(完整word版)数据挖掘题目及答案
(完整word版)数据挖掘_概念与技术(第三版)部分习题答案
1。
4 数据仓库和数据库有何不同?有哪些相似之处?答:区别:数据仓库是面向主题的,集成的,不易更改且随时间变化的数据集合,用来支持管理人员的决策,数据库由一组内部相关的数据和一组管理和存取数据的软件程序组成,是面向操作型的数据库,是组成数据仓库的源数据.它用表组织数据,采用ER数据模型。
相似:它们都为数据挖掘提供了源数据,都是数据的组合.1。
3 定义下列数据挖掘功能:特征化、区分、关联和相关分析、预测聚类和演变分析。
使用你熟悉的现实生活的数据库,给出每种数据挖掘功能的例子。
答:特征化是一个目标类数据的一般特性或特性的汇总。
例如,学生的特征可被提出,形成所有大学的计算机科学专业一年级学生的轮廓,这些特征包括作为一种高的年级平均成绩(GPA:Grade point aversge)的信息,还有所修的课程的最大数量。
区分是将目标类数据对象的一般特性与一个或多个对比类对象的一般特性进行比较。
例如,具有高GPA 的学生的一般特性可被用来与具有低GPA 的一般特性比较.最终的描述可能是学生的一个一般可比较的轮廓,就像具有高GPA 的学生的75%是四年级计算机科学专业的学生,而具有低GPA 的学生的65%不是。
关联是指发现关联规则,这些规则表示一起频繁发生在给定数据集的特征值的条件.例如,一个数据挖掘系统可能发现的关联规则为:major(X,“computing science”) ⇒owns(X,“personal computer”)[support=12%, confidence=98%] 其中,X 是一个表示学生的变量。
这个规则指出正在学习的学生,12%(支持度)主修计算机科学并且拥有一台个人计算机。
这个组一个学生拥有一台个人电脑的概率是98%(置信度,或确定度)。
分类与预测不同,因为前者的作用是构造一系列能描述和区分数据类型或概念的模型(或功能),而后者是建立一个模型去预测缺失的或无效的、并且通常是数字的数据值.它们的相似性是他们都是预测的工具:分类被用作预测目标数据的类的标签,而预测典型的应用是预测缺失的数字型数据的值.聚类分析的数据对象不考虑已知的类标号。
《数据挖掘》试题与答案
一、解答题(满分30分,每小题5分)1. 怎样理解数据挖掘和知识发现的关系?请详细阐述之首先从数据源中抽取感兴趣的数据,并把它组织成适合挖掘的数据组织形式;然后,调用相应的算法生成所需的知识;最后对生成的知识模式进行评估,并把有价值的知识集成到企业的智能系统中。
知识发现是一个指出数据中有效、崭新、潜在的、有价值的、一个不可忽视的流程,其最终目标是掌握数据的模式。
流程步骤:先理解要应用的领域、熟悉相关知识,接着建立目标数据集,并专注所选择的数据子集;再作数据预处理,剔除错误或不一致的数据;然后进行数据简化与转换工作;再通过数据挖掘的技术程序成为模式、做回归分析或找出分类模型;最后经过解释和评价成为有用的信息。
2. 时间序列数据挖掘的方法有哪些,请详细阐述之时间序列数据挖掘的方法有:1)、确定性时间序列预测方法:对于平稳变化特征的时间序列来说,假设未来行为与现在的行为有关,利用属性现在的值预测将来的值是可行的。
例如,要预测下周某种商品的销售额,可以用最近一段时间的实际销售量来建立预测模型。
2)、随机时间序列预测方法:通过建立随机模型,对随机时间序列进行分析,可以预测未来值。
若时间序列是平稳的,可以用自回归(Auto Regressive,简称AR)模型、移动回归模型(Moving Average,简称MA)或自回归移动平均(Auto Regressive Moving Average,简称ARMA)模型进行分析预测。
3)、其他方法:可用于时间序列预测的方法很多,其中比较成功的是神经网络。
由于大量的时间序列是非平稳的,因此特征参数和数据分布随着时间的推移而变化。
假如通过对某段历史数据的训练,通过数学统计模型估计神经网络的各层权重参数初值,就可能建立神经网络预测模型,用于时间序列的预测。
3. 数据挖掘的分类方法有哪些,请详细阐述之分类方法归结为四种类型:1)、基于距离的分类方法:距离的计算方法有多种,最常用的是通过计算每个类的中心来完成,在实际的计算中往往用距离来表征,距离越近,相似性越大,距离越远,相似性越小。
数据挖掘原理与应用---试题及答案试卷十二答案精选全文完整版
数据挖掘原理与应用 试题及答案试卷一、(30分,总共30题,每题答对得1分,答错得0分)单选题1、在ID3算法中信息增益是指( D )A、信息的溢出程度B、信息的增加效益C、熵增加的程度最大D、熵减少的程度最大2、下面哪种情况不会影响K-means聚类的效果?( B )A、数据点密度分布不均B、数据点呈圆形状分布C、数据中有异常点存在D、数据点呈非凸形状分布3、下列哪个不是数据对象的别名 ( C )A、样品B、实例C、维度D、元组4、人从出生到长大的过程中,是如何认识事物的? ( D )A、聚类过程B、分类过程C、先分类,后聚类D、先聚类,后分类5、决策树模型中应如何妥善处理连续型属性:( C )A、直接忽略B、利用固定阈值进行离散化C、根据信息增益选择阈值进行离散化D、随机选择数据标签发生变化的位置进行离散化6、假定用于分析的数据包含属性age。
数据元组中age的值如下(按递增序):13,15,16,16,19,20,20,21,22,22,25,25,25,30,33,33,35,35,36,40,45,46,52,70。
问题:使用按箱平均值平滑方法对上述数据进行平滑,箱的深度为3。
第二个箱子值为:( A )A、18.3B、22.6C、26.8D、27.97、建立一个模型,通过这个模型根据已知的变量值来预测其他某个变量值属于数据挖掘的哪一类任务?( C )A、根据内容检索B、建模描述C、预测建模D、寻找模式和规则8、如果现在需要对一组数据进行样本个体或指标变量按其具有的特性进行分类,寻找合理的度量事物相似性的统计量,应该采取( A )A、聚类分析B、回归分析C、相关分析D、判别分析9、时间序列数据更适合用( A )做数据规约。
