重庆市第一中学校2020-2021学年高一上学期期末数学试题 答案和解析
重庆市2020_2021学年高一生物上学期期末考试试题(含答案)
重庆市2020-2021学年高一生物上学期期末考试试题注意:本试卷包含Ⅰ、Ⅱ两卷。
第Ⅰ卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。
第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。
答案写在试卷上均无效,不予记分。
一、单选题(本大题共15小题,共15.0分)1.研究叶肉细胞的结构和功能时,取匀浆或上清液依次离心将不同的结构分开,其过程和结果如图所示,P1~P4表示四次离心后的沉淀物,S1~S4表示四次离心后的上清液。
据此分析,下列叙述正确的是()A. 此过程为差速离心法,获取哺乳动物成熟的红细胞膜也是使用该方法B. DNA仅存在于P1、P2和P3中C. S1、S2、S3和S4中均有多种酶D. P1、P2、P3和P4中均有膜结构2.在下列有关实验叙述的组合中,正确的是()①用双缩脲试剂A液、B液和蒸馏水的组合可用来鉴定蛋白质,也可用来鉴定还原糖②观察DNA和RNA在细胞中的分布时,使用质量分数为8%的盐酸的目的是改变细胞膜的通透性,加速染色剂进入细胞③用植物根尖进行实验时,叶绿体的存在会干扰实验现象的观察④高倍显微镜下观察细胞中的线粒体时,需将刮取的口腔上皮细胞先置于生理盐水中以维持正常形态,再滴加健那绿染液染色⑤质壁分离及复原实验中先后用低倍和高倍显微镜观察三次,形成自身前后对照⑥科学家通过伞藻的嫁接实验证明了细胞核控制着伞藻帽的性状A. ①②③④⑤⑥B. ①②③④⑥C. ②④D. ①②③④3.下表为甲同学用某浓度KNO3溶液进行质壁分离实验时所测得的数据。
下图为乙同学用另一浓度的KNO3溶液进行质壁分离实验时所绘制的曲线图。
下列分析正确的是()2分钟4分钟6分钟8分钟10分钟原生质体相对90% 60% 30% 30% 30%大小A. 甲同学实验进行到8分钟时质壁分离达到平衡,滴加清水后发生质壁分离复原B. 甲同学所用溶液浓度要大于乙同学C. 乙同学在T1时可观察到质壁分离现象,此时细胞液浓度一定小于外界溶液浓度D. 乙同学在T2时观察不到质壁分离现象,此时细胞液浓度一定等于外界溶液浓度4.核糖体由大亚基和小亚基组成。
2020-2021学年重庆市某校高一(上)第一次月考数学试卷
2020-2021学年重庆市某校高一(上)第一次月考数学试卷一、单选题(本大题共8小题,每小题5分,共40分在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列关系正确的是()A.{0, 1}≠{1, 0}B.{0}∈{0, 1, 2}C.{0, 1}⊆{(0, 1)}D.⌀⊆{0, 1}2. 已知集合A={1, 3a},B={a, b},若A∩B={13},则a2−b2=()A.4 3B.0C.89D.2√233. 设x>0,y>0,M=x+y1+x+y ,N=x1+x+y1+y,则M,N的大小关系是()A.M<NB.M=NC.不能确定D.M>N4. 若实数a,b满足a≥0,b≥0,且ab=0,则称a与b互补,记φ(a, b)=√a2+b2−a−b,那么φ(a, b)=0是a与b互补的()A.充分不必要条件B.必要不充分条件C.既不充分也不必要条件D.充要条件5. 已知不等式ax2−bx−1≥0的解集是{x|−12≤x≤−13},则不等式x2−bx−a<0的解集是()A.{x|x<2或x>3}B.{x|2<x<3}C.{x|13<x<12} D.{x|x<13x>12}6. 若a>0,b>0且a+b=7,则4a +1b+2的最小值为()A.1B.89C.10277D.987. 关于x的不等式x2−(a+1)x+a<0的解集中恰有两个整数,则实数a的取值范围是()A.−2≤a≤−1或3≤a≤4B.−2<a≤−1或3≤a<4C.−2≤a<−1或3<a≤4D.−2<a<−1或3<a<48. 下列说法正确的是()A.命题“若x+y≠5,则x≠2或y≠3”与命题“若x=2且y=3,则x+y=5”真假相同B.若命题p,¬q都是真命题,则命题“(¬p)∨q”为真命题C.“x=−1”是“x2−5x−6=0”的必要不充分条件D.命题“∀x>1,2x>0”的否定是“∃x0≤1,2x0≤0”二、多选题(本大题共4小题,每小题5分,共20分在每小题给出的四个选项中,有多项是符合题目要求的,全部选对得5分,部分选对的得3分,有选错的得0分)下列各不等式,其中不正确的是()A.|x+1x|≥2(x∈R,x≠0) B.a2+1>2a(a∈R)C.√ab≥2(ab≠0) D.x2+1x2+1>1(x∈R)下列不等式中可以作为x2<1的一个充分不必要条件的有()A.0<x<1B.x<1C.−1<x<0D.−1<x<1下列命题正确的是()A.∀a∈R,∃x∈R,使得ax>2B.∃a,b∈R,|a−2|+(b+1)2≤0C.ab≠0是a2+b2≠0的充要条件D.若a≥b>0,则a1+a≥b1+b给定数集M,若对于任意a,b∈M,有a+b∈M,且a−b∈M,则称集合M为闭集合,则下列说法中不正确的是()A.正整数集是闭集合B.集合M={−4, −2, 0, 2, 4}为闭集合C.集合M={n|n=3k, k∈Z}为闭集合D.若集合A1,A2为闭集合,则A1∪A2为闭集合三、填空题(本大题共4小题,每小题5分,共20分)已知集合A={x∈Z|x2−4x+3<0},B={0, 1, 2},则A∩B=________.若“x>3”是“x>a“的充分不必要条件,则实数a的取值范围是________.若不等式ax2+2ax−4<0的解集为R,则实数a的取值范围是________.已知x>0,y>0,且x+3y=xy,若t2+t<x+3y恒成立,则实数t的取值范围是________ 四、解答题:(本大题共6小题,共70分。
【新结构】2023-2024学年重庆市七校联考高一下学期期末考试数学试题+答案解析
【新结构】2023-2024学年重庆市七校联考高一下学期期末考试数学试题❖一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知圆柱的底面直径和高均为2,则该圆柱的侧面积为()A. B. C. D.2.下列说法正确的是()A.若,则,B.单位向量的模是1,所有单位向量是相等向量C.相反向量的长度相等D.共线向量是在同一条直线上的向量3.已知平面和直线l,直线m,下列命题正确的是()A.若,,则B.若,,则C.若,,则D.若,,则4.已知,,则下列选项正确的是()A.B.C.与的夹角为D.向量在向量方向上的投影向量为5.连续抛掷一枚质地均匀的骰子2次,记录每次朝上的点数,设事件A为“第一次的点数是6”,事件B 为“第二次的点数小于4”,事件C为“两次的点数之和为偶数”,则()A. B.A与B互斥 C.A与C互斥 D.A与C相互独立6.如图,在矩形ABCD中,,E是CD的中点,沿AE将折起,使点D到达点P的位置,并满足,如图,则下列选项错误的是()A.平面平面PBEB.平面平面PBEC.平面平面ABCED.平面平面ABCE7.如图,已知正方形ABCD的边长为2,若动点P在以AB为直径的半圆上正方形ABCD内部,含边界,则的取值范围为()A. B. C. D.8.新高考中数学多项选择题的评分规则是:“在每小题给出的四个选项中,全部选对得6分,若两个正确选项,只选对一个正确项得3分,有选错的得0分;若有三个正确选项,只选对一个得2分,只选对两个选项得4分,有选错的得0分,我们假定不会出现四个选项都正确的情况”现已知某选择题的正确答案是CD,且甲、乙、丙、丁四位同学都不会做,均随机选择选项.下列表述错误的是()A.若甲只选一个选项,能得3分的概率是B.若乙选两个选项,能得6分的概率是C.若丙至少选一个选项,能得分的概率是D.若丁至少选两个选项,能得分的概率是二、多选题:本题共3小题,共15分。
2020-2021学年重庆市高一上学期期中数学试题(解析版)
2020-2021学年重庆市高一上学期期中数学试题一、单选题1.已知集合{0,1,2}A =,则A 的子集个数为( ) A .6 B .7 C .8 D .16【答案】C【分析】根据子集的个数为2n (n 为集合元素的个数),即可求得答案. 【详解】{0,1,2}A =.根据子集的个数为2,n (n 为集合元素的个数)∴A 的子集个数328=.故选:C .【点睛】本题考查了求集合子集个数问题,解题关键是掌握子集概念,考查了分析能力和计算能力,属于基础题.2.已知()f x 是偶函数,()g x 是奇函数,且2()()(1)f x g x x +=-,则(1)f -=( ) A .2 B .2- C .1 D .1-【答案】A【分析】分别取1x =和1x =-,代入函数根据奇偶性得到答案. 【详解】()f x 是偶函数,()g x 是奇函数,2()()(1)f x g x x +=-,取1x =得到(1)(1)0f g +=,即(1)(1)0f g ---=;取1x =-得到(1)(1)4f g -+-=; 解得(1)2f -= 故选:A【点睛】本题考查了根据函数奇偶性求函数值,意在考查学生对于函数性质的灵活运用. 3.2()4f x ax bx a =+-是偶函数,其定义域为[1,2]a a --,对实数m 满足2()(1)f x m ≤+恒成立,则m 的取值范围是( ) A .(,3][1,)-∞-+∞ B .[3,1]- C .(,1][3,)-∞-⋃+∞ D .[1,3]-【答案】A【分析】根据奇偶性得到0b =,1a =-得到2()4f x x =-+,计算函数的最大值,解不等式得到答案.【详解】2()4f x ax bx a =+-是偶函数,其定义域为[1,2]a a --,则0b =,且()12a a -=--即1a =-,故2()4f x x =-+,()max ()04f x f ==故24(1)m ≤+,解得m 1≥或3m ≤- 故选:A【点睛】本题考查了根据函数奇偶性求参数,函数最值,解不等式,意在考查学生的综合应用能力.4.若,a b ,R c ∈,a b >,则下列不等式成立的是 A .11a b< B .22a b > C .||||a cbc >D .()()2222a c b c +>+【答案】D【分析】结合不等式的性质,利用特殊值法确定. 【详解】当1,1a b ==-排除A ,B 当0c 排除C 故选:D【点睛】本题主要考查了不等式的性质,特殊值法,还考查了特殊与一般的思想,属于基础题.5.已知函数)25fx =+,则()f x 的解析式为( )A .()21f x x =+ B .()()212f x x x =+≥C .()2f x x =D .()()22f x x x =≥【答案】B【分析】利用换元法求函数解析式.【详解】2t =,则2t ≥,所以()()()()2224t 251,2,f t t t t =-+-+=+≥即()21f x x =+()2x ≥.故选:B【点睛】本题考查利用换元法求函数解析式,考查基本分析求解能力,属基础题.6.已知()f x 是定义域为R 的奇函数,当0x >时,()223f x x x =--,则不等式()20f x +<的解集是A .()() 5,22,1--⋃-B .()(),52,1-∞-⋃-C .()(,1)52,--⋃+∞D .(),1()2,5-∞-⋃【答案】B【分析】根据函数奇偶性的性质,求出函数当0x <时,函数的表达式,利用函数的单调性和奇偶性的关系即可解不等式. 【详解】解:若0x <,则0x ->,∵当0x >时,()223f x x x =--,∴()223f x x x -=+-,∵()f x 是定义域为R 的奇函数,∴()223()f x x x f x -=+-=-,即2()23f x x x =--+,0x <.①若20x +<,即2x <-,由()20f x +<得,()()222230x x -+-++<,解得5x <-或1x >-,此时5x <-;②若20x +>,即2x >-,由()20f x +<得,()()222230x x +-+-<,解得31x -<<,此时21x -<<,综上不等式的解为5x <-或21x -<<. 即不等式的解集为()(),52,1-∞-⋃-. 故选:B.【点睛】本题主要考查不等式的解法,利用函数的奇偶性的性质求出函数的解析式是解决本题的关键. 7.若函数()f x =R ,则实数a 的取值范围是( )A .(0,4)B .[0,2)C .[0,4)D .(2,4]【答案】C【分析】等价于不等式210ax ax ++>的解集为R, 结合二次函数的图象分析即得解. 【详解】由题得210ax ax ++>的解集为R, 当0a =时,1>0恒成立,所以0a =.当0a ≠时,240a a a >⎧⎨∆=-<⎩,所以04a <<. 综合得04a ≤<.故选:C【点睛】本题主要考查函数的定义域和二次函数的图象性质,意在考查学生对这些知识的理解掌握水平.8.设函数22,()6,x x x af x ax x a⎧--≥⎪=⎨-<⎪⎩是定义在R 上的增函数,则实数a 取值范围( )A .[)2,+∞B .[]0,3C .[]2,3D .[]2,4【答案】D【分析】画出函数22y x x =--的图象,结合图象及题意分析可得所求范围.【详解】画出函数22y x x =--的图象如下图所示,结合图象可得,要使函数()22,,6,,x x x a x ax x a ⎧--≥⎪=⎨-<⎪⎩是在R 上的增函数,需满足22226a a a a ≥⎧⎨--≥-⎩,解得24x ≤≤. 所以实数a 取值范围是[]2,4. 故选D .【点睛】解答本题的关键有两个:(1)画出函数的图象,结合图象求解,增强了解题的直观性和形象性;(2)讨论函数在实数集上的单调性时,除了考虑每个段上的单调性之外,还要考虑在分界点处的函数值的大小关系. 二、多选题9.若0a >,0b >,且2a b +=,则下列不等式恒成立的是( )A 1B .11ab≥ C .222a b +≥ D .112a b+≥【答案】BCD【分析】由条件可得12211112a a b a b a abb b ab ++=≥+==⇒≥⇒≥,结合2222()()a b a b ++,即可得出.【详解】因为0a >,0b >,所以12211112a a b a b a abb b ab ++=≥+≤==⇒≥⇒≥, 所以A 错,BD 对;因为22222()()(0)a b a b a b -+=-≥+,则22222()()2a b a b ++=,化为:222a b +,当且仅当1a b ==时取等号,C 对. 故选:BCD .【点睛】本题考查了不等式的基本性质以及重要不等式的应用,考查了推理能力与计算能力,属于基础题.10.给出下列命题,其中是错误命题的是( )A .若函数()f x 的定义域为[0,2],则函数(2)f x 的定义域为[0,4].B .函数1()f x x=的单调递减区间是(,0)(0,)-∞+∞ C .若定义在R 上的函数()f x 在区间(,0]-∞上是单调增函数,在区间(0,)+∞上也是单调增函数,则()f x 在R 上是单调增函数.D .1x 、2x 是()f x 在定义域内的任意两个值,且1x <2x ,若12()()f x f x >,则()f x 减函数.【答案】ABC【分析】对于A ,由于()f x 的定义域为[0,2],则由022x ≤≤可求出(2)f x 的定义域;对于B ,反比例函数的两个单调区间不连续,不能用并集符号连接;对于C ,举反例可判断;对于D ,利用单调性的定义判断即可【详解】解:对于A ,因为()f x 的定义域为[0,2],则函数(2)f x 中的2[0,2]x ∈,[0,1]x ∈,所以(2)f x 的定义域为[0,1],所以A 错误; 对于B ,反比例函数1()f x x=的单调递减区间为(,0)-∞和(0,)+∞,所以B 错误; 对于C ,当定义在R 上的函数()f x 在区间(,0]-∞上是单调增函数,在区间(0,)+∞上也是单调增函数,而()f x 在R 上不一定是单调增函数,如下图,显然,(1)(0)f f < 所以C 错误;对于D ,根据函数单调性的定义可得该选项是正确的, 故选:ABC11.若a ,b 为正数,则( )A .2+aba bB .当112a b+=时,2a b +≥C .当11a b a b+=+时,2a b +≥D .当1a b +=时,221113a b a b +≥++【答案】BCD【分析】利用基本不等式,逐一检验即可得解.【详解】解:对A ,因为+a b ≥2aba b≤+,当a b =时取等号,A 错误;对B ,()11111+=2+2=2222b a a b a b a b ⎛⎛⎫⎛⎫++≥+ ⎪ ⎪ ⎝⎭⎝⎭⎝,当a b =时取等号,B 正确;对C ,11=+=a ba b a b ab++,则1ab =,+2a b ≥=,当1a b ==时取等号,C 正确;对D ,()()()2222222211+111+111+b a a b a b a b a b a b a b b a ++⎛⎫+++=+++≥++ ⎪++⎝⎭2222()1a b ab a b =++=+=, 当12a b ==时取等号,即221113a b a b +≥++,D 正确.故选:BCD.【点睛】本题考查了基本不等式的应用,重点考查了运算能力,属中档题.12.已知连续函数f (x )对任意实数x 恒有f (x +y )=f (x )+f (y ),当x >0时,f (x )<0,f (1)=-2,则以下说法中正确的是( ) A .f (0)=0B .f (x )是R 上的奇函数C .f (x )在[-3,3]上的最大值是6D .不等式()232()(3)4f x f x f x -<+的解集为213x x ⎧⎫<<⎨⎬⎩⎭∣ 【答案】ABC【分析】根据函数()f x 对任意实数x 恒有()()()f x y f x f y +=+,令0x y ==,可得(0)0f =,判断奇偶性和单调性,即可判断选项;【详解】解:对于A ,函数()f x 对任意实数x 恒有()()()f x y f x f y +=+, 令0x y ==,可得(0)0f =,A 正确;对于B ,令x y =-,可得(0)()()0f f x f x =+-=,所以()()f x f x =--, 所以()f x 是奇函数;B 正确;对于C ,令x y <,则()()()()()f y f x f y f x f y x -=+-=-, 因为当x >0时,f (x )<0,所以()0f y x -<,即()()0f y f x -<, 所以()f x 在()()0,,,0+∞-∞均递减, 因为()0f x <,所以()f x 在R 上递减;12f ,可得(1)2f -=;令1y =,可得()()12f x f x +=-()24f =-, ()36f =-;()3(3)6f f =--=,()f x ∴在[3-,3]上的最大值是6,C 正确;对于D ,由不等式2(3)2()(3)4f x f x f x -<+的可得2(3)()()(3)4f x f x f x f x <+++, 即2(3)(23)4f x f x x <++,4(2)f =-,2(3)(23)(2)f x f x x f ∴<++-,则2(3)(52)f x f x <-,2352x x ∴>-,解得:23x <或1x >; D 不对;故选:ABC .【点睛】本题主要考查函数求值和性质问题,根据抽象函数条件的应用,赋值法是解决本题的关键. 三、填空题13.函数y _________. 【答案】[]2,5【分析】先求出函数的定义域,再结合复合函数的单调性可求出答案. 【详解】由题意,2450x x -++≥,解得15x -≤≤,故函数y []1,5-.函数y =二次函数245u x x =-++的对称轴为2x =,在[]1,5-上的增区间为[)1,2-,减区间为[]2,5,故函数y []2,5. 故答案为:[]2,5.【点睛】本题考查复合函数的单调性,考查二次函数单调性的应用,考查学生的推理能力,属于基础题.14.奇函数f (x )在(0,)+∞内单调递增且f (1)=0,则不等式()01f x x >-的解集为________. 【答案】{|1x x >或01x <<或1x <-}.【分析】根据题意,由函数()f x 的奇偶性与单调性分析可得当01x <<时,()0f x <,当1x >时,()0f x >,当10x -<<时,()0f x >,当1x <-时,()0f x <,而不等式()01f x x >-等价于1()0x f x >⎧⎨>⎩或1()0x f x <⎧⎨<⎩;分析可得答案.【详解】解:根据题意,()f x 在(0,)+∞内单调递增,且f (1)0=, 则当01x <<时,()0f x <,当1x >时,()0f x >,又由()f x 为奇函数,则当10x -<<时,()0f x >,当1x <-时,()0f x <, 不等式()01f x x >-,等价于1()0x f x >⎧⎨>⎩或1()0x f x <⎧⎨<⎩;解可得:1x >或01x <<或1x <-; 即不等式()01f x x >-的解集为{|1x x >或01x <<或1x <-}. 故答案为:{|1x x >或01x <<或1x <-}. 15.已知函数()f x 的定义域为()0,∞+,则函数1f x y +=__________. 【答案】(-1,1)【分析】先求()1f x +的定义域为()1,-+∞,再求不等式组21340x x x >-⎧⎨--+>⎩的解集可以得到函数的定义域.【详解】由题意210340x x x +>⎧⎨--+>⎩,解得11x -<<,即定义域为()1,1-.【点睛】已知函数()f x 的定义域D ,()g x 的定义域为E ,那么抽象函数()f g x ⎡⎤⎣⎦的定义域为不等式组()x Eg x D ∈⎧⎨∈⎩的解集.16.定义:如果函数()y f x =在区间[],a b 上存在00()x a x b <<,满足0()()()f b f a f x b a-=-,则称0x 是函数()y f x =在区间[],a b 上的一个均值点.已知函数2()1f x x mx =-++在区间[]1,1-上存在均值点,则实数m 的取值范围是________. 【答案】(0,2).【详解】试题分析:由题意设函数2()1f x x mx =-++在区间[1,1]-上的均值点为,则0(1)(1)()1(1)f f f x m --==--,易知函数2()1f x x mx =-++的对称轴为2m x =,①当12m≥即2m ≥时,有0(1)()(1)f m f x m f m -=-<=<=,显然不成立,不合题意;②当12m≤-即2m ≤-时,有0(1)()(1)f m f x m f m =<=<-=-,显然不成立,不合题意;③当112m -<<即22m -<<时,(1)当20m -<<有0(1)()()2m f f x f <≤,即214m m m <≤+,显然不成立;(2)当0m =时, 0()0f x m ==,此时01x =±,与011x -<<矛盾,即0m ≠;(3)当02m <<时,有0(1)()()2mf f x f -<≤,即214m m m -<≤+,解得02m <<,综上所述得实数m 的取值范围为(0,2).【解析】二次函数的性质. 四、解答题17.已知集合{}22|430,|03x A x x x B x x -⎧⎫=-+≤=>⎨⎬+⎩⎭(1)分别求A B ,R R A B ⋃();(2)若集合{|1},C x x a A C C =<<⋂=,求实数a 的取值范围. 【答案】(1)(2,3]A B ⋂=,(,2](3,)R R A B ⋃=-∞⋃+∞(2)3a ≤【分析】(1)化简集合,,A B 根据交集定义,补集定义和并集定义,即可求得答案; (2)由A C C =,所以C A ⊆,讨论C =∅和C ≠∅两种情况,即可得出实数a 的取值范围.【详解】(1)集合{}2|430[1,3]A x x x =-+≤=∴(,1)(3,)RA =-∞⋃+∞,[3,2]RB =-∴(2,3]A B ⋂=,(,2](3,)RR A B ⋃=-∞⋃+∞,(2)A C C =∴ 当C 为空集时,1a ≤∴ 当C 为非空集合时,可得 13a ≤<综上所述:a 的取值范围是3a ≤.