11-5古典概型(一轮复习)
高考一轮总复习-082.古典概型与几何概型(基础)-知识讲解
高考总复习:古典概型与几何概型【考点梳理】知识点一、古典概型1. 定义具有如下两个特点的概率模型称为古典概型:(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等。
2. 古典概型的基本特征(1)有限性:即在一次试验中,可能出现的结果,只有有限个,也就是说,只有有限个不同的基本事件。
(2)等可能性:每个基本事件发生的可能性是均等的。
3.古典概型的概率计算公式由于古典概型中基本事件发生是等可能的,如果一次试验中共有n 种等可能的结果,那么每一个基本事件的概率都是1n。
如果某个事件A 包含m 个基本事件,由于基本事件是互斥的,则事件A 发生的概率为其所含m 个基本事件的概率之和,即n m A P =)(。
所以古典概型计算事件A 的概率计算公式为:试验的基本事件总数包含的基本事件数事件A A P =)( 4.求古典概型的概率的一般步骤:(1)算出基本事件的总个数n ;(2)计算事件A 包含的基本事件的个数m ;(3)应用公式()m P A n=求值。
5.古典概型中求基本事件数的方法:(1)穷举法;(2)树形图;(3)排列组合法。
利用排列组合知识中的分类计数原理和分步计数原理,必须做到不重复不遗漏。
知识点二、几何概型1. 定义:事件A 理解为区域Ω的某一子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关。
满足以上条件的试验称为几何概型。
2.几何概型的两个特点:(1)无限性,即在一次试验中基本事件的个数是无限的;(2)等可能性,即每一个基本事件发生的可能性是均等的。
3.几何概型的概率计算公式:随机事件A 的概率可以用“事件A 包含的基本事件所占的图形面积(体积、长度)”与“试验的基本事件所占总面积(体积、长度)”之比来表示。
所以几何概型计算事件A 的概率计算公式为:Ω=μμA A P )( 其中μΩ表示试验的全部结果构成的区域Ω的几何度量,A μ表示构成事件A 的区域的几何度量。
古典概型基础题
第十一编 概率统计
总第 58 期
§11.5 古典概型
基础自测
1.从甲、乙、丙三人中任选两名代表,甲被选中的概率为
.
答案 2 3
2.掷一枚骰子,观察掷出的点数,则掷出奇数点的概率为
.
答案 1 2
3.袋中有 2 个白球,2 个黑球,从中任意摸出 2 个,则至少摸出 1 个黑球的概率是
,P(N)=
.
答案 1 3 24
例题精讲
例 1 有两颗正四面体的玩具,其四个面上分别标有数字 1,2,3,4,下面做投掷这两颗正四面体玩
具的试验:用(x,y)表示结果,其中 x 表示第 1 颗正四面体玩具出现的点数,y 表示第 2 颗正四面体
玩具出现的点数.试写出: (1)试验的基本事件; (2)事件“出现点数之和大于 3”; (3)事件“出现点数相等”. 解 (1)这个试验的基本事件为:
C
3 a
.两种方法结果一致.
C
3 a+b
(2)从 a+b 个产品中有放回的抽取 3 次,每次都有 a+b 种方法,所以共有(a+b)3 种不同的方法,而 3
个全是正品的 抽法共有 a3 种,所以 3 个全是正品的概率 P=
a3
=
⎛ ⎜
a
3
⎞ ⎟
.
(a + b)3 ⎝ a + b ⎠
11.袋中装有黑球和白球共 7 个,从中任取两个球都是白球的概率为 1 .现有甲、乙两人从袋中轮流摸球, 7
E(2,2)中任取三个,这三点能构成三角形的概率是 373
(结果用分数表示).
答案 4 5
二、解答题 9.5 张奖券中有 2 张是中奖的,首先由甲然后由乙各抽一张,求:
数学人教版一轮复习课件:第11章第2讲 古典概型
画出树状图如图11-2-1所示.
图 11-2-1
由图12-2-1可知,所有的基本事件共有25个,满足题意的基本事件有10个,故
10
所求概率为
25
=
2
.
5
考法1 古典概型的求法
(2)(排列、组合法)不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,
2
从中随机选取两个不同的数,有C10
古典概型,在高考中常与平面向量、集合、函数、数列、解析几何、
命题分 统计等知识交汇命题,命题角度及背景新颖,考查知识全面,能力要
析预测 求较高.本部分内容重点考查数学建模与数学运算素养.
在2022年高考备考过程中要注意古典概型与数学文化、实际
生活密切联系的问题,要加强实际应用问题的训练.
考点帮·必备知识通关
243 331 112
342 241 244 431 233 214 344 142 134
由此可以估计,恰好第三次就停止摸球的概率为
1
9
1
6
2
9
5
18
A. B. C. D.
考法2 随机模拟的应用
解析 由18组随机数得,恰好在第三次停止摸球的有142,112,241,142,共4
4
组,所以恰好第三次就停止摸球的概率约为
年VIP
月VIP
连续包月VIP
VIP专享文档下载特权
每月专享9次VIP专享文档下载特权,自VIP生效
享受60次VIP专享文档下载特权,一次发放,全 VIP专享文档下载特权自VIP生效起每月发放一次,每次发放的特权有
起每月发放一次,持续有效不清零。自动续费,
年内有效。
效期为1个月,发放数量由您购买的VIP类型决定。
人教版高三数学一轮复习进度
6、空间向量及运算
7、立体几何中的向量方法。
10
1.1---1.20
1.直线的倾斜角与斜率
与直线的方程
2.直线的交点与距离公式。
3.圆的方程.
4、直线与圆、圆与圆的位置关系
5.椭圆的标准方程及其几何性质
6.双曲线的标准方程及其几何性质
7.抛物线的标准方程及其几何性质。
8曲线与方程
9圆锥曲线的综和问题
第一轮的复习要以基础知识、基本技能、基本方法为主。
时 间
课 题
课时内容
课时安排
7.20――8.2
集合与简易逻辑:重点是集合的运算
1.集合的概念
2.集合的运算
3.不等式的解法
4.简易逻辑
5.充分条件与必要条件
6
8.4――9.10
函数:重点是函数的性质。
导数:近几年频繁出题,学生较易掌握。重点是利用导数求函数的最值。
1.映射与函数
2.函数的对应规律
3.函数的定义域
4.函数的值域
5.函数的奇偶性与周期性
6.函数的单调性
7.反函数
8.指数式与对数式
9.指数函数与对数函数
10.函数的图像
11.函数的应用
1.导数的பைடு நூலகம்念
2.多项式函数的导数
3.函数的单调性与极值
4.函数的最大值与最小值
24
9.11――10.20
三角函数:重点是三角函数的化简求值,三角函数的图象和性质。要求学生熟记公式。
1.平面向量的概念和性质
2.平面向量的坐标运算
3.平面向量的数量积
4.线段的定比分点与平移
5.复数
8
11.2---11.15
2023版高考数学一轮总复习11-1随机事件古典概型与几何概型课件
Ω的几何度量
考法一 古典概型概率的求法 1.求解古典概型概率的步骤
2.基本事件个数的确定方法 1)列举法:此法适合于基本事件个数较少的古典概型. 2)列表法:此法适合于从多个元素中选定两个元素的试验,也可看成坐标 法.
3)画树状图法:画树状图法是进行列举的一种常用方法,适用于有顺序的 问题及较复杂问题中基本事件个数的探求. 4)运用排列组合知识计算.
A39 7
答案 D
创新 生活中的概率问题 1.概率问题常与生活实际或数学文化相结合,主要考查学生的逻辑推 理、数据分析、数学抽象等核心素养. 2.解决这类问题的关键:①认真审题,把握信息;②弄清提供的问题情境的 意义;③抽象转化成数学问题,应用熟悉的数学知识解决.
例1 (2021湖南湘潭一模,7)德国心理学家艾宾浩斯研究发现,遗忘在学习 之后立即开始,而且遗忘的进程并不是均匀的.最初遗忘速度很快,以后逐 渐减慢.他认为“保持和遗忘是时间的函数”.他用无意义音节(由若干音 节字母组成,能够读出,但无内容意义,即不是词的音节)作为记忆材料,用 节省法计算保持和遗忘的数量,并根据试验结果绘成描述遗忘进程的曲 线,即著名的艾宾浩斯遗忘曲线(如图所示).若一名学生背了100个英语单 词,一天后,该学生在这100个英语单词中随机听写2个英语单词,以频率代 替概率,不考虑其他因素,则该学生恰有1个单词不会的概率大约为 ( )
m=5+4+3+2+1=15,则取到的整数十位数字比个位数字大的概率P= m =15
n 25
=3.
5
答案 B
考法二 几何概型概率的求法
例2 (2021辽宁辽南协作体联考,9)1876年4月1日,加菲尔德在《新英格兰 教育日志》上发表了勾股定理的一种证明方法,即在如图的直角梯形 ABCD中,利用“两个全等的直角三角形和一个等腰直角三角形的面积之 和等于直角梯形的面积”,可以简洁明了地推证出勾股定理.1881年加菲 尔德就任美国第二十任总统.后来,人们为了纪念他对勾股定理直观、易 懂的证明,就把这一证明方法称为“总统证法”.如图,设∠ECB=60°,在梯 形ABCD中随机取一点,则此点取自等腰直角△CDE(阴影部分)中的概率 是() A.2(2- 3 ) B.2- 3 C. 3 -1 D.2( 3-1)
2021届高三数学(理)一轮复习学案:第十一章第五节 古典概型与几何概型含解析
第五节古典概型与几何概型[最新考纲][考情分析][核心素养]1.理解古典概型及其概率计算公式.2.会用列举法计算一些随机事件所包含的基本事件数及事件发生的概率.3.了解随机数的意义,能运用模拟方法估计概率.4.了解几何概型的意义.古典概型及其与平面向量、函数、解析几何、统计等知识综合是2021年高考考查的热点,题型为选择题或填空题,分值为5分.与长度、面积有关的几何概型是2021年高考考查的热点,题型为选择题或填空题,分值为5分.1.数学建模2.数学运算‖知识梳理‖1.基本事件的特点(1)任何两个基本事件是1互斥的.(2)任何事件(除不可能事件)都可以表示成2基本事件的和.2.古典概型(1)(2)概率计算公式P(A)3A包含的基本事件的个数基本事件的总数.3.几何概型(1)4长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.(2)5有无限多个;6等可能性.(3)公式P(A)7构成事件A的区域长度(面积或体积)试验的全部结果所构成区域长度(面积或体积).‖基础自测‖一、疑误辨析1.判断下列结论是否正确(请在括号中打“√”或“×”).(1)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”这三个事件是等可能事件.( )(2)在古典概型中,如果事件A 中基本事件构成集合A ,所有的基本事件构成集合I ,则事件A 的概率为card (A )card (I ).( )(3)与面积有关的几何概型的概率与几何图形的形状有关.( )(4)几何概型与古典概型中的基本事件发生的可能性都是相等的,其基本事件个数都有限.( )答案:(1)× (2)√ (3)× (4)× 二、走进教材2.(必修3P 133A 1改编)袋中装有6个白球,5个黄球,4个红球,从中任取一球抽到白球的概率为( )A .25B .415C .35D .非以上答案答案:A3.(必修3P 140练习1改编)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )答案:A4.(必修3P 134B 1改编)某人有4把钥匙,其中2把能打开门.现随机地取1把钥匙试着开门,不能开门的就扔掉,问第二次才能打开门的概率是________.如果试过的钥匙不扔掉,这个概率又是________.答案:13145.(必修3P 146B 4改编)如图,正方形ABCD 的边长为2,向正方形内随机投掷200个点,有30个点落入图形M 中,则图形M 的面积的估计值为________.答案:0.6 三、易错自纠6.已知四边形ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A .π4B .1-π4C .π8D .1-π8解析:选B 如图,依题意可知所求概率为图中阴影部分与长方形的面积比,即所求概率P =S 阴影S 长方形ABCD=2-π22=1-π4.7.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.若从中一次随机摸出2只球,则这2只球颜色不同的概率为________.解析:P =1-C 22C 24=1-16=56.答案:56考点一古典概型【例1】 (1)(2019年全国卷Ⅰ)我国古代典籍《周易》用“卦”描述万物的变化,每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A .516B .1132C .2132D .1116[解析]由6个爻组成的重卦种数为26=64,在所有重卦中随机取一重卦,该重卦恰有3个阳爻的种数为C 36=6×5×46=20.根据古典概型的概率计算公式得,所求概率P =2064=516.故选A .[答案]A(2)(2019届吉林梅河口校级期末)一个袋中装有4个形状、大小完全相同的球,球的编号分别为1,2,3,4.