六年级数学圆柱与圆锥练习题ppt课件
六年级数学下册课本习题课件-第4单元 圆柱和圆锥-冀教版
2.一个圆柱形柴油桶,它的内直径是4分米,高是6分 米。已知每升柴油重0.85千克,这个油桶大约能装多 少千克柴油?(得数保留两位小数)
3.14×(4÷2)2×6=75.36(立方分米)
75.36立方分米=75.36升 0.85×75.36=64.056≈64.05(千克)
(2)已知每立方厘米的铁重7.8克,这个机器零件重
多少千克?
229.68×7.8=1791.504(克)
1791.504克=1.791504千克
第4单元·P42试一试
计算右面圆锥的体积。
3.14×( 4 )2×6× 1 =25.12(cm3)
2
3
第4单元·P44练一练
1.一囤小麦,上面是圆锥形,下面是圆柱形。已知 每立方米小麦约重735千克,这囤小麦约重多少千 克?(得数保留整千克)
1
3.14×(3÷2)2×0.6× 3 =1.413(m3) 3.14×(3÷2)2×2=14.13(m3)
735×(1.413+14.13)=11424.105≈11424(千克)
2.一个近似圆锥形的煤堆,底面周长是15.7米,高 是2.4米。这堆煤约有多少吨?(得数保留整吨)
3.14×(15.7÷3.14÷2)2×2.4× 1 ×1.4=21.98≈22(吨)
3.14×52×3.3× 3 =86.35(立方厘米)
(3)底面直径是6分米,高是6分米。
1
6
3 ×3.14×( 2 )2×6=56.52(立方分米)
4.右图是一个铁质机器零件的示意图。(单位:厘米)
(1)求这个机器零件的体积。
苏教版小学数学六年级下学期精品课件-《圆柱和圆锥》(练习讲评3个课时)
圆柱转化过程
用字母V表示圆柱的体积,S表示圆柱的底面积,h 表示圆柱的高,圆柱的体积公式就可以写成 ( V=Sh )。(补充练习p12 2)
V=πr2h
4、一根木料如下图,求这根木料的体积。(单位:m) (补充习题p12 3)
V=πr2h =π×(0.2÷2)2×3 =0.03π(立方米)
答:这根木料的体积是0.03π立方米。
7、一座圆锥形的帐篷,底面周长是18.84米,高2.7米。(补充习题 p17 6)
(1)帐篷的占地面积是多少平方米?
半径:18.84÷3.14÷2 =3(米)
S底=πr2 =π×32 =9π(平方米)
答:占地面积是9π平方米。
(2)帐篷内的空间是多少立方米?
V=
1 3
Sh
=
1 3
×9π×2.7
圆锥形帐篷
S底=πr2
=π×(2÷2)2
√
=π(平方厘米)
S表=6π+π×2=8π(平方厘米)
7、一台压路机的前轮是圆柱形,轮宽2米,直径1.2米。前轮转动 一周,压路的面积是多少平方米?(补充习题第9页 第5题)
S侧=πdh =π×1.2×2 =2.4π(平方米)
答:前轮转动一周,压路的面积是2.4π平方米。
600π×1=600π(吨)
答:蓄水池最多能蓄水600π吨。
6、填空。(补充习题p16 1)
(1)一个圆柱和一个圆锥底面积相等,高也相等。圆柱的体积是15立方厘米,圆锥的 体积是( 5 )立方厘米。如果圆锥的体积是15立方厘米,圆柱的体积是( 45 ) 立方厘米。
(2)等底等高的圆锥和圆柱,它们的体积比是( 1:3 )。 注意前项和后项的顺序
二、选择。
1、等底等高的圆柱、正方体、长方体的体积相比较,( )。
六年级下册数学课件-第3单元 圆柱与圆锥 丨人教新课标 (共88张PPT)
5. 时代广场有一个圆柱形喷水池,底面直径是4 m, 深0.8 m。如果要在喷水池的底面和内壁贴上瓷砖,那 么贴瓷砖的面积是多少平方米?
