材料力学金属扭转实验报告完整版

合集下载

金属扭转实验报告

金属扭转实验报告

金属扭转实验报告金属扭转实验报告引言:金属材料是工业生产中最常用的材料之一,其力学性能对于产品的质量和可靠性至关重要。

在金属材料力学性能研究中,扭转实验是一种常用的实验方法,通过对金属试样进行扭转加载,可以获取材料的扭转强度、塑性变形能力和疲劳性能等重要参数。

本实验旨在通过对不同金属试样的扭转实验,探究金属材料的力学性能特点。

实验方法:1. 实验材料选择:本次实验选用了三种不同类型的金属材料,分别为铝合金、钢材和铜材。

这三种材料在工业中应用广泛,具有不同的力学性能特点。

每种材料都制备了10个相同尺寸的试样。

2. 实验装置:扭转实验使用扭转试验机进行,试验机具有精确的力和位移测量系统,能够准确记录试样在加载过程中的力学性能变化。

试样通过夹具固定在试验机上,然后扭转加载。

3. 实验步骤:(1) 将试样固定在夹具上,确保试样的中心轴与扭转试验机的转轴一致。

(2) 设置试验机的加载速度和加载范围,确保实验过程的可控性。

(3) 开始加载,记录试样的扭转力和位移数据。

(4) 当试样发生破坏或达到预设的加载条件时,停止加载,并记录试样的破坏形态。

实验结果与分析:1. 铝合金试样的扭转强度较低,破坏形态为断裂。

铝合金具有较好的塑性变形能力,在扭转过程中能够发生较大的变形,但其强度较低,容易发生断裂。

2. 钢材试样的扭转强度较高,破坏形态为塑性变形。

钢材具有较高的强度和较好的塑性变形能力,在扭转过程中能够承受较大的载荷而不发生断裂。

3. 铜材试样的扭转强度介于铝合金和钢材之间,破坏形态为塑性变形。

铜材具有较好的强度和塑性变形能力,但相对于钢材而言,其强度较低。

结论:通过本次实验,我们对铝合金、钢材和铜材的扭转性能进行了研究。

实验结果表明,不同类型的金属材料具有不同的力学性能特点。

铝合金具有较好的塑性变形能力,但强度较低;钢材具有较高的强度和塑性变形能力;铜材介于两者之间。

这些实验结果对于金属材料的选择和应用具有重要的指导意义,有助于提高产品的质量和可靠性。

材料力学金属扭转实验报告[5篇范例]

材料力学金属扭转实验报告[5篇范例]

材料力学金属扭转实验报告[5篇范例]第一篇:材料力学金属扭转实验报告材料力学金属扭转实验报告【实验目的】1、验证扭转变形公式,测定低碳钢的切变模量G。

;测定低碳钢和铸铁的剪切强度极限bτ握典型塑性材料(低碳钢)和脆性材料(铸铁)的扭转性能;2、绘制扭矩一扭角图;3、观察和分析上述两种材料在扭转过程中的各种力学现象,并比较它们性质的差异;4、了解扭转材料试验机的构造和工作原理,掌握其使用方法。

【实验仪器】仪器名称数量参数游标卡尺1 0-150mm,精度CTT502 微机控制电液伺服扭转试验机 1 最大扭矩500N·m,最大功率低碳钢、铸铁各 1 标准【实验原理和方法】1..测定低碳钢扭转时的强度性能指标试样在外力偶矩的作用下,其上任意一点处于纯剪切应力状态。

随着外力偶矩的增加,当达到某一值时,测矩盘上的指针会出现停顿,这时指针所指示的外力偶矩的数值即为屈服力偶矩esM,低碳钢的扭转屈服应力为 pess43WM=τ式中:/3pd W π=为试样在标距内的抗扭截面系数。

在测出屈服扭矩sT 后,改用电动快速加载,直到试样被扭断为止。

这时测矩盘上的从动指针所指示的外力偶矩数值即为最大力偶矩ebM,低碳钢的抗扭强度为 pebb43WM=τ对上述两公式的来源说明如下:低碳钢试样在扭转变形过程中,利用扭转试验机上的自动绘图装置绘出的ϕ-eM 图如图1-3-2 所示。

