多边形的内角和(人教版)
多边形的内角和及角的计算(人教版)(含答案)
多边形的内角和及角的计算(人教版)一、单选题(共14道,每道7分)1.如果一个多边形的内角和是其外角和的2倍,那么这个多边形是( )A.四边形B.五边形C.六边形D.八边形答案:C解题思路:∵多边形的外角和都等于360°,∴这个多边形的内角和为720°,∴(n-2)×180°=720°,∴n=6,故选C.试题难度:三颗星知识点:多边形的内角和与外角和2.一个正多边形的每个外角都等于36°,那么它是( )A.正六边形B.正八边形C.正十边形D.正十二边形答案:C解题思路:∵多边形的外角和都等于360°,正多边形的每个外角都相等,∴n=10,故选C.试题难度:三颗星知识点:多边形的内角和与外角和3.若一个n边形的每一个内角为135°,则边数n的值是( )A.6B.7C.8D.10答案:C解题思路:多边形每个外角都相等,均为180°-135°=45°,由多边形外角和为360°,知n=360°÷45°=8,故选C.试题难度:三颗星知识点:多边形的内角和与外角和4.某科技小组制作了一个机器人,它能根据指令要求进行行走和旋转.某一指令规定:机器人先向前行走1米,然后左转45°,若机器人反复执行这一指令,则从出发到第一次回到原处,机器人共走了( )米.A.8B.9C.10D.12答案:A解题思路:每走1米,左转45°,则机器人走过的轨迹为边长为1的正多边形.题目所求的是正多边形的周长,故只需求边数n即可.∵正多边形的每个外角都相等,∴n=360°÷45°=8,∴机器人共走了:8×1=8(米).故选A.试题难度:三颗星知识点:多边形的外角和定理5.已知:如图,在△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F,求∠CDF的度数( ).A.50°B.60°C.70°D.80°答案:C解题思路:试题难度:三颗星知识点:三角形内角和定理6.一个正方形和两个等边三角形的位置如图所示,若∠2=70°,则∠1+∠3=( )A.70°B.80°C.90°D.100°答案:B解题思路:试题难度:三颗星知识点:三角形内角和定理7.如图,在四边形ABCD中,点E在BC上,AB∥DE,∠B=78°,∠C=60°,则∠EDC的度数为( )A.42°B.60°C.78°D.80°答案:A解题思路:试题难度:三颗星知识点:三角形内角和定理8.已知:如图,CE是△ABC的一个外角平分线,且EF∥BC交AB于点F,∠A=50°,∠E=55°,则∠B的度数为( )A.65°B.60°C.55°D.50°答案:B解题思路:试题难度:三颗星知识点:三角形外角定理9.已知:如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数为( )A.30°B.25°C.20°D.15°答案:C解题思路:试题难度:三颗星知识点:三角形外角定理10.已知:如图,在△ABC中,BD⊥AC于D,CE⊥AB于E,且BD,CE交于点O.若∠A=50°,∠ACB=60°,则∠1的度数为( )A.130°B.120°C.110°D.100°答案:A解题思路:试题难度:三颗星知识点:三角形外角定理11.如图,点C在AB的延长线上,CE⊥AF于点E,交BF于点D.若∠F=40°,∠C=20°,则∠FBC的度数为( )A.100°B.110°C.120°D.130°答案:B解题思路:试题难度:三颗星知识点:三角形外角定理12.如图,在△ABC中,∠C=30°,∠E=45°.若AE∥BC,则∠AFD的度数是( )A.45°B.60°C.75°D.80°答案:C解题思路:试题难度:三颗星知识点:三角形外角定理13.已知:如图,在△ABC中,∠EFB+∠ADC=180°,∠1=∠2.求证:AB∥DG.证明:如图,∵∠EFB+∠ADC=180°(已知)∠ADB+∠ADC=180°(平角的定义)∴∠EFB=∠ADB(____________________)∴__________(同位角相等,两直线平行)∴∠1=______(两直线平行,同位角相等)∵∠1=∠2(已知)∴∠2=∠BAD(等量代换)∴__________(内错角相等,两直线平行)①同角或等角的余角相等;②同角或等角的补角相等;③等量代换;④AB∥DG;⑤EF∥AD;⑥∠BAD;⑦∠2.以上空缺处依次所填正确的是( )A.②⑤⑥④B.①⑤⑦④C.②④⑥⑤D.③⑤⑦④答案:A解题思路:试题难度:三颗星知识点:平行线的性质与判定14.已知:如图,在△ABC中,∠ACB=90°,E是BC边上的一点,过C作CF⊥AE于点F,过B 作BD⊥BC于点B,交CF的延长线于点D.若∠EAC=25°,求∠D的度数.解:如图,∵CF⊥AE(已知)∴∠EAC+∠2=90°(直角三角形两锐角互余)∵∠ACB=90°即∠1+∠2=90°(已知)___________________∴∠1=25°(等量代换)∵BD⊥BC(已知)∴∠DBC=90°(垂直的性质)∴∠D+∠1=90°(直角三角形两锐角互余)∴∠D=90°-∠1=90°-25°=65°(等式性质)横线处应填写的过程最恰当的是( )A.∴∠1=∠EAC(同角或等角的补角相等)∵∠EAC=25°(已知)B.∴∠1=∠EAC(等量代换)∵∠2=65°(已知)C.∴∠1+∠EAC=90°(直角三角形两锐角互余)∵∠EAC=25°(已知)D.∴∠1=∠EAC(同角或等角的余角相等)∵∠EAC=25°(已知)答案:D解题思路:本题主要利用直角三角形两锐角互余和同角或等角的余角相等进行角的计算.故选D.试题难度:三颗星知识点:同角或等角的余角相等。
人教版八年级数学上册七年级第十一章第五讲:多边形的内角和(教师版)
多边形的内角和人教八上初中数学试卷11-8一、学习目标能记住多边形的内角和、外角和的概念;能通过不同方法推导多边形的内角和与外角和公式,进一步体会数学化归思想;能熟练运用多边形的内角和与外角和公式进行有关计算.二、知识回顾1.三角形三个内角的和等于多少度?三角形三个内角的和等于180°2.n边形从一个顶点出发的对角线有n-3条,它们将n边形分成n-2 个三角形.3.你知道长方形和正方形的内角和是多少吗?其他四边形的内角和是多少?360°.三、新知讲解1.多边形的内角和公式n边形的内角和等于(n-2)·180°.2.多边形的外角和任意多边形的外角和等于360°.四、典例探究2.多边形的外角和【例2】(2015•茂名模拟)若一个正多边形的每一个外角为30°,那么这个正多边形的边数是()A.6 B.8 C.10 D.12总结:正n边形的每个外角都相等,所以每个外角的度数等于360°/n.【例3】(2014•无锡模拟)如果一个多边形的内角和等于外角和的3倍,那么这个多边形的边数为()A.6 B.7 C.8 D.,9总结:根据题目蕴含的等量关系,利用内角和公式和外角和的不变性,列出方程即可求出边数.练3.(2015•广东模拟)一个n边形的每一个外角都是60°,则这个n边形的内角和是______.练4.(2014春•镇江校级期末)一个多边形的所有内角与外角的总和为2160°,这个多边形是几边形?A.540°B.360°C.300°D.240°5.(2014秋•赣州期末)一个多边形截去一个角后,形成另一个多边形的内角和为2520°,则原多边形的边数是()A.15或17 B.16或15 C.15 D.16或15或17二、填空题6.(2015春•荆门月考)若四边形四个内角的比是3:3:5:7,则它的最大角是度.7.(2015春•东台市月考)一个n边形,除了一个内角外,其余(n﹣1)个内角和为2770°,则这个内角是度.8.(2014秋•新洲区期中)苏敏从A点出发,每走20米就向左转15°,按此规定,她要走米,才能回到原来位置A点处.9.(2014春•丹阳市校级期中)一个多边形的每个外角都等于36°,则它是边形,它的内角和是.三、解答题10.(2013秋•随州校级月考)如图所示,请你根据图中信息求出x的值.11.(2013秋•象山区校级期中)已知一个n边形的每一个内角都等于150°.(1)求n;(2)求这个n边形的内角和;(3)从这个n边形的一个顶点出发,可以画出几条对角线?12.