A、小波变换B、主成分分析C、决策树D、直方图10、下面哪些场景合适使用PCA?( A )A、降低数据的维度,节约内存和存储空间B、降低数据维度,并作为其它有监督学习的输入C、获得更多的特征D、替代线性回归11、数字图像处理中常使用主成分分析(PCA)来对数据进行降维,下列关于PCA算法错误的是:( C )A、PCA算法是用较少数量的特征对样本进行描述以达到降低特征空间维数的方法;B、PCA本质是KL-变换;C、PCA是最小绝对值误差意义下的最优正交变换;D、PCA算法通过对协方差矩阵做特征分解获得最优投影子空间,来消除模式特征之间的相关性、突出差异性;12、将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?( C )A、频繁模式挖掘B、分类和预测C、数据预处理D、数据流挖掘13、假设使用维数降低作为预处理技术,使用PCA将数据减少到k维度。
数据挖掘练习题附答案
数据挖掘练习题A一、简答题1. 数据对象之间的相似性可用距离来衡量,常见的距离形式有哪些?答:曼哈顿距离,欧几里得距离,切比雪夫距离,闵可夫斯基距离,杰卡德距离2. 简述朴素贝叶斯分类的基本思想。
答:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个概率最大,就认为此待分类项属于哪个类别。
1)设x={a!,a",…,a#}为一个待分类项,a为x的特征属性;2)有类别集合C={y!,y",…,y$}3) 计算p(y!|x),p(y"|x),… p(y$|x)4) 如果p(y%|x)=max {p(y!|x),p(y"|x),…,p(y%|x)},则x∈y%3. 在做数据清洗时,如何处理缺失值?答:处理缺失值的方法有3种:1)忽略元组;2)数据补齐,包括人工填写、特殊值填充、平均值填充、使用最可能的值填充;3)不处理。
4. 简述K-means算法的基本步骤。
答:1)任意选择k个对象作为初始的簇中心;2)计算其它对象与这k个中心的距离,然后把每个对象归入离它“最近”的簇;3)计算各簇中对象的平均值,然后选择簇中心(离平均值“最近”的簇);4)重复第2步到第3步直到簇中心不再变化为止。
5. 在关联规则中,支持度(support)和置信度(confidence)的含义分别是什么?答:支持度support(x->y)=p(x,y),表示项集中同时含有x和y的概率。
置信度confidence(x->y)=p(y/x),表示在关联规则的先决条件x发生的条件下,关联结果y发生的概率,即含有x的项集中,同时含有y的可能性。
二、计算题1.假定属性A的取值x在[x_min,x_max]之间,其中x_min和x_max分别为属性A的最小值和最大值,请利用最小-最大规范化方法(也称离差标准化,是对原始数据的线性变化),将x转化到新的区间[y_min,y_max]中,结果用x’表示。
数据挖掘考试题库及答案
数据挖掘考试题库及答案一、选择题1. 数据挖掘是从大量数据中提取有价值信息的过程,以下哪项不是数据挖掘的主要任务?A. 预测B. 分类C. 聚类D. 数据可视化答案:D2. 以下哪种技术不属于数据挖掘的常用方法?A. 决策树B. 支持向量机C. 关联规则D. 数据仓库答案:D3. 数据挖掘中,以下哪项技术常用于分类和预测?A. 神经网络B. K-均值聚类C. 主成分分析D. 决策树答案:D4. 在数据挖掘中,以下哪个概念表示数据集中的属性?A. 数据项B. 数据记录C. 数据属性D. 数据集答案:C5. 数据挖掘中,以下哪个算法用于求解关联规则?A. Apriori算法B. ID3算法C. K-Means算法D. C4.5算法答案:A二、填空题6. 数据挖掘的目的是从大量数据中提取______信息。
答案:有价值7. 在数据挖掘中,分类任务分为有监督学习和______学习。
答案:无监督8. 决策树是一种用于分类和预测的树形结构,其核心思想是______。
答案:递归划分9. 关联规则挖掘中,支持度表示某个项集在数据集中的出现频率,置信度表示______。
答案:包含项集的记录中同时包含结论的记录的比例10. 数据挖掘中,聚类分析是将数据集划分为若干个______的子集。
答案:相似三、判断题11. 数据挖掘只关注大量数据中的异常值。
()答案:错误12. 数据挖掘是数据仓库的一部分。
()答案:正确13. 决策树算法适用于处理连续属性的分类问题。
()答案:错误14. 数据挖掘中的聚类分析是无监督学习任务。
()答案:正确15. 关联规则挖掘中,支持度越高,关联规则越可靠。
()答案:错误四、简答题16. 简述数据挖掘的主要任务。
答案:数据挖掘的主要任务包括预测、分类、聚类、关联规则挖掘、异常检测等。
17. 简述决策树算法的基本原理。
答案:决策树算法是一种自顶向下的递归划分方法。
它通过选择具有最高信息增益的属性进行划分,将数据集划分为若干个子集,直到满足停止条件。
数据挖掘习题及解答-完美版
Data Mining Take Home Exam学号: xxxx 姓名: xxx 1. (20分)考虑下表的数据集。
(1)计算整个数据集的Gini 指标值。
(2)计算属性性别的Gini 指标值(3)计算使用多路划分属性车型的Gini 指标值 (4)计算使用多路划分属性衬衣尺码的Gini 指标值(5)下面哪个属性更好,性别、车型还是衬衣尺码?为什么? 解:(1) Gini=1-(10/20)^2-(10/20)^2=0.5 (2)Gini=[{1-(6/10)^2-(4/10)^2}*1/2]*2=0.48 (3)Gini={1-(1/4)^2-(3/4)^2}*4/20+{1-(8/8)^2-(0/8)^2}*8/20+{1-(1/8)^2-(7/8)^2}*8/2 0=26/160=0.1625(4)Gini={1-(3/5)^2-(2/5)^2}*5/20+{1-(3/7)^2-(4/7)^2}*7/20+[{1-(2/4)^2-(2/4)^2}*4/ 20]*2=8/25+6/35=0.4914(5)比较上面各属性的Gini值大小可知,车型划分Gini值0.1625最小,即使用车型属性更好。
2. (20分)考虑下表中的购物篮事务数据集。
(1) 将每个事务ID视为一个购物篮,计算项集{e},{b,d} 和{b,d,e}的支持度。
(2)使用(1)的计算结果,计算关联规则{b,d}→{e}和{e}→{b,d}的置信度。