①从袋中随机抽取2个球,求取出的球的编号之和不大于4的概率;②先从袋中随机取一个球,将该球的编号记为m ,将球放回袋中,然后再从袋中随机取一个球,将该球的编号记为n ,求n <m +2的概率.[解]①从袋中随机抽取2个球,共有C 24=6(种)情况,它们出现的机会均等,分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).其中取出的2个球的编号之和不大于4的有2种情况,为(1,2),(1,3),∴P (取出的2个球的编号之和不大于4)=26=13.②先从袋中随机取一个球,放回袋中,再取出一个球,共有4×4=16(种)情况,它们出现的机会均等,其中n <m +2的基本事件(m ,n )共有13个,分别是(1,1),(1,2),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),∴P (n <m +2)=1316. ►名师点津古典概型概率的求解步骤(1)求出所有基本事件的个数n .(2)求出事件A 包含的所有基本事件的个数m . (3)代入公式P (A )=mn求解.|跟踪训练|1.在运动会火炬传递活动中,有编号为1,2,3,4,5的5名火炬手.若从中任选3人,则选出的火炬选手的编号相连的概率为( )A .310B .58C .710D .25解析:选A 从1,2,3,4,5中任取三个数的结果有10种,其中选出的火炬手的编号相连的事件有:(1,2,3),(2,3,4),(3,4,5),∴选出的火炬手的编号相连的概率为P =310.2.(2020届四川五校联考)随着新课程改革和高考综合改革的实施,高中教学以发展学生学科核心素养为导向,学习评价更关注学科核心素养的形成和发展.为此,某市于2019年举行第一届高中数学学科素养竞赛,竞赛结束后,为了评估该市高中学生的数学学科素养,从所有参赛学生中随机抽取1000名学生的成绩(单位:分)作为样本进行估计,将抽取的成绩整理后分成五组,依次记为[50,60),[60,70),[70,80),[80,90),[90,100],并绘制成如图所示的频率分布直方图.(1)请补全频率分布直方图,并估计这1000名学生成绩的平均数(同一组数据用该组区间的中点值作代表);(2)该市决定对本次竞赛成绩排在前180名的学生给予表彰,授予“数学学科素养优秀标兵”称号,一名学生本次竞赛成绩为79分,请你判断该学生能否被授予“数学学科素养优秀标兵”称号.解:(1)由题意知,成绩在[60,70)的频率为1-(0.30+0.15+0.10+0.05)=0.40,补全的频率分布直方图如图:样本的平均数x -=55×0.30+65×0.40+75×0.15+85×0.10+95×0.05=67.(2)因为1801000=0.18,所以由频率分布直方图可以估计获得“数学学科素养优秀标兵”称号的学生的最低成绩为80-0.18-0.05-0.100.015=78(分).因为79>78,所以该同学能被授予“数学学科素养优秀标兵”称号. 考点二几何概型——多维探究●命题角度一与长度(角度)有关的几何概型【例2】 (1)(2019届辽宁省五校联考)若a ∈[1,6],则函数y =x 2+ax 在区间[2,+∞)上单调递增的概率是( )A .15B .25C .35D .45(2)如图所示,A 是圆上一定点,在圆上其他位置任取一点A ′,连接AA ′,得到一条弦,则此弦的长度小于或等于半径长度的概率为( )A .12B .32C .13D .14[解析] (1)∵函数y =x 2+a x =x +ax 在区间(0,a )上单调递减,在区间(a ,+∞)上单调递增,又1≤a ≤6,∴1≤a ≤ 6.要使函数y =x 2+ax 在区间[2,+∞)上单调递增,则a ≤2,解得1≤a ≤4,∴P (1≤a ≤4)=4-16-1=35,故选C .(2)当AA ′的长度等于半径长度时,∠AOA ′=π3,A ′点在A 点左右都可取得,由几何概型的概率计算公式得P =2π32π=13.[答案] (1)C (2)C●命题角度二与面积有关的几何概型【例3】如图,六边形ABCDEF 是一个正六边形,若在正六边形内任取一点,则该点恰好在图中阴影部分的概率是( )A .14B .13C .23D .34[解析]设正六边形的中心为点O ,BD 与AC 交于点G ,BC =1,则BG =CG ,∠BGC =120°,在△BCG 中,由余弦定理得1=BG 2+BG 2-2BG 2cos120°,解得BG =33,所以S △BCG =12×BG×BG ×sin120°=12×33×33×32=312.因为S六边形ABCDEF =S △BOC ×6=12×1×1×sin60°×6=332,所以该点恰好在图中阴影部分的概率P =1-6S △BCG S 六边形ABCDEF =23. [答案]C●命题角度三与体积有关的几何概型【例4】已知在四棱锥P -ABCD 中,P A ⊥底面ABCD ,底面ABCD 是正方形,P A =AB =2,现在该四棱锥内部或表面任取一点O ,则四棱锥O -ABCD 的体积不小于23的概率为________.[解析]当四棱锥O -ABCD 的体积为23时,设O 到平面ABCD 的距离为h ,则13×22×h =23,解得h =12.如图所示,在四棱锥P -ABCD 内作平面EFGH 平行于底面ABCD ,且平面EFGH 与底面ABCD 的距离为12.因为P A ⊥底面ABCD ,且P A =2,所以PH P A =34.又四棱锥P -ABCD 与四棱锥P -EFGH 相似,所以四棱锥O -ABCD 的体积不小于23的概率P =V 四棱锥P -EFGH V 四棱锥P -ABCD =⎝⎛⎭⎫PH P A 3=⎝⎛⎭⎫343=2764.[答案]2764►名师点津建立相应的几何概型,将试验构成的总区域和所求事件构成的区域转化为几何图形,并加以度量.(1)若一个连续变量可建立与长度有关的几何概型,则只需把这个变量放在数轴上即可; (2)若一个随机事件需要用两个连续变量来描述,则可用这两个变量组成的有序实数对表示它的基本事件,然后利用平面直角坐标系即可建立与面积有关的几何概型;(3)若一个随机事件需要用三个连续变量来描述,则可用这三个变量组成的有序数组来表示基本事件,利用空间直角坐标系即可建立与体积有关的几何概型.|跟踪训练|3.在区间[0,1]上随机取一个数x ,则事件“log 0.5(4x -3)≥0”发生的概率为( )43C .13D .14解析:选D 因为log 0.5(4x -3)≥0,所以0<4x -3≤1,即34<x ≤1,所以所求概率P =1-341-0=14,故选D . 4.在棱长为3的正方体ABCD -A 1B 1C 1D 1内任取一点P ,则点P 到正方体各面的距离都不小于1的概率为( )A .127B .2627C .827D .18解析:选A 正方体中到各面的距离都不小于1的点的集合是一个中心与原正方体中心重合,且棱长为1的正方体,该正方体的体积是V 1=13=1,而原正方体的体积为V =33=27,故所求的概率P =V 1V =127.5.在如图所示的圆形图案中有12片树叶,构成树叶的圆弧均相同且所对的圆心角为π3,若在圆内随机取一点,则此点取自树叶(即图中阴影部分)的概率是( )A .2-33πB .4-63πC .13-32πD .23解析:选B 设圆的半径为r ,根据扇形面积公式和三角形面积公式得阴影部分的面积S =24⎝⎛⎭⎫16πr 2-34r 2=4πr 2-63r 2,圆的面积S ′=πr 2,所以此点取自树叶(即图中阴影部分)的概率为S S ′=4-63π,故选B .考点 古典概型、几何概型的交汇应用问题【例】 (1)(2019届威海调研)从集合{2,3,4,5}中随机抽取一个数a ,从集合{1,3,5}中随机抽取一个数b ,则向量m =(a ,b )与向量n =(1,-1)垂直的概率为( )A .16B .1342(2)在边长为4的等边三角形OAB 及其内部任取一点P ,使得OA →·OP →≤4的概率为( ) A .12B .14C .13D .18[解析] (1)由题意可知m =(a ,b )有:(2,1),(2,3),(2,5),(3,1),(3,3),(3,5),(4,1),(4,3),(4,5),(5,1),(5,3),(5,5),共12种情况.因为m ⊥n ,即m ·n =0,所以a ×1+b ×(-1)=0,即a =b , 满足条件的有:(3,3),(5,5),共2个, 故所求概率为16.(2)设OP →在OA →上的投影为|OQ →|,则OA →·OP →=|OA →|·|OQ →|,若OA →·OP →≤4,则|OQ →|≤1.取OB 的中点M ,作MN ⊥OA 于N ,则满足条件的P 构成的区域为图中阴影部分,N 为OA 的四等分点,所以使得OA →·OP →≤4的概率为S △OMN S △OAB =18.[答案] (1)A (2)D ►名师点津解决与古典概型、几何概型交汇命题的问题时,把相关的知识转化为事件,列举基本事件,求出基本事件和随机事件的个数或相应的区域度,然后利用古典概型、几何概型的概率计算公式进行计算.|跟踪训练|1.在区间[-π,π]内随机取两个数分别记为a ,b ,则使得函数f (x )=x 2+2ax -b 2+π有零点的概率为( )A .78B .34C .12D .14解析:选B 建立如图所示的平面直角坐标系,则试验的全部结果构成的区域为正方形ABCD 及其内部.要使函数f (x )=x 2+2ax -b 2+π有零点,则必须有Δ=4a2-4(-b2+π)≥0,即a2+b2≥π,其表示的区域为图中阴影部分.故所求概率P=S阴影S正方形=3π24π2=34.2.(2019届洛阳统考)将一颗骰子先后投掷两次分别得到点数a,b,则直线ax+by=0与圆(x-2)2+y2=2有公共点的概率为________.解析:依题意,将一颗骰子先后投掷两次得到的点数所形成的数组(a,b)有(1,1),(1,2),(1,3),…,(6,6),共36种,其中满足直线ax+by=0与圆(x-2)2+y2=2有公共点,即满足2aa2+b2≤2,即a2≤b2的数组(a,b)情况如下:①当a=1时,b=1,2,3,4,5,6,共6种;②当a=2时,b=2,3,4,5,6,共5种;③当a=3时,b=3,4,5,6,共4种;④当a=4时,b=4,5,6,共3种;⑤当a=5时,b=5,6,共2种;⑥当a=6时,b=6,共1种.∴总共有6+5+4+3+2+1=21(种),因此所求的概率为2136=7 12.答案:7 12。
古典概型知识点总结
古典概型知识点总结关键信息项:1、古典概型的定义2、古典概型的特点3、古典概型的概率计算公式4、基本事件的概念5、基本事件的特点6、古典概型的常见例题7、古典概型与其他概率类型的区别11 古典概型的定义古典概型是一种概率模型,它具有以下两个特点:试验中所有可能出现的基本结果是有限的。
每个基本结果出现的可能性相等。
111 有限性意味着试验的结果是可以一一列举出来的,不是无穷无尽的。
112 等可能性表明每个基本结果发生的概率相同,不存在某些结果更容易发生的情况。
12 古典概型的特点确定性:试验的条件和结果都是明确的。
互斥性:不同的基本事件之间是相互排斥的,不会同时发生。
121 可重复性相同的条件下,重复进行试验,结果具有稳定性。
122 规范性符合概率的基本定义和性质,能够通过计算得出准确的概率值。
13 古典概型的概率计算公式假设试验的基本事件总数为 n,事件 A 包含的基本事件数为 m,则事件 A 发生的概率 P(A) = m / n 。
131 计算步骤确定基本事件的总数 n 。
确定事件 A 包含的基本事件数 m 。
代入公式计算 P(A) 。
132 注意事项计算要准确,避免遗漏或重复计算基本事件。
确保对基本事件的界定清晰无误。
14 基本事件的概念基本事件是试验中不能再分的最简单的随机事件,其他事件可以由基本事件组合而成。
141 基本事件的性质独立性:每个基本事件的发生与否互不影响。
完整性:所有基本事件的集合构成了试验的全部可能结果。
15 基本事件的特点最小性:不能再分解为更小的随机事件。
明确性:能够清晰地定义和区分。
151 基本事件的表示通常用简单的符号或数字来表示。
152 基本事件的数量确定根据试验的具体情况,通过分析得出。
16 古典概型的常见例题掷骰子问题:计算掷出特定点数的概率。
抽奖问题:在有限数量的抽奖券中计算中奖的概率。
摸球问题:从装有不同颜色球的容器中摸出特定颜色球的概率。
161 例题分析详细阐述如何确定基本事件和所求事件包含的基本事件数。
高三数学一轮复习 第十一章 第2课时 古典概型课件
3.概率的一般加法公式 P(A∪B)=P(A)+P(B)- P(A∩B) 公式使用中要注意: (1)公式的作用是求 A∪B 的概率,当 A∩B=∅时, A、B 互斥,此时 P(A∩B)=0,∴P(A∪B)=P(A) +P(B); (2)要计算 P(A∪B),需要求 P(A)、P(B),更重要 的是把握事件 A∩B,并求其概率;
(3)记“至少摸出 1 个黑球”为事件 B,则事 件 B 包含的基本事件为 ab,ac,ad,ae,bc, bd,be,共 7 个基本事件. 所以 P(B)=170=0.7. 答:至少摸出 1 个黑球的概率为 0.7.
