中考数学亮点好题汇编 专题六 平面几何基础专题

合集下载

中考数学几何模型专题专题六—勾股定理

中考数学几何模型专题专题六—勾股定理

专题六勾股定理模型26 “勾股树”模型故事“勾股树”毕达哥拉斯树(如图), 也叫“勾股树”. 是由毕达哥拉斯根据勾股定理所画出来的一个可以无限重复的树形图形. 又因为重复数次后的形状好似一棵树, 所以被称为毕达哥拉斯树. 重复的次数越多, 毕达哥拉斯树的“枝千”就越茂密.模型展现基础模型勾股定理: 222a b c+=.勾股定理的逆定理: 如果三角形的三边长a,,b c满足222a b c+=或222a c b+=或222b c a+=,那么这个三角形是直角三角形在直角三角形外,分别以三边作同样图形,可得下面结论作等边三角形作半圆作等腰直角三角形作正方形(毕达哥拉斯树的起始图形)怎么用?1. 找模型分别以直角三角形三边为边作相同图形2. 用模型根据勾股定理的关系及等式性质求解, 常用来解决面积问题结论分析:结论: 123S S S +=以作等边三角形为例.证明: 如解图, 过点 D 作 DM AC ⊥ 于点 M ,ACD 是等边三角形, 12AM MC b ∴==, 在 Rt ADM 中, 3tan tan602DM AM DAC AM b ∠=⋅=⋅=, 2111332224S DM AC b b b ∴=⋅⋅=⋅⋅=, 同理可得, 222333,44S a S c ==, ()222212333444S S a b a b ∴+=+=+, Rt ABC 满足 222a b c +=,()222123344S S a b c ∴+=+=.123.S S S ∴+=拓展延伸其余图形的证明, 均是用面积的计算, 然后求和即可, 同学们可以参考给出的证明过程, 自行完成.满分技法以三边分别为边作相同的图形, 解题的基本思想是勾股定理, 但所作图形的性质也是解题的关键.勾股数中常见图形面积公式:1 ;2S =⨯⨯三角形底高2 S =等边三角形边长; 21;2360n r S π=⨯半圆 2 S =正方形边长典例小试例 1 如图,和 AC 为直径的半圆的面积(与模型的作图方法一致), 则123,S S S 和满足的关系式(求面积,可使用结论)为( )A . 123S S S +=B . 123S S S =+C . 123S S S >+D . 123S S S =⋅考什么?圆的面积计算,勾股定理思路点拨满足模型,选填项目中,可直接使用结论,高效解题。

专题06 平面直角坐标系与几何结合的点坐标问题—2023年中考数学必考特色题型讲练(原卷版)

专题06 平面直角坐标系与几何结合的点坐标问题—2023年中考数学必考特色题型讲练(原卷版)

专题06平面直角坐标系与几何结合的点坐标问题选题介绍本题型在河南省近五年的中招试卷中考了3次,分别为2021年第9题,2020年第9题,2018年第9题。

该题一般为选择题型,分值3分,平面直角坐标系与几何相结合的题型每年中招试题中均有涉及,规律型问题(2022年真题第9题、2019年真题第10题,专题均已归纳总结)、尺规作图相结合问题。

本题属于几何题型,侧重于对题意的几何理解,难度系数中等,得分率偏高。

本专题主要归纳总结几何中的平移、旋转、折叠中设计到的求点坐标问题。

根据已有的图像与文字提供的信息,按照以下思维过程解题:①对平面直角系相关知识点充分了解,判定所求点位置坐标;②运用平移、旋转、折叠等相关性质求解对应量;③利用点的坐标表示出相应线段的长度和利用线段的长度表示相应点的坐标。

真题展现2021年河南中招填空题第9题9.(3分)如图,▱OABC的顶点O(0,0),A(1,2),点C在x轴的正半轴上,延长BA交y轴于点D.将△ODA绕点O顺时针旋转得到△OD′A′,当点D的对应点D′落在OA上时,D′A′的延长线恰好经过点C,则点C的坐标为()A.(2,0)B.(2,0)C.(2+1,0)D.(2+1,0)2020年河南中招填空题第9题9.(3分)如图,在△ABC中,∠ACB=90°,边BC在x轴上,顶点A,B的坐标分别为(﹣2,6)和(7,0).将正方形OCDE沿x轴向右平移,当点E落在AB边上时,点D的坐标为()A.(,2)B.(2,2)C.(,2)D.(4,2)2019年河南中招填空题第9题9.(3分)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()A.2B.4C.3D.2018年河南中招填空题第9题9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D ,E 为圆心,大于DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC 于点G ,则点G 的坐标为()A .(﹣1,2)B .(,2)C .(3﹣,2)D .(﹣2,2)模拟演练1.如图,在平面直角坐标系中,//AB DC ,AC BC ⊥,5CD AD ==,6AC =,将四边形ABCD 向左平移m 个单位后,点B 恰好和原点O 重合,则m 的值是()A .11.4B .11.6C .12.4D .12.62.如图,将ABC 绕点(0,2)C -旋转180︒得到DEC ,设点D 的坐标为(,)a b ,则点A 的坐标为()A.(,)a b --B.(,2)a b ---C.(,2)a b --D.(,2)a b --3.如图,在平面直角坐标系xOy 中,等边AOB 的顶点O 在原点上,OA 在x 轴上,4OA =,C 为AB 边的中点,将等边AOB 向右平移,当点C 落在直线MN :4y x =-+上时,点C 的对应点'C 的坐标为()A.(B.(1+C.D.(4-4.如图,在平面直角坐标系中,已知()20A -,,()04B ,,点C 与坐标原点O 关于直线AB 对称.将ABC 沿x 轴向右平移,当线段AB 扫过的面积为20时,此时点C 的对应点1C 的坐标为()A.7855⎛⎫ ⎪⎝⎭,B.9855⎛⎫ ⎪⎝⎭,C.1855⎛⎫- ⎪⎝⎭,D.1655⎛⎫- ⎪⎝⎭,5.如图,在平面直角坐标系中,四边形ABCD 为正方形,点A 的坐标为()0,2,点B 的坐标为()4,0,点E 为对角线的交点,点F 与点E 关于y 轴对称,则点F 的坐标为()A.()2,3-B.()3,3-C.()3,2-D.()3,3-6.如图,△OAB 与△OCD 是以点O 为位似中心的位似图形,相似比为1:2,CO CD =,=90OCD ∠︒,若()10B ,,则点C 的坐标为()A.()1,2-B.()2,1-C.D.()1,1-7.如图,在△AOB 中,顶点O 与原点重合,90∠=︒ABO ,AB OB =,()2,4A -,点C 为边OA 上一点,且4OA OC =.将△AOB 向右平移,当点C 的对应点C '恰好落在直线4y x =-+上时,点B 的对应点B '的坐标为()A.()2,1B.1,12⎛⎫ ⎪⎝⎭C.()4,2D.1,22⎛⎫ ⎪⎝⎭8.在平面直角坐标系中,已知两点()75A ,,()43B ,,先将线段AB 向右平移1个单位,再向上平移1个单位,然后以原点O 为位似中心,将其缩小为原来的12,得到线段CD ,则点A 的对应点C 的坐标为()A.()4,3 B.()4,3或()4,3-- C.()4,3-- D.()3,2或()3,2--9.如图,在平面直角坐标系中Rt △ABC 的斜边BC 在x 轴上,点B 坐标为(1,0),AC =2,∠ABC =30°,把Rt△ABC先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A′的坐标为()A.(﹣4,﹣2B.(﹣4,﹣) C.(﹣2,﹣ D.(﹣2,﹣210.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D 落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1)B.(2,1)C.(1,)D.(2,)。

中学数学平面几何练习题及讲解

中学数学平面几何练习题及讲解

中学数学平面几何练习题及讲解平面几何是数学中的一个重要分支,涉及到图形的性质、关系、证明以及计算等内容。

为了帮助同学们更好地掌握平面几何的知识,下面将为大家提供一些练习题及讲解。

一、直线和角度1. 已知直线AB与直线CD相交于点O,若∠BOC=50°,求∠AOD 的度数。

解:由直线AB与直线CD相交,可知∠BOC与∠AOD互为对角,即∠BOC=∠AOD。

所以∠AOD的度数也是50°。

2. 在平面直角坐标系中,设直线L的斜率为k,且直线L与x轴、y 轴的交点分别为A、B。

若OA=3OB,则求k的值。

解:设B的坐标为(0, b),由题意得A的坐标为(a, 0)。

根据斜率的定义,k=(b-0)/(0-a)=-b/a。

又知OA=3OB,所以(a-0)^2+(0-b)^2=9(b-0)^2,化简得a^2+9b^2=0。

由此可得a=0,b=0,故k=0。

二、三角形1. 在三角形ABC中,AC=BC,∠ACB=80°,则∠ABC的度数是多少?解:由题意可知AC=BC,所以三角形ABC是一个等腰三角形,即∠BAC=∠BCA。

又∠ACB=80°,所以∠ABC的度数为(180°-80°)/2=50°。

2. 在直角三角形ABC中,∠B=90°,AB=6 cm,BC=8 cm。

求∠C的度数。

解:根据勾股定理可得AC=sqrt(AB^2+BC^2)=sqrt(6^2+8^2)=10 cm。

所以sin∠C=BC/AC=8/10=0.8,∠C=arcsin(0.8)≈53.13°。

三、圆和圆周1. 已知圆O的半径为3 cm,P是圆O上的一点,且OP=4 cm。

求圆O的面积和周长。

解:圆的面积公式为S=πr^2,其中r为半径。

所以圆O的面积为S=π*3^2=9π cm^2。

圆的周长公式为C=2πr,所以圆O的周长为C=2π*3=6π cm。

中考数学考点专题精编:平面几何基础

中考数学考点专题精编:平面几何基础

精品基础教育教学资料,仅供参考,需要可下载使用!中考数学考点专题精编:平面几何基础(2016湖州)14.如图1是我们常用的折叠式小刀,图2中刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是90 度.【试题答案:【解答】解:如图2,AB∥CD,∠AEC=90°,作EF∥AB,则EF∥CD,所以∠1=∠AEF,∠2=∠CEF,所以∠1+∠2=∠AEF+∠CEF=∠AEC=90°.故答案为90.】(2016湖州)6.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8B.6C.4D.2【试题答案:【解答】解:过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=4,∴PE=4.故选C.】(2016舟山)已知一个正多边形的内角是140°,则这个正多边形的边数是()A.6 B.7 C.8 D.9【试题答案:【解答】解:360°÷=360°÷40°=9.答:这个正多边形的边数是9.故选:D.】(2016衢州)如图,在ABCD中,M是BC延长线上的一点,若∠A=135°,则∠MCD的度数是()A.45° B.55° C.65° D.75°【试题答案:【分析】根据平行四边形对角相等,求出∠BCD,再根据邻补角的定义求出∠MCD即可.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠BCD=135°,∴∠MCD=180°﹣∠DCB=180°﹣135°=45°.故选A.】【时间:2016-6-24 13:03:57】(2016绍兴)22. 如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.(l)若固定三根木条AB,BC,AD不动,AB=AD=2cm,BC=5cm,如图,量得第四根木条CD=5cm,判断此时∠B与∠D是否相等,并说明理由.(2)若固定二根木条AB,BC不动,AB=2cm,BC=5cm,量得木条CD= 5cm,∠B=90°,写出木条AD的长度可能取到的一个值(直接写出一个即可).(3)若固定一根木条AB不动,AB=2cm,量得木条CD= 5cm.如果木条AD,BC的长度不变,当点D移到BA的延长线上时,点C也在BA的延长线上;当点C移到AB的延长线上时,点A,C,D能构成周长为30cm的三角形,求出木条AD,BC的长度.【试题答案:】(2016绍兴)13. 如图1,小敏利用课余时间制作了一个脸盆架,图2是它的截面图,垂直放置的脸盆与架子的交点为A,B,AB=40cm,脸盆的最低点C到AB的距离为l0cm,则该脸盆的半径为 _____ cm.【试题答案:25】【时间:2016-6-20 13:47:47】(2016丽水)9.用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是()【试题答案:D】(2016丽水)3.下列图形中,属于立体图形的是()【试题答案:C】(2016宁波)15. 下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,……,按此规律,图案⑦需▲根火柴棒【试题答案:50】(2016宁波)9. 如图,圆锥的底面半径为6cm,高为8cm,则圆锥的侧面积为A. 30πcm2B. 48πcm2C. 60πcm2D. 80πcm2【试题答案:C】。

中考数学之平面几何最全总结+经典习题

中考数学之平面几何最全总结+经典习题

中考数学之平面几何最全总结+经典习题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN平面几何知识要点(一)【线段、角、直线】1.过两点有且只有一条直线。

2.两点之间线段最短。

3.过一点有且只有一条直线和已知直线垂直。

4.直线外一点与直线上各点连接的所有线段中,垂直线段最短。

垂直平分线,简称“中垂线”。

定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)。

线段的垂直平分线可看作和线段两端点距离相等的所有点的集合。

中垂线性质:垂直平分线垂直且平分其所在线段。

垂直平分线定理:垂直平分线上任意一点,到线段两端点的距离相等。

逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

.三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等。

角1.同角或等角的余角相等。

2.同角或等角的补角相等。

3.对顶角相等。

角的平分线性质角的平分线是到角的两边距离相等的所有点的集合定理1:角的平分线上的点到这个角的两边的距离相等。

定理2:到一个角的两边距离相等的点,在这个角的平分线上。

三角形各内角平分线的交点,该点叫内心,它到三角形三边距离相等。

【平行线】平行线性质1:两直线平行,同位角相等。

平行线性质2:两直线平行,内错角相等。

平行线性质3:两直线平行,同旁内角互补。

平行线判定1:同位角相等,两直线平行。

平行线判定2:内错角相等,两直线平行。

平行线判定3:同旁内角互补,两直线平行。

平行线判定4:如果两条直线都和第三条直线平行,这两条直线也互相平行。

平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。

推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。

平面几何知识要点(二)【三角形】 面积公式:1. 已知三角形底a ,高h ,12S ah =2. 正三角形面积 S=24a (a 为边长正三角形)3.已知三角形三边a,b,c ,则S =(海伦公式)其中:()2a b c p ++=(周长的一半) 4.已知三角形两边a ,b 及这两边夹角C ,则1sin 2S ab C =。

初中平面几何经典题集锦

初中平面几何经典题集锦

平面几何是初中数学至关重要的部分,无论是平时学习还是中考,对学生来讲都是难点。

平面几何的不在于知识,几何知识常常是一句话,一个公式,所有同学都可以看懂;然而,几何题目却是千变万化的,特别是辅助线相关的题型,对很多同学来讲非常头痛。

当然,若能快速提升的话同学们也就不会心痛了,几何能力提升并不如代数那样简单,更不是多做题可以达到效果的,常常题目做了很多,但效果并不明显。

很多同学确实找不到方法,题目也做了,也非常努力了,但就是提升不了。

其实,最好的方法在于做经典题,经典题不仅包含了各类辅助线的题型,还包含了各种几何知识,如三角形全等,相似,正方形的性质,平行的性质,比例,共圆,射影定理等;同时常常这类题方法不唯一,通过对不同方法的思考,可以加深对几何知识的理解。

