(完整版)2019备战中考数学基础必练(人教版)-第二十一章-一元二次方程(含解析)
2019年秋人教版九年级上册数学《第二十一章21.1一元二次方程》基础训练
2019年秋九年级上册数学《第二十一章21.1一元二次方程》基础训练一、单选题1.下列方程中,是一元二次方程的是( )A .213x +=B .22x y +=C .2324x x +=D .211x x+= 2.已知关于x 的方程(a 2-1)x 2+(1-a )x+a-2=0,下列结论正确的是( ) A .当a≠±1时,原方程是一元二次方程。
B .当a≠1时,原方程是一元二次方程。
C .当a≠-1时,原方程是一元二次方程。
D .原方程是一元二次方程。
3.(2019·遂宁)已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为( )A .0B .±1C .1D .1-4.(2019·兰州)1x =是关于x 的一元一次方程220x ax b ++=的解,则24a+b=( )A .2-B .3-C .4D .6-5.若关于x 的方程()2230m x mx -+-=是一元二次方程,则m 的取值范围是( )A .2m ≠B .2m =C .2m >D .0m ≠ 6.已知n 是方程2210x x --=的一个根,则2367n n --=( )A .10-B .7-C .6-D .4-二、填空题7.(2019·资阳)a 是方程224x x =+的一个根,则代数式242a a -的值是_______. 8.关于x 的方程(m-1)x 2+(m+1)x+3m-1=0,当m_________时,是一元一次方程;当m_________时,是一元二次方程.9.(2018·南充)若2n (n≠0)是关于x 的方程x 2﹣2mx+2n=0的根,则m ﹣n 的值为______.10.一元二次方程290x -=的解是__ .11.(2019·湖南中考模拟)在等腰ABC ∆中,A B C ∠∠∠、、的对边分别为a b c 、、,已知3,a b =和c 是关于x 的方程21202x mx m ++-=的两个实数根,则ABC ∆的周长是__________.12.方程3x 2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________.13.若关于x 的一元二次方程()221534m x x m m +++-=的常数项为0,则m 的值是__________.14.已知x =2是关于x 的一元二次方程20x bx c +-=的一个根,则b 与c 的关系是__________.(请用含b 的代数式表示c )15.当m __________时,关于x 的方程()2220m x x -+-=是一元二次方程.三、解答题16.如果x=1是方程ax 2+bx+3=0的一个根,求(a-b )2+4ab 的值.17.(2019·湖北中考模拟)已知关于x 的方程x 2﹣2kx+k 2﹣k ﹣1=0有两个不相等的实数根x 1,x 2.(1)求k 的取值范围;(2)若x 1﹣3x 2=2,求k 的值.18.关于x 的方程(2m 2+m )x m+1+3x=6可能是一元二次方程吗?为什么?19.已知一元二次方程ax2+bx+c=0(a≠0).(1)若a+b+c=0,则此方程必有一根为;(2)若a-b+c=0,则此方程必有一根为;(3)若4a-2b+c=0,则此方程必有一根为.答案1.C 2.A 3.D 4.A 5.A 6.D7.88.=1 ≠19.1210.x1=3,x2=﹣3.11.37或7512.3 −2 -413.414.42=+c b15.2≠16.917.解(1)△=(﹣2k)2﹣4(k2﹣k﹣1)=4k+4>0,∴k>﹣1;(2)∵1212322x x x x k -=⎧⎨+=⎩, ∴1231212k x k x +⎧=⎪⎪⎨-⎪=⎪⎩, ∵x 1•x 2=k 2﹣k ﹣1, ∴14(3k+1)(k ﹣1)=k 2﹣k ﹣1, ∴k 1=3,k 2=﹣1,∵k >﹣1,∴k =3.18.解关于x 的方程(2m 2+m )x m+1+3x=6是一元二次方程,理由如下:21220m m m +=+≠⎧⎨⎩ ,解得m=1,m=1时,关于x 的方程(2m 2+m )x m+1+3x=6是一元二次方程 19.解:对于一元二次方程ax 2+bx+c=0(a≠0),(1)当a+b+c=0时,x=1;(2)当a-b-c=0时,x=-1;(3)当4a-2b+c=0时,x=-2.。
人教版九年级数学上册第二十一章一元二次方程测试题(全章)
第二十一章一元二次方程周周测6一、选择题(每题3分,共30分)1.已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m的值是() A.1 B.﹣1 C.0 D.无法确定2.若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是()A.x2+3x﹣2=0 B.x2﹣3x+2=0 C.x2﹣2x+3=0 D.x2+3x+2=0 3.一元二次方程(x﹣2)=x(x﹣2)的解是()A.x=1 B.x=0 C.x1=2,x2=0 D.x1=2,x2=14.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等实数根,则k的取值范围是()A.k>12B.k≥12C.k>12且k≠1 D.k≥12且k≠15.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A.(x+2)2=9 B.(x﹣2)2=9 C.(x+2)2=1 D.(x﹣2)2=16.下列关于x的方程有实数根的是()A.x2-x+1=0 B.x2+x+1=0C.(x-1)(x+2)=0 D.(x-1)2+l=07.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100 B.100(1﹣x)2=144C.144(1+x)2=100 D.100(1+x)2=1448.一元二次方程x2+px﹣2=0的一个根为2,则p的值为()A.1 B.2 C.﹣1 D.﹣29.关于x的一元二次方程x2+2(m﹣1)x+m2=0的两个实数根分别为x1,x2,且x1+x2>0,x1x2>0,则m的取值范围是()A.m≤ B.m≤且m≠0 C.m<1 D.m<1且m≠0 10.若,a b是方程2220060x x+-=的两根,则23a a b++=()A.2006 B.2005 C.2004 D.2002第II卷(非选择题)二、填空题(每题3分,共18分)11.方程x2﹣2x=0的解为12.已知关于x的方程02=+-nmxx的两个根是0和3-,则m= ,n= .13.已知关于x的方程240x x a-+=有两个相同的实数根,则a的值是.14.已知一元二次方程22310x x--=的两根为12x x,,则=+2111xx___________.15.如图(1),在宽为20m,长为32m的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田国,假设试验田面积为570m2,求道路宽为多少?设宽为x m,从图(2)的思考方式出发列出的方程是_ .16.已知关于x的一元二次方程01)1(2=++-xxm有实数根,则m的取值范围是.三、解答题(共112分)17.(共24分,每小题6分)解下列一元二次方程.(1)x2﹣5x+1=0;(2)3(x﹣2)2=x(x﹣2).(3) 022=+x x (4)02632=+-x x18.(12分)在实数范围内定义一种新运算“”,其规则为:a b =a 2-b 2,根据这个规则:(1)求43的值; (2)求(x +2)5=0中x 的值.19.(12分)已知x 1=-1是方程052=-+mx x 的一个根,求m 的值及方程的另一根x 2。
人教版九年级上册第二十一章一元二次方程知识点及经典练习题学案
【详解】有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:
x(x﹣1)=21,
故答案为: x(x﹣1)=21.
3.绿苑小区在规划设计时,准备在两幢楼房之间,设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,可列方程为( )
把方程化为一般形式,确定a、b、c的值(若系数是分数通常将其化为整数,方便计算);
求出b2-4ac的值,根据其值的情况确定一元二次方程是否有解;
如果b2-4ac≥0, 将a、b、c的值代入求根公式:
最后求出x1,x2
1)x2- = -
解:将方程化成一般形式
x2- + =0
a=1, b= - ,c=
b2-4ac=(- )2-4×1× =0
解:A、是分式方程,故A错误;
B、是二元二次方程,故B错误;
C、a=0时,是一元一次方程,故C错误;
D、是一元二次方程,故D正确;
故选:D.
方法总结:题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.
1.判断下列关于x的方程是不是一元二次方程.
一元二次方程的一般形式
1.方程2x2﹣3x﹣5=0的二次项系数、一次项系数、常数项分别为( )
A.3、2、5B.2、3、5C.2、﹣3、﹣5D.﹣2、3、5
【答案】C
【解析】
分析:对于一元二次方程ax2+bx+c=0(a≠0)的a、b、c分别是二次项系数、一次项系数、常数项.
详解:2x2﹣3x﹣5=0的二次项系数、一次项系数、常数项分别为2、﹣3、﹣5.
人教版 九年级数学 上册 第二十一章 21.1一元二次方程解法及其配套练习
一元二次方程解法及其配套练习定义:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.解法一——直接开方法适用范围:可解部分一元二次方程直接开平方法就是用直接开平方求解一元二次方程的方法。
用直接开平方法解形如(x-m)^2=n (n≥0)的方程,其解为x=m±√n我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,我们也可以用直接开方法来解方程。
例1:解方程:(1)(2x-1) 2=5 (2)x 2+6x+9=2 (3)x 2-2x+4=-1分析:很清楚,x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.解:(2)由已知,得:(x+3)2=2直接开平方,得:x+3=即,所以,方程的两根x1,x2例2.市政府计划2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x.•一年后人均住房面积就应该是10+•10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2 解:设每年人均住房面积增长率为x,则:10(1+x)2=14.4(1+x)2=1.44直接开平方,得1+x=±1.2即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.例3.如图,在△ABC中,∠B=90°,点P从点B开始,沿AB边向点B以1cm/s•的速度移动,点Q从点B开始,沿BC边向点C以2cm/s的速度移动,如果AB=6cm,BC=12cm,•P、Q都从B点同时出发,几秒后△PBQ的面积等于8cm2?解: 设x 秒后△PBQ 的面积等于8cm 2 则PB=x ,BQ=2x 依题意,得:x ·2x=8 x 2=8 根据平方根的意义,得x=±即x 1,x 2可以验证,和都是方程x ·2x=8的两根,但是移动时间不能是负值. 所以秒后△PBQ 的面积等于8cm 2.例4.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?分析:设该公司二、三月份营业额平均增长率为x ,•那么二月份的营业额就应该是(1+x ),三月份的营业额是在二月份的基础上再增长的,应是(1+x )2. 解:设该公司二、三月份营业额平均增长率为x . 那么1+(1+x )+(1+x )2=3.31 把(1+x )当成一个数,配方得:(1+x+)2=2.56,即(x+)2=2.56 x+=±1.6,即x+=1.6,x+=-1.6方程的根为x 1=10%,x 2=-3.1因为增长率为正数,所以该公司二、三月份营业额平均增长率为10%.归纳小结:共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.•我们把这种思想称为“降次转化思想”. 由应用直接开平方法解形如x 2=p (p ≥0),那么x=转化为应用直接开平方法解形如(mx+n )2=p (p ≥0),那么mx+n=,达到降次转化之目的.若p <0则方程无解配套练习题BCAQP 12121232323232一、选择题1.若x 2-4x+p=(x+q )2,那么p 、q 的值分别是( ).A .p=4,q=2B .p=4,q=-2C .p=-4,q=2D .p=-4,q=-2 2.方程3x 2+9=0的根为( ).A .3B .-3C .±3D .无实数根 3.用配方法解方程x 2-x+1=0正确的解法是( ). A .(x-)2=,x=± B .(x-)2=-,原方程无解C .(x-)2=,x 1=x 2=D .(x-)2=1,x 1=,x 2=-二、填空题1.若8x 2-16=0,则x 的值是_________.2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________. 3.如果a 、b +b 2-12b+36=0,那么ab 的值是_______. 三、综合提高题1.解关于x 的方程(x+m )2=n .2.某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m ),•另三边用木栏围成,木栏长40m .(1)鸡场的面积能达到180m 2吗?能达到200m 吗? (2)鸡场的面积能达到210m 2吗?3.在一次手工制作中,某同学准备了一根长4米的铁丝,由于需要,现在要制成一个矩形方框,并且要使面积尽可能大,你能帮助这名同学制成方框,•并说明你制作的理由吗?解法二——配方法适用范围:可解全部一元二次方程引例:要使一块矩形场地的长比宽多6m ,并且面积为16m 2,场地的长和宽各是多少? 列出方程化简后得:x 2+6x-16=0 x 2+6x-16=0移项→x 2+6x=16两边加(6/2)2使左边配成x 2+2bx+b 2的形式 → x 2+6x+32=16+9左边写成平方形式 → (x+3)2=25 降次→x+3=±5 即 x+3=5或x+3=-5 解一次方程→x 1=2,x 2= -8可以验证:x 1=2,x 2= -8都是方程的根,但场地的宽不能使负值,所以场地的宽为2m ,常为8m.像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法. 可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.配方法解一元二次方程的一般步骤:(1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边; (4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;2313891331389235923235313(5)变形为(x+p)2=q 的形式,如果q ≥0,方程的根是x=-p ±√q ;如果q <0,方程无实根.用配方法解一元二次方程小口诀 二次系数化为一 常数要往右边移一次系数一半方两边加上最相当例1.用配方法解下列关于x 的方程 (1)x 2-8x+1=0 (2)x 2-2x-=0 分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上. 解:略例2.如图,在Rt △ACB 中,∠C=90°,AC=8m ,CB=6m ,点P 、Q 同时由A ,B•两点出发分别沿AC 、BC 方向向点C 匀速移动,它们的速度都是1m/s ,•几秒后△PCQ•的面积为Rt △ACB 面积的一半.分析:设x 秒后△PCQ 的面积为Rt △ABC 面积的一半,△PCQ 也是直角三角形.