概率论(等可能概型)

合集下载

1-4 等可能概型(古典概型)

1-4 等可能概型(古典概型)
n! 一共有 n !n ! n !种分法。(n1+n2+„+nk = n ) 1 2 k
n
1
证:从n个不同的元素中取出n1个元素有 n n !( n n )! 种取法;

1 1
n!
(n n1 )! 再从剩下的n-n1个元素中取出n2个元素有 n !(n n n )! 2 1 2
组合分析的两条基本原理
火车2次 火车
成都
汽车3次
重庆
成都
汽车
重庆
火车 飞机 轮船
武汉
共有23=6种方法 共有2+3=5种方法 1.加法原理 若完成一件事有两种方式,第一种方式有n1种方法, 第二种方式有n2种方法,无论通过哪种方法都可以完成这件事,
则完成这件事总共有n1+n2种方法。 2.乘法原理 若完成一件事有两个步骤,第一个步骤有n1种方法,
种分法。
例题7
例7 将15名新生随机地平均分配到三个班级中去,这15名新生中
种取法;„
从最后剩下的n-(n1+n2+„+nk-1)个元素中取出nk个元素有
[n (n1 n2 nk 1 )]! 种取法。 nk ![n (n1 n2 nk )]!
按乘法原理,n个不同的元素,分成k组,每组分别有n1,n2,„,nk 个元素,应该有
[n (n1 n2 nk 1 )]! n! (n n1 )! n! n1!(n n1 )! n2!(n n1 n2 )! nk !0! n1!n2! nk !
P ( A) kA 16 4 , n 36 9
kB 4 1 . n 36 9 5 8 P( A B) P( A) P( B) , P(C ) P( B) 1 P( B) 9 9 P( B)

概率论1-4

概率论1-4

n
C3 100
k C926C41
P(C) C926C41 C3
100
练习:设在N 件产品中,有 D件次品,其余均为正 品.任取n件,问其中恰有k(k≤D)件次品的概率。
解:所求的概率为
P
C C k nk D ND CNn
上式为超几何分布的概率公式。
练习、课后习题第五题
古典概率的计算:投球入盒
分析 此问题可以用投球入盒模型来模拟
50个学生
50个小球
365天
365个盒子
P( A)
C 50 365

50!
36550
0.03
至少有两人生日相同的概率为
P( A) 1 0.03 0.97
例:一单位有5个员工,一星期共七天,
老板让每位员工独立地挑一天休息,
求不出现至少有2人在同一天休息的
概率。
b
----------与k无关
10
例、从5双不同的鞋子中任取4只,问这4只鞋子中 至少有两只配成一双的概率是多少?
解、考虑4只鞋子是有次序是有次序一只一只取出
令A=“4只鞋子中至少有两只配成一双”
则 A “所取4只鞋子无配对” P( A) 1 P( A) 1 108 6 4 13 1098 7 21
抛掷一颗匀质骰子,观察出现的点数 , 求“出现的 点数是不小于3的偶数”的概率.
试验 抛掷一颗匀质骰子,观察出现的点数
样本空间
S ={1,2,3,4,5,6}
n=6
事件A
A=“出现的点数是不小于3的偶数”={4,6} m=2
事件A的概率
P( A) m 2 1 n 63
例、掷一枚硬币三次,(1)设事件A1为“恰有一 次出现正面”,求P(A1 );(2)设事件A2为“至少 有一次出现正面” ,求P(A2 )

概率论与数理统计 第一章 1.3等可能概型

概率论与数理统计 第一章  1.3等可能概型
C1C1 + C1C1 = 9⋅ 3 + 3⋅ 9 = 54 . 9 3 3 9
概率论
54 3 P(C) = 2 = . 所以 8 12 (2) 采取不放回抽样.
从箱子中任取两件产品,每次取一件,取法总数为12⋅ 11 . ⋅
⋅ 即样本空间中所含有的基本事件总数为 12⋅ 11 . 1 1 事件A 事件 中所含有的基本事件数为 C9C8 = 9⋅ 8 . 9⋅ 8 6 = . 所以 P( A) = 12⋅ 11 11 事件B 事件 中所含有的基本事件数为 C1C1 = 9⋅ 3 . 9 3 9⋅ 3 9 所以 P( B) = = . 12⋅ 11 44
8 5 1 9 4 6 7 2 3 10
概率论
我们用 i 表示取到 i 号球, 号球, i =1,2,…,10 . 则该试验的样本空间
如i =2
2
S={1,2,…,10} ,
且每个样本点(或者说基本 且每个样本点 或者说基本 事件)出现的可能性相同 事件 出现的可能性相同 . 称这样一类随机试验为古 称这样一类随机试验为古 典概型. 典概型
乘法原理
概率论
完成某件事情需先后分成m个步骤 做第一步有 完成某件事情需先后分成 个步骤,做第一步有 1 个步骤 做第一步有n 种方法,第二步有 种方法,依次类推 第二步有n 依次类推,第 步有 步有n 种方法 第二步有 2种方法 依次类推 第m步有 m种方 特点是各个步骤连续完成. 法,特点是各个步骤连续完成 特点是各个步骤连续完成 则完成这件事共有N=n1×n2×…×nm种不同的方法 则完成这件事共有 × 种不同的方法,
即样本空间中所含的基本事件数为122 . C1C1 = 92 . 事件A 事件 中所含有的基本事件数为 9 9 92 9 = 2 = . 所以 P( A) 12 16 C1C1 = 9⋅ 3 . 事件B 事件 中所含有的基本事件数为 9 3 9⋅ 3 3 所以 P( B) = 2 = . 16 12 事件C 事件 中所含有的基本事件数为

