国家开放大学电大《经济数学基础》形成性考核
国家开放大学电大《经济数学基础1》形成性考核及答案解析
《经济数学基础12》网上形考任务1至2试题及答案形考任务1 试题及答案题目1:函数的定义域为().答案:题目1:函数的定义域为().答案:题目1:函数的定义域为().答案:题目2:下列函数在指定区间上单调增加的是().答案:题目2:下列函数在指定区间上单调增加的是().答案:题目2:下列函数在指定区间上单调减少的是().答案:题目3:设,则().答案:题目3:设,则().答案:题目3:设,则=().答案:题目4:当时,下列变量为无穷小量的是().答案:题目4:当时,下列变量为无穷小量的是(). 答案:题目4:当时,下列变量为无穷小量的是(). 答案:题目5:下列极限计算正确的是().答案:题目5:下列极限计算正确的是().答案:题目5:下列极限计算正确的是().答案:题目6:().答案:0题目6:().答案:-1题目6:().答案:1题目7:().答案:题目7:().答案:().题目7:().答案:-1题目8:().答案:题目8:().答案:题目8:().答案:().题目9:().答案:4 题目9:().答案:-4 题目9:(). 答案:2题目10:设在处连续,则().答案:1题目10:设在处连续,则().答案:1题目10:设在处连续,则().答案:2题目11:当(),()时,函数在处连续. 答案:题目11:当(),()时,函数在处连续. 答案:题目11:当(),()时,函数在处连续.答案:题目12:曲线在点的切线方程是().答案:题目12:曲线在点的切线方程是().答案:题目12:曲线在点的切线方程是().答案:题目13:若函数在点处可导,则()是错误的.答案:,但题目13:若函数在点处可微,则()是错误的.答案:,但题目13:若函数在点处连续,则()是正确的.答案:函数在点处有定义题目14:若,则().答案:题目14:若,则().答案:1题目14:若,则().答案:题目15:设,则().答案:题目15:设,则().答案:题目15:设,则().答案:题目16:设函数,则(). 答案:题目16:设函数,则(). 答案:题目16:设函数,则(). 答案:题目17:设,则().答案:题目17:设,则().答案:题目17:设,则().答案:题目18:设,则().答案:题目18:设,则().答案:题目18:设,则().答案:题目19:设,则().答案:题目19:设,则().答案:题目19:设,则().答案:题目20:设,则().答案:题目20:设,则(). 答案:题目20:设,则(). 答案:题目21:设,则(). 答案:题目21:设,则(). 答案:题目21:设,则().题目22:设,方程两边对求导,可得().答案:题目22:设,方程两边对求导,可得().答案:题目22:设,方程两边对求导,可得().答案:题目23:设,则().答案:题目23:设,则().答案:题目23:设,则().答案:-2题目24:函数的驻点是().答案:题目24:函数的驻点是().答案:题目24:函数的驻点是().答案:题目25:设某商品的需求函数为,则需求弹性().答案:题目25:设某商品的需求函数为,则需求弹性().答案:题目25:设某商品的需求函数为,则需求弹性().答案:形考任务2 试题及答案题目1:下列函数中,()是的一个原函数.答案:下列函数中,()是的一个原函数.答案:下列函数中,()是的一个原函数.答案:题目2:若,则(). 答案:若,则().答案:若,则(). 答案:题目3:(). 答案:题目3:().答案:题目3:(). 答案:题目4:().答案:题目4:().答案:题目4:().答案:题目5:下列等式成立的是().答案:题目5:下列等式成立的是().答案:题目5:下列等式成立的是().答案:题目6:若,则()答案:题目6:若,则().答案:题目6:若,则(). 答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目9:用分部积分法求不定积分答案:题目9:用分部积分法求不定积分答案:题目9:用分部积分法求不定积分答案:题目10:答案 0题目11:设,则(). 答案:题目11:设,则().答案:题目11:设,则(). 答案:题目12:下列定积分计算正确的是().答案:答案:答案:题目13:下列定积分计算正确的是().答案:答案:答案:题目14:计算定积分,则下列步骤中正确的是().答案:题目14:().答案:题目14:().答案:题目15:用第一换元法求定积分答案:题目15:用第一换元法求定积分答案:题目15:用第一换元法求定积分答案:题目16:用分部积分法求定积分答案:题目16:用分部积分法求定积分答案:题目16:用分部积分法求定积分答案:题目17:下列无穷积分中收敛的是().答案:答案:答案:题目18:求解可分离变量的微分方程答案:题目18:求解可分离变量的微分方程答案:题目18:求解可分离变量的微分方程答案:题目19:根据一阶线性微分方程的通解公式求解答案:题目19:根据一阶线性微分方程的通解公式求解答案:题目19:根据一阶线性微分方程的通解公式求解答案:题目20:微分方程满足的特解为().答案:题目20:微分方程满足的特解为().答案:题目20:微分方程满足的特解为().答案:有关考试的注意事项:一、考试时注意事项:1、考生参加闭卷考试,除携带2B铅笔、书写兰(黑)字迹的钢笔、圆珠笔或0.5mm签字笔、直尺、圆规、三角板、橡皮外(其他科目有特殊规定的除外),其它任何物品不准带入考场。
电大经济数学基础形成性考核册答案
电大经济数学基础形成性考核册答案Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT电大经济数学基础形成性考核册及参考答案(一)填空题 1.___________________sin lim=-→xxx x .答案:0 2.设⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 25.设x x x f sin )(=,则__________)2π(=''f .答案:2π-(二)单项选择题 1. 函数212-+-=x x x y 的连续区间是( D )A .),1()1,(+∞⋃-∞B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( B )A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3. 设yx =lg2,则d y =(B ).A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的. A .函数f (x )在点x 0处有定义 B .A x f x x =→)(lim,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.当0→x 时,下列变量是无穷小量的是( C ).A .x2 B .xxsin C .)1ln(x + D .x cos (三)解答题 1.计算极限(1)21123lim 221-=-+-→x x x x(2)218665lim 222=+-+-→x x x x x 原式=4)-2)(x -(x 3)-2)(x -(x lim2x →(3)2111lim-=--→x x x原式=)11()11)(11(lim+-+---→x x x x x=111lim+--→x x=21-(4)3142353lim22=+++-∞→x x x x x 原式=22433531xx x x +++-=31 (5)535sin 3sin lim0=→x x x原式=xxx x x 55sin 33sin lim530→ =53 (6)4)2sin(4lim22=--→x x x 原式=2)2sin(2lim2+++→x x x x=2)2sin(lim )2(lim 22--+→→x x x x x = 42.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在(2)当b a ,为何值时,)(x f 在0=x 处连续.解:(1)1)(lim ,)(lim 00==+-→→x f b x f x x当 1f(0)f(x)lim 10x ====→有时,b a(2). 1f(0)f(x)lim 1b a 0x ====→有时,当函数f(x)在x=0处连续. 3.计算下列函数的导数或微分: (1)2222log 2-++=x x y x ,求y '答案:2ln 12ln 22x x y x ++='(2)dcx bax y ++=,求y '答案:22)()()()(d cx bcad d cx b ax c d cx a y +-=++-+='(3)531-=x y ,求y '答案:23)53(23---='x y(4)x x x y e -=,求y '答案:)(21x x xe e xy +-='=x x xe e x--21(5)bx y ax sin e =,求y d答案:∵)cos (sin cos sin )(sin (sin )(bx b bx e bx be bx ae bx e bx e y ax ax ax ax ax +=+='+'='∴dxbx b bx a edy ax)cos sin (+=(6)x x y x+=1e ,求y d答案:∵x e x y x23112+-=' ∴dx e xx dy x )123(12-= (7)2ecos x x y --=,求y d答案:∵)()(sin 22'-⋅-'⋅-='-x e x x y x=222sin xxe xx-+-∴dx xe xxdy x )22sin (2-+-=(8)nx x y n sin sin +=,求y '答案:nx n x x n y n cos cos sin 1+⋅='-(9))1ln(2x x y ++=,求y '答案:)1(1122'++⋅++='x x x x y =)11(1122xx xx ++⋅++=2221111xx x xx +++⋅++ =211x+(10)xxx y x212321cot -++=,求y '答案:531cos 261211cos61211sin 2ln 21)2()1(cos 2ln 2x x x x x x xy x x+-⋅⋅-='-++'⋅⋅='-4.