所以对经典题进行反复训练,对学生的能力会有较大的提升。

2020年中考数学压轴题突破专题6几何综合探究变化型问题

2020年中考数学压轴题突破专题6几何综合探究变化型问题

2020年中考数学压轴题突破专题6⼏何综合探究变化型问题2020年中考数学⼤题狂练之压轴⼤题突破培优练专题06 ⼏何综合探究变化型问题【真题再现】1.(2019年宿迁中考第28题)如图①,在钝⾓△ABC中,∠ABC=30°,AC=4,点D为边AB中点,点E为边BC中点,将△BDE绕点B逆时针⽅向旋转α度(0≤α≤180).(1)如图②,当0<α<180时,连接AD、CE.求证:△BDA∽△BEC;(2)如图③,直线CE、AD交于点G.在旋转过程中,∠AGC的⼤⼩是否发⽣变化?如变化,请说明理由;如不变,请求出这个⾓的度数;(3)将△BDE从图①位置绕点B逆时针⽅向旋转180°,求点G的运动路程.2.(2019年连云港中考第27题)问题情境:如图1,在正⽅形ABCD中,E为边BC上⼀点(不与点B、C重合),垂直于AE的⼀条直线MN分别交AB、AE、CD于点M、P、N.判断线段DN、MB、EC之间的数量关系,并说明理由.问题探究:在“问题情境”的基础上.(1)如图2,若垂⾜P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求∠AEF的度数;(2)如图3,当垂⾜P在正⽅形ABCD的对⾓线BD上时,连接AN,将△APN沿着AN 翻折,点P落在点P'处,若正⽅形ABCD 的边长为4,AD的中点为S,求P'S的最⼩值.问题拓展:如图4,在边长为4的正⽅形ABCD中,点M、N分别为边AB、CD上的点,将正⽅形ABCD沿着MN翻折,使得BC的对应边B'C'恰好经过点A,C'N交AD于点F.分别过点A、F作AG⊥MN,FH⊥MN,垂⾜分别为G、H.若AG,请直接写出FH的长.3.(2019年⽆锡中考副卷第28题)如图,在Rt△ABC中,AC=BC=4,∠ACB=90°,正⽅形BDEF的边长为2,将正⽅形BDEF绕点B旋转⼀周,连接AE、BE、CD.(1)请找出图中与△ABE相似的三⾓形,并说明理由;(2)求当A、E、F三点在⼀直线上时CD的长;(3)设AE的中点为M,连接FM,试求FM长的取值范围.4.(2019年盐城中考第25题)如图①是⼀张矩形纸⽚,按以下步骤进⾏操作:(Ⅰ)将矩形纸⽚沿DF折叠,使点A落在CD边上点E处,如图②;(Ⅱ)在第⼀次折叠的基础上,过点C再次折叠,使得点B落在边CD上点B′处,如图③,两次折痕交于点O;(Ⅲ)展开纸⽚,分别连接OB、OE、OC、FD,如图④.【探究】(1)证明:△OBC≌△OED;(2)若AB=8,设BC为x,OB2为y,求y关于x的关系式.5.(2019?扬州)如图,已知等边△ABC的边长为8,点P是AB边上的⼀个动点(与点A、B不重合).直线1是经过点P的⼀条直线,把△ABC沿直线1折叠,点B的对应点是点B′.(1)如图1,当PB=4时,若点B′恰好在AC边上,则AB′的长度为;(2)如图2,当PB=5时,若直线1∥AC,则BB′的长度为;(3)如图3,点P在AB边上运动过程中,若直线1始终垂直于AC,△ACB′的⾯积是否变化?若变化,说明理由;若不变化,求出⾯积;(4)当PB=6时,在直线1变化过程中,求△ACB′⾯积的最⼤值.6.(2019年南京中考第26题)如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D在边AC上,点E、F在边AB上,点G在边BC上.⼩明的作法1.如图②,在边AC上取⼀点D,过点D作DG∥AB交BC于点G.2.以点D为圆⼼,DG长为半径画弧,交AB于点E.3.在EB上截取EF=ED,连接FG,则四边形DEFG为所求作的菱形.(1)证明⼩明所作的四边形DEFG是菱形.(2)⼩明进⼀步探索,发现可作出的菱形的个数随着点D的位置变化⽽变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.【专项突破】【题组⼀】1.(2020?海门市校级模拟)已知正⽅形ABCD,P为射线AB上的⼀点,以BP为边作正⽅形BPEF,使点F在线段CB的延长线上,连接EA、EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上,如图2,当点P为AB的中点时,判断△ACE的形状,并说明理由;(3)在(1)的条件下,将正⽅形ABCD固定,正⽅形BPEF绕点B旋转⼀周,设AB =4,BP=a,若在旋转过程中△ACE⾯积的最⼩值为4,请直接写出a的值.2.(2019秋?青龙县期末)在等边三⾓形ABC中,点D是BC的中点,点E、F分别是边AB、AC(含线段AB、AC的端点)上的动点,且∠EDF=120°,⼩明和⼩慧对这个图形展开如下研究:问题初探:(1)如图1,⼩明发现:当∠DEB=90°时,BE+CF=nAB,则n的值为;问题再探:(2)如图2,在点E、F的运动过程中,⼩慧发现两个有趣的结论:①DE始终等于DF;②BE与CF的和始终不变;请你选择其中⼀个结论加以证明.成果运⽤(3)若边长AB=4,在点E、F的运动过程中,记四边形DEAF的周长为L,L=DE+EA+AF+FD,则周长L的变化范围是.3.(2019秋?张家港市期末)在长⽅形纸⽚ABCD中,点E是边CD上的⼀点,将△AED 沿AE所在的直线折叠,使点D落在点F 处.(1)如图1,若点F落在对⾓线AC上,且∠BAC=54°,则∠DAE的度数为°.(2)如图2,若点F落在边BC上,且AB=6,AD=10,求CE的长.(3)如图3,若点E是CD的中点,AF的沿长线交BC于点G,且AB=6,AD=10,求CG的长.4.(2020?兴化市模拟)如图,现有⼀张矩形纸⽚ABCD,AB=4,BC=8,点M,N分别在矩形的边AD,BC上,将矩形纸⽚沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN丁点Q,连接CM.(1)求证:PM=PN;(2)当P,A重合时,求MN的值;(3)若△PQM的⾯积为S,求S的取值范围.【题组⼆】5.(2019秋?娄星区期末)在△ABC中,AB=AC,点D为射线CB上⼀个动点(不与B、C 重合),以AD为⼀边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,过点E作EF∥BC,交直线AC于点F,连接CE.(1)如图①,若∠BAC=60°,则按边分类:△CEF是三⾓形;(2)若∠BAC<60°.①如图②,当点D在线段CB上移动时,判断△CEF的形状并证明;②当点D在线段CB的延长线上移动时,△CEF是什么三⾓形?请在图③中画出相应的图形并直接写出结论(不必证明).6.(2019秋?东海县期末)已知BC=5,AB=1,AB⊥BC,射线CM⊥BC,动点P在线段BC上(不与点B,C重合),过点P 作DP⊥AP交射线CM于点D,连接AD.(1)如图1,若BP=4,判断△ADP的形状,并加以证明.(2)如图2,若BP=1,作点C关于直线DP的对称点C′,连接AC′.①依题意补全图2;②请直接写出线段AC′的长度.7.(2019秋?江都区期末)在Rt△ABC中,∠ACB=90°,AC=15,AB=25,点D为斜边AB上动点.(1)如图1,当CD⊥AB时,求CD的长度;(2)如图2,当AD=AC时,过点D作DE⊥AB交BC于点E,求CE的长度;(3)如图3,在点D的运动过程中,连接CD,当△ACD为等腰三⾓形时,直接写出AD 的长度.8.(2019秋?泰兴市期末)已知:如图,在△ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,点E是射线CB上的动点,连接DE,DF⊥DE交射线AC于点F.(1)若点E在线段CB上.①求证:AF=CE.②连接EF,试⽤等式表⽰AF、EB、EF这三条线段的数量关系,并说明理由.(2)当EB=3时,求EF的长.【题组三】9.(2019秋?镇江期末)△ABC和△ADE都是等腰直⾓三⾓形,∠BAC=∠DAE=90°.(1)如图1,点D、E分别在AB、AC 上,则BD、CE满⾜怎样的数量关系和位置关系?(直接写出答案)(2)如图2,点D在△ABC内部,点E在△ABC外部,连结BD、CE,则BD、CE满⾜怎样的数量关系和位置关系?请说明理由.(3)如图3,点D、E都在△ABC外部,连结BD、CE、CD、EB,BD与CE相交于H 点.已知AB=4,AD=2,设CD2=x,EB2=y,求y与x之间的函数关系式.10.(2019秋?射阳县期末)在△ABC中,AB、AC边的垂直平分线分别交BC边于点M、N.(1)如图①,若∠BAC=110°,则∠MAN=°,若△AMN的周长为9,则BC =.(2)如图②,若∠BAC=135°,求证:BM2+CN2=MN2;(3)如图③,∠ABC的平分线BP和AC边的垂直平分线相交于点P,过点P作PH垂直BA的延长线于点H.若AB=5,CB=12,求AH的长.11.(2019秋?溧⽔区期末)通过对下⾯数学模型的研究学习,解决下列问题:【模型呈现】(1)如图1,∠BAD=90°,AB=AD,过点B作BC⊥AC于点C,过点D作DE⊥AC 于点E.由∠1+∠2=∠2+∠D=90°,得∠1=∠D.⼜∠ACB=∠AED=90°,可以推理得到△ABC≌△DAE.进⽽得到AC=,BC=.我们把这个数学模型称为“K 字”模型或“⼀线三等⾓”模型;【模型应⽤】(2)①如图2,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC,DE,且BC⊥AF于点F,DE与直线AF交于点G.求证:点G是DE的中点;②如图3,在平⾯直⾓坐标系xOy中,点A的坐标为(2,4),点B为平⾯内任⼀点.若△AOB是以OA为斜边的等腰直⾓三⾓形,请直接写出点B的坐标.12.(2019?邗江区校级⼀模)阅读下⾯材料:⼩聪遇到这样⼀个有关⾓平分线的问题:如图1,在△ABC中,∠A=2∠B,CD平分∠ACB,AD=2.4,AC=3.6,求BC得长.⼩聪思考:因为CD平分∠ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到△DEC≌△DAC,经过推理能使问题得到解决(如图2).请完成:(1)求证:△BDE是等腰三⾓形(2)求BC的长为多少?(3)参考⼩聪思考问题的⽅法,解决问题:如图3,已知△ABC中,AB=AC,∠A=20°,BD平分∠ABC,BD,BC,求AD 的长.【题组四】13.(2019?⿎楼区⼆模)提出问题:⽤⼀张等边三⾓形纸⽚剪⼀个直⾓边长分别为2cm和3cm的直⾓三⾓形纸⽚,等边三⾓形纸⽚的边最⼩值是多少?探究思考:⼏位同学画出了以下情况,其中∠C=90°,BC=2cm,△ADE为等边三⾓形.(1)同学们对图1,图2中的等边三⾓形展开了讨论:①图⼀中AD的长度图②中AD的长度(填“>”,“<”或“=”)②等边三⾓形ADE经过图形变化.AD可以更⼩.请描述图形变化的过程.(2)有同学画出了图3,但⽼师指出这种情况不存在,请说明理由.(3)在图4中画出边长最⼩的等边三⾓形,并写出它的边长.经验运⽤:(4)⽤⼀张等边三⾓形纸⽚剪⼀个直⾓边长为1cm和3cm的直⾓三⾓形纸⽚,等边三⾓形纸⽚的边长最⼩是多少?画出⽰意图并写出这个最⼩值.14.(2019?南京⼆模)【概念提出】如图①,若正△DEF的三个顶点分别在正△ABC的边AB、BC、AC上,则我们称△DEF 是正△ABC的内接正三⾓形.(1)求证:△ADF≌△BED;【问题解决】利⽤直尺和圆规作正三⾓形的内接正三⾓形(保留作图痕迹,不写作法).(2)如图②,正△ABC的边长为a,作正△ABC的内接正△DEF,使△DEF的边长最短,并说明理由;(3)如图③,作正△ABC的内接正△DEF,使FD⊥AB.15.(2020?河南⼀模)【问题提出】在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=120°,连接AD,求∠ADB的度数.(不必解答)【特例探究】⼩聪先从特殊问题开始研究,当α=90°,β=30°时,利⽤轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利⽤α=90°,β=30°以及等边三⾓形等相关知识便可解决这个问题.请结合⼩聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是三⾓形;∠ADB的度数为.【问题解决】在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;【拓展应⽤】在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=2.请直接写出线段BE的长为.16.(2019?亭湖区⼆模)【阅读材料】⼩明遇到这样⼀个问题:如图1,点P在等边三⾓形ABC内,且∠APC=150°,P A=3,PC=4,求PB的长.⼩明发现,以AP为边作等边三⾓形APD,连接BD,得到△ABD;由等边三⾓形的性质,可证△ACP≌△ABD,得PC=BD;由已知∠APC=150°,可知∠PDB的⼤⼩,进⽽可求得PB的长.(1)请回答:在图1中,∠PDB=°,PB=.【问题解决】(2)参考⼩明思考问题的⽅法,解决下⾯问题:如图2,△ABC中,∠ACB=90°,AC=BC,点P在△ABC内,且P A=1,PB,PC=2,求AB的长.【灵活运⽤】(3)如图3,在Rt△ABC中,∠ACB=90°,∠BAC=α,且tanα,点P在△ABC 外,且PB=3,PC=1,直接写出P A长的最⼤值.【题组五】17.(2019秋?海安市期末)(1)如图①,⼩明同学作出△ABC两条⾓平分线AD,BE得到交点I,就指出若连接CI,则CI平分∠ACB,你觉得有道理吗?为什么?(2)如图②,Rt△ABC中,AC=5,AC=12,AB=13,△ABC的⾓平分线CD上有⼀点I,设点I到边AB的距离为d.(d为正实数)⼩季、⼩何同学经过探究,有以下发现:⼩季发现:d的最⼤值为.⼩何发现:当d=2时,连接AI,则AI平分∠BAC.请分别判断⼩季、⼩何的发现是否正确?并说明理由.18.(2019秋?常熟市期中)如图,在△ABC中,AB=AC,∠BAC=80°,点D为△ABC 内⼀点,∠ABD=∠ACD=20°,E 为BD延长线上的⼀点,且AB=AE.(1)求∠BAD的度数;(2)求证:DE平分∠ADC;(3)请判断AD,BD,DE之间的数量关系,并说明理由.19.(2019秋?常熟市期中)如图,在平⾯直⾓坐标系中,已知点A(8,0),点C(0,6),点B在x轴负半轴上,且AB=AC.(1)求点B的坐标;(2)如图②,若点E为边AC的中点,动点M从点B出发以每秒2个单位长度的速度沿线段BA向点A匀速运动,设点M运动的时间为t(秒);①若△OME的⾯积为2,求t的值;②如图③,在点M运动的过程中,△OME能否成为直⾓三⾓形?若能,求出此时t的值,并写出相应的点M的坐标;若不能,请说明理由.20.(2019秋?崇川区期末)已知△ABC中,AB=AC.(1)如图1,在△ADE中,AD=AE,连接BD、CE,若∠DAE=∠BAC,求证:BD=CD;(2)如图2,在△ADE中,AD=AE,连接BE、CE,若∠DAE=∠BAC=60°,CE⊥AD于点F,AE=4,,求BE的长;(3)如图3,在△BCD中,∠CBD=∠CDB=45°,连接AD,若∠CAB=45°,求的值.【题组六】21.(2018秋?崇川区校级期末)如图,锐⾓△ABC中,AB=AC,点D是边BC上的⼀点,以AD为边作△ADE,使AE=AD,∠EAD=∠BAC.(1)过点E作EF∥DC交AB于点F,连接CF(如图1),①请直接写出∠EAB与∠DAC的数量关系;②试判断四边形CDEF的形状,并证明;(2)若∠BAC=60°,过点C作CF∥DE交AB于点F,连接EF(如图2),那么(1)②中的结论是否仍然成⽴?若成⽴,请给出证明;若不成⽴,请说明理由.22.(2019秋?淮阴区期末)A,B,C,D是长⽅形纸⽚的四个顶点,点E、F、H分别是边AB、BC、AD上的三点,连结EF、FH.(1)将长⽅形纸⽚ABCD按图①所⽰的⽅式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',点B'在FC'上,则∠EFH的度数为;(2)将长⽅形纸⽚ABCD按图②所⽰的⽅式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',若∠B'FC'=18°,求∠EFH的度数;(3)将长⽅形纸⽚ABCD按图③所⽰的⽅式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',若∠EFH =m°,求∠B'FC'的度数为.23.(2019秋?丹阳市期末)如图,已知△ABC中,∠ACB=90°,AC=4,BC=3,点M、N分别是边AC、AB上的动点,连接MN,将△AMN沿MN所在直线翻折,翻折后点A 的对应点为A′.(1)如图1,若点A′恰好落在边AB上,且AN AC,求AM的长;(2)如图2,若点A′恰好落在边BC上,且A′N∥AC.①试判断四边形AMA′N的形状并说明理由;②求AM、MN的长;(3)如图3,设线段NM、BC的延长线交于点P,当且时,求CP的长.24.(2020春?⿎楼区校级⽉考)如图,正⽅形ABCD 的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,请直接写出使△CGH是等腰三⾓形的m值.参考答案【真题再现】1.(2019年宿迁中考第28题)如图①,在钝⾓△ABC中,∠ABC=30°,AC=4,点D为边AB中点,点E为边BC中点,将△BDE绕点B逆时针⽅向旋转α度(0≤α≤180).(1)如图②,当0<α<180时,连接AD、CE.求证:△BDA∽△BEC;(2)如图③,直线CE、AD交于点G.在旋转过程中,∠AGC的⼤⼩是否发⽣变化?如变化,请说明理由;如不变,请求出这个⾓的度数;(3)将△BDE从图①位置绕点B逆时针⽅向旋转180°,求点G的运动路程.【分析】(1)如图①利⽤三⾓形的中位线定理,推出DE∥AC,可得,在图②中,利⽤两边成⽐例夹⾓相等证明三⾓形细相似即可.(2)利⽤相似三⾓形的性质证明即可.(3)点G的运动路程,是图③﹣1中的的长的两倍,求出圆⼼⾓,半径,利⽤弧长公式计算即可.【解析】(1)如图②中,由图①,∵点D为边AB中点,点E为边BC中点,∴DE∥AC,∴,∴,∵∠DBE=∠ABC,∴∠DBA=∠EBC,∴△DBA∽△EBC.(2)∠AGC的⼤⼩不发⽣变化,∠AGC=30°.理由:如图③中,设AB交CG于点O.∵△DBA∽△EBC,∴∠DAB=∠ECB,∵∠DAB+∠AOG+∠G=180°,∠ECB+∠COB+∠ABC=180°,∠AOG=∠COB,∴∠G=∠ABC=30°.(3)如图③﹣1中.设AB的中点为K,连接DK,以AC为边向左边等边△ACO,连接OG,OB.以O为圆⼼,OA为半径作⊙O,∵∠AGC=30°,∠AOC=60°,∴∠AGC∠AOC,∴点G在⊙O上运动,以B为圆⼼,BD为半径作⊙B,当直线与⊙B相切时,BD⊥AD,∴∠ADB=90°,∵BK=AK,∴DK=BK=AK,∵BD=BK,∴BD=DK=BK,∴△BDK是等边三⾓形,∴∠DBK=60°,∴∠DAB=30°,∴∠BOG=2∠DAB=60°,∴的长,观察图象可知,点G的运动路程是的长的两倍.点评:本题属于相似形综合题,考查了相似三⾓形的判定和性质,弧长公式,等边三⾓形的判定和性质,圆周⾓定理等知识,解题的关键是正确寻找相似三⾓形解决问题,学会正确寻找点的运动轨迹,属于中考压轴题.2.(2019年连云港中考第27题)问题情境:如图1,在正⽅形ABCD中,E为边BC上⼀点(不与点B、C重合),垂直于AE的⼀条直线MN分别交AB、AE、CD于点M、P、N.判断线段DN、MB、EC之间的数量关系,并说明理由.问题探究:在“问题情境”的基础上.(1)如图2,若垂⾜P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求∠AEF的度数;(2)如图3,当垂⾜P在正⽅形ABCD的对⾓线BD上时,连接AN,将△APN沿着AN 翻折,点P落在点P'处,若正⽅形ABCD 的边长为4,AD的中点为S,求P'S的最⼩值.问题拓展:如图4,在边长为4的正⽅形ABCD中,点M、N分别为边AB、CD上的点,将正⽅形ABCD沿着MN翻折,使得BC的对应边B'C'恰好经过点A,C'N交AD于点F.分别过点A、F作AG⊥MN,FH⊥MN,垂⾜分别为G、H.若AG,请直接写出FH的长.【分析】问题情境:过点B作BF∥MN分别交AE、CD于点G、F,证出四边形MBFN 为平⾏四边形,得出NF=MB,证明△ABE≌△BCF得出BE=CF,即可得出结论;问题探究:(1)连接AQ,过点Q作HI∥AB,分别交AD、BC于点H、I,证出△DHQ 是等腰直⾓三⾓形,HD=HQ,AH=QI,证明Rt△AHQ≌Rt△QIE得出∠AQH=∠QEI,得出△AQE是等腰直⾓三⾓形,得出∠EAQ=∠AEQ=45°,即可得出结论;(2)连接AC交BD于点O,则△APN的直⾓顶点P在OB上运动,设点P与点B重合时,则点P′与点D重合;设点P与点O重合时,则点P′的落点为O′,由等腰直⾓三⾓形的性质得出∠ODA=∠ADO′=45°,当点P在线段BO上运动时,过点P作PG ⊥CD 于点G,过点P′作P′H⊥CD交CD延长线于点H,连接PC,证明△APB≌△CPB得出∠BAP=∠BCP,证明Rt△PGN≌Rt△NHP'得出PG=NH,GN=P'H,由正⽅形的性质得出∠PDG=45°,易得出PG=GD,得出GN=DH,DH=P'H,得出∠P'DH =45°,故∠P'DA=45°,点P'在线段DO'上运动;过点S作SK⊥DO',垂⾜为K,即可得出结果;问题拓展:延长AG交BC于E,交DC的延长线于Q,延长FH交CD于P,则EG=AG,PH=FH,得出AE=5,由勾股定理得出BE3,得出CE=BC﹣BE=1,证明△ABE∽△QCE,得出QE AE,AQ=AE+QE,证明△AGM∽△ABE,得。