1.3 等可能概型、几何概型

1.3 等可能概型、几何概型
2013年7月29日星期一 中央财经大学《概率统计》课件--孙 博 第一章 第三节 --第26页--
人们在长期的实践中总结得到“概率 很小的事件在一次实验中几乎是不发生的” (称之为实际推断原理)。这样小概率的 事件在一次抽卡的试验中就发生了,人们 有比较大的把握怀疑这是魔术. 具体地说,可以99.9%的把 握怀疑这是魔术.
2013年7月29日星期一
中央财经大学《概率统计》课件--孙 博
第一章 第三节 --第3页--
例如,一个袋子中装有 10个大小、形状完全相同 的球. 将球编号为1-10 . 把球搅匀,蒙上眼睛,从 中任取一球.
8 5 1 9 4 6 7 2 3 10
2013年7月29日星期一
中央财经大学《概率统计》课件--孙 博
i 1, 2,, n .
中央财经大学《概率统计》课件--孙 博
其中
2013年7月29日星期一
n
第一章 第三节 --第6页--
古典概型的概率计算(概率的古典定义)
确定试验的基本事件总数
设试验结果共有n个基本事件ω1,ω2,...,ωn , 而且这些事件的发生具有相同的可能性
确定事件A包含的基本事件数
P ( A1 A2 Ak ) P ( A1) P ( A2 ) P ( Ak ) 可列可加性
排列组合是计算古典概率的重要工具 .
2013年7月29日星期一 中央财经大学《概率统计》课件--孙 博 第一章 第三节 --第8页--
“等可能性”是一种假设,在实际应用中, 需要根据实际情况去判断。在许多场合, 由对称性和均衡性,我们就可以认为基本 事件是等可能的并在此基础上计算事件的 概率.
2013年7月29日星期一 中央财经大学《概率统计》课件--孙 博 第一章 第三节 --第10页--

概率论与数理统计--第一章 概率论的基本概念(2)

概率论与数理统计--第一章 概率论的基本概念(2)

利用软件包进行数值计算
3 超几何概率
设有 N 件产品, 其中有 D 件次品, 今从中任取 n 件,问其中恰有 k ( k D ) 件次品的概率是多少 ?

在N件产品中抽取n件的取法数
C
n N
在 N 件产品中抽取n件,其中恰有k 件次品的取法数
C
nk N D
C
k D
于是所求的概率为
p
C
nk N D n N

7 12
周ቤተ መጻሕፍቲ ባይዱ 周四 周五 周六 周日
故一周内接待 12 次来访共有 712 种.
2 1
2
2 3
2 4

2 12
周一 周二 周三 周四 周五 周六 周日
12 次接待都是在周二和周四进行的共有 212 种. 故12 次接待都是在周二和周四进行的概率为
212 p 12 0.0000003 . 7
(1) 每一个班级各分配到一名特长生的分法共有
( 3!12! ) (4! 4! 4! ) 种.
因此所求概率为
25 3!12! 15! . p1 4! 4! 4! 5! 5! 5! 91
(2)将3名特长生分配在同一个班级的分法共有3种, 12! 种. 对于每一种分法,其余12名新生的分法有 2! 5! 5! 因此3名特长生分配在同一个班级的分法共有
例4 将 15 名新生随机地平均分配到三个班级中 去,这15名新生中有3名是特长生.问 (1) 每一个班 级各分配到一名特长生的概率是多少? (2) 3 名特长生分配在同一个班级的概率是多少?
解 15名新生平均分配到三个班级中的分法总数:
15 10 5 15! . 5 5 5 5! 5! 5!

第1.3节 等可能概型

第1.3节 等可能概型

定义:
概率论所讨论的问题中,有一类问题最简单直观,这类问题
所涉及到的试验具有下面两个特征:
1)(有限性)试验的样本空间的元素只有有限个; 2)(等可能性)试验中每个基本事件发生的可能性相同. 把具有上述两个特征的试验称为等可能概型或古典概型.
例如,抛一枚质地均匀的硬币,或者出现正面或者出现反面,只
方法2 (利用对立事件的概率关系)
P ( A ) 1 P ( A ) 1 P ( A0 ) 1 C 20
甲、乙两人同时向目标射击一次,设甲击中的概率
为 0.85 ,乙击中的概率为 0.8 .两人都击中的概率为
0.68 .求目标被击中的概率.

设A表示甲击中目标,B表示乙击中目标,
有两种结果,且每种结果出现的可能性相同.又如抛一颗骰子, 观察出现的点数,则共有6种结果,且每一种结果出现的可能性 相同.
设古典概率 E 的样本空间为 S e1 , e2 , , en .
由于在试验中每个基本事件发生的可能性相同 , 即
P e1 P e 2 P e n
得 P(A1)
m A1 n

3 8
.
( 2 ) A 2 { HHH , HHT , HTH , THH , HTT , THT , TTH }.
因此
P(A2)
m A2 n

7 8
.
例 2 一口袋装有 6 只球,其中 4 只白球、 只红球. 从 2 袋中取球两次,每次随机地取一只.考虑有放回和无放 回两种抽样,试分别就这两种情况求:(1) 取到的两只 球都是白球的概率,(2) 取到的两只球颜色相同的概 率,(3) 取到的两只球中至少有一只是白球的概率.