(3)将每个顾客ID作为一个购物篮,重复(1)。
应当将每个项看作一个二元变量(如果一个项在顾客的购买事务中至少出现一次,则为1,否则,为0)。
(4)使用(3)的计算结果,计算关联规则{b,d}→{e}和{e}→{b,d}的置信度。
答:(1)由上表计数可得{e}的支持度为8/10=0.8;{b,d}的支持度为2/10=0.2;{b,d,e}的支持度为2/10=0.2。
(2)c[{b,d}→{e}]=2/8=0.25; c[{e}→{b,d}]=8/2=4。
(完整word版)数据挖掘题目及答案
(完整word版)数据挖掘题⽬及答案⼀、何为数据仓库?其主要特点是什么?数据仓库与KDD的联系是什么?数据仓库是⼀个⾯向主题的(Subject Oriented)、集成的(Integrate)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,⽤于⽀持管理决策。
特点:1、⾯向主题操作型数据库的数据组织⾯向事务处理任务,各个业务系统之间各⾃分离,⽽数据仓库中的数据是按照⼀定的主题域进⾏组织的。
2、集成的数据仓库中的数据是在对原有分散的数据库数据抽取、清理的基础上经过系统加⼯、汇总和整理得到的,必须消除源数据中的不⼀致性,以保证数据仓库内的信息是关于整个企业的⼀致的全局信息。
3、相对稳定的数据仓库的数据主要供企业决策分析之⽤,⼀旦某个数据进⼊数据仓库以后,⼀般情况下将被长期保留,也就是数据仓库中⼀般有⼤量的查询操作,但修改和删除操作很少,通常只需要定期的加载、刷新。
4、反映历史变化数据仓库中的数据通常包含历史信息,系统记录了企业从过去某⼀时点(如开始应⽤数据仓库的时点)到⽬前的各个阶段的信息,通过这些信息,可以对企业的发展历程和未来趋势做出定量分析和预测。
所谓基于数据库的知识发现(KDD)是指从⼤量数据中提取有效的、新颖的、潜在有⽤的、最终可被理解的模式的⾮平凡过程。
数据仓库为KDD提供了数据环境,KDD从数据仓库中提取有效的,可⽤的信息⼆、数据库有4笔交易。
设minsup=60%,minconf=80%。
TID DATE ITEMS_BOUGHTT100 3/5/2009 {A, C, S, L}T200 3/5/2009 {D, A, C, E, B}T300 4/5/2010 {A, B, C}T400 4/5/2010 {C, A, B, E}使⽤Apriori算法找出频繁项集,列出所有关联规则。
解:已知最⼩⽀持度为60%,最⼩置信度为80%1)第⼀步,对事务数据库进⾏⼀次扫描,计算出D中所包含的每个项⽬出现的次数,⽣成候选1-项集的集合C1。
(完整word版)数据挖掘课后答案
第一章1.6(1)数据特征化是目标类数据的一般特性或特征的汇总。
例如,在某商店花费1000元以上的顾客特征的汇总描述是:年龄在40—50岁、有工作和很好的信誉等级。
(2)数据区分是将目标类数据对象的一般特性与一个或多个对比类对象的一般特性进行比较。
例如,高平均分数的学生的一般特点,可与低平均分数的学生的一般特点进行比较.由此产生的可能是一个相当普遍的描述,如平均分高达75%的学生是大四的计算机科学专业的学生,而平均分低于65%的学生则不是.(3)关联和相关分析是指在给定的频繁项集中寻找相关联的规则.例如,一个数据挖掘系统可能会发现这样的规则:专业(X,“计算机科学”)=〉拥有(X,”个人电脑“)[support= 12%,confidence = 98%],其中X是一个变量,代表一个学生,该规则表明,98%的置信度或可信性表示,如果一个学生是属于计算机科学专业的,则拥有个人电脑的可能性是98%。
12%的支持度意味着所研究的所有事务的12%显示属于计算机科学专业的学生都会拥有个人电脑。
(4)分类和预测的不同之处在于前者是构建了一个模型(或函数),描述和区分数据类或概念,而后者则建立了一个模型来预测一些丢失或不可用的数据,而且往往是数值,数据集的预测。
它们的相似之处是它们都是为预测工具:分类是用于预测的数据和预测对象的类标签,预测通常用于预测缺失值的数值数据。
例如:某银行需要根据顾客的基本特征将顾客的信誉度区分为优良中差几个类别,此时用到的则是分类;当研究某只股票的价格走势时,会根据股票的历史价格来预测股票的未来价格,此时用到的则是预测。
(5)聚类分析数据对象是根据最大化类内部的相似性、最小化类之间的相似性的原则进行聚类和分组。
聚类还便于分类法组织形式,将观测组织成类分层结构,把类似的事件组织在一起。
例如:世界上有很多种鸟,我们可以根据鸟之间的相似性,聚集成n类,其中n可以认为规定. (6)数据演变分析描述行为随时间变化的对象的规律或趋势,并对其建模。
数据挖掘 习题及参考答案
①电信行业中利用数据挖掘技术进行客户行为分析,包含客户通话记录、通话时间、所 开通的服务等,据此进行客户群体划分以及客户流失性分析。
②天文领域中利用决策树等数据挖掘方法对上百万天体数据进行分类与分析,帮助天文 学家发现其他未知星体。
③制造业中应用数据挖掘技术进行零部件故障诊断、资源优化、生产过程分析等。
第 4 页 共 27 页
(b)对于数据平滑,其它方法有: (1)回归:可以用一个函数(如回归函数)拟合数据来光滑数据; (2)聚类:可以通过聚类检测离群点,将类似的值组织成群或簇。直观地,落在簇集合 之外的值视为离群点。
2.6 使用习题 2.5 给出的 age 数据,回答以下问题: (a) 使用 min-max 规范化,将 age 值 35 转换到[0.0,1.0]区间。 (b) 使用 z-score 规范化转换 age 值 35,其中,age 的标准偏差为 12.94 年。 (c) 使用小数定标规范化转换 age 值 35。 (d) 指出对于给定的数据,你愿意使用哪种方法。陈述你的理由。
回归来建模,或使用时间序列分析。 (7) 是,需要建立正常心率行为模型,并预警非正常心率行为。这属于数据挖掘领域
的异常检测。若有正常和非正常心率行为样本,则可以看作一个分类问题。 (8) 是,需要建立与地震活动相关的不同波形的模型,并预警波形活动。属于数据挖
掘领域的分类。 (9) 不是,属于信号处理。
1.6 根据你的观察,描述一个可能的知识类型,它需要由数据挖掘方法发现,但本章未列出。 它需要一种不同于本章列举的数据挖掘技术吗?
