔作图.一、选择题(本大题有10 小题,每题 4 分,共40 分. 每题都有四个选项,此中有且只有一个选项正确)1. 计算-1+2,结果正确的选项是A. 1B. -1C. -2 D . -32. 抛物线y=ax2+2x+c 的对称轴是A. x =-1aB. x =-2a1aC. x =2aD . x =3. 如图1,已知四边形ABCD,延伸 B C到点E,则∠DCE的同位角是A. ∠AB. ∠ B图1C. ∠DCB D . ∠ D4. 某初中校学生会为认识2017 年本校学生人均课外阅读量,计划展开抽样检查. 以下抽样检查方案中最适合的是A.到学校图书室检查学生借阅量B.对全校学生暑期课外阅读量进行检查C.对初三年学生的课外阅读量进行检查D.在三个年级的学生中分别随机抽取一半学生进行课外阅读量的检查5. 若967×85=p,则967×84 的值可表示为A. p-1B. p-85C. p -967D. 85 84p6. 如图2,在Rt△ACB中,∠C=90°,∠A=37°,AC=4,则B C的长约为(sin37 °≈,cos37°≈,tan37 °≈)图2 A. 2.4 B. 3.0 C. D .7. 在同一条直线上挨次有A,B,C,D四个点,若 C D-BC=AB,则以下结论正确的选项是A. B 是线段AC的中点B. B是线段 A D的中点C. C 是线段BD的中点D. C 是线段 A D的中点8. 把一些书分给几名同学,若;若每人分11 本则不够. 依题意,设有x 名同学,可列不等式9x+7<11x,则横线上的信息能够是A .每人分7 本,则可多分9 个人B. 每人分7 本,则节余9 本C .每人分9 本,则节余7 本D. 此中一个人分7 本,则其余同学每人可分9 本9. 已知a,b,c 都是实数,则对于三个不等式:a>b,a>b+c,c<0 的逻辑关系的表述,下列正确的选项是A. 由于a>b+c,因此a>b,c<0B. 由于a>b+c,c<0,因此a> bC. 由于a>b,a>b+c,因此c<0 D . 由于a>b,c<0,因此a>b+c10. 据资料,我国古代数学家刘徽发展了丈量不行抵达的物体的高度的“重差术”,如:经过以下步骤可丈量山的高度PQ(如图3):(1)丈量者在水平线上的A处直立一根竹竿,沿射线Q A方向走到M处,测得山顶P、竹竿极点B及M在一条直线上;(2)将该竹竿直立在射线Q A上的C处,沿原方向持续走到N处,测得山顶P,竹竿极点D及N在一条直线上;(3)设竹竿与AM,C N的长分别为l ,a1,a2,可得公式:PQ =d·l+l .a 2-a1水平线湖泊图3则上述公式中, d 表示的是的长 B. AC 的长的长的长二、填空题(本大题有 6 小题,每题 4 分,共24 分)11. 分解因式:m2-2m=.12. 扔掷一枚质地均匀的正六面体骰子,向上一面的点数为奇数的概率是.13. 如图4,已知 A B是⊙O的直径,C,D是圆上两点,∠CDB=45°,图4 AC=1,则AB的长为.14. A,B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30kg,A型机器人搬运900kg 所用时间与B型机器人搬运600kg 所用时间相等. 设B型机器人每小时搬运x kg 化工原料,依据题意,可列方程__________________________.2 215. 已知a+1=2000 ,计算:2a+1=.+200116.在△ABC中,AB=AC. 将△ABC沿∠B的均分线折叠,使点A落在BC边上的点D处,设折痕交 A C边于点E,持续沿直线 D E折叠,若折叠后,BE与线段 D C订交,且交点不与点C重合,则∠BAC的度数应知足的条件是.三、解答题(本大题有9 小题,共86 分)17. (此题满分8 分)解方程:2(x-1)+1=x.18. (此题满分8 分)如图5,直线EF分别与AB,C D交于点A,C,若AB∥C D,C B均分∠ACD,∠EAB=72°,求∠ABC的度数.19. (此题满分8 分)图5 如图6,平面直角坐标系中,直线l 经过第一、二、四象限,l点A(0,m)在l 上.(1)在图中标出点A;(2)若m=2,且l 过点(-3,4),求直线l 的表达式.20. (此题满分8 分)如图7,在□ABCD中,E是BC延伸线上的一点,且D E=AB,连结AE,BD,证明AE=BD.图721. (此题满分8 分)某市的居民交通花费可分为交通工具、交通工具使用燃料、交通工具维修、市内公共交通、城市间交通等五项. 该市统计局依据当年各项的权重及各项价钱的涨幅计算当年居民交通花费价钱的均匀涨幅. 2017 年该市的相关数据以下表所示.项目交通工具交通工具使用燃料交通工具维修市内公共交通城市间交通占交通花费的比率22% 13% 5% p 26% 相对上一年的价格的涨幅% m% 2% % 1%(1)求p 的值;(2)若2017 年该市的居民交通花费相对上一年价钱的均匀涨幅为%,求m的值.22. (此题满分10 分)如图8,在矩形ABCD中,对角线AC,BD交于点O,(1)AB=2,AO=5,求 B C的长;(2)∠DBC=30°,C E=C D,∠DCE<90°,若OE=2BD,2图8求∠DCE的度数.23. (此题满分11 分)6已知点A,B在反比率函数y=(x>0)的图象上,且横坐标分别为m,n,过点A,B分x别向y 轴、x 轴作垂线段,两条垂线段交于点C,过点A,B分别作AD⊥x 轴于D,作BE⊥y 轴于 E.(1)若m=6,n=1,求点C的坐标;(2)若m错误!链接无效。
〖汇总3套试卷〗厦门某实验名校初中2018年单科质检数学试题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知,两数在数轴上对应的点如图所示,下列结论正确的是( )A .a b 0+>B .ab<0C .a>bD .b a 0->【答案】C【解析】根据各点在数轴上位置即可得出结论.【详解】由图可知,b<a<0,A. ∵b<a<0,∴a+b<0,故本选项错误;B. ∵b<a<0,∴ab>0,故本选项错误;C. ∵b<a<0,∴a>b ,故本选项正确;D. ∵b<a<0,∴b−a<0,故本选项错误.故选C.2.如图,点A 、B 、C 、D 、O 都在方格纸的格点上,若△COD 是由△AOB 绕点O 按逆时针方向旋转而得,则旋转的角度为( )A .30°B .45°C .90°D .135°【答案】C【解析】根据勾股定理求解.【详解】设小方格的边长为1,得, 22222+= ,22222+= ,AC=4,∵OC 2+AO 2=22(22)(22)+=16,AC 2=42=16,∴△AOC 是直角三角形,∴∠AOC=90°.故选C .【点睛】考点:勾股定理逆定理.3.