正方体截面问题(1)

合集下载

正方体的截面问题

正方体的截面问题

正方体的截面问题作者:陈斌来源:《读与写·教师版》2018年第12期摘要:近几年高考全国数学试卷涉及正方体的截面问题的试题,本文就正方体的截面形状及性质进行了归纳整理,并对几道高考试题提出了解法。

关键词:高考;理数;正方体;截面中图分类号:G634.6 文献标识码:A 文章编号:1672-1578(2018)12-0237-01正方体的截面就是用一个平面去截正方体,正方体的表面与这个平面的交线围成的平面图形。

1.正方体的截面形状正方体的截面可以是三角形,四边形,五边形或六边形,具体说:(1)截面三角形一定是锐角三角形;其中可以是等边三角形、等腰三角形、不等边三角形;但不能是直角三角形、钝角三角形;(2)截面可以是四边形:平行四边形、矩形、菱形、正方形、梯形、等腰梯形;并且四边形中至少有一组对边平行;截面不能是直角梯形;(3)截面可以是五边形;截面五边形必有两组分别平行的边,同时有两个角相等;截面五边形不可能是正五边形(因为必有两组对边平行);(4)截面可以是六边形;截面六边形必有分别平行的边,同时有两个角相等;截面六边形可以是等角(均为1200)的六边形,特别地,可以是正六边形。

2.正方体的截角面的性质所谓正方体的截角面就是沿正方体的某三个顶点截去它的一个角后的三角形截面。

如右图中的△A'BD。

(1)每个正方体都有八个截角面;(2)正方体的截角面垂直于它的一条体对角线,垂足是这条体对角线的一个三等分点。

(3)正方体的截角面与它的12条棱所成的角相等,也与它的六个面所成角相等。

由于截去的是正三棱锥,结合线面平行或面面平行的有关性质容易证明上述结论。

3.有关试题解法浅析(1)把正方体截去一个角,求证:截面三角形是锐角三角形。

分析:如图,应该从截去的部分入手,关注被截去棱的部分长AE、AF,AG对△EFG形状的影响。

解答:如图,设AE=a,AF=b,AG=c,则所以所以∠EFG所以为锐角;同理∠FGE,∠GEF都为锐角;故ΔEFG为锐角三角形。

细说正方体的截面图形

细说正方体的截面图形

细说正方体的截面图形在实际生活中时常出现实物几何体的切面所形成的截面图形形状,在中学数学中也学习了几何体的截面图形,截面是一个平面去截一个几何体得到的平面图形或一个平面与几何体表面交线围成的封闭图形,。

截面图形更好的将平面几何与立体几何联系起来,探究具体几何体的截面图形有助于更深入的认识几何体,发展正确的空间观念。

对于一个几何体不同的切截方式所得到的截面图形可能出现不同的情况。

现具体以正方体为例来探究正方体的截面图形形状。

一个平面截正方体与各面的交线都是线段,因此正方体的截面图形都是平面图形。

正方体有六个面,用一个平面去截正方体至少要经过正方体的三个面而最多要经过六个面,所有出现的截面图形边数至少是三条而最多是六条,则只可能出现三角形、四边形、五边形、六边形。

一、截面图形是三角形用一平面去截正方体经过正方体三个面时得到的截面图形是三角形1.截面图形是锐角三角形如下图,一个平面截正方体任意三个面得到截面△EFG ,BE=a,BF=b,BG=c.可得EF=22b a +,EG=22c a +,FG=22c b +.(1)如图①,当a ≠b ≠c 时,则EG ≠FG ≠EF,即截面△EFG 是一般三角形。

(2)如图②,当a=b ≠c 时,则EG=FG ≠EF 即截面△EFG 是等腰三角形。

同理可得a=c ≠b 或b=c ≠a 时截面△EFG 是等腰三角形。

(3)如图③,当a=b=c 时EF=FG=EG 即截面△EFG 是等边三角形2.截面图形不能是直角三角形如图①,2EF =22b a +,2FG =22c b +,2EG =22c a +,则222EG FG EF +<,222EG EF FG +<,222EG FG EF +<,所以截面三角形不可能是直角三角形。

3.截面图形不可能是钝角三角形如图①,cos ∠FEG=EG EF FG EG EF ⋅-+2222=22222222222ca b a c b c a b a +⋅+--+++ =22222c a b a a +⋅+>0,则0<∠FEG< 90.同理可得0<∠EFG< 90.0<∠EGF< 90. 所有截面图形不可能是钝角三角形。

正方体的截面问题研究资料讲解

正方体的截面问题研究资料讲解

正方体的截面问题研究研究性学习报告——正方体的截面形状【课题】正方体的截面形状【作者】刘可歆岳新茹【摘要】探究正方体截面形状,通过实践和图示证明其结果,列举特例。