【点睛】本题考查了不等式的解法,交集和补集的运算,解题关键是掌握集合的基本概念和不等式的解法,考查了计算能力,属于基础题.18.已知函数()f x 是定义在R 上的偶函数,已知当0x ≤时,()243f x x x =++.(1)求函数()f x 的解析式;(2)画出函数()f x 的图象,并写出函数()f x 的单调递增区间; (3)求()f x 在区间[]1,2-上的值域.【答案】(1)()2243,043,0x x x f x x x x ⎧-+>=⎨++≤⎩; (2)见解析; (3)[]1,3-.【分析】(1)设x >0,则﹣x <0,利用当x≤0时,f (x )=x 2+4x+3,结合函数为偶函数,即可求得函数解析式;(2)根据图象,可得函数的单调递增区间;(3)确定函数在区间[﹣1,2]上的单调性,从而可得函数在区间[﹣1,2]上的值域. 【详解】(1)∵函数()f x 是定义在R 上的偶函数∴对任意的x ∈R 都有()()f x f x -=成立∴当0x >时,0x -<即()()()()224343f x f x x x x x =-=-+-+=-+∴ ()2243,043,0x x x f x x x x ⎧-+>=⎨++≤⎩(2)图象如右图所示函数()f x 的单调递增区间为[]2,0-和[)2,+∞. (写成开区间也可以)(3)由图象,得函数的值域为[]1,3-.【点睛】本题考查函数的解析式,考查函数的单调性与值域,考查数形结合的数学思想,属于中档题.19.若二次函数()f x 满足11,()22f x f x x R ⎛⎫⎛⎫+=-∈ ⎪ ⎪⎝⎭⎝⎭,且(0)1,(1)3f f =-=.(1)求()f x 的解析式;(2)若函数()(),()g x f x ax a R =-∈在3,2x ⎛⎤∈-∞ ⎥⎝⎦上递减,3,2⎡⎫+∞⎪⎢⎣⎭上递增,求a 的值及当[1,1]x ∈-时函数()g x 的值域.【答案】(1)2()1f x x x =-+(2)2a =,值域为[1,5]-. 【分析】(1)设二次函数的解析式为2()(),0f x ax bx c a =++≠,由11,()22f x f x x R ⎛⎫⎛⎫+=-∈ ⎪ ⎪⎝⎭⎝⎭可得()f x 对称轴为12x =,结合条件,即可求得答案;(2)根据增减性可知32x =为函数()g x 的对称轴,即可得到a 的值,而根据()g x 在[1,1]x ∈-上递减可得出()g x 在[1,1]x ∈-上的值域.【详解】(1)设二次函数的解析式为2()(),0f x ax bx c a =++≠二次函数()f x 满足11,()22f x f x x R ⎛⎫⎛⎫+=-∈ ⎪ ⎪⎝⎭⎝⎭∴二次函数()f x 的对称轴为:12x =. ∴122b a -=,可得:=-b a ——① 又(0)1f =,∴(0)1f c ==,可得:1c =.(1)3f -=.即:13a b -+=,可得:2a b -=——②由①②解得: 1,1a b ==-∴()f x 的解析式为2()1f x x x =-+.(2) 函数()(),()g x f x ax a R =-∈()g x 在3,2x ⎛⎤∈-∞ ⎥⎝⎦上递减,3,2⎡⎫+∞⎪⎢⎣⎭上递增. ∴()g x 的对称轴为32x =, 即:1322a +=.解得:2a =. ∴2()31g x x x =-+.()g x 在3,2x ⎛⎤∈-∞ ⎥⎝⎦上递减, ∴()g x 在[1,1]x ∈-上递减,则有:在[1,1]x ∈-上,min ()(1)1g x g ==-.函数()g x 在[1,1]x ∈-上的值域为[1,5]-【点睛】本题考查了待定系数法的运用以及对称轴的形式,根据增减性判断函数的对称轴及在区间上值域问题,解题关键是掌握二次函数的基础知识,考查了分析能力和计算能力,本题属中档题.20.已知函数24()x ax f x x++=为奇函数. (1)若函数()f x 在区间,2m m ⎡⎤⎢⎥⎣⎦(0m >)上为单调函数,求m 的取值范围; (2)若函数()f x 在区间[]1,k 上的最小值为3k ,求k 的值.【答案】(1)4m ≥或02m <≤;(2【分析】(1)函数()f x 为奇函数,可知对定义域内所有x 都满足()()f x f x -=-,结合解析式,可得0ax =恒成立,从而可求出a 的值,进而可求出()f x 的解析式,然后求出函数()f x 的单调区间,结合()f x 在区间,2m m ⎡⎤⎢⎥⎣⎦(0m >)上为单调函数,可求得m 的取值范围;(2)结合函数()f x 的单调性,分12k <≤和2k >两种情况,分别求出()f x 的最小值,令最小值等于3k ,可求出k 的值.【详解】(1)由题意,函数()f x 的定义域为()(),00,-∞+∞,因为函数()f x 为奇函数,所以对定义域内所有x 都满足()()f x f x -=-,即()()2244x a x x ax x x-+-+++=--, 整理可得,对()(),00,x ∈-∞+∞,0ax =恒成立,则0a =, 故244()x f x x x x +==+. 所以()f x 在()0,2上单调递减,在[)2,+∞上单调递增,又函数()f x 在区间,2m m ⎡⎤⎢⎥⎣⎦(0m >)上为单调函数,则2m ≤或22m ≥,解得4m ≥或02m <≤.(2)()f x 在()0,2上单调递减,在[)2,+∞上单调递增,若12k <≤,则()()min 43f x f k k k k ==+=,解得k =12k <≤,只有k =合题意;若2k >,则()()min 42232f x f k ==+=,解得43k =,不满足2k >,舍去.故k 【点睛】本题考查函数的奇偶性,考查函数单调性的应用,考查了函数的最值,利用对勾函数的单调性是解决本题的关键,考查学生的计算求解能力,属于基础题. 21.已知二次函数2()(0)f x ax x a =+≠.(1)当0a <时,若函数y a 的值;(2)当0a >时,求函数()()2||g x f x x x a =---的最小值()h a .【答案】(1)-4;(2)()0,1,a a h a a a a ⎧-<<⎪⎪=⎨⎪-≥⎪⎩ 【分析】(1)当0a <时,函数y 而可求出a 的值; (2)当0a >时,求出()g x 的表达式,分类讨论求出()g x 的最小值()h a 即可.【详解】(1)由题意,()0f x ≥,即()200ax x a +≥<,解得10x a≤≤-,即函数y 定义域为10,a ⎡⎤-⎢⎥⎣⎦, 又当0a <时,函数()2f x ax x =+的对称轴为12x a =-,21111222(4)f a a aa a ⎛⎫= ⎪⎝-=-⎭--,故函数y⎡⎢⎣,函数y1a -=4a =-. (2)由题意,0a >,2()||g x ax x x a =---,即()()22()2,,x a x ax g a a x a x ax -+≥-<⎧⎪=⎨⎪⎩, ①当01a <≤,则10a a≥>, x a ≥时,2min 1111(2)()()()g x g a a a a a a a-+=-==, x a <时,min ()(0)g x g a ==-, 若1a a a -≥-1a ≤≤, 若1a a a -<-,解得0a <<即0a <<min 1()g x a a =-1a ≤≤时,min ()g x a =-. ②当1a >时,1a a <, x a ≥时,33min ())2(g x g a a a a a a ==-+=-,x a <时,min ()(0)g x g a ==-,因为3a a a ->-,所以1a >时,min ()g x a =-.综上,函数()g x 的最小值()0,1,a a h a a a a ⎧-<<⎪⎪=⎨⎪-≥⎪⎩. 【点睛】本题考查函数的定义域与值域,考查二次函数的性质,考查函数的最小值,考查分类讨论的数学思想,考查学生的逻辑推理能力,属于中档题.22.定义在R 上的函数()f x 满足:①对一切x ∈R 恒有()0f x ≠;②对一切,x y R ∈恒有()()()f x y f x f y +=⋅;③当0x >时,()1f x >,且(1)2f =;④若对一切[,1]∈+x a a (其中0a <),不等式()224(2||2)f x a f x +≥-恒成立.(1)求(2),(3)f f 的值;(2)证明:函数()f x 是R 上的递增函数;(3)求实数a 的取值范围.【答案】(1)4,8(2)证明见解析(3)(,-∞ 【分析】1)用赋值法令1,1x y ==求解.(2)利用单调性的定义证明,任取12x x <,由 ()()()f x y f x f y +=⋅,则有()()()2211f x f x x f x =-,再由条件当0x >时,()1f x > 得到结论.(3)先利用()()()f x y f x f y +=⋅将4(2||2)-f x 转化为(2||)f x ,再将()22(2||)+≥f x a f x 恒成立,利用函数()f x 是R 上的递增函数,转化为222||≥+x a x 恒成立求解.【详解】(1)令1,1x y == 所以(2)(1)(1)4f f f =⋅=所以(3)(2)(1)8f f f =⋅=(2)因为()()()f x y f x f y +=⋅任取12x x <因为当0x >时,()1f x >所以()211f x x ->所以()()12f x f x <,所以函数()f x 是R 上的递增函数,(3)因为()4(2||2)2(2||2)[2(2||2)](2||)-=-=+-=f x f f x f x f x又因为()224(2||2)f x a f x +≥-恒成立且函数()f x 是R 上的递增函数,所以222||≥+x a x ,[,1]∈+x a a (其中0a <)恒成立所以222||+≥-a x x 若对一切[,1]∈+x a a (其中0a <),恒成立.当11a ≤-+ ,即2a ≤-时()()2max 143=+=---g x g a a a所以2243≥---a a a ,解得2a ≤-当21a -<≤-时,()max 1g x =解得21a -<≤-当10a -<≤,()()(){}max max ,1=+g x g a g a所以222≥--a a a 且221≥-+a a解得1a -<≤-综上:实数a 的取值范围(,-∞ 【点睛】本题主要考查了抽象函数的求值,单调性及其应用,还考查了分类讨论的思想和运算求解的能力,属于难题.。
2020-2021学年南通一中高一上学期期末数学试卷(含解析)
2020-2021学年南通一中高一上学期期末数学试卷一、单选题(本大题共12小题,共60.0分) 1.函数f(x)=8x 的值域是( )A. (−∞,+∞)B. (−∞,0)C. (0,+∞)D. (−∞,0)∪(0,+∞)2.已知sin(π+α)=−12,那么cosα的值为( )A. ±12B. 12C. √32D. ±√323.对于正弦函数y =sinx 的图象,下列说法错误的是( )A. 向左右无限伸展B. 与y =cosx 的图象形状相同,只是位置不同C. 与x 轴有无数个交点D. 关于y 轴对称4.设e 1⃗⃗⃗ 与e 2⃗⃗⃗ 是两个不共线的向量,AB ⃗⃗⃗⃗⃗ =e 1⃗⃗⃗ +2e 2⃗⃗⃗ ,CB ⃗⃗⃗⃗⃗ =k e 1⃗⃗⃗ +e 2⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ =3e 1⃗⃗⃗ −2k e 2⃗⃗⃗ ,若A ,B ,D 共线,则k 的值为( )A. −94B. −49C. −38D. 不存在5.如图,以Ox 为始边作角α与β(0<β<α<π),它们终边分别与单位圆相交于点P ,Q ,已知点P 的坐标为(−35,45),β=30°,则sin(α−β)=( )A. 4+3√310B. 4√3+310C. 4−3√310D. 4√3−3106.将最小正周期为3π的函数f(x)=cos(ωx +φ)−sin(ωx +φ)(ω>0,|φ|<π2)的图象向左平移π4个单位,得到偶函数图象,则满足题意的φ的一个可能值为( )A. 7π12B. −5π12C. −π4D. π47.的最大值为( )A.B.C. D.8.已知扇形的面积为4,弧长为4,求这个扇形的圆心角是( )A. 4B. 2°C. 2D. 4°9.设A,B,C ∈(0,π2),且cosA +cosB =cosC ,sinA −sinB =sinC ,则C −A =( ).A. −π6B. −π3C. π3D. π3或−π310. 如图,在△ABC 中,∠A =π2,AB =3,AC =5,AF ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ ,CE ⃗⃗⃗⃗⃗ =25CA ⃗⃗⃗⃗⃗ ,BD ⃗⃗⃗⃗⃗⃗ =14BC ⃗⃗⃗⃗⃗ ,则DE ⃗⃗⃗⃗⃗⃗ ⋅DF ⃗⃗⃗⃗⃗ 的值为( ) A. 34 B. 12 C. −2 D. −1211. 定义域为R 的函数y =f(x),若对任意两个不相等的实数x 1,x 2,都有x 1f(x 1)+x 2f(x 2)>x 1f(x 2)+x 2f(x 1),则称函数为“H 函数”,现给出如下函数:①y =−x 3+x +1②y =3x −2(sinx −cosx)③y =e x +1④f(x)={ln|x|,x ≠00,x =0其中为“H 函数”的有( )A. ①②B. ③④C. ②③D. ①②③12. 设向量a ⃗ =(−1,2),b ⃗ =(λ,−1),且|a ⃗ −b ⃗ |=√a ⃗ 2+b⃗ 2,则λ等于( ) A. 2 B. ±2 C. −2 D. 0二、单空题(本大题共4小题,共20.0分)13. 设0<θ<π2,向量a ⃗ =(sin2θ,cosθ),b ⃗ =(cosθ,1),若a ⃗ //b ⃗ ,则cos2θ=______. 14. 已知(a +1)−23<(3−2a)−23,则a 的取值范围 . 15. 抛物线的准线与轴交于点,点在抛物线对称轴上,过可作直线交抛物线于点、,使得,则的取值范围是 .16. 在下列四个命题中,正确的命题有______.①若实数x ,y 满足x 2+y 2−2x −2y +1=0,则y−4x−2的取值范围为[43,+∞);②点M 是圆(x −3)2+(y −2)2=2上一动点,点N(0,−2)为定点,则|MN|的最大值是7;③若圆(x −3)2+(y +5)2=r 2(r >0)上有且只有两个点到直线4x −3y =2的距离为1,则4<r <6;④已知直线ax +by +c −1=0(bc >0)经过圆x 2+y 2−2y −5=0的圆心,则4b +1c 的最小值是10. 三、解答题(本大题共6小题,共70.0分)17. 已知向量a ⃗ 与b ⃗ 的夹角为2π3,|a ⃗ |=2,|b ⃗ |=3,记m ⃗⃗⃗ =3a ⃗ −2b ⃗ ,n ⃗ =2a ⃗ +k b ⃗(I) 若m ⃗⃗⃗ ⊥n ⃗ ,求实数k 的值;(II) 当k =−43时,求向量m ⃗⃗⃗ 与n ⃗ 的夹角θ.18. 已知函数f(x)=cosωx(sinωx +√3cosωx)(ω>0). (1)求函数f(x)的值域;(2)若方程f(x)=√32在区间[0,π]上恰有两个实数解,求ω的取值范围.19. 设函数f(x)=log 3(9x)⋅log 3(3x),19≤x ≤9,若t =log 3x. (1)求t 的取值范围. (2)求f(x)的值域.20. 如图,在菱形ABCD 中,若|AB ⃗⃗⃗⃗⃗ |=2√3,∠BAD =60°,BE ⃗⃗⃗⃗⃗ =12BC ⃗⃗⃗⃗⃗ ,CF ⃗⃗⃗⃗⃗ =2FD ⃗⃗⃗⃗⃗ .(1)若AE ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAD ⃗⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗ +y AD ⃗⃗⃗⃗⃗⃗ ,求λ,μ,x ,y 的值; (2)求AE ⃗⃗⃗⃗⃗ ⋅EF ⃗⃗⃗⃗⃗ .21. 已知函数f(x)=3xx+2,x ∈[0,4). (1)判别f(x)的单调性,并证明; (2)求函数f(x)的最值.22. 设函数y =f(x)的定义域为A ,区间I ⊆A.如果∃x 1,x 2∈I ,使得f(x 1)f(x 2)<0,那么称函数y =f(x)为区间I 上的“变号函数”.(1)判断下列函数是否为区间I上的“变号函数”,并说明理由.,+∞);①p(x)=1−3x,I=[13);②q(x)=sinx−cosx,I=(0,π2,1]上的“变号函数”.求实数a的取值范围.(2)若函数r(x)=ax2+(1−2a)x+1−a为区间[−12参考答案及解析1.答案:D解析:解:令y =8x ,则解析式中y 的取值范围即为函数的值域 则原函数的解析式可变形为x =8y , 要使该表达式有意义,分母y ≠0. ∴y ∈(−∞,0)∪(0,+∞) 故选:D .根据已知中函数的解析式,我们可使用“反表示法”求函数的值域,即根据已知函数的解析式,写出用y 表示x 的形式,令表达式有意义,即可求出满足条件的y 的取值范围,即原函数的值域. 本题考查的知识点是函数的值域,函数的值域的求法是函数中的难点之一,其中根据函数的解析式形式,选择适当的方法是求值域的问题.2.答案:D解析:利用诱导公式求出sinα,再利用同角三角函数关系式求出cosα即可. 本题考查诱导公式,同角三角函数关系式的应用.属于基础题.解:sin(π+α)=−12,则sinα=12,cosα=±√32.故选D .3.答案:D解析:解:y =sinx 是周期函数,图象可以向左右无限伸展,故A 正确,y =sin(x +π2)=cosx ,则与y =cosx 的图象形状相同,只是位置不同,故B 正确, 与x 轴有无数个交点,故C 正确,y =sinx 是奇函数,图象关于原点对称,故D 错误, 故选:D .根据y =sinx 的图象和性质分别进行判断即可.本题主要考查三角函数图象和性质,结合三角函数的图象是解决本题的关键.比较基础.4.答案:D解析:解:e 1⃗⃗⃗ 与e 2⃗⃗⃗ 是两个不共线的向量,且AB ⃗⃗⃗⃗⃗ =e 1⃗⃗⃗ +2e 2⃗⃗⃗ ,CB ⃗⃗⃗⃗⃗ =k e 1⃗⃗⃗ +e 2⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ =3e 1⃗⃗⃗ −2k e 2⃗⃗⃗ , ∴BD ⃗⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ −CB ⃗⃗⃗⃗⃗ =(3−k)e 1⃗⃗⃗ −(2k +1)e 2⃗⃗⃗ ,若A ,B ,D 共线, 则BD ⃗⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ ,即(3−k)e 1⃗⃗⃗ −(2k +1)e 2⃗⃗⃗ =λe 1⃗⃗⃗ +2λe 2⃗⃗⃗ ,∴{3−k =λ−(2k +1)=2λ, 解得k 的值不存在. 故选:D .根据平面向量的线性运算法则,利用共线定理和向量相等列出方程组,即可求出k 的值不存在. 本题考查了平面向量的线性运算与共线定理和向量相等的应用问题,是基础题目.5.答案:B解析:解:以Ox 为始边作角α与β(0<β<α<π),它们终边分别与单位圆相交于点P ,Q ,已知点P 的坐标为(−35,45),β=30°, 可得sinα=45,cosα=−35,sin(α−β)=sinαcos30°−cosαsin30°=45×√32+35×12=3+4√310. 故选:B .利用任意角的三角函数的定义,求出α、β的三角函数值,然后利用两角差的正弦函数求解. 本题考查三角函数的定义的应用,两角差的正弦函数,考查计算能力.6.答案:B解析:本题主要考查由函数y =Acos(ωx +φ)的部分图象求解析式,函数y =Acos(ωx +φ)的图象变换规律,正弦函数、余弦函数的图象的奇偶性,属于基础题.由周期求得ω,可得函数f(x)的解析式,再根据函数y =Acos(ωx +φ)的图象变换规律,可得结论. 解:由于函数f(x)=cos(ωx +φ)−sin(ωx +φ)=√2cos(ωx +φ+π4)的最小正周期为3π=2πω,求得ω=23,∴函数f(x)=√2cos(23x +φ+π4).再把f(x)的图象向左平移π4个单位,得到偶函数y =√2cos[23(x +π4)+φ+π4] =√2cos(23x +5π12+φ),则满足题意的φ的一个可能值为−5π12, 故选B .7.答案:C解析:试题分析:因为函数,所以因此结合不等式的性质,得到,可知函数的最大值为4.选C.考点:本题主要考查三角函数的性质中值域的求解运用。
2020-2021学年上学期高一数学期末模拟卷03(人教A版新教材)(浙江专用)【解析版】