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=1.那么在计算6×7时,左、右手伸出的手指数应该分别为( )A .1,2B .1,3C .4,2D .4,3【答案】A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,30+4×3=42,故选A .点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.4.下列计算正确的是( )A .(a 2)3=a 6B .a 2+a 2=a 4C .(3a )•(2a )2=6aD .3a ﹣a =3 【答案】A【解析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.【详解】A .(a 2)3=a 2×3=a 6,故本选项正确;B .a 2+a 2=2a 2,故本选项错误;C .(3a )•(2a )2=(3a )•(4a 2)=12a 1+2=12a 3,故本选项错误;D .3a ﹣a=2a ,故本选项错误.故选A .【点睛】本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方和单项式乘法,理清指数的变化是解题的关键.5.如图所示,90,,E F B C AE AF ∠=∠=∠=∠=,结论:①EM FN =;②CD DN =;③FAN EAM ∠=∠;④ACN ABM ∆≅∆,其中正确的是有( )A .1个B .2个C .3个D .4个【答案】C 【解析】根据已知的条件,可由AAS 判定△AEB ≌△AFC ,进而可根据全等三角形得出的结论来判断各选项是否正确.【详解】解:如图:在△AEB 和△AFC 中,有90B C E F AE AF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△AEB ≌△AFC ;(AAS )∴∠FAM=∠EAN ,∴∠EAN-∠MAN=∠FAM-∠MAN ,即∠EAM=∠FAN ;(故③正确)又∵∠E=∠F=90°,AE=AF ,∴△EAM ≌△FAN ;(ASA )∴EM=FN ;(故①正确)由△AEB ≌△AFC 知:∠B=∠C ,AC=AB ;又∵∠CAB=∠BAC ,∴△ACN ≌△ABM ;(故④正确)由于条件不足,无法证得②CD=DN ;故正确的结论有:①③④;故选C .【点睛】此题主要考查的是全等三角形的判定和性质,做题时要从最容易,最简单的开始,由易到难.6.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部分的周长是( )A .6(m ﹣n )B .3(m+n )C .4nD .4m【答案】D 【解析】解:设小长方形的宽为a ,长为b ,则有b=n-3a ,阴影部分的周长:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m .故选D .7.已知:如图,AD 是△ABC 的角平分线,且AB :AC=3:2,则△ABD 与△ACD 的面积之比为( )A .3:2B .9:4C .2:3D .4:9【答案】A 【解析】试题解析:过点D 作DE ⊥AB 于E ,DF ⊥AC 于F.∵AD 为∠BAC 的平分线,∴DE=DF ,又AB:AC=3:2, 11:():():3:222ABD ACD S S AB DE AC DF AB AC ∴=⋅⋅==, 故选A.点睛:角平分线上的点到角两边的距离相等.8.如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a ,b ,c ,d 之间关系的式子中不正确的是( )A.a﹣d=b﹣c B.a+c+2=b+d C.a+b+14=c+d D.a+d=b+c【答案】A【解析】观察日历中的数据,用含a的代数式表示出b,c,d的值,再将其逐一代入四个选项中,即可得出结论.【详解】解:依题意,得:b=a+1,c=a+7,d=a+1.A、∵a﹣d=a﹣(a+1)=﹣1,b﹣c=a+1﹣(a+7)=﹣6,∴a﹣d≠b﹣c,选项A符合题意;B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+1)=2a+9,∴a+c+2=b+d,选项B不符合题意;C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+1)=2a+15,∴a+b+14=c+d,选项C不符合题意;D、∵a+d=a+(a+1)=2a+1,b+c=a+1+(a+7)=2a+1,∴a+d=b+c,选项D不符合题意.故选:A.【点睛】考查了列代数式,利用含a的代数式表示出b,c,d是解题的关键.9.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.【答案】D【解析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是D.【详解】解:观察图形可知图案D通过平移后可以得到.故选D.【点睛】本题考查图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.10.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x-1)=1035 C.12x(x+1)=1035 D.12x(x-1)=1035【答案】B【解析】试题分析:如果全班有x名同学,那么每名同学要送出(x-1)张,共有x名学生,那么总共送的张数应该是x(x-1)张,即可列出方程.∵全班有x名同学,∴每名同学要送出(x-1)张;又∵是互送照片,∴总共送的张数应该是x(x-1)=1.故选B考点:由实际问题抽象出一元二次方程.二、填空题(本题包括8个小题)11.已知x1,x2是方程x2-3x-1=0的两根,则1211x x+=______.【答案】﹣1.【解析】试题解析:∵1x,2x是方程2310x x--=的两根,∴123x x+=、121x x=-,∴1211x x+=1212x xx x+=31-=﹣1.故答案为﹣1.12.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线21y x k2=+与扇形OAB的边界总有两个公共点,则实数k的取值范围是.【答案】-2<k<12。
厦门九年级的的数学质检试题及答案.docx
∴∠ACD=∠EAB=72°.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分
∵CB平分∠ACD,
1
∴
∠BCD=2∠ACD=36°.