(2014春•镇江校级期末)一个多边形的所有内角与外角的总和为2160°,这个多边形是几边形?13.(2014秋•旬阳县期中)如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2520°的新多边形,求原多边形的边数.典例探究答案:【例1】(2015•惠山区一模)如果一个多边形的内角和等于1260°,那么这个多边形的边数为()A.7 B.8 C.9 D.10分析:n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解答:解:根据题意,得(n﹣2)•180°=1260°,解得n=9,故选C.点评:本题考查了多边形的内角和,已知多边形的内角和求边数,可以转化为方程的问题来解决.练1.如果一个多边形的边数增加1倍,它的内角和是2160°,那么原来多边形的边数是.解析:设原来多边形的边数为n,那么边数增加1倍后,多边形的边数变为2n,内角和为(2n-2)·180°.根据多边形内角和定理,可列出关于边数n的方程,即(2n-2)·180°=2160°,解得n=7.所以原多边形的边数为7.练2.(2013春•邢台期末)已知:如图,五边形ABCDE中,AB∥CD,求图形中∠AED的值.分析:先根据平行线的性质求得∠B的值,再根据多边形内角和定理即可求得∠AED的值.解答:解:∵AB∥CD,∴∠B=180°﹣∠C=120°,∵五边形ABCDE内角和为(5﹣2)×180°=540°,∴在五边形ABCDE中,∠AED=540°﹣150°﹣120°﹣60°﹣160°=50°.点评:考查了平行线的性质,多边形内角和定理,注意对基础知识的熟练掌握及综合运用.【例2】(2015•茂名模拟)若一个正多边形的每一个外角为30°,那么这个正多边形的边数是()A.6 B.8 C.10 D.12分析:根据正多边形的每一个外角都相等,可知多边形的边数=360°÷30°,计算即可求解.解答:解:这个正多边形的边数为360°÷30°=12,故选D.点评:本题考查了多边形外角和,熟记正多边形的边数与外角的关系是解题的关键.【例3】(2014•无锡模拟)如果一个多边形的内角和等于外角和的3倍,那么这个多边形的边数为()A.6 B.7 C.8 D.9分析:n边形的内角和可以表示成(n﹣2)•180°,外角和为360°,根据题意列方程求解.解答:解:设多边形的边数为n,依题意,得(n﹣2)•180°=3×360°,解得n=8,故选:C.点评:此题根据多边形的内角和计算公式,利用内外角和的关系列出关于边数的方程,使问题得解..练3.(2015•广东模拟)一个n边形的每一个外角都是60°,则这个n边形的内角和是.分析:根据多边形的外角和是360度,每个外角都相等,即可求得外角和中外角的个数,即多边形的边数,根据内角和定理即可求得内角和.解答:解:多边形的边数是:360÷60=6,则多边形的内角和是:(6﹣2)×180=720°.故答案为:720°.点评:本题主要考查了多边形的内角和定理以及多边形的外角和定理,注意多边形的外角和不随边数的变化而变化,因而把求多边形内角的计算转化为外角的计算,可以使计算简便.练4.(2014春•镇江校级期末)一个多边形的所有内角与外角的总和为2160°,这个多边形是几边形?分析:依题意,多边形的内角与外角和为2160°,多边形的外角和为360°,根据内角和公式求出多边形的边数.解答:解:设多边形的边数为n,根据题意列方程得,(n﹣2)•180°+360°=2160°,n﹣2=10,n=12.故答案为:十二边形.点评:考查了多边形的外角和定理和内角和定理,熟练记忆多边形的内角和公式是解答本题的关键.课后小测答案:一、选择题1.(2015春•建湖县校级月考)一个多边形的每个内角都是144°,这个多边形是()A.八边形B.十边形C.十二边形D.十四边形解:∵一个多边形的每个内角都是144°,∴这个多边形的每个外角都是(180°﹣144°)=36°,∴这个多边形的边数360°÷36°=10.故选B.2.(2015春•新沂市校级月考)下列各度数不是多边形的内角和的是()A.1800°B.540°C.1700°D.10800°解:不是180的整数倍的选项只有C中的1700°.故选C.3.(2014•义乌市三模)正n边形的一个内角比一个外角大100°,则n为()A.7 B.8 C.9 D.10解:设内角为x°,则外角为(x﹣100)°,根据题意得:x+x﹣100=180,解得:x=140,所以外角为40°,∴360°÷40°=9,故选C.4.(2014•将乐县质检)如图,∠1、∠2、∠3、∠4 是五边形ABCDE的4个外角,若∠EAB=120°,则∠1+∠2+∠3+∠4等于()A.540°B.360°C.300°D.240°解:由题意得,∠5=180°﹣∠EAB=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°﹣∠5=300°.故选:C.5.(2014秋•赣州期末)一个多边形截去一个角后,形成另一个多边形的内角和为2520°,则原多边形的边数是()A.15或17 B.16或15 C.15 D.16或15或17解:多边形的内角和可以表示成(n﹣2)•180°(n≥3且n是整数),一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,根据题意得(n﹣2)•180°=2520°,解得:n=16,则多边形的边数是15,16,17.故选D.二、填空题6.(2015春•荆门月考)若四边形四个内角的比是3:3:5:7,则它的最大角是度.解:设四边形四个内角分别是3x,3x,5x,7x,则3x+3x+5x+7x=360,解得x=20°.则它的最大角是7×20=140°.7.(2015春•东台市月考)一个n边形,除了一个内角外,其余(n﹣1)个内角和为2770°,则这个内角是度.解:设这个内角度数为x,边数为n,则(n﹣2)×180°﹣x=2770°,180°•n=3130°+x,∵n为正整数,∴n=18.∴这个内角度数为180°×(18﹣2)﹣2770°=110°.故答案为110°.8.(2014秋•新洲区期中)苏敏从A点出发,每走20米就向左转15°,按此规定,她要走米,才能回到原来位置A点处.解:行走路线对应的多边形的边数是:=24,则经过的总路程是:24×20=480(米).故答案是:480.9.(2014春•丹阳市校级期中)一个多边形的每个外角都等于36°,则它是边形,它的内角和是.解:(1)360°÷36°=10.(2)(10﹣2)•180°=1440°.故答案为:10,1440°.三、解答题10.(2013秋•随州校级月考)如图所示,请你根据图中信息求出x的值.解:由题意可得:90°+(2x+25)°+(3x﹣15)°+2x°+x°=(5﹣2)×180°,解得:x=55.——————————唐玲制作仅供学习交流——————————11.(2013秋•象山区校级期中)已知一个n边形的每一个内角都等于150°.(1)求n;(2)求这个n边形的内角和;(3)从这个n边形的一个顶点出发,可以画出几条对角线?解:(1)∵每一个内角都等于150°,∴每一个外角都等于180°﹣150°=30°,∴边数n=360°÷30°=12;(2)内角和:12×150°=1800°;(3)从一个顶点出发可做对角线的条数:12﹣3=9,.12.(2014春•镇江校级期末)一个多边形的所有内角与外角的总和为2160°,这个多边形是几边形?解:设多边形的边数为n,根据题意列方程得,(n﹣2)•180°+360°=2160°,n﹣2=10,n=12.故答案为:十二边形.13.(2014秋•旬阳县期中)如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2520°的新多边形,求原多边形的边数.解:设新多边形是n边形,则180(n﹣2)=2520解得:n=16.则原多边形的边数是:16﹣1=15.答:原多边形的边数是15.唐玲。
人教版初中数学《多边形及其内角和》_实用课件
第十一章 三角形 11.面的图片,其中的房屋结构、蜂巢结构、 足球的外皮,其中都有由一些线段围成的图形的形象, 你能从下图中抽象出几个由一些线段围成的图形吗?