下列各方程中y 是x 的隐函数,试求y '或y d(1) 方程两边对x 求导:所以 dx xy x y dy ---=232(2) 方程两边对x 求导:所以 xyxyxe y x ye y x y ++-+-=')cos()cos(45.求下列函数的二阶导数: (1))1ln(2x y +=,求y ''答案: (1)212x x y +='(2)212321212121)(-----='-='x x x xy作业(二)(一)填空题 1.若c x x x f x++=⎰22d )(,则___________________)(=x f .答案:22ln 2+x2.⎰='x x d )sin (________.答案:c x +sin3. 若c x F x x f +=⎰)(d )(,则⎰=-x x xf d )1(2 .答案:c x F +--)1(212 4.设函数___________d )1ln(d d e12=+⎰x x x .答案:0 5. 若t tx P xd 11)(02⎰+=,则__________)(='x P .答案:211x+-(二)单项选择题1. 下列函数中,( D )是x sin x 2的原函数. A .21cos x 2 B .2cos x 2 C .-2cos x 2 D .-21cos x 2 2. 下列等式成立的是( C ). A .)d(cos d sin x xx = B .)1d(d ln x x x =C .)d(22ln 1d 2x xx =D .x x xd d 1=3. 下列不定积分中,常用分部积分法计算的是( C ). A .⎰+x x c 1)d os(2, B .⎰-x x x d 12C .⎰x x x d 2sinD .⎰+x xxd 124. 下列定积分计算正确的是( D ).A .2d 211=⎰-x x B .15d 161=⎰-xC .0)d (32=+⎰-x x x ππD .0d sin =⎰-x x ππ5. 下列无穷积分中收敛的是( B ). A .⎰∞+1d 1x x B .⎰∞+12d 1x xC .⎰∞+0d e x xD .⎰∞+1d sin x x (三)解答题1.计算下列不定积分(1)⎰x x x d e 3原式=⎰dx ex )3( =c e c ee x x x +-=+)13(ln 33ln )3( (2)⎰+x xx d )1(2答案:原式=⎰++-dx x x x)2(2321=c x x x +++25232152342(3)⎰+-x x x d 242答案:原式=⎰+-=-c x x dx x 221)2(2 (4)⎰-x x d 211答案:原式=c x x x d +--=---⎰21ln 2121)21(21 (5)⎰+x x x d 22答案:原式=⎰++)2(22122x d x =c x ++232)2(31(6)⎰x xx d sin 答案:原式=⎰+-=c x x d x cos 2sin 2(7)⎰x xx d 2sin答案:∵(+) x 2sinx(-) 1 (+) 0 2sin4x -∴原式=c xx x ++-2sin 42cos 2 (8)⎰+x x 1)d ln(答案:∵ (+) )1ln(+x 1(-) 11+-x x ∴ 原式=⎰+-+dx x xx x 1)1ln(=⎰+--+dx x x x )111()1ln( =c x x x x +++-+)1ln()1ln(2.计算下列定积分 (1)x x d 121⎰--答案:原式=⎰⎰-+--2111)1()1(dx x dx x =29252)21(2212=+=-+x x (2)x x xd e 2121⎰答案:原式=⎰-212211)(xd x xe x=21211e e e x -=-(3)x xx d ln 113e 1⎰+答案:原式=⎰++31)ln 1(ln 1e x d xx x=21ln 123=+e x(4)x x x d 2cos 2⎰π答案:∵ (+)x(+)02cos 1- ∴ 原式=20)2cos 412sin 21(πx x x +=214141-=--(5)x x x d ln e1⎰答案:∵ (+) x ln x(-) x122x∴ 原式=⎰-e exdx x x 11221ln 21 =)1(414122122+=-e x e e(6)x x x d )e 1(4⎰-+答案:∵原式=⎰-+44dx xe x又∵ (+)x xe- (-)1 -xe - (+)0 xe -∴⎰-----=44)(x x x e xe dx xe=154+--e故:原式=455--e作业三 (一)填空题1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=161223235401A ,则A 的元素__________________23=a .答案:32.设B A ,均为3阶矩阵,且3-==B A ,则T AB 2-=________. 答案:72-3. 设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件是 .答案:BA AB =4. 设B A ,均为n 阶矩阵,)(B I-可逆,则矩阵X BX A =+的解______________=X .答案:A B I 1)(--5. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020001A ,则__________1=-A .答案:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=31000210001A (二)单项选择题1. 以下结论或等式正确的是( C ). A .若B A ,均为零矩阵,则有B A = B .若AC AB =,且O A ≠,则C B =C .对角矩阵是对称矩阵D .若O B O A ≠≠,,则O AB ≠2. 设A 为43⨯矩阵,B 为25⨯矩阵,且乘积矩阵T ACB 有意义,则TC 为( A )矩阵.A .42⨯B .24⨯C .53⨯D .35⨯3. 设B A ,均为n 阶可逆矩阵,则下列等式成立的是( C ). `A .111)(---+=+B A B A , B .111)(---⋅=⋅B A B AC .BA AB = D .BA AB =4. 下列矩阵可逆的是( A ).A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡300320321B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--321101101C .⎥⎦⎤⎢⎣⎡0011 D .⎥⎦⎤⎢⎣⎡22115. 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=444333222A 的秩是( B ). A .0 B .1 C .2 D .3 三、解答题1.计算 (1)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-01103512=⎥⎦⎤⎢⎣⎡-5321 (2)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-00113020⎥⎦⎤⎢⎣⎡=0000(3)[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--21034521=[]02.计算⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--723016542132341421231221321解 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--72301654274001277197723016542132341421231221321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1423011121553.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=110211321B 110111132,A ,求AB 。
国家开放大学电大《经济数学基础》形成性考核12
题目
用分部积分法求定积分 ,则下列步骤正确的是( ).
正确答案是:
题目
下列无穷积分中收敛的是( ).
正确答案是:
题目
求解可分离变量的微分方程 ,分离变量后可得( ).
正确答案是:
题目
根据一阶线性微分方程的通解公式求解 ,则下列选项正确的是( ).
正确答案是:
题目
微分方程 满足 的特解为( ).
C.
题目17
下列无穷积分中收敛的是( ).
B.
题目19
根据一阶线性微分方程的通解公式求解 ,则下列选项正确的是( ).
选择一项:
C.
题目20
微分方程 满足 的特解为( ).
选择一项:
D.
题目1
下列函数中,( )是 的一个原函数.
选择一项:
B.
题目2
若 ,则 ( ).
选择一项:
D.
题目3
( ).
选择一项:
题目6
若 ,则 ( ).
选择一项:
正确答案是:
题目7
用第一换元法求不定积分 ,则下列步骤中正确的是( ).
选择一项:
正确答案是:
题目8
下列不定积分中,常用分部积分法计算的是( ).
选择一项:
正确答案是:
题目9
用分部积分法求不定积分 ,则下列步骤中正确的是().
选择一项:
正确答案是:
题目10
( ).
正确答案是:0
正确答案是:
题目20
微分方程 满足 的特解为( ).
选择一项:
正确答案是:
下列函数中,( )是 的一个原函数.