初三数学平面专题经典 (含答案)

初三数学平面专题经典 (含答案)

初三数学平面专题经典 (含答案)
标题:初三数学平面专题经典(含答案)
本文档包含初三数学平面几何专题题目,涵盖了三角形、圆、相似等多个方面。

每个专题都配有详细的解题思路和答案解析,旨在帮助初三学生夯实数学基础,做好中考准备。

一、三角形专题
1. 已知三角形三边长度,求三角形周长和面积
2. 已知三角形的三个内角,判断其形状,并证明结论
3. 在三角形中,若两边之和大于第三边,则这两边所对的角的大小关系是什么?
4. 已知等腰三角形的底边和高,求面积
5. 已知等边三角形的高,求面积
二、圆专题
1. 已知圆的直径长度,求圆的周长和面积
2. 如何画出一个圆的内切正方形?
3. 如何用圆锥曲线画出一个正五边形?
4. 如何用圆锥曲线画出一个正三角形?
5. 已知圆的半径和圆心角的大小,求扇形面积
三、相似专题
1. 什么是相似三角形?
2. 如何判断两个三角形是否相似?
3. 如何求出两个相似三角形之间的边长比和面积比?
4. 如何利用相似三角形求解实际问题?。

中考数学重点知识点平面几何

中考数学重点知识点平面几何

中考数学重点知识点平面几何
一、图形的基本概念
1. 点、直线、线段、射线、角、平行线、垂直线等基本概念。

2. 图形的分类:平面图形、立体图形。

二、角度与三角函数
1. 角的度量:角度、弧度。

2. 常用角度的正弦、余弦、正切等三角函数及其性质和应用。

三、相似与全等
1. 相似三角形的基本概念及其判定条件。

2. 全等三角形的基本概念及其判定条件。

四、直线、圆的位置关系及其应用
1. 直线与圆的位置关系:相离、相切、相交。

2. 直线、圆的切线与切点的定义及性质。

3. 圆周角、弦长、切线定理等的应用。

五、平面图形的面积与周长
1. 三角形、矩形、正方形、梯形、圆、扇形等平面图形的面积公式。

2. 三角形、矩形、正方形、梯形、圆、扇形等平面图形的周长公式。

六、向量的基本概念及其应用
1. 向量的基本概念:向量的表示、模、方向、相等、相反、共线等。

2. 向量的加减、数量积、向量积及其应用。

七、解析几何
1. 直线、圆的解析式。

2. 直线、圆的方程的求解及其应用。

以上是中考数学重点知识点平面几何的内容。

中考数学模拟试题平面解析几何基础

中考数学模拟试题平面解析几何基础

中考数学模拟试题平面解析几何基础中考数学模拟试题平面解析几何基础本文将介绍中考数学模拟试题中的平面解析几何基础知识,帮助同学们更好地理解并应对考试中的相关题目。

一、坐标系的建立在平面解析几何中,我们首先要建立一个直角坐标系,用于描述平面上的点和图形。

通常来说,我们使用二维笛卡尔坐标系,其中平面被分成四个象限,坐标轴分别为x轴和y轴。

二、点的坐标表示任何一个平面上的点都可以用(x, y)的形式表示,其中x表示横坐标,y表示纵坐标。

此外,还可以用A、B等字母来表示点。

三、直线的方程表示在平面解析几何中,我们通常会遇到直线的方程表示问题。

直线方程可以使用不同的形式,如一般式、点斜式、斜截式等。

下面将分别介绍这几种形式的直线方程。

1. 一般式方程一般式方程表示为Ax + By + C = 0,其中A、B、C分别为常数,A 和B不同时为0。

通过参数A、B和C的不同取值,我们可以表示不同的直线。

2. 点斜式方程点斜式方程表示为y - y₁ = m(x - x₁),其中(x₁, y₁)为直线上的一点,m为直线的斜率。

通过给定一点和斜率,我们可以唯一确定一条直线。

3. 斜截式方程斜截式方程表示为y = mx + b,其中m为直线的斜率,b为直线与y 轴的截距。

通过给定斜率和截距,我们也可以唯一确定一条直线。

四、平行和垂直关系在解析几何中,平行和垂直是两种重要的关系。

如果两条直线的斜率相等,则它们平行。

如果两条直线的斜率互为相反数,则它们垂直。

五、直线的交点当两条直线相交时,它们会在某一个点上有交点。

我们可以通过求解两个方程的联立方程组来求得交点的坐标。

六、与坐标轴的交点直线与坐标轴的交点通常非常重要。

与x轴的交点称为横截距,可以通过令y=0来求得。

与y轴的交点称为纵截距,可以通过令x=0来求得。

七、距离和中点在平面解析几何中,我们还经常需要计算两点之间的距离和两点的中点坐标。

1. 两点之间的距离两点之间的距离可以使用勾股定理计算,即d = √((x₂ - x₁)² + (y₂ - y₁)²),其中(x₁, y₁)和(x₂, y₂)分别为两点的坐标。