数学模拟试卷03第I 卷 选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020·河北高二学业考试)已知集合{}012M =,,,{}1,2N =,则M N ⋃=( ).A .{}1,2B .{}0C .{}0,1,2D .{}0,1【答案】C 【解析】由并集定义可得:{}0,1,2M N =.故选:C.2.(2019·浙江高二学业考试)已知a ,b 是实数,则“a b >”是“22a b >”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】若a b >,则a b b >≥,即a b >,故22a b >. 取1,2a b ==-,此时22a b >,但a b <, 故22a b >推不出a b >, 故选:A.3.(2019·伊宁市第八中学高一期中)若偶函数()f x 在区间(]1-∞-,上是增函数,则( ) A .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭B .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭C .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭D .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭【答案】D 【解析】函数()f x 为偶函数,则()()22f f =-.又函数()f x 在区间(]1-∞-,上是增函数. 则()()3122f f f ⎛⎫<-<- ⎪⎝⎭-,即()()3212f f f ⎛⎫<-<- ⎪⎝⎭故选:D.4.(2020·黑龙江哈尔滨市第六中学校高三开学考试(理))设2313a ⎛⎫= ⎪⎝⎭,532b =,21log 3c =,则( )A .b a c <<B .a b c <<C .c a b <<D .b c a <<【答案】C 【解析】23110133⎛⎫⎛⎫<<= ⎪ ⎪⎝⎭⎝⎭,503221>=,221log log 103<=, ∴c a b <<. 故选:C5.(2020·江苏南通市·高三期中)已知角α的终边经过点()3,4P ,则πcos 24α⎛⎫+= ⎪⎝⎭( )A .50-B .50C .50-D .50【答案】A 【解析】角α的终边经过点()3,4P ,5OP ∴==,由三角函数的定义知:3cos 5α=,4sin 5α, 2237cos 22cos 121525αα⎛⎫∴=-=⨯-=- ⎪⎝⎭,4324sin 22sin cos 25525ααα==⨯⨯=,()()π724cos 2cos2cos sin 2sin 4442525ππααα∴+=-=-=.故选:A.6.(2020·甘肃兰州市·西北师大附中高三期中)函数()f x 在[)0,+∞单调递增,且()3f x +关于3x =-对称,若()21f -=,则()21f x -≤的x 的取值范围( )A .[]22-,B .(][),22,-∞-+∞C .()[),04,-∞+∞D .[]0,4【答案】D 【解析】因为()3f x +关于3x =-对称,所以()f x 关于y 轴对称,所以()()221f f -==, 又()f x 在[)0,+∞单调递增,由()21f x -≤可得222x -≤-≤,解得:04x ≤≤, 故选:D7.(2020·浙江高一期末)对于函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭,有以下四种说法: ①函数的最小值是32-②图象的对称轴是直线()312k x k Z ππ=-∈ ③图象的对称中心为,0()312k k Z ππ⎛⎫-∈⎪⎝⎭ ④函数在区间7,123ππ⎡⎤--⎢⎥⎣⎦上单调递增. 其中正确的说法的个数是( ) A .1 B .2C .3D .4【答案】A 【解析】函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭, 当3=42x ππ+时,即=12x π,函数()f x 取得最小值为132122-⨯+=-,故①正确;当342x k πππ+=+时,即=,123k x k Z ππ+∈,函数()f x 的图象的对称轴是直线=,123k x k Z ππ+∈,故②错误; 当34x k ππ+=时,即,123k x k Z ππ=-+∈,函数()f x 的图象的对称中心为1,,1232k k Z ππ⎛⎫-+∈ ⎪⎝⎭,故③错误; 当3232242k x k πππππ+≤+≤+,即2523,123123k k x k Z ππππ+≤≤+∈,函数()f x 的递增区间为252,,123123k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, 当1k =-时,()f x 的递增区间为7,124ππ⎡⎤--⎢⎥⎣⎦,故④错误. 故选:A8.(2020·山西吕梁市·高三期中(文))函数1()11f x x=+-的图象与函数()2sin 1(24)g x x x π=+-的图象所有交点的横坐标之和等于( ) A .8 B .6C .4D .2【答案】A 【解析】由函数图象的平移可知, 函数1()11f x x=+-与函数()2sin 1g x x π=+的图象都关于(1,1)M 对称. 作出函数的图象如图,由图象可知交点个数一共8个(四组,两两关于点(1,1)对称), 所以所有交点的横坐标之和等于428⨯=.故选:A9.(2020·山西吕梁市·高三期中(文))已知函数2,0()()21,0x e a x f x a R x x ⎧+=∈⎨->⎩,若函数()f x 在R 上有两个零点,则a 的取值范围是( ) A .(,1)-∞- B .[2,0)-C .(1,0)-D .[1,0)-【答案】B 【解析】当0x >时,()21f x x =-有一个零点12x =,只需当0x ≤时,20x e a +=有一个根,利用“分离参数法”求解即可.解:因为函数()2,021,0x e a x f x x x ⎧+≤=⎨->⎩, 当0x >时,()21f x x =-有一个零点12x =, 所以只需当0x ≤时,202x xa e a e +==-即有一个根即可,因为2xy e =单调递增,当0x ≤时,(]0,1xe ∈,所以(]0,2a -∈,即[)2,0a ∈-,故选:B.10.(2020·河北高二学业考试)已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()()2log 1f x x =+,则不等式()2f x ≤的解集是( ). A .[]3,3- B .[]4,4-C .(][),33,-∞-+∞D .(][),44,-∞-⋃+∞【答案】A 【解析】0x ≥时,()()2log 1f x x =+,()f x ∴在[)0,+∞上单调递增,又()f x 是定义在R 上的奇函数,()f x ∴在R 上单调递增,易知()()223log 31log 42f =+==,()()332f f -=-=-, 由()2f x ≤, 解得:()22f x -≤≤, 由()f x 在R 上单调递增, 解得:33x -≤≤,()2f x ∴≤的解集是[]3,3-.故选:A.第II 卷 非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(2020·上海青浦区·高三一模)圆锥底面半径为1cm ,母线长为2cm ,则其侧面展开图扇形的圆心角θ=___________.【答案】π; 【解析】因为圆锥底面半径为1cm ,所以圆锥的底面周长为2cm π, 则其侧面展开图扇形的圆心角22πθπ==, 故答案为:π.12.(2020·浙江宁波市·高三期中)设2log 3a =,则4a =______(用数值表示),lg 36lg 4=______.(用a 表示)【答案】9 1a + 【解析】2log 3a =,22394429log log a ∴===,4222236log 36log 6log (23)log 2log 314lg a lg ===⨯=+=+, 故答案为:9,1a +.13.(2020·深圳科学高中高一期中)某移动公司规定,使用甲种卡,须付“基本月租费”(每月需交的固定费用)30元,在国内通话时每分钟另收话费0.10元;使用乙种卡,不收“基本月租费”,但在国内通话时每分钟话费为0.2元.若某用户每月手机费预算为50元,则使用__________种卡才合算;若要使用甲种卡合算,则该用户每月手机费预算(元)的区间为__________. 【答案】乙 (60,)+∞ 【解析】由题意,设月通话时间为t 分钟,有甲费用为300.1t +,乙费用为0.2t , ∴每月手机费预算为50元,则:由300.150t +=知,甲的通话时间为200分钟, 由0.250t =知,乙的通话时间为250分钟, ∴用户每月手机费预算为50元,用乙种卡合算;要使用甲种卡合算,即月通话时间相同的情况下甲费用更低,即300.10.2t t +<, 解得300t >时,费用在(60,)+∞. 故答案为:乙,(60,)+∞14.(2020·商丘市第一高级中学高一期中)设函数()112,1,1x e x f x x x -⎧<⎪=⎨⎪≥⎩则()3f x ≤成立的x 的取值范围为______. 【答案】(],9-∞ 【解析】当1x <时,由13x e -≤得1ln3x ≤+,所以1x <; 当1≥x 时,由213x ≤得9x ≤,所以19x ≤≤. 综上,符合题意的x 的取值范围是(,9]-∞. 故答案为:(,9]-∞.15.(2020·辽宁本溪市·高二月考)摩天轮是一种大型转轮状的机械建筑设施,稳坐于永乐桥之上的“天津之眼”作为世界上唯一一座建在桥上的摩天轮,其巧夺天工和奇思妙想确是当之无愧的“世界第一”.如图,永乐桥摩天轮的直径为110m ,到达最高点时,距离地面的高度为120m ,能看到方圆40km 以内的景致,是名副其实的“天津之眼”.实际上,单从高度角度来看,天津之眼超越了曾大名鼎鼎的伦敦之眼而跃居世界第一.永乐桥摩天轮设置有48个座舱,开启后按逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,转一周大约需要30min .游客甲坐上摩天轮的座舱,开始转到min t 后距离地面的高度为m H ,则转到10min 后距离地面的高度为______m ,在转动一周的过程中,H 关于t 的函数解析式为______.【答案】1852 π55cos 6515H t =-+,030t ≤≤. 【解析】如图,设座舱距离地面最近的位置为点P ,以轴心O 为原点,与地面平行的直线为x 轴,建立直角坐标系.设0min t =时,游客甲位于点()0,55P -,以OP 为终边的角为π2-; 根据摩天轮转一周大约需要30min , 可知座舱转动的角速度约为πmin 15rad , 由题意可得πππ55sin 6555cos 6515215H t t ⎛⎫=-+=-+⎪⎝⎭,030t ≤≤.当10t =时,π18555cos 1065152H ⎛⎫=-⨯+= ⎪⎝⎭. 故答案为:1852;π55cos 6515H t =-+,030t ≤≤ 16.(2020·浙江建人专修学院高三三模)已知2,0()(),0x x f x f x x ⎧≥=⎨--<⎩,若4log 3a =,则()f a =___________;()1f a -=___________.3 233-因为4log 3a =,所以43a =,即2a =01a <<,所以()2a f a ==1(1)(1)2a f a f a --=--=-==3-17.(2020·上海虹口区·高三一模)已知(0,)απ∈,且有12sin2cos2αα-=,则cos α=___________.【解析】2212sin 2cos214sin cos 12sin sin 2sin cos αααααααα-=⇒-=-⇒=,因为(0,)απ∈,所以sin 0α≠,因此由2sin 2sin cos sin 2cos tan 2(0,)2πααααααα=⇒=⇒=⇒∈,而22sin cos 1(1)αα+=,把sin 2cos αα=代入(1)得:22214cos cos 1cos cos 5αααα+=⇒=⇒=(0,)2πα∈,因此cos α=.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(2020·黑龙江工农�鹤岗一中高二期末(文))函数()22xxaf x =-是奇函数. ()1求()f x 的解析式;()2当()0,x ∈+∞时,()24x f x m ->⋅+恒成立,求m 的取值范围.【答案】(1)()122xxf x =-;(2)5m <-.() 1函数()22x x af x =-是奇函数, ()()1222222x x x x x x a af x a f x --∴-=-=-+=-+=-,故1a =, 故()122xx f x =-; ()2当()0,x ∈+∞时,()24x f x m ->⋅+恒成立,即21(2)42x xm +<-⋅在()0,x ∈+∞恒成立,令()2(2)42x xh x =-⋅,(0)x >,显然()h x 在()0,+∞的最小值是()24h =-, 故14m +<-,解得:5m <-.19.(2020·宁夏长庆高级中学高三月考(理))已知函数()22sin cos 22222x x x f x ππ⎛⎫⎛⎫=-++- ⎪ ⎪⎝⎭⎝⎭(1)求()f x 的最小正周期;(2)求()f x 在区间[]0,π上的最小值及单调减区间.【答案】(1)最小正周期为2π;(2)()min f x =()f x 的单调递减区间为,6ππ⎡⎤⎢⎥⎣⎦. 【解析】(1)1cos ()2sin cos 222x x xf x +=+sin x x =+12sin cos 2sin 223x x x π⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭.所以()f x 的最小正周期为2π. (2)因为[]0,x π∈,所以4,333x πππ⎡⎤+∈⎢⎥⎣⎦,所以当433x ππ+=,即x π=时,函数()f x 取得最小值由4233x πππ≤+≤,得6x ππ≤≤,所以函数()f x 的单调递减区间为,6ππ⎡⎤⎢⎥⎣⎦. 20.(2019·河北师范大学附属中学高一期中)已知二次函数()f x 的图象经过点()4,4-,方程()0f x =的解集为{}0,2.(1)求()f x 的解析式;(2)是否存在实数(),m n m n <,使得()f x 的定义域和值域分别为[],m n 和[]2,2m n ?若存在,求出m ,n 的值;若不存在,说明理由.【答案】(1)21()2f x x x =-+;(2)存在;2m =-,0n =. 【解析】(1)由已知,设()()2f x ax x =-.因为()f x 的图象经过点()4,4-,所以()4442a -=-,解得12a =-, 即()f x 的解析式为21()2f x x x =-+; (2)假设满足条件实数m ,n 的存在, 由于221111()(1)2222f x x x x =-+=--+≤,因此122n ≤,即14n ≤. 又()f x 的图象是开口向下的抛物线,且对称轴方程1x =,可知()f x 在区间[],m n 上递增,故有()2()2f m m f n n=⎧⎨=⎩,并注意到14m n <≤,解得2m =-,0n =. 综上可知,假设成立,即当2m =-,0n =时,()f x 的定义域和值域分别为[],m n 和[]2,2m n .21.(2020·山西吕梁市·高三期中(文))已知函数()sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭,在,63ππ⎛⎫ ⎪⎝⎭上有最小值,无最大值,且满足63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭. (1)求()f x 的最小正周期;(2)将函数()f x 的图象向右平移06πϕϕ⎛⎫<< ⎪⎝⎭个单位后得到函数()g x 的图象,若对满足()()122f x g x -=的1x 、2x 有12min 7x x π-=,求ϕ的值. 【答案】(1)37π;(2)14π. 【解析】(1)由()sin ,(0)3f x x πωω⎛⎫=+> ⎪⎝⎭,在,63ππ⎛⎫ ⎪⎝⎭上有最小值,无最大值, 可知:236T πππω-≤=,故有012ω<≤. 又6x π=与3x π=在一个周期内,且63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭; 4x π∴=时,函数取到最小值.2,()432k k Z πππωπ∴+=-+∈ 故有1083k ω=-+, 又因为012ω<≤,所以143ω=. 所以函数()f x 的最小正周期为37π. (2)由()()122f x g x -=∣∣可知的()()12,f x g x 中一个对应最大值,一个对应最小值. 对于函数()f x 其最大值与最小值对应的x 的距离为半个周期314π. ∴有12min 314x x πϕ-+=. 即314714πππϕ=-=.22.(2020·安徽省蚌埠第三中学高一月考)设函数()()21x x a t f x a--=(0a >,且1a ≠)是定义域为R 的奇函数.(1)求t 的值;(2)若函数()f x 的图象过点31,2⎛⎫ ⎪⎝⎭,是否存在正数()1m m ≠,使函数()()22log x x m g x a a mf x -⎡⎤=+-⎣⎦在[]21,log 3上的最大值为0,若存在,求出m 的值;若不存在,请说明理由.【答案】(1)2t =;(2)不存在,理由见解析.【解析】(1)∵()f x 是定义域为R 的奇函数,∴()00f =,∴2t =;经检验知符合题意.(2)函数()f x 的图象过点31,2⎛⎫ ⎪⎝⎭,所以2132a a -=, ∴2a =(12a =-舍去), 假设存在正数m ,且1m ≠符合题意,由2a =得()()22log 2222x x x x m g x m --⎡⎤=+--⎣⎦, 设22x x t -=-,则()()22222222x x x x m t mt -----+=-+,∵[]21,log 3x ∈,2[2,3]x ∈,∴38,23t ⎡⎤∈⎢⎥⎣⎦,记()22h t t mt =-+, ∵函数()g x 在[]21,log 3上的最大值为0,∴(i )若01m <<时,则函数()22h t t mt =-+在38,23⎡⎤⎢⎥⎣⎦有最小值为1, 由于对称轴122m t =<,∴()min 31731312426h t h m m ⎛⎫==-=⇒= ⎪⎝⎭,不合题意. (ii )若1m 时,则函数()220h t t mt =-+>在38,23⎡⎤⎢⎥⎣⎦上恒成立,且最大值为1,最小值大于0, ①()max 1252512212736873241324m m m h t h m ⎧⎧<≤<≤⎪⎪⎪⎪⇒⇒=⎨⎨⎛⎫⎪⎪=== ⎪⎪⎪⎩⎝⎭⎩, 而此时7338,24823m ⎡⎤=∈⎢⎥⎣⎦,又()min 73048h t h ⎛⎫=< ⎪⎝⎭, 故()g x 在[]21,log 3无意义, 所以7324m =应舍去; ②()max 25252126313126m m h t h m ⎧⎧>>⎪⎪⎪⎪⇒⇒⎨⎨⎛⎫⎪⎪=== ⎪⎪⎪⎩⎝⎭⎩m 无解, 综上所述:故不存在正数m ,使函数()g x 在[]21,log 3上的最大值为0.。
福建省福州市第一中学2020-2021学年高一上学期期末数学试题 答案和解析
福建省福州市第一中学【最新】高一上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知角α的终边与单位圆的交点为P ⎛ ⎝⎭,则sin cos αα-=( )A .BC .5D . 2.一钟表的秒针长12cm ,经过25s ,秒针的端点所走的路线长为( ) A .10cmB .14cmC .10cm πD .14cm π3.函数cos 23y x π⎛⎫=-⎪⎝⎭的单调递减区间是( ) A .()5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B .()511,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C .()27,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦D .()2,63k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z 4.已知平面直角坐标系中,ABC ∆的顶点坐标分别为()4,6A 、()2,1B -、()4,1C -,G 为ABC ∆所在平面内的一点,且满足()13AG AB AC =+,则G 点的坐标为( ) A .()2,2B .()1,2C .()2,1D .()2,45.sin4,4cos ,tan4的大小关系是( ) A .sin4tan4cos4<< B .tan4sin4cos4<< C .cos4sin4tan4<<D .sin4cos4tan4<<6.将函数sin 2y x =的图象向左平移()0ϕϕ>个单位长度,再向下平移1个单位长度,得到函数22sin y x =-的图象,那么ϕ可以取的值为( )A .6πB .4π C .3π D .2π 7.已知定义在R 上的奇函数()f x 满足()()0f x f x π++=,且当()0,x π∈时,()sin f x x =,则233f π⎛⎫=⎪⎝⎭( )A .12-B .12C . D二、多选题8.下列关于函数()tan 24f x x π⎛⎫=+⎪⎝⎭的相关性质的命题,正确的有( ) A .()f x 的定义域是,82k x x k Z ππ⎧⎫≠+∈⎨⎬⎩⎭B .()f x 的最小正周期是πC .()f x 的单调递增区间是()3,2828k k k Z ππππ⎛⎫-+∈⎪⎝⎭ D .()f x 的对称中心是(),028k k Z ππ⎛⎫-∈⎪⎝⎭ 9.ABC ∆是边长为3的等边三角形,已知向量a 、b 满足3AB a =,3AC a b =+,则下列结论中正确的有( ) A .a 为单位向量 B .//b BC C .a b⊥D .()6a b BC +⊥10.以下函数在区间0,2π⎛⎫⎪⎝⎭上为单调增函数的有( )A .sin cos y x x =+B .sin cos y x x =-C .sin cos y x x =D .sin cos xy x=11.下列命题中,正确的有( )A .向量AB 与CD 是共线向量,则点A 、B 、C 、D 必在同一条直线上 B .若sin tan 0αα⋅>且cos tan 0αα⋅<,则角2α为第二或第四象限角 C .函数1cos 2y x =+是周期函数,最小正周期是2π D .ABC ∆中,若tan tan 1A B ⋅<,则ABC ∆为钝角三角形三、填空题12.已知()()sin 2cos 0παπα-++=,则1sin cos αα=________.13.已知tan 2α=,()tan αβ+=tan β=_________. 14.已知非零向量a 、b 满足2a =,24a b -=,a 在b 方向上的投影为1,则()2b a b ⋅+=_______.四、双空题15.已知O 为ABC ∆的外心,6AB =,10AC =,AO x AB y AC =+,且263x y +=;当0x =时,cos BAC ∠=______;当0x ≠时,cos BAC ∠=_______.五、解答题16.在平面直角坐标系中,已知()1,2a =-,()3,4b =.(Ⅰ)若()()3//a b a kb -+,求实数k 的值;(Ⅱ)若()a tb b -⊥,求实数t 的值.17.已知函数2sin 23y x π⎛⎫=+⎪⎝⎭.(Ⅰ)用“五点法”作出该函数在一个周期内的图象简图;(Ⅱ)请描述如何由函数sin y x =的图象通过变换得到2sin 23y x π⎛⎫=+⎪⎝⎭的图象. 18.某实验室一天的温度(单位:C )随时间t (单位:h )的变化近似满足函数关系:()16cos1212f t t t ππ=-,[)0,24t ∈.(Ⅰ)求实验室这一天的最大温差;(Ⅱ)若要求实验室温度不高于17C ,则在哪个时间段实验室需要降温? 19.已知函数()()2sin 10,2f x x πωϕωϕ⎛⎫=++>< ⎪⎝⎭,()f x 图象上两相邻对称轴之间的距离为2π;_______________; (Ⅰ)在①()f x 的一条对称轴3x π=-;②()f x 的一个对称中心5,112π⎛⎫⎪⎝⎭;③()f x 的图象经过点5,06π⎛⎫⎪⎝⎭这三个条件中任选一个补充在上面空白横线中,然后确定函数的解析式;(Ⅱ)若动直线[]()0,x t t π=∈与()f x 和()cos g x x x =的图象分别交于P 、Q 两点,求线段PQ 长度的最大值及此时t 的值.注:如果选择多个条件分别解答,按第一个解答计分.20.在等腰梯形ABCD 中,已知//AB DC ,4AB =,2BC =,60ABC ∠=,动点E 和F 分别在线段BC 和DC 上(含端点),且BE mBC =,DF nDC =且(m 、n 为常数),设AB a =,BC b =.(Ⅰ)试用a 、b 表示AE 和AF ; (Ⅱ)若1m n +=,求AE AF ⋅的最小值. 21.已知函数()()()()22f x x m x m R =-+∈.(Ⅰ)对任意的实数α,恒有()sin 10f α-≤成立,求实数m 的取值范围; (Ⅱ)在(Ⅰ)的条件下,当实数m 取最小值时,讨论函数()()2cos 15F x f x a =+-在[)0,2x π∈时的零点个数.参考答案1.A 【解析】 【分析】利用三角函数的定义得出sin α和cos α的值,由此可计算出sin cos αα-的值. 【详解】由三角函数的定义得cos α=,sin α=,因此,sin cos αα-=故选:A. 【点睛】本题考查三角函数的定义,考查计算能力,属于基础题. 2.C 【分析】计算出秒针的端点旋转所形成的扇形的圆心角的弧度数,然后利用扇形的弧长公式可计算出答案. 【详解】秒针的端点旋转所形成的扇形的圆心角的弧度数为2552606ππ⨯=, 因此,秒针的端点所走的路线长()512106cm ππ⨯=. 故选:C. 【点睛】本题考查扇形弧长的计算,计算时应将扇形的圆心角化为弧度数,考查计算能力,属于基础题. 3.D 【分析】解不等式()2223k x k k Z ππππ≤-≤+∈,即可得出函数cos 23y x π⎛⎫=- ⎪⎝⎭的单调递减区间. 【详解】解不等式()2223k x k k Z ππππ≤-≤+∈,得()263k x k k Z ππππ+≤≤+∈,因此,函数cos 23y x π⎛⎫=- ⎪⎝⎭的单调递减区间为()2,63k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z . 故选:D. 【点睛】本题考查余弦型函数单调区间的求解,考查计算能力,属于基础题. 4.A 【分析】设点G 的坐标为(),x y ,根据向量的坐标运算得出关于x 、y 的方程组,解出这两个未知数,可得出点G 的坐标. 【详解】设点G 的坐标为(),x y ,()6,5AB =--,()0,7AC =-,()4,6AG x y =--,()()()1160,572,433AG AB AC =+=-+--=--,即4264x y -=-⎧⎨-=-⎩,解得22x y =⎧⎨=⎩,因此,点G 的坐标为()2,2. 