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分
图1
∵
∥ ,
AB CD
∴∠ABC=∠BCD=36°.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分解法二:如图1∵AB∥CD,
∴∠ABC=∠BCD.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分
1
∴OD=OC=2BD.
∵∠DBC=30°,
∴在Rt△BCD中,∠BDC=90°-30°=60°,
1
CD=2BD.
∵CE=CD,
1
∴CE=2BD.⋯⋯⋯⋯⋯⋯⋯⋯⋯6分
2
∵
OE=2
BD,
∴
2
1
2
在△OCE中,OE=
BD.
2
2
2
1
2
1
2
1
2
又∵
OC+CE=4BD+4BD=2BD,
2
2
2
∴OC+CE=OE.
列正确的是
a>b,a>b+c,c<0的逻辑关系的表述,下
A.因为a>b+c,所以a>b,c<0B.因为a>b+c,c<0,所以a>b
C.因为a>b,a>b+c,所以c<0D .因为a>b,c<0,所以a>b+c
10.据资料,我国古代数学家刘徽发展了测量不可到达的物体的高度的“重差术”,如:通过
下列步骤可测量山的高度
y=-
6
6
.⋯⋯⋯⋯⋯⋯⋯⋯⋯
7分
n
x+
mn
n
因为点C在直线DE上,
6
6
6
所以把C(n, )代入y=-x+ ,化简得m=2n.
2018-2019学年九年级上学期期中考试数学试题(含答案)
2018~2019学年度第一学期期中质量调研九年级数学一、选择题(每小题3分,共30分)1.一元二次方程x 2-2x -1=0的根的情况为( )A .只有一个实数根B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根2.一个长方形的面积为210 cm 2,宽比长少7 cm.设它的宽为x cm ,则可得方程( )A .2(x +7)+2x =210B .x +(x +7)=210C .x (x -7)=210D .x (x +7)=2103.有两个一元二次方程:①02=++c bx ax ,②02=++a bx cx ,其中a +c =0, 以下四个结论中,错误的是( ) A .如果方程①有两个相等的实数根,那么方程②也有两个相等的实数根; B .如果方程①和方程②有一个相同的实数根,那么这个根必定是x=1;C .如果4是方程①的一个根,那么14是方程②的一个根;D .方程①的两个根的符号相异,方程②的两个根的符号也相异;4.若二次函数c bx ax y ++=2的x 与y 的部分对应值如下表: x-7 -6 -5 -4 -3 -2 y-27-13-3353则当0=x 时,y 的值为( )A .5B .-3C .-13D .-275.二次函数c bx ax y ++=2的图象如图所示,反比例函数x ay =与正比例函数x c b y )(+=在同一坐标系中的大致图象可能是A B C D 6.如果将抛物线2y x =向左平移4个单位,再向下平移2个单位后,那么此时抛物线的表达式是( ). A .2(4)2y x =--B .2(4)2y x =-+C .2(4)2y x =+-D .2(4)2y x =++xxxxxyyyyy2018.107.若1(4,)A y -,1(3,)B y -,1(1,)C y 为二次函数242y x x =+-的图象上的三点,则1y ,2y ,3y 的大小关系是( ).A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<8.如图,Rt OAB △的顶点(2,4)A -在抛物线2y ax =上,将Rt OAB △绕点O 顺时针旋转90︒,得到OCD △,边CD 与该抛物线交于点P ,则点P 的坐标为( ). A .(2,2)B .(2,2)C .(2,2)D .(2,2)(第8题) (第9题) (第10题)9.如图,在Rt ABC △中,90C =︒∠,6cm AC =,2cm BC =,点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动,若点P ,Q 均以1cm/s 的速度同时出发,且当一点移动终点时,另一点也随之停止,连接PQ ,则线段PQ 的最小值是( ). A .20cmB .18cmC .25cmD .32cm10.如图,正方形OABC 的边长为2,OA 与x 轴负半轴的夹角为15︒,点B 在抛物线2(0)y ax a =<的图象上,则a 的值为( ). A .12-B .26-C .2-D .23-二、填空题(每小题3分,共24分)11.将一元二次方程(2)(1)3x x -+=化成一般形式,且使得二次项系数为正数,则化成一般形式后的一元二次方程是 .12.已知关于x 的方程x 2+3x +a =0的一个根为-4,则另一个根为 .13.某药品原价每盒64元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒36元,则该药品平均每次降价的百分率是 . 14.若抛物线y =x 2-k x +k -1的顶点在x 轴上,则k = .15.若抛物线2(2)3y x m x =-+-+的顶点在y 轴上,则m =__________.16.若抛物线的顶点坐标为(2,9),且它在x 轴截得的线段长为6,则该抛物线的表达式为________.17.二次函数22y x ax a =-+在 03x ≤≤的最小值是-2,则a =__________18.如图,在平面直角坐标系中,抛物线y =x 2+mx 交x 轴的负半轴于点A .点B 是y 轴正半轴上一点,点A 关于点B 的对称点A ′恰好落在抛物线上.过点A ′作x 轴的平行线交抛物线于另一点C .若点A ′的横坐标为1,则A ′C 的长为 .三、解答题(共76分)19.⑴ 2(3)5x -= ⑵ 01422=+-x x⑶ 03322=--x x⑷03)32=+--x x ( 20.(6分)已知关于x 的方程x 2+8x +12-a =0有两个不相等的实数根.⑴ 求a 的取值范围;⑵ 当a 取满足条件的最小整数时,求出方程的解.21.