求较复杂的古典概型概率
对于较复杂事件的概率,关键是理解题目的 实际含义,把实际问题转化为概率模型,用 分析法、列表法求出基本事件的总数,必要 时将所求事件转化成彼此互斥的事件的和, 或者先去求对立事件的概率,进而再用互斥 事件的概率加法公式或对立事件的概率公式 求出所求事件的概率.
(3)该公式可以看作一个方程,知三可求一.
从近两年的高考试题来看,古典概型是高考 的热点,可在选择题、填空题中单独考查, 也可在解答题中与统计或随机变量的分布列 一起考查,属容易或中档题.以考查基本概 念、基本运算为主.
(本小题满分12分)(2010·天津卷)有编号为A1, A2,…,A10的10个零件,测量其直径(单位: cm),得到下面数据:
解析: 由集合 P={x|x(x2+10x+24)=0} 可得 P={-6,-4,0}, 由 Q={y|y=2n-1,1≤n≤2,n∈N*},可得 Q ={1,3}, M=P∪Q={-6,-4,0,1,3}. 因为点 A(x′,y′)的坐标 x′∈M,y′∈M, 所以满足条件的 A 点共有 5×5=25 个. (1)正 好在第 三象限的 点有 (- 6,- 6), (- 4, -6),(-6,-4),(-4,-4)4 个点.
小题专练11-2023届高考数学一轮复习新高考版
小题专练11计数原理、概率与统计(A)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1..(考点:古典概型的应用,★)有编号分别为1,2,3的三个盒子和编号分别为1,2,3的三个小球,每个盒子放入一个小球,则小球的编号与盒子编号全不相同的概率为().A.1 3B.56C.23D.8272.(考点:随机数表的应用,★)福利彩票“双色球”中红色球由编号为01,02,…,33的33个球组成,某彩民利用下面的随机数表选取6组数作为6个红色球的编号,选取方法是从随机数表第1行的第6列数字开始由左到右依次选取两个数字,则选出来的第6个红色球的编号为().A.21B.09C.02D.173(考点:二项分布的期望与方差,★)已知随机变量ξ~B(n,p),且E(ξ)=6,D(ξ)=3,则n的值为().A.10B.8C.16D.124.(考点:组合和计数原理的应用,★★)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有().A.60种B.64种C.65种D.66种5.(考点:二项式定理的应用,★★)设(1-2x)n=a0+a1x+a2x2+…+a n x n,若a3+a4=0,则a5=().A.256B.-128C.64D.-326.(考点:排列组合的应用,★★)某食品厂为了促销,制作了3种不同的精美卡片,每袋食品中随机装入一张卡片,集齐3种卡片可获奖,现购买4袋该食品,能获奖的概率为().A.4 27B.827C.49D.897.(考点:条件概率的应用,★★)若全体Ω={1,2,3,4,5,6},令事件A={2,3,5},B={1,2,4,5,6},则P(B|A)的值为().A.2 3B.13C.12D.358.(考点:线性回归方程,★★)具有相关关系的两个量x 、y 的一组数据如下表,回归方程是y ^=0.67x+54.9,则m=( ).x 10 20 30 40 50 y62m758189A.65B.67C.68D.70二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.(考点:正态分布与线性回归,★★)下列说法中正确的是( ).A .已知随机变量ξ服从正态分布N (2,σ2),P (ξ<4)=0.84,则P (2<ξ<4)=0.16B .以模型y=c e kx去拟合一组数据时,为了求出回归方程,设z=ln y ,将其变换后得到线性回归方程z ^=0.3x+4,则c ,k 的值分别是e 4和0.3C .已知两个变量具有线性相关关系,其回归直线方程为y ^=a+bx ,若b=2,x −=1,y −=3,则a=1 D .若样本数据x 1,x 2,…,x 10的方差为2,则数据2x 1-1,2x 2-1,…,2x 10-1的方差为1610.(考点:扇形统计图,★★)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中正确的是( ). A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半11.(考点:独立性检验的应用,★★)针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”做了一次调查,其中被调查的男女生人数相同,男生喜欢抖音的人数占男生人数的45,女生喜欢抖音的人数占女生人数的35,若有95%的把握认为是否喜欢抖音和性别有关,则调查人数中男生可能有( )人. 附:P (K 2≥k 0) 0.050 0.010 k 03.8416.635K 2=n (ad -bc )2(a+b )(c+d )(a+c )(b+d ). A .25 B .45C .60D .7512.(考点:概率的求解公式,★★)下列对各事件发生的概率判断正确的是( ).A .某学生在上学的路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,那么该学生在上学路上到第3个路口首次遇到红灯的概率为427B .三人独立破译一份密码,他们能单独译出的概率分别为15,13,14,假设他们破译密码是彼此独立的,则此密码被破译的概率为25C .甲袋中有8个白球,4个红球,乙袋中有6个白球,6个红球,从每袋中各任取一个球,则取到同色球的概率为12D .设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率是29三、填空题:本题共4小题,每小题5分,共20分.13.(考点:分层抽样的应用,★★)某公司的老年人、中年人、青年人的比例为2∶6∶4,用分层抽样的方法抽取了一个容量为n 的样本进行调查,其中青年人人数为100,则n= . 14.(考点:二项式定理的应用,★★)若二项式(√x +m x 2)n 的展开式的二项式系数之和为32,常数项为10,则实数n 的值为 ,实数m 的值为 .15.(考点:正态分布的应用,★★)已知在某市的高二期末考试中,该市学生的数学成绩X~N (90,σ2),若P (70≤X≤90)=0.4,则从该市学生中任选一名学生,该学生的数学成绩小于110分的概率为 .16.(考点:离散型随机变量的数学期望,★★★)某袋中装有5个除编号外完全相同的小球,编号为1,2,3,4,5.现从该袋内随机取出3个小球,记被取出的小球的最大号码数为ξ,则E (ξ)= .答案解析:1.(考点:二项分布的期望与方差,★)已知随机变量ξ~B (n ,p ),且E (ξ)=6,D (ξ)=3,则n 的值为( ). A .10 B .8 C .16 D .12【解析】依题意,由二项分布的期望和方差公式得{E (ξ)=np =6,D (ξ)=np (1-p )=3,解得{n =12,p =12. 【答案】D2.(考点:随机数表的应用,★)福利彩票“双色球”中红色球由编号为01,02,…,33的33个球组成,某彩民利用下面的随机数表选取6组数作为6个红色球的编号,选取方法是从随机数表第1行的第6列数字开始由左到右依次选取两个数字,则选出来的第6个红色球的编号为( ).A .21B .09C .02D .17【解析】从随机数表第1行的第6列数字开始由左到右依次选取两个数字,除去大于33的数字以及重复数字,则选出的6个红色球的编号依次为21,32,09,16,17,02,故选出的第6个红色球的编号为02. 【答案】C3.(考点:古典概型的应用,★)有编号分别为1,2,3的三个盒子和编号分别为1,2,3的三个小球,每个盒子放入一个小球,则小球的编号与盒子编号全不相同的概率为( ). A .13 B .56 C .23 D .827【解析】以(a ,b ,c )表示编号为1,2,3的盒子分别放编号为a ,b ,c 的小球,则所有的基本事件有(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),共6种,其中,事件“小球的编号与盒子编号全不相同”所包含的基本事件有(2,3,1),(3,1,2),共2个,因此“小球的编号与盒子编号全不相同”的概率为26=13. 【答案】A4.(考点:组合和计数原理的应用,★★)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( ).A .60种B .64种C .65种D .66种【解析】从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,有3种情况:4个偶数,2个偶数2个奇数,4个奇数.所以不同的取法共有C 44+C 42C 52+C 54=66(种).【答案】D5.(考点:二项式定理的应用,★★)设(1-2x )n =a 0+a 1x+a 2x 2+…+a n x n ,若a 3+a 4=0,则a 5=( ). A .256B .-128C .64D .-32【解析】∵a 3+a 4=C n 3·(-2)3+C n 4·(-2)4=0,∴n=5,则a 5=C 55·(-2)5=-32.【答案】D6.(考点:排列组合的应用,★★)某食品厂为了促销,制作了3种不同的精美卡片,每袋食品中随机装入一张卡片,集齐3种卡片可获奖,现购买4袋该食品,能获奖的概率为( ). A .427 B .827 C .49 D .89【解析】由分步乘法计数原理可知,3种不同的精美卡片随机放进4袋食品中共有34=81种不同放法,4袋食品中有3种不同的卡片的放法有C 42·A 33=36种,根据等可能事件的概率公式得能获奖的概率为3681=49,故选C . 【答案】C7.(考点:条件概率的应用,★★)若全体Ω={1,2,3,4,5,6},令事件A={2,3,5},B={1,2,4,5,6},则P (B|A )的值为( ). A .23 B .13 C .12 D .35【解析】由题意可得P (A )=36=12,事件AB={2,5},则P (AB )=26=13,由条件概率公式得P (B|A )=1312=23. 【答案】A8.(考点:线性回归方程,★★)具有相关关系的两个量x 、y 的一组数据如下表,回归方程是y ^=0.67x+54.9,则m=( ).A.65B.67C.68D.70 【解析】∵x −=10+20+30+40+505=30,y −=62+m+75+81+895=307+m5,将点(30,307+m 5)代入回归直线方程得0.67×30+54.9=307+m 5,解得m=68.故选C. 【答案】C二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.(考点:正态分布与线性回归,★★)下列说法中正确的是( ).A .已知随机变量ξ服从正态分布N (2,σ2),P (ξ<4)=0.84,则P (2<ξ<4)=0.16B .以模型y=c e kx去拟合一组数据时,为了求出回归方程,设z=ln y ,将其变换后得到线性回归方程z ^=0.3x+4,则c ,k 的值分别是e 4和0.3C .已知两个变量具有线性相关关系,其回归直线方程为y ^=a+bx ,若b=2,x −=1,y −=3,则a=1 D .若样本数据x 1,x 2,…,x 10的方差为2,则数据2x 1-1,2x 2-1,…,2x 10-1的方差为16 【解析】∵随机变量ξ服从正态分布N (2,σ2),P (ξ<4)=0.84,∴P (2<ξ<4)=P (ξ<4)-0.5=0.84-0.5=0.34,故A 错误; ∵y=c e kx ,∴ln y=ln(c e kx )=kx+ln c ,∵z ^=0.3x+4,∴ln y=0.3x+4,从而k=0.3,ln c=4,∴k=0.3,c=e 4,故B 正确; ∵直线y ^=a+bx 过点(x −,y −),∴3=a+b ,∵b=2,∴a=1,故C 正确;∵样本数据x 1,x 2,…,x 10的方差为2,∴数据2x 1-1,2x 2-1,…,2x 10-1的方差为2×22=8,故D 错误.【答案】BC10.(考点:扇形统计图,★★)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中正确的是( ). A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【解析】设新农村建设前,农村的经济收入为a ,则新农村建设后,农村经济收入为2a.新农村建设前后,各项收入的对比如下表:故选BCD.【答案】BCD11.(考点:独立性检验的应用,★★)针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”做,女生喜欢抖音的人数占了一次调查,其中被调查的男女生人数相同,男生喜欢抖音的人数占男生人数的45,若有95%的把握认为是否喜欢抖音和性别有关,则调查人数中男生可能有()人.