探究新知
多边形的概念
在平面内,由一些线段首尾顺次相接 组成的封闭图形叫做多边形.
注意:①在同一平面内;②若干条线段; ③首尾顺次相接;④封闭图形.
探究新知
如果一个多边形由n条线段组成,那么 这个多边形叫做n边形.
如图,螺母底面的边缘可以设计为六边 形,也可设计为八边形.
探究新知
多边形的内角和外角
多边形相邻两边组成的角叫做它的内角. 如下图中的∠A,∠B,∠C,∠D,∠E是五边形 ABCDE的5个内角.
探究新知
多边形的边与它的邻边的延长线组 成的角叫做多边形的外角.
0 1 2 3 ……
n-3
共可画对角线条数
0 2 5 9 ……
n(n-3)
【 获 奖 课 件 ppt】人 教版初 中数学 《多边 形及其 内角和 》_实 用课件 1-课件 分析下 载
【 获 奖 课 件 ppt】人 教版初 中数学 《多边 形及其 内角和 》_实 用课件 1-课件 分析下 载
探究新知 A
【 获 奖 课 件 ppt】人 教版初 中数学 《多边 形及其 内角和 》_实 用课件 1-课件 分析下 载
探究新知
我们再探究从n边形的一个顶点出发作出的 对角线,把n边形分成几个三角形?
【 获 奖 课 件 ppt】人 教版初 中数学 《多边 形及其 内角和 》_实 用课件 1-课件 分析下 载
【 获 奖 课 件 ppt】人 教版初 中数学 《多边 形及其 内角和 》_实 用课件 1-课件 分析下 载
人教版多边形的内角和课件
生活中的平面图形
左图是养蜂人 王大叔家的蜜 蜂巢
由这图形你抽象出什么几何图形?
六边形
试一试
你会利用三角形的内角和计算四边形 ABCD的内角和吗?
B C
A
连接对角线把四边形 转化为三角形。
D
思考:
已知:四边形ABCD,试说明:∠A+
∠B+ ∠C+ ∠D=360 °
D
分析:
C
B
四边形ABCD的内角和
所以五边形的内角和为_3_×_1_8_0°。
同理:从六边形从一个顶点出发,可以做_3____ 对角线,它们将六边形分成___4__ 个三角形, 所以六边形的内角和为_4 _×_18_0_°。
…
… … … … …
30 41
52
6
3
74
n n-3
1
1 ×180°
2
2 ×180°
3
3 ×180°
4
4 ×180°
=△ABC的内角和﹢△ACD的内角和
=180°+180°=360°
选择同一种方法分别求出任意五边形、六边 形内角和等于多少度?
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
D
A
B
C
E F
B A
C
E
D
同理:从五边形从一个顶点出发,可以做_2____ 对角线,它们将五边形分成____3_ 个三角形,
拓展:把一个六边形截去一个角,得到的多边形 的内角和是多少度。
作业
书本第24页的习题11.3的第2题
Байду номын сангаас
练习
1、七边形的内角和是 900°. 2、过一个多边形一个顶点的所有对角线将这个多边形分 成五个三角形,则这是七 边形. 3、多边形的内角和随着边数的增加而 增加,边数增加一条 时它的内角和增加 180°。 4、求十二边形的内角和。 5、一个多边形的内角和等于2700度,求这个多边形
人教版多边形的内角和(2)
n边形的外角和等于360°。
概念怎么用?
1.若一个多边形的内角和与它的外角和相等,则这个多
边形是( B )
A.三角形 B.四边形 C.五边形 D.六边形
2.如图,∠1,∠2,∠3,∠4是五边形ABCDE的4个外角,若 ∠A=120°,则∠1+∠2+∠3+∠4=___3_0_0__°。
感悟数学思想
概念怎么用?
1.一个多边形的内角和是1260°,这个多边形的边数
是( C )
A.7 B.8 C.9 D.10
2.若一个多边形增加一条边,那么它的内角和( A )
A.增加180° B.增加360° C.减少360° D.不变
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
概念怎么用?
例1 如果一个四边形的一组对角互补,那么另一组对角
多边形的内角和
温故知新
三角形内角和定理: 三角形三个内角的和等于180°。
A
如图,△ABC, ∠A+∠B+∠C=180°。
B
C
概念从哪里来?
正方形
长方形
概念怎么学?
正方形、长方形的每个内角都是90°,因此它 们的内角和为360°。 那任意四边形的内角和呢? 是否为360°呢?
概念怎么学? A
有什么关系? 解:如图,四边形ABCD中,
C D
∠A+∠C=180°。
∵ ∠A+∠B+∠C+∠D
=(4-2)×180°=360°, ∴ ∠B+∠D
A
B
=360°-(∠A+∠C)=360°-180°=180°。
如果四边形的一组对角互补,那么另一组对角也互补。
概念怎么学?
四年级下册第五单元《多边形的内角和》人教版
三角形的内角和:(3-2)×180°
180°+360°四=540边°。 形的内角和:(4-2)×180°
有一个直角,有两条边相等。
五边形的内角和:(5-2)×180° 在三角形中,一个是直角,另两个可能各是多少度?
这节课你有什么收获?还有什么问题? 1.理解并掌握四边形的内角和是360°的结论。
六边形的内角和:(6-2)×180° 下面图形中各有个三角形?有什么规律?
这一结论,求多边形的内角和的度数。 在三角形中,一个是直角,另两个可能各是多少度?
探索多边形的内角和。
导入新知
同学们,你们知道四边形的内角 和是多 识。
合作探究
我们已知正方形和长方形的四个角都是直角, 它们的内角和为360°,那么任意四边形的 内角和是多少度?
