计量经济学 时间序列数据

合集下载

计量经济学

计量经济学

名词解释1、 因果效应:在理想化随机对照实验中得到的,某一给定的行为或处理对结果的影响2、 实验数据:来源于为评价某种处理(某项政策)抑或某种因果效应而设计的实验3、 观测数据:通过观察实验之外的实际行为而获得的数据4、 截面数据:对不同个体如工人、消费者、公司或政府机关等在某一特定时间段内收集到的数据5、 时间序列数据:对同一个体(个人、公司、国家等)在多个时期内收集到的数据6、 面板数据:即纵向数据,是多个个体分别在两个或多个时期内观测到的数据7、 离散型随机变量:一些随机变量是离散的连续型随机变量:一些随机变量是连续的8、 期望值:随机变量经过多次重复实验出现的长期平均值,记作E (Y )9、 期望:Y 的长期平均值,记作μY10、方差:是Y 距离其均值的偏差平方的期望值,记作var (Y )11、标准差:方差的平方根来表示偏差程度,记作σY12、独立性:两个随机变量X 和Y 中的一个变量无法提供另一个变量的相关信息13、标准正态分布:指那些均值102==σμ、方差的正态分布,记作N (0,1)14、简单随机抽样:n 个对象从总体中抽取,且总体中的每一个个体都有相等的可能性被选入样本15、独立分布:两个随机变量X 和Y 中的一个变量无法提供另一个变量的相关信息,那么这两个变量X 和Y 独立分布 16、偏差:设Y Y E Y Y μμμμ-ˆˆ)(为的一个估计量,则偏差是; 一致性:当样本容量增大时,Y μˆ落入真实值Y μ的微小领域区间内的概率接近于1,即Y Y μμ与ˆ是一致的 有效性:如果Y μˆ的方差比Y μ~更小,那么可以说Y Y μμ~ˆ比更有效 17、最小二乘估计量:21)(m ini -Y ∑=最小化误差m -i Y 平方和的估计量m 18、P 值:即显著性概率,指原假设为真的情况下,抽取到的统计量与原假设之间的差异程度至少等于样本计算值与 原假设之间差异程度的概率19、第一类错误:拒绝了实际上为真的原假设20、一元线性回归模型:i i 10i μββ+X +=Y ;1β代表1X 变化一个单位所导致Y 的变化量21、普通最小二乘(OLS )估:选择使得估计的回归线与观测数据尽可能接近的回归系数,其中近似程度用给定X 时预 测Y 的误差的平方和来度量22、回归2R :可以由i X 解释(或预测)的i Y 样本方差的比例,即TSSSSR TSS ESS R -==12 23、最小二乘假设:①给定i X 时误差项i μ的条件均值为零:0)(i i =X μE ;②从联合总体中抽取的,,,,),,(n ...21i i i =Y X 满足独立同分布;③大异常值不存在:即i i Y X 和具有非零有限的四阶距24、1β置信区间:以95%的概率包含1β真值的区间,即在所有可能随机抽取的样本中有95%包含了1β的真值25、同方差:若对于任意i=1,2,...,n ,给定)(条件分布的方差时χμμ=X X i i i i var 为常数且不依赖于χ,则 称误差项i μ是同方差26、异方差:若对于任意i=1,2,...,n ,给定)(条件分布的方差时χμμ=X X i i i i var 为常数且依赖于χ,则称 误差项i μ是异方差27、遗漏变量偏差:指OLS 估计量中存在的偏差,它是在回归变量X 与遗漏变量相关时产生的28、多元回归模型:n ...1i ...i k i k i 22i 110i ,,,=+X ++X +X +=Y μββββ;1β代表在其他影响Y 的因素2X 不变的 前提下,1X 变化一个单位所导致Y 的变化量29、调整2R (2R ):是2R 的一种修正形式,由于加入新变量后2R 不一定增大,即22ˆ211-k -n 1-n 1Y s s TSS SSR R μ-=⨯-= 30、虚拟变量陷阱:如果有G 个二元变量,且每个观测都只属于其中一类,又如果回归中包含截距项以及所有G 个二 元变量,则会因为完全多重共线性而无法进行回归31、控制变量:回归中保持某些因素不变的回归量32、二次回归模型:i 2i 2i 10i ncome ncome core est μβββ+++=I I S T 33、非线性回归函数:i k i i 2i 1i ...f μ+X X X =),,,(Y ,i=1,...,n ;其中f (k i i 2i 1...X X X ,,,)为非线性回归函数 34、多项式回归模型:i r i r 2i 2i 10i ...