答:建立一个局部的周期性作为一种新的知识类型,只要经过一段时间的偏移量在时间序列 中重复发生,那么在这个知识类型中的模式是局部周期性的。需要一种新的数据挖掘技 术解决这类问题。
数据挖掘习题及解答-完美版
Data Mining Take Home Exam学号: xxxx 姓名: xxx(1)计算整个数据集的Gini指标值。
(2)计算属性性别的Gini指标值(3)计算使用多路划分属性车型的Gini指标值(4)计算使用多路划分属性衬衣尺码的Gini指标值(5)下面哪个属性更好,性别、车型还是衬衣尺码?为什么?(3)=26/160=0.1625]*2=8/25+6/35=0.4914(5)比较上面各属性的Gini值大小可知,车型划分Gini值0.1625最小,即使用车型属性更好。
2. ((1) 将每个事务ID视为一个购物篮,计算项集{e},{b,d} 和{b,d,e}的支持度。
(2)使用(1)的计算结果,计算关联规则{b,d}→{e}和{e}→{b,d}的置信度。
(3)将每个顾客ID作为一个购物篮,重复(1)。
应当将每个项看作一个二元变量(如果一个项在顾客的购买事务中至少出现一次,则为1,否则,为0)。
(4)使用(3)的计算结果,计算关联规则{b,d}→{e}和{e}→{b,d}的置信度。
答:(1)由上表计数可得{e}的支持度为8/10=0.8;{b,d}的支持度为2/10=0.2;{b,d,e}的支持度为2/10=0.2。
(2)c[{b,d}→{e}]=2/8=0.25; c[{e}→{b,d}]=8/2=4。
(3)同理可得:{e}的支持度为4/5=0.8,{b,d}的支持度为5/5=1,{b,d,e}的支持度为4/5=0.8。
(4)c[{b,d}→{e}]=5/4=1.25,c[{e}→{b,d}]=4/5=0.8。
3. (20分)以下是多元回归分析的部分R输出结果。
> ls1=lm(y~x1+x2)> anova(ls1)Df Sum Sq Mean Sq F value Pr(>F)x1 1 10021.2 10021.2 62.038 0.0001007 ***x2 1 4030.9 4030.9 24.954 0.0015735 **Residuals 7 1130.7 161.5> ls2<-lm(y~x2+x1)> anova(ls2)Df Sum Sq Mean Sq F value Pr(>F)x2 1 3363.4 3363.4 20.822 0.002595 **x1 1 10688.7 10688.7 66.170 8.193e-05 ***Residuals 7 1130.7 161.5(1)用F检验来检验以下假设(α = 0.05)H0: β1 = 0H a: β1≠ 0计算检验统计量;是否拒绝零假设,为什么?(2)用F检验来检验以下假设(α = 0.05)H0: β2 = 0H a: β2≠ 0计算检验统计量;是否拒绝零假设,为什么?(3)用F检验来检验以下假设(α = 0.05)H0: β1 = β2 = 0H a: β1和β2 并不都等于零计算检验统计量;是否拒绝零假设,为什么?解:(1)根据第一个输出结果F=62.083>F(2,7)=4.74,p<0.05,所以可以拒绝原假设,即得到不等于0。
完整word版数据挖掘课后答案
第一章6.1 数据特征化是目标类数据的一般特性或特征的汇总。
(1)岁、有工5040—元以上的顾客特征的汇总描述是:年龄在例如,在某商店花费1000 作和很好的信誉等级。
数据区分是将目标类数据对象的一般特性与一个或多个对比类对象的一般特性进行比)(2 较。
由可与低平均分数的学生的一般特点进行比较。
例如,高平均分数的学生的一般特点,%的学生是大四的计算机科学专业75此产生的可能是一个相当普遍的描述,如平均分高达的学生则不是。
的学生,而平均分低于65% )关联和相关分析是指在给定的频繁项集中寻找相关联的规则。
(3”X,)=>拥有(X 例如,一个数据挖掘系统可能会发现这样的规则:专业(,“计算机科学”是一个变量,代表一个学生,该规,其中Xconfidence = 98%]%,个人电脑“)[support= 12的置信度或可信性表示,如果一个学生是属于计算机科学专业的,则拥有个人则表明,98%显示属于计算机科学专的支持度意味着所研究的所有事务的12%98%。
12%电脑的可能性是业的学生都会拥有个人电脑。
(4)分类和预测的不同之处在于前者是构建了一个模型(或函数),描述和区分数据类或概念,而后者则建立了一个模型来预测一些丢失或不可用的数据,而且往往是数值,数据集的预测。
它们的相似之处是它们都是为预测工具:分类是用于预测的数据和预测对象的类标签,预测通常用于预测缺失值的数值数据。
例如:某银行需要根据顾客的基本特征将顾客的信誉度区分为优良中差几个类别,此时用到的则是分类;当研究某只股票的价格走势时,会根据股票的历史价格来预测股票的未来价格,此时用到的则是预测。
(5)聚类分析数据对象是根据最大化类内部的相似性、最小化类之间的相似性的原则进行聚类和分组。
聚类还便于分类法组织形式,将观测组织成类分层结构,把类似的事件组织在一起。
例如:世界上有很多种鸟,我们可以根据鸟之间的相似性,聚集成n类,其中n可以认为规定。
数据挖掘测试题及答案
数据挖掘测试题及答案一、选择题1. 数据挖掘的目的是:A. 数据清洗B. 数据转换C. 模式发现D. 数据存储答案:C2. 以下哪项不是数据挖掘的常用算法?A. 决策树B. 聚类分析C. 线性回归D. 关联规则答案:C二、填空题1. 数据挖掘中的_________是指在大量数据中发现的有意义的模式。
答案:知识2. 一种常用的数据挖掘技术是_________,它用于发现数据中隐藏的分组。
答案:聚类三、简答题1. 简述数据挖掘与数据分析的区别。
答案:数据挖掘是一种自动或半自动的过程,旨在从大量数据中发现模式和知识。
数据分析通常涉及更具体的查询和问题,使用统计方法来理解数据。
2. 描述什么是关联规则挖掘,并给出一个例子。
答案:关联规则挖掘是一种用于发现变量之间有趣关系的技术,特别是变量之间的频繁模式、关联或相关性。
例如,在市场篮子分析中,关联规则挖掘可以用来发现顾客购买行为中的模式,如“购买面包的顾客中有80%也购买了牛奶”。
四、计算题1. 给定以下数据集,计算支持度和置信度:| 事务ID | 购买的商品 |||-|| 1 | A, B || 2 | A, C || 3 | B, C || 4 | A, B, C || 5 | B, D |(1) 计算项集{A}的支持度。
(2) 计算规则A => B的置信度。
答案:(1) 项集{A}的支持度为4/5,因为A出现在4个事务中。