(6分)如图,△ABC 中,∠C =90°,BC =6,AC =4.点P 、Q 分别从点A 、出发,点P 沿A →C 的方向以每秒1个单位长的速度向点C 运动,点Q 沿B →向以每秒2个单位长的速度向点C 运动.当其中一个点先到达点C 时,点P 、运动.当四边形ABQP 的面积是△ABC 面积的一半时,求点P 运动的时间.Q BP22.(8分)某工厂设计了一款工艺品,每件成本40元,为了合理定价,现投放市场进行试销.据市场调查,销售单价是80元时,每天的销售量是50件,若销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于65元.如果降价后销售这款工艺品每天能盈利3000元,那么此时销售单价为多少元?我市某汽车零部件生产企业的利润逐年提高.据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率.(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?24.(本题满分10分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y (单位:个)与销售单价x (单位:元)有如下关系:60(3060)y x x =-+≤≤.设这种双肩包每天的销售利润为w 元. (1)求w 与x 之间的函数解析式.(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?25.(本题满分10分)如图1,在平面直角坐标系中,二次函数2(0)y ax bx c a =++>的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点,A 点在原点的左侧,B 点的坐标为(3,0),OB OC =,13OA OC =. (1)求这个二次函数的表达式.(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.(3)如图2,若点(2,)G y 是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,APG △的面积最大?求出此时P 点的坐标和APG △的最大面积.26.已知关于x 的一元二次方程x2﹣(m+1)x+(m2+1)=0有实数根. (1)求m 的值;(2)先作y=x2﹣(m+1)x+(m2+1)的图象关于x 轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n (n≥m )与变化后的图象有公共点时,求n2﹣4n 的最大值和最小值.27.(本题满分10分)已知二次函数22y ax bx =+-的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点A 的坐标为(4,0),且当2x =-和5x =时二次函数的函数值y 相等. (1)求实数a 、b 的值.(2)如图1,动点E 、F 同时从A 点出发,其中点E 以每秒2个单位长度的速度沿AB 边向终点B 运动,点F 以每秒5个单位长度的速度沿射线AC 方向运动,当点E 停止运动时,点F 随之停止运动.设运动时间为t 秒.连接EF ,将AEF △沿EF 翻折,使点A 落在点D处,得到DEF △.①是否存在某一时刻t ,使得DCF △为直角三角形?若存在,求出t 的值;若不存在,请说明理由.②设DEF △与ABC △重叠部分的面积为S ,求S 关于t 的函数关系式.参考答案及评分意见一、选择题 1-5 BDBCB ;6.【答案】C ;【解析】22242(4)(4)2y x y x y x =−−−−→=+−−−−→=+-向左平移向下平移个单位个单位. 故选C . 7.【答案】B ;【解析】二次函数2242(2)6y x x x =+-=+-,∴对称轴2x =-, ∴当14x =-,23x =-,31x =时,213y y y <<.故选B .8.【答案】C ;【解析】将(2,4)A -代入2y ax =中得:1a =,∴2y x =, 由题意知,2OB =,4BA =,∴2OD =,将2y =代入2y x =得,2x =±, ∴(2,2)P .故选C .9.【答案】C ;【解析】由题意知,AP t =,CQ t =,6CP t =-,222222(6)21236PQ PC CQ t t t t =+=-+=-+22(3)18t =-+,又∵02t ≤≤,故2t =时,220PQ =最小, 此时25PQ =.故选C .10.【答案】B ;【解析】∵正方形OABC 的边长为2,∴22OB =,由题意知,15AOB =︒∠,∴30COB =︒∠,∴2BC =,6OC =,故(6,2)B --, 代入2y ax =中得:26a -=,26a =-.故选B .二、填空题11.012=+-x x ; 12.1; 13.25%; 14.K=2;15.【答案】2;【解析】由题意知:对称轴202m x -==,解得2m =. 16.【答案】2(2)9y x =--+;【解析】∵抛物线在x 轴上截得的线段长为6,且对称轴为2x =, ∴抛物线与x 轴的两交点为(1,0)-,(5,0),设2(2)9y a x =-+,将(5,0)代入得:1a =-, ∴2(2)9y x =--+.分分分分 分20. ⑴ 根据题意得:0)12482>--a (解得:4->a⑵ ∵ 4->a ∴ 最小的整数为﹣3 ------------------------------------------------------------ ∴ x 2+8x +12﹣(﹣3)=0 即:x 2+8x +15=0解得:x 1=-3,x 2=-521.设点P 运动了x 秒,则AP =x ,BQ =2x由AC =4,BC =6得:PC =4-x ,QC =6-2xP根据题意得:ABC ABQP S S △四边形21= ∴ ABC PQC S S △△21= ∵ ∠C =90 ∴642121)26)4(21⨯⨯⨯=⋅-⋅x x -( 解得:11=x ,62=x 经检验,x =6舍去答:点P 运动的时间是1秒.22.解:设降价x 元后销售这款工艺品每天能盈利3000元. 