故选:A. 【点睛】本题考查向量的坐标运算,考查计算能力,属于基础题. 5.D 【分析】作出4弧度角的正弦线、余弦线和正切线,利用三角函数线来得出sin4、4cos 、tan4的大小关系. 【详解】作出4弧度角的正弦线、余弦线和正切线如下图所示,则sin MP α=,cos OM α=,tan AT α=,其中虚线表示的是角54π的终边, 544π>,则0MP OM AT <<<,即sin4cos4tan4<<. 故选:D.【点睛】本题考查同角三角函数值的大小比较,一般利用三角函数线来比较,考查数形结合思想的应用,属于基础题. 6.B 【分析】写出平移变换后的函数解析式,将函数22sin y x =-的解析式利用二倍角公式降幂,化为正弦型函数,进而可得出ϕ的表达式,利用赋特殊值可得出结果. 【详解】将函数sin 2y x =的图象向左平移()0ϕϕ>个单位长度,再向下平移1个单位长度,所得图象对应的函数的解析式为()sin 221y x ϕ=+-,22sin cos 21sin 212y x x x π⎛⎫=-=-=+- ⎪⎝⎭,()222k k Z πϕπ∴=+∈,解得()4k k Z πϕπ=+∈,当0k =时,4πϕ=.故选:B. 【点睛】本题考查利用三角函数图象变换求参数,解题的关键就是结合图象变换求出变换后所得函数的解析式,考查计算能力,属于中等题. 7.C 【分析】先推导出函数()y f x =的周期为2π,可得出2333f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,然后利用函数()y f x =的奇偶性结合函数的解析式可计算出结果.【详解】函数()y f x =是R 上的奇函数,且()()0f x f x π++=,()()f x f x π∴+=-,()()()2f x f x f x ππ∴+=-+=,所以,函数()y f x =的周期为2π,则23sin 33332f f f ππππ⎛⎫⎛⎫⎛⎫=-=-=-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:C. 【点睛】本题考查利用函数的奇偶性和周期求函数值,解题的关键就是推导出函数的周期,考查计算能力,属于中等题. 8.AC 【分析】分别求出函数()y f x =的定义域、最小正周期、单调递增区间和对称中心坐标,即可判断出四个选项的正误. 【详解】对于A 选项,令()242x k k Z πππ+≠+∈,解得()28k x k Z ππ≠+∈, 则函数()y f x =的定义域是,82k x x k Z ππ⎧⎫≠+∈⎨⎬⎩⎭,A 选项正确; 对于B 选项,函数()y f x =的最小正周期为2π,B 选项错误; 对于C 选项,令()2242k x k k Z πππππ-<+<+∈,解得()32828k k x k Z ππππ-<<+∈, 则函数()y f x =的单调递增区间是()3,2828k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,C 选项正确; 对于D 选项,令()242k x k Z ππ+=∈,解得()48k x k Z ππ=-∈, 则函数()y f x =的对称中心为(),048k k Z ππ⎛⎫-∈ ⎪⎝⎭,D 选项错误. 故选:AC. 【点睛】本题考查正切型函数的基本性质,考查计算能力,属于基础题. 9.ABD 【分析】求出a 可判断A 选项的正误;利用向量的减法法则求出b ,利用共线向量的基本定理可判断B 选项的正误;计算出a b ⋅,可判断C 选项的正误;计算出()6a b BC +⋅,可判断D 选项的正误.综合可得出结论. 【详解】 对于A 选项,3AB a =,13a AB ∴=,则113a AB ==,A 选项正确; 对于B 选项,3AC a b AB b =+=+,b AC AB BC ∴=-=,//b BC ∴,B 选项正确;对于C 选项,21123cos 0333a b AB BC π⋅=⋅=⨯⨯≠,所以a 与b 不垂直,C 选项错误; 对于D 选项,()()()2260a b BC AB AC AC AB AC AB +⋅=+⋅-=-=,所以,()6a b BC +⊥,D 选项正确.故选:ABD. 【点睛】本题考查向量有关命题真假的判断,涉及单位向量、共线向量的概念的理解以及垂直向量的判断,考查推理能力,属于中等题. 10.BD 【分析】先利用辅助角、二倍角以及同角三角函数的商数关系化简各选项中的函数解析式,然后利用正弦函数和正切函数的单调性判断各选项中函数在区间0,2π⎛⎫⎪⎝⎭上的单调性,由此可得出结论. 【详解】对于A 选项,sin cos 4y x x x π⎛⎫=+=+ ⎪⎝⎭,当0,2x π⎛⎫∈ ⎪⎝⎭时,3,444x πππ⎛⎫+∈ ⎪⎝⎭, 所以,函数sin cos y x x =+在区间0,2π⎛⎫⎪⎝⎭上不单调;对于B 选项,sin cos 4y x x x π⎛⎫=-=- ⎪⎝⎭,当0,2x π⎛⎫∈ ⎪⎝⎭时,,444x πππ⎛⎫-∈- ⎪⎝⎭,所以,函数sin cos y x x =-在区间0,2π⎛⎫⎪⎝⎭上单调递增; 对于C 选项,1sin cos sin 22y x x x ==,当0,2x π⎛⎫∈ ⎪⎝⎭时,()20,x π∈, 所以,函数sin cos y x x =在区间0,2π⎛⎫⎪⎝⎭上不单调; 对于D 选项,当0,2x π⎛⎫∈ ⎪⎝⎭时,sin tan cos x y x x ==,所以,函数sin cos x y x =在区间0,2π⎛⎫⎪⎝⎭上单调递增. 故选:BD. 【点睛】本题考查三角函数单调性的判断,解题的关键就是将三角函数解析式化简,并利用正弦、余弦和正切函数的单调性进行判断,考查推理能力,属于中等题. 11.BCD 【分析】根据共线向量的定义判断A 选项的正误;根据题意判断出角α的终边的位置,然后利用等分象限法可判断出角2α的终边的位置,进而判断B 选项的正误;利用图象法求出函数1cos 2y x =+的最小正周期,可判断C 选项的正误;利用切化弦思想化简不等式tan tan 1A B ⋅<得出cos cos cos 0A B C <,进而可判断出选项D 的正误.综合可得出结论.【详解】对于A 选项,向量AB 与CD 共线,则//AB CD 或点A 、B 、C 、D 在同一条直线上,A 选项错误;对于B 选项,2sin sin tan 0cos αααα⋅=>,cos tan sin 0ααα⋅=<,所以sin 0cos 0αα<⎧⎨>⎩, 则角α为第四象限角,如下图所示:则2α为第二或第四象限角,B 选项正确; 对于C 选项,作出函数1cos 2y x =+的图象如下图所示:由图象可知,函数1cos 2y x =+是周期函数,且最小正周期为2π,C 选项正确; 对于D 选项,tan tan 1A B <,()()cos cos sin sin cos cos sin sin 1tan tan 1cos cos cos cos cos cos cos cos A B C A B A B A B A B A B A B A B A Bπ+--∴-=-===cos 0cos cos CA B=->,cos cos cos 0A B C ∴<,对于任意三角形,必有两个角为锐角,则ABC ∆的三个内角余弦值必有一个为负数, 则ABC ∆为钝角三角形,D 选项正确. 故选:BCD. 【点睛】本题考查三角函数、三角恒等变换与向量相关命题真假的判断,考查共线向量的定义、角的终边位置、三角函数的周期以及三角形形状的判断,考查推理能力,属于中等题. 12.52【分析】利用诱导公式化简等式()()sin 2cos 0παπα-++=,可求出tan α的值,将所求分式变形为221sin cos sin cos sin cos αααααα+=,在所得分式的分子和分母中同时除以2cos α,将所求分式转化为只含tan α的代数式,代值计算即可. 【详解】()()sin 2cos 0παπα-++=,sin 2cos 0αα∴-=,tan 2α∴=,因此,22221sin cos tan 1215sin cos sin cos tan 22αααααααα+++====.故答案为:52. 【点睛】本题考查利用诱导公式和弦化切思想求值,解题的关键就是求出tan α的值,考查计算能力,属于基础题. 13.4【分析】利用两角差的正切公式可计算出()tan tan βαβα=+-⎡⎤⎣⎦的值. 【详解】由两角差的正切公式得()()()tan tan tan tan 1tan tan αβαβαβααβα+-=+-==⎡⎤⎣⎦++=. 【点睛】本题考查利用两角差的正切公式求值,解题的关键就是弄清角与角之间的关系,考查计算能力,属于基础题.14.18 【分析】利用向量数量积的几何意义得出2a b ⋅=,在等式24a b -=两边平方可求出b 的值,然后利用平面向量数量积的运算律可计算出()2b a b ⋅+的值. 【详解】2a =,a 在b 方向上的投影为1,212a b ⋅=⨯=,24a b -=,222222216244444242a b a a b b a a b b b =-=-⋅+=-⋅+=⨯-⨯+,可得22b =,因此,()22222818b a b a b b ⋅+=⋅+=+⨯=. 故答案为:18. 【点睛】本题考查平面向量数量积的计算,涉及利用向量的模求数量积,同时也考查了向量数量积几何意义的应用,考查计算能力,属于基础题. 15.35 59【分析】(1)由0x =可得出O 为AC 的中点,可知AC 为ABC ∆外接圆的直径,利用锐角三角函数的定义可求出cos BAC ∠;(2)推导出外心的数量积性质212AO AB AB ⋅=,212AO AC AC ⋅=,由题意得出关于x 、y 和AB AC ⋅的方程组,求出AB AC ⋅的值,再利用向量夹角的余弦公式可求出cos BAC ∠的值. 【详解】当0x =时,由263x y +=可得12y =,12AO xAB y AC AC ∴=+=, 所以,AC 为ABC ∆外接圆的直径,则2ABC π∠=,此时3cos 5AB BAC AC ∠==; 如下图所示:取AB 的中点D ,连接OD ,则⊥OD AB ,所0DO AB ⋅=,()212AO AB AD DO AB AD AB AB ∴⋅=+⋅=⋅=,同理可得212AO AC AC ⋅=. 所以,()()221212263AO AB xAB y AC AB AB AO AC xAB y AC AC AC x y ⎧⋅=+⋅=⎪⎪⎪⋅=+⋅=⎨⎪+=⎪⎪⎩,整理得361810050263x y AB AC xAB AC y x y ⎧+⋅=⎪⋅+=⎨⎪+=⎩,解得356x =,2756y =,1003AB AC ⋅=,因此,5cos 9AB AC BAC AB AC ⋅∠==⋅. 故答案为:35;59. 【点睛】本题考查三角的外心的向量数量积性质的应用,解题的关键就是推导出212AO AB AB ⋅=,212AO AC AC ⋅=,并以此建立方程组求解,计算量大,属于难题.16.(Ⅰ)13-;(Ⅱ)15-.【分析】(Ⅰ)求出向量3a b -和a kb +的坐标,然后利用共线向量的坐标表示得出关于k 的方程,解出即可;(Ⅱ)由()a tb b -⊥得出()0a tb b -⋅=,利用向量数量积的坐标运算可得出关于实数t 的方程,解出即可. 【详解】 (Ⅰ)()1,2a =-,()3,4b =,()()()331,23,40,10a b ∴-=--=-,()()()1,23,431,42a kb k k k +=-+=+-,()()3//a b a kb -+,()10310k ∴-+=,解得13k =-; (Ⅱ)()()()1,23,413,24a tb t t t -=--=---,()a tb b -⊥,()()()3134242550a tb b t t t ∴-⋅=⨯-+⨯--=--=,解得15t =-. 【点睛】本题考查平面向量的坐标运算,考查利用共线向量和向量垂直求参数,考查计算能力,属于基础题.17.(Ⅰ)图象见解析;(Ⅱ)答案不唯一,见解析. 【分析】 (Ⅰ)分别令23x π+取0、2π、π、32π、2π,列表、描点、连线可作出函数2sin 23y x π⎛⎫=+ ⎪⎝⎭在一个周期内的图象简图;(Ⅱ)根据三角函数图象的变换原则可得出函数sin y x =的图象通过变换得到2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象的变换过程.【详解】(Ⅰ)列表如下:函数2sin 23y x π⎛⎫=+⎪⎝⎭在一个周期内的图象简图如下图所示:(Ⅱ)总共有6种变换方式,如下所示: 方法一:先将函数sin y x =的图象向左平移3π个单位,将所得图象上每个点的横坐标缩短为原来的12倍,再将所得图象上每个点的纵坐标伸长为原来的2倍,可得到函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象;方法二:先将函数sin y x =的图象向左平移3π个单位,将所得图象上每个点的纵坐标伸长为原来的2倍,再将所得图象上每个点的横坐标缩短为原来的12倍,可得到函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象;方法三:先将函数sin y x =的图象上每个点的横坐标缩短为原来的12倍,将所得图象向左平移6π个单位,再将所得图象上每个点的纵坐标伸长为原来的2倍,可得到函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象;方法四:先将函数sin y x =的图象上每个点的横坐标缩短为原来的12倍,将所得图象上每个点的纵坐标伸长为原来的2倍,再将所得图象向左平移6π个单位,可得到函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象;方法五:先将函数sin y x =的图象上每个点的纵坐标伸长为原来的2倍,将所得图象上每个点的横坐标缩短为原来的12倍,再将所得图象向左平移6π个单位,可得到函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象;方法六:先将函数sin y x =的图象上每个点的纵坐标伸长为原来的2倍,将所得图象向左平移3π个单位,再将所得图象上每个点的横坐标缩短为原来的12倍,可得到函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象.【点睛】本题考查利用五点作图法作出正弦型函数在一个周期内的简图,同时也考查了三角函数图象变换,考查推理能力,属于基础题.18.(Ⅰ)4C ;(Ⅱ)从中午12点到晚上20点. 【分析】(Ⅰ)利用辅助角公式化简函数()y f t =的解析式为()162sin 126f t t ππ⎛⎫=-+ ⎪⎝⎭,由此可得出实验室这一天的最大温差; (Ⅱ)由[)0,24t ∈,得出13,12666t ππππ⎡⎫+∈⎪⎢⎣⎭,令()17f t >,得到1sin 1262t ππ⎛⎫+<- ⎪⎝⎭,解此不等式即可得出结论. 【详解】(Ⅰ)()16cos162sin 1261212f t t t t ππππ⎛⎫+ ⎪-=-⎝=-⎭,[)0,24t ∈. 因此,实验室这一天的最大温差为4C ; (Ⅱ)当[)0,24t ∈时,13,12666t ππππ⎡⎫+∈⎪⎢⎣⎭, 令()162sin 17126f t t ππ⎛⎫=-+> ⎪⎝⎭,得1sin 1262t ππ⎛⎫+<- ⎪⎝⎭,所以71161266t ππππ<+<,解得1220t <<,因此,实验室从中午12点到晚上20点需要降温. 【点睛】本题考查三角函数模型在生活中的应用,涉及正弦不等式的求解,考查运算求解能力,属于中等题.19.(Ⅰ)选①或②或③,()2sin 216f x x π⎛⎫=++ ⎪⎝⎭;(Ⅱ)当0t =或t π=时,线段PQ 的长取到最大值2. 【分析】(Ⅰ)先根据题中信息求出函数()y f x =的最小正周期,进而得出2ω=. 选①,根据题意得出()232k k Z ππϕπ-+=+∈,结合ϕ的取值范围可求出ϕ的值,进而得出函数()y f x =的解析式; 选②,根据题意得出()56k k Z πϕπ+=∈,结合ϕ的取值范围可求出ϕ的值,进而得出函数()y f x =的解析式; 选③,根据题意得出51sin 32πϕ⎛⎫+=-⎪⎝⎭,结合ϕ的取值范围可求出ϕ的值,进而得出函数()y f x =的解析式;(Ⅱ)令()()()h x f x g x =-,利用三角恒等变换思想化简函数()y h x =的解析式,利用正弦型函数的基本性质求出()h t 在[]0,t π∈上的最大值和最小值,由此可求得线段PQ 长度的最大值及此时t 的值. 【详解】(Ⅰ)由于函数()y f x =图象上两相邻对称轴之间的距离为2π,则该函数的最小正周期为22T ππ=⨯=,222T ππωπ∴===,此时()()2sin 21f x x ϕ=++. 若选①,则函数()y f x =的一条对称轴3x π=-,则()232k k Z ππϕπ-+=+∈,得()76k k Z πϕπ=+∈,22ππϕ-<<,当1k =-时,6π=ϕ,此时,()2sin 216f x x π⎛⎫=++ ⎪⎝⎭; 若选②,则函数()y f x =的一个对称中心5,112π⎛⎫⎪⎝⎭,则()56k k Z πϕπ+=∈, 得()56k k Z πϕπ=-∈,22ππϕ-<<,当1k =时,6π=ϕ, 此时,()2sin 216f x x π⎛⎫=++ ⎪⎝⎭;若选③,则函数()y f x =的图象过点5,06π⎛⎫⎪⎝⎭,则552sin 1063f ππϕ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭,得51sin 32πϕ⎛⎫+=- ⎪⎝⎭,22ππϕ-<<,7513636πππϕ∴<+<, 51136ππϕ∴+=,解得6π=ϕ,此时,()2sin 216f x x π⎛⎫=++ ⎪⎝⎭.综上所述,()2sin 216f x x π⎛⎫=++ ⎪⎝⎭;(Ⅱ)令()()()2sin 21cos 6h x f x g x x x x π⎛⎫=-=++- ⎪⎝⎭122cos 212cos 21022x x x x ⎛⎫=++=+≥ ⎪ ⎪⎝⎭,()cos21PQ h t t ∴==+, []0,t π∈,[]20,2t π∴∈,当20t =或22t π=时,即当0t =或t π=时,线段PQ 的长取到最大值2. 【点睛】本题考查利用三角函数的基本性质求解析式,同时也考查了余弦型三角函数在区间上最值的计算,考查计算能力,属于中等题. 20.(Ⅰ)AE a mb =+,12n AF a b +=+;(Ⅱ)6. 【分析】(Ⅰ)过点D 作//DM BC ,交AB 于点M ,证明出2AM BM CD ===,从而得出2AB CD =,然后利用向量加法的三角形法则可将AE 和AF 用a 、b 表示;(Ⅱ)计算出2a 、a b ⋅和2b 的值,由1m n +=得出1n m =-,且有01m ≤≤,然后利用向量数量积的运算律将AE AF ⋅表示为以m 为自变量的二次函数,利用二次函数的基本性质可求出AE AF ⋅的最小值. 【详解】(Ⅰ)如下图所示,过点D 作//DM BC ,交AB 于点M ,由于ABCD 为等腰梯形,则2AD BC ==,且60BAD ABC ∠=∠=,//AB DC ,即//CD BM ,又//DM BC ,所以,四边形BCDM 为平行四边形,则2DM BC AD ===,所以,ADM ∆为等边三角形,且2AM =,2CD BM AB AM ∴==-=,2AB CD ∴=, AE AB BE AB mBC a mb =+=+=+,()()111122n AF AB BC CF AB BC n CD a b n a a b +=++=++-=+--=+; (Ⅱ)2216a AB ==,1cos1204242a b AB BC ⎛⎫⋅=⋅=⨯⨯-=- ⎪⎝⎭,224b BC ==, 由题意可知,01m ≤≤,由1m n +=得出1n m =-, 所以,1112222n m mAF a b a b a b +-+-=+=+=+, ()()22222222m m m m AE AF a mb a b a a b a b mb---⎛⎫∴⋅=+⋅+=+⋅+⋅+ ⎪⎝⎭()222812224m m m =-+=-+,令()()2224f m m =-+,则函数()y f m =在区间[]0,1上单调递减,所以,()()min 16f m f ==,因此,AE AF ⋅的最小值为6. 【点睛】本题考查利用基底表示向量,同时也考查了平面向量数量积最值的计算,考查运算求解能力,属于中等题.21.(Ⅰ)[)0,+∞;(Ⅱ)见解析.【分析】(Ⅰ)由[]sin 12,0α-∈-可知,区间[]2,0-是不等式()0f x ≤解集的子集,由此可得出实数m 的不等式,解出即可;(Ⅱ)由题意可知,0m =,则()224f x x x =+,令()0F x =,可得出()152cos a f x -=,令[]2cos 2,2t x =∈-,对实数a 的取值范围进行分类讨论,先讨论方程()15a f t -=的根的个数及根的范围,进而得出方程2cos t x =的根个数,由此可得出结论.【详解】(Ⅰ)1sin 1α-≤≤,2sin 10α∴-≤-≤,对任意的实数α,恒有()sin 10f α-≤成立,则区间[]2,0-是不等式()0f x ≤解集的子集,02m ∴≥,解得0m ≥, 因此,实数m 的取值范围是[)0,+∞;(Ⅱ)0m ≥,由题意可知,0m =,()()22224f x x x x x =+=+, 令()0F x =,得()152cos a f x -=,令[]2cos 2,2t x =∈-,则()15a f t -=,作出函数15y a =-和函数()y f t =在[]2,2t ∈-时的图象如下图所示:作出函数2cos t x =在[)0,2x π∈时的图象如下图所示:①当152a -<-或1516a ->时,即当1a <-或17a >时,方程()15a f t -=无实根, 此时,函数()y F x =无零点;②当152a -=-时,即当17a =时,方程()15a f t -=的根为1t =-,而方程2cos 1x =-在区间[)0,2π上有两个实根,此时,函数()y F x =有两个零点; ③当2150a -<-<时,即当1517a <<时,方程()15a f t -=有两根1t 、2t ,且()12,1t ∈--,()21,0t ∈-,方程12cos x t =在区间[)0,2π上有两个实根,方程22cos x t =在区间[)0,2π上有两个实根,此时,函数()y F x =有四个零点;④当150a -=时,即当15a =时,方程()15a f t -=有两根分别为2-、0,方程2cos 2x =-在区间[)0,2π上只有一个实根,方程2cos 0x =在区间[)0,2π上有两个实根,此时,函数()y F x =有三个零点;⑤当01516a <-<时,即当115a -<<时,方程()15a f t -=只有一个实根1t ,且()10,2t ∈,方程12cos x t =在区间[)0,2π上有两个实根,此时,函数()y F x =有两个零点; ⑥当1516a -=时,即当1a =-时,方程()15a f t -=只有一个实根2,方程2cos 2x =在区间[)0,2π上只有一个实根,此时,函数()y F x =只有一个零点. 综上所述,当1a <-或17a >时,函数()y F x =无零点;当1a =-时,函数()y F x =只有一个零点;当115a -<<或17a =时,函数()y F x =有两个零点;当15a =时,函数()y F x =有三个零点;当1517a <<时,函数()y F x =有四个零点.【点睛】本题考查利用二次不等式求参数,同时也考查了复合型二次函数的零点个数的分类讨论,解题时要将函数分解为内层函数和外层函数来分析,考查数形结合思想与分类讨论思想的应用,属于难题.。
天津市四校(四十七中,一百中学)2020-2021学年高一上学期期末联考数学试题解析高中数学
由 ,则 在 上单调递增.
