圆锥曲线解题技巧和方法综合
圆锥曲线解题技巧和方法综合全
圆锥曲线的解题技巧一、常规七大题型:〔1〕中点弦问题具有斜率的弦中点问题,常用设而不求法〔点差法〕:设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式〔当然在这里也要注意斜率不存在的请款讨论〕,消去四个参数。
如:〔1〕)0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(*0,y 0),则有0220=+k b y a x 。
〔2〕)0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(*0,y 0)则有02020=-k by a x 〔3〕y 2=2p*〔p>0〕与直线l 相交于A 、B 设弦AB 中点为M(*0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。
过A 〔2,1〕的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。
〔2〕焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。
典型例题 设P(*,y)为椭圆x a y b 22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。
〔1〕求证离心率βαβαsin sin )sin(++=e ;〔2〕求|||PF PF 1323+的最值。
〔3〕直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的根本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。
y p x p x y t x 210=+>+=()()〔1〕求证:直线与抛物线总有两个不同交点〔2〕设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。
圆锥曲线解题技巧归纳
圆锥曲线解题技巧归纳圆锥曲线是数学中的重要主题之一、它涉及到许多重要的概念和技巧,可以用于解决各种问题。
本文将归纳总结圆锥曲线解题的一些常用技巧,帮助读者更好地理解和应用这一主题。
1.判别式法:对于给定的二次方程,可以根据判别式的符号来判断它表示的曲线类型。
当判别式大于零时,曲线是一个椭圆;当判别式小于零时,曲线是一个双曲线;当判别式等于零时,曲线是一个抛物线。
2.参数方程法:对于给定的圆锥曲线,可以使用参数方程来表示。
通过选取合适的参数,可以将曲线表示为一系列点的集合。
这种方法可以简化问题,使得求解过程更加直观和方便。
3.极坐标方程法:对于给定的圆锥曲线,可以使用极坐标方程来表示。
通过将直角坐标系转换为极坐标系,可以更好地描述和分析曲线的特性。
这种方法在求解对称性等问题时非常有用。
4.曲线拟合法:对于给定的一组数据点,可以使用曲线拟合的方法来找到一个最适合的圆锥曲线。
通过将数据点与曲线进行比较,可以得出曲线的参数和特性。
这种方法在实际应用中非常常见,例如地图估算、经济预测等领域。
5.曲线平移法:对于给定的圆锥曲线,可以通过平移坐标系来使其简化。
通过选取合适的平移距离,可以将曲线的对称轴对准到坐标原点,从而更方便地进行分析和求解。
6.曲线旋转法:对于给定的圆锥曲线,可以通过旋转坐标系来改变其方向和形状。
通过选取合适的旋转角度,可以使曲线变得更简单和易于处理。
这种方法在求解对称性、求交点等问题时非常有用。
7.曲线对称性法:对于给定的圆锥曲线,可以通过研究其对称性来简化问题。
根据曲线的对称轴、对称中心等特性,可以快速得到曲线的一些重要参数和结论。
8.曲线的几何性质法:对于给定的圆锥曲线,可以通过研究其几何性质来解决问题。
例如,对于椭圆可以利用焦点、半长轴、半短轴等参数来求解问题;对于双曲线可以利用渐近线、渐近点等参数来求解问题。
9.曲线的微积分法:对于给定的圆锥曲线,可以通过微积分的方法来求解其一些重要特性。
圆锥曲线解题技巧归纳(9篇)
圆锥曲线解题技巧归纳(9篇)化为一元二次方程,利用判别式求最值篇一如果能把圆锥曲线的最值问题转化为含有一个未知量的一元二次方程,利用,解得要求未知量的范围,然后确定其最值。
例3:直线,椭圆C:。
求以椭圆C的焦点F1、F2为焦点,且与直线l有公共点M的椭圆中长轴最短的。
分析:因为直线l与所求椭圆有公共点,可以由方程组得到一个一元二次方程,再利用判别式确定所求椭圆长轴的`最小值。
解:椭圆C的焦点。
说明:直线l与椭圆有公共点,可得方程组,消去一个未知数,得到一个一元二次方程,由一元二次方程有实根的条件得,构造参变量的不等式,确定的最小值,这种解法思路清晰、自然。
圆锥曲线的八大解题方法:篇二1、定义法2、韦达定理法3、设而不求点差法4、弦长公式法5、数形结合法6、参数法(点参数、K参数、角参数)7、代入法中的顺序8、充分利用曲线系方程法圆锥曲线的解题方法:篇三一、求圆锥曲线方程(1)轨迹法:设点建立方程,化简证明求得。
例题:动点P(x,y)到定点A(3,0)的距离比它到定直线x=—5的距离少2。
求动点P的轨迹方程。
解析:依题意可知,{C},由题设知{C},{C}{C}。
(2)定义法:根据圆锥曲线的定义确定曲线的形状。
上述例题同样可以由定义法求出曲线方程:作直线x=—3,则点P到定点A与到定直线x=—3的距离相等,所以点P的轨迹是以A为焦点,以x=—3为准线的抛物线。