•根据已知列出等式.解:设x 秒后△PCQ 的面积为Rt △ACB 面积的一半. 根据题意,得:(8-x )(6-x )=××8×6 整理,得:x 2-14x+24=0(x-7)2=25即x 1=12,x 2=2x 1=12,x 2=2都是原方程的根,但x 1=12不合题意,舍去. 所以2秒后△PCQ 的面积为Rt △ACB 面积的一半. 例3.解下列方程(1)2x 2+1=3x (2)3x 2-6x+4=0 (3)(1+x )2+2(1+x )-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x 的完全平方.解:略例4.用配方法解方程(6x+7)2(3x+4)(x+1)=6分析:因为如果展开(6x+7)2,那么方程就变得很复杂,如果把(6x+7)看为一个数y ,那么(6x+7)2=y 2,其它的3x+4=(6x+7)+,x+1=(6x+7)-,因此,方程就转化为y•的方程,像这样的转化,我们把它称为换元法.解:设6x+7=y 则3x+4=y+,x+1=y- 12C A QP1212121212161612121616依题意,得:y 2(y+)(y-)=6 去分母,得:y 2(y+1)(y-1)=72y 2(y 2-1)=72, y 4-y 2=72(y 2-)2= y 2-=±y 2=9或y 2=-8(舍)∴y=±3当y=3时,6x+7=3 6x=-4 x=- 当y=-3时,6x+7=-3 6x=-10 x=-所以,原方程的根为x 1=-,x 2=-例5. 求证:无论y 取何值时,代数式-3 y 2+8y-6恒小于0.解:略配套练习题一、选择题1.配方法解方程2x 2-x-2=0应把它先变形为( ). A .(x-)2= B .(x-)2=0C .(x-)2=D .(x-)2=2.下列方程中,一定有实数解的是( ).A .x 2+1=0B .(2x+1)2=0C .(2x+1)2+3=0D .(x-a )2=a 3.已知x 2+y 2+z 2-2x+4y-6z+14=0,则x+y+z 的值是( ). A .1 B .2 C .-1 D .-24.将二次三项式x 2-4x+1配方后得( ). A .(x-2)2+3 B .(x-2)2-3 C .(x+2)2+3 D .(x+2)2-3 5.已知x 2-8x+15=0,左边化成含有x 的完全平方形式,其中正确的是( ). A .x 2-8x+(-4)2=31 B .x 2-8x+(-4)2=1 C .x 2+8x+42=1 D .x 2-4x+4=-116.如果mx 2+2(3-2m )x+3m-2=0(m ≠0)的左边是一个关于x 的完全平方式,则m 等于( ).A .1B .-1C .1或9D .-1或9二、填空题1.方程x 2+4x-5=0的解是________.2.代数式的值为0,则x 的值为________.12121616122894121722353235343138923138913109122221x x x ---3.已知(x+y )(x+y+2)-8=0,求x+y 的值,若设x+y=z ,则原方程可变为_______,所以求出z 的值即为x+y 的值,所以x+y 的值为______. 4.如果x 2+4x-5=0,则x=_______.5.无论x 、y 取任何实数,多项式x 2+y 2-2x-4y+16的值总是_______数. 6.如果16(x-y )2+40(x-y )+25=0,那么x 与y 的关系是________. 三、综合提高题1.用配方法解方程.(1)9y 2-18y-4=0 (2)x 22.已知三角形两边长分别为2和4,第三边是方程x 2-4x+3=0的解,求这个三角形的周长. 3.如果x2-4x+y 2+13=0,求(xy )z 的值.4.新华商场销售某种冰箱,每台进货价为2500•元,•市场调研表明:•当销售价为2900元时,平均每天能售出8台;而当销售价每降50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达5000元,每台冰箱的定价应为多少元? 5.已知:x 2+4x+y 2-6y+13=0,求的值.6.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,•为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,•如果每件衬衫每降价一元,商场平均每天可多售出2件.①若商场平均每天赢利1200元,每件衬衫应降价多少元?②每件衬衫降价多少元时,商场平均每天赢利最多?请你设计销售方案.解法三——公式法适用范围:可解全部一元二次方程首先,要通过Δ=b^2-4ac 的根的判别式来判断一元二次方程有几个根 1.当Δ=b^2-4ac<0时 x 无实数根(初中)2.当Δ=b^2-4ac=0时 x 有两个相同的实数根 即x1=x23.当Δ=b^2-4ac>0时 x 有两个不相同的实数根 当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac )}/2a 来求得方程的根求根公式的推导用配方法解方程(1) ax 2-7x+3 =0 (2)a x 2+bx+3=0(3)如果这个一元二次方程是一般形式ax 2+bx+c=0(a ≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax 2+bx+c=0(a ≠0),试推导它的两个根x 1=,x 2=222x yx y -+2b a-(这个方程一定有解吗?什么情况下有解?)分析:因为前面具体数字已做得很多,我们现在不妨把a 、b 、c•也当成一个具体数字,根据上面的解题步骤就可以一直推下去. 解:移项,得:ax 2+bx=-c二次项系数化为1,得x 2+x=- 配方,得:x 2+x+()2=-+()2即(x+)2= ∵4a 2>0,4a2>0, 当b 2-4ac ≥0时≥0∴(x+)2=()2直接开平方,得:x+=± 即x=∴x 1=,x 2=由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b 2-4ac ≥0时,将a 、b 、c 代入式子x=就得到方程的根.(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性。
(基础题)人教版九年级上册数学第二十一章 一元二次方程含答案
人教版九年级上册数学第二十一章一元二次方程含答案一、单选题(共15题,共计45分)1、关于的一元二次方程有两个相等的实数根,则的值为()A. B. C. D.2、一元二次方程x2﹣2x+3=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.无法判断3、目前我国建立了比较完善的经济困难学生资助体系,某校去年上半年发放给每个经济困难学生398元,今年上半年发放了468元.设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.398(1+x)2=468B.468(1+x)2=398C.398(1+2x)=468 D.468(1+2x)=3984、若关于x的一元二次方程x2﹣4x+5﹣a=0有实数根,则a的取值范围是()A.a≥1B.a>1C.a≤1D.a<15、若方程(a+1)x2+ax﹣1=0是关于x的一元二次方程,则a的取值范围是()A. a≥1B. a≠0C. a≠1D. a≠﹣16、方程(x﹣1)(x﹣2)=1的根是()A.x1=1,x2=2 B.x1=﹣1,x2=﹣2 C.x1=0,x2=3 D.以上都不对7、已知A,B是两个锐角,且满足,,则实数t所有可能值的和为()A. B. C.1 D.8、用配方法解方程x2+x﹣1=0,配方后所得方程是()A.(x﹣)2=B.(x+ )2=C.(x﹣)2=D.(x+ )2=9、某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八九月份平均每月的增长率为x ,那么满足的方程是()A.50(1+ x)2=196B.50+50(1+ x 2)=196C.50+50(1+ x)+50(1+2 x)=196D.50+50(1+ x)+50(1+ x)2=19610、方程2(x+1)2=1化为一般式为()A.2x 2+4x+2=1B.x 2+4x=﹣1C.2x 2+4x+1=0D.2x 2+2x+1=011、用公式法解﹣x2+3x=1时,先求出a、b、c的值,则a、b、c依次为()A.﹣1,3,﹣1B.1,﹣3,﹣1C.﹣1,﹣3,﹣1D.1,﹣3,112、已知4个数据:−,2 ,a , b ,其中a、b是方程x2-2x-1=0的两个根,则这4个数据的中位数是()A.1B.C.2D.13、是关于的一元一次方程的解,则()A.-2B.-3C.4D.-614、已知点(k,b)是平面直角坐标系第二象限内的点,则一元二次方程根的存在情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.无法确定15、由下表:6.17 6.18 6.19 6.200.04 0.1可知方程(为常数)一个根(精确到0.01)的范围是()A. B. C. D.二、填空题(共10题,共计30分)16、已知等腰三角形的一腰为x,周长为20,则方程x2﹣12x+31=0的根为________17、参加一次足球联赛的每两队之间都进行两次比赛,共要比赛90场.设共有x个队参加比赛,则依题意可列方程为________.18、若关于x的方程x2+ax+a=0有一个根为﹣3,则a的值是________.19、若关于x的一元二次方程的一个根是3,则a的值是________.20、今年六一儿童节,博雅学校六(1)班学生互赠贺卡(即每个同学要给班上的每位同学赠贺卡),共用去1560张贺卡,则六(1)班有________ 名学生.21、若关于x的一元二次方程(k﹣1)x2﹣4x﹣5=0没有实数根,则k的取值范围是________.22、用配方法解方程,将方程变为的形式,则________.23、方程4 =9的根为________.24、如果关于x的一元二次方程x2+4x﹣m=0没有实数根,那么m的取值范围是________.25、一元二次方程2x2﹣4x+1=0的根的判别式的值为________.三、解答题(共5题,共计25分)26、解方程:.27、已知二次函数的图象与x轴交于两点,且,求a的值.28、阅读材料,回答问题:材料:为解方程x4﹣x2﹣6=0,然后设x2=y,于是原方程可化为y2﹣y﹣6=0,解得y1=﹣2,y2=3.当y=﹣2时,x2=﹣2不合题意舍去;当y=3时,x2=3,解得x1=, x2=﹣.故原方程的根为x1=,x2=﹣.请你参照材料给出的解题方法,解下列方程①(x2﹣x)2﹣4(x2﹣x)﹣12=0.②﹣=2.29、试说明不论x,y取何值,代数式x2+y2+6x﹣4y+15的值总是正数.30、某小区在绿化工程中有一块长为20m、宽为8m的矩形空地,计划在其中修建两块相同的矩形绿地,使它们的面积之和为56m2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),求人行通道的宽度.参考答案一、单选题(共15题,共计45分)1、A2、C3、A4、A5、D6、D7、C8、D9、D11、A12、A13、A14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、。
人教版九年级上学期数学课时练:第二十一章 《一元二次方程》 (基础篇)
课时练:第二十一章《一元二次方程》(基础篇)一.选择题1.下列方程中,是一元二次方程的是()A.x2﹣=0 B.x2+1=0C.x(x+1)=x2﹣1 D.x2﹣2xy+y2=02.一元二次方程x2﹣7x+4=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根3.将方程x2+5x=3化为一元二次方程的一般形式,其中二次项系数为1,一次项系数、常数项分别为()A.5、﹣3 B.5、3 C.﹣5、3 D.﹣5、﹣34.在数1、2、3和4中,是方程x2﹣x﹣12=0的根为()A.1 B.2 C.3 D.45.形如x2+ax=b2的方程可用如图所示的图解法研究:画Rt△ABC,使∠ACB=90°,BC =,AC=b,再在斜边AB上截取BD=.则可以发现该方程的一个正根是()A.AC的长B.BC的长C.AD的长D.CD的长6.2018年某县政府投资2亿元人民币建设了廉租房8万平方米,预计到2020年共投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.设每年县政府投资的增长率为x,根据题意,列出方程为()A.(81+x)2=9.5 B.2(1+x)2=9.5C.2(1+x)2=8 D.2+2(1+x)+2(1+x)2=9.57.已知(a2﹣b2)2﹣(a2﹣b2)﹣12=0,则a2﹣b2的值是()A.﹣3 B.4 C.﹣3或4 D.3或﹣48.某次足球比赛中,每两个足球队之间要进行一次主场比赛和一次客场比赛,所以共组织了20场比赛,这次比赛共有几个队参加比赛()A.10个B.6个C.5个D.4个9.如图,在一块长为30m,宽为24m的矩形空地上,修建同样宽的两条互相垂直的小路,其余部分建成花园,已知小路的占地面积为53m2,那么小路的宽为多少?()A.1m B.1.5m C.2m D.2.5m10.已知一元二次方程ax2+bx+c=0(a≠0)①若方程两根为﹣1和2,则2a+c=0;②b>a+c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;④若m是方程ax2+bx+c=0的一个根,则一定有b2﹣4ac=(2am+b)2成立其中正确的是()A.只有①②③B.只有①③④C.只有①②③④D.只有①④二.填空题11.若方程x2+(m2﹣1)x+1+m=0的两根互为相反数,则m=.12.若关于x的方程x2﹣4x+k﹣1=0有两个不相等的实数根,则k的取值范围是.13.当x=1时,代数式ax2﹣2bx+1的值等于5,则当x=2时,代数式﹣2ax2+8bx﹣1的值为.14.若等腰三角形一边为3,另两边是关于的方程x2﹣(k+2)x+2k=0的根,则三角形的周长为.15.如图,在长为32米、宽为20米的长方形绿地内,修筑两条同样宽且分别平行于长方形相邻两边的道路,把绿地分成4块,这4块绿地的总面积为540平方米.如果设道路宽为x米,由题意所列出关于x的方程是.三.解答题16.解方程:(1)2(x﹣3)=3x(x﹣3)(2)3x2﹣2x﹣2=0.17.阅读下列材料:若关于x的一元二次方程ax2+bx+c=0的两个非零实数根分别为x1,x2,则x1+x2=﹣,x1x2=.解决下列问题:已知关于x的一元二次方程(x+n)2=6x有两个非零不等实数根x1,x2,设m=,(Ⅰ)当n=1时,求m的值;(Ⅱ)是否存在这样的n值,使m的值等于?若存在,求出所有满足条件的n的值;若不存在,请说明理由.18.某种服装平均每天可销售20件,每件盈利44元,若每件降价1元,每天可多售5件,若设每件降价x元.(1)根据题意,填表:每件利润(元)销售量(件)利润(元)降价前44 20 880降价后①②(2)若每天盈利1600元,则每件应降价多少元?19.如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”.(1)请问一元二次方程x2﹣6x+8=0是倍根方程吗?如果是,请说明理由.(2)若一元二次方程x2+bx+c=0是倍根方程,且方程有一个根为2,求b、c的值.20.如图,矩形ABCD中,AB=6厘米,BC=12厘米,点P从A开始沿AB边向点B以1厘米/秒的速度移动,点Q从点B开始沿BC边向点C以2厘米/秒的速度移动,如果P、Q分别是从A、B同时出发,设时间为x秒(1)经过几秒时,△PBQ的面积等于8平方厘米?(2)经过几秒时,△PBQ的面积等于矩形面积的?参考答案一.选择题1.解:A、为分式方程,不符合题意;B、只含有一个未知数x,未知数的最高次数是2,二次项系数不为0,是一元二次方程,符合题意;C、由原方程得到:x+1=0,未知数的最高次数是1,不是一元二次方程,不符合题意;D、含有2个未知数,不符合题意;故选:B.2.