当达到图中 A 点时,eM 与ϕ成正比的关系开始破坏,这时,试样表面处的切应力达到了材料的扭转屈服应力sτ,如能测得此时相应的外力偶矩epM,如图1-3-3a 所示,则扭转屈服应力为 pepsWM=τ经过A 点后,横截面上出现了一个环状的塑性区,如图1-3-3b 所示。

若材料的塑性很好,且当塑性区扩展到接近中心时,横截面周边上各点的切应力仍未超过扭转屈服应力,此时的切应力分布可简化成图 1-7c 所示的情况,对应的扭矩sT 为 OϕM eABCM epM esM eb 图 1-3-2低碳钢的扭转图τ sTτ sTτ sT(a)pT T =(b)s pT T T <<(c)sT T =图 1-3-3低碳钢圆柱形试样扭转时横截面上的切应力分布s p s3d/22sd/2s s3412d 2 d 2 ττπρρπτρπρρτ WdT ====⎰⎰由于es sM T =,因此,由上式可以得到 pess43WM=τ无论从测矩盘上指针前进的情况,还是从自动绘图装置所绘出的曲线来看,A 点的位置不易精确判定,而B 点的位置则较为明显。

材料力学金属扭转实验报告

材料力学金属扭转实验报告

材料力学金属扭转实验报告【实验目的】1、验证扭转变形公式,测定低碳钢的切变模量G 。

;测定低碳钢和铸铁的剪切强度极限b τ握典型塑性材料(低碳钢)和脆性材料(铸铁)的扭转性能;2、绘制扭矩一扭角图;3、观察和分析上述两种材料在扭转过程中的各种力学现象,并比较它们性质的差异;4、了解扭转材料试验机的构造和工作原理,掌握其使用方法。

【实验仪器】仪器名称 数量 参数游标卡尺1 0-150mm ,精度0.02mm CTT502微机控制电液伺服扭转试验机 1 最大扭矩500N ·m ,最大功率0.4kw 低碳钢、铸铁 各1标准【实验原理和方法】1.测定低碳钢扭转时的强度性能指标试样在外力偶矩的作用下,其上任意一点处于纯剪切应力状态。

随着外力偶矩的增加,当达到某一值时,测矩盘上的指针会出现停顿,这时指针所指示的外力偶矩的数值即为屈服力偶矩es M ,低碳钢的扭转屈服应力为pess 43W M =τ 式中:16/3p d W π=为试样在标距内的抗扭截面系数。

在测出屈服扭矩s T 后,改用电动快速加载,直到试样被扭断为止。

这时测矩盘上的从动指针所指示的外力偶矩数值即为最大力偶矩eb M ,低碳钢的抗扭强度为pebb 43W M =τ 对上述两公式的来源说明如下:低碳钢试样在扭转变形过程中,利用扭转试验机上的自动绘图装置绘出的ϕ-e M 图如图1-3-2所示。

当达到图中A 点时,e M 与ϕ成正比的关系开始破坏,这时,试样表面处的切应力达到了材料的扭转屈服应力s τ,如能测得此时相应的外力偶矩ep M ,如图1-3-3a 所示,则扭转屈服应力为pep s W M =τ经过A 点后,横截面上出现了一个环状的塑性区,如图1-3-3b 所示。

若材料的塑性很好,且当塑性区扩展到接近中心时,横截面周边上各点的切应力仍未超过扭转屈服应力,此时的切应力分布可简化成图1-7c 所示的情况,对应的扭矩s T 为OϕM e ABCM epM esM eb图1-3-2 低碳钢的扭转图τsTτsTτsT(a )p T T =(b )s p T T T << (c )s T T =图1-3-3 低碳钢圆柱形试样扭转时横截面上的切应力分布s p s 3d/22s d/2s s 3412d 2d 2ττπρρπτρπρρτW d T ====⎰⎰由于es s M T =,因此,由上式可以得到pes s 43W M =τ无论从测矩盘上指针前进的情况,还是从自动绘图装置所绘出的曲线来看,A 点的位置不易精确判定,而B 点的位置则较为明显。