3.14×(4÷2)2+3.14×4×0.8 =22.608 (m2) 答:贴瓷砖的面积是22.608 m2。
能力提升扩展 6. 如图,一张正方形纸卷成一个圆柱,求这个圆柱的 高与底面直径的比。
2. 选一选。(把正确答案的字母代号填在括号里)
(1)圆柱的底面半径是2.5 cm,高是3 cm,沿高展开
得到的长方形的长是( A )cm,宽是( D )cm。
A. 15.7
B. 5
C.18.84
D. 3
(2)下图以直线(虚线)为轴快速旋转一周,能形成
圆柱的是
( A )。
3. 辨一辨。(对的在后面的括号里画“√”,错的画
6 dm=0.6 m 3.14×(0.6÷2)2×2+3.14×0.6×1.2≈3 (m2) 答:做这个油桶至少需要3 m2的铁皮。
能力提升扩展
6. 把一个实心大圆柱切成3个同样大小的小圆柱,3个 小圆柱的表面积之和比大圆柱的表面积多了3.6 dm2。 大圆柱的底面积是多少?
3.6÷[(3-1)×2]=0.9 (dm2) 答:大圆柱的底面积是0.9 dm2。
它们的体积也相等。
(√)
4. 一根圆柱形塑料棒,底面积为75 cm2,长110 cm。 它的体积是多少?
75×110=8250 (cm3) 答:它的体积是8250 cm3。 5. 一个圆柱的体积是120 m3,底面积是12 m2。它的高 是多少? 120÷12=10 (m)
答:它的高是10 m。
能力提升扩展
7 圆柱的体积(2)
基础巩固
六年级数学下册试题 第二单元《圆柱和圆锥》一课一练-苏教版-无答案
苏教版六年级数学下册第二单元《圆柱和圆锥》一课一练第一课时《圆柱和圆锥的认识》一、下面的图形中,哪些是圆柱,哪些是圆锥?是圆柱的在括号里打“√”,是圆锥的在括号里打“×”。
二、把第一行的图形沿虚线旋转一周后会得到哪一个图形?连-连。
三、填空1.圆柱的上、下两个面叫作(),它们是完全相同的两个()。
围成圆柱的曲面叫做()。
2.圆柱的两个底面之间的距离叫作圆柱的(),圆柱有()条高。
3.从圆锥的顶点到()的距离叫作圆锥的高。
圆锥有()条高。
4.当圆柱的底面周长和高相等时,把它的侧面展开后会得到()形。
5.将一个圆柱沿着它底面直径平均切成两半,所得截面是一个( )形或()。
将一个圆锥沿着它的高平均切成两半,截面是一个( )形。
6.用一张长20厘米,宽15厘米的长方形纸,可以卷()种纸筒。
当它们的底面周长是20厘米时,高是()厘米。
四、判断1.圆柱的侧面展开后不一定是长方形。
( )2.一个物体上、下两个面是相等的圆面,那么它一定是圆柱形物体。
( )3.把两张形状、大小完全一样的长方形纸分别卷成两个形状不同的圆筒(接头处不重叠),并装上两个底面,制成圆柱。
那么这两个圆柱的底面积、高一定相等。
()五、解决问题1.小圆给妈妈买了一盒生日蛋糕(如图),捆扎这个蛋糕盒所用的彩带至少有多长?(打结处大约用25厘米)第二课时《圆柱的侧面积》一、填空1.圆柱的侧面展开后得到的是长方形,长是圆柱的(),宽是圆柱的( )。
2.一个圆柱的侧面展开图是一个正方形,这个圆柱的底面直径与高的比是( )。
3.一个圆柱的底面半径是5cm,高是10cm,它的侧面积是( )cm²4.一个圆柱体,底面周长是94.2厘米,高是25厘米,它的侧面积是()平方厘米。
5.把一根直径是20 厘米,长是2 米的圆柱形木材据成同样的3段,表面积增加了( )平方厘米。
6.一个圆柱体的侧面积是125.6平方厘米,底面半径是2分米,它的高是( )厘米.7.一个圆柱,它的高增加1厘米,它的侧面积就增加50.24平方厘米,这个圆柱的底面半径是( )厘米。