中考数学复习课件练习:专题复习六 几何综合题有答案

中考数学复习课件练习:专题复习六 几何综合题有答案

中考数学复习课件+练习:专题复习(六) 几何综合题(有答案)专题复习(六)几何综合题类型1类比探究的几何综合题1.(2019·岳阳)问题背景:已知∠EDF的顶点D 在△ABC的边AB所在直线上(不与A,B重合).DE交AC所在直线于点M,DF交BC所在直线于点N.记△ADM的面积为S1,△BND 的面积为S2.(1)初步尝试:如图1,当△ABC是等边三角形,AB=6,∠EDF=∠A,且DE∥BC,AD =2时,则S1·S2=12;(2)类比探究:在(1)的条件下,先将点D沿AB平移,使AD=4,再将∠EDF绕点D旋转至如图2所示位置,求S1·S2的值;(3)延伸拓展:当△ABC是等腰三角形时,设∠B=∠A=∠EDF=α.(Ⅰ)如图3,当点D在线段AB上运动时,设AD=a,BD=b,求S1·S2的表达式(结果用a,b和α的三角函数表示);(Ⅱ)如图4,当点D在BA的延长线上运动时,设AD=a,BD=b,直接写出S1·S2的表达式,不必写出解答过程.解:(1)在图1中,∵△ABC是等边三角形,∴AB=CB=AC=6,∠A=∠B=60°. ∵DE∥BC,∠EDF=∠A=60°,∴∠BND=∠EDF=60°.∴∠BDN=∠ADM=60°.∴△ADM,△BDN都是等边三角形.∴S1=34×22=3,S2=34×42=4 3.∴S1S2=12.(2)在图2中,设AM=x,BN=y.∵∠MDB=∠MDN+∠NDB=∠A+∠AMD,∠MDN=∠A,∴∠AMD=∠NDB.∵∠A=∠B,∴△AMD∽△BDN.∴AMBD=ADBN.∴x2=4y.∴xy=8.∵S1=12AD·AM sin60°=3x,S2=12DB·BN sin60°=32y,∴S 1S 2=3x·32y =32xy =12. (3)(Ⅰ)在图3中,设AM =x ,BN =y , 同法可证△AMD ∽△BDN ,可得xy =ab.∵S 1=12AD·AM sin α=12ax sin α, S 2=12DB·BN sin α=12by sin α, ∴S 1S 2=14(ab)2sin 2α. (Ⅱ)在图4中,设AM =x ,BN =y ,同法可证△AMD ∽△BDN ,可得xy =ab ,∵S 1=12AD·AM sin α=12ax sin α, S 2=12DB·BN sin α=12by sin α, ∴S 1S 2=14(ab)2sin 2α. 2.(2019·自贡)如图,已知∠AOB =60°,在∠AOB 的平分线OM 上有一点C ,将一个120°角的顶点与点C 重合,它的两条边分别与直线OA ,OB 相交于点D ,E.(1)当∠DCE绕点C旋转到CD与OA垂直时(如图1),请猜想OE+OD与OC的数量关系,并说明理由;(2)当∠DCE绕点C旋转到CD与OA不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由;(3)当∠DCE绕点C旋转到CD与OA的反向延长线相交时,上述结论是否成立?请在图3中画出图形,若成立,请给予证明;若不成立,线段OD,OE与OC之间又有怎样的数量关系?请写出你的猜想,不需证明.图1图2图3解:(1)∵OM是∠AOB的平分线,∴∠AOC=∠BOC=12∠AOB=30°.∵CD⊥OA,∴∠ODC=90°.∴∠OCD=60°.∴∠OCE=∠DCE-∠OCD=60°.在Rt△OCD中,OD=OC·cos30°=32OC,同理,OE=32OC.∴OD+OE=3OC.(2)(1)中的结论仍然成立.理由:过点C作CF⊥OA于点F,CG⊥OB于点G,∴∠OFC=∠OGC=90°.∵∠AOB=60°,∴∠FCG=120°.同(1)的方法得OF=32OC,OG=32OC.∴OF+OG=3OC.∵CF⊥OA,CG⊥OB,且点C是∠AOB 的平分线OM上一点,∴CF=CG.∵∠DCE=∠FCG=120°,∴∠DCF=∠ECG.∴△CFD≌△CGE.∴DF=EG.∴OF=OD+DF=OD+EG,OG=OE-EG.∴OF+OG=OD+EG+OE-EG=OD+OE.∴OD+OE=3OC.(3)(1)中的结论不成立,结论为OE-OD=3OC.3.(2019·东营)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC 上,∠BAO=30°,∠OAC=75°,AO=33,BO∶CO=1∶3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB=75°,AB=43;(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=33,∠ABC =∠ACB=75°,BO∶OD=1∶3,求DC的长.图1图2 图3解:过点B作BE∥AD交AC于点E.∵AC⊥AD,∴∠DAO =∠BEO=90°.∵∠AOD =∠EOB,∴△AOD∽△EOB.∴BODO=EOAO=BEDA.∵BO∶OD=1∶3,∴EOAO=BEDA=13.∵AO=33,∴EO= 3.∴AE=4 3. ∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC.∴AB=AC=AEcos30°=8.∴BE=12AB=4,AD=3BE=12.在Rt△CAD中,AC2+AD2=CD2,即82+122=CD2,得CD=413. 4.(2019·江西)在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.图1图2图3图4(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是BP=CE,CE与AD的位置关系是AD⊥CE;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);(3)如图4,当点P在线段BD的延长线上时,连接BE.若AB=23,BE=219,求四边形ADPE的面积.解:(1)提示:连接AC,延长CE交AD于点H,证明△ABP≌△ACE.(2)结论仍然成立.理由:选图2,连接AC交BD于点O,设CE交AD于点H.∵四边形ABCD是菱形,∠ABC=60°,∴△ABC,△ACD都是等边三角形,∠ABD =∠CBD=30°.∴AB=AC.∵△APE是等边三角形,∴AP=AE,∠BAC=∠PAE=60°.∴∠BAP=∠CAE.∴△BAP≌△CAE.∴BP=CE,∠ACE=∠ABP=30°.∵∠CAH=60°,∴∠CAH+∠ACH=90°.∴∠AHC=90°,即CE⊥AD.(3)连接AC交BD于点O,连接CE交AD 于点H.由(2)可知,EC⊥AD,CE=BP.在菱形ABCD中,AD∥BC,∴EC⊥BC.∵BC=AB=23,BE=219,在Rt△BCE中,EC=(219)2-(23)2=8.∴BP=CE=8.∵AC与BD是菱形的对角线,∴∠ABD=12∠ABC=30°,AC⊥BD. ∴BD=2BO=2AB·cos30°=6.∴OA=12AB=3,DP=BP-BD=8-6=2.∴OP=OD+DP=5.在Rt△AOP中,AP=AO2+OP2=27,∴S四边形ADPE =S△ADP+S△AEP=12×2×3+34×(27)2=8 3.5.(2019·烟台)【问题解决】一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB=2,PC=3.你能求出∠APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP′B,连接PP′,求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图2,若点P是正方形ABCD外一点,PA=3,PB=1,PC=11,求∠APB的度数.图1图2解:【问题解决】思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,∴△ABP′≌△CBP.∴∠PBP′=90°,BP′=BP=2,AP′=CP=3.在Rt△PBP′中,BP=BP′=2,∴∠BPP′=45°,根据勾股定理,得PP′=2 BP=2 2.∵AP=1,∴AP2+PP′2=1+8=9.∵AP′2=32=9,∴AP2+PP′2=AP′2.∴△APP′是直角三角形,且∠APP′=90°.∴∠APB=∠APP′+∠BPP′=90°+45°=135°.【类比探究】将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,∴△ABP′≌△CBP.∴∠PBP′=90°,BP′=BP=1,AP′=CP=11.在Rt△PBP′中,BP=BP′=1,∴∠BPP′=45°,根据勾股定理,得PP′=2 BP= 2.∵AP=3,∴AP2+PP′2=9+2=11.∵AP′2=(11)2=11,∴AP2+PP′2=AP′2.∴△APP′是直角三角形,且∠APP′=90°.∴∠APB=∠APP′-∠BPP′=90°-45°=45°.6.(2019·黄石)在△ABC中,E,F分别为线段AB,AC上的点(不与A,B,C重合).(1)如图1,若EF∥BC,求证:S△AEFS△ABC=AE·AFAB·AC;(2)如图2,若EF不与BC平行,(1)中的结论是否仍然成立?请说明理由;(3)如图3,若EF上一点G恰为△ABC的重心,AEAB=34,求S△AEFS△ABC的值.图1图2图3 解:(1)∵EF∥BC,∴△AEF∽△ABC.∴AEAB=AFAC.∴S△AEFS△ABC=(AEAB)2=AEAB·AFAC=AE·AFAB·AC.(2)若EF不与BC平行,(1)中的结论仍然成立.分别过点F,C作AB的垂线,垂足分别为N,H.∵FN⊥AB,CH⊥AB,∴FN∥CH.∴△AFN∽△ACH.∴FNCH=AFAC.∴S△AEFS△ABC=12AE·FN12AB·CH=AE·AFAB·AC.(3)连接AG并延长,交BC于点M,连接BG并延长,交AC于点N,连接M,N,则M,N分别是BC,AC的中点,∴MN∥AB,且MN=12AB.∴GM GA =GN GB =12,且S △ABM =S △ACM . ∴AG AM =23. 设AF AC=a , 由(2)知,S △AEG S △ABM=AE·AG AB·AM =34×23=12, S △AFG S △ACM =AG·AF AM·AC =23a , 则S △AEF S △ABC =S △AEG +S △AFG 2S △ACM =S △AEG 2S △ABM +S △AFG 2S △ACM=14+13a. 而S △AEF S △ABC =AE·AF AB·AC =34a , ∴14+13a =34a ,解得a =35. ∴S △AEF S △ABC =34×35=920. 7.(2019·河南)(1)问题发现如图1,在△OAB 和△OCD 中,OA =OB ,OC =OD ,∠AOB =∠COD =40°,连接AC ,BD 相交于点M.填空:①AC BD的值为1; ②∠AMB 的度数为40°;(2)类比探究如图2,在△OAB 和△OCD 中,∠AOB =∠COD =90°,∠OAB =∠OCD =30°,连接AC交BD 的延长线于点M.请判断AC BD的值及∠AMB 的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD 绕点O 在平面内旋转,AC ,BD 所在直线交于点M.若OD =1,OB =7,请直接写出当点C 与点M 重合时AC 的长.图1图2 图3解:(2)AC BD=3,∠AMB =90°. 理由如下:∵∠AOB =∠COD =90°,∠OAB =∠OCD=30°,∴CODO=AOBO=3,∠COD+∠AOD=∠AOB+∠AOD,即∠AOC=∠BOD.∴△AOC∽△BOD.∴ACBD=CODO=3,∠CAO=∠DBO.∵∠AOB=90°,∴∠DBO+∠ABD+∠BAO=90°.∴∠CAO+∠ABD+∠BAO=90°.∴∠AMB=90°.(3)AC的长为23或3 3.提示:在△OCD旋转的过程中,(2)中的结论仍然成立,即ACBD=3,∠AMB=90°.如图所示,点C与点M重合,AC1,AC2的长即为所求.8.(2019·淄博)(1)操作发现:如图1,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC 为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是MG=NG;位置关系是MG⊥NG;(2)类比思考:如图2,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其他条件不变,小明发现的上述结论还成立吗?请说明理由;(3)深入研究:如图3,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其他条件不变,试判断△GMN 的形状,并给予证明.图1图2图3解:(1)连接BE,CD相交于点H,∵△ABD和△ACE都是等腰直角三角形,∴AB=AD,AC=AE,∠BAD=∠CAE=90°.∴∠CAD=∠BAE.∴△ACD≌△AEB(SAS).∴CD=BE,∠ADC=∠ABE.∴∠BDC+∠DBH=∠BDC+∠ABD+∠ABE=∠BDC+∠ABD+∠ADC=∠ADB+∠ABD=90°.∴∠BHD=90°.∴CD⊥BE.∵点M,G分别是BD,BC的中点,∴MG//12CD.同理NG//12BE.∴MG=NG,MG⊥NG.故答案为MG=NG,MG⊥NG.(2)连接CD,BE,相交于点H,同(1)的方法得,MG=NG,MG⊥NG.(3)连接EB,DC,延长线相交于点H,同(1)的方法得,△ABE≌△ADC,MG=NG.∴∠AEB=∠ACD.∴∠CEH+∠ECH=∠AEH-∠AEC+180°-∠ACD-∠ACE=∠ACD-45°+180°-∠ACD-45°=90°.∴∠DHE=90°.同(1)的方法得,MG⊥NG.类型2与图形变换有关的几何综合题1.(2019·襄阳)如图1,已知点G在正方形ABCD 的对角线AC上,GE⊥BC,垂足为E,GF⊥CD, 垂足为F.(1)证明与推断:①求证:四边形CEGF是正方形;②推断:AGBE的值为2;(2)探究与证明:将四边形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图2所示,试探究线段AG与BE之间的数量关系,并说明理由;(3)拓展与运用:四边形CEGF在旋转过程中,当B,E,F 三点在一条直线上时,如图3所示,延长CG交AD于点H.若AG=6,GH=22,则BC=35.图1图2图3解:(1)①证明:∵四边形ABCD是正方形,∴∠BCD=90°,∠BCA=45°.∵GE⊥BC,GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°.∴四边形CEGF是矩形,∠CGE=∠ECG =45°.∴EG=EC.∴四边形CEGF是正方形.(2)连接CG,由旋转性质可知,∠BCE=∠ACG=α.在Rt△CEG和Rt△CBA中,CECG=cos45°=22,CBCA=cos45°=22.∴CGCE=CACB= 2.又∵∠ECG=∠ECA=∠ACB-∠ECA,即∠ACG=∠BCE,∴△ACG∽△BCE.∴AGBE=CACB= 2.∴线段AG与BE之间的数量关系为AG=2BE.2.(2019·仙桃)问题:如图1,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为BC=DC+EC;探索:如图2,在Rt△ABC与Rt△ADE中,AB =AC ,AD =AE ,将△ADE 绕点A 旋转,使点D 落在BC 边上,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明你的结论;应用:如图3,在四边形ABCD 中,∠ABC =∠ACB =∠ADC =45°.若BD =9,CD =3,求AD 的长.图1图2 图3解:探索:BD 2+CD 2=2AD 2.连接CE.∵∠BAD +∠DAC =90°=∠DAC +∠CAE ,∴∠BAD =∠CAE.在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE(SAS ).∴BD =CE ,∠B =∠ACE.∵Rt △ABC 与Rt △ADE 是等腰直角三角形,∴DE 2=2AD 2.∴∠B =45°.∴∠ACB +∠ACE =45°+45°=90°.∴∠DCE=90°.∴DC2+CE2=DE2,即BD2+CD2=2AD2.应用:以AD为腰作等腰Rt△ADE,连接CE,由“探索”可知,△ABD≌△ACE(SAS).∴CE=BD=9.∵∠ADC=∠ADE=45°,∴∠EDC=90°.在Rt△CDE中,由勾股定理,得DE=92-32=6 2.在等腰Rt△ADE中,AD=22DE=6.3.(2019·宜昌)在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是点G,过点B作BE⊥CG,垂足为E,且在AD上,BE交PC于点F.(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;(2)如图2,①求证:BP=BF;②当AD=25,且AE<DE时,求cos∠PCB 的值;③当BP=9时,求BE·EF的值.图1 图2 图2备用图解:(1)证明:在矩形ABCD 中,∠A =∠D =90°,AB =DC ,∵点E 是AD 中点,∴AE =DE.在△AEB 和△DEC 中,⎩⎪⎨⎪⎧AB =DC ,∠A =∠D =90°,AE =DE ,∴△AEB ≌△DEC(SAS ).(2)①证明:在矩形ABCD 中,∠ABC =90°. ∵△BPC 沿PC 折叠得到△GPC ,∴∠PGC =∠PBC =90°,∠BPC =∠GPC. ∵BE ⊥CG ,∴BE ∥PG.∴∠GPF =∠PFB.∴∠BPF =∠PFB.∴BP =BF.②当AD =25时,∵∠BEC =90°,∴∠AEB +∠PEC =90°. ∵∠AEB +∠ABE =90°,∴∠DEC =∠ABE.∵∠A =∠D =90°,∴△ABE ∽△DEC.∴AB AE =DE DC.设AE=x,则DE=25-x,∴12x=25-x12.∴x=9或x=16.∵AE<DE,∴AE=9,DE=16.∴由勾股定理,得CE=20,BE=15.由折叠得,BP=PG,BC=GC,∴BP=BF =PG.