μββββ+X ++X +X +=Y35、双对数模型:i i 10i ln ln μββ+X +=Y )()(填空题1、 计量经济学提供了利用观测数据(而非实验数据)或者来自现实世界不太完美的实验数据估计因果效应的方法2、 截面数据 是多个个体在同一时间点上收集到的数据;时间序列数据是一个个体在多个时间点上收集到的数据;面板数据 是多个个体分别在多个时间点上收集到的数据3、 随机变量Y 的期望值(也可称为均值,μY )记作E (Y ),是变量的概率加权平均值;Y 的方差为[]2)(2Y Y E μσ-=Y ,Y 的标准差是方差的平方根4、 两个随机变量X 和Y 的联合概率由它们的联合概率分布所表示;给定X=χ下Y 的条件概率分布是指给定X 取值为χ的条件时,Y 的概率分布5、 正态分布随机变量具有钟形概率密度;若要计算有关正态随机变量的概率,首先需要对其标准化,然后再查阅附录表1的标准正态累积分布表6、 简单随机抽样可以产生n 个随机观测值1Y ,...,n Y ,它们是独立分布的7、 样本均值n 1...Y Y Y Y ,,的估计量;当是总体均值μ为独立分布时,有: ①Y 的抽样分布均值为n 22Y=Y Y σσμ,方差为;②Y 是无偏的;③根据大数定律,Y 是一致的; ④根据中心极限定理,当样本容量较大时,Y 的抽样分布是近似正态的8、 t 统计量可以用来计算和原假设相关的p 值;较小的p 值意味着原假设是错误的9、 Y μ的95%置信区间是指在95%全部可能样本中包含Y μ真值的区间10、样本相关系数是总体相关系数的估计量,它度量了两个变量之间的线性关系—它们的散点图究竟有多近似于一条直线11、总体回归线X X +是10ββ的函数,表示Y 的均值:斜率1β表示X 变化一个单位时对应Y 的预期变化;截距0β决定了回归线的水平(或高低)12、利用样本观测数据(i i Y X ,),i=1,2,... ,n 使用普通最小二乘法可以估计总体回归线;回归截距和斜率的OLS 估计量分别记为10ˆˆββ和 13、2R 和回归标准误差(SER )度量了i Y 与总体回归线的接近程度;其中2R 的取值范围为0到1;2R 取值较大表明i Y 接近总体回归线;回归标准误差是回归误差的标准差的估计量14、线性回归模型中有三个重要假设:①给定i X 时误差项i μ的条件均值为零:0)(i i =X μE ; ②从联合总体中抽取的,,,,),,(n ...21i i i =Y X 满足独立同分布;③大异常值不存在:即i i Y X 和具有非零有限的四阶距;若这些假设成立,则OLS 估计量10ˆˆββ和是①无偏的②一致的③大样本时服从正态分布 15、对回归系数的假设检验类似于对总体均值的假设检验,都是利用t 统计量来计算p 值,从而确定是接受还是拒绝 原假设;类似于总体均值的置信区间,回归系数的95%置信区间为估计量±1.96标准误差16、如果三个最小二乘假设成立,回归误差同方差并且服从正态分布,则利用同方差适用标准误差计算的t 统计量在原假设下服从学生t 分布;当样本容量足够大时,学生t 分布和正态分布之间的差异可忽略不计17、若遗漏变量(1)与回归中的回归变量相关;(2)是Y 的决定因素之一,则会产生遗漏变量偏差(同时满足)18、多元回归模型是包含多个回归变量的线性回归模型,,,k 21...X X X ,每个回归变量都对应一个回归系数 ,,,,k 21...βββ其中系数1β表示在其他回归变量不变的情况下,1X 变化一个单位时Y 的预期变化,其他回归系数的解释与之类似19、可通过OLS 估计多元回归中的系数;当满足四个最小二乘假设时,OLS 估计量是无偏一致估计量,并且在i 大样本 下服从正态分布①给定i k i i 2i 1...μ时,,,X X X 的条件均值为零,即0...k i i 2i 1i =X X X ),,,(μE ;②从联合分布中抽取的i Y ),...i k i i 2i 1,,,,(X X X =1,...,n 满足独立同分布; ③不存在大异常值,即具有及,,i k i i 1...Y X X 非零有限四阶距; ④不存在完全多重共线性20、在多元回归中,当某个回归变量是其他回归变量的完全线性组合时就产生了完全多重共线性,通常是有选择回归变量时的错误引起的,因此处理完全多重共线性的方法是改变回归变量集21、回归标准误差、22R R 及都表示多元回归模型的拟合优度22、当系数涉及多个约束时的假设称为联合假设,可利用F 统计量进行检验23、在非线性回归中,总体回归函数的斜率依赖于一个或多个解释变量的取值24、两个变量的乘积项称为交互项,在回归中加入交互项可以使其中一个变量的回归斜率依赖于另一个变量的取值计算题P41 2.2 使用表2-2中的概率密度计算E(Y)和E(X)Pr(X=0)=0.30 Pr(X=1)=0.70Pr(Y=0)=0.20 Pr(Y=1)=0.78E(X)=0*0.30+1*0.70=0.70E(Y)=0*0.22+1*0.78=0.782.6下面的表格给出了基于2008年美国适龄人口从业状况和接受大学教育的联合分布(1)E(Y)=0*0.046+1*0.954=0.954(2)失业率=Pr(Y=0)=0.046(3)E(Y丨X=1)=0*Pr(Y=0丨X=1)+1*Pr(Y=1丨X=1)=0.332/0.341=0.9736E(Y丨X=0)=0*Pr(Y=0丨X=0)+1*Pr(Y=1丨X=0)=0.622/0.659=0.94385(4)大学毕业生的失业率=1-E(Y丨X=1)=1-0.9736=0.0264非大学毕业生的失业率=1-E(Y丨X=0)=1-0.94385=0.5615(5)Pr(X=1丨Y=0)=0.009/0.046=0.196Pr(X=0丨Y=0)=0.037/0.046=0.804(6)P(X=Xi,Y=Yi)=P(X=Xi)*P(Y=Yi)独立反之不独立P71 3.8对1000个随机抽取的高三学生安排一项新版的SAT测试。