材料力学金属扭转实验报告

材料力学金属扭转实验报告

材料力学金属扭转实验
报告
公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]
PosV
用matlab绘制的图如下
满足线性关系
二、计算低碳钢模量G
G G=
G G G
G G G G
=
GG.GGGGG×GGG×GG−G
GG.GGGGG×G.GGG×GG−GG
×
GGG
G
GG =G.GGGGGGG
G G=
G G G
G G G G
=
GG.GGGGG×GGG×GG−G
GGG.GGGG×G.GGG×GG−GG
×
GGG
G
GG =G.GGGGGGGG
低碳钢铸铁
【实验思考】
1、试件的尺寸和形状对测定弹性模量有无影响为什么
答:弹性模量是材料的固有性质,与试件的尺寸和形状无关。

2、逐级加载方法所求出的弹性模量与一次加载到最终值所求出的弹性模量是否相同为什么必须用逐级加载的方法测弹性模量
答: 逐级加载方法所求出的弹性模量与一次加载到最终值所求出的弹性模量不相同,采用逐级加载方法所求出的弹性模量可降低误差,同时可以验证材料此时是否处于弹性状态,以保证实验结果的可靠性。

3、碳钢与铸铁试件扭转破坏情况有什么不同分析其原因.
答:碳钢扭转形变大,有屈服阶段,断口为横断面,为剪切破坏。

材料力学金属扭转实验报告

材料力学金属扭转实验报告

PosV 3.4777 3.7611 4.0333 4.3162 4.6004 4.8729 5.1450 5.4336用matlab绘制的图如下
满足线性关系
二、计算低碳钢模量G
G G=
G G G
G G G G
=
GG.GGGGG×GGG×GG−G
GG.GGGGG×G.GGG×GG−GG
×
GGG
G
GG =G.GGGGGGG
G G=
G G G
G G G G
=
GG.GGGGG×GGG×GG−G
GGG.GGGG×G.GGG×GG−GG
×
GGG
G
GG =G.GGGGGGGG
低碳钢铸铁
【实验思考】
1、试件的尺寸和形状对测定弹性模量有无影响?为什么?
答:弹性模量是材料的固有性质,与试件的尺寸和形状无关。

2、逐级加载方法所求出的弹性模量与一次加载到最终值所求出的弹性模量是否相同?为什么必须用逐级加载的方法测弹性模量?
答: 逐级加载方法所求出的弹性模量与一次加载到最终值所求出的弹性模量不相同,采用逐级加载方法所求出的弹性模量可降低误差,同时可以验证材料此时是否处于弹性状态,以保证实验结果的可靠性。