(3)待定系数法:通过题设条件构造关系式,待定参数即可。
例1:已知点(—2,3)与抛物线{C}的焦点的距离是5,则P=_____。
解析:抛物线{C}的焦点为{C},由两点间距离公式解得P=4。
例2:设椭圆{C}的右焦点与抛物线{C}的焦点相同,离心率为{C},则椭圆的方程为_____。
解析:抛物线{C}的焦点坐标为(2,0),所以椭圆焦半径为2,故离心率{C}得m=4,而{C},所以椭圆方程为{C}。
一、化为二次函数,求二次函数的最值依据条件求出用一个参数表示的二次函数解析式,而自变量都有一定的变化范围,然后用配方法求出限制条件下函数的最值,就可得到问题的解。
圆锥曲线解题技巧与方法综合如何通过直线的切线与法线求解抛物线方程
圆锥曲线解题技巧与方法综合如何通过直线的切线与法线求解抛物线方程在解题过程中,圆锥曲线是一个常见的数学问题。
其中,抛物线是圆锥曲线中最为常见且重要的一种。
本文将介绍通过直线的切线与法线求解抛物线方程的技巧与方法。
一、切线与法线的定义和性质切线:在直角坐标系中,给定一点P(x,y)在曲线上,如果曲线在该点的切线存在且为一直线L,则称L为曲线在P点的切线。
法线:在直角坐标系中,给定一点P(x,y)在曲线上,如果曲线在该点的法线存在且垂直于切线L,则称L为曲线在P点的法线。
性质1:切线和曲线在切点处的切线斜率相等。
性质2:切线和曲线在切点处的法线斜率互为相反数。
二、求解抛物线方程的步骤步骤1:确定抛物线的顶点和对称轴。
抛物线的顶点即为对称轴上的点,可以通过解方程组或者利用对称性质求得。
步骤2:求解抛物线的切线方程。
在求解切线方程时,需要利用切点的坐标和切线的斜率。
根据抛物线的性质,切线的斜率和抛物线的斜率函数有关。
步骤3:求解抛物线的法线方程。
法线与切线垂直,因此法线的斜率可以通过切线斜率的倒数得到。
在求解法线方程时,同样需要利用法线的切点坐标。
步骤4:得到抛物线的方程。
通过切线和法线的求解,可以得到一组方程。
根据抛物线的性质,可以将这组方程化简为一元一次方程或者二次方程,从而求解抛物线的方程。
三、示例分析以一道具体的例题为例,来说明如何通过直线的切线与法线求解抛物线方程。
例题:已知抛物线的顶点为V(-4,3),且经过点A(-1,5),求解抛物线的方程。
解题过程:步骤1:确定抛物线的顶点和对称轴。
已知抛物线的顶点为V(-4,3),由于顶点即为对称轴上的点,因此对称轴的方程为x=-4。
步骤2:求解抛物线的切线方程。
因为已知经过点A(-1,5),所以切点的坐标为(-1,5)。
首先求解抛物线在切点处的斜率,可以利用导数的概念求得。
抛物线的一般方程为y=ax²+bx+c,对其进行求导得到y'=2ax+b。
圆锥曲线解题技巧与方法综合如何通过直角坐标系解析法解决圆锥曲线问题
圆锥曲线解题技巧与方法综合如何通过直角坐标系解析法解决圆锥曲线问题圆锥曲线是数学中的重要概念之一,在几何学和代数学领域都有广泛的应用。
通过直角坐标系解析法,我们可以用简洁而准确的方式解决与圆锥曲线相关的问题。
本文将介绍圆锥曲线的基本知识,并以解析法为重点,总结圆锥曲线解题的技巧与方法。
一、圆锥曲线的基本概念圆锥曲线是由平面与圆锥相交而形成的曲线。
常见的圆锥曲线包括椭圆、双曲线和抛物线。
这些曲线在直角坐标系中有各自的特点和方程。
1. 椭圆椭圆是圆锥和平面相交所形成的曲线。
在直角坐标系中,椭圆的标准方程为:(x-h)²/a² + (y-k)²/b² = 1其中,(h, k)为椭圆的中心坐标,a为椭圆长轴的一半长度,b为椭圆短轴的一半长度。
2. 双曲线双曲线同样是由圆锥和平面相交所形成的曲线。
在直角坐标系中,双曲线的标准方程为:(x-h)²/a² - (y-k)²/b² = 1其中,(h, k)为双曲线的中心坐标,a为双曲线长轴的一半长度,b为双曲线短轴的一半长度。
3. 抛物线抛物线是由圆锥和平面相交所形成的曲线。
在直角坐标系中,抛物线的标准方程为:y = ax² + bx + c其中,a、b、c为常数,决定了抛物线的形状和位置。
二、通过直角坐标系解析法解决圆锥曲线问题的技巧与方法通过直角坐标系解析法,我们可以通过曲线的方程和几何特征来解决与圆锥曲线相关的问题。
以下是一些解题的常用技巧与方法:1. 求解曲线的方程通过已知的几何信息,我们可以得到曲线的方程。
根据曲线的类型,选择合适的标准方程,并通过已知点或其他条件来确定方程中的参数。
2. 求解曲线的焦点和准线对于椭圆和双曲线,焦点和准线是重要的几何特征。
通过方程中的参数,我们可以计算焦点和准线的坐标。
3. 求解曲线的顶点和开口方向抛物线的顶点和开口方向也是重要的几何特征。
圆锥曲线定直线问题解题方法与技巧
圆锥曲线定直线问题解题方法与技巧标题:圆锥曲线定直线问题的解题方法与技巧一、引言在解析几何中,圆锥曲线是重要的研究对象,其中涉及到的定直线问题要求我们找出经过特定点或者满足特定条件的直线方程。
这类问题通常需要综合运用直线与圆锥曲线的位置关系、参数方程、极坐标方程以及代数运算等知识。
以下将详细介绍解决此类问题的一些基本方法和实用技巧。
二、基本解题方法1. 利用位置关系确定直线方程:当已知直线过某定点或与圆锥曲线相切、相交于两点等情况时,可以利用圆锥曲线的标准方程(例如椭圆、双曲线、抛物线)与直线的一般方程联立,通过求解方程组得到交点坐标,进而确定直线方程。
2. 参数法:圆锥曲线的参数方程能直观地反映点与曲线的关系,当直线与圆锥曲线有特殊关系(如切线、法线)时,可先将直线写成参数形式,然后与圆锥曲线的参数方程联立求解参数,从而得出直线的方程。