根据题意可得:3000)550)(4080(=+--x x解这个方程得:201021==x x ,(不合题意,舍去) 当x =10时,80-x =70>65;当x =20时,80-x =60<65(不符合题意,舍去)答:此时销售单价应定为75元.23.【解析】(1)设这两年该企业年利润平均增长率为x ,则:22(1) 2.88x +=, 解得10.220%x ==,2 2.2x =-(不合题意,舍去) 故这两年该企业年利润平均增长率为20%.(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业的年利润为 2.88(120%) 3.456+=,3.456 3.4>,故该企业2017年的利润能超过3.4亿元. 24.【解析】(1)(30)w x y =-⋅(60)(30)x x =-+-2901800x x =-+-,w 与x 之间的函数解析式:2901800w x x =-+-.(2)根据题意得:22901800(45)225w x x x =-+-=--+, ∵10-<,当45x =时,w 有最大值,最大值是225.(3)当200w =时,2901800200x x -+-=,解得140x =,250x =, ∵5048<,250x =不符题意,舍去,故销售单价应定为40元. 25.【解析】(1)由已知得:(0,3)C -,(1,0)A -,将A ,B ,C 三点的坐标代入,得09303a b c a b c C -+=⎧⎪++=⎨⎪=-⎩,∴223y x x =--.(2)存在.∵(1,4)D -,∴直线CD 的解析式为:3y x =--,∴E 点的坐标为(3,0)-, 由A 、C 、E 、F 四点的坐标得:2AE CF ==,AE CF ∥,∴以A 、C 、E 、F 为顶点,的四边形为平移四边形,∴存在点F ,坐标为(2,3)-. (3)过点P 作y 轴的平行线与AG 交于点Q ,易得(2,3)G -,直线AG 为1y x =--, 设2(,23)P x x x --,则(,1)Q x x -,22PQ x x =-++,21(22)32APG APQ GPQ S S S x x =+=-++⨯△△△,当12x=时,APGS△最大,此时115,24P⎛⎫-⎪⎝⎭,APGS△最大为278.26.解:(1)对于一元二次方程x2﹣(m+1)x+(m2+1)=0,△=(m+1)2﹣2(m2+1)=﹣m2+2m﹣1=﹣(m﹣1)2,∵方程有实数根,∴﹣(m﹣1)2≥0,∴m=1.(2)由(1)可知y=x2﹣2x+1=(x﹣1)2,图象如图所示:平移后的解析式为y=﹣(x+2)2+2=﹣x2﹣4x﹣2.(3)由消去y得到x2+6x+n+2=0,由题意△≥0,∴36﹣4n﹣8≥0,∴n≤7,∵n ≤m ,m =1, ∴1≤n ≤7,令y ′=n 2﹣4n =(n ﹣2)2﹣4,∴n =2时,y ′的值最小,最小值为﹣4, n =7时,y ′的值最大,最大值为21, ∴n 2﹣4n 的最大值为21,最小值为﹣4.27.【解析】(1)由题意得:164204222552a b a b a b +-=⎧⎨--=+-⎩,解得:12a =,32b =-.(2)①由(1)知213222y x x =--,∵(4,0)A ,∴(1,0)B -,(0,2)C ,∴4OA =,1OB =,2OC =,∴5AB =,25AC =,5BC =, ∴22225AC BC AB +==,∴ABC △为Rt △,且90ACB =︒∠,∵2AE t =,5AF t =,52AF AB AE AC ==,又∵EAF CAB =∠∠,∴AEF ACB △∽△, ∴90AEF ACB ==︒∠∠,∴翻折后,A 落在D 处,∴DE AE =,∴24AD AE t ==,12EF AE t ==, 若DCF △为Rt △,点F 在AC 上时,i )∴若C 为直角顶点,则D 与B 重合,∴1522AE AB ==,55224t =÷=,如图2 ii )若D 为直角顶点,∵90CDF =︒∠,∴90ODC EDF +=︒∠∠,∵EDF EAF =∠∠,∴90OBC EAF +=︒∠∠,∴ODC OBC =∠∠,∴BC DC =, ∵OC BD ⊥,∴1OD OB ==,∴3AD =,∴34AE =,∴34t =,如图3 当点F 在AC 延长线上时,90DFC >︒∠,DCF △为钝角三角形,综上所述,34t =或54.②i )当504t <≤时,重叠部分为DEF △,∴2122S t t t =⨯⨯=.ii )当524t <≤时,设DF 与BC 相交于点G ,则重叠部分为四边形BEFG ,如图4,过点G 作GH BE ⊥于H ,设GH x =,则2x BH =,2DH x =,∴32xDB =,∵45DB AD AB t =-=-,∴3452x t =-,∴2(45)3x t =-,∴1122(45)(45)223DEF DBG S S S t t t t ===⨯⨯--⨯-△△2134025533t t =-+-.iii )当522t <≤时,重叠部分为BEG △,如图5,∵2(45)52BE DE DB t t t =-=--=-,22(52)GE BE t ==-,∴21(52)2(52)420252S t t t t =⨯-⨯-=-+.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年厦门市初中总复习教学质量检测数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡. 2.答案必须写在答题卡上,否则不能得分. 3.可以直接使用2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.计算-1+2,结果正确的是A . 1B . -1C . -2D . -3 2.抛物线y =ax 2+2x +c 的对称轴是A . x =-1aB . x =-2aC . x =1aD . x =2a3.如图1,已知四边形ABCD ,延长BC 到点E ,则∠DCE 的同位角是A . ∠AB . ∠BC . ∠DCBD .∠D4.某初中校学生会为了解2017年本校学生人均课外阅读量,计划开展抽样调查.