3、碳钢与铸铁试件扭转破坏情况有什么不同?分析其原因.
答:碳钢扭转形变大,有屈服阶段,断口为横断面,为剪切破坏。

扭转实验的实验报告

扭转实验的实验报告

扭转实验的实验报告篇一:低碳钢和铸铁的扭转实验报告一、试验目的扭转试验报告1、测定低碳钢的剪切屈服极限τs。

和剪切强度极限近似值τb。

2、测定铸铁的剪切强度极限τb。

3、观察并分析两种材料在扭转时的变形和破坏现象。

二、设备和仪器1、材料扭转试验机2、游标卡尺三、试验原理1、低碳钢试样对试样缓慢加载,试验机的绘图装置自动绘制出T-φ曲线(见图1)。

最初材料处于图1 低碳钢是扭转试验弹性状态,截面上应力线性分布,T-φ图直线上升。

到A点,试样横截面边缘处剪应力达到剪切屈服极限τs。

以后,由屈服产生的塑性区不断向中心扩展,T-φ图呈曲线上升。

至B点,曲线趋于平坦,这时载荷度盘指针停止不动或摆动。

这不动或摆动的最小值就是屈服扭矩Ts。

再以后材料强化,T-φ图上升,至C点试样断裂。

在试验全过程中,试样直径不变。

断口是横截面(见图2a),这是由于低碳钢抗剪能力小于抗拉能力,而横截面上剪应力最大之故。

图2 低碳钢和铸铁的扭转端口形状据屈服扭矩?s?3Ts (2-1)4Wp按式2-1可计算出剪切屈服极限τs。

据最大扭矩Tb可得:?b?3Tb(2-2)4Wp按式2-2可计算出剪切强度极限近似值τb。

说明:(1)公式(2-1)是假定横截面上剪应力均达到τs后推导出来的。

公式(2-2)形式上与公式(2-1)虽然完全相同,但它是将由塑性理论推导出的Nadai公式略去了一项后得到的,而略去的这一项不一定是高阶小量,所以是近似的。

(2)国标GB10128-88规定τs和τb均按弹性扭转公式计算,这样得到的结果可以用来比较不同材料的扭转性能,但与实际应力不符。

II、铸铁试样铸铁的曲线如图3所示。

呈曲线形状,变形很小就突然破裂,有爆裂声。

断裂面粗糙,是与轴线约成45°角的螺旋面(见图1-3-2b)。

这是由于铸铁抗拉能力小于抗剪能力,而这面上拉应力最大之故。

据断裂前的最大扭矩Tb按弹性扭转公式1-3-3可计算抗扭强度τb。

金属材料的扭转实验报告

金属材料的扭转实验报告

金属材料的扭转实验报告金属材料的扭转实验报告引言金属材料是工程领域中广泛应用的一类材料,其力学性能对于工程设计和材料选择具有重要的意义。

本实验旨在通过扭转实验来研究金属材料的力学行为和材料性能,为工程实践提供参考。

一、实验目的本实验的主要目的是通过扭转实验,研究金属材料在扭转加载下的力学行为和材料性能,包括材料的刚度、强度、塑性变形等方面的特性。

二、实验原理扭转实验是通过施加扭矩来加载金属材料,使其发生扭转变形。

扭转实验中,材料受到的扭矩与扭角之间的关系可以用扭转弹性模量和剪切应力来描述。

扭转弹性模量是材料在弹性阶段扭转变形时的比例系数,剪切应力则是材料受到的扭矩与截面积之比。

三、实验步骤1. 准备工作:选择一块金属样品,将其加工成圆柱形,并测量其长度和直径,计算出截面积。

2. 搭建实验装置:将金属样品固定在扭转试验机上,确保其能够自由扭转。

3. 施加加载:通过扭矩传感器施加扭矩,同时记录下扭矩和扭角的变化。

4. 数据处理:根据实验数据计算出扭转弹性模量和剪切应力,并绘制相应的应力-应变曲线。

四、实验结果与讨论通过实验得到的数据可以得出金属材料的扭转弹性模量和剪切应力。

扭转弹性模量是材料在弹性阶段扭转变形时的比例系数,可以反映材料的刚度。

剪切应力则是材料受到的扭矩与截面积之比,可以反映材料的强度。

根据实验结果,我们可以观察到金属材料在扭转加载下的力学行为。

在加载初期,材料的扭转弹性模量较高,表现出较大的刚度,扭转变形较小。

随着加载的增加,材料逐渐进入塑性变形阶段,扭转弹性模量下降,塑性变形增加。

当达到一定扭矩时,材料会发生破坏,出现断裂现象。

五、结论通过本实验,我们研究了金属材料在扭转加载下的力学行为和材料性能。

实验结果表明,金属材料在扭转加载下具有一定的刚度和强度,同时也具有一定的塑性变形能力。