所以函数 的零点所在的大致区间是
故选:B
5.已知扇形 的面积为8,且圆心角弧度数为2,则扇形 的周长为()
A.32B.24C. D.
【答案】D
【解析】
【分析】根据扇形面积和弧长公式即可求解.
【详解】圆心角 ,扇形面积 ,
即 ,得半径 ,
所以弧长 ,
故扇形 的周长 .
即实数m的取值范围为 .
故选:D.
二、填空题(5/30)
10.函数 的单调递减区间是___________.
【答案】
【解析】
【分析】根据复合函数单调性同增异减求得正确答案.
【详解】 ,
,
解得 或 .
函数 的开口向上,对称轴是 轴,
在 上递减,
根据复合函数单调性同增异减可知 的单调递减区间是 .
故答案为:
【详解】对于①,设 ,有 ,
故函数 是奇函数,且易知函数 在R上单调递增,故①正确;
对于②,当 时,不等式为 ,解集为R,
当 时,有 ,解得 ,
综上: ,②错误;
对于③, 中, ,解得 ,③错误;
对于④,若 为偶函数,则 , ,④错误.
综上:只有①正确.
故选:A
8.若 ,且 ,则 的最小值为()
A 8B.3C.2D.
故选:D
6.将函数 图象上各点的横坐标伸长到原来的2倍,再向左平移 个单位,纵坐标不变,所得函数图象的一条对称轴的方程是()
A. B. C. D.
【答案】B
【解析】
【分析】根据图像的伸缩和平移变换得到 ,再整体代入即可求得对称轴方程.
【详解】将函数 图象上各点的横坐标伸长到原来的2倍,
2020-2021学年合肥市高一上学期期末数学试卷(附答案解析)
2020-2021学年合肥市高一上学期期末数学试卷一、单选题(本大题共12小题,共60.0分)1.已知集合A={x|x=2n,n∈N∗},B={x|x=2n,n∈N∗},则下列不正确的是()A. A⊆BB. A∩B=AC. B∩(∁z A)=ΦD. A∪B=B2.已知f(x)是以5为周期的奇函数,f(−3)=4且sinα=√32,则f(4cos2α)=()A. 4B. −4C. 2D. −23.设tan1234°=a,那么sin(−206°)+cos(−206°)的值为()A. 1+a√1+a2B. −1+a√1+a2C. a−1√1+a2D. 1−a√1+a24.设|a⃗|=1,|b⃗ |=2,且a⃗、b⃗ 夹角为23π,则|2a⃗+b⃗ |等于()A. 2B. 4C. 12D. 2√35.如图,有一个“鼓形”烧水壶正在接水.水壶底部较宽,口部较窄,中间部分鼓起.已知单位时间内注水量不变,壶中水面始终为圆形,当注水t=t0时,壶中水面高度ℎ达到最高ℎ0.在以下图中,最能近似的表示壶中水面高度ℎ与注水时间t的关系是()A. B.C. D.6.下面有命题:①y=|sinx−12|的周期是π;②y=sinx+sin|x|的值域是[0,2];③方程cosx=lgx有三解;④ω为正实数,y=2sinωx在[−π3,2π3]上递增,那么ω的取值范围是(0,34];⑤在y=3sin(2x+π4)中,若f(x1)=f(x2)=0,则x1−x2必为π的整数倍;⑥若A 、B 是锐角△ABC 的两个内角,则点P(cosB −sinA,sinB −cosA 在第二象限; ⑦在△ABC 中,若AB ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ >0,则△ABC 钝角三角形.其中真命题个数为( )A. 2B. 3C. 4D. 57.已知sin(α+π3)+sinα=√33,则sin(2α−π6)的值是( )A. 79B. −79C. 29D. −298.已知函数f(x)=|log 3x|,若函数y =f(x)−m 有两个不同的零点a ,b ,则( )A. a +b =1B. a +b =3mC. ab =1D. b =a m9.函数f(x)=ax 2+(2+a)x +1是偶函数,则函数的单调递增区间为( )A. [0,+∞)B. (−∞,0]C. (−∞,+∞)D. [1,+∞)10. 化简cos50°+cos70°−cos10°的结果为( )A. 0B. 2cosl0°C. −2cosl0°D. 2sinl0°11. 已知函数f(x)={log 3(x +2)+a,x ≥1e x −1,x <1,若f[f(ln2)]=2a ,则f(a)等于( )A. 12B. 43C. 2D. 412. 已知向量=(),=(1,)且,其中,则等于( )A.B.C.D.二、单空题(本大题共4小题,共20.0分)13. 已知向量|a ⃗ |=√5,b ⃗ =(1,0),c ⃗ =(3,4),若a ⃗ ⋅b ⃗ =1,(a ⃗ +λb ⃗ )//c ⃗ ,则实数λ= ______ . 14. 计算2sin50°−√3sin20°cos20°=______.15. 在长方形区域{(x,y)|0≤x ≤2,0≤y ≤1}中任取一点P ,则点P 恰好取自曲线y =cosx(0≤x ≤π2)与坐标轴围成的区域内的概率为______ .16. 14、已知是定义在上的函数,并满足,当时,,则。
重庆市南岸区2020-2021学年高一物理上学期期末考试学业质量调研抽测试题(含解析)
重庆市南岸区2020-2021学年高一物理上学期期末考试学业质量调研抽测试题(含解析)一、单选题1.汽车刹车后做匀减速直线运动,经过3s停止运动,那么汽车在先后连续相等的三个1s内通过的位移之比x1:x2:x3为()A. 1:2:3B. 5:3:1C. 1:4:9D. 3:2:1 【答案】B【解析】【详解】采用逆向思维,汽车做初速度为零的匀加速直线运动,根据x=12at2知,1s内、2s内、3s内的位移之比为1:4:9,则初速度为零的匀加速直线运动连续1s内的位移之比为1:3:5,可知汽车在先后连续相等的三个1s内通过的位移之比x1:x2:x3为5:3:1.故选B.【点睛】解决本题的关键掌握匀变速直线运动的运动学公式和推论,并能灵活运用,掌握逆向思维在运动学中的运用.2.将一段导线绕成图甲所示的闭合电路,并固定在水平面(纸面)内,回路的ab边置于垂直纸面向里的匀强磁场Ⅰ中.回路的圆形区域内有垂直纸面的磁场Ⅱ,以向里为磁场Ⅱ的正方向,其磁感应强度B随时间t变化的图像如图乙所示.用F表示ab边受到的安培力,以水平向右为F的正方向,能正确反映F随时间t变化的图像是()A. B.C. D.【答案】B【解析】【详解】分析一个周期内的情况:在前半个周期内,磁感应强度均匀变化,磁感应强度B的变化度一定,由法拉第电磁感应定律得知,圆形线圈中产生恒定的感应电动势恒定不变,则感应电流恒定不变,ab边在磁场中所受的安培力也恒定不变,由楞次定律可知,圆形线圈中产生的感应电流方向为顺时针方向,通过ab的电流方向从b→a,由左手定则判断得知,ab 所受的安培力方向水平向左,为负值;同理可知,在后半个周期内,安培力大小恒定不变,方向水平向右.故B正确.【点睛】本题要求学生能正确理解B-t图的含义,故道B如何变化,才能准确的利用楞次定律进行判定.根据法拉第电磁感应定律分析感应电动势的变化,由欧姆定律判断感应电流的变化,进而可确定安培力大小的变化.3.如图所示,离地面高h处有甲、乙两个小球,甲以速度v0水平抛出,同时乙以大小相同的初速度v0沿倾角为30°的光滑斜面滑下.若甲、乙同时到达地面,不计空气阻力,则甲运动的水平距离是()A. 32h B.12h3h D. 2h【答案】A【解析】【详解】ABCD.甲平抛运动的时间为2htg甲的水平距离为0 x v t =甲乙在斜面下滑的加速度为sin 3012mg a g m ︒==乙沿斜面运动,则:20122h v t at =+联立解得:32x h =甲 故A 正确BCD 错误。
2020-2021学年新教材高一数学上学期期末复习练习(四)
2020-2021高一数学期末复习练习(四)考查知识:苏教版必修第一册第I 卷(选择题)请点击修改第I 卷的文字说明一、单选题1.集合{|14}A x N x =∈≤<的真子集的个数是( )A .16B .8C .7D .42.已知:p :A ={x |x 2﹣2x ﹣3≤0},q :B ={x |x 2﹣2mx +m 2﹣4≤0},若p 是¬q 成立的充分不必要条件,求m 的取值范围是( )A .(﹣∞,﹣3)∪(5,+∞)B .(﹣3,5)C .[﹣3,5]D .(﹣∞,﹣3]∪[5,+∞)3.已知a b >,0ab ≠,则下列不等式正确的是( )A .22a b >B .22a b >C .|a |>|b|D .11a b < 4.已知lg 20.3010=,由此可以推断20142是( )位整数.A .605B .606C .607D .6085.设f (x )=12(1),1x x x <<-≥⎪⎩,若f (a )=12,则a =( ) A .14 B .54 C .14或54 D .26.正实数x ,y 满足lg lg 100y x x y =,则xy 的取值范围是( )A .1[,100]100B .1(0,][100,)100⋃+∞ 117.已知扇形的圆心角为23π,面积为24 c m 3π,则扇形的半径为( ) A .12cm B .1cmC .2cmD .4cm 8.复利是一种计算利息的方法.即把前一期的利息和本金加在一起算作本金,再计算下一期的利息.某同学有压岁钱1000元,存入银行,年利率为2.25%;若放入微信零钱通或者支付宝的余额宝,年利率可达4.01%.如果将这1000元选择合适方式存满5年,可以多获利息( )元(参考数据:1.02254=1.093,1,02255=1.170,1.04015=1.217)A .176B .104.5C .77D .88二、多选题9.已知集合{}2A x ax =≤,{B =,若B A ⊆,则实数a 的值可能是( ) A .1- B .1 C .2- D .2 10.设正实数a ,b 满足a +b =1,则( )A .11a b +有最小值4B 12C D .a 2+b 2有最小值12 11.已知定义在R 上的函数()y f x =满足条件()()2f x f x +=-,且函数()1y f x =-为奇函数,则( )A .()4()f x f x +=B .函数()y f x =的图象关于点()1,0-对称C .函数()y f x =为R 上的奇函数D .函数()y f x =为R 上的偶函数12.将函数()sin2f x x =向右平移4π个单位后得到函数()g x ,则()g x 具有性质( ) A .在0,4π⎛⎫ ⎪⎝⎭上单调递增,为偶函数 B .最大值为1,图象关于直线32x π=对称 C .在3,88ππ⎛⎫- ⎪⎝⎭上单调递增,为奇函数 D .周期为π,图象关于点3,04π⎛⎫⎪⎝⎭对称第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题13.已知p :2106x x >--,则“非p ”对应的x 值的集合是___. 14.若对数ln (x 2﹣5x +6)存在,则x 的取值范围为___.15.若()log 3a y ax =+(0a >且1a ≠)在区间(-1,+∞)上是增函数,则a 的取值范围是________.四、双空题16.已知函数()22log (1),02,0x x f x x x x +>⎧=⎨--≤⎩. 若函数()()g x f x m =-有3个零点,则实数m 的取值范围是________;若()f x m =有2个零点,则m =________.17.已知集合{}12A x x =-≤≤,{}2B x a x a =≤≤+.(1)若1a =,求A B ;(2)在①R R A B ⊆,②A B A ⋃=,③A B B =中任选一个作为已知,求实数a 的取值范围.18.已知函数()222y ax a x =-++,a R ∈ (1)32y x <-恒成立,求实数a 的取值范围;(2)当0a >时,求不等式0y ≥的解集;(3)若存在0m >使关于x 的方程()21221ax a x m m-++=++有四个不同的实根,求实数a 的取值.19.计算下列各式的值:(1)lg2+lg50;(2)39log 4log 8; (3))211lg12log 432162lg 20lg 2log 2log 319-⎛⎫++--⋅+ ⎪⎝⎭.20.已知函数f (x )=ax 2﹣2x +1+b (a ≠0)在x =1处取得最小值0.(1)求a ,b 的值;(2)()()f x g x x =,求函数1(|21|),,22x y g x ⎡⎤=-∈⎢⎥⎣⎦的最小值与最大值及取得最小值与最大值时对应的x 值.21.设函数()cos(),0,02f x x πωϕωϕ⎛⎫=+>-<< ⎪⎝⎭的最小正周期为π,且16f π⎛⎫= ⎪⎝⎭. (1)求函数()f x 的解析式;(2)求函数()f x 的单调递增区间;(3)将函数()y f x =的图象向左平移3π个单位长度,再将所得图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )在2,63ππ⎡⎤-⎢⎥⎣⎦上的值域.22.销售甲种商品所得利润为P 万元,它与投入资金t 万元的函数关系为1at P t =+;销售乙种商品所得利润为Q 万元,它与投入资金t 万元的函数关系为Q bt =,其中a ,b 为常数.现将5万元资金全部投入甲、乙两种商品的销售:若全部投入甲种商品,所得利润为52万元;若全部投入乙种商品,所得利润为53万元.若将5万元资金中的x 万元投入甲种商品的销售,余下的投入乙种商品的销售,则所得利润总和为()f x 万元. (1)求函数()f x 的解析式;(2)求()f x 的最大值.2020-2021高一数学期末复习练习(四)考查知识:苏教版必修第一册参考答案1.C【分析】先用列举法写出集合A ,再写出其真子集即可.【详解】解:∵141,2,3{|}{}A x N x =∈≤<=,{|1}4A x N x ∴=∈≤<的真子集为:{}{}{},,,,{}1231,21,{},,3{}2,3∅共7个. 故选:C .2.A【分析】求出集合A ,B ,由题可得[1,3]- ()(),22,m m -∞-⋃+∞,即可求出.【详解】解:由2230x x --≤,解得:13x -≤≤.{}2:230[1,3]p A x x x ∴=--≤=-∣.由22240x mx m -+-≤,解得:22m x m -≤≤+.∴q :B ={x |x 2﹣2mx +m 2﹣4≤0}=[m ﹣2,m +2], {}22:240[2,2]q B x x mx m m m ∴=-+-≤=-+∣.∵p 是¬q 成立的充分不必要条件,[1,3]∴- ()(),22,m m -∞-⋃+∞,32m ∴<-或21m +<-,解得5m >或3m <-.∴m 的取值范围是(,3)(5,)-∞-+∞. 故选:A.【点睛】结论点睛:本题考查根据充分不必要条件求参数,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)若p 是q 的充分不必要条件,则p 对应集合是q 对应集合的真子集; (3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,则q 对应的集合与p 对应集合互不包含. 3.B【分析】利用不等式性质和指数函数的单调性,以及举反例,逐项判定,即可求解.【详解】对于A 中,令1,2a b ==-,此时满足a b >,0ab ≠,但22a b <,所以不正确; 对于B 中,由函数2x y =为R 上的单调递增函数,因为a b >,所以22a b >,所以正确; 对于C 中,令1,2a b ==-,此时满足a b >,0ab ≠,但|a ||b |<,所以不正确; 对于D 中,令1,2a b ==-,此时满足a b >,0ab ≠,但11a b>,所以不正确. 故选:B.4.C【分析】令20142t =,两边取对数后求得lg t ,由此可得20142的整数位.【详解】解:∵lg 20.3010=,令20142t =,∴2014lg 2lg t ⨯=,则lg 20140.3010606.214t =⨯=,∴20142是607位整数.故选:C.5.C【分析】根据解析式分段讨论可求出.【详解】解:∵()12(1),1x f x x x <<=-≥⎪⎩,1()2f a =,∴由题意知,0112a <<⎧=或()11212a a ≥⎧⎪⎨-=⎪⎩, 解得14a =或54a =. 故选:C .6.B【分析】两边取对数可得lg lg 1x y =,利用基本不等式即可求出xy 的取值范围.【详解】正实数x ,y 满足lg lg 100y x x y =,两边取对数可得2lg lg 2x y =,所以lg lg 1x y =, 所以22lg lg lg()1lg lg 22x y xy x y +⎛⎫⎡⎤=≤= ⎪⎢⎥⎝⎭⎣⎦,即2lg ()4xy ≥, 所以lg()2xy ≥或lg()2xy ≤-,解得100xy ≥或10100xy <≤, 所以xy 的取值范围是1(0,][100,)100⋃+∞. 故选:B【点睛】 关键点点睛:本题的求解关键是两边取对数得到lg lg x y 积为定值. 7.C【分析】利用扇形的面积公式即可求解.【详解】设扇形的半径为R ,则扇形的面积2211242233S R R ππα==⨯⨯=, 解得:2R =,故选:C8.B【分析】由题意,某同学有压岁钱1000元,分别计算存入银行和放入微信零钱通或者支付宝的余额宝所得利息,即可得到答案.【详解】将1000元钱存入微信零钱通或者支付宝的余额宝,选择复利的计算方法,则存满5年后的本息和为51000 1.04011217⨯=,故而共得利息1217–1000=217元.将1000元存入银行,不选择复利的计算方法,则存满5年后的利息为1000×0.0225×5=112.5,故可以多获利息217–112.5=104.5.故选:B .【点睛】本题主要考查了等比数列的实际应用问题,其中解答中认真审题,准确理解题意,合理利用等比数列的通项公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9.ABC【分析】由B A ⊆可得出关于实数a 的不等式组,解出实数a 的取值范围,进而可得出实数a 的可能取值.【详解】{}2A x ax =≤,{B =且B A ⊆,所以,222a ≤≤⎪⎩,解得1a ≤. 因此,ABC 选项合乎题意.故选:ABC.10.ABCD由正实数a ,b 满足1a b +=,可得2a b ab +,则104ab <,根据1114a b ab +=判断A ;104ab <开平方判断B =判断C ;利用222222()a b a a b b +++判断D .【详解】正实数a ,b 满足1a b +=,即有2a b ab +,可得104ab <, 即有1114a b a b ab ab ++==,即有12a b ==时,11a b+取得最小值4,无最大值,A 正确;由104ab <可得102<,可得12a b ==有最大值12,B 正确;1122=+⨯,可得12a b ==,C 正确; 由222a b ab +可得2222222()()1a a b a b a b b ++=++=,则2212a b +,当12a b ==时,22a b +取得最小值12,D 正确. 故选:ABCD .【点睛】 利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用≥或≤时等号能否同时成立).【分析】由()()2f x f x +=-,可得推得()()4f x f x +=,得到A 是正确的;由奇函数的性质和图象的变换,可得判定B 是正确的;由(1)(1)f x f x --=--+,可得推得函数()f x 是偶函数,得到D 正确,C 不正确.【详解】对于A 中,函数()y f x =满足()()2f x f x +=-,可得()()()42f x f x f x +=-+=,所以A 是正确的;对于B 中,()1y f x =-是奇函数,则(1)f x -的图象关于原点对称,又由函数()f x 的图象是由()1y f x =-向左平移1个单位长度得到,故函数()f x 的图象关于点(1,0)-对称,所以B 是正确的;对于C 、D ,由B 可得:对于任意的x ∈R ,都有(1)(1)f x f x --=--+,即(1)(1)0f x f x --+-+=,可变形得(2)()0f x f x --+=,则由(2)()(2)f x f x f x --=-=+对于任意的x ∈R 都成立,令2t x =+,则()()f t f t -=,即函数()f x 是偶函数,所以D 正确,C 不正确.故选:ABD【点睛】函数的周期性有关问题的求解策略:1、求解与函数的周期性有关问题,应根据题目特征及周期定义,求出函数的周期;2、解决函数周期性、奇偶性和单调性结合问题,通常先利用周期性中为自变量所在区间,再利用奇偶性和单调性求解.12.ABD【分析】化简得到()cos 2g x x =-,分别计算函数的奇偶性,最值,周期,轴对称和中心对称,单调区间得到答案.【详解】()sin 2sin 2cos 242g x x x x ππ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭ 因为0,4x π⎛⎫∈ ⎪⎝⎭,则20,2x π⎛⎫∈ ⎪⎝⎭,所以()cos 2g x x =-单调递增,且为偶函数,A 正确,C 错误; 最大值为1,当32x π=时,23x π=,所以32x π=为对称轴,B 正确; 22T ππ==,取2,,242k x k x k Z ππππ=+∴=+∈,当1k =时满足,图像关于点3,04π⎛⎫ ⎪⎝⎭对称,D 正确;故选:ABD【点睛】本题考查了三角函数的平移,最值,周期,单调性 ,奇偶性,对称性,意在考查学生对于三角函数知识的综合应用.13.{}23x x -≤≤【分析】先求出命题p ,再按照非命题的定义求解即可.【详解】p :2106x x >--, 则260x x -->,解得2x <-或3x >,所以“非p ”对应的x 值的集合是{}23x x -≤≤. 故答案为:{}23x x -≤≤.14.()(),23,-∞+∞ 【分析】若对数存在,则真数大于0,解不等式即可.【详解】解:∵对数ln (x 2﹣5x +6)存在,∴x 2﹣5x +6>0,∴解得: x <2或 x >3,即x 的取值范围为:(﹣∞,2)∪(3,+∞).故答案为:(﹣∞,2)∪(3,+∞).15.(]1,3【分析】先利用0a >判断30u ax =+>是增函数,进而得到log a y u =是增函数,列关系计算即得结果.【详解】因为()log 3a y ax =+,(0a >且1a ≠)在区间(-1,+∞)上是增函数,知3u ax =+在区间(-1,+∞)上是增函数,且0>u ,故log a y u =是增函数,所以30101a a a a ⎧⎪-+≥⎪⎪>⎨⎪>⎪≠⎪⎩,解得13a .故a 的取值范围是(]1,3.故答案为:(]1,3.16.(0,1) 0或1【分析】把函数()()g x f x m =-有3个零点,转化为()y f x =和y m =的交点有3个,作出函数()f x 的图象,结合图象,即可求解.【详解】由题意,函数()()g x f x m =-有3个零点,转化为()0f x m -=的根有3个,转化为()y f x =和y m =的交点有3个,画出函数()22log (1),02,0x x f x x x x +>⎧=⎨--≤⎩的图象,如图所示,则直线y m =与其有3个公共点, 又抛物线的顶点为(1,1)-,由图可知实数m 的取值范围是(0,1).若()f x m =有2个零点,则0m =或(1)1m f =-=.故答案为:(0,1);0或1.【点睛】本题主要考查了函数与方程的综合应用,其中解答中把函数的零点问题转化为两个函数的图象的交点个数,结合图象求解是解答的关键,着重考查数形结合思想,以及推理与运算能力. 17.(1){}13A B x x ⋃=-≤≤;(2)选①/②/③,10a -≤≤.【分析】(1)应用集合并运算求A B 即可;(2)根据所选条件有B A ⊆,即可求a 的取值范围.【详解】(1)当1a =时,{}13B x x =≤≤,则{}13A B x x ⋃=-≤≤.(2)选条件①②③,都有B A ⊆, ∴1,22,a a ≥-⎧⎨+≤⎩解得10a -≤≤, ∴实数a 的取值范围为10a -≤≤.【点睛】本题考查了集合的基本运算,利用并运算求并集,由条件得到集合的包含关系求参数范围,属于简单题.18.