3. 极坐标法:在某些情况下,若圆锥曲线或直线在极坐标下表达更为简便,可直接在极坐标系中建立方程,求解后转换为直角坐标系下的直线方程。
三、解题技巧1. 明确题目条件:解决定直线问题时,首先要明确直线需要满足的条件,如是否过定点、是否为圆锥曲线的切线、斜率是否存在等,这些信息对于选择合适的解题方法至关重要。
2. 判断直线与圆锥曲线的位置关系:通过计算判别式,可以判断直线与圆锥曲线的位置关系,如相离、相切、相交等,进一步决定如何设定直线方程。
3. 巧妙应用韦达定理:在处理直线与圆锥曲线交点问题时,韦达定理是一个非常有力的工具。
它可以快速给出两交点横坐标的乘积和和关系,帮助简化计算过程。
4. 充分利用对称性:圆锥曲线具有良好的对称性,有时可以根据对称性简化问题,比如已知直线过原点或与坐标轴平行的情况。
总结,解决圆锥曲线定直线问题需灵活运用解析几何的基础理论,结合具体情况选择最适宜的解题策略,同时注重培养观察问题的能力和逻辑推理能力,以提升解题效率与准确性。
圆锥曲线问题在高考的常见题型及解题技巧
圆锥曲线问题在高考的常见题型及解题技巧圆锥曲线作为高等数学中的重要内容,在高考中常常出现,并且是考察学生数学运算能力和理解能力的重要方面。
圆锥曲线问题在高考中的常见题型有:直线与圆锥曲线的交点问题、圆锥曲线的参数方程问题、圆锥曲线的性质和应用问题等。
下面我们来一一介绍这些常见题型的解题技巧。
一、直线与圆锥曲线的交点问题这是圆锥曲线问题中最常见的一个题型,题目通常要求求出直线与圆锥曲线的交点坐标。
解题技巧如下:1. 分析题目给出的直线和圆锥曲线,确定直线方程和圆锥曲线方程;2. 将直线方程代入圆锥曲线方程中,解方程得出交点坐标;3. 特别要注意,当圆锥曲线为椭圆或双曲线时,有两个交点,需要分别求解;4. 当圆锥曲线为抛物线时,还需要注意直线的位置与抛物线的开口方向。
二、圆锥曲线的参数方程问题圆锥曲线的参数方程问题通常考查学生对参数方程的理解和应用能力,解答这类问题的关键在于用参数代换替换变量。
解题技巧如下:1. 给出的圆锥曲线通常可以用参数方程表示,将已知的参数方程代入题目求解;2. 注意参数方程的参数范围,有时需要根据范围重新调整参数;3. 对于给出的参数方程,需要将参数代换替换变量,进而得出答案。
三、圆锥曲线的性质和应用问题圆锥曲线的性质和应用问题通常要求学生掌握圆锥曲线的基本性质,以及如何应用这些性质解决实际问题。
解题技巧如下:1. 需要牢记圆锥曲线的基本性质,例如椭圆的焦点、双曲线的渐近线等;2. 掌握各种类型圆锥曲线的标准方程和参数方程;3. 对于应用问题,需要在掌握了基本性质的前提下,将问题转化为数学模型,进而解决。
以上就是圆锥曲线问题在高考中的常见题型及解题技巧,希望对大家备战高考有所帮助。
在复习期间,建议大家多做练习题,加深对圆锥曲线知识的理解,提高解题能力。
多思考,灵活运用各种解题技巧,相信大家一定能在高考中取得好成绩!。
2024圆锥曲线大题计算方法
2024圆锥曲线大题计算方法圆锥曲线是高中数学中的重要内容,其相关题目在各类考试中频繁出现,尤其是大题部分,对考生的计算能力提出了较高要求。
本文将针对2024年圆锥曲线大题的计算方法进行详细解析,帮助考生掌握解题技巧,提高解题效率。
一、圆锥曲线方程求解方法1.椭圆方程求解:对于椭圆题目,首先要根据题目条件列出椭圆的标准方程。
在求解过程中,注意运用以下方法:(1)画图、特值法:通过观察图形,选取特殊点或线,简化计算过程;(2)变换主元与换元法:在化简方程时,可适当变换主元或进行换元,降低计算难度;(3)整体消元法:在求解过程中,注意整体消元,避免繁琐的计算。
2.双曲线方程求解:与椭圆类似,双曲线的求解也要注意运用画图、特值法、变换主元与换元法以及整体消元法。
二、直线与圆锥曲线交点求解方法1.代入法:将直线方程代入圆锥曲线方程,求解交点坐标。
注意在代入过程中,尽量简化计算,避免繁琐的运算。
2.联立方程组法:将直线方程与圆锥曲线方程联立,构成方程组,求解交点坐标。
在求解过程中,注意运用消元法、代入法等简化计算。
三、中点问题求解方法1.定点定值问题:通过画图、特值法或高观点,找出题目中的定点或定值,从而简化计算。
2.调和线束的中点性质:在涉及中点问题时,可运用调和线束的中点性质,快速判断中点位置。
四、实例解析以2023-2024学年北京市朝阳区高三第一学期期末数学试卷第20题为例,题目要求求解椭圆方程,并判断点N是否为线段CM的中点。
1.椭圆方程求解:根据题目条件,列出椭圆的标准方程,并运用上述方法求解。
2.直线与椭圆交点求解:过点P(2, 1)的直线l与椭圆E交于不同的两点C、D,运用代入法或联立方程组法求解交点坐标。
3.中点判断:根据调和线束的中点性质,判断点N是否为线段CM的中点。
五、总结在解决圆锥曲线大题时,掌握以下方法有助于提高解题效率:1.熟练掌握圆锥曲线的标准方程及其性质;2.学会运用画图、特值法、变换主元与换元法、整体消元法等简化计算;3.熟悉中点问题的求解方法,特别是调和线束的中点性质;4.注重实际操作,多做题,积累解题经验。
圆锥曲线 基础知识 技巧套路 题型结论 极点极线
圆锥曲线基础知识技巧套路题型结论极点极线圆锥曲线是解析几何中的重要组成部分,它包括椭圆、双曲线和抛物线。
掌握圆锥曲线的基本知识和解题技巧,对提高数学素养和解题能力具有重要意义。
本文将为您详细介绍圆锥曲线的基础知识、技巧套路、题型结论以及极点极线的应用。
一、基础知识1.定义:圆锥曲线是平面与圆锥面的交线。