解:△=(﹣7)2﹣4×4=12>0,‘所以方程有两个不相等的实数根.故选:B.3.解:x2+5x=3化为一元二次方程的一般形式x2+5x﹣3=0,一次项系数、常数项分别是5,﹣3,故选:A.4.解:(x﹣4)(x+3)=0,x﹣4=0或x+3=0,所以x1=4,x2=﹣3.故选:D.5.解:由勾股定理得:BC2+AC2=AB2,∵BD=BC=,AC=b,∴()2+b2=(+AD)2,整理得:b2=ADa+AD2,∵x2+ax=b2,∴方程的解是AD的长,故选:C.6.解:设每年县政府投资的增长率为x,根据题意得:2+2(1+x)+2(1+x)2=9.5.故选:D.7.解:设t=a2﹣b2,则由原方程,得t2﹣t﹣12=0,整理,得(t﹣4)(t+3)=0,解得t=4或t=﹣3.故选:C.8.解:设有x个足球队参加,依题意,x(x﹣1)=20,整理,得x2﹣x﹣20=0,(x﹣5)(x+4)=0,解得:x1=5,x2=﹣4(舍去);即:共有5个足球队参加比赛.故选:C.9.解:设道路的宽应为x米,由题意有(30﹣x)(24﹣x)=30×24﹣53,解得:x=53(舍去)或x=1.答:修建的路宽为1米.故选:A.10.解:若方程两根为﹣1和2,则=﹣1×2=﹣2,即c=﹣2a,2a+c=2a﹣2a=0,故①正确;由b>a+c不能判断△=b2﹣4ac值的大小情况,故②错误;若b=2a+3c,则△=b2﹣4ac=4(a+c)2+5c2>0,一元二次方程ax2+bx+c=0有两个不相等的实数根,故③正确.若m是方程ax2+bx+c=0的一个根,所以有am2+bm+c=0,即am2=﹣(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a[﹣(bm+c)]+4abm+b2=4abm﹣4abm﹣4ac+b2=b2﹣4ac.故④正确;故选:B.二.填空题(共5小题)11.解:∵方程x2+(m2﹣1)x+1+m=0的两根互为相反数,∴1﹣m2=0,解得:m=1或﹣1,把m=1代入原方程得:x2+2=0,该方程无解,∴m=1不合题意,舍去,把m=﹣1代入原方程得:x2=0,解得:x1=x2=0,(符合题意),∴m=﹣1,故答案为:﹣1.12.解:根据题意得△=(﹣4)2﹣4(k﹣1)>0,解得k<5.故答案为k<5.13.解:∵x=1时ax2﹣2bx+1的值等于5,∴a﹣2b+1=5,即a﹣2b=4,∴当x=2时,﹣2ax2+8bx﹣1=﹣8a+16b﹣1=﹣8(a﹣2b)﹣1=﹣8×4﹣1=﹣33.故答案为﹣33.14.解:①当3为底边时,设腰为a,∵等腰三角形一边为3,另两边是关于的方程x2﹣(k+2)x+2k=0的根,∴a+a=k+2,a•a=2k,解得:a=2,即等腰三角形的三边为2,2,3,符合三角形三边关系定理,此时三角形的周长为2+2+3=7;②当3为腰时,设底边为b,∵等腰三角形一边为3,另两边是关于的方程x2﹣(k+2)x+2k=0的根,∴3+b=k+2,3•b=2k,解得:b=2,即等腰三角形的三边为2,3,3,符合三角形三边关系定理,此时三角形的周长为2+3+3=8;故答案为:7或8.15.解:设道路的宽为x米.依题意得:(32﹣x)(20﹣x)=540,故答案为:(32﹣x)(20﹣x)=540.三.解答题(共5小题)16.解:(1)2(x﹣3)=3x(x﹣3),2(x﹣3)﹣3x(x﹣3)=0,(x﹣3)(2﹣3x)=0所以x1=3,x2=;(2)3x2﹣2x﹣2=0.∴a=3,b=﹣2,c=﹣2,△=(﹣2)2﹣4×3×(﹣2)=28,x==,所以x1=,x2=.17.解:(Ⅰ)∵关于x的一元二次方程(x+1)2=6x,即x2﹣4x+1=0有两个非零不等实数根x1,x2,∴x1+x2=4,x1•x2=1,∴m====4;(Ⅱ)存在.理由:∵关于x的一元二次方程(x+n)2=6x,即x2+(2n﹣6)x+n2=0有两个非零不等实数根x1,x2,∴△=(2n﹣6)2﹣4n2>0,解得n<.∵x1+x2=6﹣2n,x1•x2=n2,∴m===,∴当m=时,即=,整理得:n2+4n﹣12=0,解得:n1=﹣6,n2=2,∵n<,∴n=﹣6;∴使m=的值存在,此时n=﹣6.18.解:(1)根据题意,填表:每件利润(元)销售量(件)利润(元)降价前44 20 880降价后44﹣x20+5x(2)根据题意得:(44﹣x)(20+5x)=1600,整理得:(x﹣4)(x﹣36)=0,解得:x=4或x=36,则应降价4元或36元.19.解:(1)该方程是倍根方程,理由如下:x2﹣6x+8=0,解得x1=2,x2=4,∴x2=2x1,∴一元二次方程x2﹣6x+8=0是倍根方程.(2)∵方程x2+bx+c=0是倍根方程,且方程有一个根为2,∴方程的另一个根是1或4,当方程根为1,2时,﹣b=1+2,解得b=﹣3,c=1×2=2;当方程根为2,4时﹣b=2+4,解得b=﹣6,c=2×4=8.20.解:(1)设经过x秒时,△PBQ的面积等于8平方厘米,则PB=(6﹣x)厘米,BQ =2x厘米,根据题意得:×(6﹣x)×2x=8,整理得:x2﹣6x+8=0,解得:x1=2,x2=4.答:经过2秒或4秒时,△PBQ的面积等于8平方厘米.(2)设经过y秒时,△PBQ的面积等于矩形面积的,则PB=(6﹣y)厘米,BQ=2y 厘米,根据题意得:×(6﹣y)×2y=×6×12,整理得:y2﹣6y+6=0,解得:y1=3﹣,y2=3+.答:经过(3﹣)秒或(3+)秒时,△PBQ的面积等于矩形面积的.。
人教版九年级数学上册第二十一章 一元二次方程分类复习训练(含答案)
人教版九年级数学上册第二十一章一元二次方程分类复习训练(含答案)类型一一元二次方程的有关概念1.若2-3是方程x2-4x+c=0的一个根,则c的值是( )A.1 B.3- 3 C.1+ 3 D.2+ 32.方程(n-3)x|n|-1+3x+3n=0是关于x的一元二次方程,则n=________.类型二一元二次方程的解法3.方程2x2=3x的解为( )A.0 B.32C.-32D.0或324.一元二次方程x2-8x-1=0配方后可变形为( ) A.(x+4)2=17 B.(x-4)2=17 C.(x+4)2=15 D.(x-4)2=155.关于x的一元二次方程x2-4x+3=0的解为( ) A.x1=-1,x2=3 B.x1=1,x2=-3 C.x1=1,x2=3 D.x1=-1,x2=-3 6.解方程:(1)3x2-5x-2=0;(2)(2x-3)2=x2;(3)3x(x-1)=2-2x.类型三一元二次方程根的判别式及根与系数的关系7.花关于x的一元二次方程(m-1)x2-2x-1=0有两个实数根,则实数m的取值范围是( ) A.m≥0 B.m>0C.m≥0且m≠1 D.m>0且m≠18.若方程x2-4x+1=0的两个根是x1,x2,则x1(1+x2)+x2的值为________.9.已知关于x的一元二次方程x2-2x+m-1=0有两个实数根x1,x2.(1)求m的取值范围;(2)当x12+x22=6x1x2时,求m的值.10.已知关于x的一元二次方程x2+(2k-1)x+k2+k-1=0有实数根.(1)求k的取值范围;(2)若此方程的两实数根x1,x2满足x12+x22=11,求k的值.类型四一元二次方程的实际应用11.2017—2018赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行两场比赛),比赛总场数为380场.若设参赛队伍有x支,则可列方程为( )A.12x(x-1)=380 B.x(x-1)=380C.12x(x+1)=380 D.x(x+1)=38012.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是( )A.20% B.25% C.50% D.62.5%13.东坡区某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.经调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,则此批次蛋糕属于第几档次产品?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?14.某单位准备将院内一块长30 m、宽20 m的长方形空地建成一个矩形花园,要求在花园中修两条纵向平行和一条横向曲折的小道,剩余的地方种植花草,如图1所示,要使种植花草的面积为532 m2,那么小道进出口的宽度应为多少米?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)图115.菜农李伟种植的某种蔬菜计划以每千克5元的价格对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格进行两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率.(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予以下两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.小华选择哪种方案更优惠?请说明理由.类型五数学活动16.请阅读下列材料:问题:解方程(x2-1)2-5(x2-1)+4=0.小明的做法是将x2-1视为一个整体,然后设x2-1=y,则(x2-1)2=y2,原方程可化为y2-5y +4=0,解得y1=1,y2=4.(1)当y=1时,x2-1=1,解得x=±2;(2)当y=4时,x2-1=4,解得x=± 5.综合(1)(2),可得原方程的解为x1=2,x2=-2,x3=5,x4=- 5.请你参考小明的思路,解下面的方程:x4-x2-6=0.1.A [解析] 把2-3代入方程x 2-4x +c =0,得(2-3)2-4×(2-3)+c =0, 解得c =1.故选A.2.-3 [解析] ∵方程(n -3)x |n|-1+3x +3n =0是关于x 的一元二次方程,∴|n|-1=2且n -3≠0,解得n =-3.3.D [解析] 方程整理得2x 2-3x =0, 分解因式得x(2x -3)=0, 解得x =0或x =32,故选D.4.B [解析] ∵x 2-8x -1=0, ∴x 2-8x =1, ∴x 2-8x +16=1+16, 即(x -4)2=17. 故选B.5.C [解析] 配方,得x 2-4x +4=1, 即(x -2)2=1.直接开平方,得x -2=±1. 解得x 1=1,x 2=3. 故选C.6.解:(1)∵a =3,b =-5,c =-2, ∴b 2-4ac =(-5)2-4×3×(-2)=49, ∴x =-b ±b 2-4ac 2a =5±496=5±76,∴x 1=2,x 2=-13.(2)2x -3=±x, ∴x 1=3,x 2=1. (3)3x(x -1)=2-2x.变形,得3x(x -1)+2(x -1)=0,分解因式,得(x -1)(3x +2)=0, 可得x -1=0或3x +2=0, 解得x 1=1,x 2=-23.7.C [解析] ∵关于x 的一元二次方程(m -1)x 2-2x -1=0有两个实数根, ∴m -1≠0且Δ≥0,即(-2)2-4×(m -1)×(-1)≥0, 解得m ≥0且m ≠1,∴m 的取值范围是m ≥0且m ≠1. 故选C.8.5 [解析] x 1(1+x 2)+x 2=x 1+x 1x 2+x 2=x 1+x 2+x 1x 2.由一元二次方程的根与系数的关系可知,x 1+x 2=4,x 1x 2=1,所以x 1(1+x 2)+x 2=4+1=5.9.解:(1)∵原方程有两个实数根, ∴Δ=b 2-4ac =(-2)2-4(m -1)≥0, 整理,得4-4m +4≥0, 解得m ≤2.(2)∵x 1+x 2=2,x 1x 2=m -1,x 12+x 22=6x 1x 2, ∴(x 1+x 2)2-2x 1x 2=6x 1x 2, 即4=8(m -1), 解得m =32.∵m =32<2,∴符合条件的m 的值为32.10.解:(1)由题意,得(2k -1)2-4×1×(k 2+k -1)=-8k +5≥0, 解得k ≤58.(2)由根与系数的关系可得x 1+x 2=1-2k ,x 1x 2=k 2+k -1, ∴x 12+x 22=(x 1+x 2)2-2x 1x 2=(1-2k)2-2(k 2+k -1)=2k 2-6k +3. ∵x 12+x 22=11, ∴2k 2-6k +3=11, 解得k =-1或k =4.∵k ≤58,∴k =-1.11.B [解析] 设参赛队伍有x 支,则x(x -1)=380.故选B. 12.C [解析] 设该店销售额平均每月的增长率是x. 根据题意,得2(1+x)2=4.5, 即(1+x)2=2.25, ∴1+x =±1.5,∴x 1=0.5=50%,x 2=-2.5(不合题意,舍去), ∴该店销售额平均每月的增长率是50%.13.解:(1)设此批次蛋糕属于第x 档次产品,则10+2(x -1)=14,解得x =3. 答:此批次蛋糕属于第3档次产品.(2)设该烘焙店生产的是第y 档次的产品,根据题意,得 [10+2(y -1)][76-4(y -1)]=1080, 解得y 1=5,y 2=11(不合题意,舍去). 答:该烘焙店生产的是第5档次的产品.14.解:设小道进出口的宽度应为x m .根据题意,得(30-2x)(20-x)=532. 整理,得x 2-35x +34=0.解得x 1=1,x 2=34(不符合题意,舍去). ∴x =1.答:小道进出口的宽度应为1 m.15.解:(1)设平均每次下调的百分率为x. 根据题意,得5(1-x)2=3.2. 解得x =0.2或x =1.8. ∵降价的百分率不可能大于1, ∴x =1.8不符合题意,舍去, ∴x =0.2=20%.答:平均每次下调的百分率是20%. (2)小华选择方案一更优惠.理由:方案一所需费用为3.2×0.9×5000=14400(元); 方案二所需费用为3.2×5000-200×5=15000(元).∵14400<15000,∴小华选择方案一更优惠.16.解:设x2=y,则原方程可化为y2-y-6=0,解得y1=3,y2=-2.(1)当y=3时,x2=3,解得x=3或x=-3;(2)当y=-2时,x2=-2,此方程无实数根.综合(1)(2),可得原方程的解为x1=3,x2=- 3.。
人教版初中九年级数学上册第二十一章《一元二次方程》经典练习(含答案解析)