∵BE∥PG,∴△ECF∽△GCP.∴EFGP=CECG.设BP=BF=PG=y,∴15-yy=2025.∴y=253,即BP=253.在Rt△PBC中,由勾股定理,得PC=25103,cos∠PCB=BCPC=31010.③连接FG,∵∠GEF=∠G=90°,∴BE∥PG. ∵BF∥PG,BF=PG=BP,∴四边形BPGF是菱形.∴BP∥GF,且BP=GF.∴∠GFE=∠EBA. ∴△GEF∽△EAB.∴EFGF=ABEB.∴BE·EF=AB·GF=AB·BP=12×9=108. 4.(2019·永州)如图1,在△ABC中,矩形EFGH 的一边EF在AB上,顶点G,H分别在BC,AC上,CD是边AB上的高,CD交GH于点I.若CI=4,HI=3,AD=92,矩形DFGI恰好为正方形.图1图2图3(1)求正方形DFGI的边长;(2)如图2,延长AB至P,使得AC=CP.将矩形EFGH沿BP的方向平移,当点G刚好落在CP上时,试判断移动后的矩形与△CBP重叠部分的形状是三角形还是四边形,为什么?(3)如图3,连接DG,将正方形DFGI绕点D顺时针旋转一定的角度得到正方形DF′G′I′,正方形DF′G′I′分别与线段DG,DB相交于点M,N,求△MN G′的周长.解:(1)∵HI∥AD,∴HIAD=CICD.∴392=4CD.∴CD=6.∴ID=CD-CI=2.∴正方形的边长为2.(2)如图2,设点G落在PC上时对应的点为点G′,点F的对应点为点F′.∵CA=CP,CD⊥PA,∴∠ACD=∠PCD,∠A=∠P.∵HG′∥PA,∴∠CHG′=∠A,∠CG′H=∠P.∴∠CHG′=∠CG′H.∴CH=CG′.∴IH=IG′=DF′=3.∵IG∥DB,∴IGDB=CICD.∴2DB=46.∴DB=3.∴DB=DF′=3.∴点B与点F′重合.∴移动后的矩形与△CBP重叠部分是三角形,即△BGG′.(3)将△DMI′绕点D顺时针旋转90°得到△DRF′,此时N,F′,R共线.∴∠MDR=90°.∵∠NDM=45°,∠NDM+∠NDR=90°,∴∠NDM=∠NDR=45°.∵DN=DN,DM=DR,∴△NDM≌△NDR.∴MN=NR=NF′+RF′=NF′+MI′.∴△MNG′的周长=MN+MG′+NG′=NF′+NG′+MI′=F′G′+I′G′=2I′G′=4. 5.(2019·岳阳)已知在Rt△ABC中,∠BAC=90°,CD为∠ACB的平分线,将∠ACB沿CD 所在的直线对折,使点B落在点B′处,连接AB′,BB′,延长CD交BB′于点E,设∠ABC=2α.(0°<α<45°)(1)如图1,若AB=AC,求证:CD=2BE;(2)如图2,若AB≠AC,试求CD与BE的数量关系;(用含α的式子表示)(3)如图3,将(2)中的线段BC绕点C逆时针旋转角(α+45°),得到线段FC,连接EF交BC 于点O,设△COE的面积为S1,△COF的面积为S2,求S1S2.(用含α的式子表示)图1图2图3解:(1)证明:∵点B,B′关于EC对称,∴BB′⊥EC,BE=EB′.∴∠DEB=∠DAC=90°.∵∠EDB=∠ADC,∴∠DBE=∠ACD.∵AB=AC,∠BAB′=∠CAD=90°,∴△BAB′≌△CAD.∴CD=BB′=2BE.(2)如图2,结论:CD=2BE·tan2α.理由:由(1)可知,∠ABB′=∠ACD,∠BAB′=∠CAD=90°,∴△BAB′∽△CAD.∴BB′CD=ABAC=1tan2α.∴2BECD=1tan2α.∴CD=2BE·tan2α.(3)如图3,在Rt△ABC中,∠ACB=90°-2α.∵EC平分∠ACB,∴∠ECB=12(90°-2α)=45°-α.∵∠BCF=45°+α,∴∠ECF=45°-α+45°+α=90°. ∴∠BEC+∠ECF=180°.∴BB′∥CF.∴△BEO∽△CFO.∴EOFO=BECF=BEBC=sin(45°-α).∵S1S2=EOFO,∴S1S2=sin(45°-α).6.(2019·潍坊)如图1,在▱ABCD中,DH⊥AB 于点H,CD的垂直平分线交CD于点E,交AB 于点F,AB=6,DH=4,BF∶FA=1∶5.(1)如图2,作FG⊥AD于点G,交DH于点M,将△DGM沿DC方向平移,得到△CG′M′,连接M′B.①求四边形BHMM′的面积;②直线EF上有一动点N,求△DNM周长的最小值;(2)如图3,延长CB交EF于点Q,过点Q作QK∥AB,过CD边上的动点P作PK∥EF,并与QK交于点K,将△PKQ沿直线PQ翻折,使点K的对应点K′恰好落在直线AB上,求线段CP的长.图1图2图3解:(1)①在▱ABCD中,AB=6,直线EF 垂直平分CD,∴DE=FH=3.又BF∶FA=1∶5,∴BF=1,FA=5.∴AH=2.∵Rt△AHD∽Rt△MHF,∴HMFH=HAHD.∴HM3=24.∴HM=3 2.根据平移的性质,得MM′=CD=6,∴S四边形BHMM′=S△BMM′+S△BHM=12×6×32+12×4×32=15 2.②连接CM交直线EF于点N,连接DN. ∴CN=DN.∵MH=32,∴DM=52.在Rt△CDM中,MC2=DC2+DM2.∴MC2=62+(52)2,即MC=132.∵MN+DN的最小值=MN+CN=MC,∴△DNM周长的最小值为9.(2)∵BF∥CE,∴△DNM周长的最小值为9.(2)∵BF∥CE,∴QFQF+4=BFCE=13.∴QF=2.∴PK=PK′=6.过点K′作E′F′∥EF,分别交CD于点E′,交QK于点F′.当点P在线段CE上时,在Rt△PK′E′中,PE′2=PK′2-E′K′2,∴PE′=2 5.∵Rt△PE′K′∽Rt△K′F′Q,∴PE′K′F′=E′K′F′Q.∴252=4F′Q.∴F′Q=45 5.∴PE=PE′-EE′=25-455=655.∴CP=CE-PE=15-655.同理可得,当点P在线段ED上时,CP=15+655.综上可得,CP的长为15-655或15+655.类型3与动点有关的几何综合题1.(2019·黄冈)如图,在平面直角坐标系xOy中,菱形OABC的边OA在x轴正半轴上,点B,C 在第一象限,∠C=120°,边长OA=8.点M从原点O出发沿x轴正半轴以每秒1个单位长度的速度作匀速运动,点N从A出发沿边AB-BC-CO以每秒2个单位长度的速度作匀速运动,过点M作直线MP垂直于x轴并交折线OCB 于点P,交对角线OB于点Q,点M和点N同时出发,分别沿各自路线运动,点N运动到原点O时,M和N两点同时停止运动.(1)当t=2时,求线段PQ的长;(2)求t为何值时,点P与N重合;(3)设△APN的面积为S,求S与t的函数关系式及t的取值范围.解:(1)当t=2时,OM=2,在Rt△OPM中,∠POM=60°,∴PM=OM·tan60°=2 3.在Rt△OMQ中,∠QOM=30°,∴QM=OM·tan30°=23 3.∴PQ =PM -QM =23-233=433. (2)由题意,得8+(t -4)+2t =24,解得t =203. (3)①当0<t <4时,S =12·2t·43=43t ; ②当4≤t <203时,S =12×[8-(t -4)-(2t -8)]×43=403-63t ;③当203≤t <8时,S =12×[(t -4)+(2t -8)-8]×43=63t -403;④当8≤t ≤12时,S =S 菱形ABCO -S △AON -S △ABP -S △PCN=323-12(24-2t)×43-12×[8-(t -4)]×43-12(t -4)×32[8-(24-2t)] =-32t 2+123t -56 3. 综上,S =⎩⎪⎪⎪⎨⎪⎪⎪⎧43t ;(0<t <4)403-63t ;(4≤t <203)63t -403;(203≤t <8)-32t 2+123t -56 3.(8≤t ≤12) 2.(2019·青岛)已知:如图,四边形ABCD ,AB ∥DC ,CB ⊥AB ,AB =16 cm ,BC =6 cm ,CD =8 cm .动点P 从点D 开始沿DA 边匀速运动,动点Q 从点A 开始沿AB 边匀速运动,它们的运动速度均为2 cm /s .点P 和点Q 同时出发,以QA ,QP 为边作平行四边形AQPE ,设运动的时间为t(s ),0<t <5.根据题意解答下列问题:(1)用含t 的代数式表示AP ;(2)设四边形CPQB 的面积为S(cm 2),求S 与t 的函数关系式;(3)当QP ⊥BD 时,求t 的值;(4)在运动过程中,是否存在某一时刻t ,使点E 在∠ABD 的平分线上?若存在,求出t 的值;若不存在,请说明理由.解:(1)过点D 作DH ⊥AB 于点H ,则四边形DHBC 是矩形,∴CD =BH =8,DH =BC =6.∴AH =AB -BH =8,AD =DH 2+AH 2=10,BD =CD 2+BC 2=10.∴AP =AD -DP =10-2t.(2)过点P 作PN ⊥AB 于点N ,连接PB. 在Rt △APN 中,PA =10-2t ,∴PN =PA·sin ∠DAH =35(10-2t),AN =PA·cos ∠DAH =45(10-2t). ∴BN =16-AN =16-45(10-2t), S =S △PQB +S △BCP =12·(16-2t)·35(10-2t)+12×6×[16-45(10-2t)]=65t 2-545t +72(0<t <5). (3)当PQ ⊥BD 时,∠PQN +∠DBA =90°, ∵∠QPN +∠PQN =90°,∴∠QPN =∠DBA.∴tan ∠QPN =QN PN =34.∴45(10-2t)-2t35(10-2t)=34.解得t=3527.经检验,t=3527是分式方程的解,∴当t=3527s时,PQ⊥BD.(4)存在.理由:连接BE交DH于点K,过点K作KM⊥BD于点M.当BE平分∠ABD时,△KBH≌△KBM,∴KH=KM,BH=BM=8.设KH=KM=x,在Rt△DKM中,(6-x)2=22+x2,解得x=8 3.过点E作EF⊥AB于点F,则△AEF≌△QPN,∴EF=PN=35(10-2t),AF=QN=45(10-2t)-2t,∴BF =16-[45(10-2t)-2t]. ∵KH ∥EF ,∴KH EF =BH BF. ∴8335(10-2t )=816-[45(10-2t )-2t].解得t =2518. 经检验,t =2518是分式方程的解. ∴当t =2518s 时,点E 在∠ABD 的平分线上.3.(2019·绵阳)如图,已知△ABC 的顶点坐标分别为A(3,0),B(0,4),C(-3,0).动点M ,N 同时从A 点出发,M 沿A →C ,N 沿折线A →B →C ,均以每秒1个单位长度的速度移动,当一个动点到达终点C 时,另一个动点也随之停止移动,移动的时间记为t 秒,连接MN.(1)求直线BC 的解析式;(2)移动过程中,将△AMN 沿直线MN 翻折,点A 恰好落在BC 边上点D 处,求此时t 值及点D 的坐标;(3)当点M ,N 移动时,记△ABC 在直线MN 右侧部分的面积为S ,求S 关于时间t 的函数关系式.备用图解:(1)设直线BC 的解析式为y =kx +b ,则有⎩⎨⎧b =4,-3k +b =0,解得⎩⎨⎧k =43,b =4.∴直线BC 的解析式为y =43x +4. 图1(2)如图1,连接AD 交MN 于点O′.由题意可知,四边形AMDN 是菱形,M(3-t ,0),N(3-35t ,45t), ∴O′(3-45t ,25t),D(3-38t ,45t). ∵点D 在BC 上,∴45t =43×(3-85t)+4,解得t =3011. ∴t =3011s 时,点A 恰好落在BC 边上点D 处,此时D(-1511,2411). 图2(3)如图2,当0<t ≤5时,△ABC 在直线MN 右侧部分是△AMN ,S =12×t ×45t =25t 2; 如图3,当5<t ≤6时,△ABC 在直线MN 右侧部分是四边形ABNM.图3S =S △ABC -S △CMN =12×6×4-12×(6-t)×[4-45(t -5)]=-25t 2+325t -12. 4.(2019·广东)已知Rt △OAB ,∠OAB =90°,∠ABO =30°,斜边OB =4,将Rt △OAB 绕点O 顺时针旋转60°,如图1,连接BC.(1)填空:∠OBC =60°;(2)如图1,连接AC ,作OP ⊥AC ,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止.已知点M的运动速度为单位长度/秒,点N的运动速度为1单位长度/秒.设运动时间为x秒,△OMN的面积为y,求当x为何值时,y取得最大值?最大值为多少?(结果可保留根号)图1图2备用图解:(2)∵OB=4,∠ABO=30°,∴OA=12OB=2,AB=3OA=2 3.∴S△AOC =12OA·AB=12×2×23=2 3.∵△BOC是等边三角形,∴BC=BO=4.∴∠OBC=60°,∠ABC=∠ABO+∠OBC =90°.∴AC=AB2+BC2=27.∴OP=2S△AOCAC=4327=2217.(3)①当0<x ≤83时,点M 在OC 上运动,点N 在OB 上运动,此时过点N 作NE ⊥OC 且交OC 于点E.则NE =ON·sin 60°=32x , ∴y =12OM·NE =12××32x ,即y =338x 2. ∴当x =83时,y 有最大值,最大值为833. ②当83<x ≤4时,点M 在BC 上运动,点N 在OB 上运动.图3过点M 作MH ⊥OB 于点H.则BM =8-,MH =BM·sin 60°=32(8-1.5x), ∴y =12ON·MH =-338x 2+23x. ∵当x =83时,y 取最大值,∴y <833. ③当4<x ≤时,点M ,N 都在BC 上运动,过点O作OG⊥BC于点G.则MN=12-,OG=AB=23,图4∴y=12MN·OG=123-532x.∵当x=4时,y有最大值,∴y<2 3.综上所述,y有最大值,最大值为83 3.类型4与实践操作有关的几何综合题1.(2019·齐齐哈尔)折纸是一项有趣的活动,同学们小时候都玩过折纸,可能折过小动物、小花、飞机、小船等,折纸活动也伴随着我们初中数学的学习.在折纸过程中,我们可以通过研究图形的性质和运动,确定图形位置等,进一步发展空间观念,在经历借助图形思考问题的过程中,我们会初步建立几何直观.折纸往往从矩形纸片开始,今天,就让我们带着数学的眼光来玩一玩折纸,看看折叠矩形的对角线之后能得到哪些数学结论.实践操作如图1,将矩形纸片ABCD沿对角线AC翻折,使点B′落在矩形ABCD所在平面内,B′C 和AD相交于点E,连接B′D.图1图2解决问题(1)在图1中.①B′D和AC的位置关系为B′D∥AC(互相平行);②将△AEC剪下后展开,得到的图形是菱形;(2)若图1中的矩形变为平行四边形(AB≠BC),如图2所示,结论①和结论②是否成立,若成立,请挑选其中一个结论加以证明,若不成立,请说明理由;(3)小红沿对角线折叠一张矩形纸片,发现所得图形是轴对称图形,沿对称轴再次折叠后,得到的仍是轴对称图形,则小红折叠的矩形纸片的长和宽之比为1∶1或3∶1.拓展应用(4)在图2中,若∠B=30°,AB=43,当△AB′D恰好为直角三角形时,BC的长度为4或6或8或12.解:结果仍成立.①选择结论①证明.∵四边形ABCD是平行四边形,∴AD//BC.∴∠DAC=∠BCA.由折叠性质,得BC=B′C,∠BCA=∠ACB′,∴∠DAC=∠ACB′,B′C=AD.∴AE=CE,∴B′E=DE.∴∠CB′D=ADB′.∵∠AEC=∠B′ED,∠ACB′=∠CAD,∴∠ADB′=∠DAC.∴B′D∥AC.②选择结论②证明.设点E的对应为点F,连接AF.由折叠性质,得AE=AF,CE=CF.由①知AE=CE,∴AE=CE=AF=CF.∴四边形AECF是菱形.2.(2019·山西)综合性实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD中,AD=2AB,E是AB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE为一边在DE的左下方作正方形DEFG,连接AM,试判断线段AM与DE的位置关系.探究展示:勤奋小组发现,AM垂直平分DE,并展示了如下的证明方法:证明:∵BE=AB,∴AE=2AB.∵AD=2AB,∴AD=AE.∵四边形ABCD是矩形,∴AD∥BC.∴EMDM=EBAB.(依据1)∵BE=AB,∴EMDM=1.∴EM=DM,即AM是△ADE的DE边上的中线.又∵AD=AE,∴AM⊥DE.(依据2)∴AM垂直平分DE.反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A是否在线段GF的垂直平分线上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE,以CE为一边在CE 的左下方作正方形CEFG,发现点G在线段BC 的垂直平分线上,请你给出证明;探索发现:(3)如图3,连接CE,以CE为一边在CE 的右上方作正方形CEFG,可以发现点C,点B 都在线段AE的垂直平分线上,除此之外,请观察矩形ABCD和正方形CEFG的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.图1图2 图3解:(1)①依据1:两条直线被一组平行线所截,所得到的对应线段成比例(或平行线分线段成比例).依据2:等腰三角形顶角的平分线,底边上的中线及底边上的高互相重合(或等腰三角形的“三线合一”).②点A在线段GF的垂直平分线上.(2)证明:过点G作GH⊥BC于点H.∵四边形ABCD为矩形,点E在AB的延长线上,∴∠CBE=∠ABC=∠GHC=90°.∴∠BCE+∠BEC=90°.∵四边形CEFG为正方形,∴CG=CE,∠GCE=90°.∴∠BCE+∠BCG=90°.∴∠BEC=∠BCG.∴△GHC≌△CBE(AAS).∴HC=BE.∵四边形ABCD是矩形,∴AD=BC.∵AD=2AB,BE=AB,∴BC=2BE=2HC.∴HC=BH.∴GH垂直平分BC.∴点G在BC的垂直平分线上.(3)点F在BC边的垂直平分线上(或点F在AD边的垂直平分线上).过点F作FM⊥BC于点M,过点E作EN⊥FM于点N.∴∠BMN=∠ENM=∠ENF=90°.∵四边形ABCD是矩形,点E在AB的延长线上,∴∠CBE=∠ABC=90°.∴四边形BENM 为矩形.∴BM=EN,∠CEB+∠CEN=90°.∵四边形CEFG为正方形,∴EF=EC,∠CEF=90°.∴∠CEN+∠FEN=90°.∴∠CEB=∠FEN.∴△ENF≌△EBC(AAS).∴NE=BE.∴BM=BE.。