(2) 规则A => B的置信度为3/4,因为A和B同时出现在3个事务中,而A出现在4个事务中。
五、论述题1. 论述数据挖掘在电子商务中的应用,并给出至少两个具体的例子。
答案:数据挖掘在电子商务中的应用非常广泛,包括:- 客户细分:通过数据挖掘技术,商家可以识别不同的客户群体,为每个群体提供定制化的服务或产品。
- 推荐系统:利用关联规则挖掘,电商平台可以推荐用户可能感兴趣的商品,提高用户满意度和购买率。
- 欺诈检测:通过分析交易模式,数据挖掘可以帮助识别异常行为,预防信用卡欺诈等风险。
数据挖掘测试题及答案
数据挖掘测试题及答案一、单项选择题(每题2分,共10题,共20分)1. 数据挖掘中,用于发现数据集中的关联规则的算法是:A. K-meansB. AprioriC. Naive BayesD. Decision Tree答案:B2. 以下哪个选项不是数据挖掘的步骤之一:A. 数据预处理B. 数据探索C. 数据收集D. 数据分析答案:C3. 在分类问题中,以下哪个算法属于监督学习:A. 聚类B. 决策树C. 关联规则D. 异常检测答案:B4. 数据挖掘中,用于发现数据集中的频繁项集的算法是:A. K-meansB. AprioriC. Naive BayesD. Decision Tree5. 在数据挖掘中,以下哪个选项不是数据预处理的步骤:A. 数据清洗B. 数据集成C. 数据变换D. 数据分类答案:D6. 以下哪个算法主要用于聚类问题:A. K-meansB. AprioriC. Naive BayesD. Decision Tree答案:A7. 在数据挖掘中,以下哪个选项不是数据挖掘的应用领域:A. 市场分析B. 医疗诊断C. 社交网络分析D. 视频游戏开发答案:D8. 以下哪个算法主要用于异常检测:A. K-meansB. AprioriC. Naive BayesD. One-Class SVM答案:D9. 在数据挖掘中,以下哪个选项不是数据挖掘的输出结果:B. 规则C. 趋势D. 软件答案:D10. 以下哪个算法主要用于分类问题:A. K-meansB. AprioriC. Naive BayesD. Decision Tree答案:D二、多项选择题(每题3分,共5题,共15分)1. 数据挖掘中,以下哪些算法可以用于分类问题:A. K-meansB. Decision TreeC. Naive BayesD. Logistic Regression答案:BCD2. 在数据挖掘中,以下哪些步骤属于数据预处理:A. 数据清洗B. 数据集成C. 数据变换D. 数据分类答案:ABC3. 以下哪些算法可以用于聚类问题:A. K-meansB. AprioriC. Hierarchical ClusteringD. DBSCAN答案:ACD4. 在数据挖掘中,以下哪些步骤属于数据探索:A. 数据可视化B. 数据摘要C. 数据分类D. 数据变换答案:AB5. 以下哪些算法可以用于异常检测:A. K-meansB. One-Class SVMC. Isolation ForestD. Apriori答案:BC三、简答题(每题5分,共3题,共15分)1. 简述数据挖掘中关联规则挖掘的主要步骤。
数据挖掘及应用考试试题及答案
数据挖掘及应用考试试题及答案第一部分:选择题(每题4分,共40分)1.数据挖掘的定义是以下哪一个选项?A)从大数据中提取有用的信息B)从数据库中提取有用的信息C)从互联网中提取有用的信息D)从文件中提取有用的信息2.以下哪个是数据挖掘的一个主要任务?A)数据的存储和管理B)数据的可视化展示C)模型的建立和评估D)数据的备份和恢复3.下列哪个不是数据挖掘的一个常用技术?A)关联规则挖掘B)分类算法C)聚类分析D)数据编码技术4.以下哪个不属于数据预处理的步骤?A)数据清洗B)数据集成C)数据转换D)模型评估5.以下哪个是数据挖掘任务中的分类问题?A)预测数值B)聚类分析C)异常检测D)关联规则挖掘6.以下哪个不属于数据可视化的一种方法?A)散点图B)柱状图C)热力图D)关联规则图7.在使用决策树算法进行分类任务时,常用的不纯度度量指标是:A)基尼指数B)信息增益C)平方误差D)均方根误差8.以下哪个算法常用于处理文本数据挖掘任务?A)K-means算法B)Apriori算法C)朴素贝叶斯算法D)决策树算法9.以下哪种模型适用于处理离散型目标变量?A)线性回归模型B)逻辑回归模型C)支持向量机模型D)贝叶斯网络模型10.数据挖掘的应用领域包括以下哪些?A)金融风控B)医疗诊断C)社交网络分析D)所有选项都正确第二部分:填空题(每题4分,共20分)1.数据挖掘的基础是______和______。
答案:统计学、机器学习2.数据挖掘的任务包括分类、聚类、预测和______。
答案:关联规则挖掘3.常用的数据预处理方法包括数据清洗、数据集成和______。
答案:数据转换4.决策树算法的基本思想是通过选择最佳的______进行分类。
答案:划分属性5.支持向量机(SVM)算法适用于______问题。
答案:二分类问题第三部分:简答题(每题10分,共40分)1.请简述数据挖掘的流程及各个阶段的主要任务。
答:数据挖掘的流程一般包括问题定义、数据收集、数据预处理、模型选择与建立、模型评估与选择、知识应用等阶段。
数据挖掘习题及解答-完美版
Data Mining Take Home Exam学号: xxxx 姓名: xxx(1)计算整个数据集的Gini指标值。
(2)计算属性性别的Gini指标值(3)计算使用多路划分属性车型的Gini指标值(4)计算使用多路划分属性衬衣尺码的Gini指标值(5)下面哪个属性更好,性别、车型还是衬衣尺码?为什么?(3)=26/160=0.1625]*2=8/25+6/35=0.4914(5)比较上面各属性的Gini值大小可知,车型划分Gini值0.1625最小,即使用车型属性更好。
2. ((1) 将每个事务ID视为一个购物篮,计算项集{e},{b,d} 和{b,d,e}的支持度。
(2)使用(1)的计算结果,计算关联规则{b,d}→{e}和{e}→{b,d}的置信度。
(3)将每个顾客ID作为一个购物篮,重复(1)。
应当将每个项看作一个二元变量(如果一个项在顾客的购买事务中至少出现一次,则为1,否则,为0)。
(4)使用(3)的计算结果,计算关联规则{b,d}→{e}和{e}→{b,d}的置信度。
答:(1)由上表计数可得{e}的支持度为8/10=0.8;{b,d}的支持度为2/10=0.2;{b,d,e}的支持度为2/10=0.2。
(2)c[{b,d}→{e}]=2/8=0.25; c[{e}→{b,d}]=8/2=4。
(3)同理可得:{e}的支持度为4/5=0.8,{b,d}的支持度为5/5=1,{b,d,e}的支持度为4/5=0.8。