小结:从n边形的一个顶点出发,可以引 ((2)13)+多4=边7形(厘的米内) 角和与三角形内角和有什么关系?
这第节几课 个你图有形什的么三收角获形?的还个有数什等么于问从题1到?几的连续的自然数的相加。 1我8们0°+已3知60正°=方5形40和°。长方形的四个角都是直角,它们的内角和为360°,那么任意四边形的内角和是多少度? 在三角形两中条,边一分个别是是直角3cm,和另4两cm个,另可一能条各边是可多能少是度多?少厘米?
答18:0(°1×)4另=两72个0°角可能各是40度和50度。 (在2三)角多形边两形条的边边分数别与是内3c角m和和有4c什m,么另关一系条?边可能是多少厘米? (在3三)角从形多中边,形一的个一是个直顶角点,引另到两对个角可线能分各成是三多角少形度的?个数与多边形的边数有什么关系? ((1)21)80多-边90形=的90边(度数) 与内角和有什么关系?
4.下面图形中各有个三角形?有什么规律?
人教版2021-2022学年八年级数学 《多边形的内角和》含答案解析
专题03 多边形的内角和一、单选题1.(2020·重庆市第二十九中学校八年级月考)某多边形的内角和是其外角和的4倍,则此多边形的边数是( )A.10B.9C.8D.7【答案】A【分析】任何多边形的外角和是360°,即这个多边形的内角和是4×360°.n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【详解】解:设多边形的边数为n,根据题意,得(n﹣2)•180=4×360,解得n=10.则这个多边形的边数是10.故选:A.【点睛】本题考查了多边形的内角和与外角和,解答本题的关键是根据多边形内角和公式与外角和定理,利用方程法求边数.2.(2021·四川七年级期末)某校新建的科技馆准备用正多边形地砖铺设地面,下列组合中能铺满地面的是( )A.正方形和正六边形B.正三角形和正六边形C.正五边形和正八边形D.正方形和正十边形【答案】B【分析】正多边形的组合能否铺满地面,看位于同一顶点处的几个角之和能否为360°进行判定即可.【详解】解:A、正方形和正六边形内角分别为90°、120°,显然不能构成360°的周角,故不能铺满;B、正三角形和正六边形内角分别为60°、120°,显然能构成360°的周角,故能铺满;C、正五边形和正八边形内角分别为108°、135°,显然不能构成360°的周角,故不能铺满.D、正方形和正十边形内角分别为90°、144°,显然不能构成360°的周角,故不能铺满.故选B.【点睛】本题主要考查了平面几何图形镶嵌,解题的关键是明确围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.3.(2021·全国八年级课前预习)下列叙述正确的是()A .每条边都相等的多边形是正多边形;B .如果画出多边形某一条边所在的直线,这个多边形都在这条直线的同一侧,那么它一定是凹多边形;C .每个角都相等的多边形叫正多边形;D .每条边、每个角都相等的多边形叫正多边形【答案】D【详解】由题意可知,A 、B 、Cj 均不正确,只有D 是正确的。
第五单元 第6课时 多边形的内角和(教学设计) 四年级数学下册 人教版
第五单元 第6课时 多边形的内角和 教学设计 教学流程 复习导入【设计意图:】通过三角形的内角和,引出四边形的内角和,引发学生的思考和求知的欲望,同时为后面四边形的内角和可由三角形的内角和推导出来作铺垫。
1.计算下面各三角形中未知角的度数。
2.(1)思考:把一个三角形纸板沿直线剪了一刀,剩下的纸板的内角和是多少度?预设:两种情况,一种情况是一个三角形,另一种是四边形(2)三角形的内角和是180°,你是用什么方法得到三角形的内角和的呢?学 校 授课班级 授课教师学习目标 1.通过测量、剪拼、观察等活动探究四边形的内角和,能运用四边形的内角和为360°这一规律解决一些实际问题。
2.会运用探索三角形的内角和的经验探索四边形的内角和并得出结论,经历观察、思考、推理、归纳的过程,培养学生的探究推理能力、发现能力、观察和动手操作能力。
3.在各种活动中体验探索的乐趣和成功的快乐,培养合作探究精神,掌握一些学习与研究的方法。
重 点通过动手操作,探索发现四边形的内角和的度数,并应用这一规律解决问题。
难 点 探索四边形的内角和时,如何把四边形转化成三角形。
学情分析 四边形的内角和这一内容是在学生知道三角形内角和是180°及三角形内角和的推导过程基础上进行教学的,学生已经具备了一定的探究能力。
因此,本节课的设计力图实践新的教学理念,培养学生主动探索、勇于实践、善于发现的科学精神以及合作交流的意识。
教学辅助教学课件、学习任务单、(若有教具等教师自行增加)30°60° 70° 120° 30°预设:测量、剪拼(3)四边形有几个内角呢?(标出内角)(4)大家猜一猜,四边形的内角和是多少度?预设1:认为这些图形不一样,内角和度数不相同。
预设2:认为四边形的内角和与形状没有关系,有的学生可能猜等于180°,有的猜测大于180°,有的猜测等于360°,等等。
多边形的内角和教案12人教版(优秀教案)
.多边形的内角和学习目标.理解并掌握多边形的内角、外角等观点;.能经过不一样方法研究多边形的内角和与外角和公式,并会应用它们进行有关计算. (要点、难点 )教课过程一、情境导入察看以下图片,你能找出哪些我们熟习的图形?今日我们给图形取了一个一致的名字——多边形,那么什么是多边形?怎样定义多边形呢?二、合作研究研究点一:多边形内角和【种类一】多边形的观点一个长方形剪去一个角,则它有可能是边形.分析:如下图:沿对角线剪去时,可获取三角形;沿一个极点和另一边上的一点剪时,可获取四边形;当沿相邻两边上的随意两点(不包括两头点 ) 剪时,可获取五边形.故填:三或四或五.方法总结:掌握多边形的观点是解决此类问题的要点,但注意分类议论不要遗漏.变式训练:见《学练优》本课时练习“课后稳固提高”第题【种类二】多边形的内角和与外角和若一个多边形的内角和是其外角和的倍,求这个多边形的边数.分析:任何多边形的外角和都是°,即这个多边形的内角和是× °,边形的内角和是(- ) ·°,假如已知多边形的边数,就能够获取一个对于边数的方程,解方程就能够求出多边形的边数.解:设多边形的边数为,依据题意,得(- ) ·=×,解得=.则这个多边形的边数是.方法总结:已知多边形的内角和求边数,能够转变为方程的问题来解决.变式训练:见《学练优》本课时练习“课后稳固提高”第题【种类三】多边形的对角线若一个多五边形中,从极点最多可引条对角线,能够把这个五边形分红个三角形.边形的边数为,则从一个极点最多可引条对角线.分析:不相邻的两个极点之间的连线就是对角线,边形中,与一个极点不相邻的极点有( -)个,因此对角线有( -)条.这 (-)条对角线能够把这个边形分红( -)个三角形.据此即可求解.五边形中,从极点最多可引条对角线,能够把这个五边形分红个三角形.若一个多边形的边数为,则从一个极点最多可引(- )条对角线.故答案是:,, (- ).方法总结:此题考察的是多边形的对角线的有关知识,熟记对角线确实定方法是解答此题的要点.