一、选择题1.一面足够长的墙,用总长为30米的木栅栏(图中的虚线)围一个矩形场地ABCD,中间用栅栏隔成同样三块,若要围成的矩形面积为54平方米,设垂直于墙的边长为x米,则x 的值为()A.3 B.4 C.3或5 D.3或4.5D解析:D【分析】设AD长为x米,四边形ABCD是矩形,根据矩形的性质,即可求得AB的长;根据题意可得方程x(30−4x)=54,解此方程即可求得x的值.【详解】解:设与墙头垂直的边AD长为x米,四边形ABCD是矩形,∴BC=MN=PQ=x米,∴AB=30−AD−MN−PQ−BC=30−4x(米),根据题意得:x(30−4x)=54,解得:x=3或x=4.5,AD的长为3或4.5米.故选:D.【点睛】考查了一元二次方程的应用中的围墙问题,正确列出一元二次方程,并注意解要符合实际意义.2.用配方法解方程x2﹣6x﹣3=0,此方程可变形为()A.(x﹣3)2=3 B.(x﹣3)2=6C.(x+3)2=12 D.(x﹣3)2=12D解析:D【分析】先移项,再把方程两边同时加上一次项系数一半的平方,最后配方即可得新答案.【详解】由原方程移项得:x 2﹣6x =3,方程两边同时加上一次项系数一半的平方得:x 2﹣6x+9=12,配方得;(x ﹣3)2=12.故选:D .【点睛】此题主要考查配方法的运用,配方法的一般步骤为:移项、二次项系数化为1、两边同时加上一次项系数一半的平方、配方完成;熟练掌握配方法的步骤并熟记完全平方公式是解题关键.3.一元二次方程2610x x +-=配方后可变形为( )A .()2310x +=B .()238x +=C .()2310x -=D .()238x -=A 解析:A【分析】方程常数项移到右边,两边加上一次项系数一半的平方即可得到结果.【详解】解:∵x 2+6x-1=0,∴x 2+6x=1,∴x 2+6x+9=10,∴(x+3)²=10,故选:A .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.4.小刚在解关于x 的方程20(a 0)++=≠ax bx c 时,只抄对了1a =,4b =,解出其中一个根是1x =-.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是( )A .不存在实数根B .有两个不相等的实数根C .有一个根是xD .有两个相等的实数根A 解析:A【分析】直接把已知数据代入进而得出c 的值,再利用根的判别式求出答案.【详解】∵小刚在解关于x 的方程20ax bx c ++=(0a ≠)时,只抄对了1a =,4b =,解出其中一个根是1x =-,∴()()21410c -+⨯-+=, 解得:3c =,∵核对时发现所抄的c 比原方程的c 值小2,故原方程中5c =,则224441540b ac =-=-⨯⨯=-<,则原方程的根的情况是不存在实数根.故选:A .【点睛】本题主要考查了根的判别式,正确利用方程的解得出c 的值是解题关键.5.在元旦庆祝活动中,参加活动的同学互赠贺卡,共送贺卡42张,则参加活动的同学有( )A .6人B .7人C .8人D .9人B 解析:B【分析】设参加活动的同学有x 人,从而可得每位同学赠送的贺卡张数为(1)x -张,再根据“共送贺卡42张”建立方程,然后解方程即可得.【详解】设参加活动的同学有x 人,由题意得:(1)42x x -=,解得7x =或6x =-(不符题意,舍去),即参加活动的同学有7人,故选:B .【点睛】本题考查了一元二次方程的实际应用,依据题意,正确建立方程是解题关键.6.若关于x 的一元二次方程260x x c -+=有两个相等的实数根,则常数c 的值为( ) A .3B .6C .8D .9D 解析:D【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于c 的一元一次方程,解方程即可得出结论.【详解】解:260x x c -+=有两个相等的实根,2(6)40c ∴∆=--=,解得:9c =故选:D .【点睛】本题考查了根的判别式以及解一元一次方程,由方程有两个相等的实数根结合根的判别式得出关于c 的一元一次方程是解题的关键.7.关于x 的一元二次方程(a -1)x²-x +a²-1=0的一个根是0,则a 的值为( ) A .1B .-1C .1或-1D .0B解析:B【分析】把0x =代入,求出a 的值即可.【详解】解:把0x =代入可得210a -=,解得1a =±,∵一元二次方程二次项系数不为0,∴1a ≠,∴1a =-,故选:B .【点睛】本题考查一元二次方程的解,注意二次项系数不为0.8.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A .290x +=B .24410x x -+=C .210x x ++=D .210x x +-=D解析:D【分析】分别求出每个方程的根的判别式即可得到方程的根的情况.【详解】A 选项:2049360∆=-⨯=-<,∴该方程没有实数根,故A 错误;B 选项:()244410∆=--⨯⨯=,∴该方程有两个相等的实数根,故B 错误;C 选项:2141130∆=-⨯⨯=-<,∴该方程没有实数根,故C 错误;D 选项:()2141150∆=-⨯⨯-=>,∴方程有两个不相等的实数根,故D 正确; 故选:D.【点睛】此题考查一元二次方程的根的情况,正确求根的判别式的值,掌握一元二次方程的根的三种情况是解题的关键.9.已知m 是方程2210x x --=的一个根,则代数式2242020m m -+的值为( ) A .2022B .2021C .2020D .2019A解析:A【分析】把x m =代入方程2210x x --=求出221m m -=,把2242020m m -+化成()2222020m m -+,再整体代入求出即可.【详解】∵把x m =代入方程2210x x --=得:2210m m --=,∴221m m -=,∴()222420202220202120202022m m m m -+=-+=⨯+=,故选:A .【点睛】本题考查了一元二次方程的解,采用了整体代入的方法.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.10.如图,BD 为矩形ABCD 的对角线,将△BCD 沿BD 翻折得到BC D '△,BC '与边AD 交于点E .若AB =x 1,BC =2x 2,DE =3,其中x 1、x 2是关于x 的方程x 2﹣4x+m =0的两个实根,则m 的值是( )A .165B .125C .3D .2A解析:A【分析】利用根与系数的关系得到x 1+x 2=4,x 1x 2=m ,AB +12BC =4,m =AB×12BC ,再利用折叠的性质和平行线的性质得到∠EBD =∠EDB ,则EB =ED =3,所以AE =AD−DE =5−2AB ,利用勾股定理得到AB 2+(5−2AB )2=32,解得AB 1025-或AB 1025+(舍去),则BC 2045+,然后计算m 的值. 【详解】 ∵x 1、x 2是关于x 的方程x 2−4x +m =0的两个实根,∴x 1+x 2=4,x 1x 2=m ,即AB +12BC =4,m =AB×12BC , ∵△BCD 沿BD 翻折得到△BC′D ,BC′与边AD 交于点E ,∴∠CBD =∠EBD ,∵AD ∥BC ,∴∠CBD =∠EDB ,∴∠EBD =∠EDB ,∴EB =ED =3,在Rt △ABE 中,AE =AD−DE =BC−3=8−2AB−3=5−2AB ,∴AB 2+(5−2AB )2=32,解得AB 1025-或AB 1025+(舍去), ∴BC =8−2AB =2055+, ∴m =121025-2045+=165.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a≠0)的两根时,x 1+x 2=−b a ,x 1x 2=c a.也考查了矩形的性质和折叠的性质. 二、填空题11.若关于x 的一元二次方程240x x k ++=有两个相等的实数根,则k =______.4【分析】根据一元二次方程根的判别式可直接进行求解【详解】解:∵关于的一元二次方程有两个相等的实数根∴解得:;故答案为:4【点睛】本题主要考查一元二次方程根的判别式熟练掌握一元二次方程根的判别式是解解析:4【分析】根据一元二次方程根的判别式可直接进行求解.【详解】解:∵关于x 的一元二次方程240x x k ++=有两个相等的实数根,∴224440b ac k ∆=-=-=,解得:4k =;故答案为:4.【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.12.设a ,b 是方程220190x x +-=的两个实数根,则11a b+=_____.【分析】根据根与系数关系即可得出a+b 和ab 的值再对代数式变形整体代入即可【详解】解:∵ab 是方程的两个实数根∴∴故答案为:【点睛】本题考查根与系数关系熟记根与系数关系的公式是解题关键 解析:22019【分析】根据根与系数关系即可得出a+b 和ab 的值,再对代数式11a b+变形整体代入即可. 【详解】解:∵a ,b 是方程2220190+-=x x 的两个实数根,∴2a b +=-,2019ab =-, ∴112220192019a b a b ab +-+===-. 故答案为:22019.本题考查根与系数关系.熟记根与系数关系的公式是解题关键.13.关于x 的方程222(1)0x m x m m +-+-=有两个实数根α,β,且2212αβ+=,那么m 的值为________.-1【分析】根据方程的根的判别式得出m 的取值范围然后根据根与系数的关系可得α+β=-2(m-1)α•β=m2-m 结合α2+β2=12即可得出关于m 的一元二次方程解之即可得出结论【详解】解:∵关于x 的解析:-1【分析】根据方程的根的判别式,得出m 的取值范围,然后根据根与系数的关系可得α+β=-2(m-1),α•β=m 2-m ,结合α2+β2=12即可得出关于m 的一元二次方程,解之即可得出结论.【详解】解:∵关于x 的方程x 2+2(m-1)x+m 2-m=0有两个实数根,∴△=[2(m-1)]2-4×1×(m 2-m )=-4m+4≥0,解得:m≤1.∵关于x 的方程x 2+2(m-1)x+m 2-m=0有两个实数根α,β,∴α+β=-2(m-1),α•β=m 2-m ,∴α2+β2=(α+β)2-2α•β=[-2(m-1)]2-2(m 2-m )=12,即m 2-3m-4=0,解得:m=-1或m=4(舍去).故答案为:-1.【点睛】本题考查了根与系数的关系、根的判别式以及解一元二次方程,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系得出关于m 的一元二次方程.14.一元二次方程x 2-10x+25=2(x ﹣5)的解为____________.x1=5x2=7【分析】移项后分解因式即可得出两个一元一次方程求出方程的解即可;【详解】解:∵(x ﹣5)2﹣2(x ﹣5)=0∴(x ﹣5)(x ﹣7)=0则x ﹣5=0或x ﹣7=0解得x1=5x2=7故答解析:x 1=5,x 2=7【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;【详解】解:∵(x ﹣5)2﹣2(x ﹣5)=0,∴(x ﹣5)(x ﹣7)=0,则x ﹣5=0或x ﹣7=0,解得x 1=5,x 2=7,故答案为:x 1=5,x 2=7.【点睛】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.15.已知a 为方程210x x -+=的一个根,则代数式2233a a -+的值为_____【分析】把代入已知方程求得然后将其整体代入所求的代数式求值【详解】由题意得:则所以故答案为:【点睛】本题考查了一元二次方程的解的定义解题时注意整体代入数学思想的应用解析:5【分析】把x a =代入已知方程,求得21a a =-,然后将其整体代入所求的代数式求值.【详解】由题意,得:210a a -+=,则21a a =-,所以,()2233231323335a a a a a a -+=--+=-++=. 故答案为:5.【点睛】本题考查了一元二次方程的解的定义.解题时,注意“整体代入”数学思想的应用. 16.如图,将一张矩形纸片ABCD 折叠,使两个顶点A C 、重合,折痕为FG ,若4,8AB BC ==,则线段BF 的长为_________.3【分析】根据折叠性质可得AF=FC 设AF=x则BF=8-x 则根据勾股定理可以得到关于x 的方程解方程得到x 的值后即可得到8-x 即BF 的值【详解】∵将一矩形纸片折叠使两个顶点重合折痕为∴是的垂直平分线解析:3【分析】根据折叠性质可得AF=FC ,设AF=x ,则BF=8-x ,则根据勾股定理可以得到关于x 的方程,解方程得到x 的值后即可得到8-x 即BF 的值 .【详解】∵将一矩形纸片ABCD 折叠,使两个顶点,A C 重合,折痕为FG ,∴FG 是AC 的垂直平分线,∴AF CF =,设AF FC x ==,在Rt ABF ∆中,由勾股定理得:222AB BF AF +=,即()22248x x +-=解得:5x =,即5,853CF BF ==-=,故答案为:3.【点睛】本题考查矩形与折叠的综合运用,综合运用折叠性质、方程思想和勾股定理求解是解题关键.17.若a 是方程210x x ++=的根,则代数式22020a a --的值是________.2021【分析】把x=a 代入已知方程并求得a2+a=-1然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x2+x+1=0得a2+a+1=0解得a2+a=-1所以2020-a2-a=2解析:2021【分析】把x=a 代入已知方程,并求得a 2+a=-1,然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x 2+x+1=0,得a 2+a+1=0,解得a 2+a=-1,所以2020-a 2-a=2020+1=2021.故答案是:2021.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.18.已知2x =是关于x 的方程220x x m ++=的一个根,则m =_________.-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程解这个方程即可【详解】已知是关于x 的方程的一个根故答案为:-8【点睛】本题考查一元二次方程的根问题掌握方程的根的性质会用方程的解代入构造解析:-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程,解这个方程即可【详解】已知2x =是关于x 的方程220x x m ++=的一个根,22220m +⨯+=8m =-故答案为:-8【点睛】本题考查一元二次方程的根问题,掌握方程的根的性质,会用方程的解代入构造参数方程是解题关键19.2019女排世界杯于9月14月至29日在日本举行,赛制为单循环比赛(即每两个队之间比赛一场)一共比赛66场,中国女排以全胜成绩卫冕世界杯冠军为国庆70周年献上大礼,则中国队在本届世界杯比赛中连胜__场11【分析】设中国队在本届世界杯比赛中连胜x 场则共有(x+1)支队伍参加比赛根据一共比赛66场即可得出关于x 的一元二次方程解之取其正值即可得出结论【详解】设中国队在本届世界杯比赛中连胜x 场则共有(x解析:11【分析】设中国队在本届世界杯比赛中连胜x 场,则共有(x+1)支队伍参加比赛,根据一共比赛66场,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】设中国队在本届世界杯比赛中连胜x 场,则共有(x+1)支队伍参加比赛,依题意,得:12x(x+1)=66, 整理,得:x 2+x-132=0,解得:x 1=11,x 2=-12(不合题意,舍去).所以,中国队在本届世界杯比赛中连胜11场.故答案为11.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 20.已知a 、b 是方程2320190x x +-=的两根,则24a a b ++的值为________.2016【分析】将x=a 代入可得然后由根与系数之间的关系得到整理即可得到答案【详解】解:由题意可知【点睛】本题考查了一元二次方程的解以及根与系数之间的关系熟练掌握基础知识是解题的关键解析:2016【分析】将x=a 代入2320190x x +-=,可得2320190a a +-=,然后由根与系数之间的关系得到3a b +=-,整理即可得到答案.【详解】解:由题意可知,2320190a a +-=,3a b +=-,232019a a ∴+=,24a a b ∴++23()a a a b =+++20193=-2016=.【点睛】本题考查了一元二次方程的解以及根与系数之间的关系,熟练掌握基础知识是解题的关键.三、解答题21.若a 为方程2(16x =的一个正根,b 为方程22113y y -+=的一个负根,求+a b 的值.解析:a+b= 5【分析】先求出2(16x =的根4x ,由a 为方程2(16x =的一个正根,得4a =+,再求22113y y -+=的根=1y ±b 为方程22113y y -+=的一个负根,得1b =+a b 即可.【详解】2(16x -=,4x -=±,4x ,a 为方程2(16x =的一个正根,4a =+,22113y y -+=,()2113y -=,1y -==1y ±b 为方程22113y y -+=的一个负根,1b =415a b +=+=.【点睛】本题考查一元二次方程的解法,会比较方程根的正负与大小,掌握一元二次方程的解法是解题关键.22.5月10日,重庆正式启动“加快发展直播带货行动计划”,以推动直播带货和“网红经济”发展,已知云阳桃片糕每盒12元,仙女山红茶每盒50元,第一次直播期间,共卖出云阳桃片糕和仙女山红茶共计2000盒.