下列抽样调查方案中最合适的是A .到学校图书馆调查学生借阅量B .对全校学生暑假课外阅读量进行调查C .对初三年学生的课外阅读量进行调查D .在三个年级的学生中分别随机抽取一半学生进行课外阅读量的调查 5.若967×85=p ,则967×84的值可表示为A . p -1B . p -85C . p -967D .8584p 6. 如图2,在Rt△ACB 中,∠C =90°,∠A =37°,AC =4,则BC 的长约为(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) A . 2.4 B . 3.0 C . 3.2 D . 5.07. 在同一条直线上依次有A ,B ,C ,D 四个点,若CD -BC =AB ,则下列结论正确的是 A . B 是线段AC 的中点 B . B 是线段AD 的中点 C . C 是线段BD 的中点 D . C 是线段AD 的中点8. 把一些书分给几名同学,若 ;若每人分11本则不够. 依题意,设有x 名同学, 可列不等式9x +7<11x ,则横线上的信息可以是 A .每人分7本,则可多分9个人 B. 每人分7本,则剩余9本图1E DC B A图2 ABCC .每人分9本,则剩余7本D. 其中一个人分7本,则其他同学每人可分9本9. 已知a ,b ,c 都是实数,则关于三个不等式:a >b ,a >b +c ,c <0的逻辑关系的表述,下列正确的是A . 因为a >b +c ,所以a >b ,c <0B . 因为a >b +c ,c <0,所以a >bC . 因为a >b ,a >b +c ,所以c <0D . 因为a >b ,c <0,所以a >b +c 10. 据资料,我国古代数学家刘徽发展了测量不可到达的物体的高度的“重差术”,如:通过下列步骤可测量山的高度PQ (如图3):(1)测量者在水平线上的A 处竖立一根竹竿,沿射线QA 方向走到M 处,测得山顶P 、竹竿顶点B 及M 在一条直线上;(2)将该竹竿竖立在射线QA 上的C 处,沿原方向继续走到N 处,测得山顶P ,竹竿顶点D 及N 在一条直线上;(3)设竹竿与AM ,CN 的长分别为l ,a 1,a 2,可得公式: PQ =d ·la 2-a 1+l . 则上述公式中,d 表示的是A .QA 的长B . AC 的长 C .MN 的长D .QC 的长 二、填空题(本大题有6小题,每小题4分,共24分)11.分解因式: m 2-2m = .12.投掷一枚质地均匀的正六面体骰子,向上一面的点数为奇数的 概率是 .13.如图4,已知AB 是⊙O 的直径,C ,D 是圆上两点,∠CDB =45°,AC =1,则AB 的长为 .14. A ,B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运30kg ,A 型机器人搬运900kg 所用时间与B 型机器人搬运600kg 所用时间相等.设B 型机器人每小时 搬运x kg 化工原料,根据题意,可列方程__________________________. 15.已知a +1=20002+20012,计算:2a +1= .16.在△ABC 中,AB =AC .将△ABC 沿∠B 的平分线折叠,使点A 落在BC 边上的点D 处, 设折痕交AC 边于点E ,继续沿直线DE 折叠,若折叠后,BE 与线段DC 相交,且交点不 与点C 重合,则∠BAC 的度数应满足的条件是 .三、解答题(本大题有9小题,共86分)17.(本题满分8分)解方程:2(x -1)+1=x .18.(本题满分8分)如图5,直线EF 分别与AB ,CD 交于点A ,C ,若AB ∥CD ,CB 平分∠ACD ,∠EAB =72°,求∠ABC 的度数.FE ABC D图4B图3如图6,平面直角坐标系中,直线l经过第一、二、四象限,点A(0,m)在l上.(1)在图中标出点A;(2)若m=2,且l过点(-3,4),求直线l的表达式.20.(本题满分8分)如图7,在□ABCD中,E是BC延长线上的一点,且DE=AB,连接AE,BD,证明AE=BD.21.(本题满分8分)某市的居民交通消费可分为交通工具、交通工具使用燃料、交通工具维修、市内公共交通、城市间交通等五项.该市统计局根据当年各项的权重及各项价格的涨幅计算当年居民交通消费价格的平均涨幅. 2017年该市的有关数据如下表所示.项目交通工具交通工具使用燃料交通工具维修市内公共交通城市间交通占交通消费的比例22% 13% 5% p26% 相对上一年的价格的涨幅1.5% m% 2% 0.5% 1%(1)求p的值;(2)若2017年该市的居民交通消费相对上一年价格的平均涨幅为1.25%,求m的值.22.(本题满分10分)如图8,在矩形ABCD中,对角线AC,BD交于点O,(1)AB=2,AO=5,求BC的长;(2)∠DBC=30°,CE=CD,∠DCE<90°,若OE=22BD,求∠DCE的度数.l图6图7E AB CD图8OAB CDE已知点A ,B 在反比例函数y =6x (x >0)的图象上,且横坐标分别为m ,n ,过点A ,B 分别向y 轴、x 轴作垂线段,两条垂线段交于点C ,过点A ,B 分别作AD ⊥x 轴于D ,作BE ⊥y 轴于E.(1)若m =6,n =1,求点C 的坐标;(2)若m 错误!链接无效。
