浅论底吹氧枪

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅论底吹氧枪

高长春袁培新陈汉荣

摘要:本文较系统的论述有色金属氧气底吹熔炼氧枪基本原理,介绍氧枪设计计算方法,提出延长氧枪使用寿命的技术措施。

关键词:氧气底吹熔炼,氧枪结构、材质、气力学参数,氧枪蚀损机理。

有色金属氧气底吹熔炼在国内外已有二十多年历史。近几年国内氧气底吹炼铅工艺发展迅速,预计到2010年用该工艺生产粗铅将超过100万吨/年,占全国总产量的40%;氧气底吹炼铜工艺也在起步,发展前景看好。氧枪是氧气底吹熔炼工艺中的核心技术,这种技术已比较成熟,但氧枪使用寿命仍然是关键问题。本文围绕延长氧枪使用寿命问题,就氧枪基本原理,主要技术参数计算方法等方面作粗浅分析论述,以期起到抛砖引玉的作用。

1、氧枪和底吹熔池运动

氧气底吹熔炼熔池的运动是喷入氧气和其他气体的结果。气体射流由喷嘴喷出后,沿射流的纵轴向熔池面伸展,这时射流四周的熔池沿射流束的径向流来。射流束的流速愈大,熔池流向射流束的速度亦愈大。射流带动熔池向上运动,熔池衰减射流的能量,减缓射流的运动,互相运动的同时发生物理化学反应,射流则逐渐扩大。但主射流仍保持着“气柱”或“气舌”的形状,直到达到一定高度后,方在主射流的顶部发生气—液交混,而形成气泡带向熔池面伸展。气体到达熔池面时便逸出,熔池则再向下流动形成回流,形成熔池熔液不断循环流动。这个不断循环流动的过程,便是氧气和其他气体不断地把能量传送给熔池的过程;这个不断循环流动的过程,造成底吹熔炼有别于顶吹或侧吹熔炼过程的反应特性和流动特性,使熔池得到充分搅拌,具有更为优越的传质、传热功能,喷入氧气得到极高的利用率。水力学模型实验和底吹熔炼生产实践发现,喷咀喷出气体的压力和喷枪结构选择不当,会出现严重的“气泡后座”现象、严重的喷溅现象、严重的熔池振荡现象,甚至气流射穿熔池。

底吹气体传送给熔池的能量,有气体的动量、冲量、功能和膨胀功。动量、

冲量、动能为一般物理学概念,比较容易理解和计算。气体动量反映气体具有的机械运动量的大小,气体力的冲量反映转移到熔池的机械运动量的大小,气体的动能是由于作机械功而具有的能量。膨胀功是气体热力学概念,计算较复杂,但不难理解:在高温冶金过程中,由于熔池熔液的密度比气体密度大几千至上万倍,温度高达1000℃以上,喷入的常温气体骤然膨胀,则密度差更大,气体的气泡泵作用更为显著,等于若干台大功率的气动机械在熔池内工作。瓦纽科夫炉的搅拌功率为10—100 kw/m3,P—S铜转炉为60—120 kw/m3,诺兰达炉为60 kw/m3。

⑴粗略计算氧气底吹炉的搅拌功率:每小时喷入5000m3气体(含氧气和冷却介质),喷出速度280m/s,熔池温度1200℃,它的动能按式E=1/2mv2计算并折成功率约为70kw;按照理想气体等压变化过程计算气体的膨胀功约为640 kw,除气体升温耗功外,机械功至少有180 kw。这样,几百吨的熔液就被少量的气体充分的搅动起来。

底吹熔炼把气体喷入熔池的器件统称为供气元件,习惯上把氧气底吹喷嘴叫做氧枪。底吹炉是底吹熔炼的关键设备,氧枪是底吹熔炼的核心技术。

从1968年氧气底吹转炉炼钢工业化算起,使用氧枪有近40年历史,有色金属底吹使用氧枪也有20余年历史,至今底吹氧枪的供气性能和寿命仍然是关键问题。现今的研究比较集中在氧枪的材质和结构、底吹气体的流动特性、底吹气体受炉底加热所引起的动力学与热力学、喷咀的配置等方面的问题。

2、氧枪原理

2、1气体喷出状态与气体压力的关系

2·1·1水力学模拟实验

李运洲⑵列举出低压底吹模拟实验和高压模拟实验的情况。

(1)低压底吹模拟实验。攀枝花钢铁研究院在8 t和12 t氧气底吹转炉的水力原模型实验中发现,喷枪前气体压力为0.023—0.329Mpa时,气流喷出后均产生涡旋流股和“气泡后坐”,甚至在炉底中心出现一种如龙卷风一样的流股而严

重浸蚀炉底,并随着气体压力的增高而加剧。见图1和图2。

图1三支氧枪成等腰三角形图2 单支氧枪的熔池运动现象布置时熔池运动现象

(2)高压喷吹模拟实验。水深500mm,喷咀直径10 mm(见图3、图4),底吹。实验发现:

①、喷吹气体的压力低于0.4MPa时,在喷咀端部形成气泡带并敲打和冲击炉底,成为损坏炉底的重要原因,被称为“气泡后坐”现象。

②、喷吹气体压力低于0.1MPa时,气泡带直径随气体压力的增大而逐渐增大,约至0.1MPa时,气泡带便稳定在10倍于喷咀直径的范围。超过0.4MPa后,喷咀端部不再形成气泡和气泡带,而形成接近于喷咀直径的柱状射流深入水池,在气流束的顶部气液交混形成的稳定的气泡带。

图3 气体压力与气泡带宽度图4熔池喷吹气体示意图

2·1·3“射流”喷出的条件

对底吹气流与金属熔池之间相互作用的研究,业界人士已达到这样的共识:即底吹气体的流出行为是两种基本状态,一是“气泡”喷出,二是“射流”喷出。两者的分界是出口气流马赫数约为1。当出口气流马赫数小于1时,气流以气泡形式流出喷咀,将引起喷咀出口处压力脉动,易造成熔液倒灌堵塞喷咀,喷咀及周围耐火砖蚀损加快。当出口气流马赫数等于或无限接近1时,气流以气柱状态流出喷咀,气柱深入熔池一定高度才被破断成气泡,熔池熔液压力变化传播不进喷口,喷枪内的气体流动稳定,喷咀及周围耐火砖蚀损缓慢。

此外,底吹喷咀内的气体是可压缩性流体。当喷咀截面一定时,存在着最大气体流量(对应气流马赫数为1);当气流受热时,将导致该流量下降,这一现象称为热壅塞现象。热壅塞现象引起底吹喷咀供气性能变化,进而会影响喷咀寿命。

以上的研究结果与底吹冶炼的实际相符。因此可以认定气体从喷咀流出呈“射流”状态必须具备如下条件:

①、喷咀出口截面的气体压力必须高于喷咀端面的环境压力;

②、喷咀出口截面的气流速度必须等于或无限接近该处气体音速;

③、喷咀出口截面的气体有高于环境压力的剩余压力,才能使气柱深入熔池

相关文档
最新文档