初计量经济学之时间序列分析

初计量经济学之时间序列分析

初计量经济学之时间序列分析1. 引言时间序列分析是计量经济学中的一个重要领域,研究的是时间序列数据的性质、模式和预测方法。

时间序列数据是按照时间顺序排列的一系列观测值,包括经济指标、股票价格、气象数据等。

时间序列分析可以帮助我们理解和预测经济现象的发展趋势,为政府和企业决策提供科学依据。

本文将介绍时间序列分析的基本概念、方法和应用。

首先,我们将介绍时间序列分析的基本步骤和基本假设。

然后,我们将介绍时间序列模型的常用类型,包括自回归模型(AR)、滑动平均模型(MA)和自回归滑动平均模型(ARMA)。

最后,我们将介绍时间序列的应用领域,包括经济预测、金融风险管理和气象预测。

2. 时间序列分析的基本步骤时间序列分析的基本步骤包括数据的收集和准备、数据的探索性分析、模型的选择和估计、模型的诊断和预测。

下面将对每个步骤进行详细介绍。

2.1 数据的收集和准备数据的收集和准备是时间序列分析的第一步。

我们需要收集时间序列数据,并进行数据清洗和预处理。

数据清洗包括删除缺失值、处理异常值和去除趋势。

数据预处理包括对数据进行平滑处理、差分和变换。

2.2 数据的探索性分析数据的探索性分析是时间序列分析的第二步。

我们需要对时间序列数据进行可视化和统计分析,以了解数据的基本性质和模式。

可视化方法包括绘制时间序列图、自相关图和偏自相关图。

统计分析方法包括计算统计指标、分析趋势、季节性和周期性。

2.3 模型的选择和估计模型的选择和估计是时间序列分析的第三步。

我们需要选择合适的时间序列模型,并进行参数估计。

常用的时间序列模型包括自回归模型(AR)、滑动平均模型(MA)、自回归滑动平均模型(ARMA)和季节性模型。

2.4 模型的诊断和预测模型的诊断和预测是时间序列分析的最后一步。

我们需要对模型进行诊断,检验模型的拟合程度和残差的平稳性、独立性和正态性。

然后,我们可以使用模型进行未来值的预测。

3. 时间序列模型时间序列模型是描述和预测时间序列数据的数学模型。

计量经济学试题时间序列模型与ARIMA模型

计量经济学试题时间序列模型与ARIMA模型

计量经济学试题时间序列模型与ARIMA模型时间序列是指按照时间顺序排列的一组数据。

在计量经济学中,时间序列分析是一种重要的研究方法,它可以帮助我们理解和预测经济现象的发展趋势。

本文将介绍时间序列模型以及其中的一种常用模型——自回归滑动平均移动平均自回归(ARIMA)模型。

一、时间序列模型的基本概念时间序列模型是根据时间序列数据的特点建立的数学模型。

它假设时间序列的变动是由多个因素引起的,这些因素可以是趋势、季节性、周期性等。

时间序列模型可以帮助我们从数据中分离出这些因素,以便更好地理解和预测未来的变动。

二、自回归滑动平均移动平均自回归(ARIMA)模型ARIMA模型是一种广泛应用于时间序列分析的模型,它结合了自回归(AR)模型、滑动平均(MA)模型和差分运算的方法。

ARIMA模型可以描述时间序列的自相关性、滞后差分的影响以及移动平均误差的影响。

ARIMA模型可以从以下三个方面描述一个时间序列:1. 自回归(AR)部分:用于描述过去时间点的观测值对当前值的影响,通过延迟观测值来预测当前值。

2. 差分(I)部分:通过对时间序列进行差分运算,可以消除其非平稳性,提高模型的拟合度和预测准确性。

3. 滑动平均(MA)部分:用于描述序列中随机波动的影响,通过滞后误差预测当前值。

ARIMA模型的表示方式为ARIMA(p, d, q),其中p表示自回归阶数,d表示差分阶数,q表示滑动平均阶数。

通过对历史数据的拟合,我们可以得到模型的参数估计,从而进行未来值的预测。

三、ARIMA模型的应用ARIMA模型在经济领域有广泛的应用,其中包括销售预测、股票价格预测、宏观经济指标预测等。

它通过分析历史数据中的规律性和趋势性,将其应用于未来的预测中。

ARIMA模型的建立和应用过程可以分为以下几个步骤:1. 数据收集和准备:收集相关的时间序列数据,并对其进行清洗和格式化,以便于后续的分析和建模。

2. 模型选择和拟合:通过计算模型选择准则(AIC、BIC等)来确定模型的阶数,并使用最小二乘法或极大似然法对模型进行参数估计。

计量经济学中的时间序列分析

计量经济学中的时间序列分析

计量经济学中的时间序列分析时间序列分析是计量经济学中的重要内容之一,它主要研究特定变量随时间变化的规律性和趋势。

通过时间序列分析,我们可以更好地理解经济现象,预测未来变化趋势,制定合适的政策和策略。

本文将从时间序列的概念入手,介绍时间序列分析的基本原理、方法和应用。

一、时间序列的概念时间序列是按照时间顺序排列的一系列数据观测值的集合。

在计量经济学中,时间序列通常用来观察和研究某一经济变量在不同时间点上的变化情况。

时间序列数据可以是连续的,也可以是间断的,常见的时间单位包括年、季、月、周等。

通过对时间序列数据的分析,我们可以揭示出其中的规律性和特征。

二、时间序列分析的基本原理时间序列分析的基本原理是利用过去的数据来预测未来的发展趋势。

在时间序列分析中,常用的方法包括趋势分析、周期性分析、季节性分析和不规则波动分析。

趋势分析主要用来观察时间序列数据的长期变化趋势,周期性分析则是研究数据是否存在固定长度的周期性波动,季节性分析则是研究数据是否呈现出固定的季节性变化规律,而不规则波动分析则是研究一些随机因素对数据的影响。

三、时间序列分析的方法时间序列分析的方法有很多种,其中常用的包括移动平均法、指数平滑法、回归分析法、ARIMA模型等。

移动平均法通过计算连续几个期间的平均值来平滑数据,达到去除数据波动的目的;指数平滑法则是通过计算加权平均来对数据进行平滑处理,使得预测值更加准确;回归分析法则是通过建立经济模型来研究时间序列数据之间的关系,进行预测和分析;ARIMA模型则是一种时间序列的自回归与移动平均模型,可以对时间序列数据进行拟合和预测。

四、时间序列分析的应用时间序列分析在经济学、金融学、管理学等领域有着广泛的应用。

在经济学中,时间序列分析可以用来研究经济增长、通货膨胀、失业等经济现象的发展趋势;在金融学中,时间序列分析可以用来预测股票价格、汇率、利率等金融变量的变化情况;在管理学中,时间序列分析可以用来制定企业的生产计划和销售策略,提高企业的运营效率。