=3,当点C 在直线DE 上时,求n 的值.24.(本题满分11分)已知AB =8,直线l 与AB 平行,且距离为4,P 是l 上的动点,过点P 作PC ⊥AB 交线段AB 于点C ,点C 不与A ,B 重合,过A ,C ,P 三点的圆与直线PB 交于点D . (1)如图9,当D 为PB 的中点时,求AP 的长;(2)如图10,圆的一条直径垂直AB 于点E ,且与AD 交于点M .当ME 的长度最大时,判断直线PB 是否与该圆相切?并说明理由.25.(本题满分14分)已知二次函数y =ax 2+bx +t -1,t <0, (1)当t =-2时,① 若函数图象经过点(1,-4),(-1,0),求a ,b 的值;② 若2a -b =1,对于任意不为零的实数a ,是否存在一条直线y =kx +p (k ≠0),始终与函数图象交于不同的两点?若存在,求出该直线的表达式;若不存在,请说明理由.(2)若点A (-1,t ),B (m ,t -n )(m >0,n >0)是函数图象上的两点,且S △AOB =12n -2 t ,当-1≤x ≤m 时,点A 是该函数图象的最高点,求a 的取值范围.图9 A l C B DP 图10 l A M E C B D P2018年厦门市九科教学质量检测数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分) 题号 1 2 3 4 5 6 7 8 9 10 选项AABDCBDCDB二、填空题(本大题共6小题,每题4分,共24分)11. m (m -2). 12. 12. 13. 2. 14. 900x +30=600x .15. 4001. 16.100°<∠BAC <180°. 三、解答题(本大题有9小题,共86分)17.(本题满分8分)解:2x -2+1=x .…………………………4分 2x -x =2-1.…………………………6分 x =1.…………………………8分18.(本题满分8分)解法一:如图1∵ AB ∥CD ,∴ ∠ACD =∠EAB =72°.…………………………3分 ∵ CB 平分∠ACD , ∴ ∠BCD =12∠ACD =36°. …………………………5分∵ AB ∥CD ,∴ ∠ABC =∠BCD =36°. …………………………8分 解法二:如图1∵ AB ∥CD ,∴ ∠ABC =∠BCD . …………………………3分 ∵ CB 平分∠ACD ,∴ ∠ACB =∠BCD . …………………………5分 ∴ ∠ABC =∠ACB .∵ ∠ABC +∠ACB =∠EAB , ∴ ∠ABC =12∠EAB =36°. …………………………8分19.(本题满分8分)图1FE ABC Dl.(1)(本小题满分3分)如图2;…………………………3分(2)(本小题满分5分)解:设直线l 的表达式为y =kx +b (k ≠0),…………………………4分 由m =2得点A (0,2), 把(0,2),(-3,4)分别代入表达式,得⎩⎨⎧b =2,-3k +b =4. 可得⎩⎪⎨⎪⎧b =2,k =-23 .…………………………7分所以直线l 的表达式为y =-23x +2. …………………………8分20.(本题满分8分)证明:如图3∵ 四边形ABCD 是平行四边形,∴ AB ∥DC ,AB =DC .………………………… 2分 ∵ DE =AB , ∴ DE =DC .∴ ∠DCE =∠DEC .…………………………4分 ∵ AB ∥DC ,∴ ∠ABC =∠DCE . …………………………5分∴ ∠ABC =∠DEC . …………………………6分 又∵ AB =DE ,BE =EB ,∴ △ABE ≌△DEB . …………………………7分 ∴ AE =BD . …………………………8分21.(本题满分8分)(1)(本小题满分3分)解:p =1-(22%+13%+5%+26%)…………………………2分=34%. …………………………3分 (2)(本小题满分5分) 解:由题意得22%×1.5%+13%×m %+5%×2%+34%×0.5%+26%×1%22%+13%+5%+34%+26%=图3EA B C D1.25%. …………………7分解得m =3. …………………………8分22.(本题满分10分)(1)(本小题满分4分)解:如图4∵四边形ABCD 是矩形,∴ ∠ABC =90°,AC =2AO =25.………………………2分 ∵ 在Rt △ACB 中,∴ BC =AC 2-AB 2 ………………………3分=4.………………………4分 (2)(本小题满分6分)解:如图4∵ 四边形ABCD 是矩形,∴ ∠DCB =90°,BD =2OD ,AC =2OC ,AC =BD . ∴ OD =OC =12BD .∵ ∠DBC =30°,∴ 在Rt △BCD 中,∠BDC =90°-30°=60°, CD =12BD .∵ CE =CD ,∴ CE =12BD .………………………6分∵ OE =22BD , ∴ 在△OCE 中,OE 2=12BD 2.又∵ OC 2+CE 2=14BD 2+14BD 2=12BD 2,∴ OC 2+CE 2=OE 2.∴ ∠OCE =90°.…………………8分 ∵ OD =OC ,∴ ∠OCD =∠ODC =60°.…………………9分∴ ∠DCE =∠OCE -∠OCD =30°.…………………10分图4OABCDE23.(本题满分11分)(1)(本小题满分分)解:因为当m =6时,y =66=1,…………………2分又因为n =1, 所以C (1,1).…………………4分 (2)(本小题满分分)解:如图5A ,B 的横坐标分别为m ,n , 所以A (m ,6m ),B (n ,6n)(m >0,n >0),所以D (m ,0),E (0,6n ),C (n ,6m ).………………………6分设直线DE 的表达式为y =kx +b ,(k ≠0),把D (m ,0),E (,6n )分别代入表达式,可得y =-6mn x +6n .………………………7分因为点C 在直线上,所以把C (n ,6m )代入y =-6mn x +6n,化简得m =2n .把m =2n 代入m (n -2)=3,得2n (n -2)=3.,………………………9分 解得n =2±102.………………………10分因为n >0,所以n =2+102.………………………11分24.(本题满分11分)(1)(本小题满分5分)解法一:如图6,∵ PC ⊥AB , ∴ ∠ACP =90°.∴ AP 是直径.…………………2分∴ ∠ADP =90°. …………………3分即AD ⊥PB .又∵ D 为PB 的中点,∴ AP =AB =8.…………………5分解法二:如图7,设圆心为O ,PC 与AD 交于点N ,连接OC ,OD .∵ ︵CD =︵CD ,图6A lC BD PB C A DE图5O ·lDPN∴ ∠CAD =12∠COD ,∠CPD =12∠COD .∴ ∠CAD =∠CPD .…………………1分∵ ∠ANC =∠PND ,又∵ 在△ANC 和△PND 中,∠NCA =180°-∠CAN -∠ANC , ∠NDP =180°-∠CPN -∠PND ,∴ ∠NCA =∠NDP . …………………2分 ∵ PC ⊥AB ,∴ ∠NCA =90°.