(1)(4,0]-;(2)当02a <<时,不等式的解集为 {|1x x ≤或2}x a ≥;当2a =时,不等式的解集为R ;当2a >时,不等式的解集为 2{|x x a≤或1}x ≥;(3)(,4-∞-- 【分析】(1)先整理,再讨论0a =和0a ≠,列出恒成立的条件,求出a 的范围;(2)先因式分解,对两根大小作讨论,求出解集; (3)先令11t m m =++,由0m >,则可得3t ≥,再将()21221ax a x m m-++=++有四个不同的实根,转化为2(2)20ax a x t -++-=有两个不同正根,根据根与系数的关系,求出a 的取值范围.【详解】(1)由题有()22232ax a x x -++<-恒成立,即210ax ax -+-<恒成立, 当0a =时,10-<恒成立,符合题意;当0a ≠时,则2040a a a <⎧⎨∆=+<⎩,得040a a <⎧⎨-<<⎩,得40a , 综合可得40a .(2)由题2(2)20,ax a x -++≥ 即 (2)(1)0ax x --≥,由0,a >则2()(1)0x x a --=,且221a a a--= ①当02a <<时,21>a,不等式的解集为 {1x x ≤∣或2}x a ≥; ②当2a =时,不等式的解集为R③当2a >时,21a <,不等式的解集为 {2x x a≤∣或1}x ≥;综上可得:当02a <<时,不等式的解集为 {|1x x ≤或2}x a≥; 当2a =时,不等式的解集为R ;当2a >时,不等式的解集为 2{|x x a≤或1}x ≥; (3)当 0m > 时,令1113t m m =++≥=, 当且仅当1m =时取等号,则关于x 的方程(||)f x t = 可化为2||(2)||20a x a x t -++-=,关于x 的方程 2||(2)||20a x a x t -++-= 有四个不等实根, 即2(2)20ax a x t -++-=有两个不同正根, 则 2(2)4(2)0(1)20(2)20(3)a a t a a t a ⎧⎪∆=+-->⎪+⎪>⎨⎪-⎪>⎪⎩由(3)得0a <,再结合(2)得2a <-,由 (1) 知,存在 [3,)t ∈+∞ 使不等式24(2)80at a a ++->成立,故243(2)80a a a ⨯++->,即 2840,a a ++>解得4a <--或4a >-+综合可得4a <--故实数a的取值范围是(,4-∞--.【点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解;19.(1)2;(2)43;(3)2. 【分析】(1)根据对数的加法运算法则,即可求得答案;(2)利用换底公式,结合对数的运算性质,即可求得答案;(3)根据对数的运算性质及减法法则,即可求得答案.【详解】(1)2lg 2lg50lg100lg102+===; (2)39lg 4log 42lg 22lg 324lg 32lg8log 8lg 33lg 233lg 9==⨯=⨯=; (3))211lg12log 432162lg 20lg 2log 2log 319-⎛⎫++--⋅+ ⎪⎝⎭=013lg1011)1111244++-+=+-+= 20.(1)a =1,b =0;(2)当x =2时,g (|2x ﹣1|)max =43,x =1时,g (|2x ﹣1|)min =0. 【分析】(1)利用二次函数的性质求出a ,b 的值;(2)求出函数(|21|)x y g =-的解析式,利用换元法对勾函数的性质,得出最值以及取得最值时的x 值.【详解】(1)f (x )=ax 2﹣2x +1+b (a ≠0)在x =1处取得最小值0, 即1a =1,f (1)=a +b ﹣1=0,解得a =1,b =0; (2)由(1)知f (x )=(x ﹣1)2,()()12f x g x x x x==+-,g (|2x ﹣1|)=121221x x -+--,令t =|2x ﹣1|,∵1,22x ⎡∈⎤⎢⎥⎣⎦,则1,3t ⎤∈⎦, 由对勾函数的性质可得()min ()10g t g ==,此时t =1即|2x ﹣1|=1,解得x =1;又)1122g =-=,())14332133g g =+-=>, 当t =3时,解得x =2时,所以当x =2时,g (|2x ﹣1|)max =43,当x =1时,g (|2x ﹣1|)min =021.(1)()cos(2)3f x x π=-;(2)[,],36k k k Z ππππ-+∈;(3)[-. 【分析】(1)由函数()f x 的最小正周期为π,求得2w =,再由16f π⎛⎫=⎪⎝⎭,求得ϕ的值,即可求得函数()f x 的解析式;(2)由(1)知()cos(2)3f x x π=-,根据余弦型函数的性质,即可求得函数的递增区间;(3)根据三角函数的图象变换,求得()cos()3g x x π=+,结合三角函数的性质,即可求解. 【详解】 (1)由题意,函数()cos()f x x =+ωϕ的最小正周期为π, 所以2wππ=,可得2w =,所以()cos(2)f x x ϕ=+, 又由16f π⎛⎫= ⎪⎝⎭,可得()cos(2)cos()1663f πππϕϕ=⨯+=+=, 可得2,3k k Z πϕπ+=∈,即2,3k k Z πϕπ=-∈, 因为02πϕ-<<,所以3πϕ=-, 所以函数()f x 的解析式为()cos(2)3f x x π=-.(2)由(1)知()cos(2)3f x x π=-, 令222,3k x k k Z ππππ-≤-≤∈,解得,36k x k k Z ππππ-≤≤+∈, 所以函数()cos(2)3f x x π=-的单调递增区间为[,],36k k k Z ππππ-+∈. (3)将函数()y f x =的图象向左平移3π个单位长度, 得到函数cos[2()]cos(2)333y x x πππ=+-=+, 再将所得图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数()cos()3y g x x π==+,因为2[,]63x ππ∈-,可得[,]36x πππ+∈,所以()1g x -≤≤,所以函数()g x 的值域为[-. 【点睛】 解答三角函数的图象与性质的基本方法:1、根据已知条件化简得出三角函数的解析式为sin()y A wx ϕ=+的形式;2、熟练应用三角函数的图象与性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质,但解答中主要角的范围的判定,防止错解.22.(1)()3513x x f x x -=++,[]0,5x ∈;(2)3万元. 【分析】(1)对甲种商品投资x 万元,则对乙种商品投资为5x -万元,当5t =时,求得3a =,13b =,代入()(5)1ax f x b x x =+-+即可. (2)转化成一个基本不等式的形式,最后结合基本不等式的最值求法得最大值,从而解决问题.【详解】(1)因为1at P t =+,Q bt = 所以当5t =时,55512a P ==+,553Q b ==,解得3a =,13b =. 所以31t P t =+,13=Q t ,从而()3513x x f x x -=++,[]0,5x ∈ (2)由(1)可得()()()313613531+553131313x x x x x f x x x x +--+-+⎛⎫=+==-+≤-= ⎪+++⎝⎭当且仅当3113x x +=+,即2x =时等号成立.故()f x 的最大值为3. 答:当分别投入2万元、3万元销售甲、乙两种商品时总利润最大,为3万元.【点睛】方法点睛:与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.。
福建省福州市第一中学2020-2021学年高一上学期期末考试数学试题
20.已知函数 ( , )的图像是由 的图像向右平移 个单位得到的.
(1)若 的最小正周期为 ,求 的与 轴距离最近的对称轴方程;
(2)若 在 上仅有一个零点,求 的取值范围.
【答案】(1) ;(2) .
21.如图,在扇形 中,半径 ,圆心角 ,A是半径 上的动点,矩形 内接于扇形 ,且 .
(2)在(1)的情况下,令 , ,若存在 使得 成立,求实数 的取值范围.
【答案】(1)选①②③, ;(2) .
福州一中2020—2021学年第一学期第二学段模块考试
高一数学(必修一)模块试卷
一、单项选择题(在每小题给出的四个选项中,只有一项是符合题目要求的.每小题5分,共40分)
1.将300°化为弧度是()
A. B. C. D.
【答案】D
2.已知 , ,则 等于()
A. B. C. D.
【答案】B
3. ,则 ()
【答案】C
7.已知锐角 的终边上一点 ,则锐角 =( )
A. B. C. D.
【答案】C
8.将一条均匀柔软的链条两端固定,在重力的作用下它所呈现的形状叫悬链线,例如悬索桥等.建立适当的直角坐标系,可以写出悬链线的函数解析式为 ,其中a为悬链线系数, 称为双曲余弦函数,其函数表达式为 ,相应地双曲正弦函数的函数表达式为 ,则()
A.满足题目条件的实数 有且只有一个
B.满足题目条件的实数 有且只有一个
C. 在 上单调递增
D. 的取值范围是
【答案】ACD
三、填空题(本大题共4小题,每小题5分,共20分)
13.函数f(x)=sin22x的最小正周期是__________.
惠州市2020-2021第一学期期末高一数学试题答案
惠州市2020-2021学年度第一学期期末质量检测高一数学试题参考答案与评分细则一、单项选择题:本题共8小题,每小题满分5分,共40分。
1.【解析】集合1{|3},{|(1)(2)0}{|12}2A x xB x x x x x =<<=+-<=-<<,{|13}A B x x =-<<故选B . 2.【解析】020x x >⎧⎨-≥⎩,解得02x <≤。
故选:B .3.【解析】5cos()sin 213παα+=-=-,5sin 13α∴=,12cos ,13αα∴=-是第二象限角,5tan A 12α∴=-选. 4.【解析】因为log a y x =经过()3,1P ,所以log 31a =,所以3a =, 所以幂函数为3y x =,显然3y x =为奇函数,排除A 、C ; 又因为3y x =在()1,x ∈+∞时,增长趋势比y x =快速,所以排除D ,故选:B.5.【解析】0.20030.20.23310.20.20log 1log 3>==>>=>a b c ∴>>,故选:A .6.【解析】某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了0.6/mg ml ,则100ml 血液中酒精含量达到60ml ,在停止喝酒以后,他血液中酒精含量会以每小时20%的速度减少, 他至少要经过t 小时后才可以驾驶机动车.则60(120%)20t-<,10.83t∴<, 0.8451333345132lg lg t log log lg lg lg ∴>=-=-=--0.48 4.8130.3≈=-⨯.∴整数t 的值为5.故选C . 7.【解析】由题意知sin cos23sin x x x m +≥--,22sin 4sin 1m x x ∴≥--.令()()222sin 4sin 12sin 13g x x x x =--=--,∴当sin 1x =-时,()max 5g x =,5m ∴≥,∴实数m 的最小值为5.故选B .8.【解析】令()0g x =,可得()2a f x x =+,作出函数()y f x =与函数2a y x =+的图象如下图所示,由图可知,当21a ≥时,即0a ≥时,函数()y f x =与函数2a y x =+的图象有2个交点,此时,函数()y g x =有2个零点,因此,实数a 的取值范围是[)0,+∞.故选:D.二、多项选择题:本题共4小题,每小题满分5分,共20分。
浙江省台州市2023-2024学年高一上学期期中数学试题含解析
2023年学年第一学期期中考试试卷高一数学(答案在最后)总分:150分考试时间:120分钟一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知全集U =R ,集合{}1,0,1,2A =-,{}|210B x x =->,则()A B ⋂R ð等于()A.{}1,0- B.{}1,2C.{}1,0,1- D.{}0,1,2【答案】A 【解析】【分析】先求B R ð,然后由交集运算可得.【详解】因为{}1|210|2B x x x x ⎧⎫=->=>⎨⎬⎩⎭,所以1|2B x x ⎧⎫=≤⎨⎬⎩⎭R ð,所以(){}1,0A B ⋂=-R ð.故选:A2.命题“2000,10x x x ∃∈++<R ”的否定为()A.2000,10x x x ∃∈++≥R B.2000,10x x x ∃∈++>R C.2,10x x x ∀∈++≥R D.2,10x x x ∀∈++>R 【答案】C 【解析】【分析】在写命题的否定中要把存在变任意,任意变存在.【详解】因为特称命题的否定为全称命题,所以2000,10x x x ∃∈++<R 的否定即为2,10x x x ∀∈++≥R .故选:C.3.设x ∈R ,则“220x x -<”是“12x -<”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】解不等式,再判断不等式解集的包含关系即可.【详解】由220x x -<得()0,2x ∈,由12x -<得()1,3x ∈-,故“220x x -<”是“12x -<”的充分不必要条件.故选:A.4.已知关于x 的不等式20ax bx c ++>的解集为{|2x x <-或}3x >,则下列说法错误的是()A.0a >B.不等式0bx c +>的解集是{}6x x <C.0a b c ++< D.不等式20cx bx a -+<的解集是1|3x x ⎧<-⎨⎩或12x ⎫>⎬⎭【答案】B 【解析】【分析】先求得,,a b c 的关系式,然后对选项进行分析,所以确定正确答案.【详解】由于关于x 的不等式20ax bx c ++>的解集为{|2x x <-或}3x >,所以0a >(A 选项正确),且2323b ac a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,整理得,6b a c a =-=-,由0bx c +>得60,6ax a x --><-,所以不等式0bx c +>的解集是{}6x x <-,所以B 选项错误.660a b c a a a a ++=--=-<,所以C 选项正确.()()22260,6121310cx bx a ax ax a x x x x -+=-++<--=-+<,解得13x <-或12x >,所以D 选项正确.故选:B5.已知函数()y f x =的定义域为{}|06x x ≤≤,则函数()()22f xg x x =-的定义域为()A.{|02x x ≤<或}23x <≤B.{|02x x ≤<或}26x <≤C.{|02x x ≤<或}212x <≤ D.{}|2x x ≠【答案】A 【解析】【分析】由已知列出不等式组,求解即可得出答案.【详解】由已知可得,02620x x ≤≤⎧⎨-≠⎩,解得,02x ≤<或23x <≤.故选:A .6.已知函数5(2),22(),2a x x f x a x x⎧-+≤⎪⎪=⎨⎪>⎪⎩是R 上的减函数,则实数a 的取值范围是()A.()0,2 B.()1,2 C.[)1,2 D.(]0,1【答案】C 【解析】【分析】由题可得函数在2x ≤及2x >时,单调递减,且52(2)22aa -+≥,进而即得.【详解】由题意可知:ay x=在()2,+∞上单调递减,即0a >;5(2)2y a x =-+在(],2-∞上也单调递减,即20a -<;又()f x 是R 上的减函数,则52(2)22aa -+≥,∴02052(2)22a a a a ⎧⎪>⎪-<⎨⎪⎪-+≥⎩,解得12a ≤<.故选:C .7.已知函数()y f x =的定义域为R ,()f x 为偶函数,且对任意12,(,0]x x ∈-∞都有2121()()0f x f x x x ->-,若(6)1f =,则不等式2()1f x x ->的解为()A.()(),23,-∞-⋃+∞ B.()2,3- C.()0,1 D.()()2,01,3-⋃【答案】B 【解析】【分析】由2121()()0f x f x x x ->-知,在(,0]-∞上单调递增,结合偶函数,知其在在[0,)+∞上单调递减即可解.【详解】对120x x ∀<≤,满足()()21210f x f x x x ->-,等价于函数()f x 在(,0]-∞上单调递增,又因为函数()f x 关于直线0x =对称,所以函数()f x 在[0,)+∞上单调递减.则()21f x x ->可化为26x x -<,解得23x -<<.故选:B.8.函数()f x x =,()22g x x x =-+.若存在129,,,0,2n x x x ⎡⎤⋅⋅⋅∈⎢⎥⎣⎦,使得()()()()121n n f x f x f x g x -++⋅⋅⋅++()()()()121n n g x g x g x f x -=++++ ,则n 的最大值是()A.8B.11C.14D.18【答案】C 【解析】【分析】令()222h x x x =-+,原方程可化为存在129,,,0,2n x x x ⎡⎤⋅⋅⋅∈⎢⎥⎣⎦,使得()()()()121n n h x h x h x h x -++⋅⋅⋅+=,算出左侧的取值范围和右侧的取值范围后可得n 的最大值.【详解】因为存在129,,,0,2n x x x ⎡⎤⋅⋅⋅∈⎢⎥⎣⎦,使得()()()()121n n f x f x f x g x -++⋅⋅⋅++()()()()121n n g x g x g x f x -=++++ ,故2221111222222n n n n x x x x x x ---+++-+=-+ .令()222h x x x =-+,90,2x ⎡⎤∈⎢⎥⎣⎦,则()5314h x ≤≤,故()221111531222214n n n x x x x n ---≤-+++-+≤- ,因为()5314n h x ≤≤故5314n -≤,故max 14n =.故选:C.【点睛】本题考查二次函数的最值,注意根据解析式的特征把原方程合理整合,再根据方程有解得到n 满足的条件,本题属于较难题.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.对实数a ,b ,c ,d ,下列命题中正确的是()A.若a b <,则22ac bc <B.若a b >,c d <,则a c b d ->-C.若14a ≤≤,21b -≤≤,则06a b ≤-≤D.a b >是22a b >的充要条件【答案】BC 【解析】【分析】利用不等式的性质一一判定即可.【详解】对于A ,若0c =,则22ac bc =,故A 错误;对于B ,c d c d <⇒->-,由不等式的同向可加性可得a c b d ->-,故B 正确;对于C ,2121b b -≤≤⇒≥-≥-,由不等式的同向可加性可得06a b ≤-≤,故C 正确;对于D ,若102a b =>>=-,明显22a b <,a b >不能得出22a b >,充分性不成立,故D 错误.故选:BC10.已知函数()42f x x =-,则()A.()f x 的定义域为{}±2x x ≠ B.()f x 的图象关于直线=2x 对称C.()()56ff -=- D.()f x 的值域是()(),00,-∞+∞ 【答案】AC 【解析】【分析】根据解析式可得函数的定义域可判断A ,利用特值可判断,直接求函数值可判断C ,根据定义域及不等式的性质求函数的值域可判断D.【详解】由20x -≠,可得2x ≠±,所以()f x 的定义域为{}±2x x ≠,则A 正确;因为()14f =-,()34f =,所以()()13f f ≠,所以()f x 的图象不关于直线=2x 对称,则B 错误;因为()453f -=,所以()()56f f -=-,则C 正确;因为2x ≠±,所以0x ≥,且2x ≠,所以22x -≥-,且20x -≠,当220x -≤-<时,422x ≤--,即()2f x ≤-,当20x ->时,402x >-,即()0f x >,所以()f x 的值域是(](),20,-∞-+∞ ,故D 错误.故选:AC.11.高斯是德国著名的数学家,近代数学奠基之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为七界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,如:[]1.21=,[]1.22-=-,[]y x =又称为取整函数,在现实生活中有着广泛的应用,诸如停车收费,出租车收费等均按“取整函数”进行计费,以下关于“取整函数”的描述,正确的是()A.x ∀∈R ,[][]22x x =B.x ∀∈R ,[][]122x x x ⎡⎤++=⎢⎥⎣⎦C.x ∀,R y ∈,若[][]x y =,则有1x y ->-D.方程[]231x x =+的解集为【答案】BCD 【解析】【分析】对于A :取12x =,不成立;对于B :设[]x x a =-,[0,1)a ∈,讨论10,2a ⎡⎫∈⎪⎢⎣⎭与1,1)2a ⎡∈⎢⎣求解;对于C :,01x m t t =+≤<,,01y m s s =+≤<,由||x y -=||1t s -<得证;对于D :先确定0x ≥,将[]231x x =+代入不等式[][]()2221x x x ≤<+得到[]x 的范围,再求得x 值.【详解】对于A :取12x =,[][][]1211,2220x x ⎡⎤==⎢⎥⎣⎦==,故A 错误;对于B :设11[],[0,1),[][][]22x x a a x x x x a ⎡⎤⎡⎤=-∈∴++=+++⎢⎥⎢⎥⎣⎦⎣⎦12[]2x a ⎡⎤=++⎢⎥⎣⎦,[2][2[]2]2[][2]x x a x a =+=+,当10,2a ⎡⎫∈⎪⎢⎣⎭时,11,122a ⎡⎫+∈⎪⎢⎣⎭,2[0,1)a ∈,则102a ⎡⎤+=⎢⎥⎣⎦,[2]0a =则1[]2[]2x x x ⎡⎤++=⎢⎣⎦,[2]2[]x x =,故当10,2a ⎡⎫∈⎪⎢⎣⎭时1[]2[]2x x x ⎡⎤++=⎢⎥⎣⎦成立.当1,1)2a ⎡∈⎢⎣时,131,22a ⎡⎫+∈⎪⎢⎣⎭,2[1,,)2a ∈则112a ⎡⎤+=⎢⎥⎣⎦,[2]1a =则1[]2[]1[2]],2[12x x x x x ⎡⎤++=+=+⎢⎣⎦,故当1,1)2a ⎡∈⎢⎣时1[]2[]2x x x ⎡⎤++=⎢⎥⎣⎦成立.综上B 正确.对于C :设[][]x y m ==,则,01x m t t =+≤<,,01y m s s =+≤<,则|||()x y m t -=+-()|||1m s t s +=-<,因此1x y ->-,故C 正确;对于D :由[]231x x =+知,2x 一定为整数且[]310x +≥,所以[]13x ≥-,所以[]0x ≥,所以0x ≥,由[][]()2221x x x ≤<+得[][][]()22311x x x ≤+<+,由[][]231x x ≤+解得[]33 3.322x +≤≤≈,只能取[]03x ≤≤,由[][]()2311x x +<+解得[]1x >或[]0x <(舍),故[]23x ≤≤,所以[]2x =或[]3x =,当[]2x =时x =[]3x =时x =,所以方程[]231x x =+的解集为,故选:BCD.【点睛】高斯函数常见处理策略:(1)高斯函数本质是分段函数,分段讨论是处理此函数的常用方法.(2)由x 求[]x 时直接按高斯函数的定义求即可.由[]x 求x 时因为x 不是一个确定的实数,可设[]x x a =-,[0,1)a ∈处理.(3)求由[]x 构成的方程时先求出[]x 的范围,再求x 的取值范围.(4)求由[]x 与x 混合构成的方程时,可用[][]1x x x ≤<+放缩为只有[]x 构成的不等式求解.12.函数()1f x a x a =+--,()21g x ax x =-+,其中0a >.记{},max ,,m m n m n n m n ≥⎧=⎨<⎩,设()()(){}max ,h x f x g x =,若不等式()12h x ≤恒有解,则实数a 的值可以是()A.1B.12 C.13 D.14【答案】CD 【解析】【分析】将问题转化为()min 12h x ≥;分别在a ≥和0a <<的情况下,得到()f x 与()g x 的大致图象,由此可得确定()h x 的解析式和单调性,进而确定()min h x ,由()min 12h x ≤可确定a 的取值范围,由此可得结论.