结构可靠度基本理论

合集下载

结构可靠度分析基础和可靠度设计方法

结构可靠度分析基础和可靠度设计方法

结构可靠度分析基础和可靠度分析方法1一般规定1.1当按本文方法确定分项系数和组合值系数时,除进行分析计算外,尚应根据工程经验对分析结果进行判断并进行调整。

1.1.1从概念上讲,结构可靠行设计方法分为确定性方法和概率方法。

在确定性方法中,设计中的变量按定值看待,安全系数完全凭经验确定,属于早期的设计方法。

概率方法为全概率方法和一次可靠度方法。

全概率方法使用随机过程模型及更准确的概率计算方法,从原理上讲,可给出可靠度的准确结果,但因为经常缺乏统计数据及数值计算上的复杂性,设计标准的校准很少使用全概率方法。

一次可靠度方法使用随机变量模型和近似的概率计算方法,与当前的数据收集情况及计算手段是相适应的。

所以,目前国内外设计标准的校准基本都采用一次可靠度方法。

本文说明了结构可靠度校准、直接用可靠指标进行设计的方法及用可靠指标确定设计表达式中作用,抗力分项系数和作用组合值系数的方法。

1.2按本文进行结构可靠度分析和设计时,应具备下列条件:1具有结构极限状态方程;2基本变量具有准确、可靠的统计参数及概率分布。

1.2.1进行结构可靠度分析的基本条件使建立结构的极限状态方程和基本随机变量的概率分布函数。

功能函数描述了要分析的结构的某一功能所处的状态:Z>0表示结构处于可靠状态;Z=0表示结构处于极限状态;Z<0表示结构处于失效状态。

计算结构可靠度就是计算功能函数Z>0的概率。

概率分布函数描述了基本变量的随机特征,不同的随机变量具有不同的随即特征。

1.3当有两个及两个以上的可变作用时,应进行可变作业的组合,并可采用下列规定之一进行:(1)设m种作业参与组合,将模型化后的作业在设计基准期内的总时段数,按照顺序由小到大排列,取任一作业在设计基准期内的最大值与其他作用组合,得出m种组合的最大作用,其中作用最大的组合为起控制作用的组合;(2)设m种作用参与组合,取任一作用在设计基准期内的最大值与其他作业任意时点值进行组合,得出m种组合的最大作用,其中作用最大的组合为起控制作用的组合。

结构可靠性设计基础结构可靠性理论的基本概念

结构可靠性设计基础结构可靠性理论的基本概念
第三章 结构可靠性理论的基本概念
第三章 结构可靠性理论的基本概念
主要内容:
3.1 结构可靠度的定义 3.2 结构的失效概率 3.3 结构可靠指标 3.4 可靠指标的几何意义 3.5 可靠指标与安全系数的关系 3.6 可靠指标与分项系数的关系
第3章 结构可靠度理论的基本概念
3.1 结构可靠度的定义
3.1 结构可靠度的定义
3.1.1 结构的可靠性
结构在规定的时间,在规定的条件,完成预定功能的 能力。结构的可靠性,包括结构的安全性、适用性和耐久 性。
1. 规定时间
设计使用年限 - 设计规定的结构或结构构件不需进行大修即可按其预期
目的使用的时期。
- 即房屋结构在正常设计、正常施工、正常使用和正常 维护下所应达到的使用年限,如达不到这个年限则意 味着在设计、施工、使用与维修的某一环节上出现了 非正常情况,应查找原因。
问题:设计基准期是否等于设计使用期?
3.1 结构可靠度的定义
2. 规定条件
– 正常设计 – 正常施工 – 正常使用
不考虑人为错误
3. 预定功能 – 极限承载能力要求 能承受正常施工和使用期间可能出现的各种作用。
– 结构适用性要求 在正常使用时具有良好的工作性能;
– 结构的耐久性要求 在正常维护下具有足够的耐久性。
– 结构整体承载能力要求
遭受及其偶然的作用时,能保持必要的整体稳定性偶然作 用如地震、龙卷风、爆炸(煤气或恐怖袭击)、火灾等
3.1 结构可靠度的定义
3.1.2 极限状态、极限状态方程
“极限状态”定义 整个结构或结构的一部分超过某一特定状态(达到极限
承载力;失稳;变形、裂缝宽度超过某一规定限制等)就不 能满足设计规定的某一功能要求,此特定状态称为该功能 的极限状态。

结构可靠度-可靠性的基本理论

结构可靠度-可靠性的基本理论
➢ 结构可靠与否是指结构本身而言,安全与否是指与 结构相关的生命财产而言
➢ 结构安全性的度量----安全度。主要与结构是否造 成生命财产不安全的破坏与倒塌联系;
➢ 可靠性的度量----可靠度。是针对各不同极限状态 而言。
➢ 可靠性比安全性概念更广泛、更科学
1.2 问题提出 研究结构可靠性理论是结构设计的需要
1、结构可靠性的基本概念 2、结构可靠性理论的数学基础 3、结构可靠度的分析方法 4、建筑结构作用与抗力的统计分析 5、结构体系可靠度 6、模糊可靠度理论 7、结构动力可靠性理论 8、结构时变可靠性理论
1.1 结构可靠性的定义
结构可靠性:结构在规定的时间内,在规定的条 件下,完成预定功能的能力。 结构可靠度:结构在规定的时间内,在规定的条 件下,完成预定功能的概率。
必要的稳定性 安全性、适用性、耐久性
可靠性 安全性 适用性 耐久性
安全性:
结构应能承受在正常施工和正常使用时可能出现 的各种作用;在偶然事件发生时和发生后应能保持整 体稳定性。
适用性: 结构在正常使用条件下应具有良好的工作性能。 耐久性: 结构在正常维护条件下应具有规定的耐久性能。
可靠性与安全性的区别
结构可靠性理论与应用
牛荻涛 2004.09
参考书
➢余安东、叶润修,建筑结构的安全性与可靠性,上海科技 文献出版社,1986 ➢赵国藩等,工程结构可靠度,水利水电出版社,1984 ➢吴世伟,结构可靠度分析.人民交通出版社 ,1990 ➢贡金鑫,工程结构可靠度计算方法,大连理工大学出版社, 2003 ➢李桂青,工程结构时变可靠度理论及其应用.科学出版社, 2001 ➢王光远,结构软设计理论,科学出版社,1998
Z 0 结构处于极限状态
Z gx x1, x2,, xn 0