选择一项:
正确答案是:
电大经济数学基础形成性考核册及参考答案
电大经济数学基础形成性考核册及参考答案(一)填空题 1.___________________sin lim=-→xxx x .答案:0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:13.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 5.设x x x f sin )(=,则__________)2π(=''f .答案:2π- (二)单项选择题 1. 函数212-+-=x x x y 的连续区间是( D ) A .),1()1,(+∞⋃-∞ B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( B )A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3. 设y x =l g 2,则d y =( B ). A .12d x x B .1d x x ln10 C .ln 10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微5.当0→x 时,下列变量是无穷小量的是( C ).A .x2 B .xxsin C .)1ln(x + D .x cos (三)解答题 1.计算极限(1)21123lim 221-=-+-→x x x x 2112lim)1)(1()2)(1(lim11-=+-=+---=→→x x x x x x x x 原式 (2)218665lim 222=+-+-→x x x x x原式=4)-2)(x -(x 3)-2)(x -(x lim2x →2143lim2=--=→x x x (3)2111lim-=--→x x x 原式=)11()11)(11(lim 0+-+---→x x x x x=111lim+--→x x=21-(4)3142353lim22=+++-∞→x x x x x 原式=22433531xx x x +++-=31(5)535sin 3sin lim0=→x x x原式=xx x x x 55sin 33sin lim530→ =53(6)4)2sin(4lim 22=--→x x x原式=2)2sin(2lim2+++→x x x x=2)2sin(lim )2(lim 22--+→→x x x x x = 42.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续. 解:(1)1)(lim ,)(lim 00==+-→→x f b x f x x当 1f (0)f (x )lim 10x ====→有时,b a(2).1f(0)f(x)lim 1b a 0x ====→有时,当函数f(x)在x=0处连续.3.计算下列函数的导数或微分: (1)2222log 2-++=x x y x,求y '答案:2ln 12ln 22x x y x++=' (2)dcx bax y ++=,求y '答案:22)()()()(d cx bcad d cx b ax c d cx a y +-=++-+=' (3)531-=x y ,求y '答案:23)53(23---='x y(4)x x x y e -=,求y '答案:)(21x x xe e xy +-='=x x xe e x--21(5)bx y axsin e =,求y d答案:∵)cos (sin cos sin )(sin (sin )(bx b bx e bx be bx ae bx e bx e y ax ax ax ax ax +=+='+'=' ∴dx bx b bx a e dyax )cos sin (+=(6)x x y x+=1e ,求y d答案:∵x e x y x 23112+-=' ∴dx e xx dy x )123(12-= (7)2ecos x x y --=,求y d答案:∵)()(sin 22'-⋅-'⋅-='-x e x x y x=222sin x xe xx-+-∴dx xe xxdy x )22sin (2-+-= (8)nx x y nsin sin +=,求y '答案:nx n x x n y n cos cos sin1+⋅='-(9))1ln(2x x y ++=,求y '答案:)1(1122'++⋅++='x x x x y =)11(1122xx xx ++⋅++=2221111xx x xx +++⋅++ =211x+(10)xxx y x212321cot -++=,求y '答案:531cos 261211cos61211sin 2ln 21)2()1(cos 2ln 2x x x x x x xy x x+-⋅⋅-='-++'⋅⋅='- 4.下列各方程中y 是x 的隐函数,试求y '或y d(1) 方程两边对x 求导: 0322=+'--'⋅+y x y y y x32)2(--='-x y y x y所以 dx xy x y dy---=232(2) 方程两边对x 求导: 4)()1)(cos(='+⋅+'++y x y e y y x xyxy xy ye y x y xe y x -+-='++)cos(4])[cos(所以 xyxyxey x ye y x y ++-+-=')cos()cos(4 5.求下列函数的二阶导数: (1))1ln(2x y +=,求y '' 答案: (1) 212x xy +='222222)1(22)1(22)1(2x x x x x x y +-=+⋅-+='' (2) 212321212121)(-----='-='x x x xy23254143--+=''x x y14143)1(=+='y作业(二)(一)填空题 1.若c x x x f x ++=⎰22d )(,则___________________)(=x f .答案:22ln 2+x2.⎰='x x d )sin (________.答案:c x +sin 3. 若c x F x x f +=⎰)(d )(,则⎰=-x x xf d )1(2 .答案:c x F +--)1(212 4.设函数___________d )1ln(d d e12=+⎰x x x .答案:0 5. 若t tx P xd 11)(02⎰+=,则__________)(='x P .答案:211x+-(二)单项选择题1. 下列函数中,( D )是x sin x 2的原函数. A .21cos x 2 B .2cos x 2 C .-2cos x 2 D .-21cos x 2 2. 下列等式成立的是( C ).A .)d(cos d sin x x x =B .)1d(d ln xx x =C .)d(22ln 1d 2x x x =D .x x xd d 1=3. 下列不定积分中,常用分部积分法计算的是( C ).A .⎰+x x c 1)d os(2,B .⎰-x x x d 12C .⎰x x x d 2sin D .⎰+x x xd 124. 下列定积分计算正确的是( D ). A .2d 211=⎰-x x B .15d 161=⎰-xC .0)d (32=+⎰-x x xππ D .0d sin =⎰-x x ππ5. 下列无穷积分中收敛的是( B ). A .⎰∞+1d 1x x B .⎰∞+12d 1x x C .⎰∞+0de x xD .⎰∞+1d sin x x(三)解答题1.计算下列不定积分(1)⎰x x x d e 3原式=⎰dx e x )3( =c e c ee x xx +-=+)13(ln 33ln )3( (2)⎰+x xx d )1(2答案:原式=⎰++-dx x x x)2(2321=c x x x +++25232152342(3)⎰+-x x x d 242答案:原式=⎰+-=-c x x dx x 221)2(2 (4)⎰-x x d 211答案:原式=c x x x d +--=---⎰21ln 2121)21(21 (5)⎰+x x x d 22答案:原式=⎰++)2(22122x d x =c x ++232)2(31(6)⎰x xx d sin 答案:原式=⎰+-=c x x d x cos 2sin 2(7)⎰x xx d 2sin答案:∵(+) x 2sinx (-) 1 2cos2x - (+) 0 2sin4x - ∴原式=c x x x ++-2sin 42cos2 (8)⎰+x x 1)d ln(答案:∵ (+) )1ln(+x 1(-) 11+-x x ∴ 原式=⎰+-+dx x xx x 1)1ln( =⎰+--+dx x x x )111()1ln( =c x x x x +++-+)1ln()1ln( 2.计算下列定积分 (1)x x d 121⎰--答案:原式=⎰⎰-+--2111)1()1(dx x dx x =29252)21(2212=+=-+x x (2)x xxd e2121⎰答案:原式=⎰-212211)(xd x xe x=21211e e e x -=- (3)x xx d ln 113e 1⎰+答案:原式=⎰++31)ln 1(ln 1e x d x x x=21ln 123=+e x(4)x x x d 2cos 20⎰π答案:∵ (+)x x (+)0 cos 1-∴ 原式=20)2cos 412sin 21(πx x x +=214141-=-- (5)x x x d ln e1⎰答案:∵ (+) x ln x(-) x122x∴ 原式=⎰-e exdx x x 11221ln 21 =)1(414122122+=-e x e e(6)x x x d )e 1(4⎰-+答案:∵原式=⎰-+44dx xe x又∵ (+)x xe- (-)1 -xe - (+)0 xe -∴⎰-----=440)(x x x e xe dx xe =154+--e故:原式=455--e作业三(一)填空题1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=161223235401A ,则A 的元素__________________23=a .答案:3 2.设B A ,均为3阶矩阵,且3-==B A ,则TAB 2-=________. 答案:72-3. 设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件是 .答案:BA AB =4. 设B A ,均为n 阶矩阵,)(B I -可逆,则矩阵X BX A =+的解______________=X .答案:A B I 1)(--5. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020001A ,则__________1=-A .答案:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=31000210001A (二)单项选择题1. 以下结论或等式正确的是( C ).A .若B A ,均为零矩阵,则有B A = B .若AC AB =,且O A ≠,则C B = C .对角矩阵是对称矩阵D .若O B O A ≠≠,,则O AB ≠2. 