1-4 等可能概型

1-4 等可能概型

【评】古典概型在概率论中占有相当重要的地位。 一方面,由于它简单,对它的讨论有助于直观地理解
概率论的许多基本概念,因此,我们常从古典概型 开始引入新的概念;另一方面,古典概型概率的计算
在产品质量抽样检查等实际问题中有重要的应用。
二、基本排列与组合公式
乘法原理:若进行A1过程有n1种方法,进行A2过程有 n2种方法,则进行A1过程后再进行A2过程共有n1n2种 方法。 加法原理:若进行A1过程有n1种方法,进行A2过程有
r n
设r1+r2+…+rk=n,把n个不同的元素分成k个部分,
第一部分含r1个元素,第二部分含r2个元素,…
则不同的分法为
C C
r1 n
r2 n r1
C
rk 1 rk n r1 rk 2 n r1 rk 1
C
n! r1 !r2 ! rk !
一些常用公式
1 3 5 6 1 2 1 64 2 3 6 1 3
Bk-1={取得的n个数中最大的数不超过k-1},
则 Bk-1Bk,且 A=Bk-Bk-1,依概率的性质,
C C 【注】利用事件间的关系与运算求解概率。
P(A)= P(Bk)-P(Bk-1)
Ckn
n 10

Ckn1
n 10
例3 从1~9这9个数中有放回地取出 n 个数, 试求取出的 n个数的乘积能被 10 整除的概率。
§4 等可能概型
教学纲目 一、古典概型的定义与计算公式
二、基本排列与组合公式
三、典型例题
10 放回抽样与不放回抽样; 20 抽签与顺序无关;
30生日问题; 40超几何分布;
50 实际推断原理。
四、几何概型

数学部分经典问题之概率问题

数学部分经典问题之概率问题

写在前面的话1、朋友们的热心,是qzzn(求职指南论坛)行政职业能力测试版发展的动力!也是加入到qzzn的各位朋友共有的财富!2、所有汇编资料,免费提供,仅供大家交流和学习。

请在学习结束后,自行删除!3、严禁用于商业用途!4、希望在公务员考试的道路上,有qzzn,有行政职业能力测试版的陪伴,大家能同进步、共发展!5、最后,祝愿大家在即将的考试中,金榜题名,马到成功!qzzn(求职指南论坛)行政职业能力测试版版主westwood2006年3月2日概率原理1.重视概念的甄别,即弄清某些容易混淆的概念之间的区别。

在概率论中存在许多容易混淆的概念,如果不能认真区分,仔细加以甄别,就不能正确理解这些重要概念,在应用时就会产生各种各样的错误。

➢ 互不相容事件与相互独立事件是最容易混淆的一对概念“互不相容”是指两个事件不能同时发生。

而“相互独立”则是指一个事件发生与否对另一事件发生的概率没有影响。

➢ 随机变量的独立性与不相关性是两个既有区别又有联系的概念对两个随机变量而言,相互独立⇒不相关。

➢ 条件概率P(A|B)与乘积概率P(AB) 也是容易混淆的一对概念一般来说,当事件B A ,同时发生时,常用)(AB P ,而在有包含关系或明确的主从关系中,用)(A B P 。

如袋中有9个白球1个红球,作不放回抽样,每次任取一球,取2次,求:(1)第二次才取到白球的概率;(2)第一次取到的是白球的条件下,第二次取到的也是白球的概率。

问题(1)是求第一次取到红球且第二次取到白球这一积事件的概率,而问题(2)则是求在第一次取到白球的条件下,第二次取到白球的条件概率。

2.善于识别一些重要的概率模型并能正确进行计算是提高分析和解决概率实际问题能力的关键。

在概率论中有许多经长期实践概括出的重要概率模型(简称“概型”),学生必须了解其背景、特点和适用范围,要熟记计算公式,以便能正确应用。

例如:(1)古典概型:一类具有有限个“等可能”发生的基本事件的概率模型。

概率论与数理统计-等可能概型-古典概型

概率论与数理统计-等可能概型-古典概型

P( A)
m n
A
所包含样本点的个数
样本点总数
.
称此为概率的古典定义.
3. 古典概型的基本模型:摸球模型
(1) 无放回地摸球 问题1 设袋中有4 只白球和 2只黑球, 现从袋中无 放回地依次摸出2只球,求这2只球都是白球的概率.
解 设 A {摸得 2 只球都是白球},
基本事件总数为 6,
பைடு நூலகம்
2
A 所包含基本事件的个数为 故 P( A) 4 6 2 .
解 设 x, y 分别为 甲、乙两人到 达的时刻, 则有
1 x 2,
时刻, 那么 0 x T , 0 y T .
两人会面的充要条件为 x y t,
若以 x, y 表示平面 上点的坐标 , 则有
故所求的概率为
阴影部分面积 p 正方形面积
T 2 (T t )2
T2
1 (1 t )2 . T
y
T
y x t
x yt
o

t

T
x
例8 甲、乙两人约定在下午1 时到2 时之间到某 站乘公共汽车 , 又这段时间内有四班公共汽车, 它们的开车时刻分别为 1:15、1:30、1:45、2:00. 如果甲、乙约定 (1) 见车就乘; (2) 最多等一辆 车. 求甲、乙同乘一车的概率. 假定甲、乙两人到达车站的时 刻是互相不牵连的,且每人在 1 时到 2 时的任何时刻到达车 站是等可能的.
3
3
3
3
4个球放到3个杯子的所有放法 3 3 3 3 34种,
4种 2
2种 2
2个
2个
因此第1、2个杯子中各有两个球的概率为
p 4 2 34 2 .