可靠度理论

可靠度理论

2 2 Z R S
R R R
S S S
R R R 1 Z
S S S 1 Z

具体公式为:
f k (1 )
式中, fk——特征值; α——在特征值取值的保证率下所对应的系数。 保证率α——对应的可靠概率ω α=1 ω=84.13% α=1.645 ω=95% α=2 ω=97.72% α=3 ω=99.865%
结构可靠度指标的计算方法
(一)均值一次二阶矩法
中心点法是结构可靠度研究初期提出的一种方法,其 基本思想是首先将非线性功能函数在随机变量的平均 值(中心点)处进行泰勒展开并保留至一次项,然后近似 计算功能函数的平均值和标准差,进而求得可靠度指标。 该法的最大优点是计算简便,不需进行过多的数值计算, 但也存在明显的缺陷:1)不能考虑随机变量的分布概型, 只是直接取用随机变量的前一阶矩和二阶矩;2)将非线 性功能函数在随机变量均值处展开不合理,展开后的线 性极限状态平面可能较大程度地偏离原来的极限状态 曲面;3)可靠度指标会因选择不同的变量方程而发生变 化;4)当基本变量不服从正态或对数正态分布时,计算 结果常与实际偏差较大。故该法适用于基本变量,服从 正态或对数正态分布,且结构可靠度指标β=1~2的情 况。
验算点坐标
考虑到设计验算点p*应位于极限状态曲面上故g (X1*,…,Xn*)=0 因此
比较2-1求出的β。均值一次二阶矩法缺点是明显的。
(三)验算点法(JC法) 很多学者针对中心点法的弱点,提出了相应的改进措施。 验算点法,即Rackwitz和Fies-sler 提出后经hasofer 和 lind改进,被国际结构安全度联合委员会(JGSS)所推荐 的JC法就是其中的一种。作为中心点法的改进,主要 有两个特点:1)当功能函数Z为非线性时,不以通过中心 点的超切平面作为线性相似,而以通过Z=0上的某一点 x3( x31, x32, x33, …, x3n)的超切平面作为线性近似,以避 免中心点法的误差;2)当基本变量x3 具有分布类型的信 息时,将x3 分布在x31, x32, x33, …, x3n处以与正态分布等 价的条件变换为当量正态分布,这样可使所得的可靠指 标β与失效概率pf 之间有一个明确的对应关系,从而在 β中合理地反映分布类型的影响。该法能够考虑非正 态的随机变量,在计算工作量增加不多的条件下,可对 可靠度指标进行精度较高的近似计算,求得满足极限状 态方程的“验算点”设计值,便于根据规范给出的标准 值计算分项系数,以便于工作人员采用惯用的多系数表 达式。

ch3结构可靠性理论的基本概念

ch3结构可靠性理论的基本概念

S
ds
s, r
f R (r )
∞ S
fS (s)ds∫ fR (r)dr
结构的可靠度p 大于S的概率 任意值在全区间(- 结构的可靠度 s是R大于 的概率,即上式对 任意值在全区间(- ,∞) 大于 的概率,即上式对S任意值在全区间(-∞, ) 内均应成立, 内均应成立,所以 ∞ ∞ f (r)drds (3-16) ps = fS (s) R

这些基本变量的集合构成基本变量空间,也称状态空间 记为 这些基本变量的集合构成基本变量空间 也称状态空间,记为 也称状态空间
X = ( X 1 , X 2 ,L , X n )
Z = g ( X ) = g ( X 1 , X 2 ,L , X n )
则当: 则当:Z >0时, 表示结构处于可靠状态, 时 表示结构处于可靠状态, Z =0时, 表示结构处于极限状态。 时 表示结构处于极限状态。 Z <0时, 表示结构处于失效状态, 时 表示结构处于失效状态, 很明显,极限状态给出了结构“可靠” 失效” 很明显,极限状态给出了结构“可靠”与“失效”之间的界 限。 称方程 (3-2) Z = g ( X ) = g ( X 1 , X 2 ,L , X n ) = 0 为极限状态方程。 极限状态方程。

−∞


S

s, r
3.1 结构可靠度与失效概率…12 同样地, 可定义为作用S小于抗力 的概率,即先考虑R, 小于抗力R的概率 同样地,ps可定义为作用 小于抗力 的概率,即先考虑 ,
它落在dr区间的概率为: 区间的概率为:
Pf =

z <0L

f X (x1) f X (x2 )L f X (xn )dx1dx2 Ldxn (3-7)

结构可靠度理论ppt课件

结构可靠度理论ppt课件

16
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
17
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
29
3
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
均匀分布随机变量X的取值具有“均匀性” 均匀性特点:均匀分布随机变量X落在(a,b) 内任意子区间的概率只与子区间的长度有关, 而与子区间的位置无关. 可假设有这种特性的随机变量服从均匀分 布.
26
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
图 2.3 可靠度指标的几何意义及验算点
根据前面所 述,将结 构功能函 数 Z 在假 定验算 点 X*= (x1*, x2*,, xn* ) 处运用泰勒 级数展开且只 保留线 性项:
X * Xi
( X * Xi
2
xi*)
由可靠度指标 的几何 意义,验 算点和 可靠度指 标之间 具有如下 关系:
xi* Xi Xi cosi
28
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
24
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用

结构可靠度分析方法及相关理论研究共3篇

结构可靠度分析方法及相关理论研究共3篇

结构可靠度分析方法及相关理论研究共3篇结构可靠度分析方法及相关理论研究1结构可靠度分析方法及相关理论研究结构可靠度分析是一种研究结构安全性的方法。

通过对结构的设计、制造及使用过程中的不确定因素进行分析,预估结构因受力和外界干扰可能发生的损坏与破坏情况,并提供优化设计方案和预防措施,保证结构在使用中的可靠性和安全性。

在实际工程应用中,结构可靠度分析方法通常采用结构可靠度指标。

结构可靠度指标是用来刻画结构系统在特定的负荷和环境作用下表现出系统设计合理度和工程品质可靠性的数学量测指标。

通常,结构可靠度指标包括失效概率、失效密度、失效率等。

目前,常用的结构可靠度方法主要有可靠性指标法、极限状态法、模拟计算法等。

其中,可靠性指标法是一种适用于线性系统的可靠度计算方法,适用于结构状态由结构内部构件承载能力和外载荷两种因素共同决定的结构,如桥梁、塔架、钢结构、混凝土结构等。

极限状态法是一种经典的可靠度分析方法,通常被应用于非线性系统中,可以分析结构的弹塑性变形和失效过程,如地基、土石质结构、板壳结构等。

模拟计算法它包括Monte Carlo方法、等概率线性化方法等,可以通过统计学方法得到结构状态的概率分布函数或随机变量的方差和协方差,用以评估结构可靠度,如多学科优化设计等。