设A 为43⨯矩阵,B 为25⨯矩阵,且乘积矩阵T ACB 有意义,则TC 为( A )矩阵. A .42⨯ B .24⨯ C .53⨯D .35⨯3. 设B A ,均为n 阶可逆矩阵,则下列等式成立的是( C ). ` A .111)(---+=+B A B A , B .111)(---⋅=⋅B A B AC .BA AB =D .BA AB = 4. 下列矩阵可逆的是( A ).A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡300320321B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--321101101 C .⎥⎦⎤⎢⎣⎡0011 D .⎥⎦⎤⎢⎣⎡2211 5. 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=444333222A 的秩是( B ). A .0 B .1 C .2 D .3三、解答题1.计算 (1)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-01103512=⎥⎦⎤⎢⎣⎡-5321 (2)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-00113020⎥⎦⎤⎢⎣⎡=0000 (3)[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--21034521=[]02.计算⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--723016542132341421231221321解 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--72301654274001277197723016542132341421231221321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1423011121553.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=110211321B 110111132,A ,求AB 。
电大经济数学基础形成性考核册及参考答案[1]
电大经济数学基础形成性考核册及参考答案[1]关建字摘要:答案,矩阵,下列,百台,产量,成本,利润,求解,未知量,对称竭诚为您提供优质文档,本文为收集整理修正,共13页,请先行预览,如有帮助感谢下载支持经济数学基础形成性考核册及参考答案作业(一)(三)解答题1.计算极限x 2-3x +21(x -2)(x -1)x -2(1)lim==-=lim lim 2x →1x →1x →12x -1(x -1)(x +1)(x +1)x 2-5x +61(x -2)(x -3)x -3(2)lim 2=lim =lim =x →2x -6x +8x →2(x -2)(x -4)x →2(x -4)2(1-x -1)(1-x +1)1-x -1lim (3)lim=x →0x →0x x (1-x +1)=limx →0-x -11=lim=-2x (1-x +1)x →0(1-x +1)351-+2x 2-3x +5x x =1lim (4)lim =x →∞x →∞3x 2+2x +42433++2x x (5)lim5x sin 3x 33sin 3x==lim x →03x sin 5x 55x →0sin 5xx 2-4(x -2)(x +2)(6)lim=lim =4x →2sin(x -2)x →2sin(x -2)1⎧x sin +b ,x <0⎪x ⎪2.设函数f (x )=⎨a ,x =0,⎪sin xx >0⎪x ⎩问:(1)当a ,b 为何值时,f (x )在x =0处有极限存在?(2)当a ,b 为何值时,f (x )在x =0处连续.答案:(1)当b =1,a 任意时,f (x )在x =0处有极限存在;(2)当a =b =1时,f (x )在x =0处连续。
3.计算下列函数的导数或微分:(1)y =x +2+log 2x -2,求y '答案:y '=2x +2ln 2+x 2x 21x ln 2(2)y =ax +b,求y 'cx +d答案:y '=a (cx +d )-c (ax +b )ad -cb=22(cx +d )(cx +d )13x -513x -5,求y '12(3)y =答案:y ==(3x -5)-y '=-32(3x -5)3(4)y =答案:y '=x -x e x ,求y '12xax -(x +1)e x(5)y =e sin bx ,求d y答案:y '=(e )'sin bx +e (sin bx )'ax ax =a e ax sin bx +e ax cos bx ⋅b=e ax (a sin bx +b cos bx )dy =e ax (a sin bx +b cos bx )dx(6)y =e +x x ,求d y1x311答案:d y =(x -2e x )d x 2x (7)y =cos x -e -x ,求d y 答案:d y =(2x e -x -n 22sin x 2x)d x(8)y =sin x +sin nx ,求y '答案:y '=n sin n -1x cos x +cos nxn =n (sin n -1x cos x +cos nx )(9)y =ln(x +1+x 2),求y '答案:1-1x 1122'=y '=(x +1+x )=(1+)=(1+(1+x )2x )2x +1+x 2x +1+x 21+x 21+x 2x +1+x 2121(10)y =2cot 1x+1+3x 2-2xx,求y 'ln 21-21-6-x +x 答案:y '=126x 2sinx4.下列各方程中y 是x 的隐函数,试求y '或d y (1)x 2+y 2-xy +3x =1,求d y 答案:解:方程两边关于X 求导:2x2cot 1x 35+2yy '-y -xy '+3=0y -3-2xd x2y -x(2y -x )y '=y -2x -3,d y =(2)sin(x +y )+e xy =4x ,求y '答案:解:方程两边关于X 求导cos(x +y )(1+y ')+e xy (y +xy ')=4(cos(x +y )+e xy x )y '=4-ye xy -cos(x +y )4-y e xy -cos(x +y )y '=xy x e +cos(x +y )5.求下列函数的二阶导数:(1)y =ln(1+x ),求y ''22-2x 2答案:y ''=22(1+x )(2)y =1-x x,求y ''及y ''(1)3-1-答案:y ''=x 2+x 2,y ''(1)=14453作业(二)(三)解答题1.计算下列不定积分3x (1)⎰xd xe3xx 3x 3xe 答案:⎰xd x =⎰()d x =+c 3e e ln e(2)⎰(1+x )2xd x113-(1+x )2(1+2x +x 2)答案:⎰d x =⎰d x =⎰(x 2+2x 2+x 2)d x x x42=2x +x 2+x 2+c35x2-4d x (3)⎰x +21x2-4d x =⎰(x -2)d x =x 2-2x +c答案:⎰2x +2(4)351⎰1-2xd x 答案:1111d x -ln1-2x +c ==-d(1-2x )⎰1-2x ⎰221-2x2(5)x 2+x d x 3211222答案:⎰x2+x d x =⎰2+x d(2+x )=(2+x )+c 322⎰(6)⎰sinx xd x答案:⎰sinx xd x =2⎰sin xd x =-2cos x +c(7)x sin⎰xd x 2答案:x sin ⎰x xd x =-2⎰xdco s d x 22x x x x +2⎰co s d x =-2x cos +4sin +c 2222=-2x cos (8)ln(x +1)d x 答案:ln(x +1)d x ==(x +1)ln(x +1)-2.计算下列定积分(1)⎰⎰⎰ln(x +1)d(x +1)⎰(x +1)dln(x +1)=(x +1)ln(x +1)-x +c⎰2-11-x d x答案:⎰12-11-x d x =1x21211252+==(x -x )+(x -x )(1-x )d x (x -1)d x -11⎰-1⎰12221(2)⎰2ed x x 22答案:⎰1121e x x -e d x ==-e d ⎰1x x21x1121=e -e(3)⎰e 31x 1+ln xd xe 311d(1+ln x )=2(1+ln x )21+ln x答案:⎰e 31x 1+ln x1d x =⎰1e 31=2π(4)⎰20x cos 2x d x ππππ111122--sin 2xdx 答案:⎰2x cos 2x d x =⎰2xd sin 2x =x sin 2x 0=⎰0002222(5)⎰e1x ln x d xe答案:⎰01x ln x d x =e 21e12122e (e +1)==ln x d x x ln x -x d ln x 1⎰⎰11422(6)⎰4(1+x e-x)d x40答案:⎰(1+x e)d x =x -⎰xd e =3-xe -x414-x -x4+⎰0e -x d x =5+5e -44作业三三、解答题1.计算(1)⎢⎡-21⎤⎡01⎤⎡1-2⎤=⎢⎥⎢⎥⎥⎣53⎦⎣10⎦⎣35⎦⎡02⎤⎡11⎤⎡00⎤(2)⎢⎥⎢00⎥=⎢00⎥0-3⎦⎣⎦⎣⎦⎣⎡3⎤⎢0⎥(3)[-1254]⎢⎥=[0]⎢-1⎥⎢⎥⎣2⎦23⎤⎡-124⎤⎡245⎤⎡1⎢⎥⎢⎥⎢⎥02.计算-122143-61⎢⎥⎢⎥⎢⎥⎢⎣1-32⎥⎦⎢⎣23-1⎥⎦⎢⎣3-27⎥⎦23⎤⎡-124⎤⎡245⎤⎡7197⎤⎡245⎤⎡1⎢⎥⎢⎥⎢⎥=⎢7120⎥-⎢610⎥0解-122143-61⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎣1-32⎥⎦⎢⎣23-1⎥⎦⎢⎣3-27⎥⎦⎢⎣0-4-7⎥⎦⎢⎣3-27⎥⎦⎡515=⎢⎢111⎢⎣-3-2⎡23-1⎤⎡123⎤3.设矩阵A =⎢⎢111⎥,B =⎢112⎥,求AB 。
国开电大《经济数学基础3》形考任务形成性考核三答案
"试题1:标准答案1:"试题2:下列函数中,可以作为随机变量_X_密度函数的是( ).标准答案2:"试题3:设随机变量_Y_~_B_(_n_,_p_),且_E_(_Y_)=2.4,_D_(_Y_)=1.44,则参数_n_,_p_为( )A. _n_=6,_p_=0.6B. _n_=8,_p_=0.3C. _n_=6,_p_=0.4答案3:n=6,p=0.4"试题4:设随机变量_X_~_N_(_a_,_d_)(_d_>0),则( )~_N_(0,1).A. _Z_=_d_2(_X_-_a_)B. _Z_=_dX_+_a_C.标准答案4:""试题5:A.1B. 1/2C. 3/8答案5:3/8"试题6:设随机变量_X_,且_E_(_X_)存在,则_E_(_X_)是( ).A. 确定常数B. _X_的函数C. 随机变量答案6:确定常数"试题7:设二维离散型随机变量(_X_,_Y_)的联合概率分布为_P_(_X_=_xi_,_Y_=_yj_)=_pij_则随机变量_X_的边缘概率分布为_P_(_X_=_xi_)=(?? ) 答案7:"试题8:设(_X_,_Y_)是二维连续型随机变量,其联合密度函数为_f_(_x_,_y_),_X_,_Y_的边缘密度函数分别为_fX_(_x_),_fY_(_y_),则_E_(_XY_)=(?? ).答案8:"试题9:答案9:对试题10:设_X_服从区间[2,5]上的均匀分布,则_E_(_X_)=3.5.( )答案10:对试题11:设随机变量_X_的方差存在,则_X_的方差_D_(_X_)的计算公式为_E_[_X__-__E_(_X_)].( )答案11:错试题12:答案12:对。