冀教版六年级数学下册 第4单元 圆柱和圆锥 讲义+练习(含答案)
1 圆柱和圆柱的侧面积1.一个长20厘米,宽4厘米的长方形面积为( )。
2.找找生活中哪些物体的形状是圆柱。
3.阅读教材第28页例题。
议一议:怎样计算罐头盒的侧面积?分析与解答:罐头盒是一个( ),沿着它的一条高将它的侧面剪开,可得到一个( ),因此,计算这个罐头盒的侧面积,即计算这个( )的面积。
其中,( )等于罐头盒的底面周长,( )等于罐头盒的高,所以,罐头盒的侧面积=( )。
4.(1)圆柱有( )个相同的底面,底面是( ),圆柱的上、下两个面之间的距离叫圆柱的( )。
(2)圆柱的侧面是一个( )面。
侧面展开是一个( )形。
这个( )形的长等于圆柱的( ),宽等于圆柱的( )。
5.圆柱的侧面积=( )×( )6.判断。
(对的画“ ”,错的画“✕”)(1)圆柱的侧面展开后一定是长方形。
( )(2)如果一个物体上、下两个面是面积相等的两个圆,那么它的形状一定是圆柱。
( )(3)圆柱的高有无数条。
( )7.把一个圆柱的侧面展开得到一个正方形,这个圆柱的底面半径是3分米,圆柱的侧面积是多少平方分米?(得数保留整数)知识准备:圆的面积、长方形的面积。
学具准备:罐头盒。
巩固练习1.下面哪些物体是圆柱?在下面的括号里画“√”。
2.填空题。
(1)把一个棱长6厘米的正方体削成一个最大的圆柱,圆柱的底面直径是( )厘米,高是( )厘米。
(2)一个圆柱的底面直径是3厘米,高也是3厘米,侧面展开的长方形的长是( )厘米,宽是( )厘米。
(3)一个圆柱的底面周长是16分米,高是8分米,侧面积是( )平方分米。
(4)一个圆柱的底面直径是10厘米,高是8厘米,侧面积是( )平方厘米。
(5)一个圆柱的底面半径是0.3米,高是0.5米,侧面积是( )平方米。
3.判断题。
(对的画“√”,错的画“✕”)(1)圆柱的高只有一条。
( )(2)圆柱两个底面的直径相等。
( )(3)圆柱的底面周长和高相等时,展开后的侧面一定是个正方形。
苏教版六年级下册数学《圆柱的体积》圆柱和圆锥PPT(第3课时)
教学新知
例二:计算圆柱的表面积。(单位:cm)(π取3.14)
S=2π×0.8+2π≈11.304 S=2π×0.5×3.5+2π×0.5²≈12.56
教学新知
例三:一个圆柱形油桶,底面直径是0.6米,高是1米。做这个油桶至少 需要铁皮多少平方米?(得数保留两位小数)
S=2π×0.3×1+2π×0.3²≈2.45(㎡)
能想到一些什么? (2)全部浸入,水面上升9厘米,你又能想到什么?怎样
计算出这个圆钢的体积? (3)这题还可以怎样思考?
教学新知
例一:一个圆柱形水桶的容积是80立方分米,里面装了2/5的水。 已知它的底面积是10平方分米,里面水的深度是多少?
【讲解】根据“水桶的容积是80立方分米”和“里 面装了 2/5的水”这两个条件,我们可以求出水桶 内水的体积,然后用水的体积除以水桶底面积得出 水桶内水的深度。 80× =32(立方分米)……水桶内水的体积 32÷10=3.2(分米)……水桶平均剖成两片,其中一片如图所示。(单位:厘米) (1)剖面面积是多少平方厘米? (2)这片木料的表面积和体积各是多少?
(1)S1=20×12=240(cm²) (2)S2=πrh+πr²+S1=3.14×6×20+3.14×6²+240=792.84(cm²)
V=1/2S3h=1/2×3.14×6²×20=1130.4(cm³)
课后习题
7.把一根长2.4米的圆柱形状的木料锯成4段,表面积增加了 0.18平方米。
这根木料原来的体积是多少立方米?