根据平面与圆锥面的相对位置关系,可分为椭圆、双曲线和抛物线三种类型。
2.标准方程:- 椭圆:x^2/a^2 + y^2/b^2 = 1(a > b > 0)- 双曲线:x^2/a^2 - y^2/b^2 = 1(a > 0, b > 0)- 抛物线:y^2 = 2px(p > 0)或x^2 = 2py(p > 0)3.基本性质:- 椭圆:对称性、有界性、顶点、焦点、准线等;- 双曲线:对称性、无界性、顶点、焦点、准线等;- 抛物线:对称性、有界性、顶点、焦点、准线等。
二、技巧套路1.椭圆:- 求解椭圆上的点P(x, y)到焦点F1、F2的距离之和:|PF1| + |PF2| = 2a(椭圆的长轴)- 椭圆的切线方程:y = kx + m,代入椭圆方程,求解k和m。
2.双曲线:- 求解双曲线上的点P(x, y)到焦点F1、F2的距离之差:|PF1| - |PF2| = 2a(双曲线的实轴)- 双曲线的切线方程:y = kx + m,代入双曲线方程,求解k和m。
3.抛物线:- 抛物线的焦点:F(p/2, 0)(对于y^2 = 2px)或F(0, p/2)(对于x^2 = 2py)- 抛物线的切线方程:y = kx + m,代入抛物线方程,求解k和m。
三、题型结论1.椭圆:- 线段长度的最大值和最小值:与椭圆的长轴和短轴有关;- 面积的最大值和最小值:与椭圆的长轴和短轴有关。
2.双曲线:- 线段长度的最大值和最小值:与双曲线的实轴和虚轴有关;- 面积的最大值和最小值:与双曲线的实轴和虚轴有关。
圆锥曲线解题技巧与方法综合如何通过平移与旋转变换简化解析几何问题
圆锥曲线解题技巧与方法综合如何通过平移与旋转变换简化解析几何问题解析几何是数学中的一个重要分支,它通过运用几何图形和代数方法解决各种问题。
而在解析几何中,圆锥曲线是一个特别重要的概念,包括椭圆、双曲线和抛物线。
在解析几何问题中,我们可以运用平移与旋转变换的方法,来简化解答问题的过程。
本文将介绍圆锥曲线解题技巧与方法,并探讨如何通过平移与旋转变换来简化解析几何问题。
一、椭圆的解析几何问题对于椭圆的解析几何问题,我们可以运用平移与旋转变换的方法来简化解答问题的过程。
首先,我们将椭圆的中心平移到坐标原点上,这样可以将椭圆的方程形式简化为标准方程。
对于椭圆的标准方程,可以通过旋转变换来使其长轴与坐标轴重合。
通过变换后的方程,我们可以更加方便地求解椭圆的焦点、顶点、离心率等重要参数。
二、双曲线的解析几何问题对于双曲线的解析几何问题,同样可以通过平移与旋转变换来简化解答问题的过程。
首先,我们可以将双曲线的中心平移到坐标原点上,使其方程形式变为标准方程。
通过旋转变换,我们可以将双曲线的方程转化为标准方程,使其对称轴与坐标轴重合。
这样,我们就可以更方便地求解双曲线的焦点、渐近线等重要参数。
三、抛物线的解析几何问题对于抛物线的解析几何问题,同样可以利用平移与旋转变换来简化解答问题的过程。
将抛物线的焦点平移到坐标原点上,将其方程形式转化为标准方程,从而更便捷地求解抛物线的顶点、焦点、直径等重要参数。
通过旋转变换,使抛物线的方程转化为标准方程,使其对称轴与坐标轴重合,进一步简化计算过程。
四、通过平移与旋转变换简化解析几何问题的优势通过平移与旋转变换来简化解析几何问题,可以将图形的方程形式转化为标准方程,从而更方便地计算图形的重要参数。
这种方法的优势在于能够减少问题的复杂度,简化计算过程,提高解题的效率。
通过合理运用平移与旋转变换,可以将解析几何问题转变为更加简单直观的形式,使问题更易于理解和解答。
总结:对于解析几何问题中的圆锥曲线,我们可以运用平移与旋转变换的方法来简化解答问题的过程。
高考数学压轴题圆锥曲线解题技巧
高考数学压轴题圆锥曲线解题技巧一、常规七大题型: (1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。
如:(1))0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有0220=+k b y a x 。
(2))0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB中点为M(x 0,y 0)则有0220=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。
过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。
(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。
典型例题 设P(x,y)为椭圆x a y b22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。
(1)求证离心率βαβαsin sin )sin(++=e ;(2)求|||PF PF 1323+的最值。
(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。
y p x p x y t x 210=+>+=()()(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。
圆锥曲线中的典型问题与方法:圆锥曲线解题技巧和方法综合
圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。
如:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有0220=+k b y a x 。