中考数学平面几何基础历年真题解析

中考数学平面几何基础历年真题解析

中考数学平面几何基础历年真题解析平面几何作为中考数学的重要部分,每年都会出现在考试中。

为了帮助同学们更好地备考平面几何,本文将围绕历年真题进行解析,深入讲解平面几何的基础知识和解题技巧,希望能对同学们的学习有所帮助。

一、直线与角直线和角是平面几何的基本概念,也是解题的基础。

我们先来看几道历年真题。

题目1:如图,AB是一条直线,P是线段AB上一点,且P在点B 的左边。

若∠APB=120°,则∠BPC的度数是多少?解析:根据题意,∠APB = 120°,因为∠APB + ∠BPC = 180°,所以∠BPC = 180° - 120° = 60°。

解题技巧:这道题考察了直线上角的性质,利用角的和为180°的特点进行解答。

同学们在解答这类题目时,要注意找准角的关系,并灵活运用角的性质。

二、平行与相似平行和相似是平面几何中常见的题型,也是中考中常考的内容。

我们来看一个例题。

题目2:如图,ABCD是一个平行四边形,E是BC的中点,连接AE交BD于F,求证:AF=FD。

解析:连接AC,根据平行四边形的性质可知,AE与DC平行,所以∠DAE = ∠EAF。

又因为∠DAE = ∠EAF,所以三角形DAF与三角形AEF相似。

而AE是BC的中点,所以AE与EF之间的比例为1:2,即AF = 2EF。

又因为EF = FD,所以AF = FD。

解题技巧:这道题考察了平行四边形和相似三角形的性质。

同学们在解答这类题目时,要善于找出已知信息与所证明结论之间的联系,灵活运用平行和相似的性质。

三、三角形与全等三角形是平面几何中重要的研究对象,全等三角形是其中的一个重要概念。

我们来看一个例题。

题目3:如图,∠ATB = 90°,ED ⊥ BT,AC ⊥ BT,证明:AED 与ABC全等。

解析:根据题意,∠ATB = 90°,所以三角形ATB是直角三角形。

中考数学之平面几何最全总结 经典习题

中考数学之平面几何最全总结 经典习题

【线段、角、直线】1.过两点有且只有一条直线。

2.两点之间线段最短。

3.过一点有且只有一条直线和已知直线垂直。

4.直线外一点与直线上各点连接的所有线段中,垂直线段最短。

垂直平分线,简称“中垂线”。

定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)。

线段的垂直平分线可看作和线段两端点距离相等的所有点的集合。

中垂线性质:垂直平分线垂直且平分其所在线段。

垂直平分线定理:垂直平分线上任意一点,到线段两端点的距离相等。

逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

.三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等。

角1.同角或等角的余角相等。

2.同角或等角的补角相等。

3.对顶角相等。

角的平分线性质角的平分线是到角的两边距离相等的所有点的集合定理1:角的平分线上的点到这个角的两边的距离相等。

定理2:到一个角的两边距离相等的点,在这个角的平分线上。

三角形各内角平分线的交点,该点叫内心,它到三角形三边距离相等。

【平行线】平行线性质1:两直线平行,同位角相等。

平行线性质2:两直线平行,内错角相等。

平行线性质3:两直线平行,同旁内角互补。

平行线判定1:同位角相等,两直线平行。

平行线判定2:内错角相等,两直线平行。

平行线判定3:同旁内角互补,两直线平行。

平行线判定4:如果两条直线都和第三条直线平行,这两条直线也互相平行。

平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。

推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。

【三角形】面积公式:1. 已知三角形底a ,高h ,12S ah =2. 正三角形面积 S=24(a 为边长正三角形)3.已知三角形三边a,b,c ,则S (海伦公式) 其中:()2a b c p ++= (周长的一半) 4.已知三角形两边a ,b 及这两边夹角C ,则1sin 2S ab C =。

中考数学平面几何经典题

中考数学平面几何经典题

1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .A P C DB A F GC EBO D D 2 C 2B 2 A 2D 1 C 1 B 1C B DA A 1 BF1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABCP 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)E1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5. 求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)D1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 200,求∠BED 的度数.1.如下图做GH ⊥AB,连接EO 。

中考数学亮点好题汇编专题六平面几何基础专题试题(共55页)

中考数学亮点好题汇编专题六平面几何基础专题试题(共55页)