S=0.18÷6=0.03(m²)
V=sh=0.03×2.4=0.072(m³)
8.一个圆柱高4厘米,底面半径是2厘米。如果将它的底面平均分成若干份,
部编版六年级数学下册第三单元《圆锥》(复习课件)
得到的是圆锥。 (1)以6 cm长的边所在直线为轴旋转一周时, d=16 cm,h=6 cm。 (2)以8 cm长的边所在直线为轴旋转一周时, d=12 cm,h=8 cm。
8.用如图所示的扇形纸片和圆形纸片能否制作成一个圆 锥?请通过计算说明理由。
扇形圆弧的长:3.14×2×2×34=9.42(cm) 圆的周长:3.14×3=9.42(cm) 扇形圆弧的长和圆的周长相等,所以能制作成一个圆锥。
3 圆柱与圆锥
圆锥 整理复习
圆柱和圆锥的关系
当圆柱的上底面的面积等于0时,就变成了圆锥。
圆锥体积的推导
圆锥的体积等于与它等底 等高圆柱体积的三分之一。
圆锥的体积= 13× 底面积×高
Ⅴ 圆锥 =
13Ⅴ
圆柱=
1 Sh 3
填一填。
(1)一个圆柱的体积是75.36m³,与它等底等高的圆锥的体积 是(25.12)m³。
一定时间内,降落在水平地面上的水,在未经蒸发、渗漏、流失情况下, 所及的深度称为降水量(通常以毫米为单位)。测定降水量常用雨量器 和量筒。我国气象上规定按24小时的降水量为标准,降水级别如下表:
级别 降水量/mm
小雨 10以下
中雨
大雨
暴雨
大暴雨
10-24.9 25-49.9 50-99.9 100-199.9
知识点 2 运用圆锥的体积公式计算
2.计算下面各圆锥的体积。
(1) 13×36×5=60(cm3)
(2)
3.14×42×12×31=200.96(cm3)
(3)
3.14×(4÷2)2×5.4×13=22.608(cm3)
易错辨析
3.判断。(对的画“√”,错的画“×”) (1)圆柱的体积是圆锥体积的3倍。
2022春六年级数学下册一圆柱和圆锥复习课件北师大版
典型例题分析
分析:圆锥沿底面直径经过顶点切开后表面积比原来增加了两个三角形的面
积,这两个三角形的底是圆锥的底面直径,高是圆锥的高。先求出每个三角形的面
积,已知三角形的高是6cm,根据三角形的面积公式求出底,继而求出圆 锥的底面半径。
第三十页,编辑于星期六:三点 三十五分。
第十八页,编辑于星期六:三点 三十五分。
典型例题分析
解答:圆①的周长:3.14×4=12.56(cm) 圆②的周长:3.14×5=15.7(cm) 圆③的周长:3.14×6=18.84(cm)
比较:圆②的周长等于长方形的长。
答:选择圆②作底合适。
第十九页,编辑于星期六:三点 三十五分。
典型例题分析
2
2
(2)圆锥的体积
圆锥体积的计算公式为:圆锥的体积=底面积×高× =1 Sh1,因为S
=πr ,所以V=πr h。
2
2
33
第十二页,编辑于星期六:三点 三十五分。
复习驿站
(3)如何区分是求圆柱的体积、容积还是求表面积
求做圆柱形状的物体需要的材料、圆柱形状的墙壁抹水泥面积的多少,或贴墙需 要多少瓷砖等,这样的表述是求表面积。还有一个判定方法就是看所求问题的单位,所 求问题的单位是平方的,则求表面积;所求问题的单位是立方、升、毫升的,则求体积 。求圆柱能装下多少的问题,就是求容积,用体积公式。
2
3
答:这个粮囤大约能装稻3 谷7.95立方米。
第十五页,编辑于星期六:三点 三十五分。
复习驿站
8.圆锥、圆柱的体积关系
(1)等底(面积)等高时,圆锥的体积是圆柱体积的 ,1 即圆锥的体积=
圆柱的体积× 。1
苏教版六年级下册数学《圆柱的体积》圆柱和圆锥PPT(第2课时)
(2)l=4h+4d+15=4(20+30)+15=215cm
教学新知
练一练:一个用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个半径 2米的半圆形。
(1)搭建这个大棚大约要用多少 平方米的塑料薄膜?