(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有0220=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。
过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。
(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。
典型例题 设P(x,y)为椭圆x a y b 22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。
(1)求证离心率βαβαsin sin )sin(++=e ;(2)求|||PF PF 1323+的最值。
(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。
y p x p x y t x 210=+>+=()()(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。
圆锥曲线解题技巧
圆锥曲线一概念、方法、题型、及应试技巧总结1. 圆锥曲线的两个定义(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F ,,F 2的距离 的和等于常数2a ,且此常数2a 一定要大于 F ,F 2,当常数等于 F ,F 2时,轨迹是线段F 1F 2,当常数小于F l F 2时,无轨迹;双曲线中,与两定点F l ,F 2的距离的差的绝对值 等于常数2a ,且此常数2a 一定要小于|卩汙2丨,定义中的“绝对值”与2a V |F 1F 2|不 可忽视。
若2a = |F 1F 2|,则轨迹是以 F 1 , F 2为端点的两条射线,若 2a > |F 1F 2 |,则 轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
如(1)已知定点F 1(;,0),F 2(3,0),在满足下列条件的平面上动点 P 的轨迹中是椭圆 的是 A -PF1I + PF 2 =4 B •|PF 1 +|PF 2〔 =6 C •PF 1 +|PF 2 =1022D • PF 1 +|PF 2| =12 (答:C );方程J (x -6)2+y 2—J (x +6)2+y 2=8表示的曲线是 ______ (答:双曲线的左支)(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率e 。
圆锥曲线的第二定义, 给出了圆锥曲线上的点到焦点距 离与此点到相应准线距离间的关系,要善于 运用第二定义对它们进行相互转化 。
2如已知点Q (2j2,0)及抛物线y=』上一动点P (x,y ),则y+|PQ|的最小值是4(答: 2)2. 圆锥曲线的标准方程 (标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标 准位置的方程):2 2(1)椭圆:焦点在x 轴上时—y 2 =1 ( a b 0 )= a b2 2 y x=1 ( a b 0)。
方程Ax 2 By^C 表示椭a b1 1(-3,=)U ( ,2));2 2222 2圆的充要条件是什么?(ABC 工 0, 且 A , B , C 同号,A 工 B )。
圆锥曲线解题技巧
圆锥曲线解题技巧圆锥曲线是代数几何学中的重要概念,它包括了直线、圆、椭圆、双曲线和抛物线。
在实际问题中,如果能够利用圆锥曲线解题,可以帮助我们更好地理解问题并处理它们。
在本文中,我们将介绍一些圆锥曲线解题的技巧。
一、圆锥曲线的基本方程在解题的时候,我们需要掌握圆锥曲线的基本方程。
圆锥曲线的方程通常是二次方程,它们可以写成以下形式:(1)直线的方程:Ax + By + C = 0(2)圆的方程:(x - h)2 + (y - k)2 = r2(3)椭圆的方程:(x - h)2/a2 + (y - k)2/b2 = 1(4)双曲线的方程:(x - h)2/a2 - (y - k)2/b2 = 1 或(y -k)2/b2 - (x - h)2/a2 = 1(5)抛物线的方程:y = ax2 + bx + c 或x = ay2 + by + c其中,(h,k)是圆心的坐标,r 是圆的半径,a 和 b 是椭圆的坐标轴长度,a 和 b 是双曲线的距离,a 是抛物线的焦距,b 是抛物线的对称轴。
上述方程是我们在解题中常用的方程。
二、解题步骤在使用圆锥曲线解题的时候,我们需要遵循以下步骤:(1)确定题目要求解的对象是哪一种圆锥曲线,例如是直线、圆、椭圆、双曲线还是抛物线。
(2)根据题目给定的信息,写出方程。
(3)对方程进行分析,求解未知量,确定圆心、坐标轴长度、焦距等参数。
(4)根据已知信息和已解出的参数,给出具体结果。
三、解题技巧1. 判断圆锥曲线类型在面对一个问题时,我们首先要判断这个问题要求解的对象是哪一种圆锥曲线,然后才能选择正确的方程进行分析求解。
例如,如果问题中给定了一个圆心以及一个点,我们可以求这个点到圆心的距离,如果这个距离和圆的半径相等,那么这个问题就是关于圆的;如果这个距离大于或小于圆的半径,那么这个问题就是关于椭圆或者双曲线的。
同样的,当我们遇到一个问题,知道了一条直线以及一个点,我们可以利用这个信息判断这个问题是关于直线的。
浅谈解决圆锥曲线问题的几种方法