时间序列计量经济学模型概述

时间序列计量经济学模型概述

时间序列计量经济学模型概述时间序列计量经济学模型是在经济学研究中广泛使用的一种方法,用于分析经济变量随时间的变化。

该模型基于时间序列数据,即经济变量在一段时间内的观测值。

时间序列计量经济学模型的核心是建立经济变量之间的关系,以解释和预测经济现象的变化。

其中最常用的模型是自回归移动平均模型(ARMA)、自回归条件异方差模型(ARCH)和季节性时间序列模型。

自回归移动平均模型(ARMA)是一个包含自回归项和移动平均项的线性模型。

该模型以过去的观测值和随机项为输入,预测当前观测值。

ARMA模型基于假设,即经济变量的行为受到历史观测值的影响。

自回归条件异方差模型(ARCH)是一种考虑了随时间变化方差的模型。

该模型通过引入一个条件异方差项,模拟经济变量中的波动性。

ARCH模型的应用范围广泛,特别是在金融市场波动性分析中。

季节性时间序列模型用于分析具有明显季节性特征的经济变量,如销售额、就业人数等。

这些模型通常基于季节、趋势和随机成分的组合,以预测未来观测值。

在建立时间序列计量经济学模型时,常常需要进行模型识别、参数估计和模型诊断等步骤。

识别模型的目标是确定适当的模型结构,参数估计则是利用历史数据估计模型的参数值。

模型诊断用于检验模型的拟合程度和误差分布是否符合模型假设。

时间序列计量经济学模型在经济研究中有广泛的应用,例如预测未来经济指标、分析经济周期和波动性、评估政策效果等。

它提供了一种量化的方法,使经济学家可以更好地理解和解释经济变量的演变。

时间序列计量经济学模型是经济学研究中一种重要的统计工具,广泛应用于宏观经济、金融市场和企业经营等领域。

它可以帮助我们理解和解释经济变量随时间的变化规律,进行预测和政策分析。

本文将进一步探讨时间序列计量经济学模型的相关概念和应用。

在构建时间序列计量经济学模型之前,首先需要了解时间序列数据的特点。

时间序列数据是按照时间顺序排列的一系列观测值,通常具有趋势性、季节性、周期性和随机性等特征。

时间序列计量经济学协整

时间序列计量经济学协整
提供有关经济周期波动的重要信息。
货币政策效果评估
总结词
时间序列协整分析在货币政策效果评估中,有助于评估货币政策对经济的影响,以及政 策效果在不同经济变量之间的传递。
详细描述
货币政策是中央银行通过调节货币供应量和利率来影响经济活动的政策。时间序列协整 分析可以用于评估货币政策对经济增长、通货膨胀等经济指标的影响,以及政策效果在 不同经济变量之间的传递。通过协整分析,可以揭示货币政策对经济变量的长期均衡关
时间序列计量经济学 协整
目录
• 协整理论概述 • 时间序列协整模型 • 协整分析方法 • 时间序列协整的应用 • 时间序列协整的局限与未来发展
01
协整理论概述
协整的定义
协整是指两个或多个非平稳时间序列 之间存在长期均衡关系。这种长期均 衡关系可以是线性的,也可以是非线 性的。
协整关系表明这些时间序列之间存在 一种共同的长期趋势,即使它们各自 的短期波动不同。
误差修正模型
误差修正模型是一种用来描述时间序列之间长期均衡关系和 短期调整机制的模型。它通过引入误差修正项,来反映长期 均衡关系对短期调整的影响。
误差修正项的系数表示了短期调整机制的强度和方向,如果 系数为负,则说明当短期波动偏离长期均衡时,系统会自动 调整回到均衡状态。
04
时间序列协整的应用
经济周期分析
05
时间序列协整的局限与未 来发展
模型假设的局限性
线性协整关系的假设
01
线性协整关系假设限制了模型对非线性时间序列关系的解释能
力。
长期均衡关系的假设
02
长期均衡关系的假设可能不适用于所有时间序列数据,特别是
对于短期波动较大的数据。
误差修正机制的假设

计量经济学数据类型

计量经济学数据类型

计量经济学数据类型
“计量经济学”是指利用经济学理论和数学统计方法来研究实际的经济问题。

数据是计量经济学研究的重要基础,计量经济学中常见的数据类型如下:
1. 时间序列数据:时间序列数据是按时间顺序排列的数据,例如经济指标、股票价格、汇率等。

应用:基于时间序列数据进行趋势预测和时间序列分析,例如预测未来的经济增长率、通货膨胀率、利率等。

2. 横截面数据:横截面数据是在相同时间点上针对不同个体所收集的数据,例如收入、教育程度、职业等。

应用:基于横截面数据进行个体变量的比较分析,例如探讨收入水平与教育程度的关系、职业类型与收入的关系等。

3. 面板数据:面板数据是同时包含时间序列和横截面数据的数据,例如企业的经济数据、家庭调查数据等。

应用:基于面板数据进行个体和时间变量的研究,例如探讨企业投资和利润的关系、家庭收支变化的影响因素等。

4. 实验数据:实验数据是通过对特定因素进行控制来获取的数据,例如经济政策的实验数据、招聘决策的实验数据等。

应用:基于实验数据进行因果关系的分析,例如探讨各种政策对实体经济的影响、探讨招聘流程中不同因素对应聘者选择和工作表现的影响等。

以上数据类型及其应用是计量经济学研究中常见的基础。

在实际应用中,根据实际问题和数据可用性,研究者可以将不同类型的数据进行组合分析,以获取更深入的结论。

计量经济学时间序列

计量经济学时间序列

计量经济学中的时间序列是指按照时间顺序排列的一系列数据,这些数据可以是同一指标在不同时间点的观测值,也可以是多个指标在不同时间点的观测值组合。

时间序列数据的分析主要涉及两个方面:一是数据平稳性检验,二是数据建模与分析。

数据平稳性检验是时间序列分析中非常重要的一个步骤。

平稳性是指时间序列数据的统计特性不随时间推移而发生变化。

如果数据不满足平稳性条件,那么传统的回归分析方法可能会出现问题。

因此,在利用回归分析方法讨论经济变量有意义的经济关系之前,必须对经济变量时间序列的平稳性与非平稳性进行判断。

如果数据是非平稳的,可能需要采用适当的处理方法,如差分、对数转换等,使其满足平稳性条件。

在数据平稳性检验通过后,接下来需要进行数据建模与分析。

在计量经济学中,自回归模型(AR模型)是一种常用的时间序列模型。

自回归模型是统计上一种处理时间序列的方法,它用同一变数例如x 的之前各期,亦即x 1至x t-1来预测本期x t的表现,并假设它们为一线性关系。

除了自回归模型外,还有其他的模型可用于时间序列分析,如移动平均模型(MA模型)、自回归移动平均模型(ARMA模型)等。

这些模型的参数估计与假设检验方法也是计量经济学中研究的重点内容之一。

总之,计量经济学中的时间序列分析是一个相对独立且完整的领域,它为经济学、金融学等领域的研究提供了重要的方法论支持和实践指导。

计量经济学数据

计量经济学数据

计量经济学数据引言:计量经济学是经济学中的一个分支,它运用数理统计学和经济学的原理,通过采集和分析经济数据来研究经济现象和经济政策的影响。

在计量经济学中,数据的质量和准确性对于研究结果的可靠性至关重要。

本文将介绍计量经济学中常用的数据类型、数据来源、数据处理和数据分析方法。

一、数据类型在计量经济学中,数据可以分为两种类型:横截面数据和时间序列数据。

1. 横截面数据:横截面数据是在某个特定时间点上对不同个体进行观察和测量的数据。

例如,我们可以通过调查采集到某一年份不同家庭的收入、教育水平、家庭规模等信息。

2. 时间序列数据:时间序列数据是在一段时间内对同一事物进行观察和测量的数据。

例如,我们可以通过统计机构的报告获得过去几年某个国家的GDP增长率、失业率等信息。

二、数据来源计量经济学的数据可以从多个来源获取,常见的数据来源包括:1. 统计机构:各国的统计机构通常会发布各种经济指标和统计数据,如国内生产总值(GDP)、劳动力市场数据、物价指数等。