(1)V=sh=4²π×3.5=175.84(m³) 175.84m³=175.84t (2)S=2πrh+πr²=2×3.14×4×3.5+3.14×4²=138.16(m²)
教学新知
试一试:一个圆柱形蛋糕盒,底面半径是15厘米,高是20厘米。 (1)做这个蛋糕盒大约要用硬纸板多少平方厘米? (2)用彩带捆扎这个蛋糕盒(如下图),至少需要彩带多少厘米?
18.84dm
2m
282.6cm² 157cm³
244.92dm² 282.6dm³
37.68m² 15.7m³
教学新知
算一算:一个圆柱形油桶,从里面量,底面直径是40厘米,高是50厘米。 (1)它的容积是多少升? (2)如果1升柴油重0.85千克,这个油桶可装柴油多少千克? (3)做这样一个油桶,至少需要铁皮多少平方分米?(得数保留一位
教学新知
思考: (1)把圆钢竖着拉出水面8厘米,水面下降了 4厘米,你
能想到一些什么? (2)全部浸入,水面上升9厘米,你又能想到什么?怎样
计算出这个圆钢的体积? (3)这题还可以怎样思考?
教学新知
例一:一个圆柱形水桶的容积是80立方分米,里面装了2/5的水。 已知它的底面积是10平方分米,里面水的深度是多少?
教学新知
苏教版六年级下册数学《圆柱和圆锥的认识》圆柱和圆锥PPT电子课件
r=C÷2π=62.8÷6.28=10(cm) V=sh=10²π×50=15700(cm³)
教学新知
例一:完成下面的表格。
底面积/m2
高/m
圆 柱
0.6
1.2
0.25
3
体积/m3 0.72 0.75
例二:一个圆柱形零件,底面半径5厘米,高8厘米。这个零件
教学新知
例五:一个圆柱形状的奶粉盒,体积是5024立方厘米,底面 半径是 10厘米。它的高是多少厘米?
【讲解】 底面积×高=圆柱体积, 圆柱的高=圆柱体积÷底面积。圆柱 底面半径为10厘米,则底面积为 102×3.14=314(平方厘米),则圆 柱的高为5024÷314=16(厘米)。
课堂练习
1.填空题。 (1)圆柱体通过切拼,可以转化成近似__长__方___体。圆柱的底
想一想:如果把圆柱的底面平均分成32份、64份……切开后拼成的物 体会有什么变化?
教学新知
想一想:拼成的长方体与原来的圆柱有什么关系?
根据上面的实验和讨论,想一想,可以怎样求圆柱的体积?
圆柱的体积=底面积×高
知识要点
如果用V表示圆柱的体积,S表示圆柱的底面积,
h表示圆柱的高,圆柱的体积公式可以写成:
V=sh=3²π×10=282.6(cm³) 282.6cm³=282.6ml
课后习题
7.—个圆柱形粮囤,从里面量,底面半径是2米,高是2.5米。如果每立 方米稻谷重550千克,这个粮囤大约可装多少吨稻谷?
V=sh=2²π×2.5=31.4(m³) z=31.4×550=17270(kg)=17.27(t)
8.学校有一个圆柱形喷水池,池内底面直径是8米,最多能盛水25.12立 方米。这个水池深是多少米?