【研究方法】首先经过猜想,列举出猜想到的截面,其次进行画图和实践等方法证明猜想是否正确。

再通过网络查询资料,寻找未猜想到的情况。

【研究过程】探究1:当截面为三角形根据一定角度过正方体的三条棱进行截取可以得到三角形的截面,图示如下:====由上图可知,正方体可以截得三角形截面。

特别的,当截面刚好经过三个面的对角线时,所得的三角形截面为正三角形,图示如下:====》正三棱锥探究2:当截面是四边形1.正方形:因为该立体几何图形是正方体,所以用从任意位置与该正方体上下底面平行的平面进行截取可以得到,或者和侧面平行进行截取,由下列图示证明:====》》》由图示可知,水平方向截取正方体,得到的截面为正方形。

====》》》由图示可知,竖直方向截取正方体,得到的截面为正方形。

2.矩形:因为正方形也属于矩形,所以对正方形的证明同适用于矩形。

其次,当长宽不等的矩形截面的图示如下:由上图所示可知,按不同角度截取正方体可以得到矩形。

3.平行四边形:当平面与正方体的各面都不平行时,所得截面为平行四边形,图示如下:==》由上图所示可知,当截面不与正方体的各面平行时,所得截面可能为平行四边形。

4.菱形:如下图所示,当A,B为所在棱的中点时,该截面为菱形:5.梯形:如图所示,当按一定角度使截面在正方体的上下底面上所存在的线段长短有异时,所得截面可能是梯形:==》》》探究3:当截面是五边形6.五边形:如图所示,可以截得五边形截面:=》探究3:当截面是六边形7.六边形:如图所示,可以截得六边形截面:=》特别的,当平面与正方体各棱的交点为中点时,截面为正六边形,如图所示:【拓展探究】1. 正方体最大面积的截面三角形:如该图所示可证明,由三角面对角线构成的三角形。

2. 正方体最大面积的截面四边形:通过猜想及查询资料可知,正方体截面可能得到的四边形有:正方形、矩形、梯形、平行四边形。

强基专题--立体几何中的截面问题

强基专题--立体几何中的截面问题

强基专题3 立体几何中的截面问题
[跟进训练]
1.(2021·重庆模拟)在三棱锥 P-ABC 中,PA,PB,PC 两两垂直,
PA=3,PB=4,PC=5,点 E 为线段 PC 的中点,过点 E 作该三棱
锥外接球的截面,则所得截面圆的面积不可能为( )
A.6π
B.8π
C.10π
D.12π
1234 5
(2)当π2<θ<π时,0<α<θ<π,此时sin θ<1,sin α可以取到最 大值1,
此时过圆锥母线的截面面积最大,最大值为S=12l2.
1234 5
强基专题3 立体几何中的截面问题
综上所述,过圆锥母线的截面面积的最大值与轴截面顶角θ的范 围有关,
当0<θ≤π2时,轴截面面积最大,最大值为S=12l2sin θ. 当π2<θ<π时,过圆锥母线的截面面积最大,最大值为S=12l2.
同理 FG∥EH,所以四边形 EFGH 为平行四边形,又 AD⊥BC, 所以四边形 EFGH 为矩形.
1234 5
强基专题3 立体几何中的截面问题
由相似三角形的性质得BECF=AACF,FACC=AFDG, 所以BECF+FAGD=AACF+FACC,BC=AD=2, 所以 EF+FG=2,所以四边形 EFGH 的周长为定值 4,S 四边形 EFGH =EF×FG≤EF+2 FG2=1, 所以四边形 EFGH 的面积有最大值 1.故选 B.]
1 2
l2sin θ.截面VCD的面积S′=12l2sin α.在△V强基专题3 立体几何中的截面问题
(1)当0<θ≤π2时,0<α<θ≤π2,sin α<sin θ⇒S′<S,此时过圆 锥母线的截面面积最大为轴截面面积S=12l2sin θ.
截面形状及相应面积的求法 (1)结合线、面平行的判定定理与性质定理求截面问题; (2)结合线、面垂直的判定定理与性质定理求正方体中截面问题; (3)猜想法求最值问题:“要灵活运用一些特殊图形与几何体的 特征,“动中找静”,如正三角形、正六边形、正三棱锥等; (4)建立函数模型求最值问题:①设元;②建立二次函数模型; ③求最值.

正方体截面总结

正方体截面总结

结论如下:1、可能出现的:锐角三角型、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、梯形、等腰梯形、五边形、六边形、正六边形2、不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形正方体的截面形状一:问题背景在家做饭时,切菜尤其是切豆腐时,发现截面有很多形状。

若用不同的截面去截一个正方体,得到的截面会有哪几种不同的形状?二:研究方法先进行猜想,再利用土豆和萝卜通过切割实验研究。

三:猜想及其他可能的证明:1.正方形:因为该立体几何图形是正方体,所以用从任意位置与该正方体上下底面平行的平面进行截取可以得到,或者和侧面平行进行截取,由下列图示证明:====》》》由图示可知,水平方向截取正方体,得到的截面为正方形。