变式训练:见《学练优》本课时练习“课后稳固提高”第题【种类四】正多边形一个正多边形的每个外角都等于与它相邻的内角的,求这个正多边形的边数.分析:正多边形的每个内角都相等,每个外角也都相等,能够依据正多边形的内角和、外角和与边数的关系求解.也能够依据相邻的内角和外角的互补关系求解.解:解法: (直接设元法 )正多边形的边数为,则它的每个外角为,每个内角为,那么=×,解得= .答:这个正多边形的边数是.解法: (间接设元法 ) 设这个正多边形的每个内角为°,则每个外角为 ()° .由题意,得+=,解得=,=×= .∴每个外角是 ()°,∴这个正多边形的边数为÷= .答:这个正多边形的边数为.方法总结: () 正多边形的每一个内角都相等,每一个外角也都相等;()正边形的每一个内角都等于;()正边形的每一个外角都等于;() 多边形的每个内角与其相邻的外角都互补.变式训练:见《学练优》本课时练习“讲堂达标训练”第题研究点二:多边形的不稳固性以下图形中拥有稳固性的是()分析:三角形拥有稳固性,其余多边形不拥有稳固性,把多边形切割成三角形则多边形的形状就不会改变,因此拥有稳固性的是.应选 .方法总结:此题考察三角形稳固性的实质应用,三角形的稳固性在实质生活中有着宽泛的应用,如钢架桥、房子架梁等.所以要使一些图形拥有稳固的构造,常常经过连结协助线转变为三角形而获取.变式训练:见《学练优》本课时练习“讲堂达标训练”第题教课反省本节课主要研究多边形的内角和公式.内角和是化归为三角形将问题解决,而外角和则关注内角与外角的关系,将外角和化归为内角和,化归思想是数学中的重要思想方法,应付学生进行训练和加强.经过例题的一题多解,拓展学生的思路,四边形的不稳固性的应用让学生再次感觉数学根源于实践,能够激发学生学习数学的兴趣学习是一件增加知识的工作,在茫茫的学海中,也许我们困苦过,在困难的竞争中,也许我们疲惫过,在失败的暗影中,也许我们绝望过。
多边形内角和说课稿(人教版)
· · ·
n—2
· · ·
(n-2)×180° (n-2)×180°
活动四、探究多边形的内角和 你知道n边形的内角和吗?从n边形的一个顶点 ( n—3) 出发,可以作 _______ 条对角线,它们将n边形 ( n—2) 分成 _______ 个三角形,n边形的内角和是 (n—2) 180°×_________________
多边形的内角和
多 边 形 的 内 角 和
一、教材分析
二、学情分析 三、教学目标 四、教学重难点 五、教学过程
六、板书设计
七、教学反思
一、教材分析: 本节课是在学生学习了三角形内 角和,和多边形的定义内容后按排的一 节课.多边形内角和公式是多边形的基 本性质, 是三角形内角和定理的应用,推 广和深化,为多边形外角公式,四边形及 正多边形的学习提供知识基础.
多边形 边数 从一个顶点引出 对角线条数
三角形 四边形 五边形 六边形 七边形
分成三角形的个数
1 2 3 4 5
内角和 180° 360° 540° 720° 900°
计算规律 1×180° 2×180° 3×180° 4×180° 5×180°
3
4 5 6 7
0
1 2 3 4
· · ·
n边形 n
· · ·
证明: 180°×(n—1)—180° =180°×(n—2)
从n边形外一点P出发,连接各顶点可以作 n 条线段,有_______ n _______ 个三角形,n边形的 内角和是_________________
证明: 180°×(n—1)—180° = 180°×(n—2)
活动五:针对训练
1080° (1)一个八边形的内角和为______________
四年级下册数学多边形的内角和
四年级下册数学多边形的内角和一、多边形内角和的概念。
1. 三角形内角和。
- 三角形的内角和是180°。
这是一个基本的数学事实,可以通过多种方法来证明,比如剪拼法,将三角形的三个角剪下来,然后拼在一起,可以发现正好拼成一个平角,也就是180°。
- 还可以通过测量不同三角形的三个内角,然后将它们相加,会发现结果接近180°(由于测量误差)。
2. 多边形内角和定义。
- 对于多边形来说,其内角和就是多边形内部所有角的度数之和。
二、多边形内角和的计算方法(人教版)1. 从三角形推导多边形内角和公式。
- 四边形:可以将四边形分割成两个三角形。
因为一个三角形内角和是180°,那么四边形内角和就是2×180° = 360°。
- 五边形:可以将五边形分割成三个三角形。
所以五边形内角和就是3×180°=540°。
- 六边形:可分割成四个三角形,内角和为4×180° = 720°。
2. 多边形内角和公式。
- 一般地,n边形从一个顶点出发可以引出(n - 3)条对角线,把n边形分成(n - 2)个三角形。
所以n边形内角和公式为:(n - 2)×180°(n≥3且n为整数)。
三、多边形内角和公式的应用示例。
1. 已知边数求内角和。
- 例:求八边形的内角和。
- 解:根据公式(n - 2)×180°,这里n = 8,所以内角和=(8 - 2)×180°=6×180° = 1080°。
2. 已知内角和求边数。
- 例:一个多边形内角和是1440°,求这个多边形是几边形?- 解:设这个多边形是n边形,根据内角和公式(n - 2)×180°=1440°,则n - 2=1440°÷180°,n - 2 = 8,n = 10。
《多边形的内角和》名师教案(人教版八年级上册数学)
第十一章三角形11.3.2 多边形的内角和〔王中炜〕一、教学目的〔一〕学习目的1.能将多边形转化成三角形,探究多边形的内角和公式.体会转化思想,培养逻辑推理才能.并会应用公式进展相关计算.2.探究多边形外角和,并会应用它进展有关计算.〔二〕学习重点多边形的内角和公式与多边形的外角和.〔三〕学习难点多边形内角和公式的探究与证明过程.二、教学设计〔一〕课前设计1.预习任务〔1〕三角形有三个内角,三个外角,同一顶点处的内、外角两角之和为180°.三角形的内角和等于180°.〔2〕长方形内角和为360°,正方形内角和为360°,用量角器量任意四边形的四个内角的度数之和为360°.〔3〕n边形的内角和等于 (n-2)×180°.〔4〕n边形外角和等于360°.2.预习自测〔1〕十边形的内角和为().A.1260°B.1440°C.1620°D.1800°【知识点】多边形内角和公式【解题过程】180°×(10-2)=1440°【答案】B〔2〕四边形的外角和是〔〕A.90°B.180°C.270°D.360°【知识点】多边形外角和为360°【思路点拨】学生通过预习得出四边形外角和为360°【答案】B〔3〕一个多边形的内角和为720°,那么这个多边形的对角线共有().A.6条B.9条C.8条D.7条【知识点】多边形内角和公式和多边形对角线条数公式【解题过程】一个多边形的内角和为720°,即180°×(n-2)=720°,解得n=6,所以该多边形是六边形,六边形有6×(6-3)2=9条对角线.【答案】B〔4〕一个多边形的边数增加1,它的内角和增加().A.90°B.120°C.180°D.360°【知识点】多边形内角和公式【解题过程】{180°×[(n+1)-2]}-{180°×(n-2)}=180°【答案】C(二)课堂设计1.