结构可靠度分析的研究与应用离不开相关理论。

常见的理论有概率论、随机过程理论、可靠性理论、风险评估理论等。

概率论是可靠度分析的基础理论,它研究随机现象的概率规律,将随机现象转化为数学模型,通过统计分析,得到可靠性指标和其概率分布。

随机过程理论主要研究时间和空间等随机变量,分析无规律时间和空间的演变规律,用以描述结构的可靠性问题,如振动系统的可靠性分析等。

可靠性理论包括结构可靠性基本理论、可靠度计算方法、灾害风险评估等,其中最常用的是可靠性基本理论,它提供了基本的可靠性指标和分析方法。

风险评估理论包括风险分析、风险管理等,它是对结构系统可靠性和安全性的量化评估方法。

第二章-结构可靠性的基本概念和原理

第二章-结构可靠性的基本概念和原理

若结构或结构构件达到正常使用或耐久性能的某项规
定限值,则认为其达到正常使用极限状态。如:影响正常
使用或外观的变形;影响正常使用或耐久性能的局部损坏。
(3)整体性极限状态(抗连续破坏极限状态)
结构由于局部损坏而达到其余部分将发生连续破坏(或
连续20倒21/塌4/)9状态限值。
5
2.2 可靠度基本概念
第二章:结构可靠性的基本概念和原理
2.2 可靠度基本概念
2.2.1 极限状态
1、工程结构的功能函数
无论是房屋、桥梁、隧道等工程结构设计时,应使其在
使用期内,力求在经济合理前提下满足下列各项要求:
(1)能承受正常施工和正常使用期间可能出现的各种作用
(包括荷载及外加变形或约束变形)—结构的安全性;
(2)在正常使用时具有良好的性能—结构的适用性;
N(S,S )
对R,S作标准化变



S S S
R R
R
显然, Sˆ , Rˆ 均服从 N (0 ,1分) 布.
Z R ˆR R (S ˆSS ) 0
c
o
s
S

2 R
2除上式得
S
S ˆcosSR ˆcosˆR0
c
o
s
R
S
2 R
2 S
R
2 R
2 S
2021/4/9
14
由解析几何知,在标准正态化坐标系SˆOˆ Rˆ 中,上式为极 限状态直线的标准法线式方程。 为原点 O ˆ 到极限状态 直线的法线距离 Oˆ p (见图2-4)。cosS,cosR为法线对各 坐标向量的方向余弦。 的几何意义为标准正态坐标 系中原点 O ˆ 到极限状态直线的最短距离。对结构极限 状态方程为若干相互独立、正态变量构成非线性方程 情况,同样可证明 的合理近似取值为标准正态坐标 系中原点 O ˆ 到极限状态曲面的最短距离。

结构可靠度基本理论

结构可靠度基本理论

结构可靠度基本理论摘要:目前,在结构工程领域,人们越来越认识到,只有用概率和统计的方法,才能正确地处理结构设计和分析中存在的大量不确定因素,从而对结构的安全性做出科学的评估。

近三十年来,结构可靠性理论得到了迅速的发展。

它以概率论和统计学为数学工具,形成了一个相当完整的理论体系,它还发展了许多便于在工程实际中应用的计算方法,为结构安全性评估提供了强有力的手段。

关键词:疲劳失效、可靠度、可靠性指标长期以来,在船舶与海洋工程领域,对结构的疲劳现象已进行了大量的研究,并在此基础上建立了可供实际应用的疲劳设计与分析方法。

通常,结构的疲劳损伤和疲劳寿命采用Miner线性累计损伤理论和S—N曲线来计算。

近年来,更为先进的断裂力学方法也越来越受到重视,并逐步得到了应用。

目前,这两种方法已成为船舶与海洋工程结构疲劳设计与分析的两种相互补充的基本方法。

但是,这两种方法以往都是在确定性的意义上使用的,在分析过程中,有关的参数都认为有确定的数值。

而事实上,船舶与海洋工程结构的疲劳是一个受到大量因素影响的极其复杂的现象,大多数的影响因素从本质上说是随机的。

例如,海洋中的波浪无规则地运动,由此引起结构内的交变应力就是一个随机过程。

一艘船或海洋平台,用确定性方法进行疲劳分析时,若有关参数都取均值,那么计算所得的疲劳寿命可能是规定的设计寿命的数倍甚至数十倍。

从表面上看,可以认为是充分安全的。

但是,若考虑到各参赛的不确定性,在同样的条件下,疲劳寿命大于设计寿命的概率却可能很低,实际上并不能满足安全性的要求。

在结构可靠性理论中,各种影响结构安全的不确定因素都用随机变量或随机过程来描述;在充分考虑这些不确定因素的基础上,一个结构安全与否,用该结构在规定服务期内不发生破坏的概率来度量,这一概率称为结构的可靠度。

很显然,对于受到大量不确定因素影响的船舶与海洋工程结构的疲劳问题,用结构可靠度理论来加以研究是非常适当的,可以对结构在疲劳方面的安全性做出比用确定性方法更加合理的评估。

关于结构可靠度的一点理解

关于结构可靠度的一点理解

关于结构可靠度的一点理解可靠度理论是在上世纪80年代引进我国的,经过三十年的研究和发展,已经形成了中国特色的理论体系。

现在可靠度理论已经被写入建设规范,引导着结构向高质量方向发展。

1.可靠度理论的基本概念1.1可靠度的概念工程结构的设计应在经济合理的条件下满足如下要求:①能承受正常施工和正常使用期间可能出现的各种作用(包括荷载及外加变形或约束变形);②在正常使用时具有良好的工作性能;③在正常维修和养护下,具有足够的耐久性;④在偶然事件(如地震、爆炸、龙卷风等)发生时及发生后,能够保持必要的整体稳定性[1]。

在上述四项中,第①、④项是指结构的安全性,第②项是指结构的适用性,第③项是指结构的耐久性。

所以结构可靠性的概念,应该包括三个方面:安全性、适用性及耐久性。

这三者是相互联系、相互影响的。

结构的可靠性可用可靠度指标β来衡量,β越大,就表示结构越可靠(即可靠度越大)。

1.2可靠度的不确定性因为结构在设计、施工和使用过程中常常会遇到各种不确定的因素影响,导致其在安全、适用及耐久上存在不确定性,这些不确定性又表现为以下几个方面:(1)随机性事物的条件和结果之间没有必然的因果联系,导致结果出现与否的不确定,无法根据现在状况推测未来的发展趋势。