(1)若卖出桃片糕和红茶的总销售额不低于54400元,则至少卖出仙女山红茶多少盒? (2)第一次直播结束,为了回馈顾客,在第二次直播期向,桃片糕每盒降价10%3a ,红茶每盒降价4a %,桃片糕数量在(1)问最多的数量下增加6a %,红茶数量在(1)问最少的数量下增加4a %,最终第二次直播总销售额比第一次直播的最低销售额54400元少80a元,求a 的值.解析:(1)至少卖出仙女山红茶800盒;(2)a 的值为5.【分析】(1)设卖出仙女山红茶x 盒,则卖出桃片糕(2000-x )盒,由题意得关于x 的不等式,求解即可;(2)根据(1)的结果得出桃片糕最多卖出的盒数,根据题意得出关于x 的方程,解方程即可.【详解】解:(1)设卖出仙女山红茶x 盒,则卖出桃片糕(2000-x )盒,由题意得:50x+12(2000-x )≥54400,解得:x≥800,∴x 的最小值是800,∴至少卖出仙女山红茶800盒;(2)∵(1)中最少卖出仙女山红茶800盒,∴桃片糕最多卖出的盒数为:2000-800=1200(盒).由题意得:12×(110%3a -)×1200×(1+6a%)+50(1-4a%)×800×(1+4a%)=54400-80a , 解得:a 1=0(舍去),a 2=5.∴a 的值为5.【点睛】 本题考查了一元一次不等式和一元二次方程在实际问题中的应用,理清题中的数量关系并正确列式是解题的关键.23.某商场销售一批衬衫,每件进价是120元,当每件衬衫售价为160元时,平均每天可售出20件,为了扩大销售,尽快清库,增加盈利,商场经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件,据此规律,请回答:(1)当每件衬衫降价5元时,每天可销售多少件衬衫?商场获得的日盈利是多少? (2)若商场平均每天想盈利1200元,则每件衬衫应降价多少元?解析:(1)当每件衬衫降价5元时,每天可销售30件衬衫,商场获得的日盈利是1050元;(2)每件衬衫应降价20元【分析】(1)利用日销售量202=+⨯每件衬衫降低的价格,即可求出每天可销售衬衫的数量,利用日盈利额=销售每件衬衫的利润×日销售量,即可求出日盈利额;(2)设每件衬衫应降价x 元,则每天可销售()202x +件衬衫,根据日盈利额=销售每件衬衫的利润×日销售量,即可得出关于x 的一元二次方程,解之取其较大值即可得出结论.【详解】(1)根据题意得,降价后,可售出:205230+⨯=(件)∴()1605120301050--⨯=(元)∴当每件衬衫降价5元时,每天可销售30件衬衫,商场获得的日盈利是1050元; (2)设每件衬衫应降价x 元,则每天可销售()202x +件衬衫依题意,得:()()1601202021200x x --+=,∴2302000x x -+=解得:110x =,220x =∵要尽快清库∴20x∴每件衬衫应降价20元.【点睛】本题考查了一元二次方程、有理数混合运算的知识;解题的关键是熟练掌握一元二次方程的性质,从而完成求解.24.解方程:22350x x --= (请用两种方法解方程) 解析:152x =,21x =- 【分析】采用公式法和因式分解法求解即可.【详解】解:方法1:∵a =2,b =-3,c =-5,∴2449b ac ∆=-=,∴x =∴152x =,21x =-; 方法2:()()2510x x -+=∴ 152x =,21x =-. 【点睛】 本题考查解一元二次方程,根据方程的特点选择合适的求解方法是解题的关键. 25.解答下列各题.(1)解方程:2(1)90x --=.(2)已知1x =,求225x x -+的值.解析:(1)14x =,22x =-;(2)6.【分析】(1)方程整理后,直接开平方即可求解;(2)代数式225x x -+配方整理成()214x -+后,把x 的值代入计算即可.【详解】(1)由原方程得2(1)9x -=,∴13x -=±,解得:14x =,22x =-;(2)∵2225(1)4x x x -+=-+,将1x =代入得:原式)2114=-+ 24=+6=.【点睛】本题考查了解一元二次方程-直接开平方法以及求代数式的值,熟练掌握完全平方公式是解本题的关键.26.解下列方程:(1)2320x x +-=(2)()220x x x -+-=解析:(1)1x =,2x =2)11x =-,22x =【分析】(1)直接应用公式法即可求解;(2)利用因式分解法即可求解.【详解】解:(1)2320x x +-=1,2x ==∴1x =,2x (2)()220x x x -+-=因式分解可得:()()120x x +-=,即10x +=或20x -=,解得11x =-,22x =.【点睛】本题考查解一元二次方程,根据方程特点选择合适的求解方法是解题的关键.27.物美商场于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销,销售量持续走高.在售价不变的基础上,三月底的销售量达到400件,设二、三这两个月月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销的方式回馈顺客,经调查发现,销售单价与月平均销售的关系如下表:解析:(1)25%;(2)35元【分析】(1)由题意可得,1月份的销售量为:256件;设2月份到3月份销售额的月平均增长率,则二月份的销售量为:256(1+x );三月份的销售量为:256(1+x )(1+x ),又知三月份的销售量为:400元,由此等量关系列出方程求出x 的值,即求出平均增长率; (2)利用销量×每件商品的利润=4250求出即可.【详解】解:(1)设二、三这两个月的月平均增长率为x ,根据题意可得:256(1+x )2=400,解得:x 1=14=25%,x 2=94(不合题意舍去). 答:二、三这两个月的月平均增长率为25%; (2)由表可知:该商品每降价1元,销售量增加5件,设当商品降价m 元时,商品获利4250元,根据题意可得:(40-25-m )(400+5m )=4250,解得:m 1=5,m 2=-70(不合题意舍去),40-5=35元.答:销售单价应定为35元,商品获利4250元.【点睛】 此题主要考查了一元二次方程的应用,本题的关键在于理解题意,找到等量关系准确的列出方程是解决问题的关键.28.解方程.(1)230x x +-=. (2)4(21)12x x x -=-.解析:(1)12x x ==.(2)1211,24x x ==-. 【分析】(1)用配方法解即可;(2)先移项然后提取公因式,即可求解.【详解】(1)23+=x x ,∴211344x x ++=+,∴211324x ⎛⎫+= ⎪⎝⎭,∴122x +=±.1211,22x x ∴==-. (2)移项,得4(21)(21)0x x x -+-=, 提取公因式,得(21)(41)0x x -+=, 210x ∴-=或410x +=,1211,24x x ∴==-. 【点睛】本题考查了一元二次方程的解法,掌握基本解法并熟练进行解题是关键.。
九年级数学人教版第二十一章一元二次方程整章知识(同步课本图文结合例题详解)
解:x+5=1或x-1=7,所以x1=-4,x2=8,你的看法如何?
【解析】上述解法是错误的,将 x1、x2 代入原方程等 式两边不相等,因此它们并不是原方程的解.
九年级数学上册第21章一元二次方程
1. 当常数a,b,c满足什么条件时,方程(a-1)x2-bx+c=0 是一元二次方程?这时方程的二次项系数、一次项系数、 常数项分别是什么? 【解析】当a-1≠0,即a ≠1时,方程(a-1)x2-bx+c=0 是一元二次方程,这时方程的二次项系数、一次项系数、 常数项分别是a-1,-b,c.
(2)若x=2是方程 ax2 4x 5 0 的一个根,
你能求出a的值吗? (提示:根的作用:可以使等号成立.)
九年级数学上册第21章一元二次方程
例题
【例2】关于x的方程x2-kx-6=0的一个根为x=3,则实数k的值
为( )
A.1
B . -1
C.2
D.-2
【解析】选A. 将x=3代入方程x2-kx-6=0得32-3k-6=0 ,解得
(1 x)2 100
求得方程的正整数解为 x 9.
九年级数学上册第21章一元二次方程
2.(眉山·中考)一元二次方程的解 2x2 6 0 为
.
【解析】∵一元二次方程 2x2 6 0 , ∴x2=3 ∴x= 3
∴x1= 3 ,x2= 3 答案:x1= 3 ,x2= 3 .
(3)变形得(x+2)2 = 4,所以x1=0 , x2= -4.
九年级数学上册第21章一元二次方程
跟踪训练
解下列方程:
(1)y2=0.49 (2)a2=0.5 (3)3x2 27
【解析】 (1)用直接开平方法解得 y=±0.7,所以y1=0.7, y2= -0.7
人教版初中九年级数学上册第二十一章《一元二次方程》经典练习卷(含答案解析)
一、选择题1.欧几里得在《几何原本》中,记载了用图解法解方程22x ax b +=的方法,类似地可以用折纸的方法求方程210x x +-=的一个正根,如图,裁一张边长为1的正方形的纸片ABCD ,先折出BC 的中点E ,再折出线段AE ,然后通过折叠使EB 落在线段EA 上,折出点B 的新位置F ,因而EF EB =,类似地,在AB 上折出点M 使AMAF =,表示方程210x x +-=的一个正根的线段是( )A .线段BMB .线段AMC .线段AED .线段EM B解析:B【分析】 设正方形的边长为1,AF =AM =x ,根据勾股定理即可求出答案.【详解】解:设正方形的边长为1,AF =AM =x ,则BE =EF =12,AE =x+12, 在Rt △ABE 中,∴AE 2=AB 2+BE 2,∴(x +12)2=1+(12)2, ∴x 2+x -1=0,∴AM 的长为x 2+x -1=0的一个正根,故选:B .【点睛】本题考查一元二次方程,解题的关键是根据勾股定理列出方程,本题属于中等题型. 2.用配方法转化方程2210xx +-=时,结果正确的是( ) A .2(1)2x += B .2(1)2x -= C .2(2)3x += D .2(1)3x +=A 解析:A【分析】方程两边都加上一次项系数的一半,利用完全平方公式进行转化,即可得到答案.【详解】解:2210x x +-=2212x x ++=∴2(1)2x +=,故选:A .【点睛】此题考查一元二次方程的配方法,掌握配方法是计算方法是解题的关键.3.已知三角形的两边长分别为4和6,第三边是方程217700x x -+=的根,则此三角形的周长是( )A .10B .17C .20D .17或20B 解析:B【分析】根据第三边是方程x 2﹣17x +70=0的根,首先求出方程的根,再利用三角形三边关系求出即可.【详解】解:∵217700x x -+=,∴(10)(7)0x x --=,∴110x =,27x =,∵4610+=,无法构成三角形,∴此三角形的周长是:46717++=.故选B .【点睛】此题主要考查了因式分解法解一元二次方程以及三角形的三边关系,正确利用因式分解法解一元二次方程可以大大降低计算量.4.一元二次方程2610x x +-=配方后可变形为( )A .()2310x +=B .()238x +=C .()2310x -=D .()238x -=A 解析:A【分析】方程常数项移到右边,两边加上一次项系数一半的平方即可得到结果.【详解】解:∵x 2+6x-1=0,∴x 2+6x=1,∴x 2+6x+9=10,∴(x+3)²=10,故选:A .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.5.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是( )A .1k >-B .1k ≥-C .0k ≠D .1k >-且0k ≠D【分析】根据一元二次方程根的判别式得到关于k 的不等式,然后求解不等式即可.【详解】是一元二次方程,0k ∴≠.有两个不相等的实数根,则Δ0>,2Δ24(1)0k =-⨯-⨯>,解得1k >-.1k ∴>-且0k ≠.故选D【点睛】本题考查一元二次方程ax 2+bx +c =0(a ≠0)根的判别式:(1)当△=b 2﹣4ac >0时,方程有两个不相等的实数根;(2)当△=b 2﹣4ac =0时,方程有有两个相等的实数根;(3)当△=b 2﹣4ac <0时,方程没有实数根.6.等腰三角形的底边长为6,腰长是方程28150x x -+=的一个根,则该等腰三角形的周长为( )A .12B .16C .l2或16D .15B解析:B【分析】利用因式分解法解方程求出x 的值,再根据等腰三角形的概念和三角形三边关系确定出三角形三边长度,继而得出答案.【详解】解:∵x 2-8x+15=0,∴(x-3)(x-5)=0,则x-3=0或x-5=0,解得x 1=3,x 2=5,①若腰长为3,此时三角形三边长度为3、3、6,显然不能构成三角形,舍去; ②若腰长为5,此时三角形三边长度为5、5、6,可以构成三角形,所以该等腰三角形的周长为5+5+6=16,故选:B .【点睛】本题主要考查等腰三角形的概念、三角形三边的关系、解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.7.方程(2)2x x x -=-的解是( )A .2B .2-,1C .1-D .2,1-D【分析】先移项得到x(2﹣x)+(2﹣x)=0,然后利用因式分解法解方程.【详解】解:x(2﹣x)+(2﹣x)=0,(2﹣x)(x+1)=0,2﹣x=0或x+1=0,所以x1=2,x2=﹣1.故选:D.【点睛】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).8.一元二次方程x2=4x的解是()A.x=4 B.x=0 C.x=0或-4 D.x=0或4第II卷(非选择题)请点击修改第II卷的文字说明参考答案D解析:D【分析】先移项,利用因式分解法解一元二次方程.【详解】解:x2=4xx2-4x=0x(x-4)=0x=0或x=4,故选:D.【点睛】此题考查解一元二次方程,直接开平方法,配方法,公式法,因式分解法,根据一元二次方程的特点选择恰当的解法是解题的关键.9.下列方程中,有两个不相等的实数根的是()A.x2=0 B.x﹣3=0 C.x2﹣5=0 D.x2+2=0C解析:C【分析】利用直接开平方法分别求解可得.解:A .由x 2=0得x 1=x 2=0,不符合题意;B .由x ﹣3=0得x =3,不符合题意;C .由x 2﹣5=0得x 1=x 2=,符合题意; D .x 2+2=0无实数根,不符合题意;故选:C .【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.10.已知方程2202030x x +-=的根分别为a 和b ,则代数式2a a 2020a b ++的值为( )A .0B .2020C .1D .-2020A 解析:A【分析】将a 代入方程,可得2202030a a +-=,即220302a a =-,代入要求的式子,即可得到3+ab ,而a 、b 是方程的两个根,根据韦达定理,可求出ab 的值,即可求出答案.【详解】解:∵方程2202030x x +-=的根分别为a 和b∴2202030a a +-=,即220302a a =-∴2a a 2020a b ++=32020a -+ab+2020a=3+ab∵ab=-3∴2a a 2020a b ++=32020a -+ab+2020a=3+ab=3-3=0故选:A .【点睛】本题主要考查一元二次方程的解以及韦达定理,熟练解代入方程以及观察式子特点,抵消部分式子是解决本题的关键. 二、填空题11.已知x a =是方程2350x x --=的根,则代数式234a a -++的值为________.-1【分析】利用x=a 是方程x2-3x-5=0的根得到a2-3a=5然后利用整体代入的方法计算代数式的值【详解】解:∵x=a 是方程x2-3x-5=0的根∴a2-3a-5=0∴a2-3a=5∴故答案为解析:-1【分析】利用x=a 是方程x 2-3x-5=0的根得到a 2-3a=5,然后利用整体代入的方法计算代数式的值.【详解】解:∵x=a 是方程x 2-3x-5=0的根,∴a 2-3a-5=0,∴a 2-3a=5,∴()223434541a a a a -++=--+=-+=-.