(4)c[{b,d}→{e}]=5/4=1.25,c[{e}→{b,d}]=4/5=0.8。
3. (20分)以下是多元回归分析的部分R输出结果。
> ls1=lm(y~x1+x2)> anova(ls1)Df Sum Sq Mean Sq F value Pr(>F)x1 1 10021.2 10021.2 62.038 0.0001007 ***x2 1 4030.9 4030.9 24.954 0.0015735 **Residuals 7 1130.7 161.5> ls2<-lm(y~x2+x1)> anova(ls2)Df Sum Sq Mean Sq F value Pr(>F)x2 1 3363.4 3363.4 20.822 0.002595 **x1 1 10688.7 10688.7 66.170 8.193e-05 ***Residuals 7 1130.7 161.5(1)用F检验来检验以下假设(α = 0.05)H0: β1 = 0H a: β1≠ 0计算检验统计量;是否拒绝零假设,为什么?(2)用F检验来检验以下假设(α = 0.05)H0: β2 = 0H a: β2≠ 0计算检验统计量;是否拒绝零假设,为什么?(3)用F检验来检验以下假设(α = 0.05)H0: β1 = β2 = 0H a: β1和β2 并不都等于零计算检验统计量;是否拒绝零假设,为什么?解:(1)根据第一个输出结果F=62.083>F(2,7)=4.74,p<0.05,所以可以拒绝原假设,即得到不等于0。
数据挖掘期末试题及答案完整版
数据挖掘期末试题及答案完整版本文档为数据挖掘课程的期末试题及答案完整版,共分为两部分:试题1. 简述数据挖掘的含义,及其在实际应用中的主要应用场景。
2. 数据挖掘的分类有哪些?分别说明其特点和应用场景。
3. 什么是关联规则挖掘?具体方法是什么?4. 简述聚类分析的含义,及其在实际应用中的主要应用场景。
5. 什么是K-means算法?其具体流程是什么?如何确定K值?6. 什么是分类算法?具体有哪些分类算法?举例说明其应用场景。
7. 什么是决策树?它的构建方法是什么?8. 什么是人工神经网络?具体的工作原理是怎样的?9. 什么是支持向量机?简述其分类原理及构建方法。
10. 集成研究是什么?其主要有哪些方法?答案1. 数据挖掘定义:是从大量数据中自动提取未知、隐含的且潜在有用的信息和模式的计算技术,主要应用场景包括:金融风险控制、市场营销、医学诊断和电子商务等领域。
2. 数据挖掘的分类:基于任务分类、基于数据挖掘方法分类、基于应用领域分类等。
其中基于数据挖掘方法的分类包括:分类、聚类、关联规则挖掘、时序挖掘、离群点检测和特征选择等,它们分别对应不同类型的数据挖掘任务和数据类型。
3. 关联规则挖掘:是一种在数据集中发现有趣关系的方法。
具体方法包括:设定最小支持度和最小置信度阈值、频繁集生成、生成关联规则等。
4. 聚类分析:是一种常用的数据挖掘技术,主要应用场景包括:图像分割、生物信息学、无监督研究等领域。
5. K-means算法:是一种基于划分的聚类算法,具体流程包括:选择初始聚类中心、计算数据点到聚类中心的距离、分组聚类、重新计算聚类中心等。
确定K值有多种方法,常用的有肘部法和轮廓系数法。
6. 分类算法:是一种重要的数据挖掘技术,主要包括决策树、朴素贝叶斯、神经网络、支持向量机等方法。
不同的算法适用于不同类型的数据和任务场景。
7. 决策树:是一种基于树结构的分类方法,具体构建方法包括:选择最优特征、树的生长、剪枝等。
(完整word版)数据挖掘计算题参考答案
数据仓库与数据挖掘复习题1. 假设数据挖掘的任务是将如下的8个点(用(x,y)代表位置)聚类为3个类:X1(2,10)、X2(2,5)、X3(8,4)、X4(5,8)、X5(7,5)、X6(6,4)、X7(1,2)、X8(4,9),距离选择欧几里德距离。
假设初始选择X1(2,10)、X4(5,8)、X7(1,2)为每个聚类的中心,请用K_means算法来计算:(1)在第一次循环执行后的3个聚类中心;答:第一次迭代:中心点1:X1(2,10),2:X4(5,8),X7(1,2)答案:在第一次循环执行后的3个聚类中心:1:X1(2,10)2:X3,X4,X5,X6,X8 (6,6)3:X2,X7 (1.5,3.5)(2)经过两次循环后,最后的3个族分别是什么?第二次迭代:答案:1:X1,X8 (3.5,9.5)2:X3,X4,X5,X6 (6.5,5.25) 3:X2,X7 (1.5,3.5)2. 数据库有4个事务。
设min_sup=60%,min_conf=80%。
TID data Transaction T100 6/6/2007 K,A,D,B T200 6/6/2007 D,A,C,E,B T300 6/7/2007 C,A,B,E T4006/10/2007B,A,Da.使用Apriori 算法找出频繁项集,并写出具体过程。
答:(a)Apriori 算法:{K} 1 {A} 4 {A,B} 4 {A,B,D} 3{A} 4 {B} 4 {A,D} 3 {B} 4 {D} 3 {B,D} 3 {D} 3 {C} 2 {E} 2频繁项集为3项集{A,B,D}:3b.列出所有的强关联规则,使它们与下面的元规则匹配,其中,X 是代表顾客的变量,i item 是表示项的变量(例如,“A ”、“B ”等):123,(,)(,)(,)x transaction buys X item buys X item buys X item ∀∈∧⇒ [s,c] 答:所有频繁子项集有{A},{B},{D},{A,B},{A,D},{B,D} A^B=>D conf=3/4=75% × A^D=>B conf=3/3=100% √ B^D=>A conf=3/3=100% √ 因此,满足条件的强关联规则有:A^D=>B{supp=75%,conf=100%} B^D=>A{supp=75%,conf=100%}1.给定如下的数据库表:IDSky AirTe Humidi Wind Water Foreca Enjoyspo请计算属性Sky的信息增益。
数据挖掘考试题及答案