知识回忆〔1〕一个n 边形从一个顶点可以引(n-3) 条对角线,把n边形分成(n-2) 个三角形.一个n边形一共有n(n-3)2条对角线.〔2〕各个角都相等,各条边都相等的多边形叫做正多边形.〔3〕三角形内角和为180°,长方形和正方形内角和为360°.【设计意图】直接提出问题,唤醒学生已有的知识,把学生引到本节课思维的最近开展区,为新课学习提供知识铺垫.2.问题探究探究一多边形内角和公式●活动①从一个顶点连对角线,将多边形转化成三角形,从而推导出多边形内角和公式.师问:同学们,前面我们已经证明了三角形的内角和为180°,在小学我们用量角器量过四边形的内角度数,知道四边形的内角和为360°.如今你能利用三角形的内角和定理证明任意四边形的内角和为360°吗?老师引导学生添加辅助线,将多边形转化成三角形.学生小组交流,动手理论,完成以下填空题.如图,从四边形的一个顶点出发可以引条对角线,它们将四边形分成个三角形,四边形的内角和等于.【解题过程】可以引一条对角线;它将四边形分成两个三角形;因此,四边形的内角和=△ABD的内角和+△BDC的内角和=2×180°=360°.【答案】1;2;360°类似地,你能知道五边形、六边形……n边形的内角和是多少度吗?观察下面的图形,填空:从五边形一个顶点出发可以引2对角线,它们将五边形分成3三角形,五边形的内角和等于540°;从六边形一个顶点出发可以引3对角线,它们将六边形分成4三角形,六边形的内角和等于720°;从n边形一个顶点出发.,可以引〔n-3〕对角线,它们将n边形分成〔n-2〕三角形,n边形的内角和等于〔n-2〕×180°.让学生通过合作探究的方式完成以上填空题,让学生通过图形的观察和对数据的分析,类比归纳出多边形的内角和计算公式.总结板书:n边形的内角和等于(n-2)·180°〔n≥3〕.【设计意图】引导学生通过连对角线将多边形转化成三角形,从而得出多边形内角和公式,让学生感受转化思想对新知生成的重要性.同时掌握多边形内角和与三角形内角和的内在联络.●活动②多边形内角和公式的其它证明方法从上面的讨论我们知道,求n边形的内角和可以将n边形分成假设干个三角形来求.如今以五边形为例,你还有其它的分法吗?分法一如图1,在五边形ABCDE内任取一点O,连结OA、OB、OC、OD、OE,那么得五个三角形.∴五边形的内角和为5×180°-2×180°=(5-2)×180°=540°.分法二如图2,在边AB上取一点O,连OE、OD、OC,那么可以得到(5-1)个三角形.∴五边形的内角和为〔5-1〕×180°-180°=〔5-2〕×180°.假如把五边形换成n边形,用同样的方法可以得到n边形内角和=(n-2)×180°. 【设计意图】这节课通过研究发现由多边形的一个顶点引对角线后原多边形被分成(n-2 )三角形,由此可得多边形的内角和公式为:(n-2 )180,这里充分表达由特殊到一般的推理特点;假如在多边形内任取一点与各个顶点相连得到n个三角形,但是这里多算了一个周角,因此可得到公式为:180n-360;假如在多边形的边上取一点与各个顶点相连得到n-1个三角形,但是这里多算了一个平角,因此可得到公式为:180〔n-1〕-180,化简后都可统一成(n-2 )180.让学生感受多种方法将多边形进展分割,根本思路都是将多边形转化成三角形.从而得出多边形内角和公式的不同证明方法,培养学生的逻辑推理才能.活动③例1 假如一个四边形的一组对角互补,那么另一组对角有什么关系?如图,四边形ABCD中,∠A+∠C=180°,求∠B与∠D的关系.【知识点】多边形内角和公式【解题过程】解:∵∠A+∠B+∠C+∠D=(4-2)×180°=360°,∠A+∠C=180°,∴∠B+∠D=360°-(∠A+∠C)=180°.【答案】假如四边形一组对角互补,那么另一组对角也互补.例1 变式假如一个四边形的一组邻角互补,那么另一组邻角有什么关系?【设计意图】通过这些例题和练习的设计,目的就是让学生尝试学以致用,进步学生运用新知解决问题的才能.探究二多边形外角和活动①小王家有一个六边形的花坛,小王绕花坛各顶点走了一圈,回到起点A,并面对他出发时的方向,问他的身体旋转了多少度?师问:如图,小王在6个顶点处旋转产生的∠1,∠2,∠3,∠4,∠5,∠6分别为六边形ABCDEF的什么角?∠1+∠2+∠3+∠4+∠5+∠6的值是多少?在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和,即六边形外角和等于多少度?学生考虑作答,老师作适当点拨.【设计意图】类比三角形内外角之间的关系,引导学生观察出六边形的一个外角同与它相邻的内角互补的关系.用六个平角减去六边形内角和即可得到六边形外角和.【解题过程】解:∵∠1+∠BAF=180°,∠2+∠ABC=180°,∠3+∠BCD=180°,∠4+∠CDE=180°,∠5+∠DEF=180°,∠6+∠EFA=180°,∴∠1+∠BAF+∠2+∠ABC+∠3+∠BCD+∠4+∠CDE+∠5+∠DE F+∠6+∠EFA= 6×180°.又∵∠BAF+∠ABC+∠BCD+∠CDE+∠DEF+∠EFA=4×180°,∴∠1+∠2+∠3+∠4+∠5+∠6=6×180°-4×180°=360°.从而得出六边形的外角和为360°.●活动②n边形外角和.老师引导学生利用问题1中六边形外角和等于360°的活动经历,通过观察、猜测、考虑,类比推理得出结论:n边形外角和等于n个平角减去n边形内角和.老师板书:n边形的外角和等于360°.并强调n边形的外角和是一个定值,与边数无关.●活动③例2 一个正多边形,一个内角与所有外角之和为480°,求这个内角的度数及多边形的边数.【知识点】多边形内角和公式与外角和【数学思想】数学计算【解题过程】解∵一个内角与所有外角之和为480°,多边形外角和为360°∴480°-360°=120°∵正多边形的每个内角都相等∴(n-2)×180°=120° n解得n = 6答:这个内角为120°,该多边形的边数为6.【思路点拨】因为正多边形的每个内角都相等,每个外角就相等.此题先用480°减去外角和360°得到一个内角为120°.再根据内角和公式建立方程,〔n-2〕×180=120 n,解得n = 6.【答案】120°,n = 6.【设计意图】通过此题的训练,让学生学会用多边形内角和公式及外角和进展相应计算,进步对公式的理解,同时感悟到内角和与外角和之间的联络.增强学生利用新知解决实际问题的信心与才能.3. 课堂总结⑴知识梳理〔1〕n边形的内角和等于(n一2)·180°〔n≥3〕〔2〕n边形的外角和等于360°重难点打破〔1〕通过将多边形转化成三角形的方法,用三角形内角和知识推导出多边形内角和公式与多边形的外角和.体会转化思想在新知推导过程中的重要作用.从而降低门槛,打破重难点.〔2〕强调内角和与外角和的联络.在正多边形的前提下,可用内角求外角,从而得到多边形的边数.〔三〕课后作业根底型自主打破1.五边形的内角和等于______度.【知识点】多边形内角和等于(n一2) ×180°【解题过程】解:(5一2) ×180°=540°【思路点拨】将n=5代入公式【答案】5402.