经济数学基础形考答案
电大【经济数学基础】形成性考核册参考答案《经济数学基础》形成性考核册(一)一、填空题 1.___________________sin lim=-→xxx x .答案:1 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案1 3.曲线x y =+1在)1,1(的切线方程是 . 答案:y=1/2X+3/24.设函数52)1(2++=+x x x f ,则____________)(='x f .答案x 25.设x x x f sin )(=,则__________)2π(=''f .答案: 2π-二、单项选择题1. 当+∞→x 时,下列变量为无穷小量的是( D )A .)1ln(x +B . 12+x xC .21x e - D . xxsin2. 下列极限计算正确的是( B ) A.1lim=→xx x B.1lim 0=+→xx x C.11sinlim 0=→x x x D.1sin lim =∞→xxx3. 设y x =lg2,则d y =( B ). A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.若x xf =)1(,则=')(x f ( B ). A .21x B .21x- C .x 1 D .x 1-三、解答题 1.计算极限本类题考核的知识点是求简单极限的常用方法。
它包括:⑴利用极限的四则运算法则; ⑵利用两个重要极限;⑶利用无穷小量的性质(有界变量乘以无穷小量还是无穷小量)⑷利用连续函数的定义。
电大《经济数学基础》形成性考核考试小抄
1 / 71 / 7一、单项选择题1.设A 为3x2矩阵,B 为2x3矩阵,则下列运算中(AB )可以进行.2.设AB 为同阶可逆矩阵,则下列等式成立的是(T T T )(A B AB =)3设B A ,为同阶可逆方阵,则下列说法正确的是( 111)(---=A B AB ).4.设AB 阶方阵,在下列情况下能推出A 是单位矩阵的是(I A =-1 D ). 7.设下面矩阵A , B , C 能进行乘法运算,那么(AB = AC ,A 可逆,则B = C 成立. 9.设,则r (A ) =( 1 ).10.设线性方程组b AX =的增广矩阵通过初等行变换化为,则此线性方程组的一般解中自由未知量的个数为( 1 ).11.线性方程组⎩⎨⎧=+=+012121x x x x 解的情况是(无解 ).12.若线性方程组的增广矩阵为⎥⎦⎤⎢⎣⎡=01221λA ,则当λ=(12)时线性方程组无解.13.线性方程组AX =0只有零解,则AX b b =≠()0(可能无解).14.设线性方程组AX=b 中,若r (A , b ) = 4,r (A ) = 3,则该线性方程组(无解).二、填空题1.两个矩阵B A ,既可相加又可相乘的充分必要条件是A 与B 是同阶矩阵2.计算矩阵乘积[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎦⎤⎢⎣⎡10211000321=[4].3.若矩阵A = []21-,B = []132-,则A T B=⎥⎦⎤⎢⎣⎡---264132. 4.设A 为m n ⨯矩阵,B 为s t ⨯矩阵,若AB 与BA都可进行运算,则m n s t ,,,有关系式m t n s ==,5.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=13230201a A ,当a =0时,A 称矩阵.6.当a 时,矩阵⎥⎦⎤⎢⎣⎡-=a A 131可逆.7.设AB 个已知矩阵,且1-B 则方程X BX A =+的解A B I 1)(--8.设A 为n 阶可逆矩阵,则r (A9.若矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--330204212,则r (A ) = 2 .10.若r (A , b ) = 4,r (A ) = 3,则线性方程组AX = b 无解. 11.若线性方程组⎩⎨⎧=+=-002121x x x x λ有非零解,则=λ-1.12.设齐次线性方程组01=⨯⨯n n m X A ,且秩(A ) =r < n ,则其一般解中的自由未知量的个数等于n –r .13.齐次线性方程组0=AX 的系数矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=000020103211A 则此方程组的一般解为⎩⎨⎧=--=4243122x x x x x . 14.线性方程组AX b =的增广矩阵A 化成阶梯形矩阵后为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-→110000012401021d A 则当d-1组AX=b 解. 15.若线性方程组AX b b =≠()0有唯一解,则AX =0只有0解. 三、计算题 1设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=113421201A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=303112B ,求B A I )2(T -解因为T 2A I -= ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1000100012T113421201⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200020002⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--142120311=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----142100311 所以B A I )2(T -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----142100311⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-303112=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---11030512设矩阵⎥⎦⎤⎢⎣⎡-=021201A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200010212B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=242216C 计C BA +T .解:C BA +T =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200010212⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+242216=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-042006⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+242216 =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡2002103设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1121243613,求1-A解因为 (AI )=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1001120101240013613⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→100112210100701411⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→1302710210100701411⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→172010210100141011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→210100172010031001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→210100172010031001 所以A -1 =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---2101720314设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-01241121,求逆矩阵1-A因为(AI )=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-120001010830210411100010001012411210⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→123124112200010001123001011200210201⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→1123124112100010001所以A-1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----211231241125设矩阵A =⎥⎦⎤⎢⎣⎡--021201,B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡142136,计算(AB )-1解因为AB =⎥⎦⎤⎢⎣⎡--021201⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡142136=⎥⎦⎤⎢⎣⎡--1412(ABI ) =⎥⎦⎤⎢⎣⎡-→⎥⎦⎤⎢⎣⎡--1210011210140112⎥⎥⎦⎤⎢⎢⎣⎡→⎥⎦⎤⎢⎣⎡---→121021210112101102所以 (AB )-1=⎥⎥⎦⎤⎢⎢⎣⎡1221212 / 77解矩阵方程⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡--214332X .