数据挖掘考试题及答案一、单项选择题(每题2分,共20分)1. 数据挖掘的主要任务不包括以下哪一项?A. 分类B. 聚类C. 预测D. 数据清洗答案:D2. 以下哪个算法不是用于分类的?A. 决策树B. 支持向量机C. K-meansD. 神经网络答案:C3. 在数据挖掘中,关联规则挖掘主要用于发现以下哪种类型的模式?A. 序列模式B. 分类模式C. 频繁项集D. 聚类模式答案:C4. 以下哪个指标不是用于评估分类模型性能的?A. 准确率B. 召回率C. F1分数D. 马氏距离答案:D5. 在数据挖掘中,以下哪个算法是用于聚类的?A. K-meansB. 逻辑回归C. 随机森林D. 支持向量机答案:A6. 以下哪个选项不是数据挖掘过程中的步骤?A. 数据预处理B. 模式发现C. 结果评估D. 数据存储答案:D7. 在数据挖掘中,异常检测的主要目的是识别以下哪种类型的数据?A. 频繁出现的模式B. 罕见的模式C. 预测未来的数据D. 聚类的数据答案:B8. 以下哪个选项不是数据挖掘中常用的数据预处理技术?A. 数据清洗B. 数据集成C. 数据变换D. 数据压缩答案:D9. 在数据挖掘中,以下哪个算法是用于特征选择的?A. 主成分分析B. 线性判别分析C. 支持向量机D. 决策树答案:D10. 以下哪个选项不是数据挖掘中常用的数据表示方法?A. 决策树B. 向量空间模型C. 邻接矩阵D. 频率分布表答案:D二、多项选择题(每题3分,共15分)11. 数据挖掘中常用的聚类算法包括哪些?A. K-meansB. 层次聚类C. DBSCAND. 支持向量机答案:A、B、C12. 在数据挖掘中,以下哪些是关联规则挖掘的典型应用场景?A. 市场篮分析B. 异常检测C. 推荐系统D. 社交网络分析答案:A、C13. 数据挖掘中,以下哪些是分类模型评估的常用指标?A. 准确率B. 召回率C. ROC曲线D. 马氏距离答案:A、B、C14. 在数据挖掘中,以下哪些是特征工程的步骤?A. 特征选择B. 特征提取C. 特征变换D. 数据清洗答案:A、B、C15. 数据挖掘中,以下哪些是数据预处理的常见任务?A. 缺失值处理B. 异常值检测C. 数据规范化D. 数据压缩答案:A、B、C三、简答题(每题10分,共30分)16. 请简述数据挖掘中分类和聚类的主要区别。
数据挖掘期末试题及答案
数据挖掘期末试题及答案一、选择题(每题2分,共20分)1. 数据挖掘中,以下哪个算法是用于分类的?A. AprioriB. K-meansC. KNND. ID32. 以下哪个不是数据挖掘的步骤?A. 数据预处理B. 数据集成C. 数据可视化D. 数据存储3. 在关联规则挖掘中,支持度(Support)是指什么?A. 规则出现的频率B. 规则的可信度C. 规则的覆盖范围D. 规则的强度4. 以下哪个是聚类算法?A. Logistic RegressionB. Decision TreeC. Naive BayesD. Hierarchical Clustering5. 数据挖掘中,特征选择的目的是什么?A. 增加数据量B. 减少数据量C. 增加模型复杂度D. 减少模型复杂度二、简答题(每题10分,共30分)1. 请简述数据挖掘中过拟合的概念及其预防方法。
2. 解释什么是决策树,并说明其在数据挖掘中的应用。
3. 描述数据预处理的重要性及其主要步骤。
三、应用题(每题25分,共50分)1. 假设你有一个包含客户购买历史的数据集,描述如何使用数据挖掘技术来发现潜在的购买模式。
2. 给出一个实际例子,说明如何使用关联规则挖掘来提高零售业的销售效率。
四、案例分析(共30分)1. 阅读以下案例描述,并分析使用数据挖掘技术解决该问题的优势和可能遇到的挑战。
案例描述:一家电子商务公司想要通过分析用户浏览和购买行为来优化其推荐系统。
公司收集了大量用户数据,包括浏览历史、购买记录、用户评分和反馈。
答案:一、选择题1. D2. D3. A4. D5. D二、简答题1. 过拟合是指模型在训练数据上表现良好,但在新的、未见过的数据上表现差的现象。
预防过拟合的方法包括:使用交叉验证、正则化技术、减少模型复杂度等。
2. 决策树是一种监督学习算法,用于分类和回归任务。
它通过一系列的问题将数据分割成不同的子集,直到达到一个纯度的节点,即决策点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、何为数据仓库?其主要特点是什么?数据仓库与KDD的联系是什么?数据仓库是一个面向主题的(Subject Oriented)、集成的(Integrate)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,用于支持管理决策。
特点:1、面向主题操作型数据库的数据组织面向事务处理任务,各个业务系统之间各自分离,而数据仓库中的数据是按照一定的主题域进行组织的。
2、集成的数据仓库中的数据是在对原有分散的数据库数据抽取、清理的基础上经过系统加工、汇总和整理得到的,必须消除源数据中的不一致性,以保证数据仓库内的信息是关于整个企业的一致的全局信息。
3、相对稳定的数据仓库的数据主要供企业决策分析之用,一旦某个数据进入数据仓库以后,一般情况下将被长期保留,也就是数据仓库中一般有大量的查询操作,但修改和删除操作很少,通常只需要定期的加载、刷新。
4、反映历史变化数据仓库中的数据通常包含历史信息,系统记录了企业从过去某一时点(如开始应用数据仓库的时点)到目前的各个阶段的信息,通过这些信息,可以对企业的发展历程和未来趋势做出定量分析和预测。
所谓基于数据库的知识发现(KDD)是指从大量数据中提取有效的、新颖的、潜在有用的、最终可被理解的模式的非平凡过程。
数据仓库为KDD提供了数据环境,KDD从数据仓库中提取有效的,可用的信息二、数据库有4笔交易。
设minsup=60%,minconf=80%。
TID DATE ITEMS_BOUGHTT100 3/5/2009 {A, C, S, L}T200 3/5/2009 {D, A, C, E, B}T300 4/5/2010 {A, B, C}T400 4/5/2010 {C, A, B, E}使用Apriori算法找出频繁项集,列出所有关联规则。
解:已知最小支持度为60%,最小置信度为80%1)第一步,对事务数据库进行一次扫描,计算出D中所包含的每个项目出现的次数,生成候选1-项集的集合C1。
2)第二步,根据设定的最小支持度,从C1中确定频繁1-项集L1。
3)第三步,由L1产生候选2-项集C2,然后扫描事务数据库对C2中的项集进行计数。
4) 第四步,根据最小支持度,从候选集C2中确定频繁2-项集L2。
5)第五步,由频繁2-项集L2生成候选3-项集C3,生成的候选3-项集的集合C3={A,B,C},C3的子集都是频繁的,且项集{A,B,C}计数为3,即L3=C3={A,B,C},L3即为频繁3-项集。
由频繁项集产生关联规则如下:针对频繁3-项集L3,非空真子集有:{A},{B},{C},{A,B},{A,C},{B,C},相应的置信度为:因为最小置信度为90%,故所有关联规则为:B->A&&C、A&&B->C、B&&C->A三、假设数据集D含有9个数据对象(用二维空间的点表示):A1(3, 2),A2(3, 9),A3(8, 6),B1(9, 5),B2(2, 4),B3(3, 10),C1(2, 6),C2(9, 6),C3(2, 2)基于欧几里得距离采用k-均值方法聚类,取k=3,初始的簇质心为A1,B1和C1,求:(1) 第一次循环结束时的三个簇的质心。