浅谈解决圆锥曲线问题的几种方法圆锥曲线问题是高中数学中比较重要的一种问题。
解决圆锥曲线问题需要掌握一定的数学知识和技巧。
本文将从几种不同的角度介绍解决圆锥曲线问题的几种方法。
一、代数法代数法是解决圆锥曲线问题较为基础的一种方法。
对于给定的圆锥曲线,我们可以采用代数方式将其表示出来,然后通过对代数式进行化简、拆分等运算来求解问题。
以椭圆为例,设椭圆的方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$其中,a和b分别为椭圆的长半轴和短半轴。
若已知椭圆的长半轴和短半轴分别为5和3,求椭圆的周长和面积。
解题思路:首先,根据椭圆的方程,可以得到:周长:$C=4aE(\frac{b^2}{a^2})$面积:$S=\pi ab$其中,E是椭圆的第二类完全椭圆积分。
代入已知数据,可以得到:周长:$C=4\times 5E(\frac{9}{25})\approx 20.0124$面积:$S=\pi\times 5\times 3\approx 47.1239$二、几何法解题思路:首先,根据双曲线的性质,可以得到:离心率:$e=\sqrt{1+\frac{b^2}{a^2}}$其次,根据题意,双曲线的长轴长度为6,所以有:$2a=6$即:$a=3$又因为焦点为(-3,0),(3,0),所以有:$2c=6$即:$c=3$将已知数据代入公式,可以得到:$b^2=c^2-a^2=9-9=0$所以:离心率:$e=\sqrt{1+\frac{b^2}{a^2}}=\sqrt{1+0}=1$三、投影法以抛物线为例,设抛物线的方程为:$y^2=4px$其中,p为抛物线焦点到抛物线的顶点的距离。
若已知抛物线焦点为(0,2),顶点为(0,0),求抛物线的焦距和面积。
其次,根据题意,抛物线的焦点为(0,2),顶点为(0,0),所以有:$p=2$四、向量法以圆为例,设圆的方程为:$(x-a)^2+(y-b)^2=r^2$其中,(a,b)为圆心坐标,r为圆的半径。
圆锥曲线大题解题技巧
圆锥曲线大题解题技巧圆锥曲线是数学中一个重要的几何分支,它包括椭圆、双曲线和抛物线等曲线。
在解决圆锥曲线相关的大题时,掌握一些解题技巧是非常有帮助的。
以下是一些常见的解题技巧:1. 熟悉基本定义和性质:-掌握圆锥曲线的标准方程形式,了解它们的焦点、准线、偏心率等基本性质。
-理解直线与圆锥曲线的位置关系,包括相切、相交和相离。
2. 利用坐标法:-将圆锥曲线问题转化为代数问题,通过建立坐标系,将曲线方程转化为标准形式。
-利用坐标法求解直线与圆锥曲线的交点、弦长、面积等。
3.应用韦达定理:-韦达定理在解决圆锥曲线问题时非常有用,特别是在求解直线与圆锥曲线的交点问题时。
-利用韦达定理可以快速找到交点的坐标。
4. 利用参数方程:-对于某些复杂的圆锥曲线问题,可以尝试使用参数方程来简化问题。
-参数方程可以帮助我们更好地理解曲线的形状和性质。
5. 利用极坐标:-在处理与极点和极线相关的问题时,极坐标方法可以提供简洁的解决方案。
-极坐标方法特别适用于求解与焦点、准线相关的问题。
6. 利用图形工具:-利用几何画板等图形工具可以帮助我们直观地理解圆锥曲线的性质和问题。
-图形工具可以帮助我们验证答案的正确性。
7. 注意特殊情况:-在解决圆锥曲线问题时,要注意特殊点的存在,如顶点、焦点、准线等。
-特殊点的性质往往在解题中起到关键作用。
8. 练习和总结:-定期练习圆锥曲线相关的题目,总结解题方法和技巧。
-学习并掌握常见的解题模式和思路。
通过以上技巧的运用,可以大大提高解决圆锥曲线大题的效率和准确性。
重要的是要理解每个技巧背后的数学原理,这样才能在遇到不同问题时灵活运用。
高中数学圆锥曲线解题技巧总结
解圆锥曲线问题的常用方法大全1、定义法〔1〕椭圆有两种定义。
第一定义中,r 12=2a 。
第二定义中,r 11 r 22。
〔2〕双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为:第二定义中,r 11,r 22,尤其应注意第二定义的应用,常常将 半径与“点到准线距离〞互相转化。
〔3〕抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要无视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法〞。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法〞,即设弦的两个端点A(x 11)(x 22),弦中点为M(x 00),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求〞法,具体有: 〔1〕与直线相交于A 、B ,设弦中点为M(x 00),那么有。
〔2〕)0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦中点为M(x 00)那么有〔3〕y 2=2〔p>0〕与直线l 相交于A 、B 设弦中点为M(x 00),那么有2y 02p,即y 0.【典型例题】例1、(1)抛物线2=4x 上一点P 到点A(3,42)与到准线的距离和最小,那么点 P 的坐标为(2)抛物线C: y 2=4x 上一点Q 到点B(4,1)Q 的坐标为。
分析:〔1〕A 在抛物线外,如图,连,那么PH =易发现,当A 、P 、F 三点共线时,距离和最小。
【高中数学】圆锥曲线解题技巧+7大题型汇总+常用公式推论!