====》》》由图示可知,竖直方向截取正方体,得到的截面为正方形。

2.矩形:因为正方形也属于矩形,所以对正方形的证明同适用于矩形。

其次,当长宽不等的矩形截面的图示如下:由上图所示可知,按不同角度截取正方体可以得到矩形。

例如,正方体的六个对角面都是矩形。

3.平行四边形:当平面与正方体的各面都不平行时,所得截面为平行四边形,图示如下:==》由上图所示可知,当截面不与正方体的各面平行时,所得截面可能为平行四边形。

4.三角形:根据一定角度过正方体的三条棱进行截取可以得到三角形的截面,图示如下:==》》》由上图可知,正方体可以截得三角形截面。

但一定是锐角三角形,包括等腰和等边三角形特别的,当截面刚好经过三个面的对角线时,所得的三角形截面为正三角形,图示如下:==》得到:正三棱锥5.猜想之外的截面形状:(1)菱形:如下图所示,当A,B为所在棱的中点时,该截面为菱形:(2)梯形:如图所示,当按一定角度使截面在正方体的上下底面上所存在的线段长短有异时,所得截面可能是梯形:==》》》(3)五边形:如图所示,可以截得五边形截面:=》通过实践及资料查询可知,无法得到正五边形。

(4)六边形:如图所示,可以截得六边形截面:=》特别的,当平面与正方体各棱的交点为中点时,截面为正六边形,如图所示:拓展探究:1.正方体最大面积的截面三角形 2.正方体最大面积的截面四边形3.最大面积的截面形状4.截面五边形、六边形性质1.正方体最大面积的截面三角形:如该图所示可证明,由三角面对角线构成的三角形。

正方体截面问题题型汇总

正方体截面问题题型汇总

正方体截面问题题型汇总开高 张文伟2019.11.28答案:B分析:12题除了直观解题法之外,还有另一种解法:(1)正方体的十二条棱长度相等,与平面的夹角相等,必有在平面上投影的长度相等。

(2)一个封闭的平面图形中有十二条相等的线段,必然想到正六边形的顶点与其中心的连线。

(3)所以说,投影是一个正六边形。

分析:面D1B1C与各个棱所处角相等,面A1DB与各个棱所处角相等,所以两个面与已知的平面α平行。

根据正方体的特性,体对角线AC1与两个面垂直,交点分别是M、N,且M、N是体对角线的三等分点,所以,棱与面所成角的正弦值为:三分之根号三。

向平面做投影,本质是几何体的顶点向射影面做垂线。

所以,点C1D1B1C向平面α做垂线,得到的是△D1B1C,点AA1DB向平面α做垂线,得到的是△A1DB,两个三角形重叠到一个平面,得到的就是右图,再连接端点直线,就得到一个正六边形。

由题意可得B1D1的长为根号二,所以高B1E就是二分之根号六,所以半径就是三分之根号六,即正六变形的边长是三分之根号六。

总结:1. 三条面对角线构成等边三角形所在的平面与正方体的每一个棱所成角都相等,2.正方体在体对角线垂直于投影面上的投影是一个正六面形;3.体对角线垂直于投影面,三条面对角线构成等边三角形,投影面积是这个等边三角形面积的两倍。

12.【2018全国一卷12】已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A B C D【答案】A【分析】最大是正六边形首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果.【详解】根据相互平行的直线与平面所成的角是相等的,所以在正方体1111ABCD A B C D −中,平面11AB D 与线11111,,AA A B A D 所成的角是相等的,所以平面11AB D 与正方体的每条棱所在的直线所成角都是相等的,同理平面1C BD 也满足与正方体的每条棱所在的直线所成角都是相等, 要求截面面积最大,则截面的位置为夹在两个面11AB D 与1C BD 中间的,,所以其面积为26S ,故选A. 点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.8.在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点P ,Q ,R 分别为棱AA 1,BC ,C 1D 1的中点,经过P ,Q ,R 三点的平面为α,平面α被此正方体所截得截面图形的周长为A B . C D .分析:【解析】 是正六边形 11.棱长为2的正方体1111ABCD A B C D −中,E 为棱AD 中点,过点1B ,且与平面1A BE 平行的正方体的截面面积为( )A. 5B.。

有关正方体的截面问题

有关正方体的截面问题

有关正方体的截面问题
①截面可以是三角形:等边三角形、等腰三角形、一般三角形;
②截面三角形是锐角三角形;截面三角形不能是直角三角形、钝角三角形;
③截面可以是四边形:平行四边形、矩形、菱形、正方形、梯形、等腰梯形;截面为四边形时,这个四边形中至少有一组对边平行;
④截面不能是直角梯形;
⑤截面可以是五边形;截面五边形必有两组分别平行的边,同时有两个角相等;截面五边形不可能是正五边形;
⑥截面可以是六边形;截面六边形必有分别平行的边,同时有两个角相等;
⑦截面六边形可以是等角(均为120°)的六边形,特别地可以是正六边形.
对应截面图形如下图中各图形所示.。