(2)模糊性对于事物的分类界限不是很清晰,很难明确地划分到属于哪个类别。

(3)不完善性人们对世界知识无法做到完全掌握,总有未能探知的领域,对熟悉的领域也有未能完全掌握的知识,所以对某一单一物体无法做到完全的分析。

2.可靠度理论对结构设计的指导作用可靠度理论在结构上强调三个正常:正常设计、正常施工和正常使用[2]。

而其中最基本的是要保证正常设计,以确保结构的安全和使用功能。

2.1结构设计的安全性结构的安全度是结构存在的首要前提,在设计时,要按照最不利条件设计,保证结构在日常使用和突发事件时能做到“小震(众值烈度)不坏、中震(基本烈度)可修、大震不倒”。

具体的设计分两阶段,首先是按小震进行计算,使结构处于弹性阶段以保证不坏,然后进行构造设计以保证大震不倒[3]。

工程结构可靠度分析方法的综述

工程结构可靠度分析方法的综述

建筑 工 程 I} I
工程 结构 可靠度分析 方法 的综述
李 沫
( 阳 建筑 大学 , 宁 沈 阳 10 0 ) 沈 辽 100
摘 要: 工程结构可靠度是指 结构在规定的时间内, 定的条件 下, 在规 完成预定功能的能力。
关键词 : 工程结构 ; 可靠度 ; 分析 方法 工程 结构可靠 度是指 结构在 规定 的时间 收敛快 、 精度高的优点 , 但其结果亦为近似解。 的解析表达式 ,然后用插值的方法来确定表达 内, 在规定的条件下, 完成预定功能 的能力。 自 1 . 5中心点法 式中的未知参量, 进而求解。 4蒙特卡罗 ̄o t C r ) ne al 法 o 2 世纪 2 年代起 ,国际上开始 了结构 可靠性 0 O 中心点法是结 构可靠度研究初期提出的一 基本理论的研究 ,并逐步扩展到建筑结 构分析 种方法。其基本思想是首先将非线性功能函数 M n - ao o t C r 法是 最直 观 、 确、 e l 精 获取 信息 和设计领域 。我 国对结构可靠度理论的研究始 在随机变量的平均值 ( 中心点 ) 处作泰勒 级数展 最 多、对高次非线性问题最有效的结构可靠度 于 2 世纪 5 年代 ,在诸多专家、学者 的努力 开并保留至一次项 , O O 然后近似计算功能函数 的 统计计算方法。其基本原理是对各随机变量进 下 , 2 世纪 8 年代 以来, 自 O O 在结构可靠度方面 平均值和标 准差 。中心点法的最大特点是计算 行大量抽样 ,结构失效次数 占 抽样数的频率即 的理论和应用有 了很大的进展。本文对 目 前关 简便 , 不需进行过多 的数值计算。 但也存在 明显 为其失效概率。 由于该方 法的工作量太大 , 对于 于工程结构可靠度分析方法的现状 和存在 的问 的缺陷 : 能考虑随机变量的分布概 型; 不 将非线 大型复杂结 构的使用受到限制。为 了提高工作 题做了论述 。 性功 能函数在 随机变 量 的平均值 处展开 不合 效率 , 尽可能地减少必需的样本量 , 应 通常用减 1一次二阶矩法 理 ,随机变量 的平均值不 一定在极 限状态 曲面 少样本方差 、提高样本质量两种方法达到此 目 在实际工程 中,一次二 阶矩 法计 算简便 , 上 ; 对有相 同力学含义但 不同数学表达式的极 的。蒙特卡罗法 回避 了结构可靠度分析中的数 大多数情况下计算精度 又能满 足工程要求 , 应 限状 态方程求得的结构可靠度不 同。 因此 , 中心 学困难 ,不需考虑功能函数 的非线性和极 限状 用相当广泛 ,已成 为国际上结构可靠度分析和 点法计算的结果 比较粗糙 ,一般常用于结构可 态曲面的复杂性 , 直观、 确、 精 通用性强 ; 缺点是 计算 的基本方法。其要点是非正态随机变量的 靠度计算精度要求 不高的情况 。 计算量大 , 效率低 。 正态变换及非线性功能 函数 的线性化。 2高次高阶矩 法 5结论 工程结构可靠度基本理论的研究是一个 比 11 . 均值一次二阶矩法 21 . 二次二 阶矩法 早期结构体系可靠度分析 中, 假设线性化 当结构的功能函数在验算点附近的非线性 较活跃 的研究课题 , 是工程结构设计者与使用 点x 就是均值点 , 而由此得线性 化的极 限 化程度较高时 , 一次二阶矩法的计算精度就不 者非常关注的问题 ,对工程可靠度设计问题更 状态方 程, 随机变量 Ⅺ ( l , n统计独立 能满足一些特别重要结构的要求了。 在 i , …, = 2 ) 近年来 , 一 是一个切合 实际的问题。对于极限状态方程线 的条件下, 接获得 功能函数 z 直 的均值 m 及标 些学者把数学逼近 中的拉普拉斯渐进法用于可 性或非线性程度不高 的简单结构,用一次二阶 : 简单易行 。 对于 准差 由此 再 由可 靠指 标 8 的定 义求 取 靠度研究 中, 取得 了较好的效果 。 从公式 的表达 矩法计算可靠度足 以满足要求, B= t" 该方法对于非线性功能函数 , ma o。 