人教版六年级数学下册第三单元《圆柱与圆锥》第一讲讲义-含解析(知识精讲+典型例题+同步练习+进门考)
人教版六年级数学下册第三单元《圆柱与圆锥上》知识点1圆柱的表面积猫小咪和猫小喵发现了一大瓶鱼罐头,他们在密谋着如何解决掉这瓶罐头。
提问鱼罐头的包装盒属于哪种立体图形?认识圆柱总结:1.圆柱的上下两个底面面积相等。
2.周围的面(除底面外)叫做侧面。
思考:将圆柱沿侧面展开后得到什么图形?思考1.圆柱的侧面积=底面周长×高。
S侧=2πrh。
2.圆柱的表面积=圆柱的侧面积+两个底面圆的面积。
S表=2πrh+2πr²思考:一个圆柱体底面半径是1厘米,高是5厘米,那么它的侧面积和表面积分别是多少?(π取3.14)步骤:圆柱的表面积分为几个部分?三部分:两个底面积和一个侧面积。
两个底面积是多少?S底=3.14×1²×2=6.28平方厘米。
侧面积是多少?侧面积=底面周长×高。
S侧=3.14×1×2×5=31.4平方厘米。
圆柱体的表面积是多少?6.28+31.4=37.68平方厘米。
思考:如果把圆柱横着切一刀,它的表面积有什么变化?总结:切一刀表面积增加两个圆的面积。
思考:把一根长1米的圆柱分成3段,表面积增加了48平方厘米,原来圆柱的表面积是多少平方厘米?(π取3)步骤:分成三段增加几个面?(3-1)×2=4个。
圆柱的底面半径是多少厘米?48÷4=12平方厘米。
12÷3=4 4=2×2。
所以半径是2厘米。
原来圆柱的表面积是多少?1米=100厘米2×3×2×100=1200平方厘米1200+12×2=1224平方厘米思考:把一张长方形铁皮按图剪开,正好能制成一个圆柱形水桶(有盖),那么这个水桶的表面积是多少平方厘米?(π取3.14,接头处忽略不计)步骤:水桶的表面积包含哪几部分?两个底面圆的面积和侧面积。
圆柱的底面周长等于右侧小长方形的长还是宽?等于小长方形的长。
人教版小学数学六年级《圆柱与圆锥》练习题(有答案)
圆柱与圆锥立体图形表面积体积h r圆柱222π2πS rh r =+=+圆柱侧面积个底面积 2πV r h =圆柱h r圆锥22ππ360nS l r =+=+圆锥侧面积底面积 注:l 是母线,即从顶点到底面圆上的线段长21π3V r h =圆锥体【基础练习】一、选一选。
(将正确答案的序号填在括号里) 1、下面物体中,( )的形状是圆柱。
A 、B 、C 、D 、2、一个圆锥的体积是36dm 3,它的底面积是18dm 2,它的高是( )dm 。
A 、23 B 、2 C 、6 D 、183、下面( )图形是圆柱的展开图。
(单位:cm )4、下面( )杯中的饮料最多。
5、一个圆锥有( )条高,一个圆柱有( )条高。
A 、一 B 、二 C 、三 D 、无数条6、如右图:这个杯子( )装下3000ml 牛奶。
A 、能B 、不能C 、无法判断二、判断对错。
()1、圆柱的体积一般比它的表面积大。
()2、底面积相等的两个圆锥,体积也相等。
()3、圆柱的体积等于和它等底等高的圆锥体积的3倍。
()4、“做圆柱形通风管需要多少铁皮”是求这个圆柱的侧面积。
()5、把圆锥的侧面展开,得到的是一个长方形。
三、想一想,连一连。
四、填一填。
1、2.8立方米=()立方分米6000毫升=()3060立方厘米=()立方分米5平方米40平方分米=()平方米2、一个圆柱的底面半径是5cm,高是10cm,它的底面积是()cm2,侧面积是()cm2,体积是()cm3。
3、用一张长分米,宽分米的长方形铁皮制成一个圆柱,这个圆柱的侧面积最多是()平方分米。
(接口处不计)4、一个圆锥和一个圆柱等底等高,圆锥的体积是76cm3,圆柱的体积是()cm3。
5、一个圆锥的底面直径和高都是6cm,它的体积是( )cm3。
五、求下面图形的体积。
(单位:厘米)六、解决问题。
1、⑴制作这个薯片筒的侧面标签,需要多大面积的纸?⑵这个薯片筒的体积是多少?2、在建筑工地上有一个近似于圆锥形状的沙堆,测得底面直径4米,高米。