立体几何中的截面问题

立体几何中的截面问题

立体几何中的截面问题一.基本原理:过正方体(长方体)上三点做截面.1.三点中有两点共面例1.如图,在正方体ABCD-A 1B 1C 1D 1中,E,F,G 分别在AB,BC,DD 1上,求作过E,F,G 三点的截面.思路:当三点中有两点共面时,做截面的思路就是先找共面两点所在直线与该平面所有的棱交点,而这些交点由同时在另外一个平面中,即该截面和正方体某个侧面的交点,这样利用公理1,逐次相连找到所有的交点,即可得到截面.解析:作法:①.由于F E ,共面,在底面AC 内,过F E ,作直线EF ,与DA 于L ,显然,此时L 即在侧面D A 1内,又在欲求截面内,而该截面与侧面D A 1又交于点G ,根据公理1,截面与侧面D A 1交于L .同理,过F E ,作直线EF 与DC 的延长线交于M ,此时M 即在侧面1DC 内,又在欲求截面内,根据公理1,截面与侧面1DC 交于M .②在侧面D A 1内,连接LG 交1AA 于K .③在侧面1DC 内,连接GM 交1CC 于H .④连接FH KE ,.则五边形EFHGK EFHGK 即为所求的截面.练习1.(三点两两共面)P,Q,R 三点分别在直四棱柱AC 1的棱BB 1,CC 1和DD 1上,试画出过P,Q,R 三点的截面作法.解析:作法:(1)连接QP,QR 并延长,分别交CB,CD 的延长线于E,F.(2)连接EF 交AB 于T,交AD 于S.(3)连接RS,TP.则五边形PQRST 即为所求截面.例2.(三点所在的棱两两异面)如图,长方体1111D C B A ABCD -中,R Q P ,,分别为111,,CC AB D A 上三点,求过这三点的截面.分析:此题的难点在于R Q P ,,三点均不在同一个侧面(底面)中,这样我们就暂时无法通过侧面(底面)中连线与棱的交点来找到截面的边界点,于是需要先做出一个平面来,让上面三点RQ P ,,中有两点共面,这就转化成例1的情形,从而解决问题.解:如图,作1//BB QE 交11B A 与E ,则1,RC QE 确定一个平面,转化为例1的情形.连接QR EC ,1,交于点F ;连接PF 交1111,B A D C 延长线于H G ,;连接HQ 交11,BB AA 延长线于J I ,;连接JR 交BC 于K .则KRGPIQK 为所作截面.例3.利用平行关系确定截面在三棱锥A BCD -中,AB CD a ==,截面MNPQ 与AB ,CD 都平行,则截面MNPQ 的周长等于()A.2a B.4a C.a D.无法确定解析:设AM k CM=,因为//AB 平面MNPQ ,平面ABC 平面MNPQ MN =,AB Ì平面ABC ,所以//MN AB ,同理可得//PQ AB ,//MQ CD ,//NP CD ,故四边形MNPQ 为平行四边形,所以11MN PQ AB AB k ==+,1MQ NP k CD CD k ==+.因为AB CD a ==,所以1a MN PQ k==+,1ak MQ NP k ==+,所以四边形MNPQ 的周长为2211a ak MN PQ MQ NP a k k ⎛⎫+++=+= ⎪++⎝⎭.故选:A.二.截面的的画法小结1.确定截面的主要依据有(1)平面的四个公理及推论.(2)直线和平面平行的判定和性质.(3)两个平面平行的性质.2.作截面的几种方法(1)直接法:有两点在几何体的同一个面上,连接该两点即为几何体与截面的交线,找截面实际就是找交线的过程。