因略去 上可以看 出,二次二阶矩法的结果是在一次二 大型复杂结构, 其功能函数一般 不能显示表达 , 应用响应面法、 蒙特 二阶及更高阶项,误差将 随着线性 化点到失效 阶矩 法结果 的基础上乘 1 个考虑功能 函数二次 大多是 非线性 的高次方程 , 边界距 离的增 大而增 大,而均值法 中所选用的 非线性影响 的系数 ,所 以可 以看作是对一次二 卡 洛 法 、 机 有 限 元 法则 具 有 一 定 的优 势 。 程 随 工 花费少 、 易于实 线性化点( 均值点) 一般 在可靠 区而不 在失效 边 阶矩法结果的修正。 需要强调的是 , 在广义随机 结构点可靠度的计算程序简单 、 界上, 误差较大。 空间中,对于随机变量 变换前后相关系数 的取 现, 但不能真正反应体系安全度问题, 越来越不 1 . 2改进一次二阶矩法 值依 据的是变换前后 的相关 系数 近似相等 , 这 能满足实际需要。今后 ,在完善可靠度的基础 针对均值一次二阶矩法的上述问题 , 人们 相当于一次二阶矩法随机变量 间的一次变换 , 上 ,必须加强工程结构体系可靠度计算方法的 把线性化点选在失效边界上 ,且选在与结构最 对于二次二阶矩 法是否考虑随机变量问的二次 研究 。因此 , 随着科技 的进步 , 结构体系可靠度 大可能失效概率对应 的设计验算点上 ,以克服 变换项 ,以及二 次变换项如何考虑是需要进一 的研究必将是 可靠度 的发展方向,其计算方法 必将不断完善。 均值一次二阶矩法存在的问题 ,提 出了改进 的 步研究的问题 。 次二阶矩法 。该方法无疑优于均值一次二 阶 22 .二次 四阶矩法 参 考 文 献 陈 于 郑 基 sn lt变换 的 矩法 ,为工程实际可 靠度 计算 中求 解 B的基 上述方法 的精度能得以保证的一个基本前 n1 安 龙 , 雷, 云 龙 . 于 Roebat 础。 但该方法 只是在随机变量统计独立 、 正态分 提是采用 的随机变量分布概型是 正确 的,且随 阶 可靠度 分析方 法 Ⅲ.大连理工 大学学报, 布和线性极限状态方程才是精确 的,否则只能 机变量 的有关统计参数是准确的。而随机变量 2O0o. 得到近似 的结果。 分布概 型是应用数理统计的方法经过概率分布 『 李国强, 2 1 李继华. 二阶矩 矩阵法关于相 关随机 J 重庆 ] 1 c法 -J 3 的拟合优度检验后推断确定 的,统计参数是通 向量的 结构可 靠度 计算[ . 建筑工程 学院 针对工程结构各随机变量 的非正态性 , 拉 过统计估计获得的 , J 法 。 基本原理是将非正态 的 确与否依赖于样本的容量、统计推断及参数估 【】 国藩. 易. C 其 3 赵 曹居 张宽权编著. 工程结构可靠度 变量 当量正态化 ,替代 的正态分布函数要求 在 计的方法 。二次四阶矩法利用信息论中的最大 『 . 京 : 利 电 力 出版 社 ,94 M1 北 水 1 8. 设 计验算点处 的累积概率分 布函数(D ) C F和概 熵原理构造已知信 息下 的最佳概率分布 , 基本 [】 4 李继祥. 谢桂华. 耿树勇. 军. 刘建 计算结构可靠 率 密度 函数 ( F值 分别 和原变 量的 C F值 、 上避免了上述方 法因采用经过人为加工处理过 度 的 J P ) D D c法改进 方法 『 .武 汉工业 学院 学报 , J 1 P F值相等。 D 当量正态化后 , 采用改进一次二 阶 的基本资料而可能改变其对现实真实反 映的问 2O04. 矩法的计算原理求解结构可靠 度指标 。 题。 『1 晓利 , 国 藩. 进 的 R snleh方 法及 其 5佟 赵 改 oe but 在 结构 可靠度 分析 中应用[ . J 大连理 工大学学 】 1 . 4几何法 3响应 面法 19 . 用J c法计算时 , 迭代次数较 多 , 而且 当极 大型复杂结构 的内力和位移一般要用有限 报 。9 7 限状态方程为高次非线性 时 , 其误差较大 , 为此 元法进行分析 ,这时结构的响应 与结构 上外部 人们提 出了几何法。 该方法仍采用迭代求解 , 其 激励之间的关系不能再用显式来表达 。当对结 基本思 路是先假定验 算点 将验算点值代 入 构或结构构件进行可靠度分析 时,所建立的极 极限状态 方程 G ( ) x, 沿着 G(: ) xG ) 所表 示 限状态方程也不再是显式 ,从而造成 了迭代求 的空间 曲面在 x 处的梯度 方 向前 进 ( 点 或后 解可靠度 的困难 。响应 面法是处理此类问题 的 退 )得 到 新 的 验算 点 , 后 再 进 行 迭 代 。 几何 法 …种 有 效 方 法 ,其 基本 思 想 是 先 假 设 一 个包 括 , 然 责任编辑 : 张雨 与一般的一次二 阶矩法相 比, 具有 迭代次数少 、 一些未知参量的极限状 态变量与基本变量之 间 一