六年级数学下册《圆柱和圆锥的认识》课件
使用定积分求出圆锥的体积公式,再代入底面半径和高度即可求得圆锥的体积。
圆台的定义和特征
定义
圆台是由一个上底面半径、下底面半径、高和侧面 组成的几何图形。
特征
圆台的侧面是一个梯形,底面圆的半径和高度可确 定圆台的大小。
实际应用
圆台广泛应用于生活中的各种容器和建筑结构中, 比如灯罩和教堂尖顶。
圆锥广泛应用于生活中的各种容器和建筑结构中,比如冰淇淋蛋筒和火车车头。
圆锥的表面积求解方法
公式法
使用圆锥的侧面积公式和底面积公式相加即可求得 圆锥的表面积。
展开图法
将圆锥展开成一个弓形,在弓形的开端加上一个扇 形即可得到圆锥的展开图,再利用展开图计算圆锥 的表面积。
圆锥的体积求解方法
底面积法
使用底面积公式和三角形面积公式计算圆锥的体积。
公式法
使用圆台的体积公式即可求得圆台的体积。
几何体分解法
可以将圆台分解为一个圆锥和一个圆柱,分别计算 它们的体积后相加即可得到圆台的体积。
圆柱与圆锥的差异和联系
相同点
• 都有底面和侧面 • 表面积和体积的计算方法类似 • 都广泛应用于实际生活和工程中
不同点
• 底面形状不同:圆柱底面为圆形,圆锥底面 为圆形或椭圆形
交通锥标志
交通锥一般用于道路施工和事故现场,图标通常设 计成圆锥形,用以提醒司机注意交通安全。
数学思维拓展:解决圆柱和圆锥问题的 策略
1
抽象转化法
将题目抽象成一些基本的几何图形,然后利用几何图形的相似、等量关系等解题。
2
代数运算法
当几何图形较为复杂时,可以将某些参 一个圆锥的底面半径为5cm,高为12cm,它 的表面积是多少?
圆柱和圆锥的学习方法和技巧
六年级数学圆柱与圆锥
圆锥体积公式
V = 1/3πr^2h,其中r为底面 半径,h为高。根据此公式可求
得圆锥体的体积。
判断形状或位置类问题解决方法
判断是否为圆柱或圆锥
01
观察图形是否具备圆柱或圆锥的基本特征,如底面是否为圆形
、侧面是否为曲面等。
判断位置关系
02
分析图形中各个部分的位置关系,如是否相交、相切或相离等
,以确定形状之间的位置关系。
03
圆锥表面积和体积计算
圆锥侧面积公式推导
圆锥的侧面展开图是一个扇形,扇形的半径等于圆锥的母线长,扇形的 弧长等于圆锥的底面周长。
根据扇形面积公式:扇形面积 = (1/2) × 扇形的弧长 × 扇形的半径,将 圆锥的侧面展开图代入公式,得到圆锥侧面积 = (1/2) × 圆锥底面周长 × 圆锥母线长。
当截面平行于底面时,截面为圆形; 当截面倾斜于底面时,截面为椭圆。
圆锥截面形状变化
当截面平行于底面时,截面为圆形; 当截面倾斜于底面且过顶点时,截面 为三角形;当截面倾斜于底面且不过 顶点时,截面为椭圆。
空间位置关系判断
1 2 3
判断圆柱与圆锥是否相交
通过比较两者的位置关系,可以确定它们是否相 交。如果相交,则可以进一步判断交线的形状。
利用已知条件求解
03
根据题目给出的已知条件,结合圆柱和圆锥的性质和公式进行
求解。
创新题型挑战及思路拓展
01
创新题型一
探索性题型。这类题目通常给出一些特殊条件或情境,让学生探索其中
的数学规律和性质。解题思路包
综合性题型。这类题目将圆柱和圆锥的知识与其他数学知识综合起来, 考察学生的综合应用能力。解题思路需要灵活运用所学知识,寻找解题 的突破口。
苏教版小学六年级数学下册第二单元《圆柱和圆锥》PPT课件
探 究 新 知 知识点2:圆柱表面积的计算方法 把右边圆柱的侧面沿高展开,得 到的长方形的长和宽各是多少厘 米? 圆柱的底面半径是多少厘米?
你能在下面的方格纸上画 出这个圆柱的展开图吗?
探究新知
.O
2cm
6.2.8cm
O 2cm
2cm
探究新知
底面
底面
高 底面的周长
底面的周长
高
底面
底面
圆柱的侧面积与两个底面积的和,叫作圆柱的表面积。
米,花柱的侧面和上面都插满塑料花。如果每 平方米有40朵花,这根花柱上一共有多少朵花?