女生人数的35附:K 2=n (ad -bc )2(a+b )(c+d )(a+c )(b+d ). A .25 B .45 C .60 D .75【解析】设男生的人数为5n (n ∈N *),根据题意列出2×2列联表如下:则K 2的观测值k=10n×(4n×2n -3n×n )25n×5n×7n×3n=10n 21,由于有95%的把握认为是否喜欢抖音和性别有关,则3.841≤k<6.635,即3.841≤10n21<6.635,解得8.0661≤n<13.9335.因为n ∈N *,则n 的可能取值有9,10,11,12,13,所以调查人数中男生人数的可能值为45,50,55,60,65,故选BC . 【答案】BC12.(考点:概率的求解公式,★★)下列对各事件发生的概率判断正确的是( ).A .某学生在上学的路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,那么该学生在上学路上到第3个路口首次遇到红灯的概率为427B .三人独立破译一份密码,他们能单独译出的概率分别为15,13,14,假设他们破译密码是彼此独立的,则此密码被破译的概率为25C .甲袋中有8个白球,4个红球,乙袋中有6个白球,6个红球,从每袋中各任取一个球,则取到同色球的概率为12D .设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率是29【解析】对于A 选项,该学生在第3个路口首次遇到红灯的情况为前2个路口不是红灯,第3个路口是红灯,所以概率为(1-13)2×13=427,故A 正确;对于B 选项,用A ,B ,C 分別表示甲、乙、丙三人能破译出密码,则P (A )=15,P (B )=13,P (C )=14,“三个人都不能破译出密码”发生的概率为45×23×34=25,所以此密码被破译的概率为1-25=35,故B 错误;对于C 选项,设“从甲袋中取到白球”为事件A ,则P (A )=812=23,设“从乙袋中取到白球”为事件B ,则P (B )=612=12,故取到同色球的概率为23×12+13×12=12,故C 正确;对于D 选项,易得P (A ∩B −)=P (B ∩A −),即P (A )·P (B −)=P (B )·P (A −),即P (A )[1-P (B )]=P (B )·[1-P (A )],所以P (A )=P (B ).又P (A −∩B −)=19,所以P (A −)=P (B −)=13,所以P (A )=23,故D 错误.【答案】AC三、填空题:本题共4小题,每小题5分,共20分.13.(考点:分层抽样的应用,★★)某公司的老年人、中年人、青年人的比例为2∶6∶4,用分层抽样的方法抽取了一个容量为n 的样本进行调查,其中青年人人数为100,则n= .【解析】用分层抽样的方法抽取了一个容量为n 的样本进行调查,其中青年人人数为100,则100n=42+6+4,解得n=300. 【答案】30014.(考点:二项式定理的应用,★★)若二项式(√x +m x 2)n的展开式的二项式系数之和为32,常数项为10,则实数n 的值为 ,实数m 的值为 . 【解析】由题意得2n =32,即n=5, 则(√x +m x 2)n 的展开式的通项公式为T r+1=C 5r ·(√x )5-r ·(m x2)r =m r ·C 5r ·x 5-5r2. 令5-5r 2=0,可得r=1,则(√x +m x 2)n展开式中的常数项为T 2=m ·C 51=5m ,故5m=10,解得m=2. 【答案】5 215.(考点:正态分布的应用,★★)已知在某市的高二期末考试中,该市学生的数学成绩X~N (90,σ2),若P (70≤X≤90)=0.4,则从该市学生中任选一名学生,该学生的数学成绩小于110分的概率为 . 【解析】∵X~N (90,σ2),∴μ=90,又P (70≤X ≤90)=0.4,∴P (90≤x ≤110)=0.4,∴P (X ≥110)=1-0.4×22=0.1,则P (X<110)=1-0.1=0.9.∴该学生的数学成绩小于110分的概率为0.9.【答案】0.916.(考点:离散型随机变量的数学期望,★★★)某袋中装有5个除编号外完全相同的小球,编号为1,2,3,4,5.现从该袋内随机取出3个小球,记被取出的小球的最大号码数为ξ,则E (ξ)= . 【解析】由题意可知ξ的可能取值为3,4,5, 则P (ξ=3)=C 33C 53=0.1,P (ξ=4)=C 32C 53=0.3,P (ξ=5)=C 42C 53=0.6,所以E (ξ)=0.1×3+0.3×4+0.6×5=4.5. 【答案】4.5。
2024届新高考一轮总复习人教版 第十章 第4节 随机事件的概率与古典概型 课件(37张)
图形表示
如果事件 B 包含事件 A,事件 A 也包含事件 B,即 B⊇A 且 A⊇B,则称事件 特殊情形
A 与事件 B 相等,记作 A=B
(2)并事件与交事件
并事件(和事件)
交事件(积事件)
一般地,事件 A 与事件 B_至__少__有__一___ 一般地,事件 A 与事件 B_同__时__发__生___,
1.事件的相关概念
备考第 1 步——梳理教材基础,落实必备知识
发生
不发生
ቤተ መጻሕፍቲ ባይዱ
2.事件的关系和运算
(1)包含关系与相等关系
定义
一般地,若事件 A 发生,则事件 B_一__定__发__生___,我们就称事件 B 包含事件 A(或事件 A 包含于事件 B)
含义
A 发生导致 B 发生
符号表示
B__⊇__A(或 A__⊆__B)
【小题热身】 1.思考辨析(在括号内打“√”或“×”) (1)事件发生的频率与概率是相同的.( ) (2)在大量重复试验中,概率是频率的稳定值.( ) (3)两个事件的和事件是指两个事件都得发生.( ) (4)若 A∪B 是必然事件,则 A 与 B 是对立事件.( ) 答案:(1)× (2)√ (3)× (4)×
(2)古典概型的概率公式 一般地,设试验 E 是古典概型,样本空间 Ω 包含 n 个样本点,事件 A 包含其中的 k 个样本点,则定义事件 A 的概率 P(A)=____n_k____=nn((ΩA)). 其中,n(A)和 n(Ω)分别表示事件 A 和样本空间 Ω 包含的样本点个数.
[必记结论] 1.从集合的角度理解互斥事件和对立事件. (1)几个事件彼此互斥,是指由各个事件所含的结果组成的集合的交集为空集. (2)事件 A 的对立事件-A 所含的结果组成的集合,是全集中由事件 A 所含的结果组成 的集合的补集. 2.概率加法公式的推广 当一个事件包含多个结果且各个结果彼此互斥时,要用到概率加法公式的推广,即 P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An).
高考理科第一轮复习课件(10.5古典概型)
6 3 答案: 1 3
6.已知集合A={2,5},在A中可重复地依次取出三个数a,b,c,
则“以a,b,c为边恰好构成三角形”的概率是________. 【解析】“在A中可重复地依次取出三个数a,b,c”的基本事件 总数为23=8,事件“以a,b,c为边不能构成三角形”分别为 (2,2,5),(2,5,2),(5,2,2),所以 P=1 3= 5 . 答案:
所以满足条件n ≥ m+2 的事件的概率为 P1= 3 , 故满足条件
16 n<m+2 的事件的概率为P′=1-P1=1- 3 =13 . 16 16 答案:13 16
(2)方法一:从下图可以看出基本事件与所描点一一对应,有 36种,
5 15
15 4 故经过4次测试恰好将2个次品都找到的概率是 . 15
【拓展提升】求复杂的互斥事件的概率的两种方法 (1)直接求法:将所求事件的概率分解为一些彼此互斥的事 件的概率的和,运用互斥事件概率的加法公式计算. (2)间接求法:先求此事件的对立事件的概率,再用公式 P(A)=1-P( A )求得,即运用逆向思维(正难则反),特别是 “至多”“至少”型题目,用间接求法会较简便. 【提醒】应用互斥事件概率的加法公式,一定要注意首先确定 各个事件是否彼此互斥,然后求出各事件发生的概率,再求和.
【思路点拨】(1)由于选项中的公式只有两个互斥事件的和
事件的概率才满足,所以只需判断A1与A2,A1与A3,A1与A4以及A2 与A3是否互斥即可. (2)利用概率的性质及互斥事件概率的公式即可解决. (3)4次测试恰好将2个次品都找到可分为“前3次测试仅有一次 取到次品,第4次测试恰好取到次品”与“前4次测试都取到正 品”两种情况.
高考数学一轮复习 第11章 概率 5 二项分布与超几何分布课件 新人教版
例4 某超市在节日期间进行有奖促销,凡在该超市购物满500元的顾客,
可以获得一次抽奖机会,有两种方案.方案一:在抽奖的盒子中有除颜色外
完全相同的2个黑球,3个白球,顾客一次性摸出2个球,规定摸到2个黑球奖
励50元,1个黑球奖励20元,没有摸到黑球奖励15元.方案二:在抽奖的盒子中
有除颜色外完全相同的2个黑球,3个白球,顾客不放回地每次摸出一个球,
②依题意,该顾客参加了12次答题返现.
设答对题目的次数为Y,则Y~B(12,0.4).
设该顾客答对k次题目的概率最大,
-1
C12
0.4 (1-0.4)12- ≥ C12 0.4-1 (1-0.4)13- ,
则
12-
11-
+1
+1
C12 0.4 (1-0.4)
≥ C12 0.4 (1-0.4)
1
口遇到红灯的概率均为 3 ,用X表示他遇到红灯的次数,则E(X)=
由题意可知这 2 次红灯的不同的分布情形共有C52 =10(种).
1
因为他在每个路口遇到红灯的概率均为 ,
3
1
1
5
所以 X~B 5, ,所以 E(X)=5× = .
3
3
3
5
3
.
第二环节
关键能力形成
能力形成点1
n重伯努利试验与二项分布
1 4
的概率分别为 2 和 5.
(1)求该装置正常工作超过10 000小时的概率;
(2)某城市5G基站建设需购进1 200台该装置,估计该批装置能正常工作
超过10 000小时的台数.
解 (1)依题意,元件 A 至少有一个正常工作超过 10 000 小时的概率为
2019届高三数学(理)第一轮复习教学进度表
第四章:平面向量、数系的扩充与复数引入
1.平面向量的概念及线性运算
2.平面向量的基本定理及坐标表示
3.平面向量的数量积与平面向量的应用举例
4.数系的扩充与复数的引入
7
第十二周
(11.19-11.25)
第五章:数列
1.数列的概念与简单表示法及通项公式
2.等差数列及其前n项和
7
7
第二周
(09.10-09.16)
第二章:
函数、导数及其应用
(国庆节)
1.函数及其表示,定义域与值域
2.函数的单调性与最值
3.函数的奇偶性与周期性
7
第三周
(09.17-09.23)
4.函数的图象
5. 二次函数与幂函数
6.指数与指数函数
7
第四周
(09.24-09.30)
7.对数与对数函数
8.函数与方程
2019届高三数学(理)第一轮复习教学进度表
第一轮的复习要以基础知识、基本技能、基本方法为主,争取在3月31日前完成第一轮复习。
时间
教材章节
教学内容
课时
备注
第一周
(09.03-09.09)
第一章:
集合与常用逻辑用语
1.集合的概念及其基本运算
2.命题及关系、充分条件与必要条件
3.简单的逻辑联结词、全称量词与存在量词
第十三周
(11.26-12.02)
3.等比数列及其前n项和
4.数列求和
7
第十四周
(12.03-12.09)
第六章:
不等式、推理与证明
1.不等关系与不等式与一元二次不等式及其解法
2.二元一次不定式(组)与简单的线性规划问题
2013走向高考,贾凤山,高中总复习,数学11-5
第11章
第五节
高考数学总复习
解析:把两个坐了人的凳子记作 1,四个未坐人的凳 子记作 0,则问题转化为将四个 0 和两个 1 排一列,1 不 相邻且不在两头的概率问题.所有排法种数共有 10 种, 1 符合条件的只有 1 种,故所求概率为 P= . 10
人 教
A
版
1 答案: 10
第11章
第五节
高考数学总复习
人 教
A
版
第11章
第五节
高考数学总复习
5.理清基本事件关系,正确使用互斥、对立事件概 率公式
在公式P(A∪B)=P(A)+P(B)中,前提条件是A与B互
斥,如果A与B不互斥,则应为P(A∪B)=P(A)+P(B)- P(A∩B). 6.古典概型中的基本事件数是有限的,几何概型中 的基本事件数是无限的.
A
版
第11章
第五节
高考数学总复习
分析:(x,y)与(y,x)作为点的坐标是不同的,故基本 事件总数为6×6=36个,落在直线2x+y=8上的点可依次
令x=1,2,„,6找出y∈N*的即可求出.
人 教
A
版
第11章
第五节
高考数学总复习
解析:依题意,以(x,y)为坐标的点一共有 6×6= 36 个, 其中落在直线 2x+y=8 上的点一共有 3 个: (1,6), 3 1 (2,4),(3,2),故所求概率为 P= = . 36 12
答案:B
第11章 第五节 人 教
A
版
高考数学总复习
有无放回取样的概率计算问题
[例 2] 某厂生产的 10 件产品中, 8 件正品, 件次品, 有 2 正品与次品在外观上没有区别,从这 10 件产品中任意抽检 2 件. (1)两件都是正品的概率为 ________; (2)一件是正品,一件是次品的概率为 ________; (3)如果抽检的 2 件产品都是次品, 则这批产品将被退货, 这批产品被退货的概率为 ________.