结构可靠度之JC法

结构可靠度之JC法

结构可靠度之JC法结构可靠度是指一个结构在使用寿命内不发生失效的能力。

为了评估结构的可靠度,工程领域中有很多不同的方法和理论。

其中,JC法是一种常用的评估结构可靠度的方法之一。

本文将对JC法的基本原理、步骤以及应用进行介绍。

一、JC法的基本原理JC法是由日本学者Junjiro Noguchi和Kotaro Chiba于1972年提出的,用于评估结构的可靠度。

该方法基于统计学理论,通过建立一个包含结构荷载等参数的概率模型,计算结构失效的概率,并以此评估结构的可靠度。

二、JC法的步骤1. 确定结构的可靠度指标:在使用寿命内,结构发生失效的概率被称为结构的可靠度指标。

一般情况下,使用结构失效概率的对数的负值,即-logPf被用作可靠度指标。

其中,Pf为结构失效概率。

2. 确定结构荷载及其变异范围:根据具体的工程实际情况,确定结构荷载以及其变异范围。

结构荷载包括永久荷载和可变荷载等,其大小和变异范围可以通过实测数据或者国家标准来确定。

3. 建立结构的概率模型:将结构的荷载和阻力等参数作为随机变量,建立结构的概率模型。

根据不同的结构类型和工况,可以选择不同的模型,如正态模型、对数正态模型等。

4. 计算失效概率:通过概率模型,计算结构失效的概率。

失效概率可以使用不同的数值计算方法,如Monte Carlo方法、极限状态法等。

5. 评估结构的可靠度:根据计算得到的失效概率,计算结构的可靠度指标。

一般情况下,可靠度指标在0到1之间,指标越接近1,结构的可靠度越高。

三、JC法的应用JC法在工程实践中被广泛应用于评估结构的可靠度。

它可以用于评估建筑物、桥梁、管道等各种不同类型的结构的可靠度。

在结构设计阶段,可以使用JC法来优化结构参数,提高结构的可靠度。

在结构运行阶段,可以通过定期监测和检测,更新概率模型中的参数,实时评估结构的可靠度。

总结:结构可靠度是评估结构抗击外部荷载和不确定性影响能力的重要指标。

JC法作为一种常用的评估结构可靠度的方法,通过建立结构荷载及其变异范围的概率模型,计算结构失效概率,评估结构的可靠度。

工程结构可靠度讲解

工程结构可靠度讲解
工程结构可靠度
课程内容
• 介绍工程结构可靠度、安全度理论和规范 设计方法;
• 介绍以概率理论为基础的极限状态设计法 (一次二阶矩理论);
• 介绍荷载和抗力的统计分析方法; • 介绍材料性能的质量控制; • 介绍可靠度研究的动向。
1绪 论
• 工程结构的设计的两个步骤: • 1.结构选型:包括结构总体布置、结构方案
3.1 中心点法
• 中心点法是结构可靠度研究初期提出的一 种方法,其基本思想是首先将非线性功能 函数在随机变量的平均值(中心点)处作泰勒 级数展开并保留至一次项,然后近似计算 功能函数的平均值和标准差。可靠指标直 接用功能函数的平均值和标准差表示。
• 中心点法计算的结果比较粗糙,一般常用 于结构可靠度要求不高的情况,如钢筋混 凝土结构正常使用极限状态的可靠度分析。
约界法、截止枚举法、优化准则法等。
附录A 国际标准IS02394:1998 《结构可靠性总原则》简介
• 国际标准IS02394:1998《结构可靠性总 原则》,‘是由国际标准化组织ISO/TC 98技术委员会(结构设计基础)分委员会 SC2(结构可靠性)编制完成的,取代了曾经 在技术上修订过的第一版国际标准 (1S02394:1986)。
A.2 国际标准ISO 2394:1998
《结构可靠性总原则》的适用范围
• 该标准适用于各种整体结构,如房屋建筑、各种 桥梁、工业构筑物等,以及组成结构的各种结构 构件和基础的设计;适用于施工中的各个阶段, 即结构构件的制作、运输和装匈、安装和全部现 场作业,以及结构在设计工作寿命期的使用及维 修;允许不同国家之间在实际设计中有所差别, 具体到某个国家,其国家标准和实用规范与该国 际标准相比可以略作简化,或在某些方面更加详 细一些。对已有工程结构的鉴定或变更用途的评 定,该标淮同样适用,并在专门章节作了较为详 细的阐述。

结构可靠度理论及应用复习题

结构可靠度理论及应用复习题

结构可靠度理论及应用复习题1什么是施加于结构上的作用?荷载与作用有什么区别?结构上的作用是指能使结构产生效应的各种原因的总称,包括直接作用和间接作用。

引起结构产生作用效应的原因有两种,一种是施加于结构上的集中力和分布力,例如桥梁结构自重,作用于桥而的车辆、人群,施加于结构物上的风圧力、水压力、上压力等,它们都是直接施加于结构,称为直接作用。

另一种是施加于结构上的外加变形和约束变形,例如基础沉降导致结构外加变形引起的内力效应,温度变化引起结构约朿变形产生的内力效应,由于地丧造成地而运动致使结构产生惯性力引起的作用效应等。

它们都是间接作用于结构,称为间接作用。

“荷载”仅指施加于结构上的直接作用;而“作用”泛指使结构产生内力、变形的所有原因。

2结构上的作用如何按时间变异、空间位置变异、结构反应性质分类?结构上的作用按随时间变化可分永久作用、可变作用和偶然作用:按空间位置变异可分为固泄作用和自由作用;按结构反应性质可分为静态作用和动态作用。

3什么是荷载的代表值?它们是如何确定的?荷载代表值是考虑荷载变异特征所赋予的规泄疑值,工程建设相关的国家标准给出了荷载四种代表值:标准值,组合值,频遇值和准永久值。

荷载可根拯不同设计要求规定不同的代表值,其中荷载标准值是荷载的基本代表值,其它代表值都可在标准值的基础上考虑相应的系数得到。

4试述公路桥梁汽车荷载的等级和组成?车道荷载的计算图式和标准值?公路桥梁汽车荷载分为公路一I级和公路一II级两个级別,分别由车道荷载和车辆荷载组成。

桥梁结构的整体计算采用车道荷载,车道荷载由均布荷载和集中荷载组成。

桥梁结构的局部加载、涵洞、桥台和挡上墙土压力等的计算采用车辆荷载。

车辆荷载和车道荷载的作用不得叠加。

车道荷载是个虚拟荷载,它的荷载标准值办和"k是在不同车流密度、车型、车重的公路上,对实际汽车车队车重和车间距的测定和效应分析得到。

车道荷载的均布荷载标准值应满布于使结构产生最不利效应的同号影响线上:集中荷载标准值只作用于相应影响线中一个最大影响线岐值处。

工程结构设计可靠度理论

工程结构设计可靠度理论

浅谈工程结构设计可靠度理论摘要:本文简单评述了工程结构设计理论的发展,总结了结构可靠度理论的国内外研究现状;详细叙述并分析了可靠度理论的各种适用方法,指出了我国结构设计可靠度理论的不足及发展方向。

关键词:结构设计可靠度理论1工程结构设计理论的发展工程结构设计的基本目的,是在结构的可靠性与经济性之间,选择一种最佳平衡力求以最经济的途径,使结构在预定的使用期(设计工作期)内完成预定的各种功能。

自1638年伽利略奠定现代建筑力学以来,工程结构设计方法经历了容许应力设计法、破损阶段设计法、极限状态设计法。

目前应用于国内外实际工程设计都是以近似概率法为基础,规定了工程结构可靠度设计的基本原则和方法。

2结构可靠度分析方法从研究的对象来说可分为点可靠度计算方法和体系可靠度计算方法。

由于可靠度研究本身的复杂性,目前对结构体系可靠度的研究还很不成熟,仍处于探索阶段。

而结构点可靠度的计算方法已较成熟。

主要有:一次二阶矩法、高次高阶矩法、蒙特卡罗法、响应面法、帕罗黑莫法及随机有限元法等。

2.1 一次二阶矩法一次二阶矩法是近似计算可靠度指标最简单的方法,只需考虑随机变量的前一阶矩(均值)和二阶矩(标准差)和功能函数泰勒级数展开式的常数项和一次项,并以随机变量相对独立为前提,在笛卡尔空间内建立求解可靠指标的公式。

因其计算简便,大多情况下计算精度又能满足工程要求,已被工程界广泛接受。

基于一次二阶矩的分析方法主要有四种(中心点法、验算点法、映射变换法、实用分析法)。

2.2 二次二阶矩法当结构的功能函数在验算点附近的非线性化程度较高时,一次二阶矩法的计算精度就不能满足一些特别重要结构的要求了。

近年来,一些学者把数学逼近中的拉普拉斯渐进法用于可靠度研究中,取得了较好的效果。

因该法用到了非线性功能函数的二阶偏导数项,故应归属于二次二阶矩法。

2.3 二次四阶矩法上述两种方法的精度能得以保证的一个基本前提是,采用的随机变量分布概型是正确的,且随机变量的有关统计参数是准确的,而随机变量分布概型是应用数理统计的方法经过概率分布的拟合优度检验后推断确定的,统计参数是通过统计估计获得的。