故答案为-1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.解方程:268x x +=-解:两边同时加_________,得26x x ++________8=-+________则方程可化为(_______)2=________两边直接开平方得_____________即_________或_____________所以1x =__________,2x =___________.999x+31x+3=±1x+3=1x+3=-1-2-4【分析】根据配方法求解即可【详解】解:两边同时加9得99则方程可化为1两边直接开平方得x+3=±1即x+3=1或x+3=-1所以-2-4故答案解析:9 9 9 x+3 1 x+3=±1 x+3=1 x+3=-1 -2 -4【分析】根据配方法求解即可.【详解】解:两边同时加9,得26x x ++98=-+9,则方程可化为()23x +=1,两边直接开平方得x+3=±1,即x+3=1或x+3=-1,所以1x =-2,2x =-4.故答案为:9;9;9;x+3;1;x+3=±1;x+3=1;x+3=-1;-2;-4.【点睛】本题考查了配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.13.将方程2630x x +-=化为()2x h k +=的形式是______.【分析】将方程常数项移到方程右边左右两边都加上9左边化为完全平方式右边合并即可得到所求的结果【详解】∵∴∴∴故答案为:【点睛】考查了解一元二次方程-配方法利用此方法解方程时首先将二次项系数化为1常数解析:()2312x +=【分析】将方程常数项移到方程右边,左右两边都加上9,左边化为完全平方式,右边合并即可得到所求的结果.【详解】∵2630x x +-=∴263x x +=∴26939x x+++=∴()2312x+= 故答案为:()2312x+=【点睛】考查了解一元二次方程-配方法,利用此方法解方程时,首先将二次项系数化为1,常数项移到方程右边,然后方程两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个常数,开方即可求出解.14.将一元二次方程(32)(1)83x x x -+=-化成一般形式是_____.【分析】先计算多项式乘以多项式并移项再合并同类项即可【详解】故答案为:【点睛】此题考查一元二次方程的一般形式掌握多项式乘以多项式合并同类项计算法则是解题的关键解析:23710x x -+=【分析】先计算多项式乘以多项式,并移项,再合并同类项即可.【详解】(32)(1)83x x x -+=-23322830x x x x +---+=23710x x -+=故答案为:23710x x -+=.【点睛】此题考查一元二次方程的一般形式,掌握多项式乘以多项式,合并同类项计算法则是解题的关键.15.若一元二次方程ax 2﹣bx ﹣2016=0有一根为x =﹣1,则a +b =_____.2016【分析】将x=-1代入ax2﹣bx ﹣2016=0得到a+b ﹣2016=0然后将a+b 当作一个整体解答即可【详解】解:把x =﹣1代入一元二次方程ax2﹣bx ﹣2016=0得:a+b ﹣2016=解析:2016.【分析】将x=-1代入ax 2﹣bx ﹣2016=0得到a +b ﹣2016=0,然后将a+b 当作一个整体解答即可.【详解】解:把x =﹣1代入一元二次方程ax 2﹣bx ﹣2016=0得:a +b ﹣2016=0,即a +b =2016.故答案是2016.【点睛】本题主要考查了一元二次方程的解,理解一元二次方程的解的概念是解答本题的关键. 16.如图,要设计一幅宽20cm ,长30cm 的图案,其中有两横彩条、一竖彩条,横、竖彩条的宽度比为1:3,如果要使彩条所占面积是图案面积的19%,竖彩条的宽度为________.3cm 【分析】设横彩条的宽度是xcm 竖彩条的宽度是3xcm 根据如果要使彩条所占面积是图案面积的19可列方程求解【详解】解:设横彩条的宽度是xcm 竖彩条的宽度是3xcm 则(30-3x )(20-2x )=解析:3cm【分析】设横彩条的宽度是xcm ,竖彩条的宽度是3xcm ,根据“如果要使彩条所占面积是图案面积的19%”,可列方程求解.【详解】解:设横彩条的宽度是xcm ,竖彩条的宽度是3xcm ,则(30-3x )(20-2x )=20×30×(1-19%),解得x 1=1,x 2=19(舍去).所以3x=3.答:竖彩条的宽度是3cm .故答案为:3cm【点睛】本题考查一元二次方程的应用,解题的关键是理解题意,学会正确寻找等量关系,构建方程解决问题.17.若a 是方程210x x ++=的根,则代数式22020a a --的值是________.2021【分析】把x=a 代入已知方程并求得a2+a=-1然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x2+x+1=0得a2+a+1=0解得a2+a=-1所以2020-a2-a=2解析:2021【分析】把x=a 代入已知方程,并求得a 2+a=-1,然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x 2+x+1=0,得a 2+a+1=0,解得a 2+a=-1,所以2020-a 2-a=2020+1=2021.故答案是:2021.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.18.已知x 1和x 2是方程2x 2-5x+1=0的两个根,则1212x x x x +的值为_____.5【分析】直接根据根与系数的关系求出再代入求值即可【详解】解:∵x1x2是方程2x2-5x+1=0的两个根∴x1+x2=-∴故答案为:5【点睛】本题考查了根与系数的关系:若x1x2是一元二次方程ax解析:5【分析】直接根据根与系数的关系,求出12x x +,12x x 再代入求值即可.【详解】解:∵x 1,x 2是方程2x 2-5x+1=0的两个根,∴x 1+x 2=--55-=22,121=2x x . ∴121252==512x x x x + 故答案为:5.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=b a -,x 1x 2=c a. 19.已知a ,b 是一元二次方程22310x x +-=的两实数根,则11a b+=________.3【分析】根据方程的系数结合根与系数的关系可得出a+b=-ab=-将其代入中即可求出结论【详解】解:∵是方程的两根故答案为:3【点睛】本题考查了根与系数的关系牢记两根之和等于-两根之积等于是解题的关键解析:3【分析】根据方程的系数结合根与系数的关系,可得出a+b=-32,ab=-12,将其代入11a b a b ab ++=中即可求出结论.【详解】解:∵a ,b 是方程22310x x +-=的两根, 32a b ∴+=-,12ab =-, 3112312a b a b ab -+∴+===-. 故答案为:3.【点睛】 本题考查了根与系数的关系,牢记“两根之和等于-b a ,两根之积等于c a”是解题的关键. 20.如图,世纪广场有一块长方形绿地,AB =18m ,AD =15m ,在绿地中开辟三条宽为xm 的道路后,剩余绿地的面积为144m 2,则x =_____.【分析】由在绿地中开辟三条宽为xm 的道路后剩余绿地的面积为144m2即可得出关于x 的一元二次方程此题得解【详解】解:设道路的宽为xm 根据题意得:(18﹣2x )(15﹣x )=144解得:或(舍去)答: 解析:3【分析】由在绿地中开辟三条宽为xm 的道路后,剩余绿地的面积为144m 2,即可得出关于x 的一元二次方程,此题得解.【详解】解:设道路的宽为xm ,根据题意得:(18﹣2x )(15﹣x )=144,解得:13x =或221x =(舍去),答:道路的宽为3m .故答案为:3.【点睛】此题考查一元二次方程的应用,根据题意找出等量关系,正确列方程是解题的关键.三、解答题21.解方程:2250x x +-=.解析:1216,16x x =-=-【分析】利用配方法解方程.【详解】2250x x +-=225x x +=2(1)6x +=1x =-±∴1211x x =-=-【点睛】此题考查解一元二次方程的方法—配方法,将等式变形为平方形式是解题的关键. 22.(1)用配方法解:221470x x --=;(2)用因式分解法解:()()222332x x -=-.解析:(1)1x =,2x =2)x 1=1,x 2=-1. 【分析】(1)先移项,把二次项系数化为1,再把方程两边同时加上一次项系数一半的平方,进而开平方解方程即可得答案;(2)先根据完全平方公式把方程两边展开,再移项整理成一元二次方程的一般形式,再利用因式分解法解方程即可得答案.【详解】(1)221470x x --=移项得:2x 2-14x=7,二次项系数化为1得:x 2-7x=72, 配方得:x 2-7x+27()2=72+27()2,即(x-72)2=634,开平方得:x-72=,解得:1x =272x -=. (2)()()222332x x -=-展开得:4x 2-12x+9=9x 2-12x+4移项、合并得:5x 2-5=0,分解因式得(x+1)(x-1)=0,解得:x 1=1,x 2=-1.【点睛】本题考查配方法及因式分解法解一元二次方程,熟练掌握解方程的步骤是解题关键. 23.解方程:(1)23620x x -+=(2)222(3)9x x -=-解析:(1)13x =,233x =;(2)x=3或x=9. 【分析】(1)根据公式法即可求出答案;(2)根据因式分解法即可求出答案.【详解】解:(1)∵3x 2-6x+2=0,∴a=3,b=-6,c=2,∴△=36-24=12,∴6363x ±±==∴1x =2x = (2)∵2(x-3)2=x 2-9,∴2(x-3)2=(x-3)(x+3),∴(x-3)[(2(x-3)-(x+3)]=0,∴(x-3)(x-9)=0∴x-3=0,x-9=0∴x=3或x=9.【点睛】本题考查解一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.24.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元:如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买了这种服装x 件.(1)填空:解析:(1)①80;②74;③25x ≥(2)20件【分析】(1)①如果一次性购买不超过10件,单价为80元;②用单价80元减去(13-10)×2,得出答案即可;③求出单价恰好是50元时的购买件数,即可分析得到;(2)根据一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,表示出每件服装的单价,进而得出等式方程求出即可.【详解】解:(1)①∵如果一次性购买不超过10件,单价为80元,故填:80;②80-(13-10)×2=74,故填:74;③设购买a 件时,单价恰好是50元,80-(a -10)×2=50,解得:a =25,而题目中“单价不得低于50元”,∴25x ≥时,单价是50元,故填:25x ≥;(2)因为1200>800,所以一定超过了10件,设购买了x 件这种服装且多于10件,根据题意得出:[80-2(x -10)]x =1200,解得:x 1=20,x 2=30,当x =20时,80-2(20-10)=60元>50元,符合题意;当x =30时,80-2(30-10)=40元<50元,不合题意,舍去;答:购买了20件这种服装.【点睛】此题主要考查了一元二次方程的应用,根据已知得出每件服装的单价是解题关键. 25.计算题(1)解方程:2690x x ++= (2)解不等式组:3152(2)7x x x ->⎧⎨+<+⎩解析:(1)123x x ==-; (2)23x <<【分析】(1)利用因式分解法求解即可.(2)分别求出两个不等式的解集,最后找出公共部分即可.【详解】解:(1)2690x x ++=因式分解得:()230x +=解得:123x x ==-. (2)()31512272x x x ->⎧⎨+<+⎩ 解不等式1得:2x >解不等式2得:3x <∴不等式组的解集是23x <<.【点睛】本题考察解一元二次方程和一元一次不等式组,解题的关键是:(1)用因式分解法求解一元二次方程(2)不等式组解集的确定,原则是“同大取大,同小取小,大小小大中间找,大大小小找不到”.26.解方程:212270x x -+=解析:13x =,29x =.【分析】利用因式分解法解此一元二次方程,即可求解.【详解】解:212270x x -+=分解因式,得(3)(9)0x x --=,则30x -=或90x -=,∴13x =,29x =.【点睛】本题考查了解一元二次方程,熟练掌握一元二次方程的解法并能结合方程特点选择适当的解法是解题的关键.27.解方程(1)2420x x -+=(2)()255210x x ++= (3)2560x x -+=(4)()3133x x x +=+解析:(1)1222x x ==2)121x x ==-;(3)1232x x ==,;(4)1211x x =-=, 【分析】(1)直接利用配方法解方程得出答案即可;(2)方程整理后,利用利用配方法解方程得出答案即可;(3)利用分解因式法解方程即可;(4)方程整理后,利用提取公因式法分解因式进而解方程即可.【详解】(1)2420x x -+=,移项得:242x x -=-,配方得:24424x x -+=-+,即2(2)2x -=,开方得:2x -=,解得:1222x x ==(2)()255210x x ++=,整理得:2210x x ++=,即2(1)0x +=,∴121x x ==-;(3)2560x x -+=,因式分解得:()()320x x --=,∴30x -=,20x -=,∴1232x x ==,;(4)()3133x x x +=+,整理得:()()110x x x +-+=,因式分解得:()()110x x +-=,∴10x +=,10x -=, ∴1211x x =-=,. 【点睛】本题主要考查了解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.28.阅读下列材料:对于任意的正实数a ,b ,总有2a b ab +≥成立(当且仅当a b =时,等号成立),这个不等式称为“基本不等式”利用“基本不等式”可求一些代数式的最小值.例如:若0x >,求式子1x x +的最小值. 解:∵0x >,∴112212x x x x+≥⋅==,∴1x x +的最小值为2.(1)若0x >,求9x x+的最小值; (2)已知1x >,求2251x x x -+-的最小值. (3)如图,四边形ABCD 的对角线AC ,BD 相交于点O ,AOB 、COD △的面积分别为4和9,求四边形ABCD 面积的最小值.解析:(1)6;(2)4;(3)25.【分析】(1)将原式变形为9x x +≥ (2)结合阅读材料将原式变形为()411x x -+-后即可确定最小值; (3)设S △BOC =x ,已知S △AOB =4,S △COD =9,则由等高三角形可知:BOC AOB COD AOD S S S S =△△△△,用含x 的式子表示出36AOD S x =△,再按照题中所给公式求得最小值,加上常数即可. 【详解】解:(1)∵0x >,∴9x x +≥又∵6=, ∴96x x+≥ ∴9x x+的最小值为6; (2)∵1x >∴10x ->, ∴222521411x x x x x x -+-++=--()2141x x -+=-()411x x =-+-≥∵∴22541x x x -+≥- ∴2251x x x -+-的最小值为4. (3)设(0)BOC S x x =>△,则由等高三角形可知:BOC AOB COD AODS S S S =△△△△ ∴49AOD x S =△,即36AOD S x=△, ∴四边形ABCD 面积364913x x =+++≥,∵13=25,当且仅当x=6时,取等号,∴四边形ABCD面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用,同时本题还考查了等高三角形的在面积计算中的应用.对不能直接应用公式的,需要正确变形才可以应用,本题中等难度略大.。