概率论的基本概念总结

概率论的基本概念总结

概率论的基本概念总结概率论是一门研究随机现象和随机事件发生概率的学科。

以下是概率论的一些基本概念和原理的总结:1. 随机试验:指具有随机性质的实验,可以重复进行,并且每次实验的结果不确定。

2. 样本空间:随机试验所有可能结果构成的集合,记作Ω。

3. 事件:样本空间Ω 中的子集称为事件。

通常用大写字母A、B、C 等表示事件。

4. 事件的概率:事件A 发生的可能性大小可以用概率来描述,记作 P(A)。

概率是一个介于 0 和 1 之间的实数。

5. 等可能概型:当一个随机试验的样本空间中的每个结果发生的可能性相等时,称为等可能概型。

6. 频率:进行多次独立重复的随机试验,事件 A 发生的频率近似等于其概率。

7. 概率的性质:概率具有以下性质:- 非负性:对于任何事件 A,有P(A) ≥ 0。

- 规范性:对于样本空间Ω,有P(Ω) = 1。

- 加法性:对于任何两个互斥事件 A 和 B,有 P(A ∪ B) =P(A) + P(B)。

- 完备性:对于任何事件 A,有 P(A) + P(A的补) = 1。

8. 条件概率:当已知随机试验的某些信息时,我们可以计算某一事件发生的概率,这就是条件概率。

条件概率使用 P(B|A) 表示,读作“在事件 A 发生的条件下,事件 B 发生的概率”。

9. 乘法规则:当两个事件 A 和 B 依赖于彼此时,事件 A 和 B 同时发生的概率可以通过条件概率相乘得到,即P(A ∩ B) = P(A) * P(B|A)。

10. 独立事件:事件 A 和 B 是独立事件,如果 A 的发生与 B 的发生无关,即P(A ∩ B) = P(A) * P(B)。

11. 事件的互斥和独立:事件 A 和 B 互斥,如果它们不能同时发生,即P(A ∩ B) = 0。

事件 A 和 B 独立,如果它们的发生与否相互独立,即P(A ∩ B) = P(A) * P(B)。

12. 全概率公式:在条件概率已知的情况下,可以利用全概率公式求解事件的概率,即P(B) = Σ P(Ai) * P(B|Ai),其中 Ai 是样本空间Ω 的一个划分。

等可能概型(古典概型)

等可能概型(古典概型)
概率的取值具有非负性,即对于任何事 件A,都有P(A)>=0。
概率的加法原理
概率的加法原理是指对于任意两个事 件A和B,有P(A∪B)=P(A)+P(B)P(A∩B)。
当事件A和B互斥时,即A∩B=∅,概 率的加法原理可以简化为 P(A∪B)=P(A)+P(B)。
概率的乘法原理
01
概率的乘法原理是指对于任意两个事件A和B,有 P(A∩B)=P(A)×P(B|A)。
条件
样本空间中的样本点数量是有限的,且每个样本点都 是互斥的。
特点
01
02
03
04
等可能性
在古典概型中,每个样 本点被选中的概率是相 等的。
有限性
古典概型的样本空间是 有限的,即样本点的数 量是有限的。
互斥性
样本空间中的样本点是 互斥的,即一个样本点 被选中后,其他样本点 就不能再被选中。
独立性
在古典概型中,各次试 验的结果是相互独立的, 即前一次试验的结果不A|B)。
02
计算公式
$P(A|B) = frac{P(A cap B)}{P(B)}$
03
应用场景
在决策理论、统计学、信息理论等领域中,条件概率都有广泛的应用。
贝叶斯定理
定义
贝叶斯定理是关于条件概率的定理,它提供了从事件B发生的条 件下计算事件A的条件概率的方法。
计算公式
$P(A|B) = frac{P(B|A) times P(A)}{P(B)}$
3
计算步骤
确定样本空间的大小,利用组合数公式计算概率。
公式法
定义
公式法是一种利用概率 的基本公式来计算概率 的方法。
适用范围
适用于样本空间较大, 且样本点之间有顺序的 情况。

概率论与数理统计

概率论与数理统计
记下颜色, 重复 m 次.
E: 球编号, 一次取出 m个球, 记下颜色.
(或 Ab )1) #S P (a ,b)( a
k # A Cm Pak Pbmk ,
m ab
m ab
#b S n C , (a 1)
m ab
k mk # A Ca Cb ,
—— 超几何分布—— 注: 不放回地逐次取 m 个球与一次取 m 个球所得结果相同.
解: A = “取到的数被 6 整除”, B = “取到的数被 8 整除”.