假如一个多边形的内角和等于900°,那么这个多边形是_____边形.【知识点】多边形内角和等于(n一2) ×180°【解题过程】解:(n一2) ×180°=900°解得:n =7【思路点拨】根据多边形内角和公式建立方程【答案】七3.正十五边形的每一个内角等于_______度.【知识点】多边形内角和等于(n−2) ×180°,多边形外角和等于360°【解题过程】解法一:〔15-2〕×180°÷15=156°解法二:180°-〔360°÷15〕=156°【思路点拨】解法一是根据多边形内角和公式求出内角和,再除以边数得出一个内角的度数;解法二是用外角和360°除以边数得出一个外角的度数,再根据同一顶点处的一个内角与一个外角互补的关系,用180°减去一个外角得出一个内角的度数.强调:以上做法前提是正多边形.【答案】1564.一个正多边形的每个外角都等于30°,那么这个多边形边数是______.【知识点】多边形外角和等于360°【解题过程】360°÷30°=12【思路点拨】只有正多边形的每个内角相等,所以每个外角就相等.才可以用外角和来除以一个外角的度数得到边数.不是正多边形此方法不可用.【答案】125.一个正多边形的每个内角都等于144°,那么这个多边形边数是______.【知识点】多边形内角和等于(n-2) ×180°【解题过程】解:(n-2) ×180°=144°n ,n=10【思路点拨】根据多边形内角和公式建立方程.【答案】106.从一个多边形的一个顶点出发,一共做了10条对角线,那么这个多边形的内角和为_____度.【知识点】多边形一个顶点可引(n一3)条对角线,多边形内角和等于(n−2) ×180 【解题过程】解:∵n-3=10 ∴n=13∴(13-2) ×180°=1980°【思路点拨】先用对角线公式求出边数,再将边数代入内角和公式得出答案.【答案】1980才能型师生共研7.在多边形的内角中,锐角的个数不能多于_____个.【知识点】多边形内角和与多边形外角和【解题过程】解:因为多边形的外角和为360°,假如外角中有4个钝角,其和就会超出360°.所以外角中最多有3个钝角,从而得出内角中最多有3个锐角.【思路点拨】充分利用同一顶点的两个内、外角互补的关系,通过分析外角中钝角的个数倒推内角中锐角的个数.【答案】38.n边形的边数增加一倍.,它的内角和增加( )A.180°B. 180°nC.(n-2) ×180°D. 360°【知识点】多边形内角和【解题过程】(2n−2) ×180°− (n−2) ×180°=360°n−360°−180°n+360°=180°n【思路点拨】利用多边形内角和公式列式计算【答案】B探究型多维打破9. 多边形的内角和与某一个外角的度数总和为1350°,求多边形的边数和该外角的度数.【知识点】多边形内角和与多边形外角和【解题过程】解:设多边形的边数为n,这个外角为x,那么0°<x<180°,依题意有:(n-2) ×180°+x =1350°∴n=1350180x+2=9+90 180x∵n为正整数,∴90-x必为180的倍数.又∵0°<x<180°.,∴90°-x = 0.,x = 90°.∴n = 9【思路点拨】多边形的内角和是180的倍数,将1350除以180商7余90,边数为7+2=9,余数90就是那一个外角的度数.【答案】多边形的边数是9,该外角是90度.10.一个多边形截去一个角后,形成的多边形的内角和是2520°,那么原多边形的边数是多少?A. 16B. 14C.15,16或17.D. 14或15【知识点】多边形的内角和【解题过程】解:设新多边形的边数为n,那么〔n-2〕×180°=2520°,解得n=16,①假设截去一个角后边数增加1,那么原多边形边数为15,②假设截去一个角后边数不变,那么原多边形边数为16,③假设截去一个角后边数减少1,那么原多边形边数为17,所以多边形的边数可以为15,16或17.【思路点拨】∠A被截去.如图1,当直线L与AB、AE边交于M、N两点时,新多边形的边数比原多边形的边数增加1.如图2,当直线L与AB边交于M,同时过E点,新多边形的边数与原多边形的边数一样;如图3,当直线L过B、E点时,新多边形的边数比原多边形的边数少1;图3所以将原多边形的边数求出,再加1或减1就可以得出三种情况的答案.培养学生严密的逻辑推理才能.【答案】C自助餐:1.以下角度中,不能成为多边形内角和的是( )A. 900°B.720°C. 600°D.1080°【知识点】多边形的内角和【思路点拨】根据多边形内角和为〔n-2〕×180°可得多边形内角和是180的倍数. 【答案】C2.一个多边形的内角和是它的外角和的4倍,这个多边形是〔〕A.四边形B.十边形C.六边形D.八边形【知识点】多边形内角和与多边形外角和【解题过程】解:〔n-2〕×180°=360°×4,∴n-2=8,∴n=10【思路点拨】内角和是间接通过外角和的4倍告知的,用内角和公式建立方程即可.【答案】B3.一个正多边形的每个内角都比与它相邻的外角的3倍还多20°,那么此正多边形是正______边形.【知识点】多边形内角和与多边形外角和【解题过程】解:设每个外角的度数为x,那么与它相邻的内角的度数为〔3x+20〕.根据题意,得x+〔3x+20〕=180°4x=160°x=40°360°÷ 40=9【思路点拨】根据同一顶点处的两个内、外角互补的关系建立方程,求出一个外角的度数.再用外角和360除以40得到边数.【答案】九4.一个多边形的最大外角为85°,其他外角依次减少10°,那么此多边形是______边形.【知识点】多边形外角和【解题过程】解:由题意可得∵85°+75°+65°+55°+45°+35°=360°∴该多边形为六边形【思路点拨】从85倒推下去得出相应的其它外角,当它们的和刚好是360时,有多少个加数就有多少条边【答案】六5.假如多边形恰有四个内角是钝角,那么多边形的边数共有几种可能?其中最多是几边形?最少是几边形?【知识点】多边形内角和与多边形外角和第 11 页 【解题过程】因为多边形的外角和为360度.,所以最多只能有3个内角是锐角.加之的四个内角,最多有7个内角,即最多是七边形;反之四个内角是钝角,其与之互补的4个外角为锐角,其和必然小于360,所以最少还应有1个内角.所以最少是五边形.【思路点拨】任何一个多边形最多有3个内角是锐角.【答案】所以多边形的边数有3种可能.最多是七边形,最少是五边形.6.如图,求∠1+∠2+∠3+∠4+∠5+∠6+∠7的值.【知识点】多边形内角和【解题过程】解:如图,连接CF .∵∠COF=∠DOE∴∠1+∠2=∠OCF+∠OFC∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠OCF+∠OFC+∠3+∠4+∠5+∠6+∠7=〔5-2〕×180°=540° 【思路点拨】解题关键是把该图形与凸多边形联络起来,从而利用多边形内角和定理来解决,因此可考虑连接辅助线.【答案】540° OGEDCB A。
《多边形的内角和》PPT教学课文课件
4. 如图,求∠1+∠2+∠3+∠4+∠5+∠6+∠7 的度数.