九年级数学上册《第二十一章一元二次方程》同步练习题及答案(人教版)
九年级数学上册《第二十一章一元二次方程》同步练习题及答案(人教版) 班级姓名学号一、单选题1.方程x2=4x的根是()A.4 B.-4 C.0或4 D.0或-42.下列方程是关于x的一元二次方程的是()A.ax2+bx+c=0B.1x2+1x=2C.x2+2x=x2−1D.3(x+1)2=2(x+1)3.若x=1是方程x2+ax﹣2=0的一个根,则a的值为()A.0 B.1 C.2 D.34.如果一个一元二次方程的根是x1=x2=2,那么这个方程可以是()A.x2=4 B.x2+4=0C.x2+4x+4=0 D.x2-4x+4=05.已知关于x的方程ax2+bx+c=0,若a+b+c=0,则该方程一定有一个根为()A.-1 B.0 C.1 D.1或-16.若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1C.k≤5,且k≠1 D.k>57.已知2是关于x的方程x2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A.10 B.14 C.10或14 D.8或108.定义:cx2+bx+a=0是一元二次方程ax2+bx+c=0的倒方程.则下列四个结论:①如果x=2是x2+2x+c=0的倒方程的解,则c=−54;②如果ac<0,那么这两个方程都有两个不相等的实数根;③如果一元二次方程ax2−2x+c=0无实数根,则它的倒方程也无实数根;④如果一元二次方程ax2+bx+c=0有两个不相等的实数根,则它的倒方程也有两个不相等的实数根. 其中正确的有()A.1个B.2个C.3个D.4个二、填空题9.写一个以5,﹣2为根的一元二次方程(化为一般形式).10.一元二次方程x2-3x=0的较大的根为。
11.把方程3x (x ﹣1)=2﹣2x 化成一元二次方程的一般形式为12.若一元二次方程ax 2﹣bx ﹣2015=0有一根为x=﹣1,则a+b= .13.已知 {x =−2y =3是方程x ﹣ky=1的解,那么k= . 三、解答题14.已知x=1是方程x 2﹣5ax+a 2=0的一个根,求代数式3a 2﹣15a ﹣7的值.15.若关于x 的二次方程(m+1)x 2+5x+m 2﹣3m=4的常数项为0,求m 的值.16.已知关于x 的方程(k ﹣1)(k ﹣2)x 2+(k ﹣1)x+5=0.求:(1)当k 为何值时,原方程是一元二次方程;(2)当k 为何值时,原方程是一元一次方程;并求出此时方程的解.17.阅读下题的解答过程,请判断其是否有错,若有错误,请你写出正确的m 值.已知m 是关于x 的方程mx 2﹣2x+m=0的一个根,求m 的值.解:把x=m 代入原方程,化简得m 2=m ,两边同除以m ,得m=1把m=1代入原方程检验,可知m=1符合题意.18.关于x 的一元二次方程x 2﹣3x+k =0有实数根.(1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且一元二次方程(m ﹣1)x 2+x+m ﹣3=0与方程x 2﹣3x+k =0有一个相同的根,求此时m 的值.19.已知关于x 的一元二次方程x 2+(m ﹣2)x +m ﹣3=0.(1)求证:无论m 取何值,方程总有实数根.(2)设该方程的两个实数根分别为x 1,x 2,且2x 1+x 2=m +1,求m 的值.1.C2.D3.B4.D5.C6.B7.B8.C9.x2-3x-10=0(不唯一)10.x=311.3x2−x−2=012.201513.k=﹣114.解:∵x=1是方程x2﹣5ax+a2=0的一个根∴1﹣5a+a2=0.∴a2﹣5a=﹣1∴3a2﹣15a﹣7=3(a2﹣5a)﹣7=3×(﹣1)﹣7=﹣10,即3a2﹣15a﹣7=﹣10.15.解:∵关于x的二次方程(m+1)x2+5x+m2﹣3m﹣4=0的常数项为0∴m2﹣3m﹣4=0,即(m﹣4)(m+1)=0解得:m=4或m=﹣1当m=﹣1时,方程为5x=0,不合题意;则m的值为4.16.解:(1)依题意得:(k﹣1)(k﹣2)≠0解得k≠1且k≠2;(2)依题意得:(k﹣1)(k﹣2)=0,且k﹣1≠0所以k﹣2=0解得k=2所以该方程为x+5=0解得x=﹣5.17.解:错误,由于关于x的方程不一定是一元二次方程此时,方程为﹣2x=0∴x=0,符合题意当m ≠0时∴m 3﹣2m+m=0∴m (m 2﹣1)=0∴m 2﹣1=0∴m=±1综上所述,m=0或±1.18.(1)解:根据题意得△=(-3)2-4k ≥0,解得k ≤ 94(2)解:满足条件的k 的最大整数为2,此时方程变形为方程x 2-3x+2=0,解得x 1=1,x 2=2 当相同的解为x=1时,把x=1代入方程得m-1+1+m-3=0,解得m= 32当相同的解为x=2时,把x=2代入方程得4(m-1)+2+m-3=0,解得m=1,而m-1≠0 不符合题意,舍去,所以m 的值为 3219.(1)证明:∵Δ=(m −2)2−4(m −3)=m 2−4m +4−4m +12=m 2−8m +16=(m −4)2≥0 ∴无论m 取何值,此方程总有实数根;(2)解:∵该方程的两个实数根分别为x 1,x 2∴{x 1+x 2=−(m −2)=2−m 2x 1+x 2=m +1,且 x 1x 2=m −3 解得 {x 1=2m −1x 2=3−3m∴(2m −1)(3−3m)=m −3∴6m −3−6m 2+3m =m −3 即 6m 2−8m =0∴m(6m −8)=0∴解得 m =0 或 m =43。
人教版数学九年级上册第二十一章 —一元二次方程知识点总结及练习
一元二次方程一 、 基本概念(1)方程定义:含有未知数的等式叫方程。
(2) 方程的解:使方程左右两边相等的未知数的值叫做方程的解。
(3)解方程:求方程的解的过程叫做解方程。
(4)一元二次方程的定义只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.一般形式为 02=++c bx ax (0≠a ).注:一元二次方程的解也叫一元二次方程的根 考察一元二次方程概念例○1:下列方程不是整式方程的是( ) A 、321=+x B 、07222=++z xy y x C 、21373+=-+x x D 、172=m ○2下列方程不是一元二次方程的是( ) A 、01262=++y y B 、m m 531212-= C 、043611012=+-p p D 、x 2+x-1=x 2○3方程013)2(=+++mx x m m 是关于x 的一元二次方程,则m 的值为( ) A 、2±=m B 、2=m C 、m =-2 D 、2±=m○4一元二次方程0352=-+-x x ,把二次项系数变为正数,且使方程的根不变的是( )A.0352=+-x xB.0352=--x xC.0352=-+x xD.0352=++x x二、一元二次方程的解法 1.直接开方法(1)用直接开平方求一元二次方程的解的方法叫做直接开平方法.如果一个一元二次方程,左边是一个含有未知数的完全平方式,右边是一个非负数,就可以用直接开平方法求解.计算:(1)2x 2-8=0 (2)9x 2-5=3(3)(x+6)2-9=0 (4)3(x-1)2=6 (5)(2x+1)2=(x-1)2 (6)(5-2x )2=9(x+3)22.配方法(1)用配方法解方程是以配方为手段,以直接开平方法为基础的一种解题方法.是中学数学中常用的数学方法.(2)配方的关键步骤是:在方程两边同时加上一次项系数的绝对值一半的平方.理论根据是:222)(2b a b ab a ±=+±(3)配方的结果是使方程的一边化为一个完全平方式,另一边为非负实数,再利用直接开平方法求解. 步骤:(1)移项;(2)化二次项系数为1;(3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m )2=n 的形式;(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.练习题1.用适当的数填空:①x 2+6x+ =(x+ )2;② x 2-5x+ =(x - )2; ③x 2+ x+ =(x+ )2;④ x 2-9x+ =(x - )2 2.将二次三项式2x 2-3x-5进行配方,其结果为_________. 3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.4.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为_______,•所以方程的根为_________.5.若x 2+6x+m 2是一个完全平方式,则m 的值是( ) A .3 B .-3 C .±3 D .以上都不对 6.用配方法将二次三项式a 2-4a+5变形,结果是( ) A .(a-2)2+1 B .(a+2)2-1 C .(a+2)2+1 D .(a-2)2-1 7.把方程x+3=4x 配方,得( ) A .(x-2)2=7 B .(x+2)2=21 C .(x-2)2=1 D .(x+2)2=28.用配方法解方程x 2+4x=10的根为( ) A .2B .-2C .D .9.不论x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值( )A .总不小于2B .总不小于7C .可为任何实数D .可能为负数10.用配方法解下列方程:(1)3x 2-5x=2. (2)x 2+8x=9(3)x 2+12x-15=0 (4)41x 2-x-4=0(5)6x 2-7x+1=0 (6)4x 2-3x=5211.用配方法求解下列问题(1)求2x 2-7x+2的最小值 ;(2)求-3x 2+5x+1的最大值。
(人教版)九年级数学上册第二十一章 一元二次方程(基础过关)
(人教版)九年级数学上册第二十一章 一元二次方程(基础过关)一、单选题1.已知1x ,2x 是一元二次方程2340x x --=的两个根,则12x x ⋅的值为( )A .3B .-3C .4D .-4 2.关于的一元二次方程的两根为,那么代数式的值为 A . B . C .2 D .-23.从正方形的铁皮上,截去2cm 宽的一条长方形,余下的面积48cm 2,则原来的正方形铁皮的面积是( )A .9cm 2B .68cm 2C .8cm 2D .64cm 24.9(x-y )2+12(x 2-y 2)+4(x+y )2因式分解为( )A .()()3x 2y 3x 2y -+B .2(5x y)+C .2(5x y)-D .2(5x 2y)- 5.下列方程有实数解的是( )A .1=-B . 120x ++=C .1 11x x x =++D .2 230x x -+=6.在Rt △ABC 中,斜边AB=5,而直角边BC ,AC 之长是一元二次方程x 2-(2m-1)x+4(m-1)=0的两根,则m 的值是( )A .4B .-1C .4或-1D .-4或1 7.方程()27350mm x mx ---+=是关于x 的一元二次方程,则m 的值为( ) A .3 B .-3 C .±3 D .不存在8.一元二次方程x 2+x+1=0的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定9.从n 边形的一个顶点出发,可以作(n ﹣3)条对角线,若一个多边形共有35条对角线,则该多边形的边数是( )A .13B .10C .8D .7 10.已知x ﹣1x=2,则x 2+21x 的值为( )A .2B .4C .6D .8二、填空题11.如果210x cx -+=的一个根,那么c 的值是__________.12.已知关于x 的方程220--=x x k 没有实数根,则k 的取值范围为________.13.如图,王师傅在一块正方形钢板上截取了 4 cm 宽的矩形钢条,剩下的阴影部分的面 积是296cm ,则原来这块正方形钢板的边长是__________cm.14.x 1,x 2是方程x 2+2x ﹣3=0的两个根,则代数式x 12+3x 1+x 2=_____.三、解答题15.悠悠食品店的A 、B 两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.(1)该店每天卖出这两种菜品共多少份?(2)该店为了增加利润,准备降低A 种菜品的售价,同时提高B 种菜品的售价,售卖时发现,A 种菜品售价每降0.5元可多卖1份;B 种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售的总份数不变,这两种菜品一天的总利润是316元.求A 种菜品每天销售多少份?16.重庆人民在秋冬季节都爱吃黄橙橙香喷喷的脐橙,游老大看大商机,用5400元购进600斤“福本”脐橙和500斤“纽维尔”脐橙在自家水果店销售.已知“福本”脐橙比“纽维尔”脐橙每斤贵0.2元.(1)“福本”脐橙和“纽维尔”脐橙的进价分别为多少元?(2)脐橙销售火爆,游老大继续进货,他到价格更合理的东华水果批发店进货,“福本”脐橙数量与上次数量一样多,进价比上次每斤减少了625a %,“纽维尔”脐橙比上次数量多12a %,进价比上次每斤减少了16a %,若这两次的进货总金额不变,则a 的值为多少? 17.如图,在平面直角坐标系中,已知抛物线y=a (x-5)(x+1)与x 轴交于点A ,B 两点,与y 轴交于点C (0,52). (1)求抛物线的解析式;(2)在抛物线上是否存在点P ,使△ACP 是以点A 为直角顶点的直角三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由;(3)点G 为抛物线上的一动点,过点G 作GE 垂直于y 轴于点E ,交直线AC 于点D ,过点D 作x 轴的垂线,垂足为点F ,连接EF .当线段EF 的长度最短时,求出点G 的坐标.18.维康药店购进一批口罩进行销售,进价为每盒(二十只装)40元,如果按照每盒50元的价格进行销售,每月可以售出500盒.后来经过市场调查发现,若每盒口罩涨价1元,则口罩的销量每月减少20盒.(1)维康药店要保证每月销售此种口罩盈利6000元,又要使消费者得到实惠,则每盒口罩可涨价多少元?(2)若使该口罩的月销量不低于300盒,则每盒口罩的售价应不高于多少元?19.我们规定:平面内点A 到图形G 上各个点的距离的最小值称为该点到这个图形的最小距离d ,点A 到图形G 上各个点的距离的最大值称为该点到这个图形的最大距离D ,定义点A 到图形G 的距离跨度为R =D -d .(1)①如图1,在平面直角坐标系xOy 中,图形G 1为以O 为圆心,2为半径的圆,直接写出以下各点到图形G 1的距离跨度:A (1,0)的距离跨度______________;B (-12,的距离跨度____________;C (-3,-2)的距离跨度____________;②根据①中的结果,猜想到图形G 1的距离跨度为2的所有的点组成的图形的形状是______________.(2)如图2,在平面直角坐标系xOy 中,图形G 2为以D (-1,0)为圆心,2为半径的圆,直线y =k (x -1)上存在到G 2的距离跨度为2的点,求k 的取值范围.(3)如图3,在平面直角坐标系xOy 中,射线OP :y =3x (x ≥0),⊙E 是以3为半径的圆,且圆心E 在x 轴上运动,若射线OP 上存在点到⊙E 的距离跨度为2,求出圆心E 的横坐标x E 的取值范围.20.(1)化简:2(1)3a a a --+;(2)先化简,再求值:2277[32(1)]2x y xy xy x y ---+其中216()06x y -++=.参考答案1.D由1x ,2x 为已知方程的两根,利用根与系数的关系求出12x x ⋅的值即可.∵1x ,2x 是一元二次方程2340x x --=的两个根,∴12=4x x ⋅-,故选D.本题考查一元二次方程根与系数的关系,熟练掌握根与系数的关系是解本题的关键.2.B试题分析:由已知得:x 1+x 2=2;x 1x 2=-4 ∴121212112142x x x x x x ++===--.故答案选B . 考点:一元二次方程根与系数的关系.3.D可设正方形的边长是xcm ,根据“余下的面积是48cm 2”,余下的图形是一个矩形,矩形的长是正方形的边长,宽是x ﹣2,根据矩形的面积公式即可列出方程求解.设正方形的边长是xcm ,根据题意得:x (x ﹣2)=48解得:x 1=﹣6(舍去),x 2=8,那么原正方形铁片的面积是8×8=64(cm 2).故选D .本题考查了一元二次方程应用以及矩形和正方形面积公式,表示出矩形各边长是解题的关键. 4.C把(x -y )与(x +y )看做一个整体,运用完全平方公式求解即可.解:9(x -y )2+12(x 2-y 2)+4(x +y )2,=[3(x -y )]2+12(x +y )(x -y )+[2(x +y )]2,=[3(x +y )+2(x -y )]2,=(5x -y )2.故选C .本题主要考查利用完全平方公式进行因式分解,要把(x -y )与(x +y )看作一个整体,整理成公式形式是解题的关键.5.C选项A 任何一个实数的算术平方根不可能是负数,因而方程一定没有实数解;选项B 任何一个数的绝对值一定大于或等于零,再加上正数肯定要大于零,因而方程一定没有实数解;选项C 是解分式方程,去分母得到:1x =,经检验是方程的解;选项D 中,41280=-=-<,则方程无实数解.A 0≥,因而112-=-x ,对任何实数都不能成立,即方程没有实数解;B 、10x +≥,因而对任意实数120x ++>一定成立,因而方程没有实数解;C 、下列方程有实数解的是111x x x =++,去分母得到:1x =,经检验是方程的解; D 、41280=-=-<,则方程无实数解.故选:C .本题重点考查了二次根式,绝对值都是非负数,以及一元二次方程的根的判断,分式方程的解法,是一道较为基础的题目.6.A利用一元二次方程根与系数的关系,求出a+b 和ab ,利用勾股定理可得出a 2+b 2=25,再将方程左边转化为(a+b )2-2ab ,然后整体代入建立关于m 的方程,解方程求出m 的值,再由a+b >0,确定m 的值。