P ( A) 333 , 2000 P ( B) 250 , 2000 P( AB) 83 , 2000
所求为:P( A
B ) P ( A B) 1 P ( A B )
1 [ P( A) P( B) P( AB )] 1 ( 333 250 83 ) 3 . 4 2000 2000 2000
1
例1. 一个盒中装有10个大小形状完全相同的球. 依次将球
编号为1-10 . 把球搅匀,蒙上眼睛,从中任取一球 . 1. 样本空间 S = { 1 2 3 4 5 6 7 8 9 10 }?
2. 记 A = “摸到 2 号球”,则 P(A) = ?
A = { 2 },
P( A) # A 1 ; # S 10
5 1 9 4 6 7 2 3 10 8
3. 记 B = “摸到红色球”,则 P(B) = ? B = { 1 2 3 4 5 6 }, P( B) # B 6 . # S 10
第一章 概率论的基本概念
2
例2 (p.13 例6). 在 1~2000 的整数中随机地取一个数,求
该数既不能被 6 整除, 又不能被 8 整除的概率.

概率论与数理统计-等可能概型

概率论与数理统计-等可能概型
1 PB PC PBC
1 5n 8n 4n 9n 9n 9n
等可能概型
例 10 一部10卷文集,将其按任意顺序排放在 书架上试求其恰好按先后顺序排放的概率. 解:设 A={ 10卷文集按先后顺序排放 }
将10卷 文 集 按 任 意 顺 序 排,放共 有10! 种 不 同 的 排法(样本点总数).
?200axxd?????????????????m几何概型xl?2sin?x??a2dasin200????????lxxa??????????22sin20aladldap??????????????????的面积的面积200axxd????????????????0几何概型思考题1某人午觉醒来发觉表停了他打开收音机想听电台报时过求他等待的时间不超过10分钟的

几何概型
几何概型
几何概型考虑的是有无穷多个等可能结果的 随机试验。
首先看下面的例子。
例 1 (会面问题)甲、乙二人约定在 12 点到 5 点之间在某地会面,先到者等一个小时后即离去 设二人在这段时间内的各时刻到达是等可能的, 且二人互不影响。求二人能会面的概率。
几何概型
解: 以 X , Y 分别表示甲乙二人到达的时刻,
62
42 22
P(B)
0.556
62
P(C )
C41C
1 6
62
P(C) 1 P(C ) 1 22 0.889
62
无放回抽取:
C2 4
P( A) C2
6
P42 P62
P(B)
C 42
C
2 2
C
2 6
P42 P22 P62
P
(C
)
1
P(C
)

概率论等可能概型

概率论等可能概型

决策理论
01
02
03
பைடு நூலகம்
决策理论是研究如何根 据不同的可能性选择最 优方案的学科,等可能 概型在决策理论中也有
着重要的应用。
在决策理论中,等可能 概型常用于描述风险决 策和不确定性环境下的
决策问题。
通过等可能概型,可以 计算期望值和期望效用 ,从而进行风险评估和 决策分析,帮助决策者
做出最优选择。
06
03
等可能概型的基本概率公式
概率的加法定理
互斥事件的概率加法定理
如果事件A和B是互斥的,那么P(A∪B)=P(A)+P(B)。
完备事件的概率加法定理
如果事件A和B是完备的,那么P(A∪B)=1,且P(A)+P(B)=1。
条件概率
条件概率的定义
在事件B发生的条件下,事件A发生的 概率定义为P(A∣B)=P(A∩B)P(B)。
04
等可能概型在概率论中具有广泛的应用,如排列组合、概率分布、随 机变量等。
等可能概型的未来发展
随着大数据和人工智能的兴起,等可能概型在 数据分析和机器学习等领域的应用将得到更深
入的研究和应用。
未来,等可能概型的研究将更加注重理论证明和实际 应用的结合,以更好地服务于各个领域的发展。
随着科学技术的不断发展和概率论的深入研究 ,等可能概型的应用范围将不断扩大。
概率论等可能概型
• 引言 • 等可能概型的定义与性质 • 等可能概型的基本概率公式 • 等可能概型中的随机变量 • 等可能概型的应用 • 结论
01
引言
主题简介
概率论等可能概型是概率论的一个重 要分支,主要研究在等可能性的前提 下随机事件发生的概率。
它涉及到随机试验、样本空间、事件 、概率空间等多个概念,是概率论的 基础。

第三节 等可能概型

第三节     等可能概型

第三节等可能概型一、古典概型二、几何概型1.试验的样本空间只含有有限个元素,即12{,,,}n Ωωωω= 2.试验中每个基本事件发生的可能性相同,即})({})({})({21n P P P ωωω=== 具有以上两个特点的随机试验称为等可能概型。