【详解】由题意可知:若不等式()12h x ≤恒有解,只需()min 12h x ≥即可.()1,21,x x af x a x x a +≤⎧=⎨+-≥⎩,∴令211ax x x -+=+,解得:0x =或2x a=;令2121ax x a x -+=+-,解得:x =或x =;①当2a a≤,即a ≥时,则()f x 与()g x大致图象如下图所示,()()()(),02,02,g x x h x f x x a g x x a ⎧⎪≤⎪⎪∴=<<⎨⎪⎪≥⎪⎩,()h x ∴在(],0-∞上单调递减,在[)0,∞+上单调递增,()()()min 001h x h g ∴===,不合题意;②当2a a>,即0a <<时,则()f x 与()g x大致图象如下图所示,()()()(),0,0,g x x h x f x x g x x ⎧≤⎪∴=<<⎨⎪≥⎩()h x ∴在(],0-∞,a ⎡⎣上单调递减,[]0,a,)+∞上单调递增;又()()001h g ==,21hg a ==,∴若()min 12h x ≥,则需()min h x h =,即1212a ≤,解得:14a -≤;综上所述:实数a的取值集合10,4M ⎛⎤-= ⎥ ⎝⎦,1M ∉ ,12M ∉,13M ∈,14M ∈,∴AB 错误,CD 正确.故选:CD.【点睛】关键点点睛:本题考查函数不等式能成立问题的求解,解题关键是将问题转化为函数最值的求解问题,通过分类讨论的方式,确定()f x 与()g x 图象的相对位置,从而得到()h x 的单调性,结合单调性来确定最值.三、填空题:本题共4小题,每小题5分,共20分.13.若幂函数()f x 过点()42,,则满足不等式()()21f a f a ->-的实数a 的取值范围是__________.【答案】312⎡⎫⎪⎢⎣⎭,【解析】【分析】利用待定系数法求出幂函数()f x 的解析式,再利用函数定义域和单调性求不等式的解集.【详解】设幂函数()y f x x α==,其图像过点()42,,则42α=,解得12α=;∴()12f x x ==,函数定义域为[)0,∞+,在[)0,∞+上单调递增,不等式()()21f a f a ->-等价于210a a ->-≥,解得312a ≤<;则实数a 的取值范围是31,2⎡⎫⎪⎢⎣⎭.故答案为:31,2⎡⎫⎪⎢⎣⎭14.已知0a >,0b >,且41a b +=,则22ab +的最小值是______.【答案】18【解析】【分析】利用基本不等式“1”的妙用求解最小值.【详解】由题意可得24282221018b a b ab a b a ab +=++=⎛⎫⎛⎫ ⎪⎪⎝⎭⎝++≥⎭,当且仅当13a =,6b =时,等号成立.故答案为:1815.若函数()()22()1,,=-++∈f x x xax b a b R 的图象关于直线2x =对称,则=a b +_______.【答案】7【解析】【分析】由对称性得()(4)f x f x =-,取特殊值(0)(4)(1)(3)f f f f =⎧⎨=⎩求得,a b ,再检验满足()(4)f x f x =-即可得,【详解】由题意(2)(2)f x f x +=-,即()(4)f x f x =-,所以(0)(4)(1)(3)f f f f =⎧⎨=⎩,即15(164)08(93)b a b a b =-++⎧⎨=-++⎩,解得815a b =-⎧⎨=⎩,此时22432()(1)(815)814815f x x x x x x x x =--+=-+--+,432(4)(4)8(4)14(4)8(4)15f x x x x x -=--+-----+432232(1696256256)8(644812)14(168)32815x x x x x x x x x x =--+-++-+---+-++432814815x x x x =-+--+()f x =,满足题意.所以8,15a b =-=,7a b +=.故答案为:7.16.设函数()24,()2,ax x a f x x x a-+<⎧⎪=⎨-≥⎪⎩存在最小值,则a 的取值范围是________.【答案】[0,2]【解析】【分析】根据题意分a<0,0a =,02a <≤和2a >四种情况结合二次函数的性质讨论即可》【详解】①当a<0时,0a ->,故函数()f x 在(),a -∞上单调递增,因此()f x 不存在最小值;②当0a =时,()24,0()2,0x f x x x <⎧⎪=⎨-≥⎪⎩,当0x ≥时,min ()(2)04f x f ==<,故函数()f x 存在最小值;③当02a <≤时,0a -<,故函数()f x 在(),a -∞上单调递减,当x a <时,2()()4f x f a a >=-+;当x a ≥时,2()(2)(2)0f x x f =-≥=.若240a -+<,则()f x 不存在最小值,故240a -+≥,解得22a -≤≤.此时02a <≤满足题设;④当2a >时,0a -<,故函数()f x 在(),a -∞上单调递减,当x a <时,2()()4f x f a a >=-+;当x a ≥时,22()(2)()(2)f x x f a a =-≥=-.因为222(2)(4)242(2)0a a a a a a ---+=-=->,所以22(2)4a a ->-+,因此()f x 不存在最小值.综上,a 的取值范围是02a ≤≤.故答案为:[0,2]【点睛】关键点点睛:此题考查含参数的分段函数求最值,考查二次函数的性质,解题的关键是结合二次函数的性质求函数的最小值,考查分类讨论思想,属于较难题.四、解答题:本题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知集合{|13}A x x =<<,集合{|21}B x m x m =<<-.(1)若A B ⋂=∅,求实数m 的取值范围;(2)命题p :x A ∈,命题q :x B ∈,若p 是q 的充分条件,求实数m 的取值范围.【答案】(1)[)0,∞+(2)(],2-∞-【解析】【分析】(1)根据B 是否为空集进行分类讨论,由此列不等式来求得m 的取值范围.(2)根据p 是q 的充分条件列不等式,由此求得m 的取值范围.【小问1详解】由于A B ⋂=∅,①当B =∅时,21m m ³-,解得13m ≥,②当B ≠∅时,2111m m m <-⎧⎨-≤⎩或2123m mm <-⎧⎨≥⎩,解得103m ≤<.综上所述,实数m 的取值范围为[)0,∞+.【小问2详解】命题:p x A ∈,命题:q x B ∈,若p 是q 的充分条件,故A B ⊆,所以2113m m ≤⎧⎨-≥⎩,解得2m ≤-;所以实数m 的取值范围为(],2-∞-.18.2018年8月31日,全国人大会议通过了个人所得税法的修订办法,将每年个税免征额由42000元提高到60000元.2019年1月1日起实施新年征收个税.个人所得税税率表(2019年1月1日起执行)级数全年应纳税所得额所在区间(对应免征额为60000)税率(%)速算扣除数1[]0,36000302(]36000,1440001025203(]144000,30000020X 4(]300000,42000025319205(]420000,66000030529206(]660000,96000035859207()960000,+∞45181920有一种速算个税的办法:个税税额=应纳税所得额×税率-速算扣除数.(1)请计算表中的数X ;(2)假若某人2021年税后所得为200000元时,请按照这一算法计算他的税前全年应纳税所得额.【答案】(1)16920X =(2)153850元.【解析】【分析】(1)根据公式“个税税额=应纳税所得额×税率-速算扣除数”计算,其中个税税额按正常计税方法计算;(2)先判断他的全年应纳税所参照的级数,是级数2还是级数3,然后再根据计税公式求解.【小问1详解】按照表格,假设个人全年应纳税所得额为x 元(144000300000x ≤≤),可得:()()20%14400020%1440003600010%360003%x X x -=-⨯+-⨯+⨯,16920X =.【小问2详解】按照表格,级数3,()30000030000020%16920256920-⨯-=;按照级数2,()14400014400010%2520132120-⨯-=;显然1321206000019212020000031692025692060000+=<<=+,所以应该参照“级数3”计算.假设他的全年应纳税所得额为t 元,所以此时()20%1692020000060000t t -⨯-=-,解得153850t =,即他的税前全年应纳税所得额为153850元.19.已知定义在R 上的函数()f x 满足()()()2f x y f x f y +=++,且当0x >时,()2f x >-.(1)求()0f 的值,并证明()2f x +为奇函数;(2)求证()f x 在R 上是增函数;(3)若()12f =,解关于x 的不等式()()2128f x x f x ++->.【答案】(1)(0)2f =-,证明见解析(2)证明见解析(3){1x x <-或}2x >【解析】【分析】(1)赋值法;(2)结合增函数的定义,构造[]1122()()f x f x x x =-+即可;(3)运用题干的等式,求出(3)10f =,结合(2)的单调性即可.【小问1详解】令0x y ==,得(0)2f =-.()2()2(0)20f x f x f ++-+=+=,所以函数()2f x +为奇函数;【小问2详解】证明:在R 上任取12x x >,则120x x ->,所以12()2f x x ->-.又[]11221222()()()()2()f x f x x x f x x f x f x =-+=-++>,所以函数()f x 在R 上是增函数.【小问3详解】由(1)2f =,得(2)(11)(1)(1)26f f f f =+=++=,(3)(12)(1)(2)210f f f f =+=++=.由2()(12)8f x x f x ++->得2(1)(3)f x x f -+>.因为函数()f x 在R 上是增函数,所以213x x -+>,解得1x <-或2x >.故原不等式的解集为{1x x <-或}2x >.20.已知函数()2,R f x x x k x k =-+∈.(1)讨论函数()f x 的奇偶性(写出结论,不需要证明);(2)如果当[]0,2x ∈时,()f x 的最大值是6,求k 的值.【答案】(1)答案见解析(2)1或3【解析】【分析】(1)对k 进行分类讨论,结合函数奇偶性的知识确定正确答案.(2)将()f x 表示为分段函数的形式,对k 进行分类讨论,结合二次函数的性质、函数的单调性求得k 的值.【小问1详解】当0k =时,()f x =||2x x x +,则()f x -=||2x x x --=()f x -,即()f x 为奇函数,当0k ≠时,(1)f =|1|2k -+,(1)|1|2f k -=-+-,(1)(1)|1|2|1|2|1||1|0f f k k k k +-=-+-+-=--+≠,则()f x 不是奇函数,(1)(1)|1|2|1|2|1||1|40f f k k k k --=-++++=-+++≠,则()f x 不是偶函数,∴当0k =时()f x 是奇函数,当0k ≠时,()f x 是非奇非偶函数.【小问2详解】由题设,()f x ()()222,2,x k x x k x k x x k ⎧+-≥⎪=⎨-++<⎪⎩,函数()22y x k x =+-的开口向上,对称轴为2122k kx -=-=-;函数()22y x k x =-++的开口向下,对称轴为2122k k x +=-=+-.1、当1122k k k -<+<,即2k >时,()f x 在(,1)2k-∞+上是增函数,∵122k+>,∴()f x 在[]0,2上是增函数;2、当1122k k k <-<+,即2k <-时,()f x 在1,2k ⎛⎫-+∞ ⎪⎝⎭上是增函数,∵102k-<1,∴()f x 在[]0,2上是增函数;∴2k >或2k <-,在[]0,2x ∈上()f x 的最大值是(2)2|2|46f k =-+=,解得1k =(舍去)或3k =;3、当1122k kk -≤≤+,即22k -≤≤时,()f x 在[]0,2上为增函数,令2246k -+=,解得1k =或3k =(舍去).综上,k 的值是1或3.【点睛】研究函数的奇偶性的题目,如果要判断函数的奇偶性,可以利用奇偶函数的定义()()f x f x -=或()()f x f x -=-来求解.也可以利用特殊值来判断函数不满足奇偶性的定义.对于含有绝对值的函数的最值的研究,可将函数写为分段函数的形式,再对参数进行分类讨论来求解.21.已知函数()2f x x =-,()()224g x x mx m =-+∈R .(1)若对任意[]11,2x ∈,存在[]24,5x ∈,使得()()12g x f x =,求m 的取值范围;(2)若1m =-,对任意n ∈R ,总存在[]02,2x ∈-,使得不等式()200g x x n k -+≥成立,求实数k 的取值范围.【答案】(1)54m ⎡∈⎢⎣(2)(],4∞-【解析】【分析】(1)将题目条件转化为()1g x 的值域包含于()2f x 的值域,再根据[]11,2x ∈的两端点的函数值()()1,2g g 得到()y g x =对称轴为[]1,2x m =∈,从而得到()()min g x g m =,进而求出m 的取值范围;(2)将不等式()200g x x n k -+≥化简得不等式024x n k ++≥成立,再构造函数()0024h x x n =++,从而得到()0max h x k ≥,再构造函数()(){}0max max ,8n h x n n ϕ==+,求出()min n ϕ即可求解.【小问1详解】设当[]11,2x ∈,()1g x 的值域为D ,当[]24,5x ∈,()2f x 的值域为[]2,3,由题意得[]2,3D ⊆,∴()()211243224443g m g m ⎧≤=-+≤⎪⎨≤=-+≤⎪⎩,得5342m ≤≤,此时()y g x =对称轴为[]1,2x m =∈,故()()[]min 2,3g x g m =∈,即()222243g m m m =-+≤≤得1m ≤≤1m ≤≤-,综上可得54m ⎡∈⎢⎣.【小问2详解】由题意得对任意n ∈R ,总存在[]02,2x ∈-,使得不等式024x n k ++≥成立,令()0024h x x n =++,由题意得()0max h x k ≥,而()()(){}{}0max max 2,2max ,8h x h h n n =-=+,设(){}max ,8n n n ϕ=+,则()min n k ϕ≥,而(){},4max ,88,4n n n n n n n ϕ⎧<-⎪=+=⎨+≥-⎪⎩,易得()()min 44n k ϕϕ=-=≥,故4k ≤.即实数k 的取值范围为(],4∞-.22.已知函数()()01ax g x a x =≠+在区间1,15⎡⎤⎢⎥⎣⎦上的最大值为1.(1)求实数a 的值;(2)若函数()()()()()210x b f x b b g x +=-+>,是否存在正实数b ,对区间1,15⎡⎤⎢⎥⎣⎦上任意三个实数r 、s 、t ,都存在以()()f g r 、()()f g s 、()()f g t 为边长的三角形?若存在,求实数b 的取值范围;若不存在,请说明理由.【答案】(1)2a =(2)存在,15153b <<【解析】【分析】(1)由题意()1a g x a x =-+,1,15x ⎡⎤∈⎢⎥⎣⎦,然后分a<0,0a >两种情况讨论函数()g x 的单调性,即可得出结果;(2)由题意()()0bf x x b x=+>,可证得()f x 在(为减函数,在)+∞为增函数,设()u g x =,1,13u ⎡⎤∈⎢⎥⎣⎦,则()()()()0b f g x f u u b u ==+>,从而把问题转化为:1,13u ⎡⎤∈⎢⎥⎣⎦,()()min max2f u f u >时,求实数b 的取值范围.结合()bf u u u=+的单调性,分109b <≤,1193b <≤,113b <<,1b ≥四种情况讨论即可求得答案.【小问1详解】由题意()11ax a g x a x x ==-++,1,15x ⎡⎤∈⎢⎥⎣⎦①当a<0时,函数()g x 在区间1,15⎡⎤⎢⎥⎣⎦上递减,所以()max 151566a ag x g a ⎛⎫==-== ⎪⎝⎭,得6a =(舍去).②当0a >时,函数()g x 在区间1,15⎡⎤⎢⎥⎣⎦上递增,所以()()max 1122a ag x g a ==-==,得2a =.综上所述,2a =.【小问2详解】由题意()22211x g x x x ==-++,又115x ≤≤,由(1)知函数()g x 在区间1,15⎡⎤⎢⎥⎣⎦上递增,∴()()115g g x g ⎛⎫≤≤ ⎪⎝⎭,即()113g x ≤≤,所以函数()g x 在区间1,15⎡⎤⎢⎥⎣⎦上的值域为1,13⎡⎤⎢⎥⎣⎦.又因为()()()()()()()()()2211111x b x x b x b x b f x b b b g x x x++++++=-+=-+=-+,∴()()20x b bf x x b x x+==+>,令120x x <<,则()()()12121212121b b b f x f x x x x x x x x x ⎛⎫⎛⎫⎛⎫-=+-+=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当1x ,(2x ∈时,()121210b x x x x ⎛⎫--> ⎪⎝⎭,所以()()12f x f x >,()f x 为减函数;当1x ,)2x ∈+∞时,()121210b x x x x ⎛⎫--< ⎪⎝⎭,所以()()12f x f x <,()f x 为增函数;∴()f x 在(为减函数,在)+∞为增函数,设()u g x =,由(1)知1,13u ⎡⎤∈⎢⎥⎣⎦,∴()()()()0bf g x f u u b u==+>;所以,在区间1,15⎡⎤⎢⎥⎣⎦上任意三个实数r 、s 、t ,都存在()()f g r 、()()f g s 、()()f g t 为边长的三角形,等价于1,13u ⎡⎤∈⎢⎥⎣⎦,()()min max 2f u f u >.①当109b <≤时,()b f u u u =+在1,13⎡⎤⎢⎥⎣⎦上单调递增,∴()min 133f u b =+,()max 1f u b =+,由()()min max 2f u f u >,得115b >,从而11159b <≤.②当1193b <≤时,()b f u u u =+在13⎡⎢⎣上单调递减,在⎤⎦上单调递增,∴()min f u =,()max 1f u b =+,由()()min max 2f u f u >得77b -<<+1193b <≤.③当113b <<时,()b f u u u =+在13⎡⎢⎣上单调递减,在⎤⎦上单调递增,∴()min f u ==,()max 133f u b =+,由()()min max 2f u f u >得74374399b -+<<,从而113b <<.④当1b ≥时,()b f u u u =+在1,13⎡⎤⎢⎥⎣⎦上单调递减,∴()min 1f u b =+,()max 133f u b =+,由()()min max 2f u f u >得53b <,从而513b ≤<.综上,15153b <<.。
重庆市九校联盟2020-2021学年高一上学期12月联考试题 数学 Word版含答案
重庆市九校联盟高一联考数学考生注意:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分,共150分。
考试时间120分钟。
2.请将各题答案填写在答题卡上。
3.本试卷主要考试内容:新人教A版必修第一册第五章第2节。
第I卷一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合M={x|0≤x≤2},N={x|x+2>2},则M∪N=A.{x|x≥0}B.{x|0≤x≤2}C.{x|x>0}D.{x|0<x≤2}2.“2<x<5”是“3<x<4”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.下列各角中,与35°终边相同的角是A.215°B.365°C.755°D.-235°4.下列结论正确的是A.若a>b,c>b,则a>cB.若a>b,则a2>b2C.若a>b,c>d,则ac>bdD.若a>b,c>d,则a+c>b+d5.函数f(x)=e x+2x-5的零点所在的区间是A.(3,4)B.(2,3)C.(0,1)D.(1,2)6.已知a=40.1,b=0.40.5,c=0.40.8,则a,b,c的大小关系正确的是A.c>b>aB.b>a>cC.a>b>cD.a>c>b7.已知角α的终边经过点P(-25,则sinα-2tanα=A.453B.253- C.253-+ D.253-8.已知偶函数f(x)在(-∞,0]上单调递减,且f(4)=0,则不等式xf(x)>0的解集为A.(-4,0)∪(4,+∞)B.(-∞,-4)∪(0,4)C.(-4,0)∪(0,4)D.(-∞,-4)∪(4,+∞)二、选择题:本大题共4小题,每个小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆市第一中学校【最新】高一上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.设全集{}{},0,1,2,3,1,0,1U R M N ===-,则图中阴影部分所表示的集合是( )A .{}1B .{}0,1C .{}0D .{}1-2.下列函数中,最小正周期为π的是( ) A .cos y x =B .cos 2xy =C .sin4x y = D .cos4x y = 3.用二分法找函数()237x f x x =+-在区间[]0,4上的零点近似值,取区间中点2,则下一个存在零点的区间为( ). A .(0,1)B .(0,2)C .(2,3)D .(2,4)4.已知tan 2α=,则sin cos αα的值为( ) A .25-B .45C .23D .255.已知函数()()()()212log 1,2,?02x x f x x x ⎧+>⎪=⎨⎪≤≤⎩,则()()3f f 等于( )A .2B.)2log 1CD6.为了得到函数sin 24y x π⎛⎫=+⎪⎝⎭的图像,只需把函数sin 2y x =的图像( ) A .向右平移4π个单位长度 B .向左平移4π个单位长度 C .向右平移8π个单位长度 D .向左平移8π个单位长度 7.函数()()2lg 20f x x x =+-的单调递增区间为( )A .1,2⎛⎫-∞ ⎪⎝⎭B .1,2⎛⎫+∞⎪⎝⎭C .14,2⎛⎫- ⎪⎝⎭D .1,52⎛⎫ ⎪⎝⎭8.函数()21xf x x x =++的值域为( )A .11,3⎡⎤-⎢⎥⎣⎦B .11,3⎛⎫- ⎪⎝⎭C .()1,1,3⎛⎫-∞-+∞ ⎪⎝⎭D .()1,1,3⎡⎫-∞-+∞⎪⎢⎣⎭9.已知函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭的图像相邻两条对称轴之间的距离为2π,那么函数()y f x =的图像( )A .关于点,012π⎛⎫⎪⎝⎭对称B .关于点,012π⎛⎫- ⎪⎝⎭对称C .关于直线12x π=对称D .关于直线12x π=-对称10.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验方式为:弧田面积=()212⨯+弦矢矢,弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”指半径长与圆心到弦的距离之差.现有圆心角为23π,半径等于4米的弧田.下列说法不.正确的是( )A .“弦” AB =2CD =米B .按照经验公式计算所得弧田面积(2)平方米C .按照弓形的面积计算实际面积为(163π- D .按照经验公式计算所得弧田面积比实际面积少算了大约0.9平方米(参考数据1.73≈,3.14π≈) 11.