结构设计知识:结构设计中的可靠度分析

结构设计知识:结构设计中的可靠度分析

结构设计知识:结构设计中的可靠度分析在工程结构设计过程中,可靠度分析是一项非常重要的工作。

结构的可靠度实际上是指设计的结构在其使用寿命内,能够满足其设计要求的能力。

因此,在设计结构时需要做好可靠度分析,以确保结构的安全可靠性。

1.可靠度的概念在结构设计中,可靠度表示一种评估设计的各种可能结果中,保证在其使用寿命内能够符合其设计要求的概率。

这种概率值通常使用R 代表,其数值一般在0到1之间。

R越大,说明结构的可靠度越高,越接近于1,也就是结构设计的风险越小。

2.可靠度分析方法为了确保工程结构的可靠性,在设计中需要进行可靠度分析。

可靠度分析的目的是评估结构的安全性和可靠性,用于确定在结构使用过程中可能出现的问题以及其概率。

下面介绍两种常用的可靠度分析方法。

2.1概率方法概率方法是一种基于概率理论的分析方法,可以对结构的可靠性进行定量分析。

概率方法要求对各种可能的负荷和材料属性不确定性进行评估,并对可能的结构失效模式进行分析,以此确定结构的可靠度。

采用概率方法的可靠度分析,可以得出工程结构的可靠度指数,以及可能致使结构失效的因素和概率。

2.2确定性方法确定性方法是一种基于工程经验和模型分析的可靠度分析方法,在工程结构分析中应用广泛。

一般情况下,确定性方法被用于结构设计工作的初期阶段。

采用确定性方法分析工程结构的可靠度,不考虑负载和材料属性的随机变化,只考虑一定的工程经验和假设,以此预测结构所承受的负载和应力。

3.应用案例实际工程结构中应用可靠度分析的案例非常多。

以桥梁工程为例,桥梁在使用的过程中,其承受的交通、风力等各种载荷,在时间和空间上都可能有很大的变化。

同时,由于桥梁的特殊结构形式,其所承受的负荷不容易用常规方法来计算。

因此,在桥梁设计中进行可靠度分析非常必要。

通过可靠度分析确定桥梁结构的可靠度,可以综合考虑各种负荷的影响,确保桥梁在使用寿命内能够安全可靠地承受各种负载。

4.可靠度分析的意义可靠度分析是结构设计中不可缺少的一部分,其意义主要体现在以下几个方面。

结构工程专业中结构可靠度理论的应用

结构工程专业中结构可靠度理论的应用

结构工程专业中可靠性理论的应用作为基本建设的主体,土木工程结构不仅关系到国计民生,还会影响到一个国家的现代化进程,因此,保证结构在规定的使用期内能够承受设计的各种作用,满足设计要求的各项使用功能,及具有不需过多维护而能保持其自身工作性能的能力是至关重要的,即要保证结构的安全性、适用性和耐久性,这三个方面构成了工程结构可靠性的基本内容。

一、采用可靠性理论的优势在规定的时间和条件下,工程结构完成预定功能的概率,是工程结构可靠性的概率度量。

工程结构可靠性,是指在规定时间和条件下,工程结构具有的满足预期的安全性、适用性和耐久性等功能的能力。

由于影响可靠性的各种因素存在着不定性,如荷载、材料性能等的变异,计算模型的不完善,制作质量的差异等,而且这些影响因素是随机的,因而工程结构完成预定功能的能力只能用概率度量。

结构能够完成预定功能的概率,称为可靠概率;结构不能完成预定功能的概率,称为失效概率。

总之,结构可靠度方法的重要意义,在于对结构安全性检验提出了建立在概率分析基础上的一系列性的概念,原理,方法和衡量标准,综合考虑了工程结构中的各种不确定因素,对结构可靠性有了一个客观的统一度量,并且力求达到最佳的经济效益,将失效概率限制在人们实践所能接受的适当程度上。

为人类社会的不断进步作出贡献。

二、结构可靠度理论目前的应用情况可靠性设计又称概率设计。

这种设计方法认为,作用于结构的真实外和在其结构的真实承载能力,都是概率意义上的量,设计时不可能予以精确地确定,称为随机变量或随机过程,它服从一定的分布。

一次为出发点进行结构设计,能够与客观实际情况更好的符合。

它能够根据结构的可靠性要求,把失效的发生控制在一种可接受的水平。

这种方法的明显好处是给出了结构可靠程度的数量概念。

对于像飞行器这样一些航空机构,概率实际法的明显优点是重量减小,并能降低成本和提高性能。

概率设计法能够解决两方面的问题:根据设计,进行分析计算已确定结构的可靠度;根据任务提出的可靠度指标,确定构建的参数。

浅谈结构可靠度研究

浅谈结构可靠度研究

施 工、 使用过程 中具 有种 种影 响其安 全 、 用 、 适 耐久 的不 确定 性。
这些不确定 性大致有 以下 几个 方面 : ) 物 的随机性 , 1事 所谓 事物 的随机 性 , 由于事 件发 生 的条 件不 充分 , 是 使得 在条件 与结 果之 间不能出现必然的因果关系 , 从而 事件的 出现 与否表现 出不确定 性, 这种不确定性称为随机性 。研究事 物随机性 的数学方 法主要 有 概率 论、 随机过程 和数 理统计 ; ) 2 事物的模糊性 , 事物本身 的概
念是模糊 的 , 即一个 对象是 否符 合这个 概念 是难 以确定 的 , 也就 是说一个集合 到底包含 哪些事 物是模糊 的 , 明确 的。主要 表现 非
在客观事物差异 的中间过 渡中的不分 明性 , 即模 糊性 。研究 和处 理模糊性 的数学方法 主要是 16 9 5年美 国 自动控 制专 家 L A z — ..a dh教授创始 的模糊数学 ; ) 物知 识的不完 善性 , e 3事 事物是 由若于 相互联系 、 相互作 用 的要素所 构成 的具有 特定 功能 的有机 整体 。 对知识的不完善性处理还没有成熟 的数学方法 , 在工 程实践 中只
第3 7卷 第 1 9期
2 0 1 1年 7 月
ห้องสมุดไป่ตู้
山 西 建 筑
SHANXI ARCHI TEC TURE
Vo _ No. 9 137 1
J 1 2 1 u. 0 1
・3 ・ 5
文章编 号:0 9 62 ( 0 ) 90 3 —2 10 —8 5 2 1 1— 0 5 0 1
目 前结构可靠度指标 的计算 是针 对线性 极 限状态 方程 或线性 化
极限状态方程而言的 , 只适用 于结构极 限状 态方程非 线性程度 它 不高的情况 , 而实 际工程 中有些情 况下 的结构极 限状态 方程非 线 性程 度可能很 高 , 这就需要考虑极 限状 态方程 的非线性 项。 因此 提出了基 于拉普拉斯逼 近原 理的渐进可靠度 分析方 法 , 虑 了极 考 限状态方程 的二次非线性 的影 响, 从而提 高了精度 。3 基 于信息 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结构可靠度基本理论
摘要:目前,在结构工程领域,人们越来越认识到,只有用概率和统计的方法,才能正确地处理结构设计和分析中存在的大量不确定因素,从而对结构的安全性做出科学的评估。