(2) 最后求得的三个簇。
解:(1)第一次循环:d2(A1,A1)=(3-3)2+(2-2)2=0d2(A1,B1)=(3-9)2+(2-5)2=45d2(A1,C1)=(3-2)2+(2-6)2=17因为d2(A1,A1)最小,所以,A1->A1d2(A2,A1)=(3-3)2+(9-2)2=49d2(A2,B1)=(3-9)2+(9-5)2=60d2(A2,C1)=(3-2)2+(9-6)2=10因为d2(A2,C1)最小,所以,A2->C1d2(A3,A1)=(8-3)2+(6-2)2=41d2(A3,B1)=(8-9)2+(6-5)2=2d2(A3,C1)=(8-2)2+(6-6)2=36因为d2(A3,B1)最小,所以,A3->B1d2(B1,A1)=(9-3)2+(5-2)2=45d2(B1,B1)=(9-9)2+(5-5)2=0d2(B1,C1)=(9-2)2+(5-6)2=50因为d2(B1,B1)最小,所以,B1->B1d2(B2,A1)=(2-3)2+(4-2)2=5d2(B2,B1)=(2-9)2+(4-5)2=50d2(B2,C1)=(2-2)2+(4-6)2=4因为d2(B2,C1)最小,所以,B2->C1d2(B3,A1)=(3-3)2+(10-2)2=64d2(B3,B1)=(3-9)2+(10-5)2=61d2(B3,C1)=(3-2)2+(10-6)2=17因为d2(B3,C1)最小,所以,B3->C1d2(C1,A1)=(2-3)2+(6-2)2=17d2(C1,B1)=(2-9)2+(6-5)2=50d2(C1,C1)=(2-2)2+(6-6)2=0因为d2(C1,C1)最小,所以,C1->C1d2(C2,A1)=(9-3)2+(6-2)2=50d2(C2,B1)=(9-9)2+(6-5)2=1d2(C2,C1)=(9-2)2+(6-6)2=49因为d2(C2,B1)最小,所以,C2->B1d2(C3,A1)=(2-3)2+(2-2)2=1d2(C3,B1)=(2-9)2+(2-5)2=58d2(C3,C1)=(2-2)2+(2-6)2=16因为d2(C3,A1)最小,所以,C3->A1所以第一次循环结束时,第一类:A1,C3,质心为O1(2.5, 2)第二类:B1,A3,C2, 质心为O2(9, 5.67)第三类:C1,A2,B2,B3, 质心为O3(2.5, 7.25)(2) 第二次循环结束时,第一类:A1,B2,C3,质心为O1(2.33,3),第二类:A3,B1,C2,质心为O2(8.67,5.67),第三类:A2,B3,C1,质心为O3(2.67,8.33)。
第三次循环结束时,第一类:A1,B2,C3,质心为O1(2.33,3),第二类:A3,B1,C2,质心为O2(8.67,5.67),第三类:A2,B3,C1,质心为O3(2.67,8.33)。
结果与第二次循环结束的结果一样,故最后求得的结果为:第一类:A1,B2,C3,质心为O1(2.33,3),第二类:A3,B1,C2,质心为O2(8.67,5.67),第三类:A2,B3,C1,质心为O3(2.67,8.33)。
四、给定数据集S,试根据前7个样本构造ID3决策树模型,并预测第8个样本的类别?数据集S解:现计算每个属性的信息增益。
对给定样本分类所需的期望信息为:E(S)= –(3/7)log2 (3/7)–(4/7)log2 (4/7)=0.5239+0.4613=0.9852Values(A)={a0, a1, a2},Sa0 ={S1, S2, S3},∣Sa0∣=3,其中3个都属于类C1,故有:E(Sa0)= – (5/5)log2(5/5) –(0/5)log2(0/5)=0Sa1= {S4, S5, S6},∣Sa1∣=3,其中,1个属于c1,2个属于c2,故有E(Sa1)= – (1/3)log2(1/3) – (2/3)log2(2/3)=0.5283+0.3900=0.9183同理,E(Sa2)= – (1/1)log2(1/1)–(0/1)log2(0/1)=0因此属性A的期望熵为:E(S,A)=(3/7)E(Sa0)+ (3/7)E(Sa1)+(1/7)E(Sa2)=0.3936故A的信息增益为:Gain(S, A)= E(S) –E(S, A) =0. 9852–0. 3936=0.5916同理:Values(B)={b0, b1, b2},Sb0 ={S1, S4, S7},∣Sb0∣=3,其中,1个属于c1,2个属于c2,故有E(Sb0)= – (1/3)log2(1/3) – (2/3)log2(2/3)=0.5283+0.3900=0.9183Sb1= {S2, S5},∣Sb1∣=2,其中2个都属于类C1, 故有E(Sb1)= – (2/2)log2(2/2) –(0/2)log2(0/2)=0同理,E(Sb2)= – (1/2)log2(1/2) – (1/2)log2(1/2)=1因此属性B的期望熵为:E(S, B)=(3/7)E(Sb0)+ (2/7)E(Sb1)+(2/7)E(Sb2)=0.3936+0+0.2857=0.6793故B的信息增益为:Gain(S,B)= E(S) –E(S, B) =0. 9852–0. 6793 =0.3059故A的信息增益最大,令属性A为根节点的测试属性,并对应每个值(a0,,a1,a2)在根节点下建立分支,形成部分决策树:对于A=a0和A=a2节点,它们对应的属性唯一,不需进一步讨论,而对于A=a1节点,需要进一步讨论。
由于只有B属性可供讨论,因此依据不同的取值,可得最终的决策树:根据以上决策树,可知第8个样本S8的类别为c2.五、设论域U={x1, x2 ,…, x6},属性集A=C D,条件属性集C={a, b, c},决策属性集D={d},决策表如下:决策表问:决策表是否为一致决策表?利用分辨矩阵对决策表进行约简。
解:由决策表可知,U/C={{x1, x2}, {x3}, {x4}, {x5}, {x6}}U/D={{x1, x2}, {x3, x5, x6}, {x4}}POS C(D)={x1, x2, x3, x4, x5, x6}因为k=| POS C(D)|/|U|=1,故该决策表为一致决策表。
该决策表的分辨矩阵为6阶方阵,其元素为所以决策表的分辨函数为:ρ=(b∨c)(b∨c)(b)(b)(c)(a∨b∨c)(a∨b∨c)(a∨b∨c)(a∨b∨c)(a∨b∨c)(a∨b∨c)=bc。