古典概型和几何概型(一轮复习数学)
(2)先后掷两枚相同的骰 子,则向上的点数之和 为5的概率为
1 A. 18 1 B. 9 1 C. 6 1 D. 12
(3)某种饮料每箱装 6听,其中2听不合格,质检人员从 中随机抽取 2听,检测出都是合格产 品的概率为
1 A. 5 2 B. 5 3 C. 5 4 D. 5
类型二:古典概型的求 法
类型三:几何概型的求 法(与面积有关问题) 例1. 一只受伤的丹顶鹤在如 图所示(直角梯形)的 草原上空飞过,
其中AD 2,DC 2,BC 1,它可能随机落在草原 上 任何一处(点)。若落 在扇形区域ADE以外丹顶鹤能生 还,该丹顶鹤生还的概 率是 10 10
例2. 如图,圆C内切于扇形AOB,AOB
1 A. 5 2 B. 5 3 C. 5 4 D. 5
例4.如图所示,边长为 2的正方形中有一封闭曲 线围成的阴影 区域。在正方形中随机 撒一粒豆子,它落在阴 影区域内的概率 2 为 ,则阴影区域的面积为 3
4 A. 3
8 B. 3
2 C. 3
D.无法计算
类型二:几何概型的求 法(与长度、角度有关 问题) 例1. 如图所示,在直角坐标 系内,射线 OT落在30角的终边上,
3 C. 10 2 D. 5
(2)袋中有五张卡片,其 中红色卡片三张,标号 分别为 1,2 3;蓝色卡片两张,标号 分别为 1,2. .从以上五张卡片中任取 2两张,求这两张卡片不 同且标号
之和小于4的概率. .向袋中再放入一张标号 为0的绿色卡片,从这六张 卡片中
任取两张,求这两张卡 片颜色不同且标号之和 小于4的概率.
类型一:古典概型基本 概念 例1( . 1 )判断正误:
“在适宜条件下种下一 粒种子观察它是否发芽 ”属于古典概型, 其基本事件是“发芽与 不发芽”
最新高考一轮总复习《11.2 古典概型、条件概率与全概率公式》
全概率公式的应用
例3 假设某工厂生产的甲、乙、丙三种产品所占的百分率及其优质率
的信息如下表所示:
产品种类
百分率
优质率
甲
60%
90%
乙
20%
85%
丙
20%
80%
从该工厂生产的产品中任取一件,求取到的产品是优质品的概率.
解 设事件A1=“取到的产品是甲产品”,
A2=“取到的产品是乙产品”,
A3=“取到的产品是丙产品”,
共9个等可能的样本点,设事件A=“两人参加同一个小组”,
则A={(A,A),(B,B),(C,C)},共3个等可能的样本点,
3 1
所以两人参加同一个小组的概率为 9 = 3.
(2)甲从集合{1,2,3,4,5,6,7,8,9}中任取三个不同的元素,并按降序排列得
到十进制三位数a,乙从集合{1,2,3,4,5,6,7,8}中任取三个不同的元素,并按
4.结合古典概型,会利用乘法公式计算概率.
5.结合古典概型,会利用全概率公式计算概率.*了解贝叶斯公式.
备考指导
古典概型、条件概率与全概率公式是高考的重点内容,高考中一般在选择
题、填空题中考查,难度中等.值得注意的是:条件概率在高考出现的频率
提高,增加了全概率公式,整体要求提高了.
因此本节知识的复习,要多结合实际情境进行,尤其是对于条件概率与全概
1
A.3
2
B.5
2
C.3
4
D.5
将 4 个 1 和 2 个 0 随机排成一行的总的排法有C62 =15(种),
其中 2 个 0 不相邻的排法有C52 =10(种),
所以 2 个 0
10
不相邻的概率为
新高考数学一轮复习考点知识专题讲解与练习 52 古典概型
新高考数学一轮复习考点知识专题讲解与练习考点知识总结52 古典概型高考概览高考在本考点的常考题型为选择题、填空题,分值为5分,中等难度考纲研读1.理解古典概型及其概率计算公式2.会计算一些随机事件所包含的样本点数及事件发生的概率一、基础小题1.某银行储蓄卡上的密码是一个六位数号码,每位上的数字可以在0~9这10个数字中选取.某人未记住密码的最后一位数字,如果随意按密码的最后一位数字,则正好按对密码的概率是()A.1106B.1105 C.1102D.110答案 D解析只考虑最后一位数字即可,从0到9这10个数字中随机选一个的概率为110.2.食物相克是指事物之间存在着相互拮抗、制约的关系,若搭配不当,会引起中毒反应.已知蜂蜜与生葱相克,鲤鱼与南瓜相克,螃蟹与南瓜相克.现从蜂蜜、生葱、南瓜、鲤鱼、螃蟹五种食物中任意选取两种,则它们相克的概率为( )A .13B .23 C.310 D .710答案 C解析 由题意,可得样本点总数n =C 25=10,所以它们相克的概率为P =310.故选C. 3.某英语初学者在拼写单词“steak ”时,对后三个字母的记忆有些模糊,他只记得由“a ”“e ”“k ”三个字母组成,并且“k ”只可能在最后两个位置,如果他根据已有信息填入上述三个字母,那么他拼写正确的概率为( )A .16B .14 C.12 D .13答案 B解析 解法一:由题知可能的结果有C 12A 22=4种,其中正确的只有一种,所以拼写正确的概率是14.故选B.解法二:由题知可能的结果有eak ,aek ,eka ,ake ,共4种,其中正确的只有一种,所以拼写正确的概率是14.故选B.4.一部3卷文集随机地排在书架上,卷号自左向右或自右向左恰为1,2,3的概率是( )A .16B .13 C.12 D .23答案 B解析 3卷文集随机排列,共有A 33=6种结果,其中卷号自左向右或自右向左恰为1,2,3的只有2种,所以卷号自左向右或自右向左恰为1,2,3的概率是26=13.故选B.5.中国是发现和研究勾股定理最古老的国家之一,古代数学家称直角三角形较短的直角边为勾,另一直角边为股,斜边为弦,其三边长组成的一组数据称为勾股数.现从1~15这15个数中随机抽取3个,则这三个数为勾股数的概率为( )A .1910B .3910 C.4455 D .6455答案 C解析 从这15个数中随机抽取3个数,样本点的个数为C 315,其中为勾股数的有(3,4,5),(6,8,10),(9,12,15),(5,12,13),共4个,故所求概率为P =4C 315=4455.故选C.6.将一枚质地均匀的骰子投掷两次,得到的点数依次记为a 和b ,则方程ax 2+bx +1=0有实数解的概率是( )A .736B .12 C.1936 D .518答案 C解析 投掷骰子两次,所得的点数a 和b 满足的关系为⎩⎨⎧1≤a ≤6,a ∈N *,1≤b ≤6,b ∈N *.所以a 和b 的组合有36种,若方程ax 2+bx +1=0有实数解,则Δ=b 2-4a ≥0,所以b 2≥4a .当b =1时,没有a 符合条件;当b =2时,a 可取1;当b =3时,a 可取1,2;当b =4时,a 可取1,2,3,4;当b =5时,a 可取1,2,3,4,5,6;当b =6时,a 可取1,2,3,4,5,6.满足条件的组合有19种,则方程ax 2+bx +1=0有实数解的概率P =1936.故选C.7.(多选)某展会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能的随机顺序前往酒店接嘉宾.某嘉宾突发奇想,设计了两种乘车方案.方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车.记方案一与方案二坐到“3号”车的概率分别为P 1,P 2,则( )A .P 1·P 2=16B .P 1=P 2=12C .P 1+P 2=56D .P 1>P 2答案 ACD解析 三辆车的出车顺序可能为123,132,213,231,312,321,共6种.方案一坐到“3号”车可能为132,213,231,共3种,所以P 1=36=12;方案二坐到“3号”车可能为312,321,共2种,所以P 2=26=13.所以P 1>P 2,P 1·P 2=16,P 1+P 2=56.故选ACD.8.连掷两次骰子得到的点数分别为m 和n ,记向量a =(m ,n )与向量b =(1,-1)的夹角为θ,则θ∈⎝ ⎛⎦⎥⎤0,π2的概率是________. 答案 712解析 ∵a ·b =m -n ,夹角θ∈⎝ ⎛⎦⎥⎤0,π2,∴a ·b ≥0,即m ≥n .满足θ∈⎝ ⎛⎦⎥⎤0,π2的点A (m ,n )有6+5+4+3+2+1=21个,点A (m ,n )的样本点总数为36,故所求概率为2136=712.二、高考小题9.(2022·全国甲卷)将4个1和2个0随机排成一行,则2个0不相邻的概率为( )A .13B .25 C.23 D .45答案 C解析 将4个1和2个0安排在6个位置,选择2个位置安排0,共有C 26种排法;将4个1排成一行,把2个0插空,即在5个位置中选2个位置安排0,共有C 25种排法.所以2个0不相邻的概率P =C 25C 26=23.故选C. 10.(2022·全国Ⅰ卷)设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( )A .15B .25 C.12 D .45答案 A解析 如图,从O ,A ,B ,C ,D 5个点中任取3点的取法分别为{O ,A ,B },{O ,A ,C },{O ,A ,D },{O ,B ,C },{O ,B ,D },{O ,C ,D },{A ,B ,C },{A ,B ,D },{A ,C ,D },{B ,C ,D },共10种不同取法,3点共线的有{O ,A ,C }与{O ,B ,D },共2种情况.由古典概型的概率计算公式知,取到3点共线的概率为210=15.故选A.11.(2022·全国Ⅰ卷)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,下图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A .516B .1132 C.2132 D .1116答案 A解析 在所有重卦中随机取一重卦,其样本点总数n =26=64,恰有3个阳爻的样本点数为C 36=20,所以在所有重卦中随机取一重卦,该重卦恰有3个阳爻的概率P =2064=516.故选A.12.(2022·全国Ⅱ卷)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A .112B .114 C.115 D .118答案 C解析 不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有C 210=45种等可能的结果,因为7+23=11+19=13+17=30,所以随机选取两个不同的数,其和等于30包含的可能结果有3种,故概率为345=115.故选C.13.(2022·江苏高考)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是________.答案 19解析 根据题意可得样本点总数为6×6=36,点数和为5的样本点有(1,4),(4,1),(2,3),(3,2),共4个,∴向上的点数和为5的概率为436=19.14.(2022·江苏高考)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是________.答案 710解析 解法一:样本点总数为C 25=10,选出的2名同学中至少有1名女同学的样本点有C 13C 12+C 22=7个,故所求概率为710. 解法二:同解法一,得样本点总数为10,选出的2名同学中没有女同学的样本点有C 23=3个,故所求概率为1-310=710.解法三:设3名男同学分别为A ,B ,C ,2名女同学分别为a ,b ,则样本空间为{AB ,AC ,Aa ,Ab ,BC ,Ba ,Bb ,Ca ,Cb ,ab },共包含10个样本点,选出的2名同学中至少有1名女同学的事件所包含的样本点分别为Aa ,Ab ,Ba ,Bb ,Ca ,Cb ,ab ,共7个,故所求概率为710.解法四:同解法三,得样本点总数为10,选出的2名同学中没有女同学的事件所包含的样本点分别为AB,AC,BC,共3个,故所求概率为1-310=7 10.三、模拟小题15.(2022·新高考八省联考)在三张卡片上分别写上三位同学的学号后,再把卡片随机分给这三位同学,每人一张,则恰有一位同学分到写有自己学号的卡片的概率为()A.16B.13 C.12D.23答案 C解析设三位同学分别为A,B,C,他们的学号分别为1,2,3,用有序实数列表示三人拿到的卡片种类,如(1,3,2)表示A同学拿到1号,B同学拿到3号,C同学拿到2号.三人可能拿到的卡片结果为(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),共6种,其中满足题意的结果有(1,3,2),(2,1,3),(3,2,1),共3种,结合古典概型的概率计算公式可得,满足题意的概率P=36=12.故选C.16.(2022·山东菏泽一模)菏泽万达商场在春节前开展商品促销活动,顾客凡购物金额满50元,则可以从“福”字、春联和灯笼这三类礼品中任意免费领取一件,若有4名顾客都领取一件礼品,则他们中有且仅有2人领取的礼品种类相同的概率是()A.59B.49 C.89D.916答案 B解析若有4名顾客都领取一件礼品,则样本点总数n=34=81,其中他们中有且仅有2人领取的礼品种类相同包含的样本点个数为m =C 24A 33=36,则他们中有且仅有2人领取的礼品种类相同的概率是P =m n =3681=49.故选B.17.(多选)(2022·湖北武汉市第十四中学月考)从集合A ={-1,-3,2,4}中随机选取一个数记为a ,从集合B ={-5,1,4}中随机选取一个数记为b ,则( )A .ab >0的概率是12B .a +b ≥0的概率是12C .直线y =ax +b 不经过第三象限的概率是13D .ln a +ln b >1的概率是512答案 AC解析 由题意可得(a ,b )所有可能的取法有(-1,-5),(-1,1),(-1,4),(-3,-5),(-3,1),(-3,4),(2,-5),(2,1),(2,4),(4,-5),(4,1),(4,4),共12种.