【高中数学】圆锥曲线解题技巧+7大题型汇总+常用公式推论!学好圆锥曲线的几个关键点1、牢记核心知识点核心的知识点是基础,好多同学在做圆锥曲线题时,特别是小题,比如椭圆,双曲线离心率公式和范围记不清,焦点分别在x轴,y轴上的双曲线的渐近线方程也傻傻分不清,在做题时自然做不对。
2、计算能力与速度计算能力强的同学学圆锥曲线相对轻松一些,计算能力是可以通过多做题来提升的。
后期可以尝试训练自己口算得到联立后的二次方程,然后得到判别式,两根之和,两根之积的整式。
当然也要掌握一些解题的小技巧,加快运算速度。
3、思维套路拿到圆锥曲线的题,很多同学说无从下手,从表面感觉很难。
老师建议:山重水复疑无路,没事你就算两步。
大部分的圆锥曲线大题,都有共同的三部曲:一设二联立三韦达定理。
一设:设直线与圆锥曲线的两个交点,坐标分别为(x1,y1),(x2,y2),直线方程为y=kx+b。
二联立:通过快速计算或者口算得到联立的二次方程。
三韦达定理:得到二次方程后立马得出判别式,两根之和,两根之积。
走完三部曲之后,在看题目给出了什么条件,要求什么。
例如涉及弦长问题,常用“根与系数的关系”设而不求计算弦长(即应用弦长公式);涉及弦的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.总结起来:找值列等量关系,找范围列不等关系,通常结合判别式,基本不等式求解。
4、题型总结圆锥曲线中常见题型总结这类问题主要采用分析判别式,有△>0,直线与圆锥曲线相交;△=0,直线与圆锥曲线相切;△<0,直线与圆锥曲线相离.若且a=0,b≠0,则直线与圆锥曲线相交,且有一个交点.注意:设直线方程时一定要考虑斜率不存在的情况,可单独提前讨论。
这类问题主要利用向量的相等,平行,垂直去寻找坐标间的数量关系,往往要和根与系数的关系结合应用,体现数形结合的思想,达到简化计算的目的。
弦长问题主要记住弦长公式:设直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则:1)定点问题可先运用特殊值或者对称探索出该定点,再证明结论,即可简化运算;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得这类常见的解法有两种:几何法和代数法.(1)若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决,这就是几何法;(2)若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,这就是代数法.在利用代数法解决最值与范围问题时常从以下五个方面考虑:(1)利用判别式来构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;(3)利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;(4)利用基本不等式求出参数的取值范围;(5)利用函数的值域的求法,确定参数的取值范围.轨迹问题一般方法有三种:定义法,相关点法和参数法。
圆锥曲线解题技巧综合运用不同解题方法
圆锥曲线解题技巧综合运用不同解题方法圆锥曲线是高中数学中的一个重要内容,经常在各类考试中出现。
掌握圆锥曲线的解题技巧,可以帮助我们高效解答题目。
本文将介绍几种常见的圆锥曲线解题方法,并综合运用它们来解决各类题目。
一、直接法直接法是最常用的解题方法之一,它适用于给定了圆锥曲线的方程,要求我们找出特定点或确定一些性质的情况。
以二次曲线为例,我们可以通过将方程标准化,然后研究其各项系数的符号、平方项的系数与常数项的关系等来推导出特定点的坐标、曲线的类型等信息。
二、参数法参数法常用于求解曲线上的点的坐标或曲线的方程。
当我们遇到较复杂的曲线方程,难以直接分析时,可以通过引入参数的方法,将曲线的方程转化为参数方程进行处理。
例如,对于椭圆和双曲线,我们可以通过引入参数来表示曲线上的点的坐标。
设参数为θ,则椭圆的参数方程为x=acosθ,y=bsinθ;双曲线的参数方程为x=asecθ,y=btanθ。
通过选取不同的参数值,我们可以得到曲线上的不同点,进而求解问题。
三、几何法几何法是通过几何图形的性质来解决问题的方法。
在圆锥曲线的学习过程中,我们会学到各种曲线的几何性质,如椭圆的离心率、焦点定理、双曲线的渐近线等。
利用这些性质,我们可以通过绘制几何图形,运用几何关系来解决问题。
四、导数法导数法常用于求解曲线的切线、法线以及曲率等问题。
对于给定的曲线方程,我们可以通过求导数来得到曲线的斜率,从而得到切线或法线的方程。
同时,导数还可以帮助我们研究曲线的凸凹性、极值等性质,进一步推导出曲线的特点。
五、解析法解析法是一种基于代数分析的方法,适用于较复杂的曲线方程求解。
通过对方程进行代数运算、化简等操作,我们可以得到曲线的一些基本性质或特定点的坐标。
在解析法中,我们常用的技巧包括配方法、消元法、代入法等,根据方程的特点和题目要求来灵活选择合适的方法。
此外,还需要注意方程中的各项系数和常数项之间的关系,以便得到准确的解答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(本文有两套教案,第一套比较笼统,第二套比较好)圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。
如:(1))0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k by a x 。
(2))0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k by a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。
过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。
(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。
典型例题 设P(x,y)为椭圆x a y b 22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。
(1)求证离心率βαβαsin sin )sin(++=e ;(2)求|||PF PF 1323+的最值。
(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。
y p x p x y t x 210=+>+=()()(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。
(4)圆锥曲线的相关最值(范围)问题圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。
<1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。
<2>若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。
(1),可以设法得到关于a 的不等式,通过解不等式求出a 的范围,即:“求范围,找不等式”。
或者将a 表示为另一个变量的函数,利用求函数的值域求出a 的范围;对于(2)首先要把△NAB 的面积表示为一个变量的函数,然后再求它的最大值,即:“最值问题,函数思想”。
最值问题的处理思路:1、建立目标函数。
用坐标表示距离,用方程消参转化为一元二次函数的最值问题,关键是由方程求x 、y 的范围;2、数形结合,用化曲为直的转化思想;3、利用判别式,对于二次函数求最值,往往由条件建立二次方程,用判别式求最值;4、借助均值不等式求最值。