人教版九年级数学上册:21.1 一元二次方程(含答案)
第二十一章 一元二次方程21.1 一元二次方程知识点1.只含有 个未知数,并且未知数的 方程叫一元二次方程.2.一元二次方程的一般形式是 ,其中二次项为 ,一次项 ,常数项 ,二次项系数 ,一次项系数 .3.使一元二次方程左右两边 叫一元二次方程的解。
一.选择题1.下列方程是一元二次方程的是( )A .x-2=0B .x 2-4x-1=0C .x 2-2x-3D .xy+1=02.下列方程中,是一元二次方程的是( )A .5x+3=0B .x 2-x (x+1)=0C .4x 2=9D .x 2-x 3+4=03.关于x 的方程013)2(22=--+-x x a a 是一元二次方程,则a 的值是( )A .a=±2B .a=-2C .a=2D .a 为任意实数4.把一元二次方程4)3()1(2+-=-x x x 化成一般式之后,其二次项系数与一次项分别是( )A .2,-3B .-2,-3C .2,-3xD .-2,-3x5.若关于x 的一元二次方程x 2+5x+m 2-1=0的常数项为0,则m 等于( )A .1B .2C .1或-1D .06.把方程2(x 2+1)=5x 化成一般形式ax 2+bx+c=0后,a+b+c 的值是( )A .8B .9C .-2D .-17.(2013•安顺)已知关于x 的方程x 2-kx-6=0的一个根为x=3,则实数k 的值为( )A .1B .-1C .2D .-28.(2013•牡丹江)若关于x 的一元二次方程为ax 2+bx+5=0(a ≠0)的解是x=1,则2013-a-b 的值是( )A .2018B .2008C .2014D .2012二.填空题9.当m= 时,关于x 的方程5)3(72=---x x m m 是一元二次方程;10.若方程kx 2+x=3x 2+1是一元二次方程,则k 的取值范围是 .11.方程5)1)(13(=+-x x 的一次项系数是 .12.(2012•柳州)一元二次方程3x 2+2x-5=0的一次项系数是 .13.关于x 的一元二次方程3x (x-2)=4的一般形式是 .14.(2005•武汉)方程3x 2=5x+2的二次项系数为 ,一次项系数为 .15.(2007•白银)已知x=-1是方程x 2+mx+1=0的一个根,则m= .16.(2010•河北)已知x=1是一元二次方程x 2+mx+n=0的一个根,则m 2+2mn+n 2的值为 .17.(2013•宝山区一模)若关于x 的一元二次方程(m-2)x 2+x+m 2-4=0的一个根为0,则m 值是 .18.已知关于x 的一元二次方程ax 2+bx+c=0(a ≠0)有一个根为1,一个根为-1,则a+b+c= ,a-b+c= .三.解答题19.若(m+1)x |m|+1+6-2=0是关于x 的一元二次方程,求m 的值.20.(2013•沁阳市一模)关于x 的方程(m 2-8m+19)x 2-2mx-13=0是否一定是一元二次方程?请证明你的结论.21.一元二次方程0)1()1(2=++++c x b x a 化为一般式后为01232=-+x x ,试求0222=-+c b a 的值的算术平方根.21.1 一元二次方程知识点1.一,最高次数是2的整式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019备战中考数学基础必练(人教版)-第二十一章-一元二次方程(含解析)一、单选题1.关于x的方程kx2+2x-1=0有两个不相等的实数根,则k的取值范围是()A.k>-1B.k<-1C.k≥-1且k≠0D.k>-1且k≠02.方程(x+1)(x-3)=5的解是()A.x1=1,x2=-3B.x1=4,x2=-2C.x1=-1,x2= 3D.x1= -4,x2=23.若关于x 的一元二次方程(m﹣2)2x2+(2m+1)x+1=0有解,那么m的取值范围是()A.m>B.m≥C.m>且m≠2D.m≥ 且m≠24.设方程的两根分别为,且,那么m的值等于()A. B.-2 C. D.5.一元二次方程x2﹣3x+2=0 的两根分别是x1、x2,则x1+x2的值是()A.3B.2C.﹣3D.﹣26.用配方法解一元二次方程+4x-3=0时,原方程可变形为()A.(x+2)=1B.(x+2)=19C.(x+2)=13D.(x+2)=77.若(a+b)(a+b+2)=8,则a+b的值为()A. -4B.2C.4D. -4或28.关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根,,则k的取值范围是()A.k>-1B.k>1C.k≠0D.k>-1且k≠09.已知是方程x2-2x-1=0的两个根,则的值为()A. B.2 C. D. -2二、填空题10.方程的解是________.11.若关于x的方程x2+3x+a=0有一个根为1,则另一个根为________.12.若关于x的方程(m﹣)x ﹣x+2=0是一元二次方程,则m的值是________.13.关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,b,m均为常数,a≠0),则方程a(x+m+2)2+b=0的解是________.14.若正数a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x﹣m=0的一个根,则a的值是________.15.若正数a是一个一元二次方程x2-5x+m=0的一个根,-a是一元二次方程x2+5x-m=0的一个根,则a的值是________.16.关于x的方程3kx2+12x+2=0有实数根,则k的取值范围是________.17.用配方法解方程,则配方后的方程是________.18.若关于x的方程x2+mx+1=0有两个相等的实数根,则m=________.19.若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为________.三、计算题20.解方程①x2﹣3x+2=0②4x2﹣12x+7=0.21.解方程:(1)(2x﹣3)2=25(2)x2﹣4x﹣3=0 (配方法)22.解方程:四、解答题23.如图,中间用相同的白色正方形瓷砖,四周用相同的黑色长方形瓷砖铺设矩形地面,请观察图形并解答下列问题.(1)问:依据规律在第6个图中,黑色瓷砖多少块,白色瓷砖有多少块;(2)某新学校教室要装修,每间教室面积为68m2,准备定制边长为0.5米的正方形白色瓷砖和长为0.5米、宽为0.25米的长方形黑色瓷砖来铺地面.按照此图案方式进行装修,瓷砖无须切割,恰好完成铺设.已知白色瓷砖每块20元,黑色瓷砖每块10元,请问每间教室瓷砖共需要多少元?24.已知关于x的方程x2﹣2(m+1)x+m2=0(1)当Mm取什么值时,原方程没有实数根;(2)对m选取一个合适的非零整数,使原方程有两个不相等的实数根,并求出这两个实数根.五、综合题25.先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∵m2+2mn+n2+n2﹣6n+9=0∵(m+n)2+(n﹣3)2=0∵m+n=0,n﹣3=0∵m=﹣3,n=3问题(1)若∵ABC的三边长a、b、c都是正整数,且满足a2+b2﹣6a﹣6b+18+|3﹣c|=0,请问∵ABC 是什么形状?说明理由.(2)若x2+4y2﹣2xy+12y+12=0,求x y的值.(3)已知a﹣b=4,ab+c2﹣6c+13=0,则a+b+c=________.26.先阅读下列(1)的解答过程,然后再解答第(2)(3)小题.(1)已知实数a、b满足a2=2﹣2a,b2=2﹣2b,且a≠b,求+ 的值.(2)若实数a≠b,且a,b满足a2﹣8a+5=0,b2﹣8b+5=0,求代数式+ 的值;(3)已知m2﹣3m﹣5=0,5n2+3n﹣1=0,求m2+ 的值.答案解析部分一、单选题1.【答案】 D【考点】一元二次方程的定义,根的判别式【解析】【分析】根据∵的意义得到k≠0且∵=4-4k×(-1)>0,然后求出两不等式的公共部分即可.【解答】∵x的方程kx2+2x-1=0有两个不相等的实数根,且∵=4-4k×(-1)>0,解得k>-1,∵k≠0∵k的取值范围为k>-1且k≠0.故选D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∵=b2-4ac:当∵>0,方程有两个不相等的实数根;当∵=0,方程有两个相等的实数根;当∵<0,方程没有实数根.也考查了一元二次方程的定义.2.【答案】 B【考点】解一元二次方程-公式法【解析】解答:(x+1)(x-3)=5,x2-2x-3-5=0,x2-2x-8=0,∵x1=4,x2=-2.故选:B .分析:首先把方程化为一般形式,利用公式法即可求解.3.【答案】 D【考点】根的判别式【解析】【解答】解:∵关于x 的一元二次方程(m﹣2)2x2+(2m+1)x+1=0有解,∵ ,解得:m≥ 且m≠2.故选D.【分析】根据一元二次方程的定义以及方程有解,结合根的判别式即可得出关于m的一元二次不等式组,解不等式即可得出结论.4.【答案】 B【考点】根与系数的关系【解析】【解答】∵方程的两根分别为,∵ ,又∵ ,∵ ,∵ .【分析】根据根与系数的关系及求得,再由m与的关系求得m 的值.5.【答案】 A【考点】根与系数的关系【解析】【解答】解:这里a=1,b=﹣3,则x1+x2=﹣=3,故选A.【分析】根据一元二次方程根与系数的关系求则可.设x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的两个实数根,则x1+x2=-,x1x2=.6.【答案】 D【考点】解一元二次方程-配方法【解析】【解答】∵x2+4x=3,∵x2+4x+4=3+4,即(x+2)2=7,故答案为:D.【分析】将方程的常数项移到方程的右边,根据等式的性质,方程的左右两边都加上一次项系数一半,的平方4,左边利用完全平方公式改写成一个整式的平方,右边合并同类项,即可。
7.【答案】 D【考点】解一元二次方程-因式分解法【解析】解答: 设a+b=x ,由题意得x(x+2)=8+2x-8=0(x-2)(x+4)=0解得x1=2,x2=-4因此a+b=2或-4.故选:D.分析: 此题考查用换元法解一元二次方程,注意原方程的特点,用一个字母代替方程的某一个式子是解决问题的关键8.【答案】 D【考点】根的判别式【解析】【分析】根据∵的意义得到k≠0且∵=4-4k×(-1)>0,然后求出不等式的解即可。
【解答】∵关于x的方程kx2+2x-1=0有两个不相等的实数根,∵k≠0且∵=4-4k×(-1)>0,解得k>-1,∵k的取值范围为k>-1且k≠0.故选D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∵=b2-4ac:当∵>0,方程有两个不相等的实数根;当∵=0,方程有两个相等的实数根;当∵<0,方程没有实数根。
也考查了一元二次方程的定义。
9.【答案】 D【考点】一元二次方程的根与系数的关系【解析】【解答】由韦达定理可得,故答案为: D.【分析】利用一元二次方程根与系数的关系求出方程的lx1+x2,x1x2,再将转化为,然后代入求值。
二、填空题10.【答案】x=0【考点】一元二次方程的解【解析】【解答】解:两边平方得:x=x2,解方程的:x1=0,x2=1,检验:当x1=0时,方程的左边=右边=0,∵x=0为原方程的根当x2=1时,原方程无意义,故舍去.故答案为:x=0.【分析】把方程两边平方去根号后求解.11.【答案】﹣ 4【考点】根与系数的关系【解析】【解答】解:设方程的另一根为x2,根据题意,得:1+x2=﹣3,解得:x2=﹣4,故答案为:﹣4.【分析】依据一元二次方程根与系数的关系进行解答即可.12.【答案】﹣【考点】一元二次方程的定义【解析】【解答】解:∵关于x的方程(m﹣)x ﹣x+2=0是一元二次方程,∵m2﹣1=2,m﹣≠0,解得:m=﹣.故答案为:﹣.【分析】直接利用一元二次方程的定义得出关于m的等式进而得出答案.13.【答案】x3=0,x4=﹣3【考点】一元二次方程的根【解析】【解答】解:∵关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,m,b均为常数,a≠0),∵方程a(x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=2或x+2=﹣1,解得x=0或x=﹣3.故答案为:x3=0,x4=﹣3【分析】将方程a(x+m+2)2+b=0中的x+2看着整体,相当于前面方程中的x,列出方程x+2=2或x+2=﹣1,求解即可。
14.【答案】5【考点】一元二次方程的根【解析】【解答】解:∵a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x ﹣m=0的一个根,∵a2﹣5a+m=0①,a2﹣5a﹣m=0②,①+②,得2(a2﹣5a)=0,∵a>0,∵a=5.故答案为:5【分析】由a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x﹣m=0的一个根,可得出a2﹣5a+m=0和a2﹣5a﹣m=0,将两方程相加,可得出2(a2﹣5a)=0,求出方程的解,然后根据a是正数,可求出符合条件的a的值。
15.【答案】5【考点】一元二次方程的应用【解析】【解答】解:∵a是一元二次方程x2-5x+m=0的一个根,-a是一元二次方程x2+5x-m=0的一个根,∵a2-5a+m=0①,a2-5a-m=0②,①+②,得2(a2-5a)=0,∵a>0,∵a=5.故答案为:5【分析】将两个方程的根分别代入两个方程,观察后将两个方程相加即可得到关于a的一元二次方程,求得a的值,并结合a为正数可求得a的值为 5.16.【答案】k≤6【考点】一元二次方程根的判别式及应用【解析】【解答】解:当k=0时,原方程可化为12x+2=0,解得x=﹣;当k≠0时,此方程是一元二次方程,∵方程3kx2+12x+2=0有实数根,,解得k≤6.∵∵≥0,即∵=122﹣4×3k×2≥0∵k的取值范围是k≤6.故答案为:k≤6.【分析】由于题中时关于x的方程,因此此方程可能是一元一次方程也可能是一元二次方程,分情况讨论:当k=0时;当k≠0时,此方程是一元二次方程,由题意得出b2-4ac≥0,建立关于k的不等式,求解即可。