由于它是概率论发展初期的主要研究对象,所以也称之为古典概型.一、古典概型111()({}){}{}n ni i i i i P P P nP Ωωωω======∑∪1{}(1,2,,)i P i n n ω== 12{}{}{}ki i i A ωωω=∪∪ ∪1()({})j ki j k A P A P n ω====Ω∑包含的基本事件数中基本事件总数这里i 1,i 2, ···,i k 是1, 2,···,n 中某k 个不同的数,则有设实验E是古典概型,由于基本事件是两两互斥,因此从而若事件A 含有k 个基本事件,即这样就把求概率问题转化为计数问题.排列组合是计算古典概率的重要工具.基本计数原理这里我们先简要复习一下计算古典概率所用到的(1)加法原理设完成一件事有m 种方式,第一种方式有n 1种方法,第二种方式有n 2种方法,…;第m 种方式有n m 种方法,无论通过哪种方法都可以完成这件事,则完成这件事总共有n 1 +n 2 +…+n m 种方法.1.两个基本计数原理例如,某人要从甲地到乙地去,甲地乙地可以乘火车,也可以乘轮船.火车有两班轮船有三班乘坐不同班次的火车和轮船,共有几种方法?3+ 2种方法回答是基本计数原理则完成这件事共有种不同的方法.m n n n ××× 21(2)乘法原理设完成一件事有m 个步骤,第一个步骤有n 1种方法,第二个步骤有n 2种方法,…;第m 个步骤有n m 种方法,必须通过每一步骤,才算完成这件事,例如,若一个男人有三顶帽子和两件背心,问他可以有多少种打扮?可以有种打扮3×2加法原理和乘法原理是两个很重要计数原理,它们不但可以直接解决不少具体问题,同时也是推导下面常用排列组合公式的基础.排列•排列:!(1)(1)()!rnn P n n n r n r =−−+=− r n n n n⋅= •重复排列:特别地,当r = n ,全排列!n n P n =从n 个不同的数中任取r 个,排成一排,共有多少种排法?2.两个计数工具——排列和组合组合•组合:!!!()!r rnn P n C r r n r ==−1rn r C +−•重复组合:从n 个不同的数中任取r 个,共有多少种取法?推广:(分组问题) 把n个不同的元素分成k 组,各组元素数目分别为 r1, r2 , ···, rk , 且r1+ r2 +··· +rk=n,则不同的分法为:C ⋅Cr1 nr2 n − r1n! ⋅⋅⋅ C = r1 !r2 !⋅⋅⋅ rk !rk rk例3 将一枚硬币抛二次( 1 )设事件A1为“恰好有一次出现正面” , 求P( A1 ) (2)设事件A2为“至少有一次出现正面” , 求P( A2 )设随机试验E为 : 将一枚硬币抛两次, 观察正反 解(1) 则样本空间为Ω = { HH , HT , TH , TT } Ω 中包含n = 4个元素,每个基本事件发生的可能性相同,故此试验为等可能概型. 又A1 = {HT , TH }中包含的基本事件数k = 2 故P( A1 ) = 2 / 4 = 1/ 2(2) 因为 A2 = { TT } 1 H3 T T T H H P ( A2 ) = 1 − P ( A2 ) = 1 − = 于是 4 4HT例3:30名学生中有3名运动员,将这30名学生平均分成 3组,求:(1)每组有一名运动员的概率; (2)3名运动员集中在一个组的概率。