∴ ∠NDP =90°. …………………3分 即AD ⊥PB .又∵ D 为PB 的中点,∴ AP =AB =8.…………………5分(2)(本小题满分6分)解法一:当ME 的长度最大时,直线PB 与该圆相切. 理由如下:如图8,设圆心为O ,连接OC ,OD . ∵ ︵CD =︵CD ,∴ ∠CAD =12∠COD ,∠CPD =12∠COD .∴ ∠CAD =∠CPD .又∵ PC ⊥AB ,OE ⊥AB , ∴ ∠PCB =∠MEA =90°.∴ △MEA ∽△BCP . …………………7分 ∴ ME BC =AE PC.∵ OE ⊥AB , 又∵ OA =OC , ∴ AE =EC .设AE =x ,则BC =8-2x .由ME BC =AE PC ,可得ME =-12(x -2)2+2.…………………8分 ∵ x >0,8-2x >0,图8l AM EC BD PO ·∴ 0<x <4. 又∵ -12<0,∴ 当x =2时,ME 的长度最大为2.…………………9分 连接AP ,∵ ∠PCA =90°, ∴ AP 为直径.∵ AO =OP ,AE =EC , ∴ OE 为△ACP 的中位线. ∴ OE =12PC .∵ l ∥AB ,PC ⊥AB , ∴ PC =4. ∴ OE =2.∴ 当ME =2时,点M 与圆心O 重合.…………………10分 即AD 为直径.也即点D 与点P 重合.也即此时圆与直线PB 有唯一交点.所以此时直线PB 与该圆相切.…………………11分解法二:当ME 的长度最大时,直线PB 与该圆相切. 理由如下:如图8,设圆心为O ,连接OC ,OD . ∵ OE ⊥AB , 又∵ OA =OC , ∴ AE =EC .设AE =x ,则CB =8-2x . ∵ ︵CD =︵CD ,∴ ∠CAD =12∠COD ,∠CPD =12∠COD .∴ ∠CAD =∠CPD .又∵ PC ⊥AB ,OE ⊥AB , ∴ ∠PCB =∠MEA =90°.∴ △MEA ∽△BCP . …………………7分图8l AMEC BD PO ·∴ ME BC =AE PC. 可得ME =-12(x -2)2+2.…………………8分 ∵ x >0,8-2x >0,∴ 0<x <4.又∵ -12<0, ∴ 当x =2时,ME 的长度最大为2.…………………9分连接AP ,∵ AE =x =2,∴ AC =BC =PC =4.∵ PC ⊥AB ,∴ ∠PCA =90°,∴ 在Rt △ACP 中,∠P AC =∠APC =45°.同理可得∠CPB =45°.∴ ∠APB =90°.即AP ⊥PB . …………………10分又∵ ∠PCA =90°,∴ AP 为直径.∴ 直线PB 与该圆相切.…………………11分25.(本题满分14分)(1)(本小题满分7分)①(本小题满分3分)解:当t =-2时,二次函数为y =ax 2+bx -3.把(1,-4),(-1,0)分别代入y =ax 2+bx -3,得⎩⎨⎧a +b -3=-4,a -b -3=0.…………………………1分 解得⎩⎨⎧a =1,b =-2. 所以a =1,b =-2.…………………………3分②(本小题满分4分)解法一:因为2a -b =1,所以二次函数为y =ax 2+(2a -1)x -3.所以,当x =-2时,y =-1;当x =0时,y =-3.所以二次函数图象一定经过(-2,-1),(0,-3).…………………………6分 设经过这两点的直线的表达式为y =kx +p (k ≠0),把(-2,-1),(0,-3)分别代入,可求得该直线表达式为y =-x -3.…………7分即直线y =-x -3始终与二次函数图象交于(-2,-1),(0,-3)两点.解法二:当直线与二次函数图象相交时,有kx +p =ax 2+(2a -1)x -3.整理可得ax 2+(2a -k -1)x -3-p =0.可得△=(2a -k -1)2+4a (3+p ).…………4分若直线与二次函数图象始终有两个不同的交点,则△>0.化简可得4a 2-4a (k -p -2)+(1+k )2>0.因为无论a 取任意不为零的实数,总有4a 2>0,(1+k )2≥0所以当k -p -2=0时,总有△>0.………………………6分可取p =1,k =3.对于任意不为零的实数a ,存在直线y =3x +1始终与函数图象交于不同的两点.…………7分(2)(本小题满分7分)解:把A (-1,t )代入y =ax 2+bx +t -1,可得b =a -1.………………………8分 因为A (-1,t ),B (m ,t -n )(m >0,n >0),又因为S △AOB =12n -2t , 所以12[(-t )+(n -t )](m +1)-12×1×(-t )-12×(n -t )m =12n -2t . 解得m =3.………………………10分所以A (-1,t ),B (3,t -n ).因为n >0,所以t >t -n .当a >0时,【二次函数图象的顶点为最低点,当-1≤x ≤3时,若点A 为该函数图象最高点,则y A ≥y B 】,分别把A (-1,t ),B (3,t -n )代入y =ax 2+bx +t -1,得t =a -b +t -1,t -n =9a +3b +t -1.因为t >t -n ,所以a -b +t -1>9a +3b +t -1.可得2a +b <0.即2a +(a -1)<0.解得a <13. 所以0<a <13. 当a <0时,由t >t -n ,可知:【若A ,B 在对称轴的异侧,当-1≤x ≤3时,图象的最高点是抛物线的顶点而不是点A ;若A ,B 在对称轴的左侧,因为当x ≤-b 2a时,y 随x 的增大而增大,所以当-1≤x ≤3时,点A 为该函数图象最低点;若A ,B 在对称轴的右侧,因为当x ≥-b 2a时,y 随x 的增大而减小,所以当-1≤x ≤3时,若点A 为该函数图象最高点,则】-b 2a≤-1. 即-a -12a≤-1. 解得a ≥-1.所以-1≤a <0.………………………13分综上,0<a <13或-1≤a <0.………………………14分。