正方体的截面问题

正方体的截面问题

数理化 解题研究2019年第28期总第449期正方体的截面问题武增明(云南省玉溪第一中学653100)摘要:正方体的截面问题,涉及到截面形状的判定、截面面积和周长的计算、截面图形的计数、截面图形 的性质的判定、截面图形的面积和周长的最值(取值范围)的求解.本文仅举例说明正方体的截面面积和周长 的最值(取值范围)的求解方法以及截面图形的性质的判定方法.关键词:正方体;截面;面积;最值;性质中图分类号:G 632文献标识码:A文章编号:1008 -0333(2019)28 -0010-03一个平面与一个正方体表面的交线围成的封闭平面 图形称为正方体的截面图形,简称正方体的截面.正方体 的截面,对三角形来说,可以是锐角三角形、等腰三角形、 等边三角形,但不可能是钝角三角形、直角三角形;对四 边形来说,可以是等腰梯形、平行四边形、菱形、矩形,但 不可能是直角梯形;对五边形来说,可以是任意五边形, 但不可能是正五边形;对六边形来说,可以是正六边形. 正方体的截面至多是六边形.判断正方体的截面的形状 的理论依据是,高中立体几何中确定平面的三个公理及 其三个推论.正方体的截面问题,涉及到截面形状的判定、截面面 积和周长的计算、截面图形的计数、截面图形的性质的判 定、截面图形的面积和周长的最值(取值范围)的求解.本 文仅介绍正方体的截面面积和周长的最值(取值范围)的 求解方法,以及截面图形的性质的确定方法.解决这三个 问题的关键都是截面形状的判定.下面举例说明.―、正方体的截面面积的最值问题例1 (2018年高考全国卷I .理12)已知正方体的棱长为1,每条棱所在直线与平面a 所成的角都相等,则 a 截此正方体所得截面面积的最大值为A . 了B •丁C .—D.y解析因为在正方体/^(^-^^",中,/^//^:/) //4,B , //C ,£», ,AD //BC //B , C j /AK D ,,A A j /B B j /CC , //所以当平面a 与棱所在的直线所成的角 相等时,正方体的所有棱所在的直线与平面a 所成的角都相等,由正方体的性质易得平面与棱所在的直线所成的角相等,则平面a //平面七BC ,或平面 a 为平面由图易得当平面a 过棱C ,£>,,的中点时,a 截此正方体所得截面面积最大,此时截面是边长为f的正六边形,如图1.则其面积为6x f x (f )2=手,故选 A .评注根据正方体的性质确定平面a 的位置是解题 的关键.图1图2例2 (2004年湖南省数学竞赛试题)过正方体4BCD的对角线仙,的截面面积为S ,记S ,和S 2分别为S 的最大值和最小值,则^为().V f#2/J2/6A . 2B . 2L . 3D . 3解析由已知可得如图2,设正方体的棱长为1,故当 M ,/V 分别为A 4,,(:(:,的中点时,截面的面积最小,最小为+勝xBZ ),•当截面为就时,截收稿日期:2019 - 07 - 05作者简介:武增明(1965. 5 -),男,云南省玉溪市易门县人,本科,中学高级教师,从事高中数学教学及其研究. —10—2019年第28期总第449期数理化解题研究面的面积最大,最大为1x W=力.故S,,于D, /!是从而选C.S23D;........2/D x C, Q Ax/-L/Z);-B i二、正方体的截面的周长问题例3在正方体/^(:£>-/1",/),中,若过/)1;8的平面截正方体所得的平面四边形的周长的最小值为则正方体的体积K=( )•A.27B. 16C.9D.8分析先由四边形是平行四边形将四边形的周长转化为2( BA/ + MD,),再将正方体的侧面 展开,得到BM+ MD,的最小值,由已知条件求得a的值即 可求解.解析设正方体的棱长为a,如图3,M,yv分别是平面四边形A与A4,,CC,的交点,由题意可知四边形是平行四边形,所以四边形BM Z),;V的周长为2(BM+ MD.).图3沿将正方体的侧面展开,在矩形B Z W,中,易知当且仅当三点共线时, + MD,取得最小值,为V§a.所以二4尽,得a=2, 所以 F= 23 =8.评注解答本题的关键是将正方体的侧面展开,找 到使得平面四边形的周长取得最小值时点M的位置.解析对于①,②,如图5,因为正方体4SCZ) - 的棱长为1,当时,,这时过P,P三点的截面与正方体表面交于点D,,= f,且,截面S为等腰梯形;当0 < C(?< ^■时,过/>,(?三点的截面与正方体表面的交点在棱上,截 面S为四边形,故①,②正确.对于③,④,⑤,如图6,延长(?/?交的延长线于点/V,连接4/V交4, £»,于点M,连接MC,.取/!£»的中点G,作C////PC»交DD,于点//,可得,GH// AN,R GH =专 AN.设 CQ(+<«吳1),则 = = 2i/ /!RC,「.当-时,可得C,f f:,故③正确.当+<t<l时,S为五,ND'D,R2tC,R1J\R=~2边形,故④错误.当《 = 1时,M为/l,D,的中点,S为菱形狀=尸c,,,:及』的面积=菱三、正方体截面图形的性质问题例4 (2013年高考安徽卷.文15理15)如图4,正方体/1BCZ)-义fi,C,/?,的棱长为1,P为6C的中点,()为 线段CC,上的动点,过点/I,P,((的平面截该正方体所得的截面记为S.则下列命题正确的是____(写出所有正确命题的编号).①当0<(^<士时,S为四边形;②当时,S为等腰梯形;③当C(?= |时,S与C,£>,的交点/?满足C,尺=+;④当|< 1时,S为六边形;⑤当〇?=丨时,S的面积为形 /1PC,A/ 的面积二 2S A C,抑=2x士 f,故⑤正确.故所有正确命题的编号为①,②,③,⑤.例5 (2005年全国高中数学联赛试题)如图7,已知正方体/1B C D任作平面《与对角线/1C,垂直,使得平面a与正方体的每个面都有公共点.记这样得到 的截面多边形的面积为S,周长为Z.则().A. S为定值,/不为定值B. S与/均为定值C. S不为定值,/为定值C.S与Z均不为定值解析先考察特殊情形.不妨设正方体棱长为1.如图7,取£,F,C,//,/,1/分别为六条棱的中—11—数理化 解题研究2019年第28期总第449期点,显然,正六边形是符合要求的截面,它的周长 =於,面积S , =¥.当截面为正W D 时,其周长/2 =3/5",面积 S 2=f .注意到= Z 2 ,S , #S 2,由此可以断定S 不为定值,而/ 有可能为定值.再考察一般情形•设六边形W, G ,//,/,为任意一个符合要求的截面,则此截面与前面两个特殊的截面平行.由相似三角形对应边成比例,得£丨尸,_B ,£,Z ),B ,所以=在A A=在B A ,J ,E , +E ,F , =^2(A ,E , +B lE l)—=^/2 .同理,另四边之和为2尽.因此,六边形■/,£,,(;,//,/,的周长为定值3^.故选C .评注解本题应用了由特殊到一般的思维方法,这 是求解复杂问题的常用方法之一.参考文献:[1]陆珂•截面[J ].中学数学教学参考(上旬),1995(4) :43 -45.[2] 傅钦志•立体几何中的截面问题[J ].中等数学,2007(3) :5 -9.[3] 蒋孝国•立体几何中的最值问题[J ] •数学通讯(上半月),2016(3) :40-43.[责任编辑:杨惠民]一个正三角形面积最值的求法探究许银伙(福建省泉州外国语中学362〇00)摘要:本文对一个正三角形的面积最值问题,分别运用坐标法、几何性质法、三角函数法、向量法、复数 法等多种知识,从不同角度和方法进行分析解决,提高知识应用能力.关键词:三角函数;坐标法;向量法;正三角形中图分类号:G 632文献标识码:A文章编号:丨008 -0333(2019)28 -0012 -03问题已知中,乙/l 〇e =90°,04=l ,O B =W , 等边A £F C 的三个顶点分别在A /10S 的三边上运动,求 A £F C 面积的最小值•分析一以边〇/1,所在直线分别为*,y 轴,建立 直角坐标系,通过正三角形的直观性质三边相等和已知 条件求出的长度关系,进而求出的最小值.解法一如图1,建立平面直角坐标系,则点/!(1,〇),B (0,万),设点 £(*。