高中数学六种概率模型

高中数学六种概率模型

高中数学六种概率模型高中数学中,概率是一个重要的概念。

它用来描述事件发生的可能性大小。

在概率论中,有六种常见的概率模型,它们分别是等可能概型、几何概型、排列概型、组合概型、条件概型和分布概型。

下面将逐个介绍这六种概率模型。

一、等可能概型:等可能概型是指每个基本事件发生的可能性相等。

比如抛硬币,硬币正面和反面出现的概率都是1/2。

再比如掷骰子,每个点数出现的概率都是1/6。

在等可能概型中,我们可以通过计算事件的个数与样本空间的大小来求解概率。

二、几何概型:几何概型是指在几何空间中进行概率计算。

比如说,我们可以通过几何概型来计算平面内的点落在某个区域的概率。

在几何概型中,我们可以通过计算区域的面积或体积与几何空间的大小来求解概率。

三、排列概型:排列概型是指在排列问题中的概率计算。

比如说,从n个元素中取出r个元素进行排列,那么排列的个数就是n个元素的全排列数,即n!。

在排列概型中,我们可以通过计算事件的个数与样本空间的大小来求解概率。

四、组合概型:组合概型是指在组合问题中的概率计算。

比如说,从n个元素中取出r个元素进行组合,那么组合的个数就是n个元素的组合数,即C(n,r)。

在组合概型中,我们可以通过计算事件的个数与样本空间的大小来求解概率。

五、条件概型:条件概型是指在已知某些条件下的概率计算。

比如说,已知某个事件A发生的条件下,另一个事件B发生的概率。

在条件概型中,我们可以通过计算事件A与事件B同时发生的概率与事件A发生的概率之比来求解概率。

六、分布概型:分布概型是指在统计分布中的概率计算。

比如说,正态分布、泊松分布、二项分布等等。

在分布概型中,我们可以通过计算随机变量的取值与概率密度函数或概率质量函数之间的关系来求解概率。

高中数学中的概率有六种常见的概率模型,它们分别是等可能概型、几何概型、排列概型、组合概型、条件概型和分布概型。

每种概率模型都有其独特的应用场景和计算方法。

熟练掌握这些概率模型,有助于我们更好地理解和应用概率论的知识,解决实际生活和工作中的问题。

等可能概型

等可能概型

A的 度 量 P ( A) 的 度 量
例3.2.7 甲、乙两船驶向一个不能同时停泊两艘轮船的码头,它们 在一昼夜内到达的时间是等可能的.如果甲船停泊的时间是1小时, 乙船停泊的时间是2小时,求其中任一艘船都无须等待码头空出的 概率.
解: 设甲、乙两船到达码头的时间分别是 x , y,则
又由于两船不能同时停泊,则必须满足:
那么任一艘船都无需等待码头空出的概率:
������0036 抛三枚硬币,则至少出现一个正面的概率为( ).
������0029 在区间(0,1)中随机地抽取两个数,则事件“两数之和 小于6/5”的概率为____.(请用小数作答!)
微助教 在区间(0,1)中随机地抽取两个数, 则事件“两数之和小于6/5”的概率为____.(几何概型!)
不同方法数的乘积.
……
分步乘法计数原理:完成一件事,需 要分成几个步骤,每一步的完成有多 种不同的方法,则完成这件事的不同 方法总数是各步骤不同方法数的乘积.
完成这件事的方法总数:
例:网上预订行程,从郑州到 上海共有12种不同行程选择, 从上海到香港共有4种不同的 行程选择,那么从郑州经上海 到香港共有4×12=48种不同的 行程选择.
第三章 概率论的基础
随机事件
随机事件 及其 概率
随机事件的概率
古典概型
条件概率及全概率公式 事件的独立性
古典概率模型
设随机实验 E 满足下列条件: 1.有限性:试验的样本空间只有有限个样本点, 即
1,2, ,n ,
,
2.等可能性:每个样本点 1, 2 , 的发生是等可能的
n
则称此试验 E 为古典概型,也叫等可能概型.
古典概型中事件概率的计算公式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
365 364 ( 365 64 1) 0.997. p 1 64 365
说明
随机选取n( 365)个人, 他们的生日各不相同的 概 率为
365 364 ( 365 n 1) p . n 365
而n个人中至少有两个人生 日相同的概率为
365 364 ( 365 n 1) p 1 . n 365
会面问题
例7 甲、乙两人相约在 0 到 T 这段时间内, 在预 定地点会面. 先到的人等候另一个人, 经过时间 t ( t<T ) 后离去.设每人在0 到T 这段时间内各时刻
到达该地是等可能的 , 且两人到达的时刻互不牵
连.求甲、乙两人能会面的概率.
的 解 设 x , y 分别为甲、乙两人到达 时刻 , 那么 0 x T , 0 y T .

周五
7 12 周六 周日
故一周内接待 12 次来访共有 712 种.
2 1
2
2 3
2 4

2 12
周一 周二 周三 周四 周五 周六 周日
12 次接待都是在周二和周四进行的共有 212 种. 故12 次接待都是在周二和周四进行的概率为
212 p 12 0.0000003 . 7
小概率事件在实际中几乎是不可能发生的 , 从 而可知接待时间是有规定的.
例4 将 15 名新生随机地平均分配到三个班级中 去,这15名新生中有3名是优秀生.问 (1) 每一个班 级各分配到一名优秀生的概率是多少? (2) 3 名优 秀生分配在同一个班级的概率是多少?
解 15名新生平均分配到三个班级中的分法总数:
15 10 5 15! . 5 5 5 5! 5! 5!
( 2) A 2 { HHH , HHT , HTH , THH , HTT , THT ,TTH }.
因此 P ( A 2 ) 7 8 .
例 2 设有 N 件产品, 其中有 D 件次品, 今从中任取 n 件,问其中恰有 k ( k D ) 件次品的概率是多少 ?
解 在N件产品中抽取n件的所有可能取法共有 N 种, n
设试验 E 的样本空间由n 个样本点构成, A
为 E 的任意一个事件,且包含 m 个样本点,则事 件 A 出现的概率记为:
m A 所包含样本点的个数 P ( A) . n 样本点总数
称此为概率的古典定义.
3. 古典概型的基本模型:摸球模型
(1) 无放回地摸球
问题1
设袋中有4 只白球和 2只黑球, 现从袋中无
放回地依次摸出2只球,求这2只球都是白球的概率. 解 设 A {摸得 2 只球都是白球 }, 6 基本事件总数为 , 2 4 A 所包含基本事件的个数为 , 2 4 6 2 故 P ( A) . 2 2 5
(2) 有放回地摸球 问题2 设袋中有4只红球和6只黑球,现从袋中有放 回地摸球3次,求前2次摸到黑球、第3次摸到红球 的概率. 解 设 A { 前 2 次摸到黑球, 第 3 次摸到红球}
第四节 等可能概型(古典概型)
一、等可能概型 二、典型例题 三、几何概率 四、小结
一、等可能概型(古典概型)
1. 定义
(1) 试验的样本空间只包含 有限个元素; ( 2) 试验中每个基本事件发 生的可能性相同 . 具有以上两个特点的试 验称为等可能概型或 古典概型 .
2. 古典概型中事件概率的计算公式
(1) 每一个班级各分配到一名优秀生的分法共有
( 3!12! ) (4! 4! 4! ) 种.
因此所求概率为
25 3!12! 15! . p1 4! 4! 4! 5! 5! 5! 91
(2)将3名优秀生分配在同一个班级的分法共有3种, 12! 种. 对于每一种分法,其余12名新生的分法有 2! 5! 5! 因此3名优秀生分配在同一个班级的分法共有
3
3
3
3
4个球放到3个杯子的所有放法 3 3 3 3 34 种,