近三十年来,结构可靠性理论得到了迅速的发展。

它以概率论和统计学为数学工具,形成了一个相当完整的理论体系,它还发展了许多便于在工程实际中应用的计算方法,为结构安全性评估提供了强有力的手段。

关键词:疲劳失效、可靠度、可靠性指标
长期以来,在船舶与海洋工程领域,对结构的疲劳现象已进行了大量的研究,并在此基础上建立了可供实际应用的疲劳设计与分析方法。

通常,结构的疲劳损伤和疲劳寿命采用Miner 线性累计损伤理论和S—N 曲线来计算。

近年来,更为先进的断裂力学方法也越来越受到重视,并逐步得到了应用。

目前,这两种方法已成为船舶与海洋工程结构疲劳设计与分析的两种相互补充的基本方法。

但是,这两种方法以往都是在确定性的意义上使用的,在分析过程中,有关的参数都认为有确定的数值。

而事实上,船舶与海洋工程结构的疲劳是一个受到大量因素影响的极其复杂的现象,大多数的影响因素从本质上说是随机的。

例如,海洋中的波浪无规则地运动,由此引起结构内的交变应力就是一个随机过程。

一艘船或海洋平台,用确定性方法进行疲劳分析时,若有关参数都取均值,那么计算所得的疲劳寿命可能是规定的设计寿命的数倍甚至数十倍。

从表面上看,可以认为是充分安全
的。

但是,若考虑到各参赛的不确定性,在同样的条件下,疲劳寿命大于
设计寿命的概率却可能很低,实际上并不能满足安全性的要求。

在结构可靠性理论中,各种影响结构安全的不确定因素都用随机变量或随机过程来描述;在充分考虑这些不确定因素的基础上,一个结构安全与否,用该结构在规定服务期内不发生破坏的概率来度量,这一概率称为结构的可靠度。

很显然,对于受到大量不确定因素影响的船舶与海洋工程结构的疲劳问题,用结构可靠度理论来加以研究是非常适当的,可以对结构在疲劳方面的安全性做出比用确定性方法更加合理的评估。

下面我将从以下几个方面来介绍我学到的结构可靠度基本理论:
极限状态
在工程实际中,结构受载后的响应必须满足一定的要求,例如安全性的要求、适应性的要求,或其他一些衡准。

结构的极限状态定义为若超过此状态,结构就不能满足某一特定的要求。

结构的极限状态主要有两类:一类是承载能力极限状态,它与结构的安全性要求有关,如屈服、失稳、疲劳、断裂等引起的结构破坏的状态;另一类是正常使用极限状态,它与结构的适应性要求有关,如过度的变形、过度的振动等导致结构不能正常使用的状态。

结构超过极限状态称为“失效”,因此极限状态又称为“失效模式”
失效概率和可靠度
结构可靠性分析的任务就是要计算在规定时间内结构超过极限状态的概率,这一概率成为“失效概率”。

可把在规定时间内结构不达到极限状态的概率定义为结构的“可靠度”。

若用
P f表示失效概率,用p r表示可靠度,那么显然有
R=I-R
设结构中的工作应力为S,相应的强度为R, S和R都是随机变
量。

当R>S时,结构是安全的;当R=S时,结构达到极限状态;当
RvS时,结构发生破坏。

结构的失效概率为
P=P(R<S)
可靠度则为
p r二P(R^ S)
可靠性指标
若工作应力S和强度R是相互独立的随机变量,那么结构的失效
概率可根据二者的概率密度函数相乘并积分求得。

然而,只有当S和R具有某几种特特定的概率密度分布时,才能准备计算失效概率。


面我来讨论其中最典型也是最简单的一种情况,即S和R为相互独立的正态分布随机变量的情况:
它们的概率密度函数分别为
f s(s)= 一一exp[- 寸(U)2]
2 n (T R 式中,缶和T 分别为S 的均值和方差, 差。

现定义一个新的随机变量 乙令 Z=R-S
f R (r)=』一exp[-
;(J)2] 2 T R
乐和乐分别为R 的均值和方
由于Z 是S 和R 的线性函数,由概率论可知它也是一个正态分布 的随机变量,它的概率密度函数为
式中,也为Z 的均值,吃为Z 的标准差,它们分别为
Pz = 々-虫
2 , 2
—一 -R + -
显然,当Z>0时,R>S 结构是安全的;当Z=0,R=S,结构达到极 限状
态;当Z<O,R<S,结构发生破坏,因此结构的失效概率可写成
P f =P(R^ S)=P(Z<0)= -oo f z z dz 二F Z (0)
式中,F Z (Z )为Z 的概率分布函数。

然后将变量Z 标准正态化,得到
p =F z (0) = © (-皂)=© (- B )
式^中 B 一吃一限-p s
' — -R 2+ -s 2
B 称为结构的“可靠性指标”,由于标准正态分布函数的对称性, 所以有
© (- B )=1- © ( B )
由此可见,可靠性指标B 与失效概率p 或可靠度p r 之间有着
对应的关系,因此常用它来作为结构可靠性的度量。

可靠性指标的几何意义 f z (s)二 =-exp 卜 2 n -z S-
oZ
功能函数7= R-S的正态分布
均值距离原点的距离皮二B o Z,阴影部分面积为P f,当B变大时,F Z 曲线向右移动,P降低。

B是描述抗力载荷相对位置的物理量及离散程度,当结构抗力变大时,载荷效应减小,结构能力和载荷变异性降低,可提高结构的可靠性。

其几何意义是失效界面(线)到原点的最短距离。

算例
设一海洋结构可简化为垂直悬臂梁与海底刚性连接,在连接处由
波浪载荷引起的应力。

服从正态分布,其均值和标准差分别为F250MPa 和%=62.5MPa材料的屈服极限勺亦服从正态分布,其均值和标准差分别为%=435MPa和吟y=27.0MPa现考虑该结构在与海
底连接处发生屈服破坏的极限状态,并认为连接处的应力和材料的屈
服极限相互独立,试计算失效概率。

解:由于相互独立,所以可靠性指标为
B = B一匹一収-心 = 435- 25°
B一B一二一吓2+ 护一27.°2+62.5 2
查标准正态分布表得失效概率为
P f = © (- B )= 1- © ( B )= 1- © (2.72)=0.003264 可靠度为
R = 1-R=1-0.003264=0.996736
参考文献
胡毓仁李典庆陈伯真《船舶与海洋工程结构疲劳可靠性分析》哈尔滨工程大学出版社。

相关文档
最新文档