解因为⎥⎦⎤⎢⎣⎡--10430132⎥⎦⎤⎢⎣⎡→10431111⎥⎦⎤⎢⎣⎡--→23101111⎥⎦⎤⎢⎣⎡--→23103401即⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡---233443321所以,X=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡--212334=⎥⎦⎤⎢⎣⎡-128解矩阵方程⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡02115321X解:因为⎥⎦⎤⎢⎣⎡10530121⎥⎦⎤⎢⎣⎡--→13100121⎥⎦⎤⎢⎣⎡--→13102501即⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-132553211所以,X =153210211-⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡-13250211=⎥⎦⎤⎢⎣⎡--4103810设线性方程组⎪⎩⎪⎨⎧=+-=-+--=+052231232132131x x x x x x x x ,求其系数矩阵和增广矩阵的并.解因为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=211011101201051223111201A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→300011101201所以r (A ) = 2,r (A ) = 3.又因为r (A ) ≠r (A ),所以方程组无解.11求下列线性方程组的一般解:⎪⎩⎪⎨⎧=-+-=+-+-=-+03520230243214321431x x x x x x x x x x x解因为系数矩⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=111011101201351223111201A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→000011101201 所以一般解为⎩⎨⎧-=+-=4324312x x x x x x (其中3x ,4x 是自由未知量)12.求下列线性方程组的一般解:⎪⎩⎪⎨⎧=-+-=-+-=+-126142323252321321321x x x x x x x x x解因为增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=1881809490312112614231213252A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→000014101101所以一般解为⎪⎪⎩⎪⎪⎨⎧+=+=1941913231x x x x (其中3x 是自由未知量)13设齐次线性方程组⎪⎩⎪⎨⎧=+-=+-=+-0830352023321321321x x x x x x x x x λ问λ取何值时方程组有非零解,并求一般解.13.解因为系数矩阵A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---61011023183352231λλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→500110101λ 所以当λ = 5时,方程组有非零解. 且一般解为⎩⎨⎧==3231x x x x (其中3x 是自由未知量)14当λ取何值时,线性方程组⎪⎩⎪⎨⎧=+-=-+=++1542131321321x x x x x x x x λ有解?并求一 解因为增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=26102610111115014121111λλA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→λ00026101501所以当λ=0时,线性方程组有无穷多解,且一般解为:⎩⎨⎧+-=-=26153231x x x x (x 3是自由未知量〕经济数学基础形成性考核册及参考答案 一单项选择题 1. 函数212-+-=x x x y 的连续区间是( )答案:D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞2. 下列极限计算正确的是( )答案: B.1lim0=+→xx x3. 设y x=lg 2,则d y =().答案:B .1d x x ln104. 若函数f (x )在点x 0处可导,则( )是错误的.答案: B .A x f x x =→)(lim 0,但)(0x f A ≠5.当0→x 时,下列变量是无穷小量的是( ). 答案:C .)1ln(x +6. 下列函数中,()是x sin x 2的原函数. D .-21cos x 2 答案:7. 下列等式成立的是( ). C .)d(22ln 1d 2x x x =8. 下列不定积分中,常用分部积分法计算的是( ).C .⎰x x x d 2sin9. 下列定积分计算正确的是(). D .0d sin =⎰-x x ππ10. 下列无穷积分中收敛的是( ).B .⎰∞+12d 1x x11. 以下结论或等式正确的是( ). C .对角矩阵是对称矩阵 12. 设A 为43⨯矩阵,B 为25⨯矩阵,且乘积矩阵T ACB 有意义,则T C 为( )矩阵. A .42⨯13. 设B A ,均为n 阶可逆矩阵,则下列等式成立的是( ). C .BA AB =14.3 / 7下列矩阵可逆的是(). A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡30032321 15. 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=444333222A 的秩是( ). B .116. 下列函数在指定区间(,)-∞+∞上单调增加的是( ). B .ex17. 已知需求函数pp q 4.02100)(-⨯=,当10=p 时,需求弹性为( ).C .2ln 4-18. 下列积分计算正确的是( ).A .⎰--=-110d 2e e x xxB .⎰--=+110d 2e e x xxC .0d sin 11=⎰x x x -D .0)d (3112=+⎰x x x -答案:A19. 设线性方程组b X A n m =⨯有无穷多解的充分必要条件是( ). D .n A r A r <=)()(20. 设线性方程组⎪⎩⎪⎨⎧=++=+=+33212321212ax x x a x x a x x ,则方程组有解的充分必要条件是( ). C .0321=-+a a a填空题 1.___________________sin lim 0=-→xxx x .答案:0 2.设⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =在)1,1(的切线方程是.答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 25.设x x x f sin )(=,则__________)2π(=''f .答案:2π 6.若cx x x f x ++=⎰22d )(,则___________________)(=x f .答案:22ln 2+x7.⎰='x x d )sin (________.答案:c x +sin8.若c x F x x f +=⎰)(d )(,则⎰=-x x x f d )1(2.答案:cx F +--)1(2129.设函数___________d )1ln(d d e12=+⎰x x x .答案:010.若tt x P xd 11)(02⎰+=,则__________)(='x P .答案:211x +-11.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=161223235401A ,则A 的元素__________________23=a .答案:312设B A ,均为3阶矩阵,且3-==B A ,则TAB2-=________. 答案:72- 13.设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件是.答案:BA AB =14. 设B A ,均为n 阶矩阵,)(B I -可逆,则矩阵X BX A =+的解______________=X .答案:A B I1)(--15.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=3002001A ,则__________1=-A .答案:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=310002101A16.函数xx x f 1)(+=在区间___________________内是单调减少的.答案:)1,0()0,1(⋃-17.函数2)1(3-=x y 的驻点是________,极值点是,它是极值点.答案:1,1==x x ,小18.设某商品的需求函数为2e10)(pp q -=,则需求弹性=p E .答案:p 2-19.行列式____________111111111=---=D .答案:420.设线性方程组b AX =,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-→012316111t A ,则__________t 时,方程组有唯一解.答案:1-≠微积分计算题 (一)导数计算题(1)2222log 2-++=x x y x ,求y '答案:2ln 12ln 22x x y x ++=' (2)dcx b ax y ++=,求y '答案:22)()()()(d cx bc ad d cx b ax c d cx a y +-=++-+='(3)531-=x y ,求y '答案:3)53(23--='x y4 / 7(4)x x x y e -=,求y '答案:)(21x x xe e xy +-='=xx xe e x--21(5)nx x y n sin sin +=,求y '答案:)cos cos (sin 1nx x x n y n +='- (6))1ln(2x x y ++=,求y '答案:)1(1122'++⋅++='x x xx y=)11(1122xx x x ++⋅++=2221111x x x x x +++⋅++ =211x+(7)xxx y x212321cot-++=,求y '。
电大经济数学基础形成性考核册答案
B. lim x 1
x x0
C. lim x sin 1 1
x0
x
D. lim sin x 1
x x
3. 设 y lg 2x ,则 d y ( B ).
A. 1 dx
2x
B. 1 dx
x ln10
C. ln10 dx
x
D. 1 dx
x
4. 若函数 f (x)在点 x0 处可导,则( B )是错误的.