3.14×0.5×2×3.5=10.99(平方米) 3.14×0.5²=0.785(平方米) (10.99+0.785)×40=471(朵) 答:这根花柱上一共有471朵花。
练习题
12.给5根这样的柱子刷 油漆,每平方米用油 漆0.5千克,一共要用 油漆多少千克?
底面周长×高。用字母表示为S侧=C h=π d h=2 π r h
2. 圆柱表面积的计算方法:圆柱的表面积=圆 柱的侧面积+圆柱的两个底面积。用字母表示 圆柱的表面积:S表=S侧+2S底
第二单元 圆柱和圆锥 2.3 练习二
练习题
6.算一算,填一填。
5cm
8cm
125.6cm² 50.24cm² 226.08cm² 314cm² 78.5cm² 471cm²
而长方体和正方体和圆柱是等底面积,等高。
探究新知
回顾圆柱体积公式的探索过 程, 你有什么体会?
可以用长方体体 积公式推导出圆 柱体积公式。
把圆柱转化成长方 体, 与探索圆面 积的方法类似。
计算长方体、正方体、圆柱的 体积都可以用底面积乘高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运,至少几次运完?
.
• 张伯伯将一些玉米堆放在室内的一 个墙角。这堆玉米的高是0.6m, 底面半径是0.8m。已知每立方米 玉米約重540kg,算一算,这堆玉 米重多少千克?(得数保留整千克 数)
.
• 一个长方形玻璃钢,从里面量 长50cm,宽30cm,缸中水的 高是12cm,当把一个底面积是 500平方厘米的圆柱形零件浸没 在水中时,水的高度比原来上 升了1/4,这个零件高是多少厘米
• 2。一个圆柱与圆锥的底面积相等,则 这个圆柱与圆锥的体积比是3:1
• .3.把一个底面直径是27cm,高9cm的 圆锥形木块,沿着它的高分成形状。 大小相同的两个木块后,表面积比原 来增加()
• 4.一个底面积是24平方厘米的圆锥与一 个棱长是4cm的正 方体体积相等,这 个圆锥的w 高是()
.
• 10.一个圆柱体杯中盛满15升水,把一 个与它等底等高的铁圆锥倒放入水中, 杯中还有()升。
• 11.一个圆柱和一个长方体的底面积和 高都相等,则它们的体积也一定相等。
• 12.圆柱的体积比它等底等高的圆锥体 积大2倍。
.
• 工地上有一个近似于圆锥体形状的 沙堆,测得底面直径4m,高1.5m。 1立方厘米沙大约重1.5t
• 用一张长15cm,宽8cm的长方形 围成一个圆柱,这个圆柱的侧面积 是()
• 做一节底面直径是20cm,长 60cm的通风管,至少需要铁皮() 平方厘米。圆柱底面半径扩大两倍, 高不变,圆柱的侧面积扩大()倍, 底面周长扩大()倍,底面积扩大 ()倍,体积扩大()倍
.
• 把高1m的圆柱锯成两段后,表面 积增加了16平方米,原来这个圆柱 的体积是()
• 5.一个圆柱的侧面展开图是一个正方形, 这个圆柱的底面直径和高的比是()
• 6.等底等高的圆柱和圆锥,它们的体积之 和是6.28,体积之差是()
• 7.一根长2m的圆木,截成三段后,表面 积增加48,这根圆木的体积是()
• 8.一个圆柱体积比和它等底等高的圆锥体 积多()
.
• 9.把一个圆柱切成三段后,体积和表面 积与原来相比都增加了。
• 一个圆柱和一个圆锥的体积,圆锥 的高是圆柱高的3倍,圆锥的底面 积是188.4,则圆柱的底面积是 ()。
.
• 一个圆锥形沙堆,底面周长31.4m, 高7.2m,沙每立方米重1.5t,如果 用一辆载重5t的汽车来运,几次可 以运完?
.
• 1.一个圆柱与一个长方体等底等高, 那么它们的体积也相等。
.Leabharlann • 一个圆柱形油桶装满了油,把 油桶内的汽油倒出20%还剩480 升,油桶中原有油多少升?如 果油桶的底面积是50平方分米, 油桶的高是多少?
.