典型例题已知抛物线y 2=2px(p>0),过M (a,0)且斜率为1的直线L 与抛物线交于不同的两点A 、B , |AB|≤2p(1)求a 的取值范围;(2)若线段AB 的垂直平分线交x 轴于点N ,求△NAB 面积的最大值。
(5)求曲线的方程问题1.曲线的形状已知--------这类问题一般可用待定系数法解决。
典型例题已知直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上。
若点A (-1,0)和点B (0,8)关于L 的对称点都在C 上,求直线L 和抛物线C 的方程。
2.曲线的形状未知-----求轨迹方程 典型例题已知直角坐标平面上点Q (2,0)和圆C :x 2+y 2=1, 动点M 到圆C 的切线长与|MQ|的比等于常数λ(λ>0),求动点M 的轨迹方程,并说明它是什么曲线。
(6) 存在两点关于直线对称问题在曲线上两点关于某直线对称问题,可以按如下方式分三步解决:求两点所在的直线,求这两直线的交点,使这交点在圆锥曲线形内。
(当然也可以利用韦达定理并结合判别式来解决)典型例题 已知椭圆C 的方程x y 22431+=,试确定m 的取值范围,使得对于直线y x m =+4,椭圆C 上有不同两点关于直线对称(7)两线段垂直问题圆锥曲线两焦半径互相垂直问题,常用k k y y x x 1212121···==-来处理或用向量的坐标运算来处理。
典型例题 已知直线l 的斜率为k ,且过点P (,)-20,抛物线C y x :()241=+,直线l 与抛物线C 有两个不同的交点(如图)。
(1)求k 的取值范围;(2)直线l 的倾斜角θ为何值时,A 、B 与抛物线C 的焦点连线互相垂直。
四、解题的技巧方面:在教学中,学生普遍觉得解析几何问题的计算量较大。
事实上,如果我们能够充分利用几何图形、韦达定理、曲线系方程,以及运用“设而不求”的策略,往往能够减少计算量。
下面举例说明:(1)充分利用几何图形解析几何的研究对象就是几何图形及其性质,所以在处理解析几何问题时,除了运用代数方程外,充分挖掘几何条件,并结合平面几何知识,这往往能减少计算量。
典型例题 设直线340x y m ++=与圆x y x y 2220++-=相交于P 、Q 两点,O 为坐标原点,若OP OQ ⊥,求m 的值。
(2) 充分利用韦达定理及“设而不求”的策略我们经常设出弦的端点坐标而不求它,而是结合韦达定理求解,这种方法在有关斜率、中点等问题中常常用到。
典型例题 已知中心在原点O ,焦点在y 轴上的椭圆与直线y x =+1相交于P 、Q 两点,且OP OQ ⊥,||PQ =102,求此椭圆方程。
(3) 充分利用曲线系方程利用曲线系方程可以避免求曲线的交点,因此也可以减少计算。
典型例题 求经过两已知圆C x y x y 122420:+-+=和C x y y 22224:+--=0的交点,且圆心在直线l :2410x y +-=上的圆的方程。
(4)充分利用椭圆的参数方程椭圆的参数方程涉及到正、余弦,利用正、余弦的有界性,可以解决相关的求最值的问题.这也是我们常说的三角代换法。
典型例题 P 为椭圆22221x y a b+=上一动点,A 为长轴的右端点,B 为短轴的上端点,求四边形OAPB 面积的最大值及此时点P 的坐标。
(5)线段长的几种简便计算方法① 充分利用现成结果,减少运算过程一般地,求直线与圆锥曲线相交的弦AB 长的方法是:把直线方程y kx b =+代入圆锥曲线方程中,得到型如ax bx c 20++=的方程,方程的两根设为x A ,x B ,判别式为△,则||||AB k x x A B =+-=12·||12a k △·+,若直接用结论,能减少配方、开方等运算过程。
例 求直线x y -+=10被椭圆x y 22416+=所截得的线段AB 的长。
② 结合图形的特殊位置关系,减少运算在求过圆锥曲线焦点的弦长时,由于圆锥曲线的定义都涉及焦点,结合图形运用圆锥曲线的定义,可回避复杂运算。
例 F 1、F 2是椭圆x y 222591+=的两个焦点,AB 是经过F 1的弦,若||AB =8,求值||||22B F A F +③ 利用圆锥曲线的定义,把到焦点的距离转化为到准线的距离例 点A (3,2)为定点,点F 是抛物线y x 24=的焦点,点P 在抛物线y 2=4x 上移动,若||||PA PF +取得最小值,求点P 的坐标。
圆锥曲线解题方法技巧归纳第一、知识储备: 1. 直线方程的形式(1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。
(2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈②点到直线的距离d =③夹角公式:2121tan 1k k k k α-=+(3)弦长公式直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =-= 或12AB y =- (4)两条直线的位置关系①1212l l k k ⊥⇔=-1 ② 212121//b b k k l l ≠=⇔且2、圆锥曲线方程及性质(1)、椭圆的方程的形式有几种(三种形式)标准方程:221(0,0)x y m n m n m n+=>>≠且2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种标准方程:221(0)x y m n m n+=⋅<距离式方程:2a = (3)、三种圆锥曲线的通径你记得吗22222b b p a a椭圆:;双曲线:;抛物线:(4)、圆锥曲线的定义你记清楚了吗如:已知21F F 、是椭圆13422=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则动点M 的轨迹是( )A 、双曲线;B 、双曲线的一支;C 、两条射线;D 、一条射线 (5)、焦点三角形面积公式:122tan 2F PF P b θ∆=在椭圆上时,S122cot 2F PF P b θ∆=在双曲线上时,S(其中2221212121212||||4,cos ,||||cos ||||PF PF c F PF PF PF PF PF PF PF θθθ+-∠==•=⋅)(6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为“左加右减,上加下减”。
(2)0||x e x a ±双曲线焦点在轴上时为(3)11||,||22p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗 第二、方法储备1、点差法(中点弦问题) 设()11,y x A 、()22,y x B ,()b a M ,为椭圆13422=+y x 的弦AB 中点则有1342121=+y x ,1342222=+y x ;两式相减得()()03422212221=-+-y yx x⇒()()()()3421212121y y y y x x x x +--=+-⇒AB k =ba 43-2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗经典套路是什么如果有两个参数怎么办设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,使用判别式0∆≥,以及根与系数的关系,代入弦长公式,设曲线上的两点1122(,),(,)A x y B x y ,将这两点代入曲线方程得到○1○2两个式子,然后○1-○2,整体消元······,若有两个字母未知数,则要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点A 、B 、F 共线解决之。