5.求下列函数的二阶导数:
(1) y ln(1 x2 ) ,求 y
答案:
(1)
y
1
2
x x
2
(2)
y
1
(x 2
1
x2
)
1
3
x2
1
1
x2
2
2
作业(二)
(一)填空题
1.若 f (x)dx 2x 2x c ,则 f (x) ___________________ .答案: 2x ln 2 2
x2 x 2
D
)
A. (,1) (1,)
B. (,2) (2,)
C. (,2) (2,1) (1,)
D. (,2) (2,) 或 (,1) (1,)
2. 下列极限计算正确的是( B )
A. lim x 1
x0 x
A.函数 f (x)在点 x0 处有定义
B. lim x x0
f (x)
A ,但 A
f (x0 )
C.函数 f (x)在点 x0 处连续
D.函数 f (x)在点 x0 处可微
2020年国家开放大学电大《经济数学基础》形成性考核1
经济数学基础形成性考核册及参考答案作业(一)(一)填空题 1.___________________sin lim 0=-→xx x x .答案:0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 25.设x x x f sin )(=,则__________)2π(=''f .答案:2π-(二)单项选择题1. 函数212-+-=x x x y 的连续区间是( )答案:D A .),1()1,(+∞⋃-∞ B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞2. 下列极限计算正确的是( )答案:B A.1lim 0=→x xx B.1lim 0=+→x x x C.11sin lim 0=→x x x D.1sin lim =∞→xx x 3. 设y x =lg2,则d y =( ).答案:BA .12d x xB .1d x x ln10C .ln10x x dD .1d xx 4. 若函数f (x )在点x 0处可导,则( )是错误的.答案:BA .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠ C .函数f (x )在点x 0处连续 D .函数f (x )在点x 0处可微5.当0→x 时,下列变量是无穷小量的是( ). 答案:CA .x 2B .xx sin C .)1ln(x + D .x cos (三)解答题1.计算极限 (1)=-+-→123lim 221x x x x )1)(1()1)(2(lim 1+---→x x x x x = )1(2lim 1+-→x x x = 21-(2)8665lim 222+-+-→x x x x x =)4)(2()3)(2(lim 2----→x x x x x = )4(3lim 2--→x x x = 21 (3)x x x 11lim 0--→=)11()11)(11(lim 0+-+---→x x x x x =)11(lim 0+--→x x x x =21)11(1lim 0-=+--→x x (4)=+++-∞→42353lim 22x x x x x 31423531lim 22=+++-∞→xx x x x (5)=→x x x 5sin 3sin lim 0535sin 33sin 5lim 0x x x x x →=53 (6)=--→)2sin(4lim 22x x x 4)2sin()2)(2(lim 2=-+-→x x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x x x a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在?(2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在;(2)当1==b a 时,)(x f 在0=x 处连续。
电大【经济数学基础】形成性考核册参考答案
电大【经济数学基础】形成性查核册参照答案《经济数学基础》形成性查核册(一)一、填空题1. limxsin x __________ _________ .答案: 1x 0x2.设 f ( x) x 2 1, x0 ,在 x 0处连续,则 k ________ .答案 1k,x3.曲线 yx +1 在 (1,1) 的切线方程是 . 答案 :y=1/2X+3/2 4.设函数 f (x 1) x 2 2x 5 ,则 f (x)____________ .答案 2x5.设 f ( x)x sin x ,则 f ( π__________ .答案 :)2 2二、单项选择题1. 当 x时,以下变量为无量小量的是(D )x 21 D . sin xA . ln(1 x)B .1 C . ex 2xx2. 以下极限计算正确的选项是(B )A. lim x1 B. limx1 C. lim x sin11D. limsin x1x 0xx 0xx 0xxx3. 设 y lg2 x ,则 d y (B ).A .1dx B . 1 dx C . ln10dx D . 1dx2x x ln10x x4. 若函数 f (x)在点 x 0 处可导,则 ( B )是错误的.A .函数 f (x)在点 x 0 处有定义B . lim f ( x)A ,但 Af (x 0 )x x 0C .函数 f (x)在点 x 0 处连续D .函数 f ( x)在点 x 0 处可微1 ) x ,则 f ( x)(B ).5.若 f (xA .11C .1 1xB .D .x2x 2x三、解答题1.计算极限 本类题查核的知识点是求简单极限的常用方法。
它包含:⑴利用极限的四则运算法例;⑵利用两个重要极限;⑶利用无量小量的性质( 有界变量乘以无量小量仍是无量小量 )⑷利用连续函数的定义。
( 1) limx 2 3x 2 x2 1x 1剖析:这道题查核的知识点是极限的四则运算法例。
电大经济数学基础形成性考核册答案[]
电大经济数学基础形成性考核册及参考答案(一)填空题 1.___________________sin lim=-→xxx x .答案:02.设⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =在)1,1(的切线方程是.答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 5.设x x x f sin )(=,则__________)2π(=''f .答案:2π-(二)单项选择题 1. 函数212-+-=x x x y 的连续区间是( D )A .),1()1,(+∞⋃-∞B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( B )A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xxx3. 设y x =lg2,则d y =(B ).A .12d x x B .1d x x ln10C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的. A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.当0→x时,下列变量是无穷小量的是( C ).A .x2 B .xx sin C .)1ln(x + D .x cos (三)解答题 1.计算极限(1)21123lim 221-=-+-→x x x x2112lim)1)(1()2)(1(lim11-=+-=+---=→→x x x x x x x x 原式 (2)218665lim 222=+-+-→x x x x x 原式=4)-2)(x -(x 3)-2)(x -(x lim2x →2143lim2=--=→x x x(3)2111lim-=--→x x x原式=)11()11)(11(lim+-+---→x x x x x=111lim+--→x x=21-(4)3142353lim22=+++-∞→x x x x x 原式=22433531xx x x +++-=31 (5)535sin 3sin lim0=→x x x原式=xxx x x 55sin 33sin lim530→ =53 (6)4)2sin(4lim 22=--→x x x原式=2)2sin(2lim2+++→x x x x=2)2sin(lim)2(lim 22--+→→x x x x x = 42.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在?(2)当b a ,为何值时,)(x f 在0=x 处连续.解:(1)1)(lim ,)(lim 00==+-→→x f b x f x x当 1f(0)f(x)lim 10x ====→有时,b a(2). 1f(0)f(x)lim 1b a 0x ====→有时,当函数f(x)在x=0处连续. 3.计算下列函数的导数或微分: (1)2222log 2-++=x x y x ,求y '答案:2ln 12ln 22x x y x ++='(2)dcx bax y ++=,求y '答案:22)()()()(d cx bcad d cx b ax c d cx a y +-=++-+='(3)531-=x y ,求y '答案:23)53(23---='x y(4)x x x y e -=,求y '答案:)(21x x xe e xy +-='=x x xe e x--21(5)bx y ax sin e =,求y d答案:∵)cos (sin cos sin )(sin (sin )(bx b bx e bx be bx ae bx e bx e y ax ax ax ax ax +=+='+'='∴dxbx b bx a e dyax )cos sin (+=(6)x x y x+=1e ,求y d答案:∵x e x y x 23112+-='∴dx e xx dy x )123(12-=(7)2e cos xx y --=,求y d答案:∵)()(sin 22'-⋅-'⋅-='-x e x x y x=222sin xxe xx -+-∴dx xe xxdyx )22sin (2-+-=(8)nx x y n sin sin +=,求y '答案:nx n x x n y n cos cos sin 1+⋅='-(9))1ln(2x x y ++=,求y '答案:)1(1122'++⋅++='x x x x y =)11(1122xx xx ++⋅++=2221111xx x xx +++⋅++ =211x+(10)xxx y x212321cot -++=,求y '答案:531cos 261211cos61211sin 2ln 21)2()1(cos 2ln 2x x x x x x xy x x+-⋅⋅-='-++'⋅⋅='-4.下列各方程中y 是x 的隐函数,试求y '或y d(1) 方程两边对x 求导:0322=+'--'⋅+y x y y y x 32)2(--='-x y y x y所以 dx xy x y dy---=232(2) 方程两边对x 求导:4)()1)(cos(='+⋅+'++y x y e y y x xy xy xy ye y x y xe y x -+-='++)cos(4])[cos( 所以 xyxyxe y x ye y x y ++-+-=')cos()cos(45.求下列函数的二阶导数: (1))1ln(2x y +=,求y ''答案: (1)212x x y +='222222)1(22)1(22)1(2x x x x x x y +-=+⋅-+='' (2)212321212121)(-----='-='x x x xy23254143--+=''x x y14143)1(=+='y作业(二)(一)填空题 1.若c x x x f x++=⎰22d )(,则___________________)(=x f .答案:22ln 2+x2.⎰='x x d )sin (________.答案:c x +sin 3.若c x F x x f +=⎰)(d )(,则⎰=-x x xf d )1(2.答案:c x F +--)1(212 4.设函数___________d )1ln(d d e 12=+⎰x x x .答案:0 5.若t tx P xd 11)(02⎰+=,则__________)(='x P .答案:211x+-(二)单项选择题1. 下列函数中,(D )是x sin x 2的原函数. A .21cos x 2B .2cos x 2C .-2cos x 2D .-21cos x 22. 