平面几何(jǐ hé)根底专题一、选择题:1. 〔2021•,2,2分〕如图,直线a,b 被直线c 所截,那么∠1 的同位角是〔〕A.∠2 B.∠3 C.∠4 D.∠5【分析】根据同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角解答即可.【解答】解:由同位角的定义可知,∠1 的同位角是∠4,应选:C.【点评】此题考察同位角问题,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解.2.〔2021•,5,3分〕如图,直线AD,BE 被直线BF 和AC 所截,那么∠1 的同位角和∠5 的内错角分别是〔〕A.∠4,∠2 B.∠2,∠6 C.∠5,∠4 D.∠2,∠4【分析】根据同位角:两条直线被第三条直线所截形成的角中,假设两个角都在两直线的同侧,并且在第三条直线〔截线〕的同旁,那么这样一对角叫做同位角进展分析即可.根据内错角:两条直线被第三条直线所截形成的角中,假设两个角都在两直线的之间,并且(bìngqiě)在第三条直线〔截线〕的两旁,那么这样一对角叫做内错角进展分析即可.【解答】解:∠1 的同位角是∠2,∠5 的内错角是∠6,应选:B.【点评】此题主要考察了三线八角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U〞形.3.〔2021•,8,3分〕如图,直线a,b 被c,d 所截,且a∥b,那么下列结论中正确的选项是〔〕A.∠1=∠2 B.∠3=∠4 C.∠2+∠4=180°D.∠1+∠4=180°【分析】根据两直线平行,同位角相等,即可得到正确结论.【解答】解:∵直线a,b 被c,d 所截,且a∥b,∴∠3=∠4,应选:B.【点评】此题主要考察了平行线的性质,解题时注意:两直线平行,同位角相等.4.〔2021•,8,3分〕如图,AB∥CD,那么∠DEC=100°,∠C=40°,那么∠B 的大小是〔〕A.30° B.40° C.50° D.60°【分析】根据三角形内角和定理,可得∠D=40°,再根据平行线的性质,即可得到∠B=∠D=40°.【解答】解:∵∠DEC=100°,∠C=40°,∴∠D=40°,又∵AB∥CD,∴∠B=∠D=40°,应选(yīnɡ xuǎn):B.【点评】此题考察了平行线性质的应用,运用两直线平行,内错角相等是解题的关键.5.〔2021•广西,3,3 分〕如图,直线(zhíxiàn)a,b 被直线c 所截,a∥b,∠1=60°,那么∠2 的度数是〔〕A.120°B.60° C.45° D.30°【分析】利用两直线平行,同位角相等就可求出.【解答】解:∵直线被直线a、b 被直线c 所截,且a∥b,∠1=60°∴∠2=∠1=60°.应选:B.【点评】此题考察了平行线的性质,应用的知识为两直线平行,同位角相等.6.〔2021•,4,3分〕如图,直线a∥b,直线l 与a、b 分别相交于A、B 两点,过点A 作直线l的垂线交直线b 于点C,假设∠1=58°,那么∠2 的度数为〔〕A.58° B.42° C.32° D.28°【分析】根据平行线的性质得出∠ACB=∠2,根据三角形内角和定理求出即可.【解答】解:∵直线a∥b,∴∠ACB=∠2,AC⊥BA,∴∠BAC=90°,∴∠2=∠ACB=180°﹣∠1﹣∠BAC=180°﹣90°﹣58°=32°,应选:C.【点评(diǎn pínɡ)】此题考察了对平行线的性质和三角形内角和定理的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补7.〔2021•黔东南州,4,4 分〕如图, AD∥BC,∠B=30°,DB 平分∠ADE,那么∠DEC=〔〕A.30° B.60° C.90° D.120°【分析】根据平行线的性质:两条直线平行,内错角相等及角平分线的性质,三角形内角和定理解答.【解答】解:∵AD∥BC,∴∠ADB=∠B=30°,再根据角平分线的概念,得:∠BDE=∠ADB=30°,再根据两条直线平行,内错角相等得:∠DEC=∠ADE=60°,应选:B.【点评】考察了平行线的性质、角平分线的概念,要纯熟掌握.8.〔2021•,4,3分〕一副直角三角板如图放置,点C 在FD的延长线上,AB∥CF,∠F=∠ACB=90°,那么∠DBC 的度数为〔〕A.10° B.15° C.18° D.30°【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=60°,进而得出答案.【解答(jiědá)】解:由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.应选:B.【点评】此题主要考察了平行线的性质,根据题意得出∠ABD 的度数是解题关键.9.〔2021•州,6,3 分〕如下图,直线a∥b,∠1=35°,∠2=90°,那么∠3 的度数为〔〕A.125°B.135°C.145°D.155°【分析】如图求出∠5 即可解决问题.【解答】解:∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°﹣∠5=125°,应选:A.【点评(diǎn pínɡ)】此题考察平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵敏运用所学知识解决问题.10.〔2021•江汉油田,4,3 分〕如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,那么∠DBC 的度数是〔〕A.30° B.36° C.45° D.50°【分析】直接利用平行线的性质得出∠ADC=150°,∠ADB=∠DBC,进而得出∠ADB的度数,即可得出答案.【解答】解:∵AD∥BC,∠C=30°,∴∠ADC=150°,∠ADB=∠DBC,∵∠ADB:∠BDC=1:2,∴∠ADB=×150°=50°,∴∠DBC 的度数是50°.应选:D.【点评】此题主要考察了平行线的性质,正确得出∠ADB 度数是解题关键.11.〔2021•,5,3分〕直线 a∥b,将一块含 45°角的直角三角板〔∠C=90°〕按如下图的位置摆放,假设∠1=55°,那么∠2 的度数为〔〕A.80° B.70° C.85° D.75°【分析(fēnxī)】想方法求出∠5 即可解决问题;【解答】解:∵∠1=∠3=55°,∠B=45°,∴∠4=∠3+∠B=100°,∵a∥b,∴∠5=∠4=100°,∴∠2=180°﹣∠5=80°,应选(yīnɡ xuǎn):A.【点评】此题考察平行线的性质,三角形内角和定理,三角形的外角的性质等知识,解题的关键是灵敏运用所学知识解决问题,属于中考常考题型.12.〔2021•,4,3分〕如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,那么∠DBC 的度数是〔〕A.30° B.36° C.45° D.50°【分析】直接利用平行线的性质得出∠ADC=150°,∠ADB=∠DBC,进而得出∠ADB的度数,即可得出答案.【解答】解:∵AD∥BC,∠C=30°,∴∠ADC=150°,∠ADB=∠DBC,∵∠ADB:∠BDC=1:2,∴∠ADB=13×150°=50°,∴∠DBC 的度数(dù shu)是50°.应选:D.【点评】此题主要考察了平行线的性质,正确得出∠ADB 度数是解题关键.13.〔2021•,4,3分〕如图,在平行线l1、l2 之间放置(fàngzhì)一块直角三角板,三角板的锐角顶点A,B 分别在直线l1、l2 上,假设∠l=65°,那么∠2 的度数是〔〕A.25° B.35° C.45° D.65°【分析】过点C 作CD∥a,再由平行线的性质即可得出结论.【解答】解:如图,过点C 作CD∥a,那么∠1=∠ACD.∵a∥b,∴CD∥b,∴∠2=∠DCB.∵∠ACD+∠DCB=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°.应选:A.【点评】此题考察的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.14.〔2021•,4,3分〕如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,那么∠DBC 的度数是〔〕A.30° B.36° C.45° D.50°【分析(fēnxī)】直接利用平行线的性质得出∠ADC=150°,∠ADB=∠DBC,进而得出∠ADB 的度数,即可得出答案.【解答】解:∵AD∥BC,∠C=30°,∴∠ADC=150°,∠ADB=∠DBC,∵∠ADB:∠BDC=1:2,∴∠ADB=13×150°=50°,∴∠DBC 的度数是50°.应选:D.【点评】此题主要考察了平行线的性质,正确得出∠ADB 度数是解题关键.15.〔2021•,2,3分〕如图,a∥b,l 与a、b 相交,假设∠1=70°,那么∠2 的度数等于〔〕A.120°B.110°C.100°D.70°【分析】先求出∠1 的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2 的度数.【解答】解:如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°.应选:B.【点评(diǎn pínɡ)】此题利用平行线的性质和邻补角的定义,纯熟掌握性质和概念是解题的关键.16.〔2021•,3,3分〕如图,把一块三角板的直角顶点放在一直尺的一边上,假设∠1=50°,那么∠2 的度数为〔〕A.55° B.50° C.45° D.40°【分析】利用平行线的性质求出∠3 即可解决问题;【解答】解:∵∠1=∠3=50°,∠2+∠3=90°,∴∠2=90°﹣∠3=40°,应选:D.【点评】此题考察平行线的性质,三角板的性质等知识,解题的关键是灵敏运用所学知识解决问题.17.〔2021•,2,3分〕如图,直线AD∥BC,假设∠1=42°,∠BAC=78°,那么∠2 的度数为〔〕A.42° B.50° C.60° D.68°【分析(fēnxī)】根据三角形内角和定理,即可得到∠ABC=60°,再根据AD∥BC,即可得出∠2=∠ABC=60°.【解答(jiědá)】解:∵∠1=42°,∠BAC=78°,∴∠ABC=60°,又∵AD∥BC,∴∠2=∠ABC=60°,应选:C.【点评】此题主要考察了平行线的性质,解题时注意:两直线平行,内错角相等.18.〔2021•,4,3分〕如图,直线a,b 被直线c 所截,以下条件中,不能断定a∥b〔〕A.∠2=∠4 B.∠1+∠4=180°C.∠5=∠4 D.∠1=∠3【分析】根据同位角相等,两直线平行;同旁内角互补,两直线平行;内错角相等,两直线平行,进展判断即可.【解答】解:由∠2=∠4 或者∠1+∠4=180°或者∠5=∠4,可得a∥b;由∠1=∠3,不能得到a∥b;应选:D.【点评】此题主要考察了平行线的断定,解题时注意:同位角相等,两直线平行;同旁内角互补,两直线平行.19.〔2021•,2,4分〕如图,直线a∥b,∠1=60°,那么∠2=〔〕A.30° B.60° C.45° D.120°【分析】根据两直线平行,同位角相等即可求解.【解答(jiědá)】解:∵a∥b,∴∠2=∠1,∵∠1=60°,∴∠2=60°.应选:B.【点评】此题考察了平行线的性质,掌握两直线平行,同位角相等是解题的关键.20.〔2021•,2,3分〕如下图,直线AB,CD 相交于点O,∠AOD=160°,那么∠BOC 的大小为〔〕A.20° B.60° C.70° D.160°【分析】根据对顶角相等解答即可.【解答】解:∵∠AOD=160°,∴∠BOC=∠AOD=160°,应选:D.【点评】此题考察对顶角、邻补角,关键是根据对顶角相等解答.21.〔2021•湘西州,7,4 分〕如图,DA⊥CE 于点A,CD∥AB,∠1=30°,那么∠D= 60° .【分析】先根据垂直的定义,得出∠BAD=60°,再根据平行线的性质,即可得出∠D 的度数.【解答】解:∵DA⊥CE,∴∠DAE=90°,∵∠EAB=30°,∴∠BAD=60°,又∵AB∥CD,∴∠D=∠BAD=60°,故答案(dá àn)为:60°.【点评】此题主要考察了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等.22.〔2021•,9,3分〕如图,直线l1,l2 被直线l3 所截,且l1∥l2,过l1 上的点A 作AB⊥l3 交l3 于点B,其中∠1<30°,那么以下一定正确的选项是〔〕A.∠2>120°B.∠3<60°C.∠4﹣∠3>90°D.2∠3>∠4【分析】根据三角形内角和定理求出∠ACB,再根据平行线的性质逐个判断即可.【解答】解:∵AB⊥l3,∴∠ABC=90°,∵∠1<30°∴∠ACB=90°﹣∠1>60°,∴∠2<120°,∵直线l1∥l2,∴∠3=∠ABC>60°,∴∠4﹣∠3=180°﹣∠3﹣∠3=180°﹣2∠3<60°,2∠3>∠4,应选(yīnɡxuǎn):D.【点评(diǎn pínɡ)】此题考察了平行线的性质和三角形内角和定理,能求出各个角的度数是解此题的关键.23.〔2021•,4,2分〕如图,将木条a,b 与c 钉在一起,∠1=70°,∠2=50°,要使木条a 与b 平行,木条a 旋转的度数至少是〔〕A.10° B.20° C.50° D.70°【分析】根据同位角相等两直线平行,求出旋转后∠2 的同位角的度数,然后用∠1 减去即可得到木条a 旋转的度数.【解答】解:如图.∵∠AOC=∠2=50°时,OA∥b,∴要使木条a 与b 平行,木条a 旋转的度数至少是70°﹣50°=20°.应选:B.【点评】此题考察了旋转的性质,平行线的断定,根据同位角相等两直线平行求出旋转后∠2 的同位角的度数是解题的关键.24.〔2021•,5,3分〕如图,三角板的直角顶点落在矩形纸片的一边上.假设∠1=35°,那么∠2 的度数是〔〕A.35° B.45° C.55° D.65°【分析(fēnxī)】求出∠3 即可解决问题;【解答(jiědá)】解:∵∠1+∠3=90°,∠1=35°,∴∠3=55°,∴∠2=∠3=55°,应选:C.【点评】此题考察了平行线的性质.两直线平行,同位角相等的应用是解此题的关键.25.〔2021•,3,3分〕如图,点D 在△ABC 边AB 的延长线上,DE∥BC.假设∠A=35°,∠C=24°,那么∠D 的度数是〔〕A.24° B.59° C.60° D.69°【分析】根据三角形外角性质求出∠DBC,根据平行线的性质得出即可.【解答】解:∵∠A=35°,∠C=24°,∴∠DBC=∠A+∠C=59°,∵DE∥BC,∴∠D=∠DBC=59°,应选:B.【点评】此题考察了三角形外角性质和平行线的性质,能纯熟地运用性质进展推理是解此题的关键.26.〔2021•,6,2分〕如图,AB∥CD,EF∥GH,∠1=60°,那么∠2 补角的度数是〔〕A.60° B.100°C.110°D.120°【分析】根据平行线的性质比拟(bǐnǐ)多定义求解即可;【解答】解:∵AB∥CD,∴∠1=∠EFH,∵EF∥GH,∴∠2=∠EFH,∴∠2=∠1=60°,∴∠2 的补角为120°,应选:D.【点评】此题考察平行线的性质、补角和余角等知识,解题的关键是纯熟掌握基本知识,属于中考常考题型.27 2021•,3,3分〕如图,直线AB∥CD,那么以下结论正确的选项是〔〕A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180°D.∠3+∠4=180°【分析】根据 AB∥CD,可得∠3+∠5=180°,再根据∠5=∠4,即可得出∠3+∠4=180°.【解答】解:如图,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,应选(yīnɡ xuǎn):D.【点评】此题考察(kǎochá)了平行线的性质,解题时注意:两直线平行,同旁内角互补.28.〔2021•,3,3分〕以下图形中,根据AB∥CD,能得到∠1=∠2的是〔〕【分析】两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等,据此进展判断即可.【解答】解:A.根据AB∥CD,能得到∠1+∠2=180°,故本选项不符合题意;B.如图,根据AB∥CD,能得到∠3=∠4,再根据对顶角相等,可得∠1=∠2,故本选项符合题意;C.根据AC∥BD,能得到∠1=∠2,故本选项不符合题意; D.根据AB 平行CD,不能得到∠1=∠2,故本选项不符合题意;应选:B.【点评】此题主要考察了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.29.〔2021•,3,3分〕如图,直线a∥b,等腰直角三角板的两个顶点分别落在直线a、b 上,假设∠1=30°,那么∠2 的度数是〔〕A.45° B.30° C.15° D.10°【分析(fēnxī)】根据a∥b,得到∠1+∠3+∠4+∠2=180°,将∠1=30°,∠3=45°,∠4=90°代入即可求出∠2 的度数.【解答】解:如图.∵a∥b,∴∠1+∠3+∠4+∠2=180°,∵∠1=30°,∠3=45°,∠4=90°,∴∠2=15°,应选:C.【点评】此题考察了平行线的性质,纯熟掌握平行线的性质是解题的关键.30.〔2021•,4,3分〕如图,直线AB∥EF,点C 是直线AB 上一点,点D 是直线AB 外一点,假设∠BCD=95°,∠CDE=25°,那么∠DEF 的度数是〔〕A.110°B.115°C.120°D.125°【分析】直接延长FE 交DC 于点N,利用平行线的性质得出∠BCD=∠DNF=95°,再利用三角形外角的性质得出答案.【解答】解:延长FE 交DC 于点N,∵直线AB∥EF,∴∠BCD=∠DNF=95°,∵∠CDE=25°,∴∠DEF=95°+25°=120°.应选(yīnɡ xuǎn):C.【点评】此题主要考察了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键.31.〔2021•,3,3分〕如图,AB∥CD,∠D=42°,∠CBA=64°,那么∠CBD 的度数是〔〕A.42° B.64° C.74° D.106°【分析】利用平行线的性质、三角形的内角和定理计算即可;【解答】解:∵AB∥CD,∴∠ABC=∠C=64°,在△BCD 中,∠CBD=180°﹣∠C﹣∠D=180°﹣64°﹣42°=74°,应选:C.【点评】此题考察平行线的性质、三角形的内角和定理等知识,解题的关键是熟练掌握根本知识,属于中考根底题.32.〔2021•,5,3分〕把一副三角板放在同一程度桌面上,摆放成如下图的形状,使两个直角顶点重合,两条斜边平行,那么∠1 的度数是〔〕A.45° B.60° C.75° D.82.5°【分析(fēnxī)】直接利用平行线的性质结合角得出答案.【解答】解:作直线l 平行于直角三角板的斜边,可得:∠2=∠3=45°,∠3=∠4=30°,故∠1 的度数(dù shu)是:45°+30°=75°.应选:C.【点评】此题主要考察了平行线的性质,正确作出辅助线是解题关键.33.〔2021•,3,3分〕直线m∥n,将一块含30°角的直角三角板ABC 按如图方式放置〔∠ABC=30°〕,其中A,B 两点分别落在直线m,n 上,假设∠1=20°,那么∠2 的度数为〔〕A.20° B.30° C.45° D.50°【分析】根据平行线的性质即可得到结论.【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,应选:D.【点评】此题考察了平行线的性质,纯熟掌握平行线的性质是解题的关键.〔2021•,3,3分〕如图,假设l1∥l2,l3∥l4,那么图中与∠1 互补的角有〔〕A.1 个B.2 个C.3 个D.4 个【分析】直接利用平行线的性质得出相等的角以及互补(hù bǔ)的角进而得出答案.【解答】解:∵l1∥l2,l3∥l4,∴∠1+∠2=180°,2=∠4,∵∠4=∠5,∠2=∠3,∴图中与∠1 互补(hù bǔ)的角有:∠2,∠3,∠4,∠5 一共4 个.应选:D.【点评】此题主要考察了平行线的性质,注意不要漏角是解题关键.35.〔2021•,4,3 分〕如图,AB∥CD,∠1=45°,∠3=80°,那么∠2 的度数为〔〕A.30° B.35° C.40° D.45°【分析】根据平行线的性质和三角形的外角性质解答即可.【解答】解:∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3﹣∠4=80°﹣45°=35°,应选(yīnɡ xuǎn):B.【点评】此题考察平行线的性质,关键是根据平行线的性质和三角形的外角性质解答(jiědá).36.〔2021•,13,3分〕一大门栏杆的平面示意图如下图,BA 垂直地面AE 于点A,CD 平行于地面AE,假设∠BCD=150°,那么∠ABC= 120 度.【分析】先过点B 作BF∥CD,由CD∥AE,可得CD∥BF∥AE,继而证得∠1+∠ BCD=180°,∠2+∠BAE=180°,又由BA 垂直于地面AE 于A,∠BCD=150°,求得答案.【解答】解:如图,过点B 作BF∥CD,∵CD∥AE,∴CD∥BF∥AE,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=150°,∠BAE=90°,∴∠1=30°,∠2=90°,∴∠ABC=∠1+∠2=120°.故答案为:120.【点评】此题考察了平行线的性质.注意掌握辅助线的作法,注意数形结合思想的应用.37.〔2021•,5,3分〕如图,直线a∥b,直线c 分别交a,b 于点A,C,∠BAC 的平分线交直线b 于点D,假设∠1=50°,那么∠2 的度数是〔〕A.50° B.70° C.80° D.110°【分析(fēnxī)】直接利用角平分线的定义结合平行线的性质得出∠BAD=∠CAD=50°,进而得出答案.【解答】解:∵∠BAC 的平分线交直线b 于点D,∴∠BAD=∠CAD,∵直线a∥b,∠1=50°,∴∠BAD=∠CAD=50°,∴∠2=180°﹣50°﹣50°=80°.应选:C.【点评】此题主要考察了平行线的性质,正确得出∠BAD=∠CAD=50°是解题关键.38.〔2021•,3,3分〕如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.假如∠2=44°,那么∠1 的度数是〔〕A.14° B.15° C.16° D.17°【分析】根据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD,即可得出∠1=∠EBC=16°.【解答】解:如图,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,应选(yīnɡ xuǎn):C.【点评(diǎn pínɡ)】此题主要考察了平行线的性质,解题时注意:两直线平行,内错角相等.39.〔2021•,4,4分〕在平面内,将一个直角三角板按如下图摆放在一组平行线上;假设∠1=55°,那么∠2 的度数是〔〕A.50° B.45° C.40° D.35°【分析】直接利用平行线的性质结合直角得出∠2 的度数.【解答】解:由题意可得:∠1=∠3=55°,∠2=∠4=90°﹣55°=35°.应选:D.【点评】此题主要考察了平行线的性质,正确得出∠3 的度数是解题关键.40.〔2021•HY,4,4分〕如图把一个直角三角尺的直角顶点放在直尺的一边上,假设∠1=50°,那么∠2=〔〕A.20° B.30° C.40° D.50°【分析】根据两直线(zhíxiàn)平行,同位角相等可得∠3=∠1,再根据平角等于180°列式计算即可得解.【解答(jiědá)】解:∵直尺对边互相平行,∴∠3=∠1=50°,∴∠2=180°﹣50°﹣90°=40°.应选:C.【点评】此题考察了平行线的性质,平角的定义,熟记性质并准确识图是解题的关键.〔2021•HY,5,5分〕如图,AB∥CD,点E 在线段BC 上,CD=CE.假设∠ABC=30°,那么∠D 为〔〕A.85° B.75° C.60° D.30°【分析】先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.【解答】解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.应选(yīnɡxuǎn):B.【点评】此题考察的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE 得出∠D=∠CED,由三角形内角和定理求出∠D.【分析】直接利用(lìyòng)度分秒计算方法得出答案.【解答】解:∵∠BOC=29°18′,∴∠AOC 的度数为:180°﹣29°18′=150°42′.故答案为:150°42′.【点评】此题主要考察了角的计算,正确进展角的度分秒转化是解题关键.43.〔2021•,12,4分〕如图,直线a∥b,直线c 与直线a,b 分别交于点A,B.假设∠1=45°,那么∠2= 135° .【分析】直接利用平行线的性质结合邻补角的性质得出答案.【解答】解:∵直线a∥b,∠1=45°,∴∠3=45°,∴∠2=180°﹣45°=135°.故答案为:135°.【点评】此题主要考察了平行线的性质,正确得出∠3 的度数是解题关键.44.〔2021•,3,3分〕如图,∠B 的同位角可以是〔〕A.∠1 B.∠2 C.∠3 D.∠4【分析(fēnxī)】直接利用两条直线被第三条直线所截形成的角中,假设两个角都在两直线的同侧,并且在第三条直线〔截线〕的同旁,那么这样一对角叫做同位角,进而得出答案.【解答】解:∠B 的同位角可以是:∠4.应选:D.【点评】此题主要考察了同位角的定义,正确把握定义是解题关键.45.〔2021•,2,3 分〕如图,直线a,b 被直线c 所截,那么∠1 的同位角是〔〕A.∠2 B.∠3 C.∠4 D.∠5【分析】根据同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角解答即可.【解答】解:由同位角的定义可知,∠1 的同位角是∠4,应选:C.【点评】此题考察同位角问题,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解.46.〔2021•,4,3分〕如图,将一张含有(hán yǒu)30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,假设∠2=44°,那么∠1 的大小为〔〕A.14° B.16° C.90°﹣α D.α﹣44°【分析(fēnxī)】根据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出∠1=44°﹣30°=14°.【解答】解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得∠3=∠1+30°,∴∠1=44°﹣30°=14°,应选:A.【点评】此题主要考察了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.二、填空题:1. 〔2021•广西,13,3 分〕如图,a∥b,假设∠1=46°,那么∠2= 46 °.。