对于A ,满足ab >0的取法有(-1,-5),(-3,-5),(2,1),(2,4),(4,1),(4,4),共6种,所以ab >0的概率为P =612=12,故A 正确;对于B ,满足a +b ≥0的取法有(-1,1),(-1,4),(-3,4),(2,1),(2,4),(4,1),(4,4),共7种,所以a +b ≥0的概率为P =712,故B 不正确;对于C ,因为直线y =ax +b 不经过第三象限,所以a <0,b ≥0,所有满足直线y =ax +b 不经过第三象限的取法有(-1,1),(-1,4),(-3,1),(-3,4),共4种,所以直线y =ax +b 不经过第三象限的概率P =412=13,故C 正确;对于D ,因为ln a +ln b =ln ab >1,所以a >0,b >0,ab >e ,所有满足ln a +ln b >1的取法有(2,4),(4,1),(4,4),共3种,所以ln a +ln b >1的概率为P =312=14,故D不正确.故选AC.18.(2022·河北石家庄模拟)公元960年,北宋的建立结束了五代十国割据的局面.北宋的农业、手工业、商业空前繁荣,科学技术突飞猛进,火药、指南针、印刷术三大发明在这种经济高涨的情况下得到广泛应用.1084年秘书省第一次印刷出版了《算经十书》,为数学的发展创造了良好的条件.11世纪至14世纪出现了一批著名的数学家和数学著作,如秦九韶的《数书九章》,李冶的《测圆海镜》,杨辉的《详解九章算法》《日用算法》和《杨辉算法》,现从三位数学家的五部专著中任意选择两部作为学生课外兴趣拓展参考书目,则所选的两部专著中至少有一部不是杨辉所著的概率为( )A.35 B .710 C.45 D .910答案 B解析 由题意,五部专著中有三部是杨辉所著.现从这五部专著中选择两部的样本点总数n =C 25=10,所选的两部专著中至少有一部不是杨辉所著包含的样本点个数m =C 22+C 12C 13=7,则所选的两部专著中至少有一部不是杨辉所著的概率为P =m n =710.故选B.19.(多选)(2022·重庆市高三阶段考试)在某大型活动中,甲、乙等五名志愿者被随机地分到A ,B ,C ,D 四个不同的岗位服务,每个岗位至少有一名志愿者,则( )A .甲、乙两人同时参加A 岗位服务的概率为140B.甲、乙两人不在同一岗位服务的概率为45C .五名志愿者中有两人同时参加A 岗位服务的概率为14D.五名志愿者中仅有一人参加A 岗位服务的概率为34答案 ACD解析 记“甲、乙两人同时参加A 岗位服务”为事件E A ,那么P (E A )=A 33C 25A 44=140,即甲、乙两人同时参加A 岗位服务的概率是140,A 正确;记“甲、乙两人同时参加同一岗位服务”为事件E ,那么P (E )=A 44C 25A 44=110,所以甲、乙两人不在同一岗位服务的概率是P (E -)=1-P (E )=910,B 错误;有两人同时参加A 岗位服务的概率P 2=C 25A 33C 25A 44=14,C 正确;仅有一人参加A 岗位服务的概率P 1=1-P 2=34,D 正确.20.(多选)(2022·河北省保定市高三月考)设集合M ={2,3,4},N ={1,2,3,4},分别从集合M 和N 中随机取一个元素m 与n .记“点P (m ,n )落在直线x +y =k 上”为事件A k (3≤k ≤8,k ∈N *),若事件A k 的概率最大,则k 的取值可能是( )A .4B .5 C.6 D .7答案 BC解析 由题意,点P (m ,n )的所有可能情况为(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共12个样本点,则事件A 3=“点P (m ,n )落在直线x +y =3上”包含其中(2,1),共1个样本点,所以P (A 3)=112;事件A 4=“点P (m ,n )落在直线x +y =4上”包含其中(2,2),(3,1),共2个样本点,所以P (A 4)=16;事件A 5=“点P (m ,n )落在直线x +y =5上”包含其中(2,3),(3,2),(4,1),共3个样本点,所以P (A 5)=14;事件A 6=“点P (m ,n )落在直线x +y =6上”包含其中(2,4),(3,3),(4,2),共3个样本点,所以P (A 6)=14;事件A 7=“点P (m ,n )落在直线x +y =7上”包含其中(3,4),(4,3),共2个样本点,所以P (A 7)=16;事件A 8=“点P (m ,n )落在直线x +y =8上”包含其中(4,4),共1个样本点,所以P (A 8)=112.综上可得,当k =5或6时,P (A k )max =P (A 5)=P (A 6)=14.故选BC.21.(2022·河北张家口第三次模拟)2022年3月18日至19日的中美高层战略对话结束后,某校高二(1)班班主任王老师利用班会时间让学生观看了相关视频,见识了强大的祖国对中美关系的霸气表态,同学们非常激动,爱国情感油然而生.为使班会效果更佳,班主任王老师计划从由3名女生(分别记为甲、乙、丙)和4名男生(分别记为A ,B ,C ,D )组成的学习小组中选出4名进行观后体会交流,则男生A 和女生甲没有被同时选中的概率为________.答案 57解析 从3名女生和4名男生组成的学习小组中选出4名,共有C 47=35种选法,男生A 和女生甲被同时选中有C 25=10种选法,故所求概率P =1-1035=57.22.(2022·江苏南京金陵中学模拟)从集合⎩⎨⎧⎭⎬⎫2,3,12,23中取两个不同的数a ,b ,则log a b >0的概率为________.答案 13 解析 取两个不同的数a ,b ,记为有序数对(a ,b ),所有样本点为(2,3),⎝ ⎛⎭⎪⎫2,12,⎝ ⎛⎭⎪⎫2,23,(3,2),⎝ ⎛⎭⎪⎫3,12,⎝ ⎛⎭⎪⎫3,23,⎝ ⎛⎭⎪⎫12,2,⎝ ⎛⎭⎪⎫12,3,⎝ ⎛⎭⎪⎫12,23,⎝ ⎛⎭⎪⎫23,2,⎝ ⎛⎭⎪⎫23,3,⎝ ⎛⎭⎪⎫23,12,共12种,满足log a b >0的情况有(2,3),(3,2),⎝ ⎛⎭⎪⎫12,23,⎝ ⎛⎭⎪⎫23,12,共4种,故所求概率为13.一、高考大题1.(2022·天津高考)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.①试用所给字母列举出所有可能的抽取结果;②设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率.解 (1)由已知,得甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(2)①从抽出的7名同学中随机抽取2名同学的所有可能结果为{A ,B },{A ,C },{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21种.②由(1)知,不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A,B},{A,C},{B,C},{D,E},{F,G},共5种.所以事件M发生的概率P(M)=521.二、模拟大题2.(2022·四川省遂宁市高三三模)我国的高等教育中对于硕士研究生的培养,按照培养方向分类,可分为普通硕士和专业硕士两类:一类是普通硕士,根据我国的有关规定,普通硕士教育以培养教学和科研人才为主,授予学位的类型主要是学术型学位;另一类是专业硕士,根据国务院学位委员会的定位,专业型学位为具有职业背景的学位,培养特定职业高层次专门人才.专业硕士教育的学习方式比较灵活,大致可分为在职攻读和全日制学习两类.某大学团委为了解该校大学一年级的学生对未来的考硕士研究生的规划,从中随机抽取容量为100的样本,其中有考硕士研究生规划的有24人(其中有考普通硕士规划的6人中,2名是男生,4名是女生).(1)若从样本中选一位学生,那么该同学有考普通硕士规划的概率是多大?(2)从这6名有考普通硕士规划的学生中,选出3个人,求其中男生至少有一人的概率.解(1)样本容量为100,其中有考普通硕士规划的有6人,故该同学有考普通硕士规划的概率P=6100=3 50.(2)从6人中选取3人有C36=20种情况,其中至少有一个男生有C12C24+C22C14=16种情况,故其中男生至少有一人的概率P=16 20=45.3.(2022·湖南省四校高三摸底调研联考)为检查学生学习传染病防控知识的成效,某校高一年级部对本年级1500名同学进行了传染病防控知识检测,并从中随机抽取了300份答卷,按得分区间[40,50),[50,60),…,[80,90),[90,100]分别统计,绘制成频率分布直方图如上.(1)估计高一年级传染病防控知识答卷得分的中位数(结果精确到个位);(2)根据频率分布直方图,按各得分区间的人数的比例,从得分在区间[80,90)内和[90,100]内的学生中任选7人,并从这7人中随机选3人作传染病预防知识宣传演讲,求这3人中至少有一人得分在区间[90,100]内的概率.解(1)设高一年级传染病防控知识答卷得分的中位数的估计值为x,根据频率分布直方图得,0.005×10+0.010×10+0.022×10=0.37,0.37+0.028×10=0.65,则x∈[70,80).由0.37+0.028(x-70)=0.5(中位数左边和右边小长方形的面积和均为0.5),解得x =74914≈75.∴估计高一年级传染病防控知识答卷得分的中位数为75.(2)根据频率分布直方图得,得分在区间[80,90)内和[90,100]内的频率分别为0.25,0.1,对应人数的比为5∶2,∴所选的7人中,得分在[80,90)内的有5人,得分在[90,100]内的有2人. ∴从7人中随机选3人,这3人中至少有一人得分在区间[90,100]内的概率为1-C 35C 37=57. 4.(2022·湖北省武汉市第十四中学月考)袋中装有6个形状、大小完全相同的球,其中红色球有3个,黄色球有2个,绿色球有1个.规定取出红色球记1分,取出黄色球记2分,取出绿色球记3分.在无法看到球颜色的情况下,首先由甲取出3个球,并不再将它们放回袋中,然后由乙取出剩余的球,规定取出球的总积分多者获胜.(1)求甲、乙平局的概率;(2)从概率的角度分析先后取球的顺序是否影响比赛的公平性.解 (1)甲从6个球中取出3个球,有C 36=20种情况,6个小球总分为3×1+2×2+1×3=10分,故甲、乙平局时都得5分,此时,甲取出的3个小球中有1个红色球和2个黄色球,或有2个红色球和1个绿色球,共有C 13C 22+C 23C 11=6种情况,所以平局的概率为P 1=620=310.(2)由甲先取球时,若甲获胜,得分只能是7分或6分,即取出的3个小球中有1个绿色球和2个黄色球,或有1个绿色球和1个黄色球和1个红色球,共7种情况,所以甲获胜的概率P 2=720,由(1)可得平局的概率为P 1=310,所以乙获胜的概率为P 3=1-310-720=720,由上述可知甲、乙获胜的概率相同.同理,由乙先取球时,甲、乙获胜的概率也相同. 故先后取球的顺序不影响比赛的公平性.5.(2022·湖北省武汉市部分学校高三9月起点质量检测)在某班学生举办的庆祝建党一百周年活动中,指定4名同学依次在分别写有“建”“党”“百”“年”四字的四张卡牌中有放回地随机抽取一张并记录结果.(1)求最后的结果中同时有“建”“党”两字的概率;(2)用X 表示结果中这四个字各出现次数中的最大值,求E (X ).解 (1)因为是放回地简单随机抽样,所以每位同学都有四种选择,故共有4×4×4×4=256种,其中最后的结果中没有“建”“党”两字,有2×2×2×2=16种,“建”“党”两字只出现一个,有2×(C 14×2×2×2+C 24×2×2+C 34×2+1)=130种,所以最后的结果中同时有“建”“党”两字的概率为256-16-130256=55128. (2)X 的可能取值为4,3,2,1,所以P (X =4)=4256=164,P(X=3)=C34C14C13256=316,P(X=2)=C24C24+C14C24A23256=4564,P(X=1)=A44256=332,所以E(X)=4×164+3×316+2×4564+1×332=178.。
中学数学第十一章 第5节 古典概型