下列等式成立的是( C ). A .)d(cos d sin x xx =B .)1d(d ln x x x =C .)d(22ln 1d 2x xx =D .x x xd d 1= 3. 下列不定积分中,常用分部积分法计算的是( C ). A .⎰+x x c 1)d os(2,B .⎰-x x x d 12C .⎰x x x d 2sinD .⎰+x x xd 124. 下列定积分计算正确的是(D ). A .2d 211=⎰-x x B .15d 161=⎰-xC .0)d (32=+⎰-x x x ππD .0d sin =⎰-x x ππ5. 下列无穷积分中收敛的是( B ). A .⎰∞+1d 1x x B .⎰∞+12d 1x xC .⎰∞+0d e x xD .⎰∞+1d sin x x (三)解答题1.计算下列不定积分(1)⎰x x x d e 3原式=⎰dx e x )3( =c e c ee x x x+-=+)13(ln 33ln )3( (2)⎰+x xx d )1(2答案:原式=⎰++-dx x x x)2(2321=c x x x +++25232152342(3)⎰+-x x x d 242答案:原式=⎰+-=-c x x dx x 221)2(2 (4)⎰-x xd 211答案:原式=c x x x d +--=---⎰21ln 2121)21(21 (5)⎰+x x x d 22答案:原式=⎰++)2(22122x d x =c x ++232)2(31(6)⎰x xx d sin 答案:原式=⎰+-=c x x d x cos 2sin2(7)⎰x xx d 2sin答案:∵(+) x 2sinx (-) 1 cos2- (+) 0 sin4x - ∴原式=c x x x ++-2sin 42cos2 (8)⎰+x x 1)d ln(答案:∵ (+) )1ln(+x 1(-) 11+-x x∴ 原式=⎰+-+dx x xx x 1)1ln(=⎰+--+dx x x x )111()1ln( =c x x x x +++-+)1ln()1ln( 2.计算下列定积分 (1)x x d 121⎰--答案:原式=⎰⎰-+--2111)1()1(dx x dx x =29252)21(2212=+=-+x x (2)x xxd e2121⎰答案:原式=⎰-212211)(xd x xe x=21211e e e x -=-(3)x xx d ln 113e 1⎰+答案:原式=⎰++31)ln 1(ln 1e x d xx x=21ln 123=+e x(4)x x x d 2cos 20⎰π答案:∵ (+)x(+)0 2cos 1-∴ 原式=20)2cos 412sin 21(πx x x +=214141-=--(5)x x x d ln e1⎰答案:∵ (+) xln x(-)x 122x∴ 原式=⎰-e e xdx x x 11221ln 21 =)1(414122122+=-e x e e(6)x x x d )e 1(4⎰-+答案:∵原式=⎰-+44dx xe x又∵ (+)xx e -(-)1 -xe - (+)0 xe -∴⎰-----=44)(x x x e xe dx xe =154+--e故:原式=455--e作业三 (一)填空题1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=161223235401A ,则A 的元素__________________23=a .答案:3 2.设B A ,均为3阶矩阵,且3-==B A ,则TAB 2-=________. 答案:72-3.设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件是.答案:BA AB =4. 设B A ,均为n 阶矩阵,)(B I -可逆,则矩阵XBX A =+的解______________=X .答案:A B I1)(--5.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020001A ,则__________1=-A .答案:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=31000210001A (二)单项选择题1. 以下结论或等式正确的是( C ). A .若B A ,均为零矩阵,则有B A =B .若AC AB =,且O A ≠,则C B =C .对角矩阵是对称矩阵D .若O B O A ≠≠,,则O AB ≠2. 设A 为43⨯矩阵,B 为25⨯矩阵,且乘积矩阵T ACB 有意义,则TC 为( A )矩阵.A .42⨯B .24⨯C .53⨯D .35⨯3. 设B A ,均为n 阶可逆矩阵,则下列等式成立的是( C ). `A .111)(---+=+B A B A ,B .111)(---⋅=⋅B A B AC .BA AB =D .BA AB =4. 下列矩阵可逆的是(A ).A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡300320321B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--321101101C .⎥⎦⎤⎢⎣⎡0011D .⎥⎦⎤⎢⎣⎡2211 5. 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=444333222A 的秩是( B ). A .0 B .1 C .2 D .3三、解答题 1.计算(1)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-01103512=⎥⎦⎤⎢⎣⎡-5321(2)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-00113020⎥⎦⎤⎢⎣⎡=0000 (3)[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--21034521=[]02.计算⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--723016542132341421231221321解 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--72301654274001277197723016542132341421231221321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1423011121553.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=110211321B 110111132,A ,求AB 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电大【经济数学基础】形成性考核册参考答案
《经济数学基础》形成性考核册(一)
一、填空题 1.___________________sin lim 0=-→x
x x x .答案:1 2.设 ⎝
⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案1 3.曲线x y =+1在)1,1(的切线方程是 . 答案:y=1/2X+3/2
4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案x 2
5.设x x x f sin )(=,则__________)2π(=''f .答案: 2
π-
二、单项选择题
1. 当+∞→x 时,下列变量为无穷小量的是( D ) A .)1ln(x + B . 12+x x C .21
x e - D . x x sin 2. 下列极限计算正确的是( B ) A.1lim 0=→x x
x B.1lim 0=+→x x x C.11sin lim 0=→x x x D.1sin lim =∞→x
x x 3. 设y x =lg2,则d y =( B ).
A .12d x x
B .1d x x ln10
C .ln10x x d
D .1d x
x 4. 若函数f (x )在点x 0处可导,则( B )是错误的.
A .函数f (x )在点x 0处有定义
B .A x f x x =→)(lim 0
,但)(0x f A ≠ C .函数f (x )在点x 0处连续 D .函数f (x )在点x 0处可微
5.若x x f =)1(,则=')(x f ( B ).
A .21x
B .21x
- C .x 1 D .x 1-
三、解答题
1.计算极限
本类题考核的知识点是求简单极限的常用方法。
它包括:
⑴利用极限的四则运算法则;
⑵利用两个重要极限;
⑶利用无穷小量的性质(有界变量乘以无穷小量还是无穷小量)
⑷利用连续函数的定义。
(1)1
23lim 221-+-→x x x x 分析:这道题考核的知识点是极限的四则运算法则。
具体方法是:对分子分母进行因式分解,然后消去零因子,再利用四则运算法则限进行计算
解:原式=)1)(1()2)(1(lim 1-+--→x x x x x =12lim 1+-→x x x =2
11121-=+- (2)8
665lim 222+-+-→x x x x x 分析:这道题考核的知识点主要是利用函数的连续性求极限。
具体方法是:对分子分母进行因式分解,然后消去零因子,再利用函数的连续性进行计算
解:原式=)4)(2()3)(2(lim 2----→x x x x x =2
1423243lim 2=--=--→x x x (3)x x x 11lim 0
--→ 分析:这道题考核的知识点是极限的四则运算法则。
具体方法是:对分子进行有理化,然后消去零因子,再利用四则运算法则进行计算
解:原式=)11()
11)(11(lim 0+-+---→x x x x x =)11(11lim 0+---→x x x x =111lim 0+--→x x =2
1- (4)4
23532lim 22+++-∞→x x x x x 分析:这道题考核的知识点主要是函数的连线性。
解:原式=32003002423532lim 22=+++-=+++-∞→x
x x x x (5)x
x x 5sin 3sin lim 0→ 分析:这道题考核的知识点主要是重要极限的掌握。
具体方法是:对分子分母同时除以x ,并乘相应系数使其前后相等,然后四则运算法则和重要极限进行计算
解:原式=53115355sin lim 33sin lim 535355sin 33sin lim 000=⨯=⨯=⨯→→→x
x x x x x x x x x x (6))
2sin(4lim 22--→x x x 分析:这道题考核的知识点是极限的四则运算法则和重要极限的掌握。
具体方法是:对分子进行因式分解,然后消去零因子,再利用四则运算法则和重要极限进行计算
解:原式=414)2sin(2lim )2(lim )
2sin()2)(2(lim 222=⨯=--⨯+=--+→→→x x x x x x x x x 2.设函数⎪⎪⎩
⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x x x a x b x x x f ,
问:(1)当b a ,为何值时,)(x f 在0=x 处极限存在?
(2)当b a ,为何值时,)(x f 在0=x 处连续.
分析:本题考核的知识点有两点,一是函数极限、左右极限的概念。
即函数在某点极限存在的充分必要条件是该点左右极限均存在且相等。
二是函数在某点连续的概念。
解:(1)因为)(x f 在0=x 处有极限存在,则有
)(lim )(lim 0
0x f x f x x +-→→= 又 b b x
x x f x x =+=--→→)1s i n (lim )(lim 00 1s i n l i m )(l i m 00==++→→x
x x f x x 即 1=b
所以当a 为实数、1=b 时,)(x f 在0=x 处极限存在.
(2)因为)(x f 在0=x 处连续,则有
)0()(lim )(lim 0
0f x f x f x x ==+-→→ 又 a f =)0(,结合(1)可知1==b a
所以当1==b a 时,)(x f 在0=x 处连续.
3.计算下列函数的导数或微分:
本题考核的知识点主要是求导数或(全)微分的方法,具体有以下三种:
⑴利用导数(或微分)的基本公式
⑵利用导数(或微分)的四则运算法则
⑶利用复合函数微分法
(1)2
222log 2-++=x x y x ,求y '
分析:直接利用导数的基本公式计算即可。