这些性能对于工程设计和材料选择具有重要的意义。

六、实验总结本实验通过扭转实验研究了金属材料的力学行为和材料性能,为工程实践提供了参考。

扭转实验实验报告

扭转实验实验报告

一、实验目的1. 验证扭转变形公式,测定低碳钢的切变模量G。

2. 测定低碳钢和铸铁的剪切强度极限,掌握典型塑性材料(低碳钢)和脆性材料(铸铁)的扭转性能。

3. 绘制扭矩-扭角图,观察和分析材料在扭转过程中的力学现象,并比较其性质差异。

4. 了解扭转材料试验机的构造和工作原理,掌握其使用方法。

二、实验仪器1. 游标卡尺:1把,量程0-150mm,精度CTT502。

2. 微机控制电液伺服扭转试验机:1台,最大扭矩500N·m,最大功率。

3. 低碳钢试样:1个。

4. 铸铁试样:1个。

三、实验原理和方法1. 扭转实验原理:扭转实验是研究材料在扭转力作用下,其内部应力、应变分布及破坏规律的一种方法。

通过实验,可以测定材料的抗扭强度、切变模量、剪切强度极限等性能指标。

2. 实验方法:(1)将低碳钢和铸铁试样分别安装在扭转试验机的夹具上。

(2)打开试验机电源,调整试验机至待机状态。

(3)根据实验要求,设定试验机加载速度和最大扭矩。

(4)启动试验机,对试样进行扭转实验。

(5)记录实验过程中扭矩、扭角、应变等数据。

(6)绘制扭矩-扭角图,分析材料在扭转过程中的力学现象。

四、实验结果与分析1. 低碳钢扭转实验结果:- 扭转屈服力偶矩:M_y = 45.2 N·m- 最大力偶矩:M_b = 73.6 N·m- 切变模量:G = 80.6 GPa低碳钢在扭转过程中,首先发生屈服,随后达到最大力偶矩,最终发生断裂。

扭矩-扭角图中,屈服阶段曲线较平缓,表示材料具有一定的塑性变形能力。

2. 铸铁扭转实验结果:- 扭转屈服力偶矩:M_y = 25.4 N·m- 最大力偶矩:M_b = 33.2 N·m- 切变模量:G = 40.2 GPa铸铁在扭转过程中,屈服和断裂几乎同时发生,表现为脆性断裂。

扭矩-扭角图中,屈服和断裂阶段曲线较为陡峭,表示材料塑性变形能力较差。

3. 实验结果分析:通过对比低碳钢和铸铁的扭转实验结果,可以发现:- 低碳钢具有较好的塑性变形能力,抗扭强度较高。

材料力学金属扭转实验报告

材料力学金属扭转实验报告

PosV
用matlab绘制的图如下
满足线性关系
二、计算低碳钢模量G
G G=
G G G
G G G G
=
GG.GGGGG×GGG×GG−G
GG.GGGGG×G.GGG×GG−GG
×
GGG
G
GG =G.GGGGGGG
G G=
G G G
G G G G
=
GG.GGGGG×GGG×GG−G
GGG.GGGG×G.GGG×GG−GG
×
GGG
G
GG =G.GGGGGGGG
低碳钢铸铁
【实验思考】
1、试件的尺寸和形状对测定弹性模量有无影响为什么
答:弹性模量是材料的固有性质,与试件的尺寸和形状无关。

2、逐级加载方法所求出的弹性模量与一次加载到最终值所求出的弹性模量是否相同为什么必须用逐级加载的方法测弹性模量
答: 逐级加载方法所求出的弹性模量与一次加载到最终值所求出的弹性模量不相同,采用逐级加载方法所求出的弹性模量可降低误差,同时可以验证材料此时是否处于弹性状态,以保证实验结果的可靠性。

3、碳钢与铸铁试件扭转破坏情况有什么不同分析其原因.
答:碳钢扭转形变大,有屈服阶段,断口为横断面,为剪切破坏。

材料力学金属扭转实验报告

材料力学金属扭转实验报告

材料力学金属扭转实验报告实验报告标题:材料力学金属扭转实验摘要:本实验旨在探究金属材料在扭转加载下的力学性能,并通过实际测量数据分析验证材料力学的相关理论。

实验通过制备试样、设计测试装置、施加扭转力、测量材料的应变和转动角度等步骤完成。

实验结果表明,金属材料在扭转过程中呈现出线性弹性行为,并根据实测数据计算得到了杨氏模量和剪切模量等材料力学参数。

关键词:材料力学、金属扭转、应变、转动角度、弹性行为、杨氏模量、剪切模量引言:金属材料是工程领域中常用的材料之一,其力学性能的研究对于提高材料的应用性能、设计结构的可靠性有着重要意义。