关于一个正方体截面的小论文,500字

关于一个正方体截面的小论文,500字

关于一个正方体截面的小论文,500字
正方体是一种十分常见的几何体,不管是在题干中,还是在生活上,都已是我们眼中的常客。

但就是这么令人熟悉的物体,在它的背后仍然有许多有趣、深奥,甚至堪比未解之谜的问题待我们一一发掘、解答。

这不,正方体截面形状的多样性则是像这样一个趣味无穷的讨论点。

借助几何画板,我也发现了它其中的一些奥秘。

多次试验过后,我归纳出4种正方体的截面形状:三角形,四边形,五边形以及六边形。

下面,我们来讨论讨论这4种截面形状的产生条件。

三角形应该是我们最容易发现的截面形状之一了。

“很随便”地一截,就可以获得一个三角形截面。

当截面仅截过同一顶点的三条棱时,即可截得一对三角形截面。

二、四边形
四边形形状的截面也是比较容易发现的。

在此分以下两种情况讨论:
1. 当截面仅过四条相互平行的棱时,则有四边形截面出现。

2. 当截面仅过一个面内一对相交棱及其平行面内另一对完全相同的相交棱即可得到四边形截面。

四边形的出现和获得可由上述三角形某一顶点的运动,即截面绕棱旋转的角度推导而来。

运用这个顶点“一生二”的思路,我们应该很容易进行后面的探究。

若要得到面积最大的截面四边形,则可作以两条平行的面对角线为长,以对棱为宽的矩形。

三、五边形
五边形截面相对于前两种截面形状来说就不是那么能直观地看出来了——当然,我们借助前面顶点“一生二”的思想,也可较为容易地得到五边形的截面。

四、六边形
依据刚才所提出的思想,下面我们进行六边形的研究,将所得五边形在正方体底面上的棱所对顶点继续上移,即可得到六边形。

正方体截面总结(最全,适用于公务员图形推理)

正方体截面总结(最全,适用于公务员图形推理)

M / * B结论如下:1可能出现的:锐角三角型、等边、等腰三角形,正方形、矩形、边形、梯形、等腰梯形、五边形、六边形、正六边形2、不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、非矩形的平行四七边形或更多边正方体的截面形状一:问题背景在家做饭时,切菜尤其是切豆腐时,发现截面有很多形状。

若用不同的截面去截一个正方体,得到的截面会有哪几种不同的形状?二:研究方法先进行猜想,再利用土豆和萝卜通过切割实验研究。

三:猜想及其他可能的证明:1•正方形:因为该立体几何图形是正方体,所以用从任意位置与该正方体上下底面平行的平面进行截取可以得到,或者和侧面平行进行截取,由下列图示证明:由图示可知,水平方向截取正方体,得到的截面为正方形。