已知函数()f x 是定义在R 上的偶函数,且在区间[)0,+∞上是增函数,令255sin,cos ,tan ,777a f b f c f πππ⎛⎫⎛⎫⎛⎫=== ⎪⎪⎪⎝⎭⎝⎭⎝⎭则( ) A .b a c <<B .c b a <<C .b c a <<D .a b c <<12.已知函数()1,0113sin ,14242x x f x x x π+≤≤⎧⎪=⎨+<≤⎪⎩,若不等式()()220f x af x -+<在[]0,4x ∈上恒成立,则实数a 的取值范围是( )A.a >B.3a <<C.3a <<D .3a >二、填空题13.已知2(1)2f x x x +=+,则()f x =________. 14.已知函数()f x 满足:()()1f x f x +=-,当11x -<≤时,()xf x e =,则92f ⎛⎫= ⎪⎝⎭________.15.若函数()()2cos f x x k ωϕ=++,对任意实数t 都有66f t f t ππ⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭,且16f π⎛⎫=- ⎪⎝⎭,则实数k 的值为________.三、解答题16.已知()()()()()3sin cos cos 1125cos 2sin sin 2f ππααπααππααπα⎛⎫-++ ⎪⎝⎭=⎛⎫--+ ⎪⎝⎭(1)化简()f α;(2)若123f θϕ+⎛⎫=⎪⎝⎭,122f θϕ-⎛⎫= ⎪⎝⎭,且2θϕ+,2θϕ-均为锐角,求角θ的值. 17.如图所示,A ,B 是单位圆O 上的点,且B 点在第二象限,C 点是圆与x 轴正半轴的交点,A 点的坐标为34,55⎛⎫⎪⎝⎭,AOB 为正三角形,记COA α∠=.(1)求sin 2α;(2)求cos COB ∠.18.设函数()()4log 1log 1a a f x x x ⎛⎫=-+-⎪⎝⎭(0a >且1a ≠),又()223log 3f =.(1)求实数a 的值及()f x 的定义域;(2)求()f x 的最大值及取得最大值时相应x 的值.19.重庆朝天门批发市场某服装店试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于成本的40%.经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且80x =时,40y =;70x =时,50y =. (1)求一次函数y kx b =+的表达式;(2)若该服装店获得利润为W 元,试写出利润与销售单价x 之间的关系式;销售单价定为多少元时,服装店可获得最大利润,最大利润是多少元?20.已知函数())211sin cos 1cos cos 222f x x x x x =⋅---.(1)求函数()f x 的单调递增区间;(2)将函数()f x 的图象上每一点的横坐标伸长原来的两倍,纵坐标保持不变,得到函数()g x 的图象,若方程()0g x +=在[]0,x π∈上有两个不相等的实数解1x ,2x ,求实数m 的取值范围,并求12x x +的值.21.已知函数()xf x e =,()()()g x f x f x =--.(1)解不等式:()()21240g x g x -+-<(2)是否存在实数t ,使得不等式()()22221sin 24cos 214cos 2g x t x t θθθ⎡⎤+-+-⎢⎥⎣⎦()()()()8sin 2ln 2142sin 1sin ln 22ln 210g f x t t f x θθθ⎡⎤++-+-+⋅⋅++≤⎡⎤⎣⎦⎣⎦,对任意的1,2x ⎛⎫∈-+∞ ⎪⎝⎭及任意锐角θ都成立,若存在,求出t 的取值范围:若不存在,请说明理由.参考答案1.D 【分析】阴影部分表示的集合为在集合N 中去掉集合M ,N 的交集,即得解. 【详解】由维恩图可知,阴影部分表示的集合为在集合N 中去掉集合M ,N 的交集,由题得{0,1}M N ⋂=,所以阴影部分表示的集合为{}1-. 故选:D 【点睛】本题主要考查维恩图,考查集合的运算,意在考查学生对这些知识的理解掌握水平,属于基础题. 2.A 【分析】分别找出四个选项函数的ω值,代入周期公式2T ωπ= 中求出各自的周期,即可得到最小正周期为π的函数. 【详解】A. cos y x =的最小正周期为T π=,本选项正确.B. cos 2xy =的最小正周期为2412T ππ==, 本选项错误.C. sin 4x y =的最小正周期为2814T ππ==,本选项错误.D. cos 4x y =的最小正周期为2814T ππ==,本选项错误.故选:A. 【点睛】本题考查三角函数的最小正周期2T ωπ=,熟记公式运算即可.3.B 【解析】因为(0)200760f =+-=-<; (4)241270f =+->; 又已知(2)22670f =+->;所以(0)(2)0f f ⨯<; 所以零点在区间(0,2). 故选B 4.D 【分析】由条件利用同角三角函数的基本关系求得sin cos αα的值. 【详解】因为 tan 2α=,则222sin cos tan 2sin cos sin cos tan 15αααααααα===++ . 故选D. 【点睛】本题主要考查三角函数的化简求值,还运用到齐次式和22sin cos 1αα+=来化解运算. 5.C 【分析】由题知,先算()32f =,则()()()32f f f =,再求出()2f 即可得出答案.【详解】将3x =代入()()2log 1f x x =+,得()23log 42f ==,则()()()32f f f =,再将2x =代入()12f x x =,得()1222f =()()()32f f f ==故选:C. 【点睛】本题主要考查分段函数代数求值,还运用到对数和幂函数的运算. 6.D 【分析】先设把函数sin 2y x =向左平移ϕ个单位,根据函数图像的平移变换法则,构造关于ϕ的方程,解方程可得平移量,进而得到平移的单位长度. 【详解】设由函数sin 2y x =的图像向左平移ϕ个单位得到函数sin 24y x π⎛⎫=+⎪⎝⎭的图像 则()()sin 2sin 22sin 24y x x x πϕϕ⎛⎫=+=+=+⎡⎤ ⎪⎣⎦⎝⎭ 故24πϕ=.解得8πϕ=.故将函数sin 2y x = 的图像向左平移8π个单位长度得函数sin 24y x π⎛⎫=+ ⎪⎝⎭ 的图像.故选:D. 【点睛】本题主要考查三角函数的的平移伸缩,左右平移遵循“左加右减”平移变换法则. 7.C 【分析】由题可知,令2200u x x =+->,求出函数的定义域,根据定义域内的lg y u =和二次函数的增减性相结合,即可得出增区间. 【详解】因为()()2lg 20f x x x=+-,令2200u x x=+->,求得:45x -<<,可得函数的定义域为()4,5-,又因为lg y u =在定义域内为单调递增, 而2200u x x =+->在14,2⎛⎫- ⎪⎝⎭上为单调递增,在1,52⎛⎫ ⎪⎝⎭上为单调递减,由于复合函数单调性原则“同增异减”得,()f x 的单调增区间为14,2⎛⎫- ⎪⎝⎭. 故选:C. 【点睛】本题主要考查复合函数的单调性,运用到复合函数单调性原则“同增异减”以及对数函数和二次函数的单调性,这题还需注意真数大于0,很多学生常忽略这一点. 8.A 【分析】先对()f x 进行化简得()21111x f x x x x x==++++,再通过基本不等式求出1x x+的范围,即可得出()f x 的值域. 【详解】 当0x ≠时,有()21111x f x x x x x==++++,又因为当0x >时,12x x +≥= ,则11113,131x x x x++≥≤++, 反之当0x <时,12x x+≤-,则1111,111x x x x ++≤-≥-++, 当0x =时,()0f x =有意义,取并集得:111131x x-≤≤++,即()113f x -≤≤, 所以()f x 的值域为11,3⎡⎤-⎢⎥⎣⎦.故选:A. 【点睛】本题考查分式函数的值域,运用到基本不等式求得最大最小值和倒数的方法,属于中档题. 9.A 【分析】由已知条件,先求出ω,进而得出()f x 的解析式,最后根据三角函数对称中心的特点,代数验证12f π⎛⎫⎪⎝⎭,即可得出答案. 【详解】因为()f x 的图像相邻两条对称轴之间的距离为2π, 所以最小正周期T π=,则2T ππω==,解得2ω=,所以()sin 26f x x π⎛⎫=-⎪⎝⎭. 而sin 2012126f πππ⎛⎫⎛⎫=⨯-=⎪ ⎪⎝⎭⎝⎭,即函数()y f x =的图像关于点,012π⎛⎫ ⎪⎝⎭对称. 故选:A. 【点睛】本题主要考查三角函数的图像和性质,涉及到最小正周期公式和对称中心、对称轴的特点. 10.C 【分析】运用解直角三角形可得AD ,DO ,可得弦、矢的值,以及弧田面积,运用扇形的面积公式和三角形的面积公式,可得实际面积,计算可得结论. 【详解】解:如图,由题意可得∠AOB 23π=,OA =4, 在Rt△AOD 中,可得∠AOD 3π=,∠DAO 6π=,OD 12=AO 1422=⨯=,可得矢=4﹣2=2,由AD =AO sin3π=4=,可得弦=2AD =,所以弧田面积12=(弦×矢+矢2)12=(2+22)=2平方米.实际面积212116422323ππ=⋅⋅-⋅=- 1620.9070.93π-=≈. 可得A ,B ,D 正确;C 错误. 故选C .【点睛】本题考查扇形的弧长公式和面积公式的运用,考查三角函数的定义以及运算能力、推理能力,属于基础题. 11.A 【解析】 试题分析:注意到,,,从而有;因为函数()f x 是定义在R 上的偶函数,且在区间[)0,+∞上是增函数,所以有,而,,所以有b a c <<,故选A.考点:1.函数的奇偶性与单调性;2.三角函数的大小. 12.D 【分析】这是一个复合函数的问题,通过换元()t f x = ,可知新元的范围,然后分离参数,转为求函数的最大值问题,进而计算可得结果. 【详解】由题可知,当[]0,1x ∈ 时,()[]11,2f x x =+∈, 当](1,4x ∈ 时,[]()133,,sin 0,1,sin ,24442422x x f x x πππππ⎛⎤⎛⎫⎛⎫⎡⎤∈∈=+∈ ⎪⎪⎥⎢⎥⎝⎦⎝⎭⎝⎭⎣⎦所以当[]0,4x ∈ 时()[]1,2f x ∈ ,令()t f x =,则[]1,2t ∈ , 从而问题转化为不等式220t at -+< 在[]1,2t ∈上恒成立,即222t a t t t+>=+ 在[]1,2t ∈ 上恒成立,问题转化为求函数2y t t=+在[]1,2 上的最大值,又因为2y t t=+在[]1,2上先减后增,即:⎡⎣ 为单调递减,2⎤⎦为单调递增.所以2123y t t=+≤+= ,所以3a >. 故选:D. 【点睛】本题考查含参数的恒成立问题,运用到分离参数法求参数范围,还结合双勾函数的单调性求出最值, 同时考查学生的综合分析能力和数据处理能力. 13.21x - 【分析】换元令1t x =+,反解代入2(1)2f x x x +=+即可求解. 【详解】令1t x =+,则1x t =-,故22()(1)2(1)1f t t t t =-+-=-,即()21f x x =-故答案为:21x - 【点睛】本题主要考查函数解析式的求解,属于基础题型.14【分析】由已知条件,得出()f x 是以2为周期的函数,根据函数周期性,化简92f ⎛⎫⎪⎝⎭,再代入求值即可. 【详解】 因为()()1f x f x +=-,所以()()()21f x f x f x +=-+=,所以()f x 是以2为周期的函数, 因为当11x -<≤时,()xf x e = ,所以129114222f f f e ⎛⎫⎛⎫⎛⎫=+=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故答案为:【点睛】本题主要考查函数的周期性和递推关系,这类题目往往是奇偶性和周期性相结合一起运用. 15.3-或1 【分析】 通过有66f t f t ππ⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭成立,判断出函数的对称轴,就是函数取得最值的x 值,结合16f π⎛⎫=-⎪⎝⎭,即可求出k 的值. 【详解】因为 ()()2cos f x x k ωϕ=++由对任意实数t 都有66f t f t ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭成立 可知:6x π=是函数()f x 图像的一条对称轴. 所以 当6x π=时()f x 取得最大值或最小值,即216f k π⎛⎫=±+=-⎪⎝⎭. 解得3k =- 或1k =所以,实数k 的值等于3-或1. 故答案为:3-或1. 【点睛】本题主要考查三角函数的性质,结合对称轴的性质和最值,求参数值. 16.(1)tan α(2)4π【分析】(1)利用三角函数的诱导公式,化简求值即可;(2)由(1)得()tan fαα=,结合条件,得出tan2θϕ+和tan2θϕ-,再结合凑角得22θϕθϕθ+-=+,算出tan θ即可得出角θ的值.【详解】 (1)()()()sin sin cos tan cos cos sin fαααααααα⋅⋅-==⋅⋅-(2)由条件知:1tan23θϕ+=,1tan 22θϕ-= 11tantan3222tan tan 111221tan tan 12232θϕθϕθϕθϕθθϕθϕ+-+++-⎛⎫=+=== ⎪+-⎝⎭-⋅-⨯ 因为2θϕ+,2θϕ-均为锐角,所以()0,θπ∈ 故4πθ=.【点睛】本题主要考查三角函数的诱导公式和两角和与差的正切公式,其中还用结合凑角来运算求解. 17.(1)2425(2【分析】(1)根据A 的坐标,由任意角的三角函数的定义,求出43sin ,cos 55αα==,利用二倍角公式sin 22sin cos ααα=,运算求得结果.(2)因为三角形AOB 为正三角形,所以60AOB ∠=,由()()cos cos 60cos 60COB COA α∠=∠+=+ ,再利用两角和差的余弦公式求得结果.【详解】(1)因为点A 的坐标为34,55⎛⎫⎪⎝⎭,根据三角函数定义可知,43sin ,cos .55αα== 所以4324sin 22sin cos 25525ααα==⨯⨯=. (2)因为三角形AOB 为正三角形,所以60AOB ∠=,所以:()cos cos 60COB COA ∠=∠+=()cos 60α+= cos cos60sin sin 60αα-=314525⨯-【点睛】本题主要考查三角函数的定义的应用和两角和与差的余弦公式,以及二倍角公式,计算求值. 18.(1)2a =,()1,4(2)()max 0f x =,此时2x = 【分析】 (1)由()223log 3f =代入求解可得出a 的值,对数的真数大于0,便可求解()f x 的定义域;(2)根据对数的运算化简,利用换元法45u x x ⎛⎫=-+ ⎪⎝⎭,通过求复合函数的单调性求出最值. 【详解】(1)因为()223log 3f =,所以()212log 2log log 0,133a a a a +=>≠,所以2a =. 由10410x x->⎧⎪⎨->⎪⎩,得()1,4x ∈,所以函数()f x 的定义域为()1,4.(2)()()()2222444log 1log 1log 11log 5f x x x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-+-=--=-+⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦令45u x x ⎛⎫=-+⎪⎝⎭,它在(]1,2单调递增,[)2,4单调递减, 故当2x =时,max 1u =.而2log y u =是增函数 所以当2x =时,()2max log 10f x ==. 【点睛】本题主要考查对数函数的运算,还有对数函数的定义域和最值,还利用换元以及复合函数的单调性结合求解.19.(1)()1206084y x x =-+≤≤(2)()290900W x =--+,()6084x ≤≤,销售价定为每件84元时,可获得利润最大,最大利润是864元. 【分析】(1)根据题意得,销售单价60x ≥,销售单价等于()60140%+,获利不得高于成本的40%,则销售单价()60140%x ≤+;再利用待定系数法把80x =时,40y =;70x =时,50y =分别代入一次函数y kx b =+中,求出,k b ,即可得出关系式;(2)根据题目意思,表示出销售额和成本,然后表示出利润=销售额-成本,整理后根据x 的取值范围求出最大利润. 【详解】(1)()6060140%x ≤≤+6084x ∴≤≤由题意得:80407050k b k b +=⎧⎨+=⎩解得:1120k b =-⎧⎨=⎩所以一次函数的解析式为:()1206084y x x =-+≤≤ (2)销售额:()120xy x x =-+元, 成本:()6060120y x =-+故()()6012060120W xy y x x x =-=-+--+21807200x x =-+-()290900x =--+()290900W x ∴=--+,()6084x ≤≤当84x =时,W 取得最大值,最大值是:()28490900864--+=(元) 即销售价定为每件84元时,可获得最大利润是864元. 【点睛】本题主要考查一次函数、二次函数的应用以及利用待定系数法求一次函数解析式,关键是理清题目中的等量关系列出函数关系式,平时要将生产实际和数学知识联系起来学习.20.(1)5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈(2)2m -<≤1253x x π+= 【分析】(1)利用三角恒等变换化简()f x 的解析式,再利用正弦函数的周期性和单调性,求得()f x 的单调增区间;(2)由函数()sin y A ωx φ=+的图像伸缩变换求得()g x 的解析式,再利用正弦函数化简,求出m 的取值范围,再利用对称性求出12x x +的值. 【详解】(1)())21sin cos sin 21cos 22f x x x x x x =⋅-=-+1sin 22sin 222232x x x π⎛⎫=--=--⎪⎝⎭ 因此()f x 的最小正周期为22T ππ==, 由222232k x k πππππ-≤-≤+,k z ∈,解得()f x 的单调递增区间为:5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈.(2)由题意得()sin 32g x x π⎛⎫=-- ⎪⎝⎭,则方程()02m g x +=可化简为sin sin 032232m mx x ππ⎛⎫⎛⎫--+=-+= ⎪ ⎪⎝⎭⎝⎭即sin 32m x π⎛⎫-=- ⎪⎝⎭由图像可知,方程()0g x =在[]0,x π∈上要有两个不相等的实数解1x ,2x12m⇔≤-<即2m -<≤1253x x π+= 【点睛】本题主要考查三角函数图像的单调性,还考查三角函数()sin y A ωx φ=+图像的伸缩变换,其中涉及二倍角公式,降幂公式,辅助角公式,以及利用三角函数周期、对称轴求出参数范围.21.(1)()1,3-(21t ≤≤ 【分析】(1)根据题意,先求出()g x 的解析式,并判断()g x 的奇偶性和单调性,结合奇偶性和单调性,即可求解;(2)法一:通过反证法,先假设存在正实数t ,使得该不等式对任意的1,2x ⎛⎫∈-+∞ ⎪⎝⎭及任意锐角θ都成立,化简原不等式,通过推理论证,与0t ≥和对任意的1,2x ⎛⎫∈-+∞ ⎪⎝⎭及任意锐角θ,是否矛盾,得出存在t ,且可求出t 的取值范围.法二:先化简原不等式,通过换元,构造新二次函数()h p ,通过新函数()0h p ≥恒成立,转化成二次函数恒成立问题,即可得出存在t ,且可求出t 的取值范围. 【详解】 (1)()()()()g x f x f x g x -=--=-,()g x ∴为R 上的奇函数又()xxg x e e -=-为R 上的增函数于是()()()()221240124g x g x g x g x-+-<⇔-<-2124x x ⇔-<- 2230x x ⇔--< 13x ∴-<<故原不等式的解集为()1,3-(2)假设存在正实数t ,使得该不等式对任意的1,2x ⎛⎫∈-+∞ ⎪⎝⎭及任意锐角θ都成立原不等式()()22221sin 24cos 214cos 2g x t x t θθθ⎡⎤⇔+-+-⎢⎥⎣⎦()()()()8sin 2ln 2142sin 1sin ln 22ln 210g f x t t f x θθθ⎡⎤++-+-+⋅⋅++≤⎡⎤⎣⎦⎣⎦()()22221sin 24cos 214cos 2g x t x t θθθ⎡⎤⇔+-+-≤⎢⎥⎣⎦()()()()42sin 1sin ln 22ln 218sin 2ln 21g t t f x f x θθθ⎡⎤+++⋅⋅++-+⎡⎤⎣⎦⎣⎦()()2221sin 24cos 214cos 2x t x t θθθ⇔+-+-≤()()()()242sin 1sin 221821sin 2t t x x θθθ+++⋅⋅+-+()()221sin 2821sin 2x x θθ⇔+++≤ ()()()()22242sin 1sin 2214cos 214cos 2t t x t x t θθθθ+++⋅⋅++++)()28sin 2121x θ⇔++≤()()2221sin 2cos 2142sin cos 2t x t θθθθ⎛⎫++++++ ⎪⎝⎭0t ≤不等式不可能成立,故0t >()()()()214sin 2212sin cos 2122sin cos x x t θθθθθ⎫⇔++≤++++++⎪⎭()22128sin cos 12sin cos 21x t x θθθθ++⎫⇔+≤⎪+++⎭8sin cos 12212sin cos 21x t x θθθθ⎫⇔+≤++⎪+++⎭ 不等式对任意的1,2x ⎛⎫∈-+∞ ⎪⎝⎭都成立min8sin cos 12212sin cos 21x t x θθθθ⎫⎛⎫∴+≤++⎪ ⎪+++⎭⎝⎭故8sin cos 12sin cos t θθθθ⎫+≤⎪++⎭而)2sin cos 8sin cos112sin cos4sin cost tθθθθθθθθ++⎫⎫+≤⇔+≤⎪⎪++⎭⎭该不等式对任意锐角θ都成立)min2sin cos14sin costθθθθ⎤+++≤⎥⎢⎥⎣⎦令sin cos4uπθθθ⎛⎫=+=+⎪⎝⎭,则))(22sin cos24sin cos22uuuθθθθ+++=∈-,设)2222uyu+=-,令2u s+=,(3,2s∈则628yss=+-,而628ss+-在(3,2单调递增故60282ss<+-≤-所以1y≥,即)min2sin cos14sin cosθθθθ⎤++=⎥⎢⎥⎣⎦11t+≤,又0t>12t≤≤法二:原不等式)()()221sin22cos1214cosx t x tθθθ⇔+-++-()()()()28sin22142sin1sin221x t t xθθθ≤-+++++⋅⋅+()())()()2222sin cos218sin212142sin cos0 t x x tθθθθθ⇔+++-+++++≥令21x p+=,0p>原不等式())()2222sin cos8sin2142sin cos0t p p tθθθθθ⇔⋅++-++++≥0t =时,8sin 20p θ-≥不成立,0t <也不可能成立故0t >令()())222sin cos 41sin 22(sin cos 2)h p t pp t θθθθθ=⋅++-++++即()0h p ≥恒成立若方程()0h p =的>0∆,但其两根和与两根积都大于0,开口向上 故()0h p ≥不可能在()0,∞+上恒成立 所以()0h p ≥在()0,∞+上恒成立)()22222161sin 282sin cos 0t θθθ⇔∆=+-++≤对任意锐角θ恒成立)()21sin 22sin cos t θθθ⇔+≤++12sin cos2sin cos t θθθθ++⎫⇔+≤⎪⎭同法一可得:12t ≤≤. 【点睛】本题主要考查函数的奇偶性和单调性,利用单调性解不等式,还涉及存在性问题和恒成立结合的综合,其中还运用反证法推理证明,以及构造函数法化繁为简,同时也考查学生的推理论证能力和数据处理能力.。