第5节古典概型最新考纲 1.理解古典概型及其概率计算公式;2.会计算一些随机事件所包含的基本事件数及事件发生的概率.知识梳理1.基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和.2.古典概型具有以下两个特征的概率模型称为古典的概率模型,简称古典概型.(1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果.(2)每一个试验结果出现的可能性相同.3.如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1n;如果某个事件A包括的结果有m个,那么事件A的概率P(A)=m n.4.古典概型的概率公式P(A)=事件A包含的可能结果数试验的所有可能结果数.[微点提醒]概率的一般加法公式P(A∪B)=P(A)+P(B)-P(A∩B)中,易忽视只有当A∩B=∅,即A,B互斥时,P(A∪B)=P(A)+P(B),此时P(A∩B)=0.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.()(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.()(3)从-3,-2,-1,0,1,2中任取一数,取到的数小于0与不小于0的可能性相同.()(4)利用古典概型的概率可求“在边长为2的正方形内任取一点,这点到正方形中心距离小于或等于1”的概率.()解析对于(1),发芽与不发芽不一定是等可能,所以(1)不正确;对于(2),三个事件不是等可能,其中“一正一反”应包括正反与反正两个基本事件,所以(2)不正确;对于(4),所有可能结果不是有限个,不是古典概型,应利用几何概型求概率,所以(4)不正确.答案(1)×(2)×(3)√(4)×2.(必修3P133A1改编)袋中装有6个白球,5个黄球,4个红球,从中任取一球抽到白球的概率为()A.25 B.415 C.35 D.非以上答案解析从袋中任取一球,有15种取法,其中抽到白球的取法有6种,则所求概率为p=615=25.答案 A3.(必修3P134B1改编)某人有4把钥匙,其中2把能打开门.现随机地取1把钥匙试着开门,不能开门的就扔掉,问第二次才能打开门的概率是________.如果试过的钥匙不扔掉,这个概率又是________.解析第二次打开门,说明第一次没有打开门,故第二次打开的概率为2×24×3=13;如果试过的钥匙不扔掉,这个概率为2×24×4=14.答案13144.(2018·全国Ⅱ卷)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为()A.0.6B.0.5C.0.4D.0.3解析2名男同学和3名女同学,共5名同学,从中取出2人,有C25=10种情况,2人都是女同学的情况有C23=3种,故选中的2人都是女同学的概率为310=0.3.答案 D5.(2017·山东卷)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是()A.518 B.49 C.59 D.79解析由题意可知依次抽取两次的基本事件总数n=9×8=72,抽到的2张卡片上的数奇偶性不同的基本事件个数m=C15C14A22=40,所以所求概率p=mn=4072=59.答案 C6.(2019·长沙模拟改编)在装有相等数量的白球和黑球的口袋中放进一个白球,此时由这个口袋中取出一个白球的概率比原来由此口袋中取出一个白球的概率大122,则口袋中原有小球的个数为________.解析设原来口袋中白球、黑球的个数分别为n个,依题意n+12n+1-n2n=122,解得n=5.所以原来口袋中小球共有2n=10个.答案10考点一基本事件及古典概型的判断【例1】袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其他球的编号,从中摸出一个球.(1)有多少种不同的摸法?如果把每个球的编号看作一个基本事件建立概率模型,该模型是不是古典概型?(2)若按球的颜色为划分基本事件的依据,有多少个基本事件?以这些基本事件建立概率模型,该模型是不是古典概型?解(1)由于共有11个球,且每个球有不同的编号,故共有11种不同的摸法.又因为所有球大小相同,因此每个球被摸中的可能性相等,故以球的编号为基本事件的概率模型为古典概型.(2)由于11个球共有3种颜色,因此共有3个基本事件,分别记为A:“摸到白球”,B:“摸到黑球”,C:“摸到红球”,又因为所有球大小相同,所以一次摸球每个球被摸中的可能性均为111,而白球有5个,故一次摸球摸到白球的可能性为5 11,同理可知摸到黑球、红球的可能性均为3 11,显然这三个基本事件出现的可能性不相等,故以颜色为划分基本事件的依据的概率模型不是古典概型.规律方法古典概型中基本事件个数的探求方法:(1)枚举法:适合于给定的基本事件个数较少且易一一列举出的问题.(2)树状图法:适合于较为复杂的问题,注意在确定基本事件时(x,y)可看成是有序的,如(1,2)与(2,1)不同,有时也可看成是无序的,如(1,2)与(2,1)相同. (3)排列组合法:在求一些较复杂的基本事件个数时,可利用排列或组合的知识. 【训练1】甲、乙两人用4张扑克牌(分别是红桃2、红桃3、红桃4、方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽1张.(1)写出甲、乙抽到牌的所有情况.(2)甲、乙约定,若甲抽到的牌的数字比乙大,则甲胜,否则乙胜,你认为此游戏是否公平?为什么?解(1)设(i,j)表示(甲抽到的牌的数字,乙抽到的牌的数字),则甲、乙二人抽到的牌的所有情况(方片4用4′表示)为(2,3),(2,4),(2,4′),(3,2),(3,4),(3,4′),(4,2),(4,3),(4,4′),(4′,2),(4′,3),(4′,4),共12种.(2)由(1)可知甲抽到的牌的牌面数字比乙大有(3,2),(4,2),(4,3),(4′,2),(4′,3),共5种情况,∴甲胜的概率p=512,∵512≠12,∴此游戏不公平.考点二简单的古典概型的概率【例2】(1)(2019·深圳一模)两名同学分3本不同的书,其中一人没有分到书,另一人分得3本书的概率为( )A.12B.14C.13D.16(2)(2019·湖南六校联考)设袋子中装有3个红球,2个黄球,1个蓝球,规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分,现从该袋子中任取(有放回,且每球取得的机会均等)2个球,则取出此2球所得分数之和为3分的概率为________.解析 (1)两名同学分3本不同的书,基本事件有(0,3),(1a ,2),(1b ,2),(1c ,2),(2,1a ),(2,1b ),(2,1c ),(3,0),共8个,其中一人没有分到书,另一人分到3本书的基本事件有2个,∴一人没有分到书,另一人分得3本书的概率p =28=14.(2)袋子中装有3个红球,2个黄球,1个蓝球,规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分,现从该袋子中任取(有放回,且每球取得的机会均等)2个球,基本事件总数n =6×6=36,取出此2球所得分数之和为3分,包含第一次抽到红球,第二次抽到黄球或者第一次抽到黄球,第二次抽到红球,基本事件个数m =2×3+3×2=12,所以取出此2球所得分数之和为3分的概率p =m n =1236=13.答案 (1)B (2)13规律方法 计算古典概型事件的概率可分三步:(1)计算基本事件总个数n ;(2)计算事件A 所包含的基本事件的个数m ;(3)代入公式求出概率p .【训练2】 (1)(2018·衡阳八中、长郡中学联考)同学聚会上,某同学从《爱你一万年》《十年》《父亲》《单身情歌》四首歌中选出两首歌进行表演,则《爱你一万年》未被选取的概率为( )A.13B.12C.23D.56(2)(2018·石家庄二模)用1,2,3,4,5组成无重复数字的五位数, 若用a 1,a 2,a 3,a 4,a 5分别表示五位数的万位、千位、百位、十位、个位数字,则出现a 1<a 2<a 3>a 4>a 5的五位数的概率为________.解析 (1)从四首歌中任选两首共有C 24=6种选法,不选取《爱你一万年》的方法有C23=3种,故所求的概率为p=36=12.(2)用1,2,3,4,5组成无重复数字的五位数,基本事件总数n=A55,用a1,a2,a3,a4,a5分别表示五位数的万位、千位、百位、十位、个位数字,出现a1<a2<a3>a4>a5的五位数有:12543,13542,23541,34521,24531,14532,共6个,∴出现a1<a2<a3>a4>a5的五位数的概率p=6A55=120.答案(1)B(2)1 20考点三古典概型的交汇问题多维探究角度1古典概型与平面向量的交汇【例3-1】设平面向量a=(m,1),b=(2,n),其中m,n∈{1,2,3,4},记“a⊥(a-b)”为事件A,则事件A发生的概率为()A.18 B.14 C.13 D.12解析有序数对(m,n)的所有可能情况为4×4=16个,由a⊥(a-b)得m2-2m+1-n=0,即n=(m-1)2.由于m,n∈{1,2,3,4},故事件A包含的基本事件为(2,1)和(3,4),共2个,所以P(A)=216=18.答案 A角度2古典概型与解析几何的交汇【例3-2】将一颗骰子先后投掷两次分别得到点数a,b,则直线ax+by=0与圆(x-2)2+y2=2有公共点的概率为________.解析依题意,将一颗骰子先后投掷两次得到的点数所形成的数组(a,b)有6×6=36种,其中满足直线ax+by=0与圆(x-2)2+y2=2有公共点,即满足2aa2+b2≤2,即a≤b的数组(a,b)有(1,1),(1,2),(1,3),(1,4),…,(6,6),共6+5+4+3+2+1=21种,因此所求的概率为2136=712.答案7 12角度3古典概型与函数的交汇【例3-3】已知函数f(x)=13x3+ax2+b2x+1,若a是从1,2,3三个数中任取的一个数,b是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为()A.79 B.13 C.59 D.23解析f′(x)=x2+2ax+b2,由题意知f′(x)=0有两个不等实根,即Δ=4(a2-b2)>0,∴a>b,有序数对(a,b)所有结果为3×3=9种,其中满足a>b有(1,0),(2,0),(3,0),(2,1),(3,1),(3,2)共6种,故所求概率p=69=23.答案 D角度4古典概型与统计的交汇【例3-4】(2019·济宁模拟)某中学组织了一次数学学业水平模拟测试,学校从测试合格的男、女生中各随机抽取100人的成绩进行统计分析,分别制成了如图所示的男生和女生数学成绩的频率分布直方图.(注:分组区间为[60,70),[70,80),[80,90),[90,100])(1)若得分大于或等于80认定为优秀,则男、女生的优秀人数各为多少?(2)在(1)中所述的优秀学生中用分层抽样的方法抽取5人,从这5人中任意选取2人,求至少有一名男生的概率.解(1)由题可得,男生优秀人数为100×(0.01+0.02)×10=30,女生优秀人数为100×(0.015+0.03)×10=45.(2)因为样本容量与总体中的个体数的比是530+45=115,所以样本中包含的男生人数为30×115=2,女生人数为45×115=3.则从5人中任意选取2人共有C 25=10种,抽取的2人中没有一名男生有C 23=3种,则至少有一名男生有C 25-C 23=7种.故至少有一名男生的概率为p =710,即选取的2人中至少有一名男生的概率为710.规律方法 求解古典概型的交汇问题,关键是把相关的知识转化为事件,然后利用古典概型的有关知识解决,一般步骤为:(1)将题目条件中的相关知识转化为事件;(2)判断事件是否为古典概型;(3)选用合适的方法确定基本事件个数;(4)代入古典概型的概率公式求解.【训练3】 (2019·黄冈质检)已知某中学高三理科班学生的数学与物理的水平测试成绩抽样统计如下表:若抽取学生n 人,成绩分为A (优秀),B (良好),C (及格)三个等级,设x ,y 分别表示数学成绩与物理成绩,例如:表中物理成绩为A 等级的共有14+40+10=64人,数学成绩为B 等级且物理成绩为C 等级的共有8人.已知x 与y 均为A 等级的概率是0.07.(1)设在该样本中,数学成绩的优秀率是30%,求a ,b 的值;(2)已知a ≥7,b ≥6,求数学成绩为A 等级的人数比C 等级的人数多的概率.解 (1)由题意知14n =0.07,解得n =200,∴14+a +28200×100%=30%,解得a =18, 易知a +b =30,所以b =12.(2)由14+a +28>10+b +34得a >b +2,又a +b =30且a ≥7,b ≥6,则(a ,b )的所有可能结果为(7,23),(8,22),(9,21),…,(24,6),共18种,而a >b +2的可能结果为(17,13),(18,12),…,(24,6),共8种,则所求概率p=818=49.[思维升华]1.古典概型计算三步曲第一,本试验是否是等可能的;第二,本试验的基本事件有多少个;第三,事件A是什么,它包含的基本事件有多少个.2.确定基本事件个数的方法列举法、列表法、树状图法或利用排列、组合.[易错防范]1.古典概型的重要思想是事件发生的等可能性,一定要注意在计算基本事件总数和事件包括的基本事件个数时,它们是不是等可能的.2.对较复杂的古典概型,其基本事件的个数常涉及排列数、组合数的计算,计算时要首先判断事件是否与顺序有关,以确定是按排列处理,还是按组合处理.基础巩固题组(建议用时:40分钟)一、选择题1.集合A={2,3},B={1,2,3},从A,B中各任意取一个数,则这两数之和等于4的概率是()A.23 B.12 C.13 D.16解析从A,B中任意取一个数,共有C12·C13=6种情形,两数和等于4的情形只有(2,2),(3,1)两种,∴p=26=13.答案 C2.设m,n∈{0,1,2,3,4},向量a=(-1,-2),b=(m,n),则a∥b的概率为()A.225 B.325 C.320 D.15解析 a ∥b ⇒-2m =-n ⇒2m =n ,所以⎩⎨⎧m =0,n =0或⎩⎨⎧m =1,n =2或⎩⎨⎧m =2,n =4,因此概率为35×5=325. 答案 B3.某同学先后投掷一枚骰子两次,第一次向上的点数记为x ,第二次向上的点数记为y ,在平面直角坐标系xOy 中,以(x ,y )为坐标的点在直线2x -y =1上的概率为( )A.112B.19C.536D.16解析 先后投掷一枚骰子两次,共有6×6=36种结果,满足题意的结果有3种,即(1,1),(2,3),(3,5),所以所求概率为336=112.答案 A4.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为( ) A.13 B.14 C.15 D.16解析 分别用A ,B ,C 表示齐王的上、中、下等马,用a ,b ,c 表示田忌的上、中、下等马,现从双方的马匹中随机选一匹进行一场比赛有Aa ,Ab ,Ac ,Ba ,Bb ,Bc ,Ca ,Cb ,Cc 共9场比赛,其中田忌马获胜的有Ba ,Ca ,Cb 共3场比赛,所以田忌马获胜的概率为13.答案 A5.(2019·周口调研)将一个骰子连续掷3次,它落地时向上的点数依次成等差数列的概率为( )A.112B.19C.115D.118解析 一个骰子连续掷3次,落地时向上的点数可能出现的组合数为63=216种.