中考数学之平面几何最全总结+经典习题(K12教育文档)

中考数学之平面几何最全总结+经典习题(K12教育文档)

(直打版)中考数学之平面几何最全总结+经典习题(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)中考数学之平面几何最全总结+经典习题(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)中考数学之平面几何最全总结+经典习题(word版可编辑修改)的全部内容。

平面几何知识要点(一)【线段、角、直线】1.过两点有且只有一条直线。

2.两点之间线段最短。

3.过一点有且只有一条直线和已知直线垂直。

4.直线外一点与直线上各点连接的所有线段中,垂直线段最短。

垂直平分线,简称“中垂线"。

定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)。

线段的垂直平分线可看作和线段两端点距离相等的所有点的集合。

中垂线性质:垂直平分线垂直且平分其所在线段。

垂直平分线定理:垂直平分线上任意一点,到线段两端点的距离相等。

逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

.三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.角1.同角或等角的余角相等。

2.同角或等角的补角相等。

3.对顶角相等。

角的平分线性质角的平分线是到角的两边距离相等的所有点的集合定理1:角的平分线上的点到这个角的两边的距离相等。

定理2:到一个角的两边距离相等的点,在这个角的平分线上。

三角形各内角平分线的交点,该点叫内心,它到三角形三边距离相等.【平行线】平行线性质1:两直线平行,同位角相等.平行线性质2:两直线平行,内错角相等。

平行线性质3:两直线平行,同旁内角互补。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面几何基础专题一、选择题:1. (xx•浙江省衢州市,2,2 分)如图,直线a,b 被直线c 所截,那么∠1的同位角是()A.∠2B.∠3C.∠4 D.∠5【分析】根据同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角解答即可.【解答】解:由同位角的定义可知,∠1的同位角是∠4,故选:C.【点评】此题考查同位角问题,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解.2.(xx•广东省广州市,5,3 分)如图,直线AD,BE 被直线BF 和AC 所截,则∠1的同位角和∠5的内错角分别是()A.∠4,∠2B.∠2,∠6C.∠5,∠4D.∠2,∠4【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可.根据内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角进行分析即可.【解答】解:∠1的同位角是∠2,∠5的内错角是∠6,故选:B.【点评】此题主要考查了三线八角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.3.(xx•广东省深圳市,8,3 分)如图,直线a,b 被c,d 所截,且a∥b,则下列结论中正确的是()A.∠1=∠2B.∠3=∠4 C.∠2+∠4=180°D.∠1+∠4=180°【分析】依据两直线平行,同位角相等,即可得到正确结论.【解答】解:∵直线a,b 被c,d 所截,且a∥b,∴∠3=∠4,故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.4.(xx•广东省,8,3 分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30° B.40° C.50° D.60°【分析】依据三角形内角和定理,可得∠D=40°,再根据平行线的性质,即可得到∠B=∠D=40°.【解答】解:∵∠DEC=100°,∠C=40°,∴∠D=40°,又∵A B∥CD,∴∠B=∠D=40°,故选:B.【点评】本题考查了平行线性质的应用,运用两直线平行,内错角相等是解题的关键.5.(xx•广西桂林市,3,3 分)如图,直线a,b 被直线c 所截,a∥b,∠1=60°,则∠2的度数是()A.120°B.60° C.45° D.30°【分析】利用两直线平行,同位角相等就可求出.【解答】解:∵直线被直线a、b 被直线c 所截,且a∥b,∠1=60°∴∠2=∠1=60°.故选:B.【点评】本题考查了平行线的性质,应用的知识为两直线平行,同位角相等.6.(xx•贵州省安顺市,4,3 分)如图,直线a∥b,直线l 与a、b 分别相交于A、B 两点,过点A 作直线l的垂线交直线b 于点C,若∠1=58°,则∠2 的度数为()A.58° B.42° C.32° D.28°【分析】根据平行线的性质得出∠ACB=∠2,根据三角形内角和定理求出即可.【解答】解:∵直线a∥b,∴∠ACB=∠2,AC⊥BA,∴∠BAC=90°,∴∠2=∠ACB=180°﹣∠1﹣∠BAC=180°﹣90°﹣58°=32°,故选:C.【点评】本题考查了对平行线的性质和三角形内角和定理的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补7.(xx•贵州省黔东南州,4,4 分)如图,已知 AD∥BC,∠B=30°,DB 平分∠ADE,则∠DEC=()A.30° B.60° C.90° D.120°【分析】根据平行线的性质:两条直线平行,内错角相等及角平分线的性质,三角形内角和定理解答.【解答】解:∵AD∥BC,∴∠A DB=∠B=30°,再根据角平分线的概念,得:∠BDE=∠A DB=30°,再根据两条直线平行,内错角相等得:∠DEC=∠A DE=60°,故选:B.【点评】考查了平行线的性质、角平分线的概念,要熟练掌握.8.(xx•黑龙江省齐齐哈尔市,4,3 分)一副直角三角板如图放置,点C 在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC 的度数为()A.10° B.15° C.18° D.30°【分析】直接利用三角板的特点,结合平行线的性质得出∠A BD=60°,进而得出答案.【解答】解:由题意可得:∠E DF=45°,∠A BC=30°,∵A B∥CF,∴∠A BD=∠E DF=45°,∴∠DBC=45°﹣30°=15°.故选:B.【点评】此题主要考查了平行线的性质,根据题意得出∠A BD 的度数是解题关键.9.(xx•湖北省恩施州,6,3 分)如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°【分析】如图求出∠5 即可解决问题.【解答】解:∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°﹣∠5=125°,故选:A.【点评】本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题.10.(xx•湖北省江汉油田,4,3 分)如图,AD∥BC,∠C=30°,∠A DB:∠BDC=1:2,则∠DBC 的度数是()A.30° B.36° C.45° D.50°【分析】直接利用平行线的性质得出∠A DC=150°,∠A DB=∠DBC,进而得出∠A DB的度数,即可得出答案.【解答】解:∵AD∥BC,∠C=30°,∴∠A DC=150°,∠A DB=∠DBC,∵∠A DB:∠BDC=1:2,∴∠A DB=13×150°=50°,∴∠DBC 的度数是50°.故选:D.【点评】此题主要考查了平行线的性质,正确得出∠A DB 度数是解题关键.11.(xx•湖北省荆门市,5,3 分)已知直线a∥b,将一块含 45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2 的度数为()A.80° B.70° C.85° D.75°【分析】想办法求出∠5即可解决问题;【解答】解:∵∠1=∠3=55°,∠B=45°,∴∠4=∠3+∠B=100°,∵a∥b,∴∠5=∠4=100°,∴∠2=180°﹣∠5=80°,故选:A.【点评】本题考查平行线的性质,三角形内角和定理,三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.12.(xx•湖北省潜江市,4,3 分)如图,AD∥BC,∠C=30°,∠A DB:∠BDC=1:2,则∠DBC 的度数是()A.30° B.36° C.45° D.50°【分析】直接利用平行线的性质得出∠A DC=150°,∠A DB=∠DBC,进而得出∠A DB的度数,即可得出答案.【解答】解:∵AD∥BC,∠C=30°,∴∠A DC=150°,∠A DB=∠DBC,∵∠A DB:∠BDC=1:2,∴∠A DB=13×150°=50°,∴∠DBC 的度数是50°.故选:D.【点评】此题主要考查了平行线的性质,正确得出∠A DB 度数是解题关键.13.(xx•湖北省随州市,4,3 分)如图,在平行线l1、l2 之间放置一块直角三角板,三角板的锐角顶点A,B 分别在直线l1、l2 上,若∠l=65°,则∠2的度数是()A.25° B.35° C.45° D.65°【分析】过点C 作CD∥a,再由平行线的性质即可得出结论.【解答】解:如图,过点C 作CD∥a,则∠1=∠ACD.∵a∥b,∴CD∥b,∴∠2=∠DCB.∵∠A CD+∠DCB=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°.故选:A.【点评】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.14.(xx•湖北省天门市,4,3 分)如图,AD∥BC,∠C=30°,∠A DB:∠BDC=1:2,则∠DBC 的度数是()A.30° B.36° C.45° D.50°【分析】直接利用平行线的性质得出∠A DC=150°,∠A DB=∠DBC,进而得出∠A DB 的度数,即可得出答案.【解答】解:∵AD∥BC,∠C=30°,∴∠A DC=150°,∠A DB=∠DBC,∵∠A DB:∠BDC=1:2,∴∠A DB=13×150°=50°,∴∠DBC 的度数是50°.故选:D.【点评】此题主要考查了平行线的性质,正确得出∠A DB 度数是解题关键.15.(xx•湖北省咸宁市,2,3 分)如图,已知a∥b,l 与a、b 相交,若∠1=70°,则∠2的度数等于()A.120°B.110°C.100°D.70°【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【解答】解:如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°.故选:B.【点评】本题利用平行线的性质和邻补角的定义,熟练掌握性质和概念是解题的关键.16.(xx•湖北省襄阳市,3,3 分)如图,把一块三角板的直角顶点放在一直尺的一边上,若∠1=50°,则∠2 的度数为()A.55° B.50° C.45° D.40°【分析】利用平行线的性质求出∠3即可解决问题;【解答】解:∵∠1=∠3=50°,∠2+∠3=90°,∴∠2=90°﹣∠3=40°,故选:D.【点评】本题考查平行线的性质,三角板的性质等知识,解题的关键是灵活运用所学知识解决问题.17.(xx•湖北省孝感市,2,3 分)如图,直线AD∥BC,若∠1=42°,∠BAC=78°,则∠2的度数为()A.42° B.50° C.60° D.68°【分析】依据三角形内角和定理,即可得到∠A BC=60°,再根据AD∥BC,即可得出∠2=∠A BC=60°.【解答】解:∵∠1=42°,∠BAC=78°,∴∠A BC=60°,又∵A D∥BC,∴∠2=∠A BC=60°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.18.(xx•湖南省郴州市,4,3 分)如图,直线a,b 被直线c 所截,下列条件中,不能判定a∥b()A.∠2=∠4B.∠1+∠4=180°C.∠5=∠4 D.∠1=∠3【分析】根据同位角相等,两直线平行;同旁内角互补,两直线平行;内错角相等,两直线平行,进行判断即可.【解答】解:由∠2=∠4或∠1+∠4=180°或∠5=∠4,可得a∥b;由∠1=∠3,不能得到a∥b;故选:D.【点评】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;同旁内角互补,两直线平行.19.(xx•湖南省怀化市,2,4 分)如图,直线a∥b,∠1=60°,则∠2=()A.30° B.60° C.45° D.120°【分析】根据两直线平行,同位角相等即可求解.【解答】解:∵a∥b,∴∠2=∠1,∵∠1=60°,∴∠2=60°.故选:B.【点评】本题考查了平行线的性质,掌握两直线平行,同位角相等是解题的关键.20.(xx•湖南省邵阳市,2,3 分)如图所示,直线AB,CD 相交于点O,已知∠AOD=160°,则∠BOC 的大小为()A.20° B.60° C.70° D.160°【分析】根据对顶角相等解答即可.【解答】解:∵∠AOD=160°,∴∠BOC=∠AOD=160°,故选:D.【点评】此题考查对顶角、邻补角,关键是根据对顶角相等解答.21.(xx•湖南省湘西州,7,4 分)如图,DA⊥CE 于点A,CD∥A B,∠1=30°,则∠D= 60° .【分析】先根据垂直的定义,得出∠BAD=60°,再根据平行线的性质,即可得出∠D的度数.【解答】解:∵DA⊥CE,∴∠DAE=90°,∵∠EAB=30°,∴∠BAD=60°,又∵A B∥CD,∴∠D=∠BAD=60°,故答案为:60°.【点评】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等.22.(xx•湖南省株洲市,9,3 分)如图,直线l1,l2 被直线l3 所截,且l1∥l2,过l1 上的点A 作AB⊥l3 交l3 于点B,其中∠1<30°,则下列一定正确的是()A.∠2>120°B.∠3<60°C.∠4﹣∠3>90°D.2∠3>∠4【分析】根据三角形内角和定理求出∠ACB,再根据平行线的性质逐个判断即可.【解答】解:∵A B⊥l3,∴∠A BC=90°,∵∠1<30°∴∠ACB=90°﹣∠1>60°,∴∠2<120°,∵直线l1∥l2,∴∠3=∠A BC>60°,∴∠4﹣∠3=180°﹣∠3﹣∠3=180°﹣2∠3<60°,2∠3>∠4,故选:D.【点评】本题考查了平行线的性质和三角形内角和定理,能求出各个角的度数是解此题的关键.23.(xx•吉林省,4,2 分)如图,将木条a,b 与c 钉在一起,∠1=70°,∠2=50°,要使木条a 与b 平行,木条a 旋转的度数至少是()A.10° B.20° C.50° D.70°【分析】根据同位角相等两直线平行,求出旋转后∠2的同位角的度数,然后用∠1减去即可得到木条a 旋转的度数.【解答】解:如图.∵∠AOC=∠2=50°时,O A∥b,∴要使木条a 与b 平行,木条a 旋转的度数至少是70°﹣50°=20°.故选:B.【点评】本题考查了旋转的性质,平行线的判定,根据同位角相等两直线平行求出旋转后∠2的同位角的度数是解题的关键.24.(xx•江苏省淮安市,5,3 分)如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2 的度数是()A.35° B.45° C.55° D.65°【分析】求出∠3即可解决问题;【解答】解:∵∠1+∠3=90°,∠1=35°,∴∠3=55°,∴∠2=∠3=55°,故选:C.【点评】此题考查了平行线的性质.两直线平行,同位角相等的应用是解此题的关键.25.(xx•江苏省宿迁市,3,3 分)如图,点D 在△A BC 边AB 的延长线上,DE∥BC.若∠A=35°,∠C=24°,则∠D的度数是()A.24° B.59° C.60° D.69°【分析】根据三角形外角性质求出∠DBC,根据平行线的性质得出即可.【解答】解:∵∠A=35°,∠C=24°,∴∠DB C=∠A+∠C=59°,∵D E∥BC,∴∠D=∠DBC=59°,故选:B.【点评】本题考查了三角形外角性质和平行线的性质,能熟练地运用性质进行推理是解此题的关键.26.(xx•辽宁省沈阳市,6,2 分)如图,AB∥CD,EF∥G H,∠1=60°,则∠2补角的度数是()A.60° B.100°C.110°D.120°【分析】根据平行线的性质比较多定义求解即可;【解答】解:∵A B∥CD,∴∠1=∠EFH,∵EF∥G H,∴∠2=∠EFH,∴∠2=∠1=60°,∴∠2的补角为120°,故选:D.【点评】本题考查平行线的性质、补角和余角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.27 xx•山东省滨州市,3,3 分)如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2B.∠3=∠4 C.∠1+∠3=180°D.∠3+∠4=180°【分析】依据 AB∥CD,可得∠3+∠5=180°,再根据∠5=∠4,即可得出∠3+∠4=180°.【解答】解:如图,∵A B∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故选:D.【点评】本题考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.28.(xx•山东省东营市,3,3 分)下列图形中,根据AB∥CD,能得到∠1=∠2的是()【分析】两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等,据此进行判断即可.【解答】解:A.根据AB∥CD,能得到∠1+∠2=180°,故本选项不符合题意;B.如图,根据AB∥CD,能得到∠3=∠4,再根据对顶角相等,可得∠1=∠2,故本选项符合题意;C.根据AC∥BD,能得到∠1=∠2,故本选项不符合题意; D.根据AB 平行CD,不能得到∠1=∠2,故本选项不符合题意;故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.29.(xx•山东省菏泽市,3,3 分)如图,直线a∥b,等腰直角三角板的两个顶点分别落在直线a、b 上,若∠1=30°,则∠2的度数是()A.45° B.30° C.15° D.10°【分析】根据a∥b,得到∠1+∠3+∠4+∠2=180°,将∠1=30°,∠3=45°,∠4=90°代入即可求出∠2的度数.【解答】解:如图.∵a∥b,∴∠1+∠3+∠4+∠2=180°,∵∠1=30°,∠3=45°,∠4=90°,∴∠2=15°,故选:C.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.30.(xx•山东省聊城市,4,3 分)如图,直线AB∥EF,点C 是直线AB 上一点,点D 是直线AB 外一点,若∠BCD=95°,∠CD E=25°,则∠DEF 的度数是()A.110°B.115°C.120°D.125°【分析】直接延长FE 交DC 于点N,利用平行线的性质得出∠BCD=∠DN F=95°,再利用三角形外角的性质得出答案.【解答】解:延长FE 交DC 于点N,∵直线AB∥EF,∴∠BCD=∠DNF=95°,∵∠CD E=25°,∴∠DEF=95°+25°=120°.故选:C.【点评】此题主要考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键.31.(xx•山东省临沂市,3,3 分)如图,AB∥CD,∠D=42°,∠C BA=64°,则∠CBD 的度数是()A.42° B.64° C.74° D.106°【分析】利用平行线的性质、三角形的内角和定理计算即可;【解答】解:∵A B∥CD,∴∠A B C=∠C=64°,在△BCD 中,∠C BD=180°﹣∠C﹣∠D=180°﹣64°﹣42°=74°,故选:C.【点评】本题考查平行线的性质、三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考基础题.32.(xx•山东省潍坊市,5,3 分)把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A.45° B.60° C.75° D.82.5°【分析】直接利用平行线的性质结合已知角得出答案.【解答】解:作直线l 平行于直角三角板的斜边,可得:∠2=∠3=45°,∠3=∠4=30°,故∠1的度数是:45°+30°=75°.故选:C.【点评】此题主要考查了平行线的性质,正确作出辅助线是解题关键.33.(xx•山东省枣庄市,3,3 分)已知直线m∥n,将一块含30°角的直角三角板ABC 按如图方式放置(∠A BC=30°),其中A,B 两点分别落在直线m,n 上,若∠1=20°,则∠2 的度数为()A.20° B.30° C.45° D.50°【分析】根据平行线的性质即可得到结论.【解答】解:∵直线m∥n,∴∠2=∠A BC+∠1=30°+20°=50°,故选:D.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.(xx•陕西省,3,3 分)如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有()A.1 个B.2 个C.3 个D.4 个【分析】直接利用平行线的性质得出相等的角以及互补的角进而得出答案.【解答】解:∵l1∥l2,l3∥l4,∴∠1+∠2=180°,2=∠4,∵∠4=∠5,∠2=∠3,∴图中与∠1互补的角有:∠2,∠3,∠4,∠5共4 个.故选:D.【点评】此题主要考查了平行线的性质,注意不要漏角是解题关键.35.(xx•四川省达州市,4,3 分)如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为()A.30° B.35° C.40° D.45°【分析】根据平行线的性质和三角形的外角性质解答即可.【解答】解:∵A B∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3﹣∠4=80°﹣45°=35°,故选:B.【点评】此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.36.(xx•四川省广安市,13,3 分)一大门栏杆的平面示意图如图所示,BA 垂直地面AE 于点A,CD 平行于地面AE,若∠BCD=150°,则∠A BC= 120 度.【分析】先过点B 作B F∥CD,由CD∥A E,可得CD∥B F∥A E,继而证得∠1+∠ BCD=180°,∠2+∠BAE=180°,又由BA 垂直于地面AE 于A,∠BCD=150°,求得答案.【解答】解:如图,过点B 作B F∥CD,∵CD∥A E,∴CD∥B F∥A E,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=150°,∠BAE=90°,∴∠1=30°,∠2=90°,∴∠A B C=∠1+∠2=120°.故答案为:120.【点评】此题考查了平行线的性质.注意掌握辅助线的作法,注意数形结合思想的应用.37.(xx•四川省泸州市,5,3 分)如图,直线a∥b,直线c 分别交a,b 于点A,C,∠BAC 的平分线交直线 b 于点 D,若∠1=50°,则∠2 的度数是()A.50° B.70° C.80° D.110°【分析】直接利用角平分线的定义结合平行线的性质得出∠BAD=∠CAD=50°,进而得出答案.【解答】解:∵∠BAC 的平分线交直线b 于点D,∴∠BAD=∠CA D,∵直线a∥b,∠1=50°,∴∠BAD=∠CAD=50°,∴∠2=180°﹣50°﹣50°=80°.故选:C.【点评】此题主要考查了平行线的性质,正确得出∠BAD=∠CAD=50°是解题关键.38.(xx•四川省绵阳市,3,3 分)如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1 的度数是()A.14° B.15° C.16° D.17°【分析】依据∠A BC=60°,∠2=44°,即可得到∠EB C=16°,再根据BE∥CD,即可得出∠1=∠EB C=16°.【解答】解:如图,∵∠A BC=60°,∠2=44°,∴∠EB C=16°,∵B E∥CD,∴∠1=∠EB C=16°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.39.(xx•四川省自贡市,4,4 分)在平面内,将一个直角三角板按如图所示摆放在一组平行线上;若∠1=55°,则∠2 的度数是()A.50° B.45° C.40° D.35°【分析】直接利用平行线的性质结合已知直角得出∠2的度数.【解答】解:由题意可得:∠1=∠3=55°,∠2=∠4=90°﹣55°=35°.故选:D.【点评】此题主要考查了平行线的性质,正确得出∠3的度数是解题关键.40.(xx•新疆乌鲁木齐市,4,4 分)如图把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=()A.20° B.30° C.40° D.50°【分析】根据两直线平行,同位角相等可得∠3=∠1,再根据平角等于180°列式计算即可得解.hh【解答】解:∵直尺对边互相平行,∴∠3=∠1=50°,∴∠2=180°﹣50°﹣90°=40°. 故选:C .【点评】本题考查了平行线的性质,平角的定义,熟记性质并准确识图是解题的 关键.(xx •新疆,5,5 分)如图,AB ∥CD ,点 E 在线段 BC 上,CD=CE .若∠A BC=30°, 则∠D 为( )A .85°B .75°C .60°D .30°【分析】先由 AB ∥CD ,得∠C =∠A BC=30°,CD=CE ,得∠D =∠CE D ,再根据三角 形内角和定理得,∠C +∠D +∠CE D=180°,即 30°+2∠D=180°,从而求出∠D .【解答】解:∵A B ∥CD ,∴∠C =∠A BC=30°,又∵CD =CE ,∴∠D =∠CE D ,∵∠C +∠D +∠CE D=180°,即 30°+2∠D=180°,∴∠D=75°.故选:B .【点评】此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据 平行线的性质求出∠C ,再由 CD=CE 得出∠D=∠CE D ,由三角形内角和定理求出∠D .h【分析】直接利用度分秒计算方法得出答案.【解答】解:∵∠BOC=29°18′,∴∠AOC 的度数为:180°﹣29°18′=150°42′.故答案为:150°42′.【点评】此题主要考查了角的计算,正确进行角的度分秒转化是解题关键.43.(xx•浙江省杭州市,12,4 分)如图,直线a∥b,直线c 与直线a,b 分别交于点A,B.若∠1=45°,则∠2= 135° .【分析】直接利用平行线的性质结合邻补角的性质得出答案.【解答】解:∵直线a∥b,∠1=45°,∴∠3=45°,∴∠2=180°﹣45°=135°.故答案为:135°.【点评】此题主要考查了平行线的性质,正确得出∠3的度数是解题关键.44.(xx•浙江省丽水市,3,3 分)如图,∠B的同位角可以是()hhA .∠1B .∠2C .∠3D .∠4【分析】直接利用两条直线被第三条直线所截形成的角中,若两个角都在两直线 的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,进而得 出答案.【解答】解:∠B 的同位角可以是:∠4. 故选:D .【点评】此题主要考查了同位角的定义,正确把握定义是解题关键.45.(xx •浙江省衢州市,2,3 分)如图,直线 a ,b 被直线 c 所截,那么∠1 的 同位角是()A .∠2B .∠3C .∠4D .∠5【分析】根据同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线 同侧的位置的角解答即可.【解答】解:由同位角的定义可知,∠1 的同位角是∠4,故选:C .【点评】此题考查同位角问题,解答此类题确定三线八角是关键,可直接从截线 入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们 正确理解.46.(xx •山东省泰安市,4,3 分)如图,将一张含有 30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44°,则∠1 的大小为()A.14° B.16° C.90°﹣α D.α﹣44°【分析】依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出∠1=44°﹣30°=14°.【解答】解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得∠3=∠1+30°,∴∠1=44°﹣30°=14°,故选:A.【点评】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.二、填空题:1. (xx•广西柳州市,13,3 分)如图,a∥b,若∠1=46°,则∠2= 46 °.【分析】根据平行线的性质,得到∠1=∠2即可.hhhh 【解答】解:∵a∥b ,∠1=46°,∴∠2=∠1=46°,故答案为:46.【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位 角相等.2. (xx •贵州省铜仁市,14,4 分)如图,m∥n ,∠1=110°,∠2=100°,则∠3= 150 °.【分析】两直线平行,同旁内角互补,然后根据三角形内角和为 180°即可解答. 【解答】解:如图,∵m∥n ,∠1=110°,∴∠4=70°,∵∠2=100°,∴∠5=80°,∴∠6=180°﹣∠4﹣∠5=30°,∴∠3=180°﹣∠6=150°,故答案为:150.【点评】本题主要考查平行线的性质,两直线平行时,应该想到它们的性质,由 两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.3. (xx •河南省,12,3 分)如图,直线 AB ,CD 相交于点 O ,EO ⊥AB 于点 O , ∠EOD=50°,则∠BOC 的度数为 140° .h【分析】直接利用垂直的定义结合互余以及互补的定义分析得出答案.【解答】解:∵直线AB,CD 相交于点O,EO⊥AB于点O,∴∠EOB=90°,∵∠EOD=50°,∴∠BOD=40°,则∠BOC 的度数为:180°﹣40°=140°.故答案为:140°.【点评】此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.4. (xx•湖南省岳阳市,14,4 分)如图,直线a∥b,∠l=60°,∠2=40°,则∠3= 80° .【分析】根据平行线的性质求出∠4,根据三角形内角和定理计算即可.【解答】解:∵a∥b,∴∠4=∠l=60°,∴∠3=180°﹣∠4﹣∠2=80°,故答案为:80°.【点评】本题考查的是平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.5. (xx•江苏省盐城市,13,3 分)将一个含有 45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2= 85° .【分析】直接利用三角形外角的性质结合平行线的性质得出答案.【解答】解:∵∠1=40°,∠4=45°,∴∠3=∠1+∠4=85°,∵矩形对边平行,∴∠2=∠3=85°.故答案为:85°.【点评】此题主要考查了平行线的性质,正确得出∠3的度数是解题关键.6. (xx•内蒙古通辽市,12,3 分)如图,∠AOB 的一边OA 为平面镜,∠ AOB=37°45′,在OB 边上有一点E,从点E 射出一束光线经平面镜反射后,反射光线DC 恰好与OB 平行,则∠DEB 的度数是 75°30′(或75.5°).【分析】首先证明∠ED O=∠AOB=37°45′,根据∠E DB=∠AOB+∠E DO 计算即可解决问题;【解答】解:∵C D∥OB,∴∠A D C=∠AOB,∵∠E D O=∠C DA,∴∠E D O=∠AOB=37°45′,∴∠E DB=∠AOB+∠E DO=2×37°45′=75°30′(或75.5°),故答案为75°30′(或75.5°).【点评】本题考查平行线的性质、度分秒的换算等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.7. (xx•山东省淄博市,13,4 分)如图,直线a∥b,若∠1=140°,则∠2= 40度.【分析】由两直线平行同旁内角互补得出∠1+∠2=180°,根据∠1的度数可得答案.【解答】解:∵a∥b,∴∠1+∠2=180°,∵∠1=140°,∴∠2=180°﹣∠1=40°,故答案为:40.【点评】本题主要考查平行线的性质,解题的关键是掌握两直线平行同旁内角互补.三、填空题:1. (xx•重庆市,19,8 分)如图,直线AB∥CD,BC 平分∠A BD,∠1=54°,求∠2的度数.【分析】直接利用平行线的性质得出∠3的度数,再利用角平分线的定义结合平角的定义得出答案.【解答】解:∵直线AB∥CD,∴∠1=∠3=54°,∵BC 平分∠A BD,∴∠3=∠4=54°,∴∠2的度数为:180°﹣54°﹣54°=72°.【点评】此题主要考查了平行线的性质,正确得出∠3的度数是解题关键.欢迎您的下载,资料仅供参考!。

相关文档
最新文档