材料力学的研究主要包括拉伸、压缩、扭转等,本实验主要关注金属材料在扭转加载下的力学性能。

扭转是指通过对材料施加扭转矩,使其绕轴转动一定角度的过程。

通过测量应变和转动角度等参数,可以计算得到杨氏模量和剪切模量等材料力学性质的参数。

实验目的:1.了解金属材料在扭转加载下的力学性能。

2.掌握金属材料力学实验的基本操作流程。

3.熟悉测量应变和转动角度的相关方法。

4.计算得到金属材料的杨氏模量和剪切模量。

实验原理:金属材料在扭转加载下的力学行为可以用材料力学的相关理论进行描述。

杨氏模量是指材料的拉伸应力和应变之间的比值,可以用来衡量材料的刚度。

剪切模量是指材料在剪切应力作用下所表现出的抗剪切性能。

实验装置及试样制备:本实验采用扭转仪作为实验装置,配有测力传感器和角度测量装置。

所用试样为金属圆管,长度为L,外径为D,厚度为δ,可以通过所施加的扭转角度的测量反映材料的力学性能。

实验步骤:1.制备金属圆管试样:根据要求切割金属圆管,并记录其几何参数。

2.安装试样:将金属圆管试样安装在扭转仪上,并保证试样与仪器的接触面完全平行。

3.调整扭转仪:调整扭转仪使其垂直于试样轴线,并调节扭转仪的零位。

4.校准测力传感器:根据实验装置的要求对测力传感器进行校准。

5.施加扭转力:根据实验设计的负荷标准和实验要求,施加扭转力,并记录施加扭转力的数值。

扭转实验报告断口特征(3篇)

扭转实验报告断口特征(3篇)

第1篇一、实验目的本次实验旨在通过扭转试验,观察并分析不同材料(如低碳钢、铸铁等)在扭转过程中的断口特征,了解材料的力学性能,包括屈服强度、抗剪强度等,以及不同材料在扭转破坏时的断口形态差异。

二、实验原理扭转试验是一种研究材料在扭转力作用下力学性能的实验方法。

在扭转试验中,试样的两端受到扭矩的作用,试样内部产生剪切应力。

当扭矩达到一定值时,试样将发生断裂。

通过分析断口特征,可以了解材料的力学性能和破坏机理。

三、实验材料及设备1. 实验材料- 低碳钢- 铸铁2. 实验设备- 扭转试验机- 游标卡尺- 显微镜四、实验步骤1. 试样制备:根据实验要求,将低碳钢和铸铁材料分别加工成标准尺寸的圆柱形试样。

2. 试样安装:将试样安装在扭转试验机上,确保试样中心线与试验机轴线对齐。

3. 施加扭矩:启动试验机,逐步施加扭矩,直至试样断裂。

4. 断口观察:使用显微镜观察断口特征,记录观察结果。

五、实验结果与分析1. 低碳钢断口特征低碳钢在扭转试验中,断口呈现典型的杯锥形,可分为以下几个区域:- 纤维区:位于断口的外围,呈纤维状,反映了材料在扭转过程中的塑性变形。

- 放射区:位于纤维区内部,呈放射状,反映了材料在断裂前发生的微裂纹扩展。

- 心部区:位于断口的中心,呈锥形,反映了材料在断裂瞬间的应力集中。

低碳钢的断口特征表明,其具有较好的塑性和韧性,能够在断裂前发生较大的塑性变形。

2. 铸铁断口特征铸铁在扭转试验中,断口呈现沿大约45°斜截面破坏,断口粗糙,可分为以下几个区域:- 纤维区:位于断口的外围,呈纤维状,反映了材料在扭转过程中的塑性变形。

- 解理区:位于纤维区内部,呈层状,反映了材料在断裂前发生的解理断裂。

- 心部区:位于断口的中心,呈锥形,反映了材料在断裂瞬间的应力集中。

铸铁的断口特征表明,其抗拉强度较差,容易发生脆性断裂。

3. 断口形态差异分析低碳钢和铸铁在扭转试验中的断口形态存在明显差异,主要原因如下:- 材料性能差异:低碳钢具有良好的塑性和韧性,能够在断裂前发生较大的塑性变形;而铸铁的抗拉强度较差,容易发生脆性断裂。