这些数据通常经过严格的调查和统计,具有较高的可靠性。

2. 调查数据:研究人员可以通过设计并实施调查来采集经济数据。

例如,通过问卷调查采集企业的生产成本、消费者的购买意愿等数据。

调查数据的质量和准确性取决于样本的选择和问卷设计等因素。

3. 学术研究:研究人员在进行学术研究时,通常会使用已有的学术文献和研究成果中的数据。

这些数据通常经过严格的检验和验证,具有较高的可信度。

三、数据处理在计量经济学中,数据处理是非常重要的一步,它包括数据清洗、数据转换和数据标准化等过程。

1. 数据清洗:数据清洗是指对采集到的原始数据进行筛选和清理,去除异常值、缺失值和错误值等。

这样可以提高数据的质量和准确性,确保后续分析的可靠性。

2. 数据转换:数据转换是指对原始数据进行变换,使其符合模型假设和分析的要求。

常见的数据转换包括对数转换、差分运算等。

3. 数据标准化:数据标准化是指将不同尺度和单位的数据转化为统一的尺度和单位,以便进行比较和分析。

庞浩计量经济学复习重点整理版复习课程

庞浩计量经济学复习重点整理版复习课程

计量经济学复习重点总结任课老师:姜婷By fantasy题型:单选20*2 多选5*3 判断5*3 计算3*10第一章导论计量经济学数据类型:时间序列数据:把反映某一总体特征的同一指标的数据,按照一定的时间顺序和时间间隔(如月度.季度.年度)排列起来,这样的统计数据称为时间序列数据。

时间序列数据可以是时期数据,也可以是时点数据。

如逐年的GDP CPI截面数据:同一时间(时期或时点)某个指标在不同空间的观测数据。

如某一年各省GDP 面板数据:指时间序列数据和截面数据相结合的数据。

如在居民收支调查中收集的对各个固定调查户在不同时期的调查数据。

虚拟变量数据:某些客观存在的定性现象,如政策、自然灾害、战争等等第二章简单线性回归模型总体回归函数的表示形式:条件期望形式:个别值形式:样本回归函数的表示形式:条件均值形式个别值形式随机扰动项和残差项的区别和联系:区别:随机扰动项代表总体的误差,反应了未知因素、模型设定误差、变量观测误差;残差代表样本的误差,残差=随机误差项+参数估计误差。

随机扰动项无法直接观测;残差的数值可以求出。

联系:残差概念上类似于随机扰动项,将残差引入样本回归函数和随机引入总体回归函数的理由是相同的。

简单线性回归的基本假定:P31随机扰动项和解释变量不相关假定,零均值假定:同方差假定:正态性假定:无自相关假定:采用普通最小二乘法拟合的样本回归线的性质:P34回归线通过样本均值:Yi估计值的均值等于实际值的均值:剩余项的均值为零:被解释变量估计值与剩余项不相关:解释变量与剩余项不相关:OLS估计式的统计性质:P36(BLUE最佳线性无偏估计量)线性特性:无偏性:最小方差性:可决系数:R 2=ESS/TSS=1-RSS/TSS回归系数的假设检验:t 检验选取的统计量及其服从的分布 P48回归模型结果的经济含义分析: 练习题:2.7和2.92.7 设销售收入X 为解释变量,销售成本Y 为被解释变量。

计量经济学-第21章 时间序列计量经济学基础Ⅰ--平稳性、单位跟与协整

计量经济学-第21章  时间序列计量经济学基础Ⅰ--平稳性、单位跟与协整
如果 Yt 满足 Yt Yt1 a ut
其中a是常数,ut 是平稳的,比如 E(ut ) 0,var(ut ) 2 ,
则这样的 Yt 过程叫做DSP
可见一个平稳时间序列可以用一个TS过程作为它的 模型,而一个非平稳时间序列则代表一个DS过程
对于存在随机趋势的时间序列的关系的分析需要做 协整以及非平稳性检验
在做PCE对PDI的回归时可以加进趋势变量t,消去PCE和PDI的时间趋 势。
当时我们曾经强调,只有当趋势变量是确定性的(deterministic),而不 是随机(stochastic)时,才可以这样做。
如果一个时间序列有一个单位根,则不能使用加进趋势变量t的方法来去 除趋势。
趋势平稳过程(trend-stationary process,简记为TSP),在下面的回归 中:
考虑一下模型
(21.3.4)
其中 ut 是均值为零,恒定方差且序列不相关的随 机误差项,即 ut 是white noise。
这是一个一阶自回归模型,Yt-1的系数为1,{Yt} 序列存在一个单位根。也就是说,{Yt}是一个非 平稳序列。
有一个单位根的时间序列叫做随机游走(时间序 列)。随机游走(random walk)是非平稳时间 序列的一个例子。
其中,n—样本容量,m—滞后长度 Q近似地(即在大样本中)服从m个自由度的
分布。
则拒绝全部 同时为零的虚拟 假设。也就是说,至少有一个(或一些) 是非零的。
设。
则不拒绝全部 为零的虚拟假
杨—博克斯(Ljung Box)构造的统计量是对博克 斯—皮尔斯(Box-Pierce)Q统计量的一种改进。
LB统计量比Q统计量具有更好的小样本性质。 图21.8中的例子,基于25期滞后的Q统计量为793, LB统计量为891,两者都是高度显著的,得到 值的P值几乎为零。