由图示可知,竖直方向截取正方体,得到的截面为正方形。

2矩形:因为正方形也属于矩形,所以对正方形的证明同适用于矩形。

其次,当长宽不等的矩形截面的图示如下: 由上图所示可知,按不同角度截取正方体可以得到矩形。

例如,正方体的六个对角面都是矩形。

3. 平行四边形:当平面与正方体的各面都不平行时,所得截面为平行四边形,图示如下:==》》》 ==》》》由上图所示可知,当截面不与正方体的各面平行时,所得截面可能为平行四边形。

4. 三角形:根据一定角度过正方体的三条棱进行截取可以得到三角形的截面,图示如下==》由上图可知,正方体可以截得三角形截面。

但一定是锐角三角形,包括等腰和等边三角形特别的,当截面刚好经过三个面的对角线时,所得的三角形截面为正三角形,图示如下:==》得到: 正三棱锥5. 猜想之外的截面形状:(1)菱形:如下图所示,当A,B 为所在棱的中点时,该截面为菱形:(2)梯形:如图所示,当按一定角度使截面在正方体的上下底面上所存在的线段长短有异时,所得截面可能是梯形:(3 )五边形:(4 )六边形:如图所示,可以截得六边形截面:==》》》如图所示,可以截得五边形截面:通过实践及资料查询可知,无法得到正五边形。

正方体截面总结(最全,适用于公务员图形推理)

正方体截面总结(最全,适用于公务员图形推理)

正方体截面的形状可能出现锐角三角型、等边、等腰三角形,但不可能出现直角和钝角三角形Λ/ Y 月/L/F■■1IZ/:⅛/ 电曲四边形:可能出现正方形、矩形、非矩形的平行四边形、菱形、梯形、等腰梯形不可能出现直角梯形结论如下:1可能出现的:锐角三角型、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、梯形、等腰梯形、五边形、六边形、正六边形2、不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边正方体的截面形状一:问题背景在家做饭时,切菜尤其是切豆腐时,发现截面有很多形状。

若用不同的截面去截一个正方体,得到的截面会有哪几种不同的形状?二:研究方法先进行猜想,再利用土豆和萝卜通过切割实验研究。

三:猜想及其他可能的证明:1.正方形:因为该立体几何图形是正方体,所以用从任意位置与该正方体上下底面平行的平面进行截取可以得到,或者和侧面平行进行截取,由下列图示证明:由图示可知,竖直方向截取正方体,得到的截面为正方形。

2矩形:因为正方形也属于矩形,所以对正方形的证明同适用于矩形。

其次,当长宽不等的矩形截面的图示如下:====》》》由图示可知,水平方向截取正方体,得到的截面为正方形。

》》》由上图所示可知,按不同角度截取正方体可以得到矩形。

例如,正方体的六个对角面都是矩形3. 平行四边形:当平面与正方体的各面都不平行时,所得截面为平行四边形,图示如下:由上图所示可知,当截面不与正方体的各面平行时,所得截面可能为平行四边形。

4.三角形:根据一定角度过正方体的三条棱进行截取可以得到三角形的截面,图示如下由上图可知,正方体可以截得三角形截面。

但一定是锐角三角形,包括等腰和等边三角形特别的,当截面刚好经过三个面的对角线时,所得的三角形截面为正三角形,图示如下:==》得到: 正三棱锥5. 猜想之外的截面形状:(1 )菱形:如下图所示,当A,B为所在棱的中点时,该截面为菱形:(2)梯形:如图所示,当按一定角度使截面在正方体的上下底面上所存在的线段长短有异时,所得截面可能是梯形:==》》》(3)五边形:如图所示,可以截得五边形截面:通过实践及资料查询可知,无法得到正五边形。