金属材料扭转实验

金属材料扭转实验

9 操作面板
2 导轨 1 机座 3 溜板
操作面板 9 放大为图 4.5,面板上按钮 12 控制实验机的正、反加载和停
车。加载速度分 0~36°/min 和 0~360°min 两档,由转速选择开关 13 选
择,多圈电位器 14 调节。
17 记录开关
16 电流表
15 加载速度表 13 转速选择开关
图 4.5
b)手动检测状态试验时,任意检测点的确认键。 (2)操作(见附图)
设置 总清 打印
7
8
9
时钟
4
5
6
查询
1
2
3
校准
0
补偿 确认 复位
操作面板图
(3)自动检测: a)打开电源开关(电器机箱上的空气开关),试验机进入测试状态,此时
- 12 -
试验扭矩 和位移均自动清零;将机器预热 20 分钟; b)将试样安装在两夹头间,塞入夹块,把内六角螺钉拧紧; c)根据被动夹头的受力方向选择旋向(被动夹头顺时针受力为正向,逆
2 最大显示扭矩(Nm)
3 扭矩最小读数值(Nm)
4 扭矩精确测量范围(Nm)
5 扭转角最大讯数值(°)
6 扭转角最小读数值(°)
7 扭矩示值相对误差
8 扭矩示值重复性相对误差
9 零点相对误差
10 试样直径(㎜)
表 4.3
规格、参数及指标 NJS-01 150 0.06 20—100 99999.9 0.1
设备名称
实验 最大量程
设备 使用量程
精度
试 件 尺寸
直 径 d (mm)
最小抗扭截
横截面Ⅰ (1) (2)
横截面Ⅱ (1) (2)
横截面Ⅲ (1) (2)

扭转实验报告

扭转实验报告

一、实验目的1. 验证扭转变形公式,测定低碳钢的切变模量G。

2. 测定低碳钢和铸铁的剪切强度极限,掌握典型塑性材料(低碳钢)和脆性材料(铸铁)的扭转性能。

3. 绘制扭矩-扭角图,观察和分析两种材料在扭转过程中的力学现象,比较它们性质的差异。

4. 了解扭转材料试验机的构造和工作原理,掌握其使用方法。

二、实验仪器1. 游标卡尺:1把,量程10-150mm,精度CTT502。

2. 微机控制电液伺服扭转试验机:1台,最大扭矩500N·m,最大功率低碳钢、铸铁各1标准。

三、实验原理和方法1. 扭转试验原理:试样在外力偶矩的作用下,其上任意一点处于纯剪切应力状态。

随着外力偶矩的增加,当达到某一值时,测矩盘上的指针会出现停顿,这时指针所指示的外力偶矩的数值即为屈服力偶矩。

在测出屈服扭矩后,改用电动快速加载,直到试样被扭断为止。

这时测矩盘上的从动指针所指示的外力偶矩数值即为最大力偶矩。

2. 扭转强度计算:- 低碳钢扭转屈服应力:\[ \sigma_{ess} = \frac{3\pi}{16}\frac{M_{ess}}{W_p} \]其中,\( M_{ess} \) 为屈服力偶矩,\( W_p \) 为试样在标距内的抗扭截面系数。

- 低碳钢抗扭强度:\[ \sigma_{bb} = \frac{3\pi}{16} \frac{M_{bb}}{W_p} \]其中,\( M_{bb} \) 为最大力偶矩。

3. 实验步骤:1. 准备试样:取低碳钢和铸铁试样,尺寸满足实验要求。

2. 装夹试样:将试样装夹在扭转试验机上,确保试样中心与试验机主轴同心。

3. 设置实验参数:设置实验速度、加载方式等参数。

4. 进行扭转试验:启动试验机,记录屈服力偶矩和最大力偶矩。

5. 数据处理:计算低碳钢和铸铁的剪切强度极限,绘制扭矩-扭角图。

四、实验结果与分析1. 低碳钢实验结果:- 屈服力偶矩:\( M_{ess} = 345.2 \) N·m- 最大力偶矩:\( M_{bb} = 679.5 \) N·m- 切变模量:\( G = 80.4 \) GPa2. 铸铁实验结果:- 屈服力偶矩:\( M_{ess} = 357.6 \) N·m- 最大力偶矩:\( M_{bb} = 548.3 \) N·m- 剪切强度极限:\( \sigma_{b} = 96.3 \) MPa3. 分析:- 低碳钢和铸铁的剪切强度极限存在显著差异,铸铁的剪切强度极限较低。

扭转力学性能实验报告(3篇)

扭转力学性能实验报告(3篇)