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第10章 时间序列数据的基本回归分析【圣才出

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第10章 时间序列数据的基本回归分析【圣才出

第10章时间序列数据的基本回归分析10.1复习笔记一、时间序列数据的性质时间序列数据与横截面数据的区别:(1)时间序列数据集是按照时间顺序排列。

(2)时间序列数据与横截面数据被视为随机结果的原因不同。

①横截面数据应该被视为随机结果,因为从总体中抽取不同的样本,通常会得到自变量和因变量的不同取值。

因此,通过不同的随机样本计算出来的OLS估计值通常也有所不同,这就是OLS统计量是随机变量的原因。

②经济时间序列满足作为随机变量是因为其结果无法事先预知,因此可以被视为随机变量。

一个标有时间脚标的随机变量序列被称为一个随机过程或时间序列过程。

搜集到一个时间序列数据集时,便得到该随机过程的一个可能结果或实现。

因为不能让时间倒转重新开始这个过程,所以只能看到一个实现。

如果特定历史条件有所不同,通常会得到这个随机过程的另一种不同的实现,这正是时间序列数据被看成随机变量之结果的原因。

(3)一个时间序列过程的所有可能的实现集,便相当于横截面分析中的总体。

时间序列数据集的样本容量就是所观察变量的时期数。

二、时间序列回归模型的例子1.静态模型假使有两个变量的时间序列数据,并对y t和z t标注相同的时期。

把y和z联系起来的一个静态模型(staticmodel)为:10 1 2 t t t y z u t nββ=++=⋯,,,,“静态模型”的名称来源于正在模型化y 和z 同期关系的事实。

若认为z 在时间t 的一个变化对y 有影响,即1t t y z β∆=∆,那么可以将y 和z 设定为一个静态模型。

一个静态模型的例子是静态菲利普斯曲线。

在一个静态回归模型中也可以有几个解释变量。

2.有限分布滞后模型(1)有限分布滞后模型有限分布滞后模型(finitedistributedlagmodel,FDL)是指一个或多个变量对y 的影响有一定时滞的模型。

考察如下模型:001122t t t t ty z z z u αδδδ--=++++它是一个二阶FDL。

计量经济学重点

计量经济学重点

(|)i i i u Y E Y X =-第一章:计量经济学方法论计量经济学方法论大致地说,传统的计量经济学方法论按下列路线进行:(1)理论或假说陈述(2)数学模型设定(3)计量模型设定(4)获取数据 (5)参数估计(6)假设检验(7)预测(8)利用模型进行控制或制定政策 计量经济学所用数据的类型:(1)时间序列数据:对一个变量在不同时间取值的一组观测结果 (2)横截面数据:对一个或 多个变量在同一时间点上收集的数据 (3)混合数据:两者兼有(4)综列、纵列或微观综列数据:混合数据的特殊类型,指对相同的横截面的单元在时间轴上进行跟踪调查的数据。

第二章总体回归函数的概念:反映Y 的均值如何随X 的变化而变化的函数被称为总体回归函数(PRF )。

如:其中β1 和β2是未知但固定的参数,被称为回归系数 PRF 的随机设定:因为Y 是随机的,每个具体的Y 不可能恰好等于其均值,他们之间的离差被设定为一个随机扰动项:E(Y|Xi)被称为Yi 的系统性或确定性成分 ui 称为随机或非系统性成分在给定X 的条件下,随机扰动项的均值等于0 样本回归函数:SRF在大部分情况下,我们很难获得总体的数据,而是通过对总体的抽样来探索总体的性质。

类比于总体回归函数(总体Y 条件均值与X 的关系),可以定义样本回归函数:抽样Y 与X 之间的关系。

如:其中Yi (帽)是总体均值的估计量,β1(帽)和β2(帽)分别是β1和β2的估计量 随机形式的样本回归函数为:第三章估计量和估计量方差矩阵形式12(|)i i E Y X X ββ=+12ˆˆˆi i Y X ββ=+12ˆˆˆi ii Y X u ββ=++()()()11112222322211ˆ1ˆˆˆ1ˆˆˆˆˆˆ2'0ˆˆ''n n Y u X Y X u Y X u X Y u u Y X uY X u X Y X X X X Y ββββββββ-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥==+=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦=-=-∂=-=∂=()()ˆˆˆˆ最小二乘法的基本假定P51最小二乘法的假定漏了:没有完全多重共线性.判定系数:R2=ESS/TSS 假定1:参数线性模型。

计量经济学--时间序列部分

计量经济学--时间序列部分

1. 已知MA(2)模型:120.70.4t t t t X εεε--=-+,2.(1)计算自相关系数(1)k k ρ≥;(2)计算偏相关系数(1,2,3)kk k ϕ=;解:(1)1212[0.70.4)(0.70.4)]t t k t t t t k t k t k EX X E εεεεεε--------=-+-+(所以:2220120,(1)k εγθθσ==++,211121,(),k εγθθθσ==-+2122,k εγθσ==-,3,0k k γ≥=,所以:112122120.591θθθρθθ-+==-++2222120.241θρθθ-==++0,3k k ρ=≥(2)1110ρϕρ=即111ϕρ=,所以110.59ϕ≈-当2k =时,产生偏相关系数的相关序列为2122{,}ϕϕ,相应Yule-Wolker 方程为:0121110222ρρϕρρρϕρ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 所以220.166ϕ≈-当3k =时,产生偏相关系数的相关序列为313233{,,}ϕϕϕ,相应Yule-Wolker 方程为:123111132221333111ρρϕρρρϕρρρϕρ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦所以330.047ϕ≈2.题:考虑MA (2)模型yt=εt –θ1εt-1 –θ2εt-2(1) 求出yt 序列的均值与方差(2) 推导出以下理论自相关函数 ρ1=(1+θ12++θ22)−1(θ1θ2-θ1)ρ2=-θ2(1+θ12++θ22)−1ρj = 0 , j > 2(3) 在什么条件下该模型为平稳时间序列模型?该模型可逆的条件是什么?答案:(1)μ=E (yt )=E (εt –θ1εt-1 –θ2εt-2)= 0 σy 2= E (yt−μ)2= E(εt –θ1εt-1 –θ2εt-2)(εt –θ1εt-1 –θ2εt-2) =(1+θ12+θ22) E (εt 2) =(1+θ12+θ22)σε2(2)γ0=E(ytyt )= E(εt –θ1εt-1 –θ2εt-2)(εt –θ1εt-1 –θ2εt-2) =(1+θ12+θ22)σε2γ1=E(ytyt −1) = E(εt –θ1εt-1 –θ2εt-2)(εt-1–θ1εt-2 –θ2εt-3) =(θ1θ2-θ1)σε2γ2=E(ytyt −2) = E(εt –θ1εt-1 –θ2εt-2)(εt-1–θ1εt-23–θ2εt-4) =-θ2σε2所以,ρ1=γ1/γ0=(1+θ12++θ22)−1(θ1θ2-θ1) ρ2=γ2/γ0=-θ2(1+θ12++θ22)−1(3)该模型在任何情况下都是平稳的,因为其右边是一系列的白噪音过程的叠加。

