制氢装置的氢气净化

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目前制氢装置的氢气净化分为常规法(苯菲尔溶液脱碳)和变压吸附(Pressure Swing Adsorption,缩写为PSA)法两种流程。

(一)两种净化流程的对比

常规法流程与PSA法的选择主要取决于对工业氢气的纯度和压力的要

求以及经济因素:

1.氢气纯度对加氢装置的影响:常规法的氢气纯度为95%左右,而PSA 法的氢气纯度为99.9%。新氢纯度的差异导致加氢装置操作总压及高压分离器压力不同,氢气纯度低,在保证反应系统氢分压的前提下,反应及分离系统设备设计压力提高,纯氢的消耗量也增大,压缩机及装置的能耗也势必增加,因此净化工艺选择应首先考虑对供氢对象的影响,特别是对新氢纯度要求较高的加氢裂化装置,就只能选择PSA法。2.新氢压力对加氢装置的影响:新氢压力愈高,加氢装置内新氢压缩机的功率消耗及投资就愈低,因此应在制氢装置的合理操作范围内,尽可能的提高工业氢气的输出压力。对常规制氢装置约为1.3~1.4MPa,对PSA净化的制氢装置约为2.0~2.4 MPa。

3.投资:一般PSA法比常规法的投资约高5%~10%左右,但随着PSA 国产化及技术的进步,大大降低了PSA装置的投资,使得两种流程的投

资已日趋接近。

4.氢气成本:PSA法的原料成本高于常规法,但加工成本却低于常规法。两种净化方法的成本主要取决于原料的价格。经测算,当原料价格较高时,常规净化的氢气成本较低;而当原料价格较低时,PSA净化法

比较经济。

当采用炼厂气作为制氢原料时,由于原料价格低,采用PSA净化工艺具有明显的经济优势;当采用天然气、油田气为原料时,两种净化方法成本相当;而当采用轻油作原料时,则PSA法的制氢成本要高于常规净化

法。

PSA净化法具有工艺简单,操作灵活可靠,产品纯度高等诸多好处,目前新建或改建制氢装置一般都选用PSA法。

(二)、常规法

经过中(高)变换的中变气,换热降温后,进入低温变换反应器,进一步将一氧化碳变换为二氧化碳,然后降温至100℃左右,进入脱碳塔,其中的二氧化碳与碳酸钾反应,生成碳酸氢钾,脱除二氧化碳的粗氢气换热升温后,进入甲烷化反应器,粗氢气中的一氧化碳、二氧化碳在甲烷化催化剂的作用下,与氢气反应生成甲烷,最终得到氢纯度大于95%

的工业氢气。

1.脱碳反应

苯菲尔是原始的热钾碱法的商业名称,是由本森(H.E.Benson)和菲尔德(J.H.Field)在20世纪50年代为美国矿物局发明的。后来,又增添了活化剂二乙醇胺以加快二氧化碳的吸收速度,加矾以减少腐蚀。由于吸收液的价格低,吸收容量大,便于操作管理和容易再生,特别在中压(2.0~3.0MPa)下吸收及有低位能的废蒸汽可利用的情况下,其经济效益尤佳。因此,在以天然气和石脑油为原料,采用水蒸汽转化法制

氢的装置中广泛采用。

(1)基本原理

采用碳酸溶液吸收二氧化碳的化学反应过程如下:

上式通常认为是按下列步骤进行的:

为了加快其反应速度,最有效的方法是在碳酸钾溶液中加入液相催化

剂,以改变其反应过程。

采用二乙醇胺作液相催化剂的反应机理如下:

从平衡观点看,加入二乙醇氨做催化剂,降低了溶液面上的CO2平衡分

压,从而有利于净化度的提高。

对于用苯菲尔法脱除原料气中的二氧化碳,应综合净化度高(减少后续过程的麻烦)、溶液的吸收容量大(溶液循环量小,动力消耗低)、吸收和再生速度快(设备可小些)、能耗低、流程简单、投资省等几个方

面作为流程选择的考虑因素。

苯菲尔溶液吸收的净化度既与贫液的再生度有关,又与其吸收温度有关。从平衡角度考虑希望吸收液的温度低一些,则其二氧化碳的平衡分压低,净化度也就高。从反应速度角度考虑希望吸收液的温度高些,温

度高,吸收系数大,吸收速度就快。

目前国内采用苯菲尔溶液净化工艺的制氢装置,几乎全部选择了二段吸收、二段再生流程流程。以两种不同再生度的溶液提供给吸收塔。

2.甲烷化反应

在制氢生产过程中,甲烷化反应的目的是从经过脱碳后粗氢气中除去一氧化碳和二氧化碳,以满足加氢装置催化剂对氢气质量的要求。

甲烷化反应为强放热反应,其反应式如下:

= -206.2kJ/mol

= -165.0kJ/mol

在典型的甲烷化反应器操作条件下,每1%一氧化碳转化的绝热温升为72℃,每1%二氧化碳转化的绝热温升为60℃。制氢装置中甲烷化反应器入口温度一般在280~300℃之间。通过甲烷化反应,可将粗氢气中一氧化碳(0.3%)和二氧化碳(1%)之和降至50μg.g-1。

(二)、变压吸附(PSA)净化工艺

1.变压吸附工艺原理

吸附是指当两种相态不同的物质接触时,其中密度较低物质的分子在密度较高的物质表面被富集的现象和过程。具有吸附作用的物质(一般为密度相对较大的多孔固体)被称为吸附剂,被吸附的物质(一般为密度相对较小的气体或液体)称为吸附质。吸附按其性质的不同可分为四大类,即:化学吸附、活性吸附、毛细管凝缩和物理吸附。PSA制氢装置

中的吸附主要为物理吸附。

物理吸附是指依靠吸附剂与吸附质分子间的分子力(包括范德华力和电

磁力)进行的吸附。其特点是:吸附过程没有化学反应,吸附过程进行的极快,参与吸附的各相物质间的动态平衡在瞬间即可完成,这种吸附

是完全可逆的。

由于吸附剂的传热系数很小,吸附时近于绝热过程,又由于循环周期短,吸附热来不及散失,紧接着又供解吸使用,所以吸附热和解吸热对床层的变化不大,使床层温度仅在平均温度上下波动2℃左右。

吸附质在吸附剂上的容量随吸附质的分压上升而增加,随吸附温度的上升而下降。利用这个性质,可实现吸附剂在低温、高压下吸附而在高温、

低压下解吸再生。

当吸附达到平衡时,被吸附物质的分压等于它在吸附剂接触的气相中的分压,当气相压降降低或系统温度升高时,被吸附气体将以它本来的形式脱离吸附剂。正是依靠这种可逆性,进行吸附剂的再生。

在实际变压吸附过程中,当多组分气体在一定压力下进入吸附床时,由于流体运动,各组分的浓度相互间会发生转变,但这种转变很快就会稳定下来并形成我们可以观测到的饱和区、传质区和波峰面。

实际上,混合气体有多少种除氢以外的组分就有多少个被恒态区隔开的波峰面,但对于具体工业应用而言,我们一般只需要关心其中需严格控制的某一种最难吸附的杂质组分的波峰面(吸附前沿)即可。

随着吸附的进行,吸附床进料端将逐步达到吸附平衡,而吸附传质区和吸附前沿将逐渐前移,当吸附前沿尚未达到出口时即结束了吸附过程,这时吸附床的出口端仍留着一段基本未吸附杂质的纯净区。

在吸附结束后,随着均压减压和顺放减压的进行,由于压力的下降,饱

相关文档
最新文档