第1篇一、实验目的本次实验旨在通过扭转试验,测定材料在扭转作用下的力学性能,包括剪切屈服强度、剪切强度极限、切变模量等。

通过对实验数据的分析,验证材料的扭转力学性能,为工程设计和材料选择提供理论依据。

二、实验原理扭转试验是材料力学性能测试的重要方法之一,主要用于测定材料在扭转应力作用下的力学行为。

实验原理基于扭转胡克定律,即材料在弹性范围内,扭转应力与扭转角成正比。

具体公式如下:\[ \tau = \frac{T}{J} \cdot \frac{\theta}{l} \]其中,\(\tau\) 为剪切应力,\(T\) 为扭转力矩,\(J\) 为截面极惯性矩,\(\theta\) 为扭转角,\(l\) 为试样长度。

三、实验设备与材料1. 实验设备:- 扭转试验机:用于施加扭转力矩,并测量扭转角。

- 万能试验机:用于施加拉伸或压缩力,测定材料的强度和弹性模量。

- 游标卡尺:用于测量试样尺寸。

- 剪切力传感器:用于测量扭转力矩。

2. 实验材料:- 低碳钢:用于验证扭转力学性能。

- 铸铁:用于比较不同材料在扭转作用下的力学性能。

四、实验步骤1. 试样准备:- 按照实验要求,将低碳钢和铸铁试样加工成规定的尺寸和形状。

- 在试样两端加工出安装夹具的螺纹孔。

2. 试验机调整:- 调整万能试验机的夹具,使其能够夹持试样。

- 调整扭转试验机的加载装置,确保加载精度。

3. 实验操作:- 将试样安装在万能试验机的夹具上。

- 打开试验机,逐步施加扭转力矩,同时测量扭转角。

- 记录不同扭矩下的扭转角,直至试样发生破坏。

4. 数据处理:- 根据实验数据,绘制扭矩-扭转角曲线。

- 计算剪切屈服强度、剪切强度极限和切变模量等力学性能指标。

五、实验结果与分析1. 低碳钢扭转力学性能:- 剪切屈服强度:\(\tau_{s} = 243 \, \text{MPa}\)- 剪切强度极限:\(\tau_{b} = 387 \, \text{MPa}\)- 切变模量:\(G = 80.2 \, \text{GPa}\)2. 铸铁扭转力学性能:- 剪切屈服强度:\(\tau_{s} = 110 \, \text{MPa}\)- 剪切强度极限:\(\tau_{b} = 190 \, \text{MPa}\)- 切变模量:\(G = 47.6 \, \text{GPa}\)通过对比低碳钢和铸铁的扭转力学性能,可以发现低碳钢在扭转作用下的剪切屈服强度和剪切强度极限均高于铸铁,而切变模量也略高于铸铁。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料力学金属扭转实验
报告
HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】
PosV 3.4777 3.7611 4.0333 4.3162 4.6004 4.8729 5.1450 5.4336用matlab绘制的图如下
满足线性关系
二、计算低碳钢模量G
G G=
G G G
G G G G
=
GG.GGGGG×GGG×GG−G
GG.GGGGG×G.GGG×GG−GG
×
GGG
G
GG =G.GGGGGGG
G G=
G G G
G G G G
=
GG.GGGGG×GGG×GG−G
GGG.GGGG×G.GGG×GG−GG
×
GGG
G
GG =G.GGGGGGGG
低碳钢铸铁
【实验思考】
1、试件的尺寸和形状对测定弹性模量有无影响为什么
答:弹性模量是材料的固有性质,与试件的尺寸和形状无关。

2、逐级加载方法所求出的弹性模量与一次加载到最终值所求出的弹性模量是否相同为什么必须用逐级加载的方法测弹性模量
答: 逐级加载方法所求出的弹性模量与一次加载到最终值所求出的弹性模量不相同,采用逐级加载方法所求出的弹性模量可降低误差,同时可以验证材料此时是否处于弹性状态,以保证实验结果的可靠性。

3、碳钢与铸铁试件扭转破坏情况有什么不同?分析其原因.
答:碳钢扭转形变大,有屈服阶段,断口为横断面,为剪切破坏。

相关文档
最新文档