计量经济学数据

计量经济学数据

计量经济学数据计量经济学是经济学的一个重要分支,主要研究经济现象的量化分析和经济模型的构建。

在计量经济学研究中,数据是至关重要的,它提供了对经济现象进行分析和验证的基础。

本文将介绍计量经济学数据的标准格式和一些常用的数据类型。

一、计量经济学数据的标准格式计量经济学数据通常以表格的形式呈现,其中包括以下几个主要部分:1. 变量名称:表格的第一行通常是变量名称,用于标识每一列数据所代表的经济变量。

例如,可以包括GDP(国内生产总值)、CPI(消费者物价指数)、投资等。

2. 时间序列:表格的第一列通常是时间序列,用于标识每一行数据所对应的时间点。

时间序列可以按照不同的频率进行分类,如年度数据、季度数据、月度数据等。

3. 数据值:表格的其他单元格中填写了相应的数据值,代表了每个变量在不同时间点上的观测值。

数据可以是实数,也可以是离散的分类变量。

4. 单位:表格的第一列下方通常注明了数据的单位,用于说明数据所代表的具体含义,如货币单位、百分比等。

5. 数据来源:表格的最底部通常注明了数据的来源,包括调查机构、统计局等。

这有助于保证数据的可信度和可重复性。

二、常用的计量经济学数据类型在计量经济学研究中,常用的数据类型包括以下几种:1. 时间序列数据:时间序列数据是按照时间顺序排列的一系列观测值,用于分析经济变量随时间的变化趋势和周期性。

例如,GDP的年度数据就是一种时间序列数据。

2. 截面数据:截面数据是在某一特定时间点上对不同个体进行观测得到的数据,用于分析不同个体之间的差异和关系。

例如,不同地区的失业率数据就是一种截面数据。

3. 面板数据:面板数据是时间序列数据和截面数据的结合,既包括对不同个体的多次观测,也包括对同一时间点的多个个体观测。

面板数据可以用于分析个体特征和时间效应对经济变量的影响。

4. 横截面时间序列数据:横截面时间序列数据是对多个个体在多个时间点上的观测数据,既包括截面数据的横截面特征,也包括时间序列数据的时间特征。

计量经济学4种常用模型

计量经济学4种常用模型

计量经济学4种常用模型计量经济学是经济学的一个重要分支,主要研究经济现象的数量关系及其解释。

在计量经济学中,常用的模型有四种,分别是线性回归模型、时间序列模型、面板数据模型和离散选择模型。

下面将对这四种模型进行详细介绍。

第一种模型是线性回归模型,也是计量经济学中最常用的模型之一。

线性回归模型是通过建立自变量与因变量之间的线性关系来解释经济现象的模型。

在线性回归模型中,自变量通常包括经济学理论认为与因变量相关的变量,通过最小二乘法估计模型参数,得到经济现象的解释。

线性回归模型的优点是简单易懂,计算方便,但其前提是自变量与因变量之间存在线性关系。

第二种模型是时间序列模型,它主要用于分析时间序列数据的模型。

时间序列模型假设经济现象的变化是随时间演变的,通过分析时间序列的趋势、周期性和随机性,可以对经济现象进行预测和解释。

时间序列模型的常用方法包括自回归移动平均模型(ARMA)、自回归条件异方差模型(ARCH)等。

时间序列模型的优点是能够捕捉到时间的动态变化,但其局限性是对数据的要求较高,需要足够的时间序列观测样本。

第三种模型是面板数据模型,也称为横截面时间序列数据模型。

面板数据模型是将横截面数据和时间序列数据结合起来进行分析的模型。

面板数据模型可以同时考虑个体间的差异和时间的变化,因此能够更全面地解释经济现象。

面板数据模型的常用方法包括固定效应模型、随机效应模型等。

面板数据模型的优点是能够控制个体间的异质性,但其需要对个体间的相关性进行假设。

第四种模型是离散选择模型,它主要用于分析离散选择行为的模型。

离散选择模型假设个体在面临多种选择时,会根据一定的规则进行选择,通过建立选择概率与个体特征之间的关系,可以预测和解释个体的选择行为。

离散选择模型的常用方法包括二项Logit模型、多项Logit模型等。

离散选择模型的优点是能够分析个体的选择行为,但其局限性是对选择行为的假设较强。

综上所述,计量经济学中常用的模型有线性回归模型、时间序列模型、面板数据模型和离散选择模型。

计量经济学-期末考试-名词解释

计量经济学-期末考试-名词解释

第一章导论1、截面数据:截面数据是许多不同的观察对象在同一时间点上的取值的统计数据集合,可理解为对一个随机变量重复抽样获得的数据。

2、时间序列数据:时间序列数据是同一观察对象在不同时间点上的取值的统计序列,可理解为随时间变化而生成的数据。

3、虚变量数据:虚拟变量数据是人为设定的虚拟变量的取值。

是表征政策、条件等影响研究对象的定性因素的人工变量,其取值一般只取“0”或“1”。

4、内生变量与外生变量:。

内生变量是由模型系统决定同时可能也对模型系统产生影响的变量,是具有某种概率分布的随机变量,外生变量是不由模型系统决定但对模型系统产生影响的变量,是确定性的变量。

第二章一元线性回归模型1、总体回归函数:是指在给定X i下Y分布的总体均值与X i所形成的函数关系(或者说将总体被解释变量的条件期望表示为解释变量的某种函数)2、最大似然估计法(ML): 又叫最大或然法,指用产生该样本概率最大的原则去确定样本回归函数的方法。

3、OLS估计法:指根据使估计的剩余平方和最小的原则来确定样本回归函数的方法。

4、残差平方和:用RSS表示,用以度量实际值与拟合值之间的差异,是由除解释变量之外的其他因素引起的被解释变量变化的部分。

5、拟合优度检验:指检验模型对样本观测值的拟合程度,用表示,该值越接近1表示拟合程度越好。

第三章多元线性回归模型1、多元线性回归模型:在现实经济活动中往往存在一个变量受到其他多个变量影响的现象,表现在线性回归模型中有多个解释变量,这样的模型被称做多元线性回归模型,多元是指多个解释变量2、调整的可决系数:又叫调整的决定系数,是一个用于描述多个解释变量对被解释变量的联合影响程度的统计量,克服了随解释变量的增加而增大的缺陷,与的关系为。