落地时向上的点数依次成等差数列,当向上点数若不同,则为(1,2,3),(1,3,5),(2,3,4),(2,4,6),(3,4,5),(4,5,6),共有2×6=12种情况;当向上点数相同,共有6种情况.故落地时向上的点数依次成等差数列的概率为12+6216=112. 答案 A 二、填空题6.(2019·武汉模拟)小明忘记了微信登录密码的后两位,只记得最后一位是字母A ,a ,B ,b 中的一个,另一位是数字4,5,6中的一个,则小明输入一次密码能够成功登陆的概率是________.解析 小明输入密码后两位的所有情况有C 14·C 13=12种,而能成功登陆的密码只有一种,故小明输入一次密码能够成功登陆的概率是112.答案 1127.(2019·河北七校联考)若m 是集合{1,3,5,7,9,11}中任意选取的一个元素,则椭圆x 2m +y 22=1的焦距为整数的概率为________.解析 m 是集合{1,3,5,7,9,11}中任意选取的一个元素,∴基本事件总数为6,又满足椭圆x 2m +y 22=1的焦距为整数的m 的取值有1,3,11,共有3个,∴椭圆x 2m +y 22=1的焦距为整数的概率p =36=12.答案 128.某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为________.解析 甲同学从四种水果中选两种,选法种数有C 24,乙同学的选法种数为C 24,则两同学的选法种数为C 24·C 24,两同学各自所选水果相同的选法种数为C 24,由古典概型概率计算公式可得,甲、乙两同学各自所选的两种水果相同的概率为p =C 24C 24C 24=16. 答案 16 三、解答题9.如图所示的茎叶图记录了甲、乙两组各四名同学的植树棵数,其中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.解 (1)当X =8时,由茎叶图可知,乙组四名同学的植树棵数分别是8,8,9,10,故x -=8+8+9+104=354,s 2=14×⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫8-3542×2+⎝ ⎛⎭⎪⎫9-3542+⎝ ⎛⎭⎪⎫10-3542=1116.(2)当X =9时,记甲组四名同学分别为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学分别为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,其包含的基本事件为{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 1,B 4},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 2,B 4},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 3,B 4},{A 4,B 1},{A 4,B 2},{A 4,B 3},{A 4,B 4},共16个.设“选出的两名同学的植树总棵数为19”为事件C ,则事件C 中包含的基本事件为{A 1,B 4},{A 2,B 4},{A 3,B 2},{A 4,B 2},共4个.故P (C )=416=14. 10.某市A ,B 两所中学的学生组队参加辩论赛,A 中学推荐了3名男生、2名女生,B 中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队.(1)求A 中学至少有1名学生入选代表队的概率;(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,求参赛女生人数不少于2人的概率.解 (1)由题意,参加集训的男、女生各有6名.参赛学生全从B 中学抽取(等价于A 中学没有学生入选代表队)的概率为C 33C 34C 36C 36=1100,因此,A 中学至少有1名学生入选代表队的概率为1-1100=99100.(2)设“参赛的4人中女生不少于2人”为事件A ,记“参赛女生有2人”为事件B ,“参赛女生有3人”为事件C .则P(B)=C23C23C46=35,P(C)=C33C13C46=15.由互斥事件的概率加法公式,得P(A)=P(B)+P(C)=35+15=45,故所求事件的概率为45.能力提升题组(建议用时:20分钟)11.已知函数f(x)=12ax2+bx+1,其中a∈{2,4},b∈{1,3},从f(x)中随机抽取1个,则它在(-∞,-1]上是减函数的概率为()A.12 B.34 C.16 D.0解析f(x)共有四种等可能基本事件即(a,b)取(2,1),(2,3),(4,1),(4,3),记事件A为f(x)在(-∞,-1]上是减函数,由条件知f(x)是开口向上的函数,对称轴是x=-ba≥-1,事件A共有三种(2,1),(4,1),(4,3)等可能基本事件,所以P(A)=3 4.答案 B12.甲在微信群中发布6元“拼手气”红包一个,被乙、丙、丁三人抢完.若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领取的钱数不少于其他任何人)的概率是()A.34 B.13 C.310 D.25解析6元分成整数元有3份,可能性有(1,1,4),(1,2,3),(2,2,2),第一个分法有3种,第二个分法有6种,第三个分法有1种,其中符合“最佳手气”的有4种,故概率为410=25.答案 D13.(2019·江西重点中学盟校联考)从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,则经过两次这样的调换后,甲在乙左边的概率是__________.解析从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,则经过两次这样的调换,基本事件总数为n=C23·C23=9,从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,第一次调换后,对调后的位置关系有三种:甲丙乙、乙甲丙、丙乙甲,第二次调换后甲在乙的左边对应的关系有:丙甲乙、甲乙丙;丙甲乙、甲乙丙;甲丙乙、丙甲乙,∴经过两次这样的调换后,甲在乙的左边包含的基本事件个数m=6,∴经过这样的调换后,甲在乙左边的概率:p=mn=69=23.答案2 314.(2019·太原一模)某快递公司收取快递费用的标准如下:质量不超过1 kg的包裹收费10元;质量超过1 kg的包裹,除1 kg收费10元之外,超过1 kg的部分,每1 kg(不足1 kg,按1 kg计算)需再收5元.该公司对近60天,每天揽件数量统计如下表:(1)某人打算将A(0.3 kg),B(1.8 kg),C(1.5 kg)三件礼物随机分成两个包裹寄出,求该人支付的快递费不超过30元的概率;(2)该公司从收取的每件快递的费用中抽取5元作为前台工作人员的工资和公司利润,剩余的作为其他费用.前台工作人员每人每天揽件不超过150件,工资100元,目前前台有工作人员3人,那么公司将前台工作人员裁员1人对提高公司利润是否更有利?解(1)由题意,寄出方式有以下三种可能:所有3种可能中,有1种可能快递费未超过30元,根据古典概型概率计算公式,所求概率为13.(2)由题目中的天数得出频率,如下:若不裁员,则每天可揽件的上限为450件,公司每日揽件数情况如下:故公司每日利润为260×5-3×100=1 000(元);若裁员1人,则每天可揽件的上限为300件,公司每日揽件数情况如下:故公司每日利润为235×5-2×100=975(元).综上,公司将前台工作人员裁员1人对提高公司利润不利.古今中外有学问的人,有成就的人,总是十分注意积累的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题 型 重 点 研 讨
题 型 重 点 研 讨
课 时 跟 踪 检 测
必考部分 第十一章 §11.5
第 6页
名师伴你行 ·高考一轮总复习 ·数学(理)
基 础 分 层 导 学
考点 2
古典概型
真 题 演 练 集 训
1. 具有以下两个特点的概率模型称为古典概率模型, 简称古典 概型. (1)试验中所有可能出现的基本事件 只有有限个. (2)每个基本事件出现的可能性 相等.
真 题 演 练 集 训
课 时 跟 踪 检 测
第12页
名师伴你行 ·高考一轮总复习 ·数学(理)
基 础 分 层 导 学
古典概型:基本事件的个数;古典概型概率公式. (1)[2018· 云南昆明模拟]抛掷两颗相同的正方体骰子 (骰子质地 均匀,且各个面上依次标有点数 1,2,3,4,5,6)一次,则两颗骰子向上
解析:由题意知,“从 1,3,5,7 中任取 2 个不同的数”所包 含的基本事件为(1,3),(1,5),(1,7),(3,5),(3,7),(5,7),共 6 个, 满足条件的事件包含的基本事件为(1,5),(1,7),(3,7),共 3 个, 3 1 所以所求的概率 P= = . 6 2
必考部分 第十一章 §11.5
必考部分 第十一章 §11.5
课 时 跟 踪 检 测
第13页
名师伴你行 ·高考一轮总复习 ·数学(理)
基 础 分 层 导 学
(2)小明的自行车用的是密码锁,密码锁的四位数码由 4 个数字 2,4,6,8 按一定顺序构成, 小明不小心忘记了密码中 4 个数字的顺序,真 随机地输入由 2,4,6,8 组成的一个四位数,不能打开锁的概率是
题 型 重 点 研 讨
课 时 跟 踪 检 测
必考部分 第十一章 §11.5
第 7页
名师伴你行 ·高考一轮总复习 ·数学(理)
基 础 分 层 导 学
2. 如果一次试验中可能出现的结果有 n 个, 而且所有结果出现
1 的可能性都相等,那么每一个基本事件的概率都是 n ;如果某个
m 事件 A 包括的结果有 m 个,那么事件 A 的概率 P(A)= n .
基 础 分 层 导 学
[考纲展示] 1.理解古典概型及其概率计算公式. 2.会计算一 些随机事件所含的基本事件及事件发生的概率.
真 题 演 练 集 训
题 型 重 点 研 讨
课 时 跟 踪 检 测
必考部分 第十一章 §11.5
第 4页
名师伴你行 ·高考一轮总复习 ·数学(理)
基 础 分 层 导 学
题 型 重 点 研 讨
名师伴你行 ·高考一轮总复习 ·数学(理)
基 础 分 层 导 学
题 型 重 点 研 讨
必考部分
真 题 演 练 集 训
课 时 跟 踪 检 测
必考部分 第十一章 §11.5
第 1页
名师伴你行 ·高考一轮总复习 ·数学(理)
基 础 分 层 导 学
题 型 重 点 研 讨
[第十一章] 计数原理、概率、 随机变量及其分布
真 题 演 练 集 训
题 型 重 点 研 讨
1 9 点同的正方体骰子,共有 36 种等可能的结 果: (1,1), (1,2), (1,3), …, (6,6). 点数之积等于 12 的结果有(2,6), 4 1 (3,4),(4,3),(6,2),共 4 种,故所求事件的概率为 = . 36 9
真 题 演 练 集 训
题 型 重 点 研 讨
课 时 跟 踪 检 测
必考部分 第十一章 §11.5
第 9页
名师伴你行 ·高考一轮总复习 ·数学(理)
基 础 分 层 导 学
[双基夯实]
真 题 演 练 集 训
(1)[教材习题改编]从字母 a,b,c,d 中任意取出两个不同字母 的试验中,基本事件共有________ 个. 6
基础分层导学
真 题 演 练 集 训
课 时 跟 踪 检 测
必考部分 第十一章 §11.5
第 5页
名师伴你行 ·高考一轮总复习 ·数学(理)
基 础 分 层 导 学
[必备知识] 考点 1 基本事件的特点
1.任何两个基本事件是 互斥 的. 2.任何事件(除不可能事件)都可以表示成 基本事件 的和.
真 题 演 练 集 训
课 时 跟 踪 检 测
必考部分 第十一章 §11.5
第11页
名师伴你行 ·高考一轮总复习 ·数学(理)
基 础 分 层 导 学
古典概型:关键在于基本事件的计数. 从 1,3,5,7 中任取 2 个不同的数, 则取出的 2 个数之差的绝对值
题 型 重 点 研 讨
1 大于 3 的概率是__________ . 2
1 3 上的点数大于 2 且小于 5 的概率为________ .
解析: 抛掷质地均匀的一枚骰子一次, 出现点数 1,2,3,4,5,6,
真 题 演 练 集 训
题 型 重 点 研 讨
共 6 个基本事件, 其中正面朝上的点数大于 2 且小于 5 的有 3,4, 2 1 共 2 个基本事件,所以 P= = . 6 3
3.古典概型的概率公式 A包含的基本事件的个数 P(A)= . 基本事件的总数
真 题 演 练 集 训
题 型 重 点 研 讨
课 时 跟 踪 检 测
必考部分 第十一章 §11.5
第 8页
名师伴你行 ·高考一轮总复习 ·数学(理)
基 础 分 层 导 学
[二级结论] 一个试验是否为古典概型,在于这个试验是否具有古典概型的 两个特征——有限性和等可能性,只有同时具备这两个特点的概型 才是古典概型.正确的判断试验的类型是解决概率问题的关键.
真 题 演 练 集 训
课 时 跟 踪 检 测
必考部分 第十一章 §11.5
第 2页
名师伴你行 ·高考一轮总复习 ·数学(理)
基 础 分 层 导 学
真 题 演 练 集 训
题 型 重 点 研 讨
§11.5 古典概型
课 时 跟 踪 检 测
必考部分 第十一章 §11.5
第 3页
名师伴你行 ·高考一轮总复习 ·数学(理)
题 型 重 点 研 讨
解析:基本事件有{a,b},{a,c},{a,d},{b,c},{b, d},{c,d},共 6 个.
课 时 跟 踪 检 测
必考部分 第十一章 §11.5
第10页
名师伴你行 ·高考一轮总复习 ·数学(理)
基 础 分 层 导 学
(2)[教材习题改编]抛掷质地均匀的一枚骰子一次,出现正面朝