4 种 2
2个
2 种 2
2个
因此第1、2个杯子中各有两个球的概率为
4 2 4 2 p 3 . 27 2 2
在 N 件产品中抽取n件,其中恰有k 件次品的取法 共有
D N D 种, k n k
D N D N . 于是所求的概率为 p k n k n
例3 在1~2000的整数中随机地取一个数,问取到 的整数既不能被6整除, 又不能被8整除的概率是 多少 ? 解 设 A 为事件“取到的数能被6整除”,B为事件
两人会面的充要条件为 x y t ,
若以 x, y 表示平面 上点的坐标 , 则有
故所求的概率为
T
y
y xt
x yt
阴影部分面积 p 正方形面积
o


t
T
x
T (T t ) T2 t 2 1 (1 ) . T
2
2
例8 甲、乙两人约定在下午1 时到2 时之间到某 站乘公共汽车 , 又这段时间内有四班公共汽车, 它们的开车时刻分别为 1:15、1:30、1:45、2:00. 如果甲、乙约定 (1) 见车就乘; (2) 最多等一辆 车. 求甲、乙同乘一车的概率. 假定甲、乙两人到达车站的时 刻是互相不牵连的,且每人在 1 时到 2 时的任何时刻到达车 站是等可能的.
次出现正面”求 P ( A1 ). ( 2) 设事件 A2 为 , “至少有一 次出现正面”求 P ( A2 ). ,
解 (1) 设 H 为出现正面, T 为出现反面.
则 S { HHH , HHT , HTH , THH , HTT , THT , TTH , TTT }.
而 A 1 { HTT , THT , TTH }. 得 P ( A 1 ) 3 8 .
( 3 12! ) ( 2! 5! 5! ) 种 , 因此所求概率为
6 3 12! 15! . p2 2! 5! 5! 5! 5! 5! 91
例5 某接待站在某一周曾接待过 12次来访,已知 所有这 12 次接待都是在周二和周四进行的,问是 否可以推断接待时间是有规定的. 解 假设接待站的接待时间没有 规定,且各来访者在一周的任一天 中去接待站是等可能的. 7 1 周一 7 2 周二 7 3 周三 7 4 周四
P( “取到的数能被8整除”,则所求概率为 A B ). P ( AB ) P ( A B ) 1 P ( A B )
1 { P ( A) P ( B ) P ( A334, 所以 P ( A) , 6 2000
(答案 : 2 9)
2o 生日问题 某班有20个学生都 是同一年出生的,求有10个学生生 日是1月1日,另外10个学生生日是 12月31日的概率. 20 10
(答案 : p 36520 ) 10 10
二、典型例题
例1 将一枚硬币抛掷三次 (1) 设事件 A1 为“恰有一 .
y
2
1 : 45


1 : 30
1 : 15
1
o




1 1 : 15 1 : 30 1 : 45 2
x
1 3 (1 16) 5 最多等一辆车,甲、乙 p 2 . 同乘一车的概率为 4 1 8
蒲丰投针试验
蒲丰资料
例9 1777年,法国科学家蒲丰(Buffon)提出了投针 试验问题.平面上画有等距离为a(a>0)的一些平行直 线,现向此平面任意投掷一根长为b( b<a )的针,试求 针与某一平行直线相交的概率. a M 解 以x表示针投到平面上时 , x 针的中点M到最近的一条平行
解 设 x, y 分别为 甲、乙两人到 达的时刻, 则有
y 2
1 : 45


1 : 30
1 : 15
1 x 2,
1 y 2.
1
o



1 1 : 15 1 : 30 1 : 45 2

x
2 见车就乘 阴影部分面积 4 (1 4) 1 p 2 . 的概率为 ( 2 1) 4 正方形面积
第3次摸到红球 4种
第1次摸到黑球 6种 第2次摸到黑球
第3次摸球 第2次摸球 第1次摸球
10种
基本事件总数为 10 10 10 103 , A 所包含基本事件的个数为 6 6 4, 6 6 4 0.144 . 故 P ( A) 3 10 课堂练习 1o 电话号码问题 在7位数的电话号码中,第一位 不能为0,求数字0出现3次的概率.
我们利用软件包进行数值计算.
三、几何概型
定义 当随机试验的样本空间是某个区域,并且 任意一点落在度量 (长度、 面积、体积) 相同的 子区域是等可能的,则事件 A 的概率可定义为 SA P ( A) . S (其中 S 是样本空间的度量 S A 是构成事件 A的子 ,
区域的度量.) 这样借助于几何上的度 量来合理规 定的概率称为几何概型. 说明 当古典概型的试验结果为连续无穷多个时, 就归结为几何概型.
9 6 3 3 (答案 : p 1 9 9 106 ) 1 3
2o 骰子问题 概率.
掷3颗均匀骰子,求点数之和为4的
(答案 : p 3 63 )
4.古典概型的基本模型:球放入杯子模型
(1)杯子容量无限 问题1 把 4 个球放到 3个杯子中去,求第1、2个 杯子中各有两个球的概率, 其中假设每个杯子可 放任意多个球.
(2) 每个杯子只能放一个球
问题2 把4个球放到10个杯子中去,每个杯子只能
相关文档
最新文档