3、偏回归系数:在多元回归模型中,每一个解释变量前的参数即为偏回归系数,它测度了当其他解释变量保持不变时,该变量增加1单位对被解释变量带来的平均影响程度。

4、正规方程组:采用OLS方法估计线性回归模型时,对残差平方和关于各参数求偏导,并令偏导数为0后得到的方程组,其矩阵形式为。

计量经济学-第6章⑴时间序列的平稳性及其检验精品文档

计量经济学-第6章⑴时间序列的平稳性及其检验精品文档

0.059 3.679 4.216 6.300 7.297 11.332 12.058 15.646 17.153 18.010 22.414 22.481 24.288 25.162 26.036 26.240 26.381
-0.031 0.157 0.264 -0.191 -0.616 -0.229 -0.385 -0.181 -0.521 -0.364 -0.136 -0.451 -0.828 -0.884 -0.406 -0.162 -0.377 -0.236 0.000
(b)
图形表示出:该序列具有相同的均值, 但从样本自相关图看,虽然自相关系数迅速 下降到0,但随着时间的推移,则在0附近波 动且呈发散趋势。
样本自相关系数显示:r1=0.48,落在 了区间[-0.4497, 0.4497]之外,因此在5% 的显著性水平上拒绝1的真值为0的假设。
该随机游走序列是非平稳的。
• 注意:
确定样本自相关函数rk某一数值是否足够接近 于0是非常有用的,因为它可检验对应的自相关 函数k的真值是否为0的假设。
Bartlett曾证明:如果时间序列由白噪声过程生成, 则对所有的k>0,样本自相关系数近似地服从以0 为均值,1/n 为方差的正态分布,其中n为样本数。
也可检验对所有k>0,自相关系数都为0的联合 假设,这可通过如下QLB统计量进行:
例如:如果有两列时间序列数据表现出一致的变 化趋势(非平稳的),即使它们没有任何有意义的 关系,但进行回归也可表现出较高的可决系数。
在现实经济生活中:
情况往往是实际的时间序列数据是非平稳的,而 且主要的经济变量如消费、收入、价格往往表现为 一致的上升或下降。这样,仍然通过经典的因果关 系模型进行分析,一般不会得到有意义的结果。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
yt = α0 + δ0zt + δ1zt-1 + δ2zt-2 + ut
With the permanent increase in z, after one period (t+1), y has increased by δ0+δ1; after two periods (t+2), y has increased by δ0+δtime series data: China’s Consumer Price Index (CPI)
500
China's CPI: 1978-2007
100
200
(1978=100) 300
400
1980
1990 year
2000
2010
5
Example #2 of time series data: China’s rate of price inflation, as measured by the annual percentage change in the Consumer Price Index (CPI)


(TS.2) (zero conditional mean): E(ut|X) = 0, t = 1, 2, …, n

The same as MLR.(A1)
X : an array with n rows and K columns, denoting a collection of all independent variables for all time periods. Similar to MLR.(A3), it is a critical assumption. It also assumes randomness, parallel to MLR.(A2).
10.4 Functional Form, Dummy Variables, and Index Numbers 10.5 Trends and Seasonality
2
10.1 The Nature of Time Series Data

Examples of time series data
At time t +3, y has reverted back to its initial level: yt+3=yt-1. Because only two lags of z in the model.
14
FDL Models – a permanent increase in z

δ0 : the immediate change in y due to the one-unit increase in z at time t. δ1 : the change in y one period after the temporary change. δ2 : the change in y two periods after the change.
Econometrics Spring 2014
Lecture 3
Time Series Data: Basic Regression Analysis
1
Outline
10.1 The Nature of Time Series Data 10.2 Examples of Time Series Regression Models 10.3 Finite Sample Properties of OLS under Classical Assumptions
17
10.3 Finite Sample Properties of OLS under Classical Assumptions

(TS.2) (zero conditional mean): E(ut|X) = 0, t = 1, 2, …, n It implies that the error term at time t, ut, is uncorrelated with each explanatory variables in all time periods. x’s are strictly exogenous.
11
10.2 Examples of Time Series Regression Models

A finite distributed lag (FDL) model (有限分布滞 后模型)
yt = α0 + δ0zt + δ1zt-1 + δ2zt-2 + ut


More generally, a finite distributed lag model of order q will include q lags of z.
10
10.2 Examples of Time Series Regression Models

Two time series models


A static model

Useful in empirical time series analysis Easily estimated by OLS. Additional models in Chapter 11
16
10.3 Finite Sample Properties of OLS under Classical Assumptions

(TS.1) (linear in parameters): the stochastic process follows yt = β0 + β1xt1 + . . .+ βkxtK + ut
Delta CPI: 1978-2007
25 0 5 Percent 10 15 20
1980
1990 year
2000
2010
CPI inflation rate
6
Time Series vs. Cross Sectional


Question:
In empirical studies, why (and/or when) do we use times series data/cross sectional data?
9
Time Series vs. Cross Sectional


Time series data has a temporal ordering, unlike cross-section data.

Cross sectional data, e.g. a random sample of individuals, are randomly drawn from the population. The randomness in times series data: one realization of a stochastic (i.e. random) process.

China Statistical Yearbooks Other macro- data

Examples of cross sectional data

We can make one right now
3
Examples of TS data
Time series data are data collected on the same observational unit at multiple time periods • Aggregate consumption and GDP for a country (for example, 20 years of quarterly observations = 80 observations) • Yen/$, pound/$ and Euro/$ exchange rates (daily data for 1 year = 365 observations) • Cigarette consumption per capita in a state, by year

For a temporary, 1-period change, z returns to its original level in period t+1
it reflects the long-run change in y after a permanent change in z
13
FDL Models – a temporary 1-period change in z yt = α0 + δ0zt + δ1zt-1 + δ2zt-2 + ut

We do not know what the annual growth in output will be in china during the coming year. All possible realizations of a stochastic process plays the role of the population in cross sectional analysis.
yt = β0 + β1zt + ut
A contemporaneous relationship between y and z. Forget about the characteristics of TS data. E.g. Static Phillips Curve: inft = β0 + β1unemt + ut
8
Using Regression Models for Forecasting
相关文档
最新文档