8 9
5.一个同学在进行多边形的内角和计算时,求得内
角和为 1125°,当他发现错了以后,重新检查,发
现少算了一个内角,问这个内角是多少度?他求的
是几边形的内角和?
6.已知一个多边形的每个内角与相邻外角的比都是
7∶2,求这个多边形的边数.
名称
图形
从多边形的一顶点 分割出的三
多边形内角和
引出的对角线条数 角形个数
三角形
0
1
1×180°=180°
四边形
1
2
2×180°=360°
五边形
2
3
3×180°=540°
六边形
3
4
4×180°=720°
···
···
···
n-3
n-2
( n - 2 )·180°
···
n 边形
总结
多边形的内角和公式
人教版数学八年级上册
第十一章 三角形
多边形的内角和
教学目标
1.
1. 能通过不同方法探索多边形的内角和与外角和公式;
(重点)
2. 学会运用多边形的内角和与外角和公式解决问题.
(难点)
1.三角形的内角和是多少?
180°
2.四边形的内角和是多少?
360
°
3.你能证明它吗?
他们的概念是什么?
又该如何去做呢?
和∠BAD的邻补角,且∠B+∠ADC=140°,则∠1+
∠2等于(
).
A
A.140°
B.40°
C.260°
D.不能确定
3. 如图所示,小华从点 A 出发,沿直线前进 10 米后左转 24°,
5_3_2《多边形的内角和》备课方案-人教版四年级下册
第2课时多边形的内角和备教材内容1.本课时学习的是教材68页的内容及相关习题。
2.例7通过两个问题激发学生的探究欲望:一是四边形可以分成几种图形?二是这些四边形的内角和是不是一样的呢?在分析与操作中,遵循了由特殊到一般的探究过程;在用多种方法验证的过程中,让学生体会了三角形与四边形的内在联系,使学生认识到任何一个四边形都可以分割成两个三角形,从而得出:四边形的内角和是360°;在回顾与反思中,让学生进一步感受到得出的结论具有普遍性;在做一做中,明确了三角形与多边形的联系。
3.本课时是在学生已经认识了四边形,了解了四边形的种类,学习了长方形、正方形、平行四边形和梯形的有关特征的基础上学习的,为以后学习图形面积的计算奠定基础。
备已学知识1.四边形是由四条线段首尾相连组成的封闭图形。
常见的四边形有正方形、长方形、梯形、平行四边形等。
正方形和长方形的四个角都是直角。
2.三角形的内角和是180°。
备教学目标知识与技能1.明确四边形的内角和是360°。
2.经历四边形内角和的推导过程。
过程与方法1.通过剪一剪、拼一拼、分一分等活动,进一步发展空间观念,体会转化的数学思想,培养动手、动脑的能力。
2.在探究多边形内角和的过程中,体会推理思想的魅力,培养解决问题的方法与能力。
3.尝试从不同角度寻求探究问题的方法并能有效地解决问题,训练发散性思维和培养创新精神。
情感、态度与价值观1.经历四边形内角和的探究过程,感受数学的神奇和奥妙,增强学好数学的信心。
2.实例引入,体验数学来源于生活,又服务于生活,培养学数学的兴趣和应用数学的意识。
备重点难点重点:经历探究、发现和验证“四边形的内角和是360°”这一规律的过程。
难点:探索多边形的内角和时,如何把多边形转化成三角形。
备知识讲解知识点多边形的内角和问题导入四边形的内角和是多少度?(教材68页例7)过程讲解1.提出猜想三角形的内角和是180°,四边形的内角和也是一个固定的值吗?是否所有四边形的内角和都相等呢?2.分类验证(1)特殊四边形的内角和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
D
齐心协力 想办法
B C A
探究求四边形的内角和有哪些方法?
D
B
C A
B C A ● O
B
B
o
D
C
● O A
A
D
D
● O
D
4×180° - 360°3×180°- 180° 4×180° - 360° 3×180° - 180° =360° =360° =360° =360°
共同点:找一个点,将四边形转化为三角形。
B C
D
A
E F
从六边形的一个顶点出发,可以引 3 条对 角线,它们将六边形分为 4 个三角形,则 六边形的内角和等于 180 °× 4 = 720°
问题4、探索多边形内角和的问题: 观察下表,你有什么发现? 多边形 边数 三角形 3 四边形 4 五边形 5 六边形 6 七边形 7
分成三角 形的个数
图形
计算规律 1 ×180°
内角和
1 2
3 4 5
… …
2 ×180°
3 ×180° 4 ×180° 5 ×180° … (n-2) · 180°
180° 360° 540° 720° 900°
…
(n-2) · 180°
…
n边形
…
n
n-2
归纳总结 通过探究我们得到多边形的内角和公式
n边形的内角和等于 (n-2) · 180°
2、下列哪一个度数可成为某个多边形的内角 和的是( ) A.240 ° B. 600 ° C. 1980 ° D. 1980 °
3、把一个多边形分成几个三角形,还有其他 分法吗?有新的方法,能得出多边形内角和 公式吗?
学习寄语
• 在合作中学习,在学习中合作; • 在竞争中协作,在协作中竞争。
再见
本节课收获
• 1、多边形内角和公式 n边形的内角和等于 (n-2) · 180° • 2、运用多边形内角和公式解决相关实际问 题。
3、我们学会了许多解决数学问题的思想方法, 如将多边形问题转化为三角形问题,以及类比 方法,由特殊到一般,化未知为已知的思想方 法等。
1、必做题:课本P85第4、5题.
人教版七年级下册数学
周口市第七初级中学
魏洪旭
探究在 线
问题1: 我们知道,三角形的内角和等于180°, 正方形、长方形的内角和都等于360°。 那么,任意一个四边形的内角和是否也 等于 360° 呢?
猜一猜:
请同学们任意画一个四边形,你能得 出四边形ABCD的内角和是多少吗? 同学间交流,你是怎样得到的?
解:设这个多边形是n边形,根据题意得: (n-2) ·180°= 900°解得: n=7
所以这个多边形是七边形。
1800 1、十二边形的内角和等于___度. 2、如果一个多边形的边数增加1.则 它的内角和将( B ) A.增加90° B.增加180° C.增加360° D.不变 3、今年是2012年,你能设计一个内角 和是2012°的多边形吗?请说出理由 。
探究 在线
问题2、你能用类比计算四边形内角和的 方法,计算出五边形的内角和是多少吗?
A
E
B
C D
从五边形的一个顶点出发,可以引 2 条对 角线,它们将五边形分为 3 个三角形,则 五边形的内角和等于 180 °× 3 = 540°
探究 在线
问题3、请你根据探索的四边形、五边形的内角 和的求法,计算出六边形的内角和是多少吗?
思考: 公式中的n代表什么?n-2表示什么?
学以致用
例1、 八边形的内角和等于多少度? 十 边形呢?
解:(8-2) × 180°= 1080° (10-2) × 180°= 1440° 答:八边形的内角和等于1080°,十边形的内 角和等于1440 ° 例2、一个多边形的内角和是900°,则
这个多边形是几边形?