正方体的截面

正方体的截面

正方体的截面引言截面是指一个物体被一个平面所切割后的形状。

正方体是一个具有六个相等的正方形面的立方体。

在本文中,我们将讨论正方体的截面形状和性质。

正方体的基本概念正方体是一种特殊的立方体,具有六个相等的正方形面。

它的每个面都与其他三个面相邻,形成直角相交。

正方体的边长被定义为所有正方形面的边长。

正方体的截面形状正方体的截面形状取决于截割平面的方向和位置。

根据截面与正方体边长的相对位置,可以将截面分为以下几种情况:1. 水平截面当截割平面与正方体的底面平行时,截面为一个正方形。

正方形的边长等于正方体的边长。

2. 垂直截面当截割平面与正方体的一个侧面平行时,截面为一个长方形。

长方形的边长等于正方体的边长,而宽度则取决于截割平面与正方体的相对位置。

3. 平面截面当截割平面与正方体的一个角相交时,截面为一个不规则多边形。

多边形的形状取决于截割平面的位置和角度。

4. 对角线截面当截割平面通过正方体的两个相对角点时,截面为一个菱形。

菱形的对角线为正方体的对角线。

5. 中心截面当截割平面通过正方体的中心点时,截面为一个正六边形。

正六边形的边长等于正方体的边长。

正方体截面的性质正方体的截面具有一些特殊的性质,这些性质可以用来解决一些几何问题。

以下是一些常见的性质:1. 截面面积正方体的截面面积取决于截割平面的形状和位置。

对于水平和垂直截面,其面积等于正方体的底面积。

对于其他类型的截面,其面积可以通过几何计算方法进行求解。

2. 截面形状对称性正方体的截面形状具有一定的对称性。

例如,水平和垂直截面是关于正方体的中心点对称的。

对称性可以帮助我们简化计算和分析截面的性质。

3. 截面相对位置正方体的截面相对位置可以用来确定截面之间的关系。

例如,两个水平截面之间的距离等于正方体的高度。

总结正方体的截面形状和性质是几何学中的重要概念。

通过研究截面,我们可以更好地理解正方体的结构和特性。

了解正方体截面的形状和性质对于解决几何问题和应用数学都具有重要的意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于正方体截面形状探究
引题:
问题1:什么叫几何体的截面?
答:一个几何体与一个平面相交所得到的平面图形叫做几何体的截面。

问题2:截面的边是如何得到的?
答:截面的边是平面和几何体表面的交线。

问题3:正方体是立体几何中一个重要的模型,它是一种非常对称的几何体。

如果我们拿一个平面去截一个正方体那么会得到什么形状的截面图形呢?截面图形最多有几条边?
答:因为正方体有六个面,所以它与平面最多有六条交线,即所截到的截面图形最多有六条边。

所以截图可能是三角形,四边形,五边形,六边形。

探究1:截面图为三角形时,有几种情况? 1. 是否可以截出等腰三角形:
E
A A 1
解析:
如上图,一正方体被一平面所截后得到截面GEF
显然,只要BE=BF 就有GE=GF, ⊿GEF 就是等腰三角形 所以,截到等腰三角形的情况存在。

2.是否可以截出等边三角形: 解析
E
A A 1
一正方体被一平面截后得到三角形GEF , 只要BE=BF=BG 就有GE=EF=GF 所以,截到等边三角形的情况存在。

3.是否可以截出直角三角形:
A A 1
解析:若一正方体被一平面截后∠GEF 是直角, 那么:GE ⊥EF 又因为GB ⊥EF
所以EF ⊥面GBE 所以EF 与FB 重合 即E 点与B 点重合 不合实际
所以,这截得是普通三角形,不是直角三角形。

结论1:用平面去截正方体能截到三边形:
(1)等腰三角形,(2)等边三角形,(3)普通三角形; (不能截得直角三角形)
探究2:如果,截面为四边形,那么,可以截出哪几类呢? 1.可以截出长方形:
分析:过一正方体的一棱有无数个矩形,只要长宽不等,就是长方形。

所以,存在这一情况。

F
A A C 1
做法:
如上图;取正方体一棱AB ,作与棱AB 平行的平面就可以得到一个矩形截面。

2.可以截出正方形:
分析:正方体六个表面都是正方形只要用一平行于原表面的平面去截正方体,就可以得到正方形截面,如图所示。

F
A
A 1
3.可以截出梯形:
分析:用一平面从正方体上表面斜截下,与下底面相交,因为上下两底面平行,由面面平行的性质定理可得EH ∥FG ,只要EH ≠FG,所以可截到梯形。

A
A C 1
4、截面还可以是平行四边形或菱形
A
A 1
如图当AE= C 1F 时四边形A 1ECF 是菱形,调整面A 1ECF 的倾斜方向时四边形A 1ECF 可以是一般的平行四边形 结论2:用平面去截正方体能截到四边形: (1.)长方形;(2.)正方形;(3.)梯形;(4)平行四边形;(5)菱形。

探究3:截面多边形的边数最多有几条? 解析:
因为正方体有六个面,所以它与平面相交最多有六条交线,
即所截到的截面图形最多有六条边。

所以截图可能是三角形,四边形,五边形,六边形。

探究4:截面可能是正多边形吗?可能有几种? 答:截面是正多边形有3种可能。

有正三角形,正方形,正六边形。

如图所示
E
A
A 1
F
A
A 1
J
A
A C 1
E 、
F 、
G 、
H 、
I 、
J 分别是所在边的中点时六边形EFGHIJ 是正六边形 当截面是五边形时不可能是正五边形
如图:由面面平行的性质,五边形EFGHI 中必有E F ∥HI,G F ∥EI 所以五边形EFGHI 不可能是正五边形。

E
H
A
A 1
总结;
1.用平面去截正方体能截到三角形:
(1)等腰三角形,(2)三角形,(3)普通三角形;(不能截出直角三角形) 2.用平面去截正方体能截到四边形: (1)长方形、(2)正方形、(3)梯形、(4)平行四边形(5)菱形 3. 用平面去截正方体能截到三角形、四边形、五边形、六边形。

4.用平面截正方体可以截得的正多边形有正三角形、正方形、正六边形。

试题设计
1用平面去截正方体所得截面的形状可能有------ 2用平面去截正方体所得截面的边最多有------条
3用平面去截正方